Science.gov

Sample records for affect motor activity

  1. Covert imitation of transitive actions activates effector-independent motor representations affecting "motor" knowledge of target-object properties.

    PubMed

    Campione, Giovanna Cristina; Gentilucci, Maurizio

    2010-03-01

    The present study aimed at determining whether, and in what conditions, covert imitation of different manual grasps of the same object influences estimation of those object properties whose variations afford those different grasp interactions. Participants matched the size of spheres after observation of the same spheres being grasped using both a power and a precision grasp: these actions are used preferentially to grasp large and small objects, respectively. The type of matching varied across four experiments. In experiment 1, participants matched the object size by opening their thumb and index finger; in experiment 2, they abducted their index and middle fingers as in a finger opening of a cutting pantomime, and in experiment 3, they opened their mouth. In experiment 4, the sphere size was reproduced on a PC monitor by moving the mouse forward/backward. Grasp observation affected matching in experiments 1 and 3. Kinematics analysis showed overestimation after observation of a power grasp as compared to a precision grasp. The data are interpreted as a consequence of covert imitation of the observed hand kinematics, which varied congruently with the object sizes potentially activating that type-of-grasp. This affected estimation of object size. Covert imitation was favored by the types of matching requiring motor patterns related to grasp movements independently of the effector used. This finding supports the existence of motor commands to the hand as well as to the mouth, activated when the same potential goal guides the movements of both these effectors. PMID:19850083

  2. Activation of less affected corticospinal tract and poor motor outcome in hemiplegic pediatric patients: a diffusion tensor tractography imaging study

    PubMed Central

    Kim, Jin Hyun; Son, Su Min

    2015-01-01

    The less affected hemisphere is important in motor recovery in mature brains. However, in terms of motor outcome in immature brains, no study has been reported on the less affected corticospinal tract in hemiplegic pediatric patients. Therefore, we examined the relationship between the condition of the less affected corticospinal tract and motor function in hemiplegic pediatric patients. Forty patients with hemiplegia due to perinatal or prenatal injury (13.7 ± 3.0 months) and 40 age-matched typically developing controls were recruited. These patients were divided into two age-matched groups, the high functioning group (20 patients) and the low functioning group (20 patients) using functional level of hemiplegia scale. Diffusion tensor tractography images showed that compared with the control group, the patient group of the less affected corticospinal tract showed significantly increased fiber number and significantly decreased fractional anisotropy value. Significantly increased fiber number and significantly decreased fractional anisotropy value in the low functioning group were observed than in the high functioning group. These findings suggest that activation of the less affected hemisphere presenting as increased fiber number and decreased fractional anisotropy value is related to poor motor function in pediatric hemiplegic patients. PMID:26889198

  3. Reactive oxygen species scavenger N-acetyl cysteine reduces methamphetamine-induced hyperthermia without affecting motor activity in mice

    PubMed Central

    Sanchez-Alavez, Manuel; Bortell, Nikki; Galmozzi, Andrea; Conti, Bruno; Marcondes, Maria Cecilia G

    2015-01-01

    Hyperthermia is a potentially lethal side effect of Methamphetamine (Meth) abuse, which involves the participation of peripheral thermogenic sites such as the Brown Adipose Tissue (BAT). In a previous study we found that the anti-oxidant N-acetyl cysteine (NAC) can prevent the high increase in temperature in a mouse model of Meth-hyperthermia. Here, we have further explored the ability of NAC to modulate Meth-induced hyperthermia in correlation with changes in BAT. We found that NAC treatment in controls causes hypothermia, and, when administered prior or upon the onset of Meth-induced hyperthermia, can ameliorate the temperature increase and preserve mitochondrial numbers and integrity, without affecting locomotor activity. This was different from Dantrolene, which decreased motor activity without affecting temperature. The effects of NAC were seen in spite of its inability to recover the decrease of mitochondrial superoxide induced in BAT by Meth. In addition, NAC did not prevent the Meth-induced decrease of BAT glutathione. Treatment with S-adenosyl-L-methionine, which improves glutathione activity, had an effect in ameliorating Meth-induced hyperthermia, but also modulated motor activity. This suggests a role for the remaining glutathione for controlling temperature. However, the mechanism by which NAC operates is independent of glutathione levels in BAT and specific to temperature. Our results show that, in spite of the absence of a clear mechanism of action, NAC is a pharmacological tool to examine the dissociation between Meth-induced hyperthermia and motor activity, and a drug of potential utility in treating the hyperthermia associated with Meth-abuse. PMID:26346736

  4. Identification of the affected lower limb and unaffected side motor functions as determinants of activities of daily living performance in stroke patients using partial correlation analysis

    PubMed Central

    Fujita, Takaaki; Sato, Atsushi; Togashi, Yui; Kasahara, Ryuichi; Ohashi, Takuro; Tsuchiya, Kenji; Yamamoto, Yuichi; Otsuki, Koji

    2015-01-01

    [Purpose] This study aimed to clarify the independent impact of the affected upper and lower limb, trunk, and unaffected side motor functions on activities of daily living in stroke patients using partial correlation analysis. [Subjects and Methods] This retrospective study included 77 stroke patients. Motor functions were assessed using the Stroke Impairment Assessment Set, and the activities of daily living performance was assessed using the Barthel index or Functional Independence Measure. Further, simple and partial correlation analyses were conducted between each motor function and activities of daily living parameter. [Results] Simple correlation analysis identified significant positive correlations for each pair. In contrast, partial correlation analysis only identified significant positive correlations between the affected lower limb or unaffected side functions and the Barthel index or Functional Independence Measure. This discrepancy between the two tests was explained by the significant interaction between the affected upper and lower limb functions and between the trunk and unaffected side functions. [Conclusion] The present study identified the affected lower limb and unaffected side motor functions as the major determinants of activities of daily living performance in stroke patients. These findings suggest that rehabilitation programs can be improved by targeting these areas. PMID:26311957

  5. On the nature of extraversion: variation in conditioned contextual activation of dopamine-facilitated affective, cognitive, and motor processes

    PubMed Central

    Depue, Richard A.; Fu, Yu

    2013-01-01

    Research supports an association between extraversion and dopamine (DA) functioning. DA facilitates incentive motivation and the conditioning and incentive encoding of contexts that predict reward. Therefore, we assessed whether extraversion is related to the efficacy of acquiring conditioned contextual facilitation of three processes that are dependent on DA: motor velocity, positive affect, and visuospatial working memory. We exposed high and low extraverts to three days of association of drug reward (methylphenidate, MP) with a particular laboratory context (Paired group), a test day of conditioning, and three days of extinction in the same laboratory. A Placebo group and an Unpaired group (that had MP in a different laboratory context) served as controls. Conditioned contextual facilitation was assessed by (i) presenting video clips that varied in their pairing with drug and laboratory context and in inherent incentive value, and (ii) measuring increases from day 1 to Test day on the three processes above. Results showed acquisition of conditioned contextual facilitation across all measures to video clips that had been paired with drug and laboratory context in the Paired high extraverts, but no conditioning in the Paired low extraverts (nor in either of the control groups). Increases in the Paired high extraverts were correlated across the three measures. Also, conditioned facilitation was evident on the first day of extinction in Paired high extraverts, despite the absence of the unconditioned effects of MP. By the last day of extinction, responding returned to day 1 levels. The findings suggest that extraversion is associated with variation in the acquisition of contexts that predict reward. Over time, this variation may lead to differences in the breadth of networks of conditioned contexts. Thus, individual differences in extraversion may be maintained by activation of differentially encoded central representations of incentive contexts that predict reward

  6. Motor Execution Affects Action Prediction

    ERIC Educational Resources Information Center

    Springer, Anne; Brandstadter, Simone; Liepelt, Roman; Birngruber, Teresa; Giese, Martin; Mechsner, Franz; Prinz, Wolfgang

    2011-01-01

    Previous studies provided evidence of the claim that the prediction of occluded action involves real-time simulation. We report two experiments that aimed to study how real-time simulation is affected by simultaneous action execution under conditions of full, partial or no overlap between observed and executed actions. This overlap was analysed by…

  7. Environmental Factors Affecting Preschoolers' Motor Development

    ERIC Educational Resources Information Center

    Venetsanou, Fotini; Kambas, Antonis

    2010-01-01

    The process of development occurs according to the pattern established by the genetic potential and also by the influence of environmental factors. The aim of the present study was to focus on the main environmental factors affecting motor development. The review of the literature revealed that family features, such as socioeconomic status,…

  8. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood

    PubMed Central

    Shoykhet, Michael; Middleton, Jason W.

    2016-01-01

    Normal maturation of sensory information processing in the cortex requires patterned synaptic activity during developmentally regulated critical periods. During early development, spontaneous synaptic activity establishes required patterns of synaptic input, and during later development it influences patterns of sensory experience-dependent neuronal firing. Thalamocortical neurons occupy a critical position in regulating the flow of patterned sensory information from the periphery to the cortex. Abnormal thalamocortical inputs may permanently affect the organization and function of cortical neuronal circuits, especially if they occur during a critical developmental window. We examined the effect of cardiac arrest (CA)-associated global brain hypoxia-ischemia in developing rats on spontaneous and evoked firing of somatosensory thalamocortical neurons and on large-scale correlations in the motor thalamocortical circuit. The mean spontaneous and sensory-evoked firing rate activity and variability were higher in CA injured rats. Furthermore, spontaneous and sensory-evoked activity and variability were correlated in uninjured rats, but not correlated in neurons from CA rats. Abnormal activity patterns of ventroposterior medial nucleus (VPm) neurons persisted into adulthood. Additionally, we found that neurons in the entopeduncular nucleus (EPN) in the basal ganglia had lower firing rates yet had higher variability and higher levels of burst firing after injury. Correlated levels of power in local field potentials (LFPs) between the EPN and the motor cortex (MCx) were also disrupted by injury. Our findings indicate that hypoxic-ischemic injury during development leads to abnormal spontaneous and sensory stimulus-evoked input patterns from thalamus to cortex. Abnormal thalamic inputs likely permanently and detrimentally affect the organization of cortical circuitry and processing of sensory information. Hypoxic-ischemic injury also leads to abnormal single neuron and

  9. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood.

    PubMed

    Shoykhet, Michael; Middleton, Jason W

    2016-01-01

    Normal maturation of sensory information processing in the cortex requires patterned synaptic activity during developmentally regulated critical periods. During early development, spontaneous synaptic activity establishes required patterns of synaptic input, and during later development it influences patterns of sensory experience-dependent neuronal firing. Thalamocortical neurons occupy a critical position in regulating the flow of patterned sensory information from the periphery to the cortex. Abnormal thalamocortical inputs may permanently affect the organization and function of cortical neuronal circuits, especially if they occur during a critical developmental window. We examined the effect of cardiac arrest (CA)-associated global brain hypoxia-ischemia in developing rats on spontaneous and evoked firing of somatosensory thalamocortical neurons and on large-scale correlations in the motor thalamocortical circuit. The mean spontaneous and sensory-evoked firing rate activity and variability were higher in CA injured rats. Furthermore, spontaneous and sensory-evoked activity and variability were correlated in uninjured rats, but not correlated in neurons from CA rats. Abnormal activity patterns of ventroposterior medial nucleus (VPm) neurons persisted into adulthood. Additionally, we found that neurons in the entopeduncular nucleus (EPN) in the basal ganglia had lower firing rates yet had higher variability and higher levels of burst firing after injury. Correlated levels of power in local field potentials (LFPs) between the EPN and the motor cortex (MCx) were also disrupted by injury. Our findings indicate that hypoxic-ischemic injury during development leads to abnormal spontaneous and sensory stimulus-evoked input patterns from thalamus to cortex. Abnormal thalamic inputs likely permanently and detrimentally affect the organization of cortical circuitry and processing of sensory information. Hypoxic-ischemic injury also leads to abnormal single neuron and

  10. Disrupting vagal feedback affects birdsong motor control

    PubMed Central

    Méndez, Jorge M.; Dall'Asén, Analía G.; Goller, Franz

    2010-01-01

    Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback. PMID:21113000

  11. Motor Activity Improves Temporal Expectancy

    PubMed Central

    Fautrelle, Lilian; Mareschal, Denis; French, Robert; Addyman, Caspar; Thomas, Elizabeth

    2015-01-01

    Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments. PMID:25806813

  12. Motor activity under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Kopanev, V. I.; Cherepakhin, M. A.; Yuganov, Y. M.

    1975-01-01

    The material presented on the motor activity under weightless conditions (brief and long) leads to the conclusion that it is not significantly disrupted, if those being examined are secured at the workplaces. Some discoordination of movement, moderately expressed disruption of the precision of reproduction of assigned muscular forces, etc., were observed. Motor disorders decrease significantly in proportion to the length of stay under weightless conditions. This apparently takes place, as a consequence of formation of a new functional system, adequate to the conditions of weightlessness. Tests on intact and labyrinthectomized animals have demonstrated that signaling from the inner ear receptors is superfluous in weightlessness, since it promotes the onset of disruptions in the combined work of the position analyzers.

  13. Transposed firing activation of motor units

    PubMed Central

    Kline, Joshua C.; Contessa, Paola

    2014-01-01

    Muscles are composed of groups of muscle fibers, called motor units, each innervated by a single motoneuron originating in the spinal cord. During constant or linearly varying voluntary force contractions, motor units are activated in a hierarchical order, with the earlier-recruited motor units having greater firing rates than the later-recruited ones. We found that this normal pattern of firing activation can be altered during oscillatory contractions where the force oscillates at frequencies ≥2 Hz. During these high-frequency oscillations, the activation of the lower-threshold motor units effectively decreases and that of the higher-threshold motor units effectively increases. This transposition of firing activation provides means to activate higher-threshold motor units preferentially. Our results demonstrate that the hierarchical regulation of motor unit activation can be manipulated to activate specific motoneuron populations preferentially. This finding can be exploited to develop new forms of physical therapies and exercise programs that enhance muscle performance or that target the preferential atrophy of high-threshold motor units as a result of aging or motor disorders such as stroke and amyotrophic lateral sclerosis. PMID:24899671

  14. The origin of word-related motor activity.

    PubMed

    Papeo, Liuba; Lingnau, Angelika; Agosta, Sara; Pascual-Leone, Alvaro; Battelli, Lorella; Caramazza, Alfonso

    2015-06-01

    Conceptual processing of verbs consistently recruits the left posterior middle temporal gyrus (lpMTG). The left precentral motor cortex also responds to verbs, with higher activity for action than nonaction verbs. The early timing of this effect has suggested that motor features of words' meaning are accessed directly, bypassing access to conceptual representations in lpMTG. An alternative hypothesis is that the retrieval of conceptual representations in lpMTG is necessary to drive more specific, motor-related representations in the precentral gyrus. To test these hypotheses, we first showed that repetitive transcranial magnetic stimulation (rTMS) applied to the verb-preferring lpMTG site selectively impoverished the semantic processing of verbs. In a second experiment, rTMS perturbation of lpMTG, relative to no stimulation (no-rTMS), eliminated the action-nonaction verb distinction in motor activity, as indexed by motor-evoked potentials induced in peripheral muscles with single-pulse TMS over the left primary motor cortex. rTMS pertubation of an occipital control site, relative to no-rTMS, did not affect the action-nonaction verb distinction in motor activity, but the verb contrast did not differ reliably from the lpMTG effect. The results show that lpMTG carries core semantic information necessary to drive the activation of specific (motor) features in the precentral gyrus. PMID:24421174

  15. Does prenatal stress affect the motoric development of rat pups?

    PubMed

    Patin, V; Vincent, A; Lordi, B; Caston, J

    2004-04-19

    Pregnant rats were exposed to an acute or a repeated stress (presence of a cat) either at the 10th or the 14th gestational day, and the development of their offspring was studied during the first 2 weeks of life. Motor development was measured by different tests: rooting reflex, vibrissae placing response, righting reflex, negative geotaxis. Other landmarks such as eye opening and spontaneous locomotor activity were also recorded. The results showed that, except for the rooting reflex which was most often enhanced (while not significantly) in prenatally stressed rats, the development of the vibrissae placing response, the righting reflex and the negative geotaxis behavior was delayed in the offspring of dams stressed at the 10th gestational day and not (or almost not) in the offspring of dams stressed at the 14th gestational day, the delay being more severe when the prenatal stress was repeated than when it was acutely administered. The spontaneous motor activity was also altered in repeatedly prenatally stressed rats, whatever the day of pregnancy when it was administered, while it was unaffected in acutely prenatally stressed animals. The delay in motor reflexes development was interpreted as alterations in maturation of nervous structures sustaining motor skills, while permanent decrease of spontaneous motor activity was explained by emotional and motivational alterations due to prenatal stress. PMID:15063088

  16. Motor Inhibition Affects the Speed But Not Accuracy of Aimed Limb Movements in an Insect

    PubMed Central

    Calas-List, Delphine; Clare, Anthony J.; Komissarova, Alexandra; Nielsen, Thomas A.

    2014-01-01

    When reaching toward a target, human subjects use slower movements to achieve higher accuracy, and this can be accompanied by increased limb impedance (stiffness, viscosity) that stabilizes movements against motor noise and external perturbation. In arthropods, the activity of common inhibitory motor neurons influences limb impedance, so we hypothesized that this might provide a mechanism for speed and accuracy control of aimed movements in insects. We recorded simultaneously from excitatory leg motor neurons and from an identified common inhibitory motor neuron (CI1) in locusts that performed natural aimed scratching movements. We related limb movement kinematics to recorded motor activity and demonstrate that imposed alterations in the activity of CI1 influenced these kinematics. We manipulated the activity of CI1 by injecting depolarizing or hyperpolarizing current or killing the cell using laser photoablation. Naturally higher levels of inhibitory activity accompanied faster movements. Experimentally biasing the firing rate downward, or stopping firing completely, led to slower movements mediated by changes at several joints of the limb. Despite this, we found no effect on overall movement accuracy. We conclude that inhibitory modulation of joint stiffness has effects across most of the working range of the insect limb, with a pronounced effect on the overall velocity of natural movements independent of their accuracy. Passive joint forces that are greatest at extreme joint angles may enhance accuracy and are not affected by motor inhibition. PMID:24872556

  17. Motor patterns during active electrosensory acquisition

    PubMed Central

    Hofmann, Volker; Geurten, Bart R. H.; Sanguinetti-Scheck, Juan I.; Gómez-Sena, Leonel; Engelmann, Jacob

    2014-01-01

    Motor patterns displayed during active electrosensory acquisition of information seem to be an essential part of a sensory strategy by which weakly electric fish actively generate and shape sensory flow. These active sensing strategies are expected to adaptively optimize ongoing behavior with respect to either motor efficiency or sensory information gained. The tight link between the motor domain and sensory perception in active electrolocation make weakly electric fish like Gnathonemus petersii an ideal system for studying sensory-motor interactions in the form of active sensing strategies. Analyzing the movements and electric signals of solitary fish during unrestrained exploration of objects in the dark, we here present the first formal quantification of motor patterns used by fish during electrolocation. Based on a cluster analysis of the kinematic values we categorized the basic units of motion. These were then analyzed for their associative grouping to identify and extract short coherent chains of behavior. This enabled the description of sensory behavior on different levels of complexity: from single movements, over short behaviors to more complex behavioral sequences during which the kinematics alter between different behaviors. We present detailed data for three classified patterns and provide evidence that these can be considered as motor components of active sensing strategies. In accordance with the idea of active sensing strategies, we found categorical motor patterns to be modified by the sensory context. In addition these motor patterns were linked with changes in the temporal sampling in form of differing electric organ discharge frequencies and differing spatial distributions. The ability to detect such strategies quantitatively will allow future research to investigate the impact of such behaviors on sensing. PMID:24904337

  18. Activities to Develop Your Students' Motor Skills.

    ERIC Educational Resources Information Center

    Eastman, Mary Kay; Safran, Joan S.

    1986-01-01

    Instructions and illustrations support this discussion of learning activities designed to remediate deficiences and build skills in balance and/or motor skills for mildly handicapped students who may not have access to physical therapy or adaptive physical education. Appropriate for both regular and special classes, activities include arm…

  19. Social interaction is associated with changes in infants’ motor activity

    PubMed Central

    Scola, Céline; Bourjade, Marie; Jover, Marianne

    2015-01-01

    Background In developmental research, infants are commonly assumed to be early stakeholders in interactions with their caregivers. The tools that infants can use to interact with others vary from visual contact to smiling or vocalizing, and also include motor activity. However, surprisingly few studies have explored how the nature and context of social interactions affect infants’ engagement in motor activity. Methods We investigated the kinematic properties of foot and face movements produced by 11 infants aged between 5 and 9 months during six contrasting dyadic episodes (i.e. passive presence of a stranger or the infant's mother, weak or intense interaction with the stranger/mother as she sings a nursery play song). Results The infants’ face and foot motor activity was significantly reduced during the interactive episodes, compared with the episodes without any interaction, in both the mother and stranger conditions. Furthermore, the level of their motor activity was significantly lower in the stranger condition than in the mother one for some parameters. Conclusion These results are in line with those reported by previous studies and confirm the relevance of using motor activity to delineate the early forms of interactive episodes in infants. PMID:26546793

  20. Motor skill learning requires active central myelination.

    PubMed

    McKenzie, Ian A; Ohayon, David; Li, Huiliang; de Faria, Joana Paes; Emery, Ben; Tohyama, Koujiro; Richardson, William D

    2014-10-17

    Myelin-forming oligodendrocytes (OLs) are formed continuously in the healthy adult brain. In this work, we study the function of these late-forming cells and the myelin they produce. Learning a new motor skill (such as juggling) alters the structure of the brain's white matter, which contains many OLs, suggesting that late-born OLs might contribute to motor learning. Consistent with this idea, we show that production of newly formed OLs is briefly accelerated in mice that learn a new skill (running on a "complex wheel" with irregularly spaced rungs). By genetically manipulating the transcription factor myelin regulatory factor in OL precursors, we blocked production of new OLs during adulthood without affecting preexisting OLs or myelin. This prevented the mice from mastering the complex wheel. Thus, generation of new OLs and myelin is important for learning motor skills. PMID:25324381

  1. Active, motor-driven mechanics in a DNA gel

    PubMed Central

    Bertrand, Olivier J. N.; Fygenson, Deborah Kuchnir; Saleh, Omar A.

    2012-01-01

    Cells are capable of a variety of dramatic stimuli-responsive mechanical behaviors. These capabilities are enabled by the pervading cytoskeletal network, an active gel composed of structural filaments (e.g., actin) that are acted upon by motor proteins (e.g., myosin). Here, we describe the synthesis and characterization of an active gel using noncytoskeletal components. We use methods of base-pair-templated DNA self assembly to create a hybrid DNA gel containing stiff tubes and flexible linkers. We then activate the gel by adding the motor FtsK50C, a construct derived from the bacterial protein FtsK that, in vitro, has a strong and processive DNA contraction activity. The motors stiffen the gel and create stochastic contractile events that affect the positions of attached beads. We quantify the fluctuations of the beads and show that they are comparable both to measurements of cytoskeletal systems and to theoretical predictions for active gels. Thus, we present a DNA-based active gel whose behavior highlights the universal aspects of nonequilibrium, motor-driven networks. PMID:23045635

  2. Abstract art and cortical motor activation: an EEG study

    PubMed Central

    Umilta', M. Alessandra; Berchio, Cristina; Sestito, Mariateresa; Freedberg, David; Gallese, Vittorio

    2012-01-01

    The role of the motor system in the perception of visual art remains to be better understood. Earlier studies on the visual perception of abstract art (from Gestalt theory, as in Arnheim, 1954 and 1988, to balance preference studies as in Locher and Stappers, 2002, and more recent work by Locher et al., 2007; Redies, 2007, and Taylor et al., 2011), neglected the question, while the field of neuroesthetics (Ramachandran and Hirstein, 1999; Zeki, 1999) mostly concentrated on figurative works. Much recent work has demonstrated the multimodality of vision, encompassing the activation of motor, somatosensory, and viscero-motor brain regions. The present study investigated whether the observation of high-resolution digitized static images of abstract paintings by Lucio Fontana is associated with specific cortical motor activation in the beholder's brain. Mu rhythm suppression was evoked by the observation of original art works but not by control stimuli (as in the case of graphically modified versions of these works). Most interestingly, previous visual exposure to the stimuli did not affect the mu rhythm suppression induced by their observation. The present results clearly show the involvement of the cortical motor system in the viewing of static abstract art works. PMID:23162456

  3. Testing the embodied account of object naming: a concurrent motor task affects naming artifacts and animals.

    PubMed

    Matheson, Heath E; White, Nicole; McMullen, Patricia A

    2014-01-01

    Embodied theories of object representation propose that the same neural networks are involved in encoding and retrieving object knowledge. In the present study, we investigated whether motor programs play a causal role in the retrieval of object names. Participants performed an object-naming task while squeezing a sponge with either their right or left hand. The objects were artifacts (e.g. hammer) or animals (e.g. giraffe) and were presented in an orientation that favored a grasp or not. We hypothesized that, if activation of motor programs is necessary to retrieve object knowledge, then concurrent motor activity would interfere with naming manipulable artifacts but not non-manipulable animals. In Experiment 1, we observed naming interference for all objects oriented towards the occupied hand. In Experiment 2, we presented the objects in more 'canonical orientations'. Participants named all objects more quickly when they were oriented towards the occupied hand. Together, these interference/facilitation effects suggest that concurrent motor activity affects naming for both categories. These results also suggest that picture-plane orientation interacts with an attentional bias that is elicited by the objects and their relationship to the occupied hand. These results may be more parsimoniously accounted for by a domain-general attentional effect, constraining the embodied theory of object representations. We suggest that researchers should scrutinize attentional accounts of other embodied cognitive effects. PMID:24291119

  4. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    ERIC Educational Resources Information Center

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  5. INTERLABORATORY COMPARISON OF MOTOR ACTIVITY EXPERIMENTS: IMPLICATIONS FOR NEUROTOXICOLOGICAL ASSESSMENTS

    EPA Science Inventory

    Motor activity is an important functional measure used in neurotoxicology the effects of chemicals on motor activity, however, may depend on variables such as, type of measurement apparatus, physical and environmental testing conditions, and many other experimental protocol and o...

  6. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity

    PubMed Central

    Bunno, Yoshibumi; Suzuki, Toshiaki; Iwatsuki, Hiroyasu

    2015-01-01

    [Purpose] The aim of this study was to investigate the changes in spinal motor neuron excitability and autonomic nervous system activity during motor imagery of isometric thenar muscle activity at 10% and 50% maximal voluntary contraction (MVC). [Methods] The F-waves and low frequency/high frequency (LF/HF) ratio were recorded at rest, during motor imagery, and post-trial. For motor imagery trials, subjects were instructed to imagine thenar muscle activity at 10% and 50% MVC while holding the sensor of a pinch meter for 5 min. [Results] The F-waves and LF/HF ratio during motor imagery at 50% MVC were significantly increased compared with those at rest, whereas those during motor imagery at 10% MVC were not significantly different from those at rest. The relative values of the F/M amplitude ratio during motor imagery at 50% MVC were significantly higher than those at 10% MVC. The relative values of persistence and the LF/HF ratio during motor imagery were similar during motor imagery at the two muscle contraction strengths. [Conclusion] Motor imagery can increase the spinal motor neuron excitability and cardiac sympathetic nerve activity. Motor imagery at 50% MVC may be more effective than motor imagery at 10% MVC. PMID:26834354

  7. Motor activity following the silent period in human muscle

    PubMed Central

    Alston, W.; Angel, R. W.; Fink, F. S.; Hofmann, W. W.

    1967-01-01

    1. When a muscle is unloaded during voluntary contraction, there is normally a silent period in the electromyogram. The silence is terminated by a sudden return of muscle action potentials. 2. In order to investigate the mechanism of the terminal motor volley, the unloading reflex was studied in six human subjects. The independent variables were the initial muscular force, the inertia of the limb and the amount of motion permitted. The dependent variables were the size and latency of the terminal volley. 3. During isometric contraction, the amplitude of the surface-recorded muscle action potentials increased monotonically with increasing muscular tension. 4. The action potentials were significantly larger during the terminal volley than during the period before unloading. 5. When acceleration of the limb was reduced by increasing the inertia, the terminal volley was decreased in size, but the latency was not affected. 6. When movement was interrupted by a mechanical block, the latency of the terminal volley was reduced, but the size was not affected. 7. The results suggest that the terminal motor volley is not the result of a decrease in Renshaw feed-back or in autogenetic inhibition. 8. The motor volley must be regulated by proprioceptive feed-back, because it is affected by the velocity and displacement of the limb. 9. The muscle frequently responded within 20 msec after motion of the limb was blocked. Hence it appears that the mechanism involves a spinal reflex. 10. Because the motor discharge occurs while the muscle is shortening, it cannot be an ordinary stretch reflex. If the discharge is attributed to spindle afferent driving, one must assume that the gamma motor neurones are active during the silent period. 11. The authors postulate a fusimotor reflex, which is driven by afferent impulses from the moving limb and excites the alpha motoneurones by way of the `gamma loop'. PMID:6038019

  8. Effects of Adjuvant Mental Practice on Affected Upper Limb Function Following a Stroke: Results of Three-Dimensional Motion Analysis, Fugl-Meyer Assessment of the Upper Extremity and Motor Activity Logs

    PubMed Central

    2016-01-01

    Objective To investigate the effects of adjuvant mental practice (MP) on affected upper limb function following a stroke using three-dimensional (3D) motion analysis. Methods In this AB/BA crossover study, we studied 10 hemiplegic patients who had a stroke within the past 6 months. The patients were randomly allocated to two groups: one group received MP combined with conventional rehabilitation therapy for the first 3 weeks followed by conventional rehabilitation therapy alone for the final 3 weeks; the other group received the same therapy but in reverse order. The MP tasks included drinking from a cup and opening a door. MP was individually administered for 20 minutes, 3 days a week for 3 weeks. To assess the tasks, we used 3D motion analysis and three additional tests: the Fugl-Meyer Assessment of the upper extremity (FMA-UE) and the motor activity logs for amount of use (MAL-AOU) and quality of movement (MAL-QOM). Assessments were performed immediately before treatment (T0), 3 weeks into treatment (T1), and 6 weeks into treatment (T2). Results Based on the results of the 3D motion analysis and the FMA-UE index (p=0.106), the MAL-AOU scale (p=0.092), and MAL-QOM scale (p=0.273), adjuvant MP did not result in significant improvements. Conclusion Adjuvant MP had no significant effect on upper limb function following a stroke, according to 3D motion analysis and three clinical assessment tools (the FMA-UE index and the two MAL scales). The importance of this study is its use of objective 3D motion analysis to evaluate the effects of MP. Further studies will be needed to validate these findings. PMID:27446776

  9. Motor Behavior Activates Bergmann Glial Networks

    PubMed Central

    Nimmerjahn, Axel; Mukamel, Eran A.; Schnitzer, Mark J.

    2010-01-01

    SUMMARY Although it is firmly established neuronal activity is a prime determinant of animal behavior, relationships between astrocytic excitation and animal behavior have remained opaque. Cerebellar Bergmann glia are radial astrocytes that are implicated in motor behavior and exhibit Ca2+-excitation. However, Ca2+-excitation in these cells has not previously been studied in behaving animals. Using two-photon microscopy we found that Bergmann glia exhibit three forms of Ca2+-excitation in awake behaving mice. Two of these are ongoing within the cerebellar vermis. During locomotor performance concerted Ca2+-excitation arises in networks of at least hundreds of Bergmann glia extending across several hundred microns or more. Concerted Ca2+-excitation was abolished by anesthesia or blockade of either neural activity or glutamatergic transmission. Thus, large networks of Bergmann glia can be activated by specific animal behaviors and undergo excitation of sufficient magnitude to potentially initiate macroscopic changes in brain dynamics or blood flow. PMID:19447095

  10. Electrodermal activity analysis during affective haptic elicitation.

    PubMed

    Greco, Alberto; Valenza, Gaetano; Nardelli, Mimma; Bianchi, Matteo; Lanata, Antonio; Scilingo, Enzo Pasquale

    2015-08-01

    This paper investigates how the autonomic nervous system dynamics, quantified through the analysis of the electrodermal activity (EDA), is modulated according to affective haptic stimuli. Specifically, a haptic display able to convey caress-like stimuli is presented to 32 healthy subjects (16 female). Each stimulus is changed according to six combinations of three velocities and two forces levels of two motors stretching a strip of fabric. Subjects were also asked to score each stimulus in terms of arousal (high/low activation) and valence (pleasant/unpleasant), in agreement with the circumplex model of affect. EDA was processed using a deconvolutive method, separating tonic and phasic components. A statistical analysis was performed in order to identify significant differences in EDA features among force and velocity levels, as well as in their valence and arousal scores. Results show that the simulated caress induced by the haptic display significantly affects the EDA. In detail, the phasic component seems to be inversely related to the valence score. This finding is new and promising, since it can be used, e.g., as an additional cue for haptics design. PMID:26737605

  11. Short-Term Limb Immobilization Affects Cognitive Motor Processes

    ERIC Educational Resources Information Center

    Toussaint, Lucette; Meugnot, Aurore

    2013-01-01

    We examined the effects of a brief period of limb immobilization on the cognitive level of action control. A splint placed on the participants' left hand was used as a means of immobilization. We used a hand mental rotation task to investigate the immobilization-induced effects on motor imagery performance (Experiments 1 and 2) and a number mental…

  12. Fine Motor Activities Program to Promote Fine Motor Skills in a Case Study of Down's Syndrome.

    PubMed

    Lersilp, Suchitporn; Putthinoi, Supawadee; Panyo, Kewalin

    2016-01-01

    Children with Down's syndrome have developmental delays, particularly regarding cognitive and motor development. Fine motor skill problems are related to motor development. They have impact on occupational performances in school-age children with Down's syndrome because they relate to participation in school activities, such as grasping, writing, and carrying out self-care duties. This study aimed to develop a fine motor activities program and to examine the efficiency of the program that promoted fine motor skills in a case study of Down's syndrome. The case study subject was an 8 -year-old male called Kai, who had Down's syndrome. He was a first grader in a regular school that provided classrooms for students with special needs. This study used the fine motor activities program with assessment tools, which included 3 subtests of the Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2) that applied to Upper-limb coordination, Fine motor precision and Manual dexterity; as well as the In-hand Manipulation Checklist, and Jamar Hand Dynamometer Grip Test. The fine motor activities program was implemented separately and consisted of 3 sessions of 45 activities per week for 5 weeks, with each session taking 45 minutes. The results showed obvious improvement of fine motor skills, including bilateral hand coordination, hand prehension, manual dexterity, in-hand manipulation, and hand muscle strength. This positive result was an example of a fine motor intervention program designed and developed for therapists and related service providers in choosing activities that enhance fine motor skills in children with Down's syndrome. PMID:27357876

  13. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation

    PubMed Central

    Seven, Yasin B.; Mantilla, Carlos B.

    2014-01-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. PMID:25257864

  14. Neural activation in cognitive motor processes: comparing motor imagery and observation of gymnastic movements.

    PubMed

    Munzert, Jörn; Zentgraf, Karen; Stark, Rudolf; Vaitl, Dieter

    2008-07-01

    The simulation concept suggested by Jeannerod (Neuroimage 14:S103-S109, 2001) defines the S-states of action observation and mental simulation of action as action-related mental states lacking overt execution. Within this framework, similarities and neural overlap between S-states and overt execution are interpreted as providing the common basis for the motor representations implemented within the motor system. The present brain imaging study compared activation overlap and differential activation during mental simulation (motor imagery) with that while observing gymnastic movements. The fMRI conjunction analysis revealed overlapping activation for both S-states in primary motor cortex, premotor cortex, and the supplementary motor area as well as in the intraparietal sulcus, cerebellar hemispheres, and parts of the basal ganglia. A direct contrast between the motor imagery and observation conditions revealed stronger activation for imagery in the posterior insula and the anterior cingulate gyrus. The hippocampus, the superior parietal lobe, and the cerebellar areas were differentially activated in the observation condition. In general, these data corroborate the concept of action-related S-states because of the high overlap in core motor as well as in motor-related areas. We argue that differential activity between S-states relates to task-specific and modal information processing. PMID:18425505

  15. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice. PMID:26243304

  16. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation

    PubMed Central

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease. PMID:25938462

  17. Reduced motor cortex activity during movement preparation following a period of motor skill practice.

    PubMed

    Wright, David J; Holmes, Paul; Di Russo, Francesco; Loporto, Michela; Smith, Dave

    2012-01-01

    Experts in a skill produce movement-related cortical potentials (MRCPs) of smaller amplitude and later onset than novices. This may indicate that, following long-term training, experts require less effort to plan motor skill performance. However, no longitudinal evidence exists to support this claim. To address this, EEG was used to study the effect of motor skill training on cortical activity related to motor planning. Ten non-musicians took part in a 5-week training study learning to play guitar. At week 1, the MRCP was recorded from motor areas whilst participants played the G Major scale. Following a period of practice of the scale, the MRCP was recorded again at week 5. Results showed that the amplitude of the later pre-movement components were smaller at week 5 compared to week 1. This may indicate that, following training, less activity at motor cortex sites is involved in motor skill preparation. This supports claims for a more efficient motor preparation following motor skill training. PMID:23251647

  18. Motor and non-motor circuitry activation induced by subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson’s disease patients: Intraoperative fMRI for DBS

    PubMed Central

    Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.

    2015-01-01

    Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412

  19. Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas.

    PubMed

    Pilgramm, Sebastian; de Haas, Benjamin; Helm, Fabian; Zentgraf, Karen; Stark, Rudolf; Munzert, Jörn; Krüger, Britta

    2016-01-01

    How motor maps are organized while imagining actions is an intensely debated issue. It is particularly unclear whether motor imagery relies on action-specific representations in premotor and posterior parietal cortices. This study tackled this issue by attempting to decode the content of motor imagery from spatial patterns of Blood Oxygen Level Dependent (BOLD) signals recorded in the frontoparietal motor imagery network. During fMRI-scanning, 20 right-handed volunteers worked on three experimental conditions and one baseline condition. In the experimental conditions, they had to imagine three different types of right-hand actions: an aiming movement, an extension-flexion movement, and a squeezing movement. The identity of imagined actions was decoded from the spatial patterns of BOLD signals they evoked in premotor and posterior parietal cortices using multivoxel pattern analysis. Results showed that the content of motor imagery (i.e., the action type) could be decoded significantly above chance level from the spatial patterns of BOLD signals in both frontal (PMC, M1) and parietal areas (SPL, IPL, IPS). An exploratory searchlight analysis revealed significant clusters motor- and motor-associated cortices, as well as in visual cortices. Hence, the data provide evidence that patterns of activity within premotor and posterior parietal cortex vary systematically with the specific type of hand action being imagined. PMID:26452176

  20. Design, Synthesis, and Monitoring of Light-Activated Motorized Nanomachines

    NASA Astrophysics Data System (ADS)

    Chiang, Pinn-Tsong

    Our group has developed a family of single molecules termed nanocars, which are aimed at performing controllable motion on surfaces. In this work, a series of light-activated motorized nanomachines incorporated with a MHz frequency light-activated unidirectional rotary motor were designed and synthesized. We hope the light-activated motor can serve as the powering unit for the nanomachines, and perform controllable translational motion on surfaces or in solution. A series of motorized nanovehicles intended for scanning tunneling microscopy (STM) imaging were designed and synthesized. A p-carborane-wheeled motorized nanocar was synthesized and monitored by STM. Single-molecule imaging was accomplished on a Cu(111) surface. However, further manipulations did lead to motor induced lateral motion. We attributed this result to the strong molecule-surface interactions between the p-carborane-wheeled nanocar and the Cu(111) surface and possible energy transfer between the rotary motor and the Cu(111) surface. To fine-tune the molecule-surface interactions, an adamantane-wheeled motorized nanocar and a three-wheel nanoroadster were designed and synthesized. In addition, the STM substrates will be varied and different combinations of molecule-surface interactions will be studied. As a complimentary imaging method to STM, single-molecule fluorescence microscopy (SMFM) also provides single-molecule level resolution. Unlike STM experiment requires ultra-high vacuum and conductive substrate, SMFM experiment is conducted at ambient conditions and uses non-conductive substrate. This imaging method allows us to study another category of molecule-surface interactions. We plan to design a fluorescent motorized nanocar that is suitable for SMFM studies. However, both the motor and fluorophore are photochemically active molecules. In proximity, some undesired energy transfer or interference could occur. A cyanine 5- (cy5-) tagged motorized nanocar incorporated with the MHz motor was

  1. A structural pathway for activation of the kinesin motor ATPase

    PubMed Central

    Yun, Mikyung; Zhang, Xiaohua; Park, Cheon-Gil; Park, Hee-Won; Endow, Sharyn A.

    2001-01-01

    Molecular motors move along actin or microtubules by rapidly hydrolyzing ATP and undergoing changes in filament-binding affinity with steps of the nucleotide hydrolysis cycle. It is generally accepted that motor binding to its filament greatly increases the rate of ATP hydrolysis, but the structural changes in the motor associated with ATPase activation are not known. To identify the conformational changes underlying motor movement on its filament, we solved the crystal structures of three kinesin mutants that decouple nucleotide and microtubule binding by the motor, and block microtubule-activated, but not basal, ATPase activity. Conformational changes in the structures include a disordered loop and helices in the switch I region and a visible switch II loop, which is disordered in wild-type structures. Switch I moved closer to the bound nucleotide in two mutant structures, perturbing water-mediated interactions with the Mg2+. This could weaken Mg2+ binding and accelerate ADP release to activate the motor ATPase. The structural changes we observe define a signaling pathway within the motor for ATPase activation that is likely to be essential for motor movement on microtubules. PMID:11387196

  2. Focus of Attention Affects Performance of Motor Skills in Music

    ERIC Educational Resources Information Center

    Duke, Robert A.; Cash, Carla Davis; Allen, Sarah E.

    2011-01-01

    To test the extent to which learners performing a simple keyboard passage would be affected by directing their focus of attention to different aspects of their movements, 16 music majors performed a brief keyboard passage under each of four focus conditions arranged in a counterbalanced design--a total of 64 experimental sessions. As they…

  3. Phrenic Long-Term Facilitation Requires PKCθ Activity within Phrenic Motor Neurons

    PubMed Central

    Devinney, Michael J.; Fields, Daryl P.; Huxtable, Adrianne G.; Peterson, Timothy J.; Dale, Erica A.

    2015-01-01

    Acute intermittent hypoxia (AIH) induces a form of spinal motor plasticity known as phrenic long-term facilitation (pLTF); pLTF is a prolonged increase in phrenic motor output after AIH has ended. In anesthetized rats, we demonstrate that pLTF requires activity of the novel PKC isoform, PKCθ, and that the relevant PKCθ is within phrenic motor neurons. Whereas spinal PKCθ inhibitors block pLTF, inhibitors targeting other PKC isoforms do not. PKCθ is highly expressed in phrenic motor neurons, and PKCθ knockdown with intrapleural siRNAs abolishes pLTF. Intrapleural siRNAs targeting PKCζ, an atypical PKC isoform expressed in phrenic motor neurons that underlies a distinct form of phrenic motor plasticity, does not affect pLTF. Thus, PKCθ plays a critical role in spinal AIH-induced respiratory motor plasticity, and the relevant PKCθ is localized within phrenic motor neurons. Intrapleural siRNA delivery has considerable potential as a therapeutic tool to selectively manipulate plasticity in vital respiratory motor neurons. PMID:26019328

  4. Phrenic long-term facilitation requires PKCθ activity within phrenic motor neurons.

    PubMed

    Devinney, Michael J; Fields, Daryl P; Huxtable, Adrianne G; Peterson, Timothy J; Dale, Erica A; Mitchell, Gordon S

    2015-05-27

    Acute intermittent hypoxia (AIH) induces a form of spinal motor plasticity known as phrenic long-term facilitation (pLTF); pLTF is a prolonged increase in phrenic motor output after AIH has ended. In anesthetized rats, we demonstrate that pLTF requires activity of the novel PKC isoform, PKCθ, and that the relevant PKCθ is within phrenic motor neurons. Whereas spinal PKCθ inhibitors block pLTF, inhibitors targeting other PKC isoforms do not. PKCθ is highly expressed in phrenic motor neurons, and PKCθ knockdown with intrapleural siRNAs abolishes pLTF. Intrapleural siRNAs targeting PKCζ, an atypical PKC isoform expressed in phrenic motor neurons that underlies a distinct form of phrenic motor plasticity, does not affect pLTF. Thus, PKCθ plays a critical role in spinal AIH-induced respiratory motor plasticity, and the relevant PKCθ is localized within phrenic motor neurons. Intrapleural siRNA delivery has considerable potential as a therapeutic tool to selectively manipulate plasticity in vital respiratory motor neurons. PMID:26019328

  5. Cortical activity during motor execution, motor imagery, and imagery-based online feedback

    PubMed Central

    Miller, Kai J.; Schalk, Gerwin; Fetz, Eberhard E.; den Nijs, Marcel; Ojemann, Jeffrey G.; Rao, Rajesh P. N.

    2010-01-01

    Imagery of motor movement plays an important role in learning of complex motor skills, from learning to serve in tennis to perfecting a pirouette in ballet. What and where are the neural substrates that underlie motor imagery-based learning? We measured electrocorticographic cortical surface potentials in eight human subjects during overt action and kinesthetic imagery of the same movement, focusing on power in “high frequency” (76–100 Hz) and “low frequency” (8–32 Hz) ranges. We quantitatively establish that the spatial distribution of local neuronal population activity during motor imagery mimics the spatial distribution of activity during actual motor movement. By comparing responses to electrocortical stimulation with imagery-induced cortical surface activity, we demonstrate the role of primary motor areas in movement imagery. The magnitude of imagery-induced cortical activity change was ∼25% of that associated with actual movement. However, when subjects learned to use this imagery to control a computer cursor in a simple feedback task, the imagery-induced activity change was significantly augmented, even exceeding that of overt movement. PMID:20160084

  6. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules.

    PubMed

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y; Rymer, William Z

    2016-03-21

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy. PMID:26916510

  7. Motor Cortex Activity Organizes the Developing Rubrospinal System

    PubMed Central

    Williams, Preston T.J.A.

    2015-01-01

    The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. SIGNIFICANCE STATEMENT Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to

  8. Cortical Activation Changes During Simple Motor Task over Repeated Sessions

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Shuichi; Yamada, Taro; Wada, Yasuhiro

    Recent fMRI studies of human motor function and learning have reported that the magnitude of brain activity involves a decreasing trend over repeated tasks in the absence of improvements in task performance, probably suggesting the effect of habituation. Here we show that similar effect can be detected by NIRS. In experiments, oxygenated hemoglobin (HbO) changes were monitored during a finger tapping task over repeated sessions. Results showed that task-related brain activity exhibited a decreasing trend on motor-related areas over the sessions. These suggest that measurements of NIRS may exhibit the brain-induced trends over repetition of simple motor tasks.

  9. Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas

    PubMed Central

    Pilgramm, Sebastian; de Haas, Benjamin; Helm, Fabian; Zentgraf, Karen; Stark, Rudolf; Munzert, Jörn

    2015-01-01

    Abstract How motor maps are organized while imagining actions is an intensely debated issue. It is particularly unclear whether motor imagery relies on action‐specific representations in premotor and posterior parietal cortices. This study tackled this issue by attempting to decode the content of motor imagery from spatial patterns of Blood Oxygen Level Dependent (BOLD) signals recorded in the frontoparietal motor imagery network. During fMRI‐scanning, 20 right‐handed volunteers worked on three experimental conditions and one baseline condition. In the experimental conditions, they had to imagine three different types of right‐hand actions: an aiming movement, an extension–flexion movement, and a squeezing movement. The identity of imagined actions was decoded from the spatial patterns of BOLD signals they evoked in premotor and posterior parietal cortices using multivoxel pattern analysis. Results showed that the content of motor imagery (i.e., the action type) could be decoded significantly above chance level from the spatial patterns of BOLD signals in both frontal (PMC, M1) and parietal areas (SPL, IPL, IPS). An exploratory searchlight analysis revealed significant clusters motor‐ and motor‐associated cortices, as well as in visual cortices. Hence, the data provide evidence that patterns of activity within premotor and posterior parietal cortex vary systematically with the specific type of hand action being imagined. Hum Brain Mapp 37:81–93, 2016. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26452176

  10. Cortical motor activation patterns following hand transplantation and replantation.

    PubMed

    Brenneis, C; Löscher, W N; Egger, K E; Benke, T; Schocke, M; Gabl, M F; Wechselberger, G; Felber, S; Pechlaner, S; Margreiter, R; Piza-Katzer, H; Poewe, W

    2005-10-01

    We studied cortical activation patterns by functional MRI in a patient who received bilateral hand transplantation after amputation 6 years ago and in a patient who had received unilateral hand replantation within 2 hours after amputation. In the early postoperative period, the patient who had had the hand transplantation revealed strong activation of a higher motor area, only weak activation of the primary sensorimotor motor cortex and no activation of the primary somatosensory cortex. At 1-year follow-up, a small increase in primary sensorimotor motor cortex activation was observed. Activation of the primary somatosensory cortex was only seen at the 2 year follow-up. By contrast, after hand replantation, the activation pattern was similar to that of the uninjured hand within 6 weeks. This included activation of the primary sensorimotor motor cortex, higher motor areas and primary somatosensory cortex. Transplantation after long-standing amputation results in cortical reorganization occurring over a 2-year period. In contrast, hand replantation within a few hours preserves a normal activation pattern. PMID:16055246

  11. Central sensory motor pathways are less affected than peripheral in chronic renal failure.

    PubMed

    Kalita, J; Misra, U K; Rajani, M; Kumar, A

    2004-01-01

    In chronic renal failure, peripheral neuropathy although is well recognised but there are only a few studies on the evaluation of central sensory pathways and none on central motor pathways. This study is aimed at the evaluation of peripheral and central sensory motor pathways. In this prospective hospital based study, 19 patients with chronic renal failure on regular hemodialysis were included. They were subjected to detailed clinical evaluation and blood urea nitrogen, serum creatinine, serum protein, haemoglobin and vasculitic profile were carried out in all the patients. Peroneal motor conduction, sural sensory conduction, tibial somatosensory evoked potential (SEP) and motor evoked potential to tibialis anterior (CMCT-TA) were carried out in all the patients and the results correlated with clinical and biochemical parameters. The mean age of the patients was 34.6 y and 1 of them was female. The duration of renal failure ranged between 0.3 and 5 years. Nerve conduction studies were abnormal in 12 patients of whom sural nerve conduction was abnormal in 10 and peroneal in 8 patients. Central conduction, motor or sensory or both were abnormal in 5 patients. Central motor conduction time to tibialis anterior was marginally prolonged in 3 patients and tibial SEPs were recordable in 2 and prolonged in 1 patient. The central and peripheral conduction did not correlate with duration of illness, serum creatinine and hemoglobin levels. It is concluded that central pathways are less frequently and less severely affected than the peripheral in chronic renal failure. PMID:15008018

  12. Motor-Skill Learning Is Dependent on Astrocytic Activity

    PubMed Central

    Padmashri, Ragunathan; Suresh, Anand; Boska, Michael D.; Dunaevsky, Anna

    2015-01-01

    Motor-skill learning induces changes in synaptic structure and function in the primary motor cortex through the involvement of a long-term potentiation- (LTP-) like mechanism. Although there is evidence that calcium-dependent release of gliotransmitters by astrocytes plays an important role in synaptic transmission and plasticity, the role of astrocytes in motor-skill learning is not known. To test the hypothesis that astrocytic activity is necessary for motor-skill learning, we perturbed astrocytic function using pharmacological and genetic approaches. We find that perturbation of astrocytes either by selectively attenuating IP3R2 mediated astrocyte Ca2+ signaling or using an astrocyte specific metabolic inhibitor fluorocitrate (FC) results in impaired motor-skill learning of a forelimb reaching-task in mice. Moreover, the learning impairment caused by blocking astrocytic activity using FC was rescued by administration of the gliotransmitter D-serine. The learning impairments are likely caused by impaired LTP as FC blocked LTP in slices and prevented motor-skill training-induced increases in synaptic AMPA-type glutamate receptor in vivo. These results support the conclusion that normal astrocytic Ca2+ signaling during a reaching task is necessary for motor-skill learning. PMID:26346977

  13. Chronic hyperammonemia alters the circadian rhythms of corticosteroid hormone levels and of motor activity in rats.

    PubMed

    Ahabrach, Hanan; Piedrafita, Blanca; Ayad, Abdelmalik; El Mlili, Nisrin; Errami, Mohammed; Felipo, Vicente; Llansola, Marta

    2010-05-15

    Patients with liver cirrhosis may present hepatic encephalopathy with a wide range of neurological disturbances and alterations in sleep quality and in the sleep-wake circadian rhythm. Hyperammonemia is a main contributor to the neurological alterations in hepatic encephalopathy. We have assessed, in an animal model of chronic hyperammonemia without liver failure, the effects of hyperammonemia per se on the circadian rhythms of motor activity, temperature, and plasma levels of adrenal corticosteroid hormones. Chronic hyperammonemia alters the circadian rhythms of locomotor activity and of cortisol and corticosterone levels in blood. Different types of motor activity are affected differentially. Hyperammonemia significantly alters the rhythm of spontaneous ambulatory activity, reducing strongly ambulatory counts and slightly average velocity during the night (the active phase) but not during the day, resulting in altered circadian rhythms. In contrast, hyperammonemia did not affect wheel running at all, indicating that it affects spontaneous but not voluntary activity. Vertical activity was affected only very slightly, indicating that hyperammonemia does not induce anxiety. Hyperammonemia abolished completely the circadian rhythm of corticosteroid hormones in plasma, completely eliminating the peaks of cortisol and corticosterone present in control rats at the start of the dark period. The data reported show that chronic hyperammonemia, similar to that present in patients with liver cirrhosis, alters the circadian rhythms of corticosteroid hormones and of motor activity. This suggests that hyperammonemia would be a relevant contributor to the alterations in corticosteroid hormones and in circadian rhythms in patients with liver cirrhosis. PMID:19998493

  14. A Methanol Extract of Brugmansia arborea Affects the Reinforcing and Motor Effects of Morphine and Cocaine in Mice.

    PubMed

    Bracci, Antonio; Daza-Losada, Manuel; Aguilar, Maria; De Feo, Vincenzo; Miñarro, José; Rodríguez-Arias, Marta

    2013-01-01

    Previous reports have shown that several of the effects of morphine, including the development of tolerance and physical withdrawal symptoms, are reduced by extracts of Brugmansia arborea (L.) Lagerheim (Solanaceae) (B. arborea). In the present study we evaluate the action of the methanol extract of B. arborea (7.5-60 mg/kg) on the motor and reinforcing effects of morphine (20 and 40 mg/kg) and cocaine (25 mg/kg) using the conditioned place preference (CPP) procedure. At the doses employed, B. arborea did not affect motor activity or induce any effect on CPP. The extract partially counteracted morphine-induced motor activity and completely blocked the CPP induced by 20 mg/kg morphine. On the other hand, B. arborea blocked cocaine-induced hyperactivity but did not block cocaine-induced CPP. Reinstatement of extinguished preference with a priming dose of morphine or cocaine was also inhibited by B. arborea. The complex mechanism of action of B. arborea, which affects the dopaminergic and the cholinergic systems, seems to provide a neurobiological substrate for the effects observed. Considered as a whole, these results point to B. arborea as a useful tool for the treatment of morphine or cocaine abuse. PMID:23533488

  15. Dissociating motivational direction and affective valence: specific emotions alter central motor processes.

    PubMed

    Coombes, Stephen A; Cauraugh, James H; Janelle, Christopher M

    2007-11-01

    We aimed to clarify the relation between affective valence and motivational direction by specifying how central and peripheral components of extension movements are altered according to specific unpleasant affective states. As predicted, premotor reaction time was quicker for extension movements initiated during exposure to attack than for extension movements initiated during exposure to all other valence categories (mutilation, erotic couples, opposite-sex nudes, neutral humans, household objects, blank). Exposure to erotic couples and mutilations yielded greater peak force than exposure to images of attack, neutral humans, and household objects. Finally, motor reaction time and peak electromyographic amplitude were not altered by valence. These findings indicate that unpleasant states do not unilaterally prime withdrawal movements, and that the quick execution of extension movements during exposure to threatening images is due to rapid premotor, rather than motor, reaction time. Collectively, our findings support the call for dissociating motivational direction and affective valence. PMID:17958705

  16. Developmental changes in motor cortex activity as infants develop functional motor skills.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Meehan, Sean K; Ulrich, Beverly D

    2016-09-01

    Despite extensive research examining overt behavioral changes of motor skills in infants, the neural basis underlying the emergence of functional motor control has yet to be determined. We used functional near-infrared spectroscopy (fNIRS) to record hemodynamic activity of the primary motor cortex (M1) from 22 infants (11 six month-olds, 11 twelve month-olds) as they reached for an object, and stepped while supported over a treadmill. Based on the developmental systems framework, we hypothesized that as infants increased goal-directed experience, neural activity shifts from a diffused to focal pattern. Results showed that for reaching, younger infants showed diffuse areas of M1 activity that became focused by 12 months. For elicited stepping, younger infants produced much less M1 activity which shifted to diffuse activity by 12 months. Thus, the data suggest that as infants gain goal-directed experience, M1 activity emerges, initially showing a diffuse area of activity, becoming refined as the behavior stabilizes. Our data begin to document the cortical activity underlying early functional skill acquisition. PMID:27096281

  17. Pitch underlies activation of the vocal system during affective vocalization.

    PubMed

    Belyk, Michel; Brown, Steven

    2016-07-01

    Affective prosody is that aspect of speech that conveys a speaker's emotional state through modulations in various vocal parameters, most prominently pitch. While a large body of research implicates the cingulate vocalization area in controlling affective vocalizations in monkeys, no systematic test of functional homology for this area has yet been reported in humans. In this study, we used functional magnetic resonance imaging to compare brain activations when subjects produced affective vocalizations in the form of exclamations vs non-affective vocalizations with similar pitch contours. We also examined the perception of affective vocalizations by having participants make judgments about either the emotions being conveyed by recorded affective vocalizations or the pitch contours of the same vocalizations. Production of affective vocalizations and matched pitch contours activated a highly overlapping set of brain areas, including the larynx-phonation area of the primary motor cortex and a region of the anterior cingulate cortex that is consistent with the macro-anatomical position of the cingulate vocalization area. This overlap contradicts the dominant view that these areas form two distinct vocal pathways with dissociable functions. Instead, we propose that these brain areas are nodes in a single vocal network, with an emphasis on pitch modulation as a vehicle for affective expression. PMID:26078385

  18. Unraveling the Relationship between Motor Symptoms, Affective States and Contextual Factors in Parkinson’s Disease: A Feasibility Study of the Experience Sampling Method

    PubMed Central

    Kuijf, Mark L.; Van Oostenbrugge, Robert J.; van Os, Jim; Leentjens, Albert F. G.

    2016-01-01

    Background In Parkinson's disease (PD), the complex relationship between motor symptoms, affective states, and contextual factors remains to be elucidated. The Experience Sampling Method provides (ESM) a novel approach to this issue. Using a mobile device with a special purpose application (app), motor symptoms, affective states and contextual factors are assessed repeatedly at random moments in the flow of daily life, yielding an intensive time series of symptoms and experience. The aim of this study was to study the feasibility of this method. Method We studied the feasibility of a five-day period of ESM in PD and its ability to objectify diurnal fluctuations in motor symptom severity and their relation with affect and contextual factors in five PD patients with motor fluctuations. Results Participants achieved a high compliance, with 84% of assessment moments completed without disturbance of daily activities. The utility of the device was rated 8 on a 10-point scale. We were able to capture extensive diurnal fluctuations that were not revealed by routine clinical assessment. In addition, we were able to detect clinically relevant associations between motor symptoms, emotional fluctuations and contextual factors at an intra-individual level. Conclusions ESM represents a viable and novel approach to elucidate relationships between motor symptoms, affective states and contextual factors at the level of individual subjects. ESM holds promise for clinical practice and scientific research. PMID:26962853

  19. Prognostic value of cortically induced motor evoked activity by TMS in chronic stroke: Caveats from a revealing single clinical case

    PubMed Central

    2012-01-01

    Background We report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients. PMID:22682434

  20. Activity-Focused Motor Interventions for Children with Neurological Conditions

    ERIC Educational Resources Information Center

    Valvano, Joanne

    2004-01-01

    This article presents a model to guide activity-focused physical therapy and occupational therapy interventions for children with neurological conditions. Activity-focused interventions involve structured practice and repetition of functional actions and are directed toward the learning of motor tasks that will increase independence and…

  1. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla.

    PubMed

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2016-08-30

    Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  2. Mushroom bodies enhance initial motor activity in Drosophila.

    PubMed

    Serway, Christine N; Kaufman, Rebecca R; Strauss, Roland; de Belle, J Steven

    2009-01-01

    The central body (or central complex, CCX) and the mushroom bodies (MBs) are brain structures in most insect phyla that have been shown to influence aspects of locomotion. The CCX regulates motor coordination and enhances activity while MBs have, thus far, been shown to suppress motor activity levels measured over time intervals ranging from hours to weeks. In this report, we investigate MB involvement in motor behavior during the initial stages (15 minutes) of walking in Buridan's paradigm. We measured aspects of walking in flies that had MB lesions induced by mutations in six different genes and by chemical ablation. All tested flies were later examined histologically to assess MB neuroanatomy. Mutant strains with MB structural defects were generally less active in walking than wild-type flies. Most mutants in which MBs were also ablated with hydroxyurea (HU) showed additional activity decrements. Variation in measures of velocity and orientation to landmarks among wild-type and mutant flies was attributed to pleiotropy, rather than to MB lesions. We conclude that MBs upregulate activity during the initial stages of walking, but suppress activity thereafter. An MB influence on decision making has been shown in a wide range of complex behaviors. We suggest that MBs provide appropriate contextual information to motor output systems in the brain, indirectly fine tuning walking by modifying the quantity (i.e., activity) of behavior. PMID:19145515

  3. Transcranial direct current stimulation over the supplementary motor area modulates the preparatory activation level in the human motor system

    PubMed Central

    Carlsen, Anthony N.; Eagles, Jeremy S.; MacKinnon, Colum D.

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive stimulation method that can induce transient polarity-specific neuroplastic changes in cortical excitability lasting up to 1 h post-stimulation. While excitability changes with stimulation over the primary motor cortex have been well documented, the functional effects of stimulation over premotor regions are less well understood. In the present experiment, we tested how cathodal and anodal tDCS applied over the region of the supplementary motor area (SMA) affected preparation and initiation of a voluntary movement. Participants performed a simple reaction time (RT) task requiring a targeted wrist-extension in response to a go-signal. In 20% of RT trials a startling acoustic stimulus (SAS) was presented 500 ms prior to the “go” signal in order to probe the state of motor preparation. Following the application of cathodal, anodal, or sham tDCS (separate days) over SMA for 10 min, participants performed blocks of RT trials at 10 min intervals. While sham stimulation did not affect RT or incidence of early release by the SAS, cathodal tDCS led to a significant slowing of RT that peaked 10 min after the end of stimulation and was associated with a marked decrease in the incidence of movement release by the SAS. In contrast, anodal tDCS resulted in faster RTs, but the incidence of release was unchanged. These results are consistent with the SMA playing a role in the pre-planning of movements and that modulating its activity with tDCS can lead to polarity-specific changes in motor behavior. PMID:25446764

  4. Automatic motor activation in the executive control of action

    PubMed Central

    McBride, Jennifer; Boy, Frédéric; Husain, Masud; Sumner, Petroc

    2012-01-01

    Although executive control and automatic behavior have often been considered separate and distinct processes, there is strong emerging and convergent evidence that they may in fact be intricately interlinked. In this review, we draw together evidence showing that visual stimuli cause automatic and unconscious motor activation, and how this in turn has implications for executive control. We discuss object affordances, alien limb syndrome, the visual grasp reflex, subliminal priming, and subliminal triggering of attentional orienting. Consideration of these findings suggests automatic motor activation might form an intrinsic part of all behavior, rather than being categorically different from voluntary actions. PMID:22536177

  5. Lost for emotion words: what motor and limbic brain activity reveals about autism and semantic theory.

    PubMed

    Moseley, Rachel L; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view 'emotion actions' as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed. PMID:25278250

  6. Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory

    PubMed Central

    Moseley, Rachel L.; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V.; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view ‘emotion actions’ as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed. PMID:25278250

  7. Reduced respiratory neural activity elicits phrenic motor facilitation.

    PubMed

    Mahamed, Safraaz; Strey, Kristi A; Mitchell, Gordon S; Baker-Herman, Tracy L

    2011-03-15

    We hypothesized that reduced respiratory neural activity elicits compensatory mechanisms of plasticity that enhance respiratory motor output. In urethane-anesthetized and ventilated rats, we reversibly reduced respiratory neural activity for 25-30 min using: hypocapnia (end tidal CO(2)=30 mmHg), isoflurane (~1%) or high frequency ventilation (HFV; ~100 breaths/min). In all cases, increased phrenic burst amplitude was observed following restoration of respiratory neural activity (hypocapnia: 92±22%; isoflurane: 65±22%; HFV: 54±13% baseline), which was significantly greater than time controls receiving the same surgery, but no interruptions in respiratory neural activity (3±5% baseline, p<0.05). Hypocapnia also elicited transient increases in respiratory burst frequency (9±2 versus 1±1bursts/min, p<0.05). Our results suggest that reduced respiratory neural activity elicits a unique form of plasticity in respiratory motor control which we refer to as inactivity-induced phrenic motor facilitation (iPMF). iPMF may prevent catastrophic decreases in respiratory motor output during ventilatory control disorders associated with abnormal respiratory activity. PMID:21167322

  8. Reduced respiratory neural activity elicits phrenic motor facilitation

    PubMed Central

    Mahamed, Safraaz; Strey, Kristi A.; Mitchell, Gordon S.; Baker-Herman, Tracy L.

    2011-01-01

    We hypothesized that reduced respiratory neural activity elicits compensatory mechanisms of plasticity that enhance respiratory motor output. In urethane-anesthetized and ventilated rats, we reversibly reduced respiratory neural activity for 25–30 min using: hypocapnia (end tidal CO2 = 30 mmHg), isoflurane (~ 1%) or high frequency ventilation (HFV; ~100 breaths/min). In all cases, increased phrenic burst amplitude was observed following restoration of respiratory neural activity (hypocapnia: 92 ± 22%; isoflurane: 65 ± 22%; HFV: 54 ± 13% baseline), which was significantly greater than time controls receiving the same surgery, but no interruptions in respiratory neural activity (3 ± 5% baseline, p<0.05). Hypocapnia also elicited transient increases in respiratory burst frequency (9 ± 2 versus 1 ± 1 bursts/min, p<0.05). Our results suggest that reduced respiratory neural activity elicits a unique form of plasticity in respiratory motor control which we refer to as inactivity-induced phrenic motor facilitation (iPMF). iPMF may prevent catastrophic decreases in respiratory motor output during ventilatory control disorders associated with abnormal respiratory activity. PMID:21167322

  9. THE ORIGIN OF SEGMENTATION MOTOR ACTIVITY IN THE INTESTINE

    PubMed Central

    Huizinga, Jan D.; Chen, Ji-Hong; Zhu, Yong Fang; Pawelka, Andrew; McGinn, Ryan J.; Bardakjian, Berj L.; Parsons, Sean P.; Kunze, Wolfgang A.; Wu, Richard You; Bercik, Premysl; Khoshdel, Amir; Chen, Sifeng; Yin, Sheng; Zhang, Qian; Yu, Yuanjie; Gao, Qingmin; Li, Kongling; Hu, Xinghai; Zarate, Natalia; Collins, Phillip; Pistilli, Marc; Ma, Junling; Zhang, Ruixue; Chen, David

    2016-01-01

    The segmentation motor activity of the gut that facilitates absorption of nutrients, was first described in the late 19th century but the fundamental mechanisms underlying it remain poorly understood. The dominant theory suggests alternate excitation and inhibition from the enteric nervous system. Here we demonstrate that typical segmentation can occur after total nerve blockade. The segmentation motor pattern emerges when the amplitude of the dominant pacemaker, the slow wave generated by ICC associated with the myenteric plexus (ICC-MP), is modulated by the phase of induced lower frequency rhythmic transient depolarizations, generated by ICC associated with the deep muscular plexus (ICC-DMP), resulting in a waxing and waning of the amplitude of the slow wave and a rhythmic checkered pattern of segmentation motor activity. Phase amplitude modulation of the slow waves points to an underlying system of coupled nonlinear oscillators originating in ICC. PMID:24561718

  10. Perinatal thiamine restriction affects central GABA and glutamate concentrations and motor behavior of adult rat offspring.

    PubMed

    Ferreira-Vieira, Talita Hélen; de Freitas-Silva, Danielle Marra; Ribeiro, Andrea Frozino; Pereira, Sílvia Rejane Castanheira; Ribeiro, Ângela Maria

    2016-03-23

    The purposes of the present study were to investigate the effects of perinatal thiamine deficiency, from the 11th day of gestation until the 5th day of lactation, on motor behavior and neurochemical parameters in adult rat offspring, using 3-month-old, adult, male Wistar rats. All rats were submitted to motor tests, using the rotarod and paw print tasks. After behavioral tests, their thalamus, cerebellum and spinal cord were dissected for glutamate and GABA quantifications by high performance liquid chromatography. The thiamine-restricted mothers (RM) group showed a significant reduction of time spent on the rotarod at 25 rpm and an increase in hind-base width. A significant decrease of glutamate concentration in the cerebellum and an increase of GABA concentrations in the thalamus were also observed. For the offspring from control mothers (CM) group there were significant correlations between thalamic GABA concentrations and both rotarod performance and average hind-base width. In addition, for rats from the RM group a significant correlation between stride length and cerebellar GABA concentration was found. These results show that the deficiency of thiamine during an early developmental period affects certain motor behavior parameters and GABA and glutamate levels in specific brain areas. Hence, a thiamine deficiency episode during an early developmental period can induce motor impairments and excitatory and inhibitory neurotransmitter changes that are persistent and detectable in later periods of life. PMID:26836141

  11. Recreational Activities and Motor Skills of Children in Kindergarten

    ERIC Educational Resources Information Center

    Temple, Viviene A.; Crane, Jeff R.; Brown, Amy; Williams, Buffy-Lynne; Bell, Rick I.

    2016-01-01

    Background: Developmental theorists suggest that physical activity during early childhood promotes fundamental motor skill (FMS) proficiency; and that differences in FMS proficiency are largely related to children's experiences. Aim: To examine associations between participation in different types of recreation/leisure and FMS proficiency of boys…

  12. Sport and Other Motor Activities of Warsaw Students

    ERIC Educational Resources Information Center

    Biernat, Elzbieta

    2011-01-01

    Study aim: To assess the engagement of students of Warsaw university schools in sports and in recreational motor activities. Material and methods: A cohort (n = 1100) of students attending B.S. or M.S. courses at 6 university schools in Warsaw were studied by applying questionnaire techniques. The questions pertained to participation in…

  13. Brains and Brawn: Complex Motor Activities to Maximize Cognitive Enhancement

    ERIC Educational Resources Information Center

    Moreau, David

    2015-01-01

    The target articles in this special issue address the timely question of embodied cognition in the classroom, and in particular the potential of this approach to facilitate learning in children. The interest for motor activities within settings that typically give little space to nontraditional content is proof of a shift from a Cartesian…

  14. Face Preference in Infancy and Its Relation to Motor Activity

    ERIC Educational Resources Information Center

    Libertus, Klaus; Needham, Amy

    2014-01-01

    Infants' preference for faces was investigated in a cross-sectional sample of 75 children, aged 3 to 11 months, and 23 adults. A visual preference paradigm was used where pairs of faces and toys were presented side-by-side while eye gaze was recorded. In addition, motor activity was assessed via parent report and the relation between motor…

  15. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... addition to the reporting requirements specified under 40 CFR part 792, subpart J the final test report... activity,” Handbook of Psychopharmacology. Vol. 7. Eds. Iversen, L.L., Iversen, D.S., Snyder, S.H....

  16. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... addition to the reporting requirements specified under 40 CFR part 792, subpart J the final test report... activity,” Handbook of Psychopharmacology. Vol. 7. Eds. Iversen, L.L., Iversen, D.S., Snyder, S.H....

  17. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... addition to the reporting requirements specified under 40 CFR part 792, subpart J the final test report... activity,” Handbook of Psychopharmacology. Vol. 7. Eds. Iversen, L.L., Iversen, D.S., Snyder, S.H....

  18. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... addition to the reporting requirements specified under 40 CFR part 792, subpart J the final test report... activity,” Handbook of Psychopharmacology. Vol. 7. Eds. Iversen, L.L., Iversen, D.S., Snyder, S.H....

  19. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... addition to the reporting requirements specified under 40 CFR part 792, subpart J the final test report... activity,” Handbook of Psychopharmacology. Vol. 7. Eds. Iversen, L.L., Iversen, D.S., Snyder, S.H....

  20. Motor, affective and cognitive empathy in adolescence: Interrelations between facial electromyography and self-reported trait and state measures.

    PubMed

    Van der Graaff, Jolien; Meeus, Wim; de Wied, Minet; van Boxtel, Anton; van Lier, Pol A C; Koot, Hans M; Branje, Susan

    2016-06-01

    This study examined interrelations of trait and state empathy in an adolescent sample. Self-reported affective trait empathy and cognitive trait empathy were assessed during a home visit. During a test session at the university, motor empathy (facial electromyography), and self-reported affective and cognitive state empathy were assessed in response to empathy-inducing film clips portraying happiness and sadness. Adolescents who responded with stronger motor empathy consistently reported higher affective state empathy. Adolescents' motor empathy was also positively related to cognitive state empathy, either directly or indirectly via affective state empathy. Whereas trait empathy was consistently, but modestly, related to state empathy with sadness, for state empathy with happiness few trait-state associations were found. Together, the findings provide support for the notion that empathy is a multi-faceted phenomenon. Motor, affective and cognitive empathy seem to be related processes, each playing a different role in the ability to understand and share others' feelings. PMID:25864486

  1. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.

    PubMed

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642

  2. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    PubMed Central

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10–12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant’s MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642

  3. Hyperactivity and Motoric Activity in ADHD: Characterization, Assessment, and Intervention.

    PubMed

    Gawrilow, Caterina; Kühnhausen, Jan; Schmid, Johanna; Stadler, Gertraud

    2014-01-01

    The aim of the present literature review is threefold. (1) We will review theories, models, and studies on symptomatic hyperactivity and motoric activity in attention-deficit/hyperactivity disorder (ADHD). (2) Another focus will be on assessment methods that have been proven to be effective in the detection of hyperactivity and motoric activity in children, adolescents, and adults with and without ADHD and emerging areas of research in the field of ADHD. We will compare subjective methods (i.e., rating scales) and objective methods (i.e., accelerometers). (3) Finally, physical activity intervention studies aiming at a modification of activity and overactive behavior will be summarized that seem to be promising candidates for alleviating hyperactivity symptoms in children, adolescents, and adults with ADHD. PMID:25506329

  4. Hyperactivity and Motoric Activity in ADHD: Characterization, Assessment, and Intervention

    PubMed Central

    Gawrilow, Caterina; Kühnhausen, Jan; Schmid, Johanna; Stadler, Gertraud

    2014-01-01

    The aim of the present literature review is threefold. (1) We will review theories, models, and studies on symptomatic hyperactivity and motoric activity in attention-deficit/hyperactivity disorder (ADHD). (2) Another focus will be on assessment methods that have been proven to be effective in the detection of hyperactivity and motoric activity in children, adolescents, and adults with and without ADHD and emerging areas of research in the field of ADHD. We will compare subjective methods (i.e., rating scales) and objective methods (i.e., accelerometers). (3) Finally, physical activity intervention studies aiming at a modification of activity and overactive behavior will be summarized that seem to be promising candidates for alleviating hyperactivity symptoms in children, adolescents, and adults with ADHD. PMID:25506329

  5. Perception and motor activity: reality is always virtual

    NASA Astrophysics Data System (ADS)

    Bridgeman, Bruce

    1999-05-01

    We differentiate a cognitive branch of the visual system from a sensorimotor branch with the Roelofs, effect, a perception that a target's position is biased in the direction opposite the offset of a surrounding frame. Previous research left the possibility that accurate motor responses to a perceptually mislocated target might be mediated by oculomotor fixation of the target. Subjects performed judging and jabbing tasks to probe cognitive and motor system representations respectively while engaging in a saccadic task that prevented fixation of the target. Three experiments with an oculomotor distractor task evaluated judging and jabbing responses to the target. Three experiments did not show a Roelofs effect in spite of the prevention of fixation on the target. Motor response did not show a Roelofs effect in spite of the prevention of fixation on the target. Further, a decision about which of two targets to jab does not result in cognitive-system information affect motor response. The Roelofs effect was presented, however, in judging trials that also involved the saccadic task.

  6. Spinal cord injury affects I-wave facilitation in human motor cortex.

    PubMed

    Nardone, Raffaele; Höller, Yvonne; Bathke, Arne C; Orioli, Andrea; Schwenker, Kerstin; Frey, Vanessa; Golaszewski, Stefan; Brigo, Francesco; Trinka, Eugen

    2015-07-01

    Transcranial magnetic stimulation (TMS) is a useful non-invasive approach for studying cortical physiology. To further clarify the mechanisms of cortical reorganization after spinal cord injury (SCI), we used a non-invasive paired TMS protocol for the investigation of the corticospinal I-waves, the so-called I-wave facilitation, in eight patients with cervical SCI. We found that the pattern of I-wave facilitation significantly differs between SCI patients with normal and abnormal central motor conduction (CMCT), and healthy controls. The group with normal CMCT showed increased I-wave facilitation, while the group with abnormal CMCT showed lower I-wave facilitation compared to a control group. The facilitatory I-wave interaction occurs at the level of the motor cortex, and the mechanisms responsible for the production of I-waves are under control of GABA-related inhibition. Therefore, the findings of our small sample preliminary study provide further physiological evidence of increased motor cortical excitability in patients with preserved corticospinal projections. This is possibly due to decreased GABAergic intracortical inhibition. The excitability of networks producing short-interval intracortical facilitation could increase after SCI as a mechanism to enhance activation of residual corticospinal tract pathways and thus compensate for the impaired ability of the motor cortex to generate appropriate voluntary movements. Finally, the I-wave facilitation technique could be used in clinical neurorehabilitation as an additional method of assessing and monitoring function in SCI. PMID:26151771

  7. Subcortical evoked activity and motor enhancement in Parkinson's disease

    PubMed Central

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Khan, Sadaquate; Javed, Shazia; Gill, Steven S.; Ashkan, Keyoumars; Akram, Harith; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Green, Alexander L.; Aziz, Tipu; Brown, Peter

    2016-01-01

    Enhancements in motor performance have been demonstrated in response to intense stimuli both in healthy subjects and in the form of ‘paradoxical kinesis’ in patients with Parkinson's disease. Here we identify a mid-latency evoked potential in local field potential recordings from the region of the subthalamic nucleus, which scales in amplitude with both the intensity of the stimulus delivered and corresponding enhancements in biomechanical measures of maximal handgrips, independent of the dopaminergic state of our subjects with Parkinson's disease. Recordings of a similar evoked potential in the related pedunculopontine nucleus – a key component of the reticular activating system – provide support for this neural signature in the subthalmic nucleus being a novel correlate of ascending arousal, propagated from the reticular activating system to exert an ‘energizing’ influence on motor circuitry. Future manipulation of this system linking arousal and motor performance may provide a novel approach for the non-dopaminergic enhancement of motor performance in patients with hypokinetic disorders such as Parkinson's disease. PMID:26687971

  8. Subcortical evoked activity and motor enhancement in Parkinson's disease.

    PubMed

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Khan, Sadaquate; Javed, Shazia; Gill, Steven S; Ashkan, Keyoumars; Akram, Harith; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Green, Alexander L; Aziz, Tipu; Brown, Peter

    2016-03-01

    Enhancements in motor performance have been demonstrated in response to intense stimuli both in healthy subjects and in the form of 'paradoxical kinesis' in patients with Parkinson's disease. Here we identify a mid-latency evoked potential in local field potential recordings from the region of the subthalamic nucleus, which scales in amplitude with both the intensity of the stimulus delivered and corresponding enhancements in biomechanical measures of maximal handgrips, independent of the dopaminergic state of our subjects with Parkinson's disease. Recordings of a similar evoked potential in the related pedunculopontine nucleus - a key component of the reticular activating system - provide support for this neural signature in the subthalmic nucleus being a novel correlate of ascending arousal, propagated from the reticular activating system to exert an 'energizing' influence on motor circuitry. Future manipulation of this system linking arousal and motor performance may provide a novel approach for the non-dopaminergic enhancement of motor performance in patients with hypokinetic disorders such as Parkinson's disease. PMID:26687971

  9. Prediction of motor outcomes and activities of daily living function using diffusion tensor tractography in acute hemiparetic stroke patients

    PubMed Central

    Imura, Takeshi; Nagasawa, Yuki; Inagawa, Tetsuji; Imada, Naoki; Izumi, Hiroaki; Emoto, Katsuya; Tani, Itaru; Yamasaki, Hiroyuki; Ota, Yuichiro; Oki, Shuichi; Maeda, Tadanori; Araki, Osamu

    2015-01-01

    [Purpose] The efficacy of diffusion tensor imaging in the prediction of motor outcomes and activities of daily living function remains unclear. We evaluated the most appropriate diffusion tensor parameters and methodology to determine whether the region of interest- or tractography-based method was more useful for predicting motor outcomes and activities of daily living function in stroke patients. [Subjects and Methods] Diffusion tensor imaging data within 10 days after stroke onset were collected and analyzed for 25 patients. The corticospinal tract was analyzed. Fractional anisotropy, number of fibers, and apparent diffusion coefficient were used as diffusion tensor parameters. Motor outcomes and activities of daily living function were evaluated on the same day as diffusion tensor imaging and at 1 month post-onset. [Results] The fractional anisotropy value of the affected corticospinal tract significantly correlated with the motor outcome and activities of daily living function within 10 days post-onset and at 1 month post-onset. Tthere were no significant correlations between other diffusion tensor parameters and motor outcomes or activities of daily living function. [Conclusion] The fractional anisotropy value of the affected corticospinal tract obtained using the tractography-based method was useful for predicting motor outcomes and activities of daily living function in stroke patients. PMID:26157225

  10. Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man.

    PubMed Central

    Davey, N J; Romaiguère, P; Maskill, D W; Ellaway, P H

    1994-01-01

    1. Suppression of voluntary muscle activity of hand and arm muscles in response to transcranial magnetic stimulation (TMS) of the motor cortex has been investigated in man. 2. Suppression could be elicited by low levels of TMS without any prior excitatory response. The latency of the suppression was 3-8 ms longer than the excitation observed at a higher stimulus intensity. The duration of the suppression ranged from 8 to 26 ms. 3. A circular stimulating coil was used to determine threshold intensity for excitation and suppression of contraction of thenar muscles in response to TMS at different locations over the motor cortex. The locations for lowest threshold excitation coincided with those for lowest threshold suppression. Suppression was elicited at a lower threshold than excitation at all locations. 4. A figure-of-eight stimulating coil was positioned over the left motor cortex at the lowest threshold point for excitation of the right thenar muscles. The orientation for the lowest threshold excitatory and inhibitory responses was the same for all subjects. That orientation induced a stimulating current travelling in an antero-medial direction. Suppression was invariably elicited at lower thresholds than excitation. 5. When antagonistic muscles (second and third dorsal interosseus) were co-contracted, TMS evoked coincident suppression of voluntary EMG in the two muscles without prior excitation of either muscle. This suggests that the suppression is not mediated via corticospinal activation of spinal interneurones. 6. Test responses to electrical stimulation of the cervical spinal cord were evoked in both relaxed and activated thenar muscles. In the relaxed muscle, prior TMS at an intensity that would suppress voluntary activity failed to influence the test responses, suggesting absence of inhibition at a spinal level. However, in the activated muscle, prior TMS could reduce the test response. This may be explained by disfacilitation of motoneurones due to

  11. Ice nucleus activity measurements of solid rocket motor exhaust particles

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Compiler)

    1986-01-01

    The ice Nucleus activity of exhaust particles generated from combustion of Space Shuttle propellant in small rocket motors has been measured. The activity at -20 C was substantially lower than that of aerosols generated by unpressurized combustion of propellant samples in previous studies. The activity decays rapidly with time and is decreased further in the presence of moist air. These tests corroborate the low effectivity ice nucleus measurement results obtained in the exhaust ground cloud of the Space Shuttle. Such low ice nucleus activity implies that Space Shuttle induced inadvertent weather modification via an ice phase process is extremely unlikely.

  12. How task complexity and stimulus modality affect motor execution: target accuracy, response timing and hesitations.

    PubMed

    Parrington, Lucy; MacMahon, Clare; Ball, Kevin

    2015-01-01

    Elite sports players are characterized by the ability to produce successful outcomes while attending to changing environmental conditions. Few studies have assessed whether the perceptual environment affects motor skill execution. To test the effect of changing task complexity and stimulus conditions, the authors examined response times and target accuracy of 12 elite Australian football players using a passing-based laboratory test. Data were assessed using mixed modeling and chi-square analyses. No differences were found in target accuracy for changes in complexity or stimulus condition. Decision, movement and total disposal time increased with complexity and decision hesitations were greater when distractions were present. Decision, movement and disposal time were faster for auditory in comparison to visual signals, and when free to choose, players passed more frequently to auditory rather than visual targets. These results provide perspective on how basic motor control processes such as reaction and response to stimuli are influenced in a complex motor skill. Findings suggest auditory stimuli should be included in decision-making studies and may be an important part of a decision-training environment. PMID:25584721

  13. Neural activities during affective processing in people with Alzheimer's disease.

    PubMed

    Lee, Tatia M C; Sun, Delin; Leung, Mei-Kei; Chu, Leung-Wing; Keysers, Christian

    2013-03-01

    This study examined brain activities in people with Alzheimer's disease when viewing happy, sad, and fearful facial expressions of others. A functional magnetic resonance imaging and a voxel-based morphometry methodology together with a passive viewing of emotional faces paradigm were employed to compare the affective processing in 12 people with mild Alzheimer's disease and 12 matched controls. The main finding was that the clinical participants showed reduced activations in regions associated with the motor simulation system (the ventral premotor cortex) and in regions associated with emotional simulation-empathy (the anterior insula and adjacent frontal operculum). This regional decline in blood oxygen level-dependent signals appeared to be lateralized in the left hemisphere and was not related to any structural degeneration in the clinical participants. Furthermore, the regions that showed changes in neural activity differed for the 3 emotional facial expressions studied. Findings of our study indicate that neural changes in regions associated with the motor and emotional simulation systems might play an important role in the development of Alzheimer's disease. PMID:22840336

  14. Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review

    PubMed Central

    2011-01-01

    Background Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults. Methods A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these. Results 28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures. Conclusions The current evidence on the effectiveness of cognitive or

  15. Chemical and thermal modulation of molecular motor activities

    NASA Astrophysics Data System (ADS)

    Hong, Weili

    Molecular motors of kinesin and dynein families are responsible for various intracellular activities, from long distance movement of organelles, vesicles, protein complexes, and mRNAs to powering mitotic processes. They can take nanometer steps using chemical energy from the hydrolysis of ATP (adenosine triphosphate), and their dysfunction is involved in many neurodegenerative diseases that require long distance transport of cargos. Here I report on the study of the properties of molecular motors at a single-molecule level using optical trappings. I first studied the inhibition properties of kinesin motors by marine natural compound adociasulfates. I showed that adociasulfates compete with microtubules for binding to kinesins and thus inhibit kinesins' activity. Although adociasulfates are a strong inhibitor for all kinesin members, they show a much higher inhibition effect for conventional kinesins than for mitotic kinesins. Thus adociasulfates can be used to specifically inhibit conventional kinesins. By comparing the inhibition of kinesins by two structurally similar adociasulfates, one can see that the negatively charged sulfate residue of adociasulfates can be replaced by other negative residues and thus make it possible for adociasulfate-derived compounds to be more cell permeable. Kinesins and dyneins move cargos towards opposite directions along a microtubule. Cargos with both kinesins and dyneins attached often move bidirectionally due to undergoing a tug-of-war between the oppositely moving kinesin and dynein motors. Here I studied the effect of temperature on microtubule-based kinesin and dynein motor transport. While kinesins' and dyneins' velocities are closely matched above 15 °C, below this temperature the dyneins' velocity decreases much faster than the kinesins'. The kinesins' and dyneins' forces do not measurably change with temperature. The results suggest that temperature has significant effects on bidirectional transport and can be used to

  16. A mouse model of non-motor symptoms in Parkinson's disease: focus on pharmacological interventions targeting affective dysfunctions

    PubMed Central

    Bonito-Oliva, Alessandra; Masini, Débora; Fisone, Gilberto

    2014-01-01

    Non-motor symptoms, including psychiatric disorders, are increasingly recognized as a major challenge in the treatment of Parkinson's disease (PD). These ailments, which often appear in the early stage of the disease, affect a large number of patients and are only partly resolved by conventional antiparkinsonian medications, such as L-DOPA. Here, we investigated non-motor symptoms of PD in a mouse model based on bilateral injection of the toxin 6-hydroxydopamine (6-OHDA) in the dorsal striatum. This model presented only subtle gait modifications, which did not affect horizontal motor activity in the open-field test. Bilateral 6-OHDA lesion also impaired olfactory discrimination, in line with the anosmia typically observed in early stage parkinsonism. The effect of 6-OHDA was then examined for mood-related dysfunctions. Lesioned mice showed increased immobility in the forced swim test and tail suspension test, two behavioral paradigms of depression. Moreover, the lesion exerted anxiogenic effects, as shown by reduced time spent in the open arms, in the elevated plus maze test, and by increased thigmotaxis in the open-field test. L-DOPA did not modify depressive- and anxiety-like behaviors, which were instead counteracted by the dopamine D2/D3 receptor agonist, pramipexole. Reboxetine, a noradrenaline reuptake inhibitor, was also able to revert the depressive and anxiogenic effects produced by the lesion with 6-OHDA. Interestingly, pre-treatment with desipramine prior to injection of 6-OHDA, which is commonly used to preserve noradrenaline neurons, did not modify the effect of the lesion on depressive- and anxiety-like behaviors. Thus, in the present model, mood-related conditions are independent of the reduction of noradrenaline caused by 6-OHDA. Based on these findings we propose that the anti-depressive and anxiolytic action of reboxetine is mediated by promoting dopamine transmission through blockade of dopamine uptake from residual noradrenergic terminals. PMID

  17. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    PubMed

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-01

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. PMID:26826333

  18. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  19. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  20. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  1. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  2. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  3. Impaired oculo-motor behaviour affects both reading and scene perception in neglect patients.

    PubMed

    Primativo, Silvia; Arduino, Lisa S; Daini, Roberta; De Luca, Maria; Toneatto, Carlo; Martelli, Marialuisa

    2015-04-01

    Unilateral spatial neglect (USN) is a common neuropsychological disorder following a right-sided brain lesion. Although USN is mostly characterized by symptoms involving the left hemispace, other symptoms are not left lateralized. Recently, it was shown that patients with neglect dyslexia, a reading disturbance that affects about 40% of USN patients, manifest a non-lateralized impairment of eye movement behaviour in association with their reading deficit when they read aloud and perform non-verbal saccadic tasks (Primativo et al., 2013). In the present paper, we aimed to demonstrate that the eye movement impairment shown by some USN patients reflects a more general oculo-motor disorder that is not confined to orthographic material, the horizontal axis or constrained saccadic tasks. We conjectured that inaccurate oculo-motor behaviour in USN patients indicates the presence of a reading deficit. With this aim we evaluated 20 patients, i.e., 10 right-sided brain-damaged patients without neglect and 10 patients affected by USN. On the basis of the patients' eye movement patterns during a scene exploration task, we found that 4 out of the 10 USN patients presented an abnormal oculo-motor pattern. These same four patients (but not the others) also failed in performing 5 different saccadic tasks and produced neglect dyslexia reading errors in both single words and texts. First, we show that a large proportion of USN patients have inaccurate eye movement behaviour in non-reading tasks. Second, we demonstrate that this exploratory deficit is predictive of the reading impairment. Thus, we conclude that the eye movement deficit prevents reading and impairs the performance on many other perceptual tests, including scene exploration. The large percentage of patients with impaired eye-movement pattern suggests that particular attention should be paid to eye movement behaviour during the diagnostic phase in order to program the best rehabilitation strategy for each patient. PMID

  4. Suppression of Abdominal Motor Activity during Swallowing in Cats and Humans

    PubMed Central

    Pitts, Teresa; Gayagoy, Albright G.; Rose, Melanie J.; Poliacek, Ivan; Condrey, Jillian A.; Musslewhite, M. Nicholas; Shen, Tabitha Y.; Davenport, Paul W.; Bolser, Donald C

    2015-01-01

    Diseases affecting pulmonary mechanics often result in changes to the coordination of swallow and breathing. We hypothesize that during times of increased intrathoracic pressure, swallow suppresses ongoing expiratory drive to ensure bolus transport through the esophagus. To this end, we sought to determine the effects of swallow on abdominal electromyographic (EMG) activity during expiratory threshold loading in anesthetized cats and in awake-healthy adult humans. Expiratory threshold loads were applied to recruit abdominal motor activity during breathing, and swallow was triggered by infusion of water into the mouth. In both anesthetized cats and humans, expiratory cycles which contained swallows had a significant reduction in abdominal EMG activity, and a greater percentage of swallows were produced during inspiration and/or respiratory phase transitions. These results suggest that: a) spinal expiratory motor pathways play an important role in the execution of swallow, and b) a more complex mechanical relationship exists between breathing and swallow than has previously been envisioned. PMID:26020240

  5. The effect of oral motor activity on the athletic performance of professional golfers.

    PubMed

    Ringhof, Steffen; Hellmann, Daniel; Meier, Florian; Etz, Eike; Schindler, Hans J; Stein, Thorsten

    2015-01-01

    Human motor control is based on complex sensorimotor processes. Recent research has shown that neuromuscular activity of the craniomandibular system (CMS) might affect human motor control. In particular, improvements in postural stability and muscle strength have been observed as a result of voluntary jaw clenching. Potential benefits of jaw aligning appliances on muscle strength and golf performance have also been described. These reports are highly contradictory, however, and the oral motor task performed is often unclear. The purpose of our study was, therefore, to investigate the effect of submaximum biting on golf performance via shot precision and shot length over three different distances. Participants were 14 male professional golfers - seven with sleep bruxism and seven without - randomly performing golf shots over 60m, 160m, or driving distance while either biting on an oral splint or biting on their teeth; habitual jaw position served as the control condition. Statistical analysis revealed that oral motor activity did not systematically affect golf performance in respect of shot precision or shot length for 60m, 160 m, or driving distance. These findings were reinforced by impact variables such as club head speed and ball speed, which were also not indicative of significant effects. The results thus showed that the strength improvements and stabilizing effects described previously are, apparently, not transferable to such coordination-demanding sports as golf. This could be due to the divergent motor demands associated with postural control and muscle strength on the one hand and the complex coordination of a golf swing on the other. Interestingly, subjects without sleep bruxism performed significantly better at the short distance (60 m) than those with bruxism. Because of the multifactorial etiology of parafunctional CMS activity, conclusions about the need for dental treatment to improve sports performance are, however, completely unwarranted. PMID

  6. The effect of oral motor activity on the athletic performance of professional golfers

    PubMed Central

    Ringhof, Steffen; Hellmann, Daniel; Meier, Florian; Etz, Eike; Schindler, Hans J.; Stein, Thorsten

    2015-01-01

    Human motor control is based on complex sensorimotor processes. Recent research has shown that neuromuscular activity of the craniomandibular system (CMS) might affect human motor control. In particular, improvements in postural stability and muscle strength have been observed as a result of voluntary jaw clenching. Potential benefits of jaw aligning appliances on muscle strength and golf performance have also been described. These reports are highly contradictory, however, and the oral motor task performed is often unclear. The purpose of our study was, therefore, to investigate the effect of submaximum biting on golf performance via shot precision and shot length over three different distances. Participants were 14 male professional golfers – seven with sleep bruxism and seven without – randomly performing golf shots over 60m, 160m, or driving distance while either biting on an oral splint or biting on their teeth; habitual jaw position served as the control condition. Statistical analysis revealed that oral motor activity did not systematically affect golf performance in respect of shot precision or shot length for 60m, 160 m, or driving distance. These findings were reinforced by impact variables such as club head speed and ball speed, which were also not indicative of significant effects. The results thus showed that the strength improvements and stabilizing effects described previously are, apparently, not transferable to such coordination-demanding sports as golf. This could be due to the divergent motor demands associated with postural control and muscle strength on the one hand and the complex coordination of a golf swing on the other. Interestingly, subjects without sleep bruxism performed significantly better at the short distance (60 m) than those with bruxism. Because of the multifactorial etiology of parafunctional CMS activity, conclusions about the need for dental treatment to improve sports performance are, however, completely unwarranted. PMID

  7. Chronic treatment with epigallocatechin gallate reduces motor hyperactivity and affects in vitro tested intestinal motility of spontaneously hypertensive rats

    PubMed Central

    Potenza, Maria Assunta; Montagnani, Monica; Nacci, Carmela; De Salvia, Maria Antonietta

    2016-01-01

    incubation (100 µM, 20 min) of colonic and duodenum strips obtained from untreated SHR and WKY rats showed a reduced contractile colonic response to a fixed dose of carbachol (1.5 µM) only in SHR with respect to its own vehicle, whereas the inhibitory duodenal response to a fixed EFS frequency (5 Hz) was significantly reduced in both WKY rats and SHR groups with respect to their own vehicle. Conclusions These data suggest that EGCG affects body weight gain in rats and this effect seems to be due to the altered intestinal motility and not to increased motor activity. PMID:26899572

  8. Do recreational activities affect coastal biodiversity?

    NASA Astrophysics Data System (ADS)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors ("diving" and "fishing"). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  9. Chronic Assessment of Diaphragm Muscle EMG Activity across Motor Behaviors

    PubMed Central

    Mantilla, Carlos B.; Seven, Yasin B.; Hurtado-Palomino, Juan N.; Zhan, Wen-Zhi; Sieck, Gary C.

    2011-01-01

    The diaphragm muscle is main inspiratory muscle in mammals. Quantitative analyses documenting the reliability of chronic diaphragm EMG recordings are lacking. Assessment of ventilatory and non-ventilatory motor behaviors may facilitate evaluating diaphragm EMG activity over time. We hypothesized that normalization of diaphragm EMG amplitude across behaviors provides stable and reliable parameters for longitudinal assessments of diaphragm activity. We found that diaphragm EMG activity shows substantial intra-animal variability over 6 weeks, with coefficient of variation (CV) for different behaviors ~29–42%. Normalization of diaphragm EMG activity to near maximal behaviors (e.g., deep breathing) reduced intra-animal variability over time (CV ~22–29%). Plethysmographic measurements of eupneic ventilation were also stable over 6 weeks (CV ~13% for minute ventilation). Thus, stable and reliable measurements of diaphragm EMG activity can be obtained longitudinally using chronically implanted electrodes by examining multiple motor behaviors. By quantitatively determining the reliability of longitudinal diaphragm EMG analyses, we provide an important tool for evaluating the progression of diseases or injuries that impair ventilation. PMID:21414423

  10. When music tempo affects the temporal congruence between physical practice and motor imagery.

    PubMed

    Debarnot, Ursula; Guillot, Aymeric

    2014-06-01

    When people listen to music, they hear beat and a metrical structure in the rhythm; these perceived patterns enable coordination with the music. A clear correspondence between the tempo of actual movement (e.g., walking) and that of music has been demonstrated, but whether similar coordination occurs during motor imagery is unknown. Twenty participants walked naturally for 8m, either physically or mentally, while listening to slow and fast music, or not listening to anything at all (control condition). Executed and imagined walking times were recorded to assess the temporal congruence between physical practice (PP) and motor imagery (MI). Results showed a difference when comparing slow and fast time conditions, but each of these durations did not differ from soundless condition times, hence showing that body movement may not necessarily change in order to synchronize with music. However, the main finding revealed that the ability to achieve temporal congruence between PP and MI times was altered when listening to either slow or fast music. These data suggest that when physical movement is modulated with respect to the musical tempo, the MI efficacy of the corresponding movement may be affected by the rhythm of the music. Practical applications in sport are discussed as athletes frequently listen to music before competing while they mentally practice their movements to be performed. PMID:24681309

  11. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    NASA Astrophysics Data System (ADS)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  12. Intestinal motor activity in experimental hyperthyroidism in conscious dogs.

    PubMed

    Karaus, M; Wienbeck, M; Grussendorf, M; Erckenbrecht, J F; Strohmeyer, G

    1989-10-01

    The small intestinal motor effects of experimental hyperthyroidism were studied in 8 conscious dogs to reveal possible mechanisms of accelerated small bowel transit in hyperthyroidism. Six strain gauge transducers were implanted on the small intestine of each dog. Long-term hyperthyroidism was induced by subcutaneous administration of 100 and 200 micrograms/kg.day of thyroxin. Application of thyroxin did not interrupt the cyclic fasting motor activity. Thyroxin (100 micrograms/kg.day) caused a slight increase in the period of the migrating motor complex (p less than 0.05). The maximum contractile frequency rose dose-dependently up to 11% (p less than 0.05). During phase 2 and the digestive state the contraction frequency increased up to 29% and 27%, respectively (p less than 0.05). More contractions occurred in groups during the digestive state in hyperthyroidism. Half of the dogs showed giant migrating contractions during thyroxin administration, whereas those contractions were not observed during the control period. We conclude that fasted and postprandial intestinal motility is changed in experimental hyperthyroidism. Acceleration of small bowel transit may be caused by changes in contractile pattern of phase 2 and the digestive state or by the increased frequency of giant migrating contractions. PMID:2777044

  13. Emotion affects action: Midcingulate cortex as a pivotal node of interaction between negative emotion and motor signals

    PubMed Central

    Pereira, M.G.; Oliveira, L; Erthal, FS; Joffily, M; Mocaiber, I.F.; Volchan, E.; Pessoa, L.

    2010-01-01

    Affective pictures drive the activity of brain networks and impact behavior. We showed previously that viewing unpleasant pictures interfered in the performance of a basic non-emotional visual detection task. In the present study, we employed functional magnetic resonance imaging to test the hypothesis that behavioral interference may result from the interaction between negatively valenced and motor-related signals in the brain. As in our previous study, subjects performed a simple target-detection task that followed the presentation of unpleasant or neutral pictures. Our results revealed that an unpleasant emotional context modulated evoked responses in several regions engaged by the simple target-detection task. In particular, the midcingulate cortex was recruited when participants performed target-detection trials during the unpleasant context and signal responses in this region closely mirrored the pattern of behavioral interference (as revealed via reaction time). Our findings suggest that the midcingulate cortex may be an important site for the interaction between negatively valenced and motor signals in the brain, and that it may be involved in the implementation of defensive responses, such as freezing. PMID:20233958

  14. Voltage-sensitive dye imaging of primary motor cortex activity produced by ventral tegmental area stimulation.

    PubMed

    Kunori, Nobuo; Kajiwara, Riichi; Takashima, Ichiro

    2014-06-25

    The primary motor cortex (M1) receives dopaminergic projections from the ventral tegmental area (VTA) through the mesocortical dopamine pathway. However, few studies have focused on changes in M1 neuronal activity caused by VTA activation. To address this issue, we used voltage-sensitive dye imaging (VSD) to reveal the spatiotemporal dynamics of M1 activity induced by single-pulse stimulation of VTA in anesthetized rats. VSD imaging showed that brief electrical stimulation of unilateral VTA elicited a short-latency excitatory-inhibitory sequence of neuronal activity not only in the ipsilateral but also in the contralateral M1. The contralateral M1 response was not affected by pharmacological blockade of ipsilateral M1 activity, but it was completely abolished by corpus callosum transection. Although the VTA-evoked neuronal activity extended throughout the entire M1, we found the most prominent activity in the forelimb area of M1. The 6-OHDA-lesioned VTA failed to evoke M1 activity. Furthermore, both excitatory and inhibitory intact VTA-induced activity was entirely extinguished by blocking glutamate receptors in the target M1. When intracortical microstimulation of M1 was paired with VTA stimulation, the evoked forelimb muscle activity was facilitated or inhibited, depending on the interval between the two stimuli. These findings suggest that VTA neurons directly modulate the excitability of M1 neurons via fast glutamate signaling and, consequently, may control the last cortical stage of motor command processing. PMID:24966388

  15. Coordination of Fictive Motor Activity in the Larval Zebrafish Is Generated by Non-Segmental Mechanisms

    PubMed Central

    Wiggin, Timothy D.; Peck, Jack H.; Masino, Mark A.

    2014-01-01

    The cellular and network basis for most vertebrate locomotor central pattern generators (CPGs) is incompletely characterized, but organizational models based on known CPG architectures have been proposed. Segmental models propose that each spinal segment contains a circuit that controls local coordination and sends longer projections to coordinate activity between segments. Unsegmented/continuous models propose that patterned motor output is driven by gradients of neurons and synapses that do not have segmental boundaries. We tested these ideas in the larval zebrafish, an animal that swims in discrete episodes, each of which is composed of coordinated motor bursts that progress rostrocaudally and alternate from side to side. We perturbed the spinal cord using spinal transections or strychnine application and measured the effect on fictive motor output. Spinal transections eliminated episode structure, and reduced both rostrocaudal and side-to-side coordination. Preparations with fewer intact segments were more severely affected, and preparations consisting of midbody and caudal segments were more severely affected than those consisting of rostral segments. In reduced preparations with the same number of intact spinal segments, side-to-side coordination was more severely disrupted than rostrocaudal coordination. Reducing glycine receptor signaling with strychnine reversibly disrupted both rostrocaudal and side-to-side coordination in spinalized larvae without disrupting episodic structure. Both spinal transection and strychnine decreased the stability of the motor rhythm, but this effect was not causal in reducing coordination. These results are inconsistent with a segmented model of the spinal cord and are better explained by a continuous model in which motor neuron coordination is controlled by segment-spanning microcircuits. PMID:25275377

  16. Done that: short-term repetition related modulations of motor cortex activity as a stable signature for overnight motor memory consolidation.

    PubMed

    Gabitov, Ella; Manor, David; Karni, Avi

    2014-12-01

    An almost universally accepted tacit expectation is that learning and memory consolidation processes must be reflected in the average brain activity in brain areas relevant to task performance. Motor cortex (M1) plasticity has been implicated in motor skill acquisition and its consolidation. Nevertheless, no consistent pattern of changes in the average signal, related to motor learning or motor memory consolidation following a single session of training, has emerged from imaging studies. Here we show that the pattern and magnitude of short-term brain activity modulations in response to task repetition, in M1, may provide a robust signature for effective motor memory consolidation processes. We studied participants during the paced performance of a finger-to-thumb opposition sequence (FOS), intensively trained a day earlier, and a similarly constructed untrained FOS. In addition to within-session "on-line" gains, most participants expressed delayed, consolidation-phase gains in the performance of the trained FOS. The execution of the trained FOS induced repetition enhancements in the contralateral M1 and bilaterally in the medial-temporal lobes, offsetting novelty-related repetition suppression effects. Moreover, the M1 modulations were positively correlated with the magnitude of each participant's overnight delayed gains but not with absolute performance levels. Our results suggest that short-term enhancements of brain signals upon task repetition reflect the effectiveness of overnight motor memory consolidation. We propose that procedural memory consolidation processes may affect the excitation-inhibition balance within cortical representations of the trained movements; this new balance is better reflected in repetition effects than in the average level of evoked neural activity. PMID:24893741

  17. Time required for motor activity in lucid dreams.

    PubMed

    Erlacher, Daniel; Schredl, Michael

    2004-12-01

    The present study investigated the relationship between the time required for specific tasks (counting and performing squats) in lucid dreams and in the waking state. Five proficient lucid dreamers (26-34 yr. old, M=29.8, SD=3.0; one woman and four men) participated. Analysis showed that the time needed for counting in a lucid dream is comparable to the time needed for counting in wakefulness, but motor activities required more time in lucid dreams than in the waking state. PMID:15739850

  18. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study.

    PubMed

    Hou, Li J; Song, Zheng; Pan, Zhu J; Cheng, Jia L; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  19. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study

    PubMed Central

    Hou, Li J.; Song, Zheng; Pan, Zhu J.; Cheng, Jia L.; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  20. From Spontaneous Motor Activity to Coordinated Behaviour: A Developmental Model

    PubMed Central

    Marques, Hugo Gravato; Bharadwaj, Arjun; Iida, Fumiya

    2014-01-01

    In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions. PMID:25057775

  1. Sensorless Control of Synchronous Reluctance Motors Using an On-Line Parameter Identification Method not Affected by Position Estimation Accuracy

    NASA Astrophysics Data System (ADS)

    Iwata, Akitoshi; Ichikawa, Shinji; Tomita, Mutuwo; Doki, Shinji; Okuma, Shigeru

    This paper presents a novel on-line parameter identification method for sensorless control of Synchronous Reluctance Motors (SynRMs). Although conventional sensorless control methods based on mathematical models usually need some complex measurements of motor parameters in advance, the proposed identification method does not require them and can be realized on-line. The proposed method identifies motor parameters under sensorless control, so rotor position and velocity can not be used to identify these parameters. However, the proposed method does not need rotor position and veocity, identified parameters are not affected by these estimation errors. The sensorless control using identified motor parameters is realized, and effective of the proposed method is verified by experimental results.

  2. Active Learning: Learning a Motor Skill Without a Coach

    PubMed Central

    Huang, Vincent S.; Shadmehr, Reza; Diedrichsen, Jörn

    2008-01-01

    When we learn a new skill (e.g., golf) without a coach, we are “active learners”: we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence. PMID:18509079

  3. Active learning: learning a motor skill without a coach.

    PubMed

    Huang, Vincent S; Shadmehr, Reza; Diedrichsen, Jörn

    2008-08-01

    When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence. PMID:18509079

  4. Physical activity, motor function, and white matter hyperintensity burden in healthy older adults

    PubMed Central

    Yang, Jingyun; Arfanakis, Konstantinos; Arvanitakis, Zoe; Leurgans, Sue E.; Turner, Arlener D.; Barnes, Lisa L.; Bennett, David A.; Buchman, Aron S.

    2015-01-01

    Objective: To test the hypothesis that physical activity modifies the association between white matter hyperintensity (WMH) burden and motor function in healthy older persons without dementia. Methods: Total daily activity (exercise and nonexercise physical activity) was measured for up to 11 days with actigraphy (Actical; Philips Respironics, Bend, OR) in 167 older adults without dementia participating in the Rush Memory and Aging Project. Eleven motor performances were summarized into a previously described global motor score. WMH volume was expressed as percent of intracranial volume. Linear regression models, adjusted for age, education, and sex, were performed with total WMH volume as the predictor and global motor score as the outcome. Terms for total daily physical activity and its interaction with WMH volume were then added to the model. Results: Higher WMH burden was associated with lower motor function (p = 0.006), and total daily activity was positively associated with motor function (p = 0.002). Total daily activity modified the association between WMH and motor function (p = 0.007). WMH burden was not associated with motor function in persons with high activity (90th percentile). By contrast, higher WMH burden remained associated with lower motor function in persons with average (50th percentile; estimate = −0.304, slope = −0.133) and low (10th percentile; estimate = −1.793, slope = −0.241) activity. Conclusions: Higher levels of physical activity may reduce the effect of WMH burden on motor function in healthy older adults. PMID:25762710

  5. The influence of motor expertise on the brain activity of motor task performance: A meta-analysis of functional magnetic resonance imaging studies.

    PubMed

    Yang, Jie

    2015-06-01

    Previous research has investigated the influence of long-term motor training on the brain activity of motor processes, but the findings are inconsistent. To clarify how acquiring motor expertise induces cortical reorganization during motor task performance, the current study conducted a quantitative meta-analysis on 26 functional magnetic resonance imaging (fMRI) studies that investigate motor task performance in people with long-term motor training experience (e.g., athletes, musicians, and dancers) and control participants. Meta-analysis of the brain activation in motor experts and novices showed similar effects in the bilateral frontal and parietal regions. The meta-analysis on the contrast between motor experts and novices indicated that experts showed stronger effects in the left inferior parietal lobule (BA 40) than did novices in motor execution and prediction tasks. In motor observation tasks, experts showed stronger effects in the left inferior frontal gyrus (BA 9) and left precentral gyrus (BA 6) than novices. On the contrary, novices had stronger effects in the right motor areas and basal ganglia as compared with motor experts. These results indicate that motor experts have effect increases in brain areas involved in action planning and action comprehension, and suggest that intensive motor training might elaborate the motor representation related to the task performance. PMID:25450866

  6. Brain Activity, Personality Traits and Affect: Electrocortical Activity in Reaction to Affective Film Stimuli

    NASA Astrophysics Data System (ADS)

    Makvand Hosseini, Sh.; Azad Fallah, P.; Rasoolzadeh Tabatabaei, S. K.; Ghannadyan Ladani, S. H.; Heise, C.

    We studied the patterns of activation over the cerebral cortex in reaction to affective film stimuli in four groups of extroverts, introverts, neurotics and emotionally stables. Measures of extraversion and neuroticism were collected and resting EEG was recorded from 40 right handed undergraduate female students (19-23) on one occasion for five 30s periods in baseline condition and in affective states. Mean log-transformed absolute alpha power was extracted from 12 electrode sites and analyzed. Patterns of activation were different in personality groups. Different patterns of asymmetries were observed in personality groups in reaction to affective stimuli. Results were partly consistent with approach and withdrawal model and provided supportive evidence for the role of right frontal asymmetry in negative affects in two groups (introverts and emotionally stables) as well as the role of right central asymmetry (increase on right and decrease on left) in active affective states (anxiety and happiness) in all personality groups. Results were also emphasized on the role of decrease activity relative to baseline in cortical regions (bilaterally in frontal and unilaterally in left parietal and temporal regions) in moderating of positive and negative emotion.

  7. Activity of motor cortex neurons during backward locomotion

    PubMed Central

    Deliagina, T. G.; Orlovsky, G. N.; Karayannidou, A.; Stout, E. E.; Sirota, M. G.; Beloozerova, I. N.

    2011-01-01

    Forward walking (FW) and backward walking (BW) are two important forms of locomotion in quadrupeds. Participation of the motor cortex in the control of FW has been intensively studied, whereas cortical activity during BW has never been investigated. The aim of this study was to analyze locomotion-related activity of the motor cortex during BW and compare it with that during FW. For this purpose, we recorded activity of individual neurons in the cat during BW and FW. We found that the discharge frequency in almost all neurons was modulated in the rhythm of stepping during both FW and BW. However, the modulation patterns during BW and FW were different in 80% of neurons. To determine the source of modulating influences (forelimb controllers vs. hindlimb controllers), the neurons were recorded not only during quadrupedal locomotion but also during bipedal locomotion (with either forelimbs or hindlimbs walking), and their modulation patterns were compared. We found that during BW (like during FW), modulation in some neurons was determined by inputs from limb controllers of only one girdle, whereas the other neurons received inputs from both girdles. The combinations of inputs could depend on the direction of locomotion. Most often (in 51% of forelimb-related neurons and in 34% of the hindlimb-related neurons), the neurons received inputs only from their own girdle when this girdle was leading and from both girdles when this girdle was trailing. This reconfiguration of inputs suggests flexibility of the functional roles of individual cortical neurons during different forms of locomotion. PMID:21430283

  8. Small vertical changes in jaw relation affect motor unit recruitment in the masseter.

    PubMed

    Terebesi, S; Giannakopoulos, N N; Brüstle, F; Hellmann, D; Türp, J C; Schindler, H J

    2016-04-01

    Strategies for recruitment of masseter muscle motor units (MUs), provoked by constant bite force, for different vertical jaw relations have not previously been investigated. The objective of this study was to analyse the effect of small changes in vertical jaw relation on MU recruitment behaviour in different regions of the masseter during feedback-controlled submaximum biting tasks. Twenty healthy subjects (mean age: 24·6 ± 2·4 years) were involved in the investigation. Intra-muscular electromyographic (EMG) activity of the right masseter was recorded in different regions of the muscle. MUs were identified by the use of decomposition software, and root-mean-square (RMS) values were calculated for each experimental condition. Six hundred and eleven decomposed MUs with significantly (P < 0·001) different jaw relation-specific recruitment behaviour were organised into localised MU task groups. MUs with different task specificity in seven examined tasks were observed. The RMS EMG values obtained from the different recording sites were also significantly (P < 0·01) different between tasks. Overall MU recruitment was significantly (P < 0·05) greater in the deep masseter than in the superficial muscle. The number of recruited MUs and the RMS EMG values decreased significantly (P < 0·01) with increasing jaw separation. This investigation revealed differential MU recruitment behaviour in discrete subvolumes of the masseter in response to small changes in vertical jaw relations. These fine-motor skills might be responsible for its excellent functional adaptability and might also explain the successful management of temporomandibular disorder patients by somatic intervention, in particular by the use of oral splints. PMID:26707515

  9. Motor imagery-based brain activity parallels that of motor execution: evidence from magnetic source imaging of cortical oscillations.

    PubMed

    Kraeutner, Sarah; Gionfriddo, Alicia; Bardouille, Timothy; Boe, Shaun

    2014-11-01

    Motor imagery (MI) is a form of practice in which an individual mentally performs a motor task. Previous research suggests that skill acquisition via MI is facilitated by repetitive activation of brain regions in the sensorimotor network similar to that of motor execution, however this evidence is conflicting. Further, many studies do not control for overt muscle activity and thus the activation patterns reported for MI may be driven in part by actual movement. The purpose of the current research is to further establish MI as a secondary modality of skill acquisition by providing electrophysiological evidence of an overlap between brain areas recruited for motor execution and imagery. Non-disabled participants (N=18; 24.7±3.8 years) performed both execution and imagery of a unilateral sequence button-press task. Magnetoencephalography (MEG) was utilized to capture neural activity, while electromyography used to rigorously monitor muscle activity. Event-related synchronization/desynchronization (ERS/ERD) analysis was conducted in the beta frequency band (15-30 Hz). Whole head dual-state beamformer analysis was applied to MEG data and 3D t-tests were conducted after Talairach normalization. Source-level analysis showed that MI has similar patterns of spatial activity as ME, including activation of contralateral primary motor and somatosensory cortices. However, this activation is significantly less intense during MI (p<0.05). As well, activation during ME was more lateralized (i.e., within the contralateral hemisphere). These results confirm that ME and MI have similar spatial activation patterns. Thus, the current research provides direct electrophysiological evidence to further establish MI as a secondary form of skill acquisition. PMID:25251592

  10. A new rating scale for negative symptoms: the Motor-Affective-Social Scale.

    PubMed

    Trémeau, Fabien; Goggin, Michelle; Antonius, Daniel; Czobor, Pàl; Hill, Vera; Citrome, Leslie

    2008-09-30

    The commonly used rating scales for negative symptoms in schizophrenia have shown good reliability, but disagreement persists regarding both the content definition and the validity of several items. Instead, authors have recommended rating the specific behaviors that are defined as negative symptoms. To surmount these shortcomings, we developed a new rating scale for negative symptoms: the Motor-Affective-Social Scale (MASS). During a 5-minute structured interview, hand coverbal gestures, spontaneous smiles, voluntary smiling, and questions asked by the interviewer were counted and rated on 101 inpatients with a diagnosis of schizophrenia or schizoaffective disorder. Information on social behavior was obtained from nursing staff. The scale consisted of a total of eight items. The MASS showed high internal consistency (Cronbach alpha coefficient=0.81), inter-rater reliability, and test-retest reliability (intra-class correlation coefficient=0.81). Convergent validity analyses showed high correlations between MASS scores and scores on the Scale for the Assessment of Negative Symptom (SANS), and the negative symptoms subscale of the Positive and Negative Syndrome Scale (PANSS). The MASS showed excellent psychometric properties, practicality, and subject tolerability. Future research that includes the use of the MASS with other patient populations and that investigates the scale's sensitivity during clinical trials should be performed. PMID:18722021

  11. Sport stacking activities in school children's motor skill development.

    PubMed

    Li, Yuhua; Coleman, Diane; Ransdell, Mary; Coleman, Lyndsie; Irwin, Carol

    2011-10-01

    This study examined the impact of a 12-wk. sport stacking intervention on reaction time (RT), manual dexterity, and hand-eye coordination in elementary school-aged children. 80 Grade 2 students participated in a 15-min. sport stacking practice session every school day for 12 wk., and were tested on psychomotor performance improvement. Tests for choice RT, manual dexterity, and photoelectric rotary pursuit tracking were conducted pre- and post-intervention for both experimental group (n = 36) and the controls (n = 44) who did no sport stacking. Students who had the intervention showed a greater improvement in two-choice RT. No other group difference was found. Such sport stacking activities may facilitate children's central processing and perceptual-motor integration. PMID:22185058

  12. Effect Anticipation Affects Perceptual, Cognitive, and Motor Phases of Response Preparation: Evidence from an Event-Related Potential (ERP) Study

    PubMed Central

    Harrison, Neil R.; Ziessler, Michael

    2016-01-01

    The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.’s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation. PMID:26858621

  13. Motor unit regulation of mammalian pharyngeal dilator muscle activity.

    PubMed Central

    van Lunteren, E; Dick, T E

    1989-01-01

    The present study examined the cellular regulation of one of the pharyngeal dilator muscles, the geniohyoid, by assessing its motor unit (MU) behavior in anesthetized cats. During spontaneous breathing, MU that (a) were active during inspiration only (I-MU) and (b) were active during both inspiration and expiration (I/E-MU) were identified. I-MU had a later inspiratory onset time and a shorter duration of inspiratory firing than did I/E-MU (P less than 0.002 and P less than 0.0001, respectively). I-MU were usually quiescent whereas I/E-MU were usually active during the last 20% of inspiration. I/E-MU fired more rapidly (P less than 0.00001) and for relatively longer periods of time (P less than 0.00001) during inspiration than during expiration. End-expiratory airway occlusion (preventing lung expansion during inspiration) augmented the inspiratory activity of both I-MU and I/E-MU. Conversely, end-expiratory airway occlusion reduced the absolute and relative firing durations (P less than 0.002 and P less than 0.00002, respectively) and the firing frequency (P less than 0.001) of I/E-MU activity during expiration. These results indicate that (a) the complex pattern of pharyngeal dilator muscle activity is due to the integrated activity of a heterogeneous group of MU, (b) changes in the degree to which pharyngeal dilator muscles are active result from combinations of MU recruitment/decruitment and modulations of the frequency and duration of MU firing, and (c) gating of lung-volume afferent information occurs during the respiratory cycle. PMID:2760202

  14. Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation

    PubMed Central

    Peterson, EJ; Tyler, DJ

    2014-01-01

    Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923

  15. Motor neuron activation in peripheral nerves using infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  16. Rate of Physical Growth and Its Affect on Head Start Children's Motor and Cognitive Development.

    ERIC Educational Resources Information Center

    Marcon, Rebecca A.

    In the United States, growth retardation is higher among low-income children, with adverse cognitive effects of undernutrition more prevalent when combined with poverty. This study examined anthropometric indicators of physical development and their relationship to motor and cognitive development in Head Start children. Motor integration and…

  17. Association between daily activities, process skills, and motor skills in community-dwelling patients after left hemiparetic stroke

    PubMed Central

    Ahn, Sinae

    2016-01-01

    [Purpose] The purpose of this study was to evaluate the relationships between daily activities, information processing, and motor skills in individuals with hemineglect after having a left hemiparetic stroke. [Subjects and Methods] The instrumental activities of daily living of 35 patients (22 male and 13 female; age: 57.1 ± 16.9 years) with hemineglect after having a left hemiparetic stroke were assessed by using three clinical measurement tools, including activity card sorting, assessment of motor and process skills, and the modified Barthel Index. [Results] The results of the regression analysis indicated that the patients’ processing skills in instrumental activities of daily living after having a left hemiparetic stroke were reduced. Participation in leisure and social activities was also affected as assessed by using the modified Barthel Index. [Conclusion] This study supports the clinical need for rehabilitation intervention after a left hemiparetic stroke to improve patients’ processing skills and independence in performing activities of daily living. PMID:27390426

  18. A scaling approach to find order parameters quantifying the effects of dopaminergic agents on unconditioned motor activity in rats.

    PubMed

    Paulus, M P; Geyer, M A

    1991-01-01

    1. Three experiments were conducted in the Behavioral Pattern Monitor (BPM) to assess the effects of the D1 agonist SKF-38393, the D2 agonist quinpirole, and the interaction of the D2 antagonists haloperidol with amphetamine or cocaine on the amount, the structure, and the unpredictability of micro-events of rat exploratory behavior. 2. SKF-38393 (0.3, 1.0, 3.0, and 10.0 mg/kg) did not change the amount of motor behavior indicated by the temporal scaling exponent alpha, a descriptor of the local degree of acting, during a 60 min exposure in the BPM. However, SKF-38393 (3.0, and 10.0 mg/kg) significantly increased the spatial scaling exponent d, indicating an increased component of local circumscribed movements. 3. Quinpirole (0.03, 0.1, 0.3, and 1.0 mg/kg) produced a biphasic dose response with respect to the amount of motor behavior. Low doses (0.03, 0.1) significantly decreased the local degree of acting, whereas alpha returned to control group levels for higher doses (0.3, 1.0 mg/kg). The change in activity was accompanied by a significant increase of local movements, i.e. d was increased for the lower doses. 4. Haloperidol (15.0 micrograms/kg) reduced a slightly increased d measure for amphetamine (1.0 mg/kg) treated animals and increased a significantly reduced d for cocaine (20.0 mg/kg) treated animals, without affecting the increases of motor activity induced by both treatments. 5. It is concluded that the structure of motor activity provides an important measure of unconditioned motor behavior, which can be affected independently of the typically measured amount of motor activity. PMID:1684875

  19. Common prefrontal regions activate during self-control of craving, emotion, and motor impulses in smokers

    PubMed Central

    Tabibnia, Golnaz; Creswell, J. David; Kraynak, Thomas; Westbrook, Cecilia; Julson, Erica; Tindle, Hilary A.

    2014-01-01

    It has been posited that self-regulation of behaviors, emotions, and temptations may all rely on a common resource. Recent reviews suggest this common resource may include the inferior frontal cortex (IFC). However, to our knowledge no single functional neuroimaging study has tested this hypothesis. We obtained fMRI scans as 25 abstinent treatment-seeking cigarette smokers completed motor, affective, and craving self-control tasks before smoking cessation treatment. We identified two regions in left IFC and a region in pre-supplementary motor area (preSMA) that were commonly activated in all three tasks. Further, PPI analyses suggest that IFC may involve dissociable pathways in each self-control domain. Specifically, the IFC showed negative functional connectivity with large portions of the thalamus and precentral gyrus during motor stopping, with the insula and other portions of the thalamus during craving regulation, and potentially with a small limbic region during emotion regulation. We discuss implications for understanding self-control mechanisms. PMID:25485181

  20. Sensorimotor interaction between somatosensory painful stimuli and motor sequences affects both anticipatory alpha rhythms and behavior as a function of the event side.

    PubMed

    Babiloni, Claudio; Capotosto, Paolo; Del Percio, Claudio; Babiloni, Fabio; Petrini, Laura; Buttiglione, Mara; Cibelli, Giuseppe; Marusiak, Jarosław; Romani, Gian Luca; Arendt-Nielsen, Lars; Rossini, Paolo Maria

    2010-03-16

    It has been shown that concomitant painful stimulation and simple movement at the same hand is related to decreased anticipatory alpha event-related desynchronization (ERD) and reduced pain intensity, possibly due to the interference between somatosensory and motor information processing (Babiloni et al. [6]). Here, we tested the hypothesis that such interference also affects motor performance during sequential movements. Visual warning stimuli were followed by imperative stimuli associated to electrical painful stimulation at left or right middle finger; imperative stimuli triggered motor sequences with right index finger. Electroencephalographic data (N=10, 128 electrodes) were spatially enhanced by surface Laplacian transformation. Cortical activity as revealed by the alpha event-related desynchronization (ERD) was compared in "Pain+ipsilateral movement" condition (movements and painful stimuli performed at the right hand) vs. "Pain+contralateral movement" condition (painful stimuli at left hand and movements performed at the right hand). Results showed that compared with the "Pain+contralateral movement" condition, the "Pain+ipsilateral movement" condition induced lower anticipatory alpha ERD (about 10-12 Hz) in left sensorimotor area, lower subjective pain rate, and delayed movement initiation at the group level. These findings suggest that anticipatory alpha rhythms may underlie cortical preparatory sensorimotor processes preceding somatosensory painful and the initiation of sequential motor events occurring at unilateral or bilateral hand. PMID:19932156

  1. Specific Inhibition of Cyclin-dependent Kinase 5 Activity Induces Motor Neuron Development in vivo

    PubMed Central

    Kanungo, Jyotshnabala; Zheng, Ya-Li; Amin, Niranjana D.; Kaur, Sukhbir; Ramchandran, Ramani; Pant, Harish C.

    2009-01-01

    Cyclin-dependent kinase 5 (cdk5) is a ubiquitous protein activated by specific activators, p35 and p39. Cdk5 regulates neuronal migration, differentiation, axonogenesis, synaptic transmission and apoptosis. However, its role in motor neuron development remains unexplored. Here, using gain and loss-of-function analyses in developing zebrafish embryos, we report that cdk5 plays a critical role in spinal and cranial motor neuron development. Cdk5 knockdown results in supernumerary spinal and cranial motor neurons. While a dominant negative, kinase-dead cdk5 promotes the generation of supernumerary motor neurons; over-expression of cdk5 suppresses motor neuron development. Thus, modulating cdk5 activity seems promising in inducing motor neuron development in vivo. PMID:19523926

  2. Altered Cerebral Perfusion in Executive, Affective, and Motor Networks During Adolescent Depression

    PubMed Central

    Ho, Tiffany C.; Wu, Jing; Shin, David D.; Liu, Thomas T.; Tapert, Susan F.; Yang, Guang; Connolly, Colm G.; Frank, Guido K.W.; Max, Jeffrey E.; Wolkowitz, Owen; Eisendrath, Stuart; Hoeft, Fumiko; Banerjee, Dipavo; Hood, Korey; Hendren, Robert L.; Paulus, Martin P.; Simmons, Alan N.; Yang, Tony T.

    2013-01-01

    Objective While substantial literature has reported regional cerebral blood flow (rCBF) abnormalities in adults with depression, these studies commonly necessitated the injection of radioisotopes into subjects. The recent development of arterial spin labeling (ASL), however, allows for noninvasive measurements of rCBF. Currently, no published ASL studies have examined cerebral perfusion in adolescents with depression. Thus, the aim of the present study was to examine baseline cerebral perfusion in adolescent depression using a newly developed ASL technique: pseudocontinuous arterial spin labeling (PCASL). Method 25 medication-naive adolescents (ages 13–17 years) diagnosed with major depressive disorder (MDD) and 26 well-matched controls underwent functional magnetic resonance imaging. Baseline rCBF was measured via a novel PCASL method that optimizes tagging efficiency. Results Voxel-based whole brain analyses revealed significant frontal, limbic, paralimbic, and cingulate hypoperfusion in the group with depression (p<0.05, corrected). Hyperperfusion was also observed within the subcallosal cingulate, putamen, and fusiform gyrus (p<0.05, corrected). Similarly, region-of-interest analyses revealed amygdalar and insular hypoperfusion in the group with depression, as well as hyperperfusion in the putamen and superior insula (p<0.05, corrected). Conclusions Adolescents with depression and healthy adolescents appear to differ on rCBF in executive, affective, and motor networks. Dysfunction in these regions may contribute to the cognitive, emotional, and psychomotor symptoms commonly present in adolescent depression. These findings point to possible biomarkers for adolescent depression that could inform early interventions and treatments and establishes a methodology for using PCASL to noninvasively measure rCBF in clinical and healthy adolescent populations. PMID:24074474

  3. Phasic motor activity reduction occurring with horizontal rapid eye movements during active sleep in human.

    PubMed

    Kohyama, J; Shimohira, M; Hasegawa, T; Kouji, T; Iwakawa, Y

    1995-01-01

    We describe the phasic reduction of motor activity occurring with horizontal rapid eye movements (REMs) during active sleep in 15 children (12 healthy children and 3 patients with severe brain damage). A REM-related decrease in intercostal muscle activity was demonstrated by averaging integrated surface electromyograms. In the healthy subjects, this reduction had a mean latency from the REM onset of 37.1 ms and a duration of 225.9 ms. This phenomenon was also observed in the 3 patients who had lost cerebral function. We hypothesized a brainstem origin for the effect. A REM-related mentalis muscle activity loss, detected by averaging mentalis muscle twitches, was observed in 10 healthy children among the subjects. This loss began at 59.1 ms before the onset of REMs and lasted for 230.2 ms on average. In addition, a transient decrease in integrated REM activity surrounding mentalis muscle twitches (a twitch-related reduction of REMs) was observed. We discuss the similarity between REM-related phasic reduction of muscle activity obtained for intercostal and mentalis muscles and pontogeniculo-occipital (PGO) wave-related inhibitory postsynaptic potentials reported for feline lumbar and trigeminal motoneurons, respectively. We then assume the presence of a phasic event generator, functioning during active sleep in healthy humans, which triggers at least three generators; that is, the generator of PGO waves (or REMs), motor inhibition, and of motor excitation including muscle twitches. PMID:8751071

  4. Ipsilesional motor-evoked potential absence in pediatric hemiparesis impacts tracking accuracy of the less affected hand.

    PubMed

    Cassidy, Jessica M; Carey, James R; Lu, Chiahao; Krach, Linda E; Feyma, Tim; Durfee, William K; Gillick, Bernadette T

    2015-12-01

    This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional (I/C) volume ratio for the primary motor cortex (M1) and posterior limb of internal capsule (PLIC) were done using two-sample t-tests. Participants showing an ipsilesional MEP response demonstrated superior tracking performance from the less affected hand (p=0.016) and significantly higher I/C volume ratios for M1 (p=0.028) and PLIC (p=0.005) compared to participants without an ipsilesional MEP response. Group differences in finger tracking accuracy from the affected hand were not significant. These results highlight differentiating factors amongst children with congenital hemiparesis showing contrasting MEP responses: less affected hand performance and preserved M1 and PLIC volume. Along with MEP status, these factors pose important clinical implications in pediatric stroke rehabilitation. These findings may also reflect competitive developmental processes associated with the preservation of affected hand function at the expense of some function in the less affected hand. PMID:26426515

  5. Monitoring tectal neuronal activities and motor behavior in zebrafish larvae.

    PubMed

    Sumbre, Germán; Poo, Mu-Ming

    2013-09-01

    To understand how visuomotor behaviors are controlled by the nervous system, it is necessary to monitor the activity of large populations of neurons with single-cell resolution over a large area of the brain in a relatively simple, behaving organism. The zebrafish larva, a small lower vertebrate with transparent skin, serves as an excellent model for this purpose. Immediately after the larva hatches, it needs to catch prey and avoid predators. This strong evolutionary pressure leads to the rapid development of functional sensory systems, particularly vision. By 5 d postfertilization (dpf), tectal cells show distinct visually evoked patterns of activation, and the larvae are able to perform a variety of visuomotor behaviors. During the early larval stage, zebrafish breathe mainly through the skin and can be restrained under the microscope using a drop of low-melting-point agarose, without the use of anesthetics. Moreover, the transparency of the skin, the small diameter of the neurons (4-5 µm), and the high-neuronal density enable the use of in vivo noninvasive imaging techniques to monitor neuronal activities of up to ∼500 cells within the central nervous system, still with single-cell resolution. This article describes a method for simultaneously monitoring spontaneous and visually evoked activities of large populations of neurons in the optic tectum of the zebrafish larva, using a synthetic calcium dye (Oregon Green BAPTA-1 AM) and a conventional confocal or two-photon scanning fluorescence microscope, together with a method for measuring the tail motor behavior of the head-immobilized zebrafish larva. PMID:24003199

  6. Vision of the active limb impairs bimanual motor tracking in young and older adults

    PubMed Central

    Boisgontier, Matthieu P.; Van Halewyck, Florian; Corporaal, Sharissa H. A.; Willacker, Lina; Van Den Bergh, Veerle; Beets, Iseult A. M.; Levin, Oron; Swinnen, Stephan P.

    2014-01-01

    Despite the intensive investigation of bimanual coordination, it remains unclear how directing vision toward either limb influences performance, and whether this influence is affected by age. To examine these questions, we assessed the performance of young and older adults on a bimanual tracking task in which they matched motor-driven movements of their right hand (passive limb) with their left hand (active limb) according to in-phase and anti-phase patterns. Performance in six visual conditions involving central vision, and/or peripheral vision of the active and/or passive limb was compared to performance in a no vision condition. Results indicated that directing central vision to the active limb consistently impaired performance, with higher impairment in older than young adults. Conversely, directing central vision to the passive limb improved performance in young adults, but less consistently in older adults. In conditions involving central vision of one limb and peripheral vision of the other limb, similar effects were found to those for conditions involving central vision of one limb only. Peripheral vision alone resulted in similar or impaired performance compared to the no vision (NV) condition. These results indicate that the locus of visual attention is critical for bimanual motor control in young and older adults, with older adults being either more impaired or less able to benefit from a given visual condition. PMID:25452727

  7. A positive association between active lifestyle and hemispheric lateralization for motor control and learning in older adults.

    PubMed

    Wang, Jinsung; D'Amato, Arthur; Bambrough, Jennifer; Swartz, Ann M; Miller, Nora E

    2016-11-01

    Physical activity (PA) is well known to have general health benefits for older adults, but it is unclear whether it can also positively affect brain function involved in motor control and learning. We have previously shown that interlimb transfer of visuomotor adaptation occurs asymmetrically in young adults, while that occurs symmetrically in older adults, which suggests that the lateralized function of each hemisphere during motor tasks is diminished with aging. Here, we investigated the association between the level of PA and hemispheric motor lateralization by comparing the pattern of interlimb transfer following visuomotor adaptation between physically active and inactive older adults. Subjects were divided into two groups based on their PA level (active, inactive). They were further divided into two groups, such that a half of the subjects in each group adapted to a 30° rotation during targeted reaching movements with the left arm first, then with the right arm; and the other half with the right arm first, then with the left arm. Results indicated asymmetrical transfer (from left to right only) in the active subjects, whereas symmetrical transfer (from left to right, and vice versa) was observed in the inactive subjects. These findings suggest that older adults who maintain active lifestyle have a central nervous system that is more intact in terms of its lateralized motor function as compared with those who are inactive. PMID:27481694

  8. Stem cell cytoskeleton is slaved to active motors

    NASA Astrophysics Data System (ADS)

    Rehfeldt, Florian; Brown, Andre; Engler, Adam; Discher, Dennis

    2007-03-01

    Cells feel their physical microenvironment through their adhesion and respond to it in various ways. Indeed, matrix elasticity can even guide the differentiation of human adult mesenchymal stem cells (MSCs) [Engler et al. Cell 2006]. Sparse cultures of MSCs on elastic collagen--coated substrates that are respectively soft, stiff, or extremely stiff were shown to induce neurogenesis, myogenesis, and osteogenesis. Lineage commitment was evaluated by morphological analysis, protein expression profiles, and transcription microarrays. Differentiation could be completely blocked with a specific non-muscle myosin II (NMM II) inhibitor, suggesting that contractile motor activity is essential for the cells to sense matrix elasticity. Current studies by AFM and near-field fluorescence imaging show that NMM II inhibition in stem cells on rigid glass surfaces promotes actin-rich dendritic outgrowth resembling neurite extension. Dynamic cell studies have been conducted to elucidate the complex molecular interplay of the contractile apparatus in response to selected physical and biochemical stimuli. Additional insight is being gained by using AFM to investigate the local elasticity of the cell's cytoskeletal force sensing machinery.

  9. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex.

    PubMed

    Di Lazzaro, Vincenzo; Rothwell, John C

    2014-10-01

    A number of methods have been developed recently that stimulate the human brain non-invasively through the intact scalp. The most common are transcranial magnetic stimulation (TMS), transcranial electric stimulation (TES) and transcranial direct current stimulation (TDCS). They are widely used to probe function and connectivity of brain areas as well as therapeutically in a variety of conditions such as depression or stroke. They are much less focal than conventional invasive methods which use small electrodes placed on or in the brain and are often thought to activate all classes of neurones in the stimulated area. However, this is not true. A large body of evidence from experiments on the motor cortex shows that non-invasive methods of brain stimulation can be surprisingly selective and that adjusting the intensity and direction of stimulation can activate different classes of inhibitory and excitatory inputs to the corticospinal output cells. Here we review data that have elucidated the action of TMS and TES, concentrating mainly on the most direct evidence available from spinal epidural recordings of the descending corticospinal volleys. The results show that it is potentially possible to test and condition specific neural circuits in motor cortex that could be affected differentially by disease, or be used in different forms of natural behaviour. However, there is substantial interindividual variability in the specificity of these protocols. Perhaps in the future it will be possible, with the advances currently being made to model the electrical fields induced in individual brains, to develop forms of stimulation that can reliably target more specific populations of neurones, and open up the internal circuitry of the motor cortex for study in behaving humans. PMID:25172954

  10. Distribution of Active and Resting Periods in the Motor Activity of Patients with Depression and Schizophrenia

    PubMed Central

    Hauge, Erik; Berle, Jan Øystein; Dilsaver, Steven; Oedegaard, Ketil J.

    2016-01-01

    Objective Alterations of activity are prominent features of the major functional psychiatric disorders. Motor activity patterns are characterized by bursts of activity separated by periods with inactivity. The purpose of the present study has been to analyze such active and inactive periods in patients with depression and schizophrenia. Methods Actigraph registrations for 12 days from 24 patients with schizophrenia, 23 with depression and 29 healthy controls. Results Patients with schizophrenia and depression have distinctly different profiles with regard to the characterization and distribution of active and inactive periods. The mean duration of active periods is lowest in the depressed patients, and the duration of inactive periods is highest in the patients with schizophrenia. For active periods the cumulative probability distribution, using lengths from 1 to 35 min, follows a straight line on a log-log plot, suggestive of a power law function, and a similar relationship is found for inactive periods, using lengths from 1 to 20 min. For both active and inactive periods the scaling exponent is higher in the depressed compared to the schizophrenic patients. Conclusion The present findings add to previously published results, with other mathematical methods, suggesting there are important differences in control systems regulating motor behavior in these two major groups of psychiatric disorders. PMID:26766953

  11. How Can a Traditional Greek Dances Programme Affect the Motor Proficiency of Pre-School Children?

    ERIC Educational Resources Information Center

    Venetsanou, Fotini; Kambas, Antonis

    2004-01-01

    The purpose of this article is to investigate the effect of an introductory traditional Greek dances programme on the motor proficiency development of pre-school-age children. The sample of this research consisted of 66 students (36 boys and 30 girls) attending public kindergarten in Argolida prefecture (Greece), aged 4-6 years (X = 59.79 plus or…

  12. Non-motorized voluntary running does not affect experimental and spontaneous metastasis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the effects of non-motorized voluntary running on experimental metastasis of B16BL/6 melanoma and spontaneous metastasis of Lewis lung carcinoma (LLC) in male C57BL/6 mice. After 9 weeks of running, mice (n = 30 per group) received an intravenous injection of B16BL/6 c...

  13. Motor-driven effective temperature and viscoelastic response of active matter.

    PubMed

    Morozov, Konstantin I; Pismen, Len M

    2010-06-01

    We consider dynamic response of a cytoskeletal network to both thermal and motor-induced fluctuations. The latter are viewed in two independent ways, as either additive or multiplicative colored noise. Due to a natural upper frequency limit of the motor agitation, the response of a living cell is similar to that of an equilibrium system in the high-frequency domain. At lower frequencies, the role of motor agitation manifests itself in intensified network fluctuations, which is equivalent to effective growth of the environment temperature. The effective temperature becomes frequency dependent, which signifies violation of the conventional fluctuation-dissipation theorem. The motor action affects the dynamic shear modulus in two opposite ways: by stiffening the network through filament prestress and softening it through increased agitation. The latter tendency is isolated when only single-headed motors are present. The theory is in good agreement with experimental measurements of the amplitude of the shear modulus under these conditions. PMID:20866455

  14. The affective modulation of motor awareness in anosognosia for hemiplegia: Behavioural and lesion evidence

    PubMed Central

    Besharati, Sahba; Forkel, Stephanie J.; Kopelman, Michael; Solms, Mark; Jenkinson, Paul M.; Fotopoulou, Aikaterini

    2014-01-01

    The possible role of emotion in anosognosia for hemiplegia (i.e., denial of motor deficits contralateral to a brain lesion), has long been debated between psychodynamic and neurocognitive theories. However, there are only a handful of case studies focussing on this topic, and the precise role of emotion in anosognosia for hemiplegia requires empirical investigation. In the present study, we aimed to investigate how negative and positive emotions influence motor awareness in anosognosia. Positive and negative emotions were induced under carefully-controlled experimental conditions in right-hemisphere stroke patients with anosognosia for hemiplegia (n = 11) and controls with clinically normal awareness (n = 10). Only the negative, emotion induction condition resulted in a significant improvement of motor awareness in anosognosic patients compared to controls; the positive emotion induction did not. Using lesion overlay and voxel-based lesion-symptom mapping approaches, we also investigated the brain lesions associated with the diagnosis of anosognosia, as well as with performance on the experimental task. Anatomical areas that are commonly damaged in AHP included the right-hemisphere motor and sensory cortices, the inferior frontal cortex, and the insula. Additionally, the insula, putamen and anterior periventricular white matter were associated with less awareness change following the negative emotion induction. This study suggests that motor unawareness and the observed lack of negative emotions about one's disabilities cannot be adequately explained by either purely motivational or neurocognitive accounts. Instead, we propose an integrative account in which insular and striatal lesions result in weak interoceptive and motivational signals. These deficits lead to faulty inferences about the self, involving a difficulty to personalise new sensorimotor information, and an abnormal adherence to premorbid beliefs about the body. PMID:25481471

  15. Physical Activity Affects Brain Integrity in HIV + Individuals

    PubMed Central

    Ortega, Mario; Baker, Laurie M.; Vaida, Florin; Paul, Robert; Basco, Brian; Ances, Beau M.

    2015-01-01

    Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV−) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV +) individuals. Seventy HIV + individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV + individuals were classified as physically active (any energy expended above resting expenditure, n = 22) or sedentary (n = 48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV + individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p = .034). Physically active HIV + individuals performed better on executive (p = .040, unadjusted; p = .043, adjusted) but not motor function (p = .17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson’s r = 0.45, p = 0.035) but not motor (r = 0.21; p = .35) performance. In adjusted analyses the physically active HIV + individuals had larger putamen volumes (p = .019). A positive relationship exists between PA and brain integrity in HIV + individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV + individuals. PMID:26581799

  16. De novo dominant variants affecting the motor domain of KIF1A are a cause of PEHO syndrome.

    PubMed

    Langlois, Sylvie; Tarailo-Graovac, Maja; Sayson, Bryan; Drögemöller, Britt; Swenerton, Anne; Ross, Colin Jd; Wasserman, Wyeth W; van Karnebeek, Clara Dm

    2016-06-01

    PEHO syndrome (OMIM no. 260565) is characterized by myoclonic jerking and infantile spasms, profound psychomotor retardation with the absence of motor milestones and speech, absence or early loss of visual fixation with atrophy of optic discs by 2 years of age and progressive brain atrophy on neuroimaging. We describe the results of a genomic study of a girl with PEHO syndrome and review the literature on cases with a disease-causing variant in the same gene. Exome sequencing of the index and unaffected parents followed by Sanger confirmation identified nine candidate genes harboring nonsynonymous rare variants identified by trio whole-exome sequencing. The de novo variant, a missense variant (c.296C>T, p.(T99M)), affecting the motor domain of KIF1A was considered the pathogenic mutation. The literature review revealed 24 cases with disease-causing variants in the motor domain of KIF1A, of which three met all the criteria for PEHO syndrome and an additional patient with incomplete clinical data met four of the five criteria. If the criteria were modified to include cases with any convulsive disorder and less profound intellectual disability, a total of six patients met all five of the criteria, three patients met four of the criteria and six met three of the criteria. Our results indicate that the molecular basis for PEHO syndrome, in at least a subset of patients, is a dominant KIF1A variant affecting the motor domain of the protein. Variable expressivity is seen with recurrent variants causing the full phenotype of PEHO syndrome in some patients and in other patients, a partial or milder PEHO phenotype. PMID:26486474

  17. Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells

    PubMed Central

    Duregotti, Elisa; Negro, Samuele; Scorzeto, Michele; Zornetta, Irene; Dickinson, Bryan C.; Chang, Christopher J.; Montecucco, Cesare; Rigoni, Michela

    2015-01-01

    An acute and highly reproducible motor axon terminal degeneration followed by complete regeneration is induced by some animal presynaptic neurotoxins, representing an appropriate and controlled system to dissect the molecular mechanisms underlying degeneration and regeneration of peripheral nerve terminals. We have previously shown that nerve terminals exposed to spider or snake presynaptic neurotoxins degenerate as a result of calcium overload and mitochondrial failure. Here we show that toxin-treated primary neurons release signaling molecules derived from mitochondria: hydrogen peroxide, mitochondrial DNA, and cytochrome c. These molecules activate isolated primary Schwann cells, Schwann cells cocultured with neurons and at neuromuscular junction in vivo through the MAPK pathway. We propose that this inter- and intracellular signaling is involved in triggering the regeneration of peripheral nerve terminals affected by other forms of neurodegenerative diseases. PMID:25605902

  18. Patterns of presynaptic activity and synaptic strength interact to produce motor output.

    PubMed

    Wright, Terrence Michael; Calabrese, Ronald L

    2011-11-30

    Motor neuron activity is coordinated by premotor networks into a functional motor pattern by complex patterns of synaptic drive. These patterns combine both the temporal pattern of spikes of the premotor network and the profiles of synaptic strengths (i.e., conductances). Given the complexity of premotor networks in vertebrates, it has been difficult to ascertain the relative contributions of temporal patterns and synaptic strength profiles to the motor patterns observed in these animals. Here, we use the leech (Hirudo sp.) heartbeat central pattern generator (CPG), in which we can measure both the temporal pattern and the synaptic strength profiles of the entire premotor network and the motor outflow in individual animals. In this system, a series of motor neurons all receive input from the same premotor interneurons of the CPG but must be coordinated differentially to produce a functional pattern. These properties allow a theoretical and experimental dissection of the rules that govern how temporal patterns and synaptic strength profiles are combined in motor neurons so that functional motor patterns emerge, including an analysis of the impact of animal-to-animal variation in input to such variation in output. In the leech, segmental heart motor neurons are coordinated alternately in a synchronous and peristaltic pattern. We show that synchronous motor patterns result from a nearly synchronous premotor temporal pattern produced by the leech heartbeat CPG. For peristaltic motor patterns, the staggered premotor temporal pattern determines the phase range over which segmental motor neurons can fire while synaptic strength profiles define the intersegmental motor phase progression realized. PMID:22131417

  19. Analysis of automated quantification of motor activity in REM sleep behaviour disorder.

    PubMed

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle; Kempfner, Lykke; Jennum, Poul

    2015-10-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters for motor activity were defined. Motor activity was detected and quantified automatically. The optimal parameters for separating RBD patients from controls were investigated by identifying the greatest area under the receiver operating curve from a total of 648 possible combinations. The optimal parameters were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep. The method was stable and can be used to differentiate RBD from controls and to quantify motor activity during REM sleep in patients with neurodegeneration. No control had more than 30% of REM sleep with increased motor activity; patients with known RBD had as low activity as 4.5%. We developed and applied a sensitive, quantitative, automatic algorithm to evaluate loss of atonia in RBD patients. PMID:25923472

  20. Rearing conditions differently affect the motor performance and cerebellar morphology of prenatally stressed juvenile rats.

    PubMed

    Ulupinar, Emel; Erol, Kevser; Ay, Hakan; Yucel, Ferruh

    2015-02-01

    The cerebellum is one of the most vulnerable parts of the brain to environmental changes. In this study, the effect of diverse environmental rearing conditions on the motor performances of prenatally stressed juvenile rats and its reflection to the cerebellar morphology were investigated. Prenatally stressed Wistar rats were grouped according to different rearing conditions (Enriched=EC, Standard=SC and Isolated=IC) after weaning. Six weeks later, male and female offspring from different litters were tested behaviorally. In rotarod and string suspension tests, females gained better scores than males. Significant gender and housing effects were observed especially on the motor functions requiring fine skills with the best performance by enriched females, but the worst by enriched males. The susceptibility of cerebellar macro- and micro-neurons to environmental conditions was compared using stereological methods. In female groups, no differences were observed in the volume proportions of cerebellar layers, soma sizes and the numerical densities of granule or Purkinje cells. However, a significant interaction between housing and gender was observed in the granule to Purkinje cell ratio of males, due to the increased numerical densities of the granule cells in enriched males. These data imply that proper functioning of the cerebellum relies on its well organized and evolutionarily conserved structure and circuitry. Although early life stress leads to long term behavioral and neurobiological consequences in the offspring, diverse rearing conditions can alter the motor skills of animals and synaptic connectivity between Purkinje and granular cells in a gender dependent manner. PMID:25315128

  1. Motor nerve conduction velocity is affected in segmental vitiligo lesional limbs.

    PubMed

    Zhou, Jun; Zhong, Zhenyu; Li, Jian; Fu, Wenwen

    2016-06-01

    To evaluate the effects of segmental vitiligo (SV) on nerve conduction velocity (NCV) in different nerves, we compared the patient's lesional side of their body to the contralateral normal side. The 106 participants were selected from outpatients visiting the dermatological clinics of Huashan Hospital, Fudan University, from November 2011 to March 2014. NCVs were measured on the limbs and the face, including both motor and sensory nerves. The parameters for NCVs included motor nerve conduction velocity (MCV) and its distal conduction latency, sensory nerve conduction velocity, sensory nerve action potentials amplitude, and compound muscle action potential amplitude. MCV on the limbs was compromised by SV state, which was significantly slower on the lesional side of the body compared with the normal contralateral side (P = 0.006). Furthermore, SV at the stable stage significantly impaired MCV compared with the SV at progressive stage. There was no significant difference in the other parameters of NCV between lesional and normal sides of the body. Compound muscle action potentials in the face did not differ between lesional and healthy sides. Motor nerves in the limbs were compromised by SV, particularly when the disease was at the stable stage. PMID:26916936

  2. Rectification of SEMG as a tool to demonstrate synchronous motor unit activity during vibration.

    PubMed

    Sebik, Oguz; Karacan, Ilhan; Cidem, Muharrem; Türker, Kemal S

    2013-04-01

    The use of surface electromyography (SEMG) in vibration studies is problematic since motion artifacts occupy the same frequency band with the SEMG signal containing information on synchronous motor unit activity. We hypothesize that using a harsher, 80-500 Hz band-pass filter and using rectification can help eliminate motion artifacts and provide a way to observe synchronous motor unit activity that is phase locked to vibration using SEMG recordings only. Multi Motor Unit (MMU) action potentials using intramuscular electrodes along with SEMG were recorded from the gastrocnemius medialis (GM) of six healthy male volunteers. Data were collected during whole body vibration, using vibration frequencies of 30 Hz, 35 Hz, 40 Hz or 50 Hz. A computer simulation was used to investigate the efficacy of filtering under different scenarios: with or without artifacts and/or motor unit synchronization. Our findings indicate that motor unit synchronization took place during WBV as verified by MMU recordings. A harsh filtering regimen along with rectification proved successful in demonstrating motor unit synchronization in SEMG recordings. Our findings were further supported by the results from the computer simulation, which indicated that filtering and rectification was efficient in discriminating motion artifacts from motor unit synchronization. We suggest that the proposed signal processing technique may provide a new methodology to evaluate the effects of vibration treatments using only SEMG. This is a major advantage, as this non-intrusive method is able to overcome movement artifacts and also indicate the synchronization of underlying motor units. PMID:23098913

  3. Hypocretinergic neurons are activated in conjunction with goal-oriented survival-related motor behaviors.

    PubMed

    Torterolo, Pablo; Ramos, Oscar V; Sampogna, Sharon; Chase, Michael H

    2011-10-24

    Hypocretinergic neurons are located in the area of the lateral hypothalamus which is responsible for mediating goal-directed, survival-related behaviors. Consequently, we hypothesize that the hypocretinergic system functions to promote these behaviors including those patterns of somatomotor activation upon which they are based. Further, we hypothesize that the hypocretinergic system is not involved with repetitive motor activities unless they occur in conjunction with the goal-oriented behaviors that are governed by the lateral hypothalamus. In order to determine the veracity of these hypotheses, we examined Fos immunoreactivity (as a marker of neuronal activity) in hypocretinergic neurons in the cat during: a) Exploratory Motor Activity; b) Locomotion without Reward; c) Locomotion with Reward; and d) Wakefulness without Motor Activity. Significantly greater numbers of hypocretinergic neurons expressed c-fos when the animals were exploring an unknown environment during Exploratory Motor Activity compared with all other paradigms. In addition, a larger number of Hcrt+Fos+neurons were activated during Locomotion with Reward than during Wakefulness without Motor Activity. Finally, very few hypocretinergic neurons were activated during Locomotion without Reward and Wakefulness without Motor Activity, wherein there was an absence of goal-directed activities. We conclude that the hypocretinergic system does not promote wakefulness per se or motor activity per se but is responsible for mediating specific goal-oriented behaviors that take place during wakefulness. Accordingly, we suggest that the hypocretinergic system is responsible for controlling the somatomotor system and coordinating its activity with other systems in order to produce successful goal-oriented survival-related behaviors that are controlled by the lateral hypothalamus. PMID:21839102

  4. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity.

    PubMed

    Kevenaar, Josta T; Bianchi, Sarah; van Spronsen, Myrrhe; Olieric, Natacha; Lipka, Joanna; Frias, Cátia P; Mikhaylova, Marina; Harterink, Martin; Keijzer, Nanda; Wulf, Phebe S; Hilbert, Manuel; Kapitein, Lukas C; de Graaff, Esther; Ahkmanova, Anna; Steinmetz, Michel O; Hoogenraad, Casper C

    2016-04-01

    Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients. PMID:26948876

  5. CORRELATIONS OF PESTICIDE-INDUCED CHOLINESTERASE INHIBITION AND MOTOR ACTIVITY CHANGES IN ADULT RATS.

    EPA Science Inventory

    The acute neurobehavioral effects of acetylcholinesterase-inhibiting pesticides are primarily due to overstimulation of the cholinergic system. Lowered motor activity levels represent a sensitive endpoint with which to monitor functional changes in laboratory animals exposed to ...

  6. The relationship between actual motor competence and physical activity in children: mediating roles of perceived motor competence and health-related physical fitness.

    PubMed

    Khodaverdi, Zeinab; Bahram, Abbas; Stodden, David; Kazemnejad, Anoshirvan

    2016-08-01

    The purpose of this study was to investigate whether perceived motor competence and components of health-related physical fitness mediated the relationship between actual motor competence and physical activity in 8- to 9-year-old Iranian girls. A convenience sample of 352 girls (mean age = 8.7, SD = 0.3 years) participated in the study. Actual motor competence, perceived motor competence and children's physical activity were assessed using the Test of Gross Motor Development-2, the physical ability sub-scale of Marsh's Self-Description Questionnaire and Physical Activity Questionnaire for Older Children, respectively. Body mass index, the 600 yard run/walk, curl-ups, push-ups, and back-saver sit and reach tests assessed health-related physical fitness. Preacher & Hayes (2004) bootstrap method was used to assess the potential mediating effects of fitness and perceived competence on the direct relationship between actual motor competence and physical activity. Regression analyses revealed that aerobic fitness (b = .28, 95% CI = [.21, .39]), as the only fitness measure, and perceived competence (b = .16, 95% CI = [.12, .32]) were measures that mediated the relationship between actual motor competence and physical activity with the models. Development of strategies targeting motor skill acquisition, children's self-perceptions of competence and cardiorespiratory fitness should be targeted to promote girls' moderate-to-vigorous physical activity. PMID:26691581

  7. A Guide for Perceptual-Motor Training Activities.

    ERIC Educational Resources Information Center

    South Euclid - Lyndhurst City Schools, Lyndhurst, OH.

    This document has been prepared as part of a kindergarten perceptual-training program of the South Euclid-Lyndhurst City School District near Cleveland, Ohio. The guide contains information on training and procedures related to perceptual-motor learning. This information is structured primarily into 150 lesson plans, devised as 30-minute sessions…

  8. Project Success for the SLD Child, Motor-Perception Activities.

    ERIC Educational Resources Information Center

    Wayne - Carroll Public Schools, Wayne, NE.

    Presented is a curriculum guide for a perceptual motor program which was developed by Project Success (Nebraska) through a Title III grant for language learning disabled elementary level students in kindergarten through grade 3. The program is said to be arranged in a hierarchy of skills ranging from simple to complex and to be written so that the…

  9. Interleukin-6 Deficiency Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutation

    PubMed Central

    Han, Yongmei; Ripley, Barry; Serada, Satoshi; Naka, Tetsuji; Fujimoto, Minoru

    2016-01-01

    Background & Aim Amyotrophic Lateral Sclerosis (ALS) is an adult-onset, progressive, motor neuron degenerative disease. Recent evidence indicates that inflammation is associated with many neurodegenerative diseases including ALS. Previously, abnormal levels of inflammatory cytokines including IL-1β, IL-6 and TNF-α were described in ALS patients and/or in mouse ALS models. In addition, one study showed that blocking IL-1β could slow down progression of ALS-like symptoms in mice. In this study, we examined a role for IL-6 in ALS, using an animal model for familial ALS. Methods Mice with mutant SOD1 (G93A) transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG) mice were assessed by real time PCR. Mice were then crossed with IL-6(-/-) mice to generate SOD1TG/IL-6(-/-) mice. SOD1 TG/IL-6(-/-) mice (n = 17) were compared with SOD1 TG/IL-6(+/-) mice (n = 18), SOD1 TG/IL-6(+/+) mice (n = 11), WT mice (n = 15), IL-6(+/-) mice (n = 5) and IL-6(-/-) mice (n = 8), with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups. Results Levels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/-) mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days), similarly to SOD1 TG /IL-6(+/+) mice (164.31±12.16 days). Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/-) mice and SOD1 TG /IL-6 (+/+) mice. Conclusion These results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations. PMID:27070121

  10. Phasic Motor Activity of Respiratory and Non-Respiratory Muscles in REM Sleep

    PubMed Central

    Fraigne, Jimmy J.; Orem, John M.

    2011-01-01

    data. There is a drive in REM sleep that affects specifically respiratory muscles. The characteristic increase in respiratory frequency during REM sleep is induced by this drive. Citation: Fraigne JJ; Orem JM. Phasic motor activity of respiratory and non-respiratory muscles in REM sleep. SLEEP 2011;34(4):425-434. PMID:21461320

  11. The use of fluorine-18 fluorodeoxyglucose positron emission tomography for imaging human motor neuronal activation in the brain

    PubMed Central

    PAHK, KISOO; PARK, KUN-WOO; PYUN, SUNG BOM; LEE, JAE SUNG; KIM, SUNGEUN; CHOE, JAE GOL

    2015-01-01

    The present study aimed to visualize human motor neuronal activation in the brain using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET), and to develop an FDG-PET procedure for imaging neuronal activation. A male volunteer underwent 20 min periods of rest and motor activation, whilst being assessed using FDG-PET on two consecutive days. The motor task, which involved repetitively grasping and releasing the right hand, was performed during the initial 5 min of the activation period. Subtraction of the rest period signal from the activation PET images was performed using the subtraction ictal single-photon emission computed tomography co-registered to magnetic resonance imaging method. The subtracted image detected activation of the contralateral (left) primary motor cortex, supplementary motor area, and ipsilateral (right) cerebellum. In the present study, FDG-PET detected significantly increased motor-associated activation of the brain in a subject performing a motor task. PMID:26668604

  12. When Do Motor Behaviors (Mis)Match Affective Stimuli? An Evaluative Coding View of Approach and Avoidance Reactions

    ERIC Educational Resources Information Center

    Eder, Andreas B.; Rothermund, Klaus

    2008-01-01

    Affective-mapping effects between affective stimuli and lever movements are critically dependent upon the evaluative meaning of the response labels that are used in the task instructions. In Experiments 1 and 2, affective-mapping effects predicted by specific-muscle-activation and distance-regulation accounts were replicated when the standard…

  13. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control

    NASA Astrophysics Data System (ADS)

    Huang, Dandan; Lin, Peter; Fei, Ding-Yu; Chen, Xuedong; Bai, Ou

    2009-08-01

    This study aims to explore whether human intentions to move or cease to move right and left hands can be decoded from spatiotemporal features in non-invasive EEG in order to control a discrete two-dimensional cursor movement for a potential multidimensional brain-computer interface (BCI). Five naïve subjects performed either sustaining or stopping a motor task with time locking to a predefined time window by using motor execution with physical movement or motor imagery. Spatial filtering, temporal filtering, feature selection and classification methods were explored. The performance of the proposed BCI was evaluated by both offline classification and online two-dimensional cursor control. Event-related desynchronization (ERD) and post-movement event-related synchronization (ERS) were observed on the contralateral hemisphere to the hand moved for both motor execution and motor imagery. Feature analysis showed that EEG beta band activity in the contralateral hemisphere over the motor cortex provided the best detection of either sustained or ceased movement of the right or left hand. The offline classification of four motor tasks (sustain or cease to move right or left hand) provided 10-fold cross-validation accuracy as high as 88% for motor execution and 73% for motor imagery. The subjects participating in experiments with physical movement were able to complete the online game with motor execution at an average accuracy of 85.5 ± 4.65%; the subjects participating in motor imagery study also completed the game successfully. The proposed BCI provides a new practical multidimensional method by noninvasive EEG signal associated with human natural behavior, which does not need long-term training.

  14. Developmental exposure to polychlorinated biphenyls 52, 138 or 180 affects differentially learning or motor coordination in adult rats. Mechanisms involved.

    PubMed

    Boix, J; Cauli, O; Felipo, V

    2010-06-01

    Exposure to polychlorinated biphenyls (PCBs) during pregnancy and lactation leads to cognitive impairment and motor disorders in children by mechanisms which remain unknown. It also remains unclear whether different non-dioxin-like PCBs have similar or different mechanisms of neurotoxicity. The main aims of this work were: (1) to assess whether developmental exposure to non-dioxin-like-PCBs 52, 138 or 180 affect cognitive function or motor coordination in 3-4 months-old rats; (2) to shed light on the underlying mechanisms. Female rats were treated with PCBs (1 mg/kg day) in food from gestational-day 7 to postnatal-day 21. The ability to learn a Y maze conditional discrimination task was reduced in rats exposed to PCBs 138 or 180, but not in rats exposed to PCB52. The function of the glutamate-nitric oxide-cGMP pathway (NMDA-induced increase in extracellular cGMP) in cerebellum in vivo was reduced by 33-59% in rats exposed to PCBs 138 or 180, but not by PCB52. The amount of NR1 subunit of NMDA receptors was reduced by 41-49% in rats exposed to PCBs 138 or 180, but not by PCB 52. PCB52 but not 138 or 180 increases extracellular GABA in cerebellum and impairs motor coordination. The effects were similar in males and females. Developmental exposure to different non-dioxin-like PCBs induces different behavioural alterations by different mechanisms. PCB52 impairs motor coordination but not learning while PCB138 or 180 impair learning but not motor coordination. These data are consistent with the following possible mechanisms: (1) developmental exposure to PCBs 138 or 180 reduces the amount of NMDA receptors in cerebellum, which would contribute to reduced function of the glutamate-NO-cGMP pathway, which, in turn, would be a main contributor to the impairment of the ability to learn the Y maze task. (2) Developmental exposure to PCB52 increases extracellular GABA in cerebellum, which would contribute to motor coordination impairment. PMID:20223283

  15. Biologically active extracts with kidney affections applications

    NASA Astrophysics Data System (ADS)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  16. Affective Response to Physical Activity: Testing for Measurement Invariance of the Physical Activity Affect Scale across Active and Non-Active Individuals

    ERIC Educational Resources Information Center

    Carpenter, Laura C.; Tompkins, Sara Anne; Schmiege, Sarah J.; Nilsson, Renea; Bryan, Angela

    2010-01-01

    Affective responses to physical activity are assumed to play a role in exercise initiation and maintenance. The Physical Activity Affect Scale measures four dimensions of an individual's affective response to exercise. Group differences in the interpretation of scale items can impact the interpretability of mean differences, underscoring the need…

  17. Early Motor Stimulation and Personal Development. A Study of Four- to Six-Year-Old German Children.

    ERIC Educational Resources Information Center

    Diem, Liselott

    1982-01-01

    A study of 165 West German preschool children participating in a motor program which included swimming as an important activity showed that early motor stimulation affected the children's motor, social, and individual development. (CJ)

  18. Opposite-polarity motors activate one another to trigger cargo transport in live cells.

    PubMed

    Ally, Shabeen; Larson, Adam G; Barlan, Kari; Rice, Sarah E; Gelfand, Vladimir I

    2009-12-28

    Intracellular transport is typically bidirectional, consisting of a series of back and forth movements. Kinesin-1 and cytoplasmic dynein require each other for bidirectional transport of intracellular cargo along microtubules; i.e., inhibition or depletion of kinesin-1 abolishes dynein-driven cargo transport and vice versa. Using Drosophila melanogaster S2 cells, we demonstrate that replacement of endogenous kinesin-1 or dynein with an unrelated, peroxisome-targeted motor of the same directionality activates peroxisome transport in the opposite direction. However, motility-deficient versions of motors, which retain the ability to bind microtubules and hydrolyze adenosine triphosphate, do not activate peroxisome motility. Thus, any pair of opposite-polarity motors, provided they move along microtubules, can activate one another. These results demonstrate that mechanical interactions between opposite-polarity motors are necessary and sufficient for bidirectional organelle transport in live cells. PMID:20038680

  19. Opposite-polarity motors activate one another to trigger cargo transport in live cells

    PubMed Central

    Ally, Shabeen; Larson, Adam G.; Barlan, Kari; Rice, Sarah E.

    2009-01-01

    Intracellular transport is typically bidirectional, consisting of a series of back and forth movements. Kinesin-1 and cytoplasmic dynein require each other for bidirectional transport of intracellular cargo along microtubules; i.e., inhibition or depletion of kinesin-1 abolishes dynein-driven cargo transport and vice versa. Using Drosophila melanogaster S2 cells, we demonstrate that replacement of endogenous kinesin-1 or dynein with an unrelated, peroxisome-targeted motor of the same directionality activates peroxisome transport in the opposite direction. However, motility-deficient versions of motors, which retain the ability to bind microtubules and hydrolyze adenosine triphosphate, do not activate peroxisome motility. Thus, any pair of opposite-polarity motors, provided they move along microtubules, can activate one another. These results demonstrate that mechanical interactions between opposite-polarity motors are necessary and sufficient for bidirectional organelle transport in live cells. PMID:20038680

  20. Motor Activity and Intra-Individual Variability According to Sleep-wake States in Preschool-aged Children with Iron-Deficiency Anemia in Infancy

    PubMed Central

    Angulo-Barroso, R.M.; Peirano, P.; Algarin, C.; Kaciroti, N.; Lozoff, B.

    2013-01-01

    Background A chronic or acute insult may affect the regulatory processes that guide motor and behavioral performance, leading to increased intra-individual variability (IIV). Increased variability is often interpreted as an indication of regulatory dysfunction. Iron plays an important role in the regulatory processes of the nervous system and affects motor activity. To our knowledge, no study has examined the long-lasting patterns and IIV of motor activity following iron-deficiency anemia in human infants. Aims This study compared 48-hour motor activity and variability in preschool-aged children with or without iron-deficiency anemia (IDA) in infancy. Methods Motor activity was recorded through actigraphs during two week-days in 47 4-year-old Chilean children (23 former IDA and 24 non-anemic in infancy). All were given oral iron as infants. Sleep-wake states were identified by means of automated software. The frequency of movement units per minute was determined for each waking/sleep state during the individual day and night periods; data were examined in blocks of 15 minutes. Analyses of mean frequency and duration and intra-individual variability were conducted using multivariate mixed models. Results For daytime sleep, former IDA children were more active without a difference in the total duration. They also spent less time awake throughout the individual day period. Motor activity intra-individual variability was higher in former IDA children. Conclusions The findings suggest that IDA in infancy sets the stage for long lasting dysfunction in the neural processes regulating sleep-wake states and spontaneous motor activity patterns. PMID:24041817

  1. Subacute exposure to 50-Hz electromagnetic fields affect prenatal and neonatal mice's motor coordination

    NASA Astrophysics Data System (ADS)

    Sakhnini, Lama; Ali, Hassan Al; Qassab, Narjis Al; Arab, Eman Al; Kamal, Amer

    2012-04-01

    In this study, we investigate the possible effect of ELF-EMFs on motor performance in mice (prenatal and neonatal exposed mice). The mice performance is evaluated after 5 days of subacute exposure. Immature mice have been chosen for this study because the immature rodent brain still has the capacity to undergo proliferation, differentiation, and reorganization. Results from the rotarod experiments demonstrated a pronounced deficit in the learning abilities of the prenatal exposed groups, but no pronounced effect was observed for the neonatal exposed group.

  2. Early motor skill competence as a mediator of child and adult physical activity

    PubMed Central

    Loprinzi, Paul D.; Davis, Robert E.; Fu, Yang-Chieh

    2015-01-01

    Objective: In order to effectively promote physical activity (PA) during childhood, and across the lifespan, a better understanding of the role of early motor skill development on child and adult PA is needed. Methods: Here, we propose a conceptual model delineating the hypothesized influence of motor skill development on child and adult PA, while providing an overview of the current empirical research related to this model. Results: There is consistent and emerging evidence showing that adequate motor skill competence, particularly locomotor and gross motor skills, is associated with increased PA levels during the preschool, child, and adolescent years, with early motor skill development also influencing enjoyment of PA as well as long-term PA and motor skill performance. The physical education setting appears to be a well-suited environment for motor skill development. Conclusion: Employing appropriate strategies to target motor skill development across the childhood years is of paramount interest in helping shape children's PA behavior, their experiences related to PA, as well as maintain their PA. PMID:26844157

  3. Brain Activation Patterns Characterizing Different Phases of Motor Action: Execution, Choice and Ideation.

    PubMed

    Gardini, Simona; Venneri, Annalena; McGeown, William Jonathan; Toraci, Cristian; Nocetti, Luca; Porro, Carlo Adolfo; Caffarra, Paolo

    2016-09-01

    Motor behaviour is controlled by a large set of interacting neural structures, subserving the different components involved in hierarchical motor processes. Few studies have investigated the neural substrate of higher-order motor ideation, i.e. the mental operation of conceiving a movement. The aim of this functional magnetic resonance imaging study was to segregate the neural structures involved in motor ideation from those involved in movement choice and execution. An index finger movement paradigm was adopted, including three different conditions: performing a pre-specified movement, choosing and executing a movement and ideating a movement of choice. The tasks involved either the right or left hand, in separate runs. Neuroimaging results were obtained by comparing the different experimental conditions and computing conjunction maps of the right and left hands for each contrast. Pre-specified movement execution was supported by bilateral fronto-parietal motor regions, the cerebellum and putamen. Choosing and executing finger movement involved mainly left fronto-temporal areas and the anterior cingulate. Motor ideation activated almost exclusively left hemisphere regions, including the inferior, middle and superior frontal regions, middle temporal and middle occipital gyri. These findings show that motor ideation is controlled by a cortical network mainly involved in abstract thinking, cognitive and motor control, semantic and visual imagery processes. PMID:27072014

  4. Food-cue affected motor response inhibition and self-reported dieting success: a pictorial affective shifting task

    PubMed Central

    Meule, Adrian; Lutz, Annika P. C.; Krawietz, Vera; Stützer, Judith; Vögele, Claus; Kübler, Andrea

    2014-01-01

    Behavioral inhibition is one of the basic facets of executive functioning and is closely related to self-regulation. Impulsive reactions, that is, low inhibitory control, have been associated with higher body mass index (BMI), binge eating, and other problem behaviors (e.g., substance abuse, pathological gambling, etc.). Nevertheless, studies which investigated the direct influence of food-cues on behavioral inhibition have been fairly inconsistent. In the current studies, we investigated food-cue affected behavioral inhibition in young women. For this purpose, we used a go/no-go task with pictorial food and neutral stimuli in which stimulus-response mapping is reversed after every other block (affective shifting task). In study 1, hungry participants showed faster reaction times to and omitted fewer food than neutral targets. Low dieting success and higher BMI were associated with behavioral disinhibition in food relative to neutral blocks. In study 2, both hungry and satiated individuals were investigated. Satiation did not influence overall task performance, but modulated associations of task performance with dieting success and self-reported impulsivity. When satiated, increased food craving during the task was associated with low dieting success, possibly indicating a preload-disinhibition effect following food intake. Food-cues elicited automatic action and approach tendencies regardless of dieting success, self-reported impulsivity, or current hunger levels. Yet, associations between dieting success, impulsivity, and behavioral food-cue responses were modulated by hunger and satiation. Future research investigating clinical samples and including other salient non-food stimuli as control category is warranted. PMID:24659978

  5. Motor Neuron-Specific Overexpression of the Presynaptic Choline Transporter: Impact on Motor Endurance and Evoked Muscle Activity

    PubMed Central

    Lund, David; Ruggiero, Alicia M.; Ferguson, Shawn M.; Wright, Jane; English, Brett A.; Reisz, Peter A.; Whitaker, Sarah M.; Peltier, Amanda C.; Blakely, Randy D.

    2010-01-01

    The presynaptic, hemicholinium-3 sensitive, high-affinity choline transporter (CHT) supplies choline for acetylcholine (ACh) synthesis. In mice, a homozygous deletion of CHT (CHT−/−) leads to premature cessation of spontaneous or evoked neuromuscular signaling and is associated with perinatal cyanosis and lethality within 1 hr. Heterozygous (CHT+/−) mice exhibit diminished brain ACh levels and demonstrate an inability to sustain vigorous motor activity. We sought to explore the contribution of CHT gene dosage to motor function in greater detail using transgenic mice where CHT is expressed under control of the motor neuron promoter Hb9 (Hb9:CHT). On a CHT−/− background, the Hb9:CHT transgene conferred mice with the ability to move and breath for a postnatal period of ~24 hrs, thus increasing survival. Conversely, Hb9:CHT expression on a wild-type background (CHT+/+;Hb9:CHT) leads to an increased capacity for treadmill running compared to wild-type littermates. Analysis of the stimulated compound muscle action potential (CMAP) in these animals under basal conditions established that CHT+/+;Hb9:CHT mice display an unexpected, bidirectional change, producing either elevated or reduced CMAP amplitude, relative to CHT+/+ animals. To examine whether these two groups arise from underlying changes in synaptic properties, we used high-frequency stimulation of motor axons to assess CMAP recovery kinetics. Although CHT+/+;Hb9:CHT mice in the two groups display an equivalent, time-dependent reduction in CMAP amplitude, animals with a higher basal CMAP amplitude demonstrate a significantly enhanced rate of recovery. To explain our findings, we propose a model whereby CHT support for neuromuscular signaling involves contributions to ACh synthesis as well as cholinergic synaptic vesicle availability. PMID:20888396

  6. Modulation of motor activity by cutaneous input: inhibition of the magnetic motor evoked potential by digital electrical stimulation.

    PubMed

    Clouston, P D; Kiers, L; Menkes, D; Sander, H; Chiappa, K; Cros, D

    1995-04-01

    We examined the inhibitory effect of a brief train of digital (D2) electrical stimuli at 4 times perception threshold on transcranial magnetic motor evoked potentials (MEPs) recorded from abductor pollicis brevis (APB) and flexor carpi radialis (FCR) muscles ipsilateral to the side of D2 stimulation. We compared this to the inhibitory effect of ipsilateral D2 stimulation on averaged rectified EMG recorded at 10% maximum voluntary contraction and on F-responses and H-reflexes recorded from these same muscles. We also compared MEPs recorded following D2 stimulation just above perception threshold to MEPs following higher intensity D2 stimulation. As well, we assessed the effect of preceding D2 stimulation on MEPs recorded from a relaxed versus tonically contracted hand muscle. D2 stimulation elicited a triphasic response of modest MEP facilitation followed by inhibition and further facilitation. The duration and onset of MEP inhibition correlated with those of the initial period of rectified EMG inhibition, however, the magnitude of MEP inhibition was generally less than the magnitude of EMG inhibition, consistent with a greater inhibitory effect of digital afferents on smaller motor neurons. MEPs were not facilitated during the rebound of EMG activity (the E2 period) that usually followed the initial period of EMG inhibition (I1 period). The behavior of H-reflexes and F-responses following ipsilateral D2 stimulation suggested that inhibition of both EMG and MEPs is not mediated via presynaptic inhibition of Ia afferents, and that inhibition is augmented by descending rather than segmental input to spinal motor neurons. Tonic contraction of the target muscle during D2 stimulation decreased the inhibitory effect of the preceding digital stimulus possibly due to recruitment of larger spinal motor neurons less likely to be inhibited by cutaneous input. PMID:7537203

  7. Predictive motor control of sensory dynamics in auditory active sensing.

    PubMed

    Morillon, Benjamin; Hackett, Troy A; Kajikawa, Yoshinao; Schroeder, Charles E

    2015-04-01

    Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the circuits that could mediate this audio-motor interaction, notably the potential role of the somatosensory system. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception. PMID:25594376

  8. Physical activity and obesity mediate the association between childhood motor function and adolescents' academic achievement.

    PubMed

    Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-29

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558

  9. A Field-Based Testing Protocol for Assessing Gross Motor Skills in Preschool Children: The Children's Activity and Movement in Preschool Study Motor Skills Protocol

    ERIC Educational Resources Information Center

    Williams, Harriet G.; Pfeiffer, Karin A.; Dowda, Marsha; Jeter, Chevy; Jones, Shaverra; Pate, Russell R.

    2009-01-01

    The purpose of this study was to develop a valid and reliable tool for use in assessing motor skills in preschool children in field-based settings. The development of the Children's Activity and Movement in Preschool Study Motor Skills Protocol included evidence of its reliability and validity for use in field-based environments as part of large…

  10. Drosophila Ten-m and Filamin Affect Motor Neuron Growth Cone Guidance

    PubMed Central

    Zheng, Lihua; Michelson, Yehudit; Freger, Vita; Avraham, Ziva; Venken, Koen J. T.; Bellen, Hugo J.; Justice, Monica J.; Wides, Ron

    2011-01-01

    The Drosophila Ten-m (also called Tenascin-major, or odd Oz (odz)) gene has been associated with a pair-rule phenotype. We identified and characterized new alleles of Drosophila Ten-m to establish that this gene is not responsible for segmentation defects but rather causes defects in motor neuron axon routing. In Ten-m mutants the inter-segmental nerve (ISN) often crosses segment boundaries and fasciculates with the ISN in the adjacent segment. Ten-m is expressed in the central nervous system and epidermal stripes during the stages when the growth cones of the neurons that form the ISN navigate to their targets. Over-expression of Ten-m in epidermal cells also leads to ISN misrouting. We also found that Filamin, an actin binding protein, physically interacts with the Ten-m protein. Mutations in cheerio, which encodes Filamin, cause defects in motor neuron axon routing like those of Ten-m. During embryonic development, the expression of Filamin and Ten-m partially overlap in ectodermal cells. These results suggest that Ten-m and Filamin in epidermal cells might together influence growth cone progression. PMID:21857973

  11. Unilateral hemispherectomy at adulthood asymmetrically affects motor performance of male Swiss mice.

    PubMed

    Paes-Branco, Danielle; Abreu-Villaça, Yael; Manhães, Alex C; Filgueiras, Cláudio C

    2012-05-01

    Evidence exists indicating that cerebral lateralization is a fundamental feature of all vertebrates. In humans, a series of studies demonstrated that the left hemisphere plays a major role in controlling movement. No such asymmetries have been identified in rodents, in spite of the fact that these animals have been frequently used in studies assessing motor behavior. In this regard, here, we used unilateral hemispherectomy to study the relative importance of each hemisphere in controlling movement. Adult Swiss mice were submitted to right unilateral hemispherectomy (RH), left unilateral hemispherectomy (LH) or sham surgery. Fifteen days after surgery, motor performance was assessed in the accelerating rotarod test and in the foot-fault test (in which performance depends on skilled limb use) and in the elevated body swing test (in which performance depends on trunk movements). The surgical removal of the right hemisphere caused a more pronounced impairment in performance than the removal of the left hemisphere both in the rotarod and in the foot-fault tests. In the rotarod, the RH group presented smaller latencies to fall than both LH and sham groups. In the foot-fault test, while both the sham and the LH groups showed no differences between left and right hind limbs, the RH group showed significantly worse performance with the left hind limb than with the right one. The elevated body swing test revealed a similar impairment in the two hemispherectomized groups. Our data suggest a major role of the right hemisphere in controlling skilled limb movements in mice. PMID:22367398

  12. Activation of the motor cortex during phasic rapid eye movement sleep.

    PubMed

    De Carli, Fabrizio; Proserpio, Paola; Morrone, Elisa; Sartori, Ivana; Ferrara, Michele; Gibbs, Steve Alex; De Gennaro, Luigi; Lo Russo, Giorgio; Nobili, Lino

    2016-02-01

    When dreaming during rapid eye movement (REM) sleep, we can perform complex motor behaviors while remaining motionless. How the motor cortex behaves during this state remains unknown. Here, using intracerebral electrodes sampling the human motor cortex in pharmacoresistant epileptic patients, we report a pattern of electroencephalographic activation during REM sleep similar to that observed during the performance of a voluntary movement during wakefulness. This pattern is present during phasic REM sleep but not during tonic REM sleep, the latter resembling relaxed wakefulness. This finding may help clarify certain phenomenological aspects observed in REM sleep behavior disorder. PMID:26575212

  13. Context Modulates the Expression of Conditioned Motor Sensitization, Cellular Activation, and Synaptophysin Immunoreactivity

    PubMed Central

    Rademacher, David J.; Celeste Napier, T.; Meredith, Gloria E.

    2007-01-01

    We tested the hypothesis that amphetamine- (AMPH) induced conditioned motor sensitization is accompanied by cellular activation (measured by Fos immunoreactivity) and synaptophysin immunoreactivity in reward-related brain areas. Forty-eight rats were tested for conditioned motor sensitization using a conditioning paradigm that was performed in a three-chambered apparatus. Rats underwent two drug pairings with 1.0 mg/kg AMPH in one outer chamber and, on alternate days, were paired with saline in the other. On the fifth day, relative to the first AMPH treatment, AMPH administration increased motor activity in the AMPH-paired context but not in the saline-paired context. Relative to the first saline treatment, saline on the fifth day produced a conditioned increase in motor activity when given in the chamber previously paired with AMPH, and saline given in the saline-paired context produced a conditioned decrease in motor activity. AMPH administered in the AMPH-paired context increased the density of both Fos and synaptophysin immunoreactivity in the dentate gyrus, cornu ammonis (CA)1, CA3, basolateral amygdala, and dorsolateral striatum. This pairing between context and drug increased Fos but not synaptophysin immunoreactivity in the nucleus accumbens core and shell. Saline administered in the AMPH-paired context increased the density of Fos immunoreactivity in the basolateral amygdala and nucleus accumbens core. These data indicate that the basolateral amygdala-nucleus accumbens core pathway is necessary for the context-elicited conditioned motor responses, while the hippocampus encodes the spatial context. PMID:17970739

  14. Cytoskeletal motor-driven active self-assembly in in vitro systems.

    PubMed

    Lam, A T; VanDelinder, V; Kabir, A M R; Hess, H; Bachand, G D; Kakugo, A

    2016-01-28

    Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. We focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode which complements robotic manipulation and passive self-assembly. PMID:26576824

  15. Chapter 6: Children's Environmental Access in Relation to Motor Competence, Physical Activity, and Fitness

    ERIC Educational Resources Information Center

    Erwin, Heather E.; Woods, Amelia Mays; Woods, Martha K.; Castelli, Darla M.

    2007-01-01

    The purpose of this study was to examine levels of physical activity engagement, motor competence, and physical fitness as related to child access to physical activity facilities in the home and school environments. The present investigation attempts to further efforts to examine the relationship between physical activity levels and access.…

  16. Motor Performance of Women as a Function of Age and Physical Activity Level.

    ERIC Educational Resources Information Center

    Rikli, Roberta; Busch, Sharman

    Two studies compared motor skills of women in terms of the influence of age and activity level. In the first study, simple and choice reaction time, balance, flexibility, and grip strength of older active women were compared with that of older inactive women, and active and inactive younger women. Except for grip strength, scores of older active…

  17. Get Kids Moving: Simple Activities To Build Gross-Motor Skills.

    ERIC Educational Resources Information Center

    Texas Child Care, 2003

    2003-01-01

    Highlights the importance of activities to build gross motor skills and provides hints for encouraging such activities. Specific areas of activities presented are: (1) running and jumping; (2) music games; (3) action games; (4) races; (5) bed sheets or parachutes; (6) hula hoops; (7) balls; (8) batting; (9) balance; and (10) creative movement. (SD)

  18. Sensorimotor restriction affects complex movement topography and reachable space in the rat motor cortex

    PubMed Central

    Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco

    2014-01-01

    Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems. PMID:25565987

  19. Neurotensin Changes Propulsive Activity into a Segmental Motor Pattern in the Rat Colon

    PubMed Central

    Li, Hongfei; Chen, Ji-Hong; Yang, Zixian; Huang, Min; Yu, Yuanjie; Tan, Shiyun; Luo, Hesheng; Huizinga, Jan D

    2016-01-01

    Background/Aims Neurotensin is a gut-brain peptide with both inhibitory and excitatory actions on the colonic musculature; our objective was to understand the implications of this for motor patterns occurring in the intact colon of the rat. Methods The effects of neurotensin with concentrations ranging from 0.1–100 nM were studied in the intact rat colon in vitro, by investigating spatio-temporal maps created from video recordings of colonic motility before and after neurotensin. Results Low concentration of neurotensin (0.1–1 nM) inhibited propagating long distance contractions and rhythmic propagating motor complexes; in its place a slow propagating rhythmic segmental motor pattern developed. The neurotensin receptor 1 antagonist SR-48692 prevented the development of the segmental motor pattern. Higher concentrations of neurotensin (10 nM and 100 nM) were capable of restoring long distance contraction activity and inhibiting the segmental activity. The slow propagating segmental contraction showed a rhythmic contraction—relaxation cycle at the slow wave frequency originating from the interstitial cells of Cajal associated with the myenteric plexus pacemaker. High concentrations given without prior additions of low concentrations did not evoke the segmental motor pattern. These actions occurred when neurotensin was given in the bath solution or intraluminally. The segmental motor pattern evoked by neurotensin was inhibited by the neural conduction blocker lidocaine. Conclusions Neurotensin (0.1–1 nM) inhibits the dominant propulsive motor patterns of the colon and a distinct motor pattern of rhythmic slow propagating segmental contractions develops. This motor pattern has the hallmarks of haustral boundary contractions. PMID:26882114

  20. Making sense(s) in dementia: a multisensory and motor-based group activity program.

    PubMed

    Cruz, Joana; Marques, Alda; Barbosa, Ana; Figueiredo, Daniela; Sousa, Liliana X

    2013-03-01

    Lack of engagement in meaningful activities is associated with poor quality of life in dementia; thus, the development of these activities has been recommended. This pilot study aimed to develop a multisensory and motor-based group activity program for residents with dementia and assess its impact on residents' behavior. The program was designed using a multisensory and motor-based approach in sixteen 45-minute weekly sessions tailored to residents' characteristics. Four residents with advanced dementia participated in the program. The frequency and duration of the residents' behavior were assessed using video recordings. All residents participated in the proposed activities, although they were more participative and communicative in some sessions than in others. Group activity programs based on multisensory and motor stimulation can be a promising approach for people with advanced dementia; however, further research is needed. This study may serve as reference to the implementation of future programs aiming to increase person-centeredness of the care provided. PMID:23307794

  1. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    NASA Technical Reports Server (NTRS)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  2. Advances in selective activation of muscles for non-invasive motor neuroprostheses.

    PubMed

    Koutsou, Aikaterini D; Moreno, Juan C; Del Ama, Antonio J; Rocon, Eduardo; Pons, José L

    2016-01-01

    Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via transcutaneous electrodes. In this paper we review the principles and achievements during the last decade on techniques for artificial motor unit recruitment to improve the selective activation of muscles. We review the key factors affecting the outcome of muscle force production via multi-pad transcutaneous electrical stimulation and discuss how stimulation parameters can be set to optimize external activation of body segments. A detailed review of existing electrode array systems proposed by different research teams is also provided. Furthermore, a review of the targeted applications of existing electrode arrays for control of upper and lower limb NPs is provided. Eventually, last section demonstrates the potential of electrode arrays to overcome the major challenges of NPs for compensation and rehabilitation of patient-specific impairments. PMID:27296478

  3. Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: a near-infrared spectroscopy study.

    PubMed

    Mandrick, Kevin; Derosiere, Gérard; Dray, Gérard; Coulon, Denis; Micallef, Jean-Paul; Perrey, Stéphane

    2013-07-01

    Functional near-infrared spectroscopy (fNIRS) is suitable for investigating cerebral oxygenation changes during motor and/or mental tasks. In the present study, we investigated how an additional mental load during a motor task at two submaximal loadings affects the fNIRS-measured brain activation over the right prefrontal cortex (PFC). Fifteen healthy males performed isometric grasping contractions at 15% and 30% of the maximal voluntary contraction (MVC) with or without an additional mental (i.e., arithmetic) task. Mental performance, force variability, fNIRS and subjective perception responses were measured in each condition. The performance of the mental task decreased significantly while the force variability increased significantly at 30% MVC as compared to 15% MVC, suggesting that performance of dual-task required more attentional resources. PFC activity increased significantly as the effort increased from 15% to 30% MVC (p<.001). Although a larger change in the deoxyhemoglobin was observed in dual-task conditions (p=.051), PFC activity did not change significantly as compared to the motor tasks alone. In summary, participants were unable to invest more attention and effort in performing the more difficult levels in order to maintain adequate mental performance. PMID:23665138

  4. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground.

    PubMed

    Tortella, Patrizia; Haga, Monika; Loras, Håvard; Sigmundsson, Hermundur; Fumagalli, Guido

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985

  5. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground

    PubMed Central

    Tortella, Patrizia; Haga, Monika; Loras, Håvard

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985

  6. Motor System Activation Predicts Goal Imitation in 7-Month-Old Infants.

    PubMed

    Filippi, Courtney A; Cannon, Erin N; Fox, Nathan A; Thorpe, Samuel G; Ferrari, Pier F; Woodward, Amanda L

    2016-05-01

    The current study harnessed the variability in infants' neural and behavioral responses as a novel method for evaluating the potential relations between motor system activation and social behavior. We used electroencephalography (EEG) to record neural activity as 7-month-old infants observed and responded to the actions of an experimenter. To determine whether motor system activation predicted subsequent imitation behavior, we assessed event-related desynchronization (ERD) at central sites during action observation as a function of subsequent behavior. Greater mu desynchronization over central sites was observed when infants subsequently reproduced the experimenter's goal than when they did not reproduce the goal and instead selected the nongoal object. We also found that mu desynchronization during action execution predicted the infants' later propensity to reproduce the experimenter's goal-directed behavior. These results provide the first evidence that motor system activation predicts the imitation of other individuals' goals during infancy. PMID:27071750

  7. Motor units in incomplete spinal cord injury: electrical activity, contractile properties and the effects of biofeedback.

    PubMed

    Stein, R B; Brucker, B S; Ayyar, D R

    1990-10-01

    The electrical and contractile properties of hand muscles in a selected population of quadriplegic subjects were studied intensively before and after EMG biofeedback. Spontaneously active motor units and units that could only be slowly and weakly activated were observed in these subjects, in addition to units that were voluntarily activated normally. This suggests a considerable overlap of surviving motor neurons to a single muscle that are below, near or above the level of a lesion. Despite the common occurrence of polyphasic potentials and other signs of neuromuscular reinnervation, the average twitch tension of single motor units in hand muscles of quadriplegic subjects was not significantly different from that in control subjects. Nor did it increase after biofeedback training that typically increased the peak surface EMG by a factor of 2-5 times. The percentage of spontaneously active units was also constant. The surface EMG may be increased during biofeedback by using higher firing rates in motor units that can already be activated, rather than by recruiting previously unavailable motor units. PMID:2266370

  8. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

    PubMed

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks. PMID:24015241

  9. Enhanced Activation of Motor Execution Networks Using Action Observation Combined with Imagination of Lower Limb Movements

    PubMed Central

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S.; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks. PMID:24015241

  10. Pomegranate supplementation improves affective and motor behavior in mice after radiation exposure.

    PubMed

    Dulcich, Melissa S; Hartman, Richard E

    2013-01-01

    Currently, NASA has plans for extended space travel, and previous research indicates that space radiation can have negative effects on cognitive skills as well as physical and mental health. With long-term space travel, astronauts will be exposed to greater radiation levels. Research shows that an antioxidant-enriched diet may offer some protection against the cellular effects of radiation and may provide significant neuroprotection from the effects of radiation-induced cognitive and behavioral skill deficits. Ninety-six C57BL/6 mice (48 pomegranate fed and 48 control) were irradiated with proton radiation (2 Gy), and two-month postradiation behaviors were assessed using a battery of behavioral tests to measure cognitive and motor functions. Proton irradiation was associated with depression-like behaviors in the tail suspension test, but this effect was ameliorated by the pomegranate diet. Males, in general, displayed worse coordination and balance than females on the rotarod task, and the pomegranate diet ameliorated this effect. Overall, it appears that proton irradiation, which may be encountered in space, may induce a different pattern of behavioral deficits in males than females and that a pomegranate diet may confer protection against some of those effects. PMID:23662154

  11. Does lunisolar gravitational tide affect the activity of animals?

    NASA Astrophysics Data System (ADS)

    Deshcherevskii, A. V.; Sidorin, A. Ya.

    2010-12-01

    Multiyear time series obtained by the continuous instrumental monitoring of the electrical activity (EA) of weakly electric fish Gnathonemus leopoldianus and the motor activity (MA) of the freshwater catfish Hoplosternum thoracatum and the cockroach Blaberus craniifer are compared to the parameters of the lunisolar gravitational tide. These curves are observed to be very similar for a large number of time intervals. However, a more detailed analysis shows this to be only a superficial resemblance caused by the closeness of the periods of diurnal and semidiurnal rhythms of bioindicator activity (the dominant rhythms in EA and MA patterns) and the periods of main gravitational tidal waves. It is concluded that the lunisolar gravitational tide has no significant effect on animal behavior in our experiment.

  12. Induction Motor Drive System Based on Linear Active Disturbance Rejection Controller

    NASA Astrophysics Data System (ADS)

    Liu, Liying; Zhang, Yongli; Yao, Qingmei

    It is difficult to establish an exact mathematical model for the induction motor and the robustness is poor of the vector control system using PI regulator. This paper adopts the linear active disturbance rejection controller (LADRC) to control inductor motor. LADRC doesn't need the exact mathematical model of motor and it can not only estimate but also compensate the general disturbance that includes the coupling items in model of motor and parameters perturbations by linear extended state observer (LESO), so the rotor flux and torque fully decouple. As a result, the performance is improved. To prove the above control scheme, the proposed control system has been simulated in MATLAB/SIMULINK, and the comparison was made with PID. Simulation results show that LADRC' has better performance and robustness than PID.

  13. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex

    PubMed Central

    Marins, Theo F.; Rodrigues, Erika C.; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832

  14. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex.

    PubMed

    Marins, Theo F; Rodrigues, Erika C; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832

  15. Primary motor cortex neurons classified in a postural task predict muscle activation patterns in a reaching task.

    PubMed

    Heming, Ethan A; Lillicrap, Timothy P; Omrani, Mohsen; Herter, Troy M; Pruszynski, J Andrew; Scott, Stephen H

    2016-04-01

    Primary motor cortex (M1) activity correlates with many motor variables, making it difficult to demonstrate how it participates in motor control. We developed a two-stage process to separate the process of classifying the motor field of M1 neurons from the process of predicting the spatiotemporal patterns of its motor field during reaching. We tested our approach with a neural network model that controlled a two-joint arm to show the statistical relationship between network connectivity and neural activity across different motor tasks. In rhesus monkeys, M1 neurons classified by this method showed preferred reaching directions similar to their associated muscle groups. Importantly, the neural population signals predicted the spatiotemporal dynamics of their associated muscle groups, although a subgroup of atypical neurons reversed their directional preference, suggesting a selective role in antagonist control. These results highlight that M1 provides important details on the spatiotemporal patterns of muscle activity during motor skills such as reaching. PMID:26843605

  16. The Longitudinal Course of Gross Motor Activity in Schizophrenia – Within and between Episodes

    PubMed Central

    Walther, Sebastian; Stegmayer, Katharina; Horn, Helge; Rampa, Luca; Razavi, Nadja; Müller, Thomas J.; Strik, Werner

    2015-01-01

    Schizophrenia is associated with heterogeneous course of positive and negative symptoms. In addition, reduced motor activity as measured by wrist actigraphy has been reported. However, longitudinal studies of spontaneous motor activity are missing. We aimed to explore whether activity levels were stable within and between psychotic episodes. Furthermore, we investigated the association with the course of negative symptoms. In 45 medicated patients, we investigated motor behavior within a psychotic episode. In addition, we followed 18 medicated patients across 2 episodes. Wrist actigraphy and psychopathological ratings were applied. Within an episode symptoms changed but activity levels did not vary systematically. Activity at baseline predicted the course of negative symptoms. Between two episodes activity recordings were much more stable. Again, activity at the index episode predicted the outcome of negative symptoms. In sum, spontaneous motor activity shares trait and state characteristics, the latter are associated with negative symptom course. Actigraphy may therefore become an important ambulatory instrument to monitor negative symptoms and treatment outcome in schizophrenia. PMID:25698981

  17. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship

    ERIC Educational Resources Information Center

    Stodden, David F.; Goodway, Jacqueline D.; Langendorfer, Stephen J.; Roberton, Mary Ann; Rudisill, Mary E.; Garcia, Clersida; Garcia, Luis E.

    2008-01-01

    Although significant attention has been paid to promoting the importance of physical activity in children, adolescents, and adults, we do not currently understand how to promote sustained physical activity levels throughout the lifespan. We contend that previous research has failed to consider the dynamic and synergistic role that motor skill…

  18. Modulation of Motor Area Activity during Observation of Unnatural Body Movements

    ERIC Educational Resources Information Center

    Shimada, Sotaro; Oki, Kazuma

    2012-01-01

    The mirror neuron system (MNS) is activated when observing the actions of others. However, it remains unclear whether the MNS responds more strongly to natural bodily actions in the observer's motor repertoire than to unnatural actions. We investigated whether MNS activity is modulated by the unnaturalness of an observed action by inserting short…

  19. Microscopic origins of anisotropic active stress in motor-driven nematic liquid crystals.

    PubMed

    Blackwell, Robert; Sweezy-Schindler, Oliver; Baldwin, Christopher; Hough, Loren E; Glaser, Matthew A; Betterton, M D

    2016-03-14

    The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor proteins, and static crosslinkers. Outside of cells, these same components can form novel materials exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or contractile active stresses are common in nematic motor-filament systems, their microscopic origin remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have not previously been considered to significantly contribute to active stresses. With this insight, we are able to tune contractile or extensile behavior through the control of motor-driven filament sliding and crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems are contractile. PMID:26742483

  20. Motor speech impairment, activity, and participation in children with cerebral palsy.

    PubMed

    Mei, Cristina; Reilly, Sheena; Reddihough, Dinah; Mensah, Fiona; Morgan, Angela

    2014-08-01

    The present study used a population-based sample of children with cerebral palsy (CP) to estimate the prevalence of motor speech impairment and its association with activity and participation. A sample of 79 Victorian children aged 4 years 11 months to 6 years 5 months was recruited through the Victorian CP Register. The presence of motor speech impairment was recorded using the Viking Speech Scale (VSS). Activity and participation outcomes included speech intelligibility (the National Technical Institute for the Deaf rating scale, NTID), the Functional Communication Classification System (FCCS) and Communication Function Classification System (CFCS). A parent completed rating scale was used to examine the association between motor speech impairment and participation. Ninety per cent (71/79) of children demonstrated a motor speech impairment. Strong associations were found between the VSS and NTID (< .001), CFCS (< .001), and FCCS levels (<.001). VSS levels III-IV were significantly associated with restrictions in home, school, and community-based participation as perceived by parents. Although some diversity in activity and participation outcomes was observed within specific VSS levels, the results of this study suggested that children with mild motor speech impairments are more likely to demonstrate superior activity and participation outcomes compared to children with moderate or severe deficits. PMID:24910254

  1. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    PubMed Central

    Sharma, Rakesh; Sharma, Avdhesh

    2004-01-01

    Functional magnetic resonance imaging (fMRI) is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD) in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities. PMID:15125779

  2. Twenty four hour manometric recording of colonic motor activity in healthy man.

    PubMed Central

    Narducci, F; Bassotti, G; Gaburri, M; Morelli, A

    1987-01-01

    The motor activity of the transverse, descending, and sigmoid colon was recorded for 24 hours in 14 healthy volunteers with a colonoscope positioned catheter. During the study the patients ate two 1000 kcal mixed meals and one continental breakfast. Colonic motor activity was low before meals and minimal during sleep; the motility index increased significantly after meals and at morning awakening. Most of the motor activity was represented by low amplitude contractions present singly or in bursts, which showed no recognisable pattern. All but two subjects also showed isolated high amplitude (up to 200 mmHg) contractions that propagated peristaltically over long distances at approximately 1 cm/sec. Most of these contractions occurred after morning awakening, and some in the late postprandial period, with a mean of 4.4/subject/24 h. The peristaltic contractions were often felt as an urge to defecate or preceded defecation, and could represent the manometric equivalent of the mass movements. PMID:3817580

  3. Differential long-term effects of developmental exposure to polychlorinated biphenyls 52, 138 or 180 on motor activity and neurotransmission. Gender dependence and mechanisms involved.

    PubMed

    Boix, Jordi; Cauli, Omar; Leslie, Heather; Felipo, Vicente

    2011-01-01

    Developmental exposure to polychlorinated biphenyls (PCBs) induces motor alterations in humans by unknown mechanisms. It remains unclear whether: (a) all non-dioxin-like (NDL) PCBs are neurotoxic or it depends on the grade of chlorination; (b) they have different neurotoxicity mechanisms; (c) they affect differently males and females. The aims of this work were to assess: (1) whether perinatal exposure to 3 NDL-PCBs with different grades of chlorination, (PCBs 52, 138 or 180) affects differentially motor activity in adult rats; (2) whether the effects are different in males or females and (3) the mechanisms involved in impaired motor activity. Rats were exposed to PCBs from gestational day 7 to post-natal day 21. Experiments were performed when the rats were 4 months-old. PCB52 did not affect motor activity, PCB180 reduced it in males but not in females and PCB138 reduced activity both in males and females. PCB52 or 138 did not affect extracellular dopamine in nucleus accumbens (NAcc). PCB180 increased it both in males and females. Extracellular glutamate in NAcc was reduced by the three PCBs. Activation of metabotropic glutamate receptors (mGluRs) in NAcc increased extracellular dopamine in control rats and in those exposed to PCB52 and reduced dopamine in rats exposed to PCB180. In rats exposed to PCB138 activation of mGluRs increases dopamine in females and reduces it in males. The opposite changes were observed for glutamate. mGluRs activation reduced extracellular glutamate in control rats and in those exposed to PCB52 and increased glutamate in rats exposed to PCB180. In rats exposed to PCB138 activation of mGluRs reduces glutamate in females and increases it in males. The data support that different NDL-PCBs affect differently motor activity. Increased glutamate release in NAcc following activation of mGluRs would be involved in reduced dopamine release and reduced motor activity in rats exposed to PCB138 or 180. PMID:21056608

  4. Action relevance in linguistic context drives word-induced motor activity

    PubMed Central

    Aravena, Pia; Courson, Mélody; Frak, Victor; Cheylus, Anne; Paulignan, Yves; Deprez, Viviane; Nazir, Tatjana A.

    2014-01-01

    Many neurocognitive studies on the role of motor structures in action-language processing have implicitly adopted a “dictionary-like” framework within which lexical meaning is constructed on the basis of an invariant set of semantic features. The debate has thus been centered on the question of whether motor activation is an integral part of the lexical semantics (embodied theories) or the result of a post-lexical construction of a situation model (disembodied theories). However, research in psycholinguistics show that lexical semantic processing and context-dependent meaning construction are narrowly integrated. An understanding of the role of motor structures in action-language processing might thus be better achieved by focusing on the linguistic contexts under which such structures are recruited. Here, we therefore analyzed online modulations of grip force while subjects listened to target words embedded in different linguistic contexts. When the target word was a hand action verb and when the sentence focused on that action (John signs the contract) an early increase of grip force was observed. No comparable increase was detected when the same word occurred in a context that shifted the focus toward the agent's mental state (John wants to sign the contract). There mere presence of an action word is thus not sufficient to trigger motor activation. Moreover, when the linguistic context set up a strong expectation for a hand action, a grip force increase was observed even when the tested word was a pseudo-verb. The presence of a known action word is thus not required to trigger motor activation. Importantly, however, the same linguistic contexts that sufficed to trigger motor activation with pseudo-verbs failed to trigger motor activation when the target words were verbs with no motor action reference. Context is thus not by itself sufficient to supersede an “incompatible” word meaning. We argue that motor structure activation is part of a dynamic process

  5. Increased atypical PKC expression and activity in the phrenic motor nucleus following cervical spinal injury

    PubMed Central

    Guenther, C.H.; Windelborn, J.A.; Tubon, T.C.; Yin, J.C.P.; Mitchell, G.S.

    2012-01-01

    Atypical protein kinase C (aPKC) isoforms are expressed in phrenic motor neurons, a group of motor neurons critical for breathing. Following C2 cervical hemisection (C2HS), spontaneous plasticity occurs in crossed-spinal synaptic pathways to phrenic motor neurons, at least partially restoring inspiratory phrenic activity below the injury. Since aPKCs are necessary for synaptic plasticity in other systems, we tested the hypothesis that C2HS increases aPKC expression and activity in spinal regions associated with the phrenic motor nucleus. C2 laminectomy (sham) or C2HS was performed on adult, male Lewis rats. Ventral spinal segments C3–5 were harvested 1, 3 or 28 days post-surgery, and prepared for aPKC enzyme activity assays and immunoblots. Ventral cervical aPKC activity was elevated 1 and 28, but not 3, days post-C2HS (1 day: 63% vs sham ipsilateral to injury; p<0.05; 28 day: 426% vs sham; p<0.05; no difference in ipsilateral vs contralateral response). Total PKCζ/ι protein expression was unchanged by C2HS, but total and phosphorylated PKMζ (constitutively active PKCζ isoform) increased ipsilateral to injury 28 days post-C2HS (p<0.05). Ipsilateral aPKC activity and expression were strongly correlated (r2=0.675, p<0.001). In a distinct group of rats, immunohistochemistry confirmed that aPKCs are expressed in neurons 28 days post-C2HS, including large, presumptive phrenic motor neurons; aPKCs were not detected in adjacent microglia (OX-42 positive cells) or astrocytes (GFAP positive cells). Changes in aPKC expression in the phrenic motor nucleus following C2HS suggests that aPKCs may contribute to functional recovery following cervical spinal injury. PMID:22329943

  6. Excitability of spinal motor neurons during motor imagery of thenar muscle activity under maximal voluntary contractions of 50% and 100%

    PubMed Central

    Bunno, Yoshibumi; Onigata, Chieko; Suzuki, Toshiaki

    2015-01-01

    [Purpose] We often perform physical therapy using motor imagery of muscle contraction to improve motor function for healthy subjects and central nerve disorders. This study aimed to determine the differences in the excitability of spinal motor neurons during motor imagery of a muscle contraction at different contraction strengths. [Subjects] We recorded the F-wave in 15 healthy subjects. [Methods] In resting trial, the muscle was relaxed during F-wave recording. For motor imagery trial, subjects were instructed to imagine maximal voluntary contractions of 50% and 100% while holding the sensor of a pinch meter, and F-waves were recorded for each contraction. The F-wave was recorded immediately after motor imagery. [Results] Persistence and F/M amplitude ratio during motor imagery under maximal voluntary contractions of 50% and 100% were significantly higher than that at rest. In addition, the relative values of persistence, F/M amplitude ratio, and latency were similar during motor imagery under the two muscle contraction strengths. [Conclusion] Motor imagery under maximal voluntary contractions of 50% and 100% can increase the excitability of spinal motor neurons. Differences in the imagined muscle contraction strengths are not involved in changes in the excitability of spinal motor neurons. PMID:26504291

  7. Effect of lower-limb joint models on subject-specific musculoskeletal models and simulations of daily motor activities.

    PubMed

    Valente, Giordano; Pitto, Lorenzo; Stagni, Rita; Taddei, Fulvia

    2015-12-16

    Understanding the validity of using musculoskeletal models is critical, making important to assess how model parameters affect predictions. In particular, assumptions on joint models can affect predictions from simulations of movement, and the identification of image-based joints is unavoidably affected by uncertainty that can decrease the benefits of increasing model complexity. We evaluated the effect of different lower-limb joint models on muscle and joint contact forces during four motor tasks, and assessed the sensitivity to the uncertainties in the identification of anatomical four-bar-linkage joints. Three MRI-based musculoskeletal models having different knee and ankle joint models were created and used for the purpose. Model predictions were compared against a baseline model including simpler and widely-adopted joints. In addition, a probabilistic analysis was performed by perturbing four-bar-linkage joint parameters according to their uncertainty. The differences between models depended on the motor task analyzed, and there could be marked differences at peak loading (up to 2.40 BW at the knee and 1.54 BW at the ankle), although they were rather small over the motor task cycles (up to 0.59 BW at the knee and 0.31 BW at the ankle). The model including more degrees of freedom showed more discrepancies in predicted muscle activations compared to measured muscle activity. Further, including image-based four-bar-linkages was robust to simulate walking, chair rise and stair ascent, but not stair descent (peak standard deviation of 2.66 BW), suggesting that joint model complexity should be set according to the imaging dataset available and the intended application, performing sensitivity analyses. PMID:26506255

  8. Coherence of EMG activity and single motor unit discharge patterns in human rhythmical force production.

    PubMed

    Sosnoff, Jacob J; Vaillancourt, David E; Larsson, Lars; Newell, Karl M

    2005-03-30

    The purpose of this study was to examine the modulation of the motor neuronal pool as a function of task dynamics. Specifically, we investigated the effects of task frequency on the single motor unit discharge pattern, electromyogram (EMG) activity and effector force output. Myoelectric activity and effector force were recorded while young adults isometrically abducted their first dorsal interosseus at five sinusoidal targets (0.5 Hz, 1 Hz, 2 Hz, 3 Hz and 4 Hz) and at two force levels (5% and 25% maximum voluntary contraction (MVC)). Individual motor unit spike trains were isolated from the EMG. Auto-spectral and coherence analyses were performed on the force output, EMG and motor unit spike trains. The frequency of maximal coherence between the EMG and force output closely corresponded to the target frequency in all conditions. There was a broadband distribution of power with multiple peaks in the EMG and motor unit spectrums in the 0.5 Hz and 1 Hz targets. However, the EMG and motor unit spectrums in the 2 Hz, 3 Hz and 4 Hz targets were characterized by an increasingly narrower band of activity with one dominant peak that closely corresponded to the target. There is high coherence between EMG output and target force frequency, but the relative contribution of the fast and slow neuromuscular bands are differentially influenced by the task frequency. The rhythmical organization of neuromuscular output in the 0.5 Hz task is relatively broadband and similar to that shown previously for constant level force output. The frequency structure of neuromuscular organization becomes increasingly more narrowband as the frequency of the target increases (2-4 Hz). The modulation of the motor neuronal pool is adaptive and depends on the relative contribution of feedback and feedforward control processes, which are driven by the task demands. PMID:15698897

  9. A novel approach in automatic estimation of rats' loco-motor activity

    NASA Astrophysics Data System (ADS)

    Anishchenko, Lesya N.; Ivashov, Sergey I.; Vasiliev, Igor A.

    2014-05-01

    The paper contains feasibility study of a method for bioradar monitoring of small laboratory animals loco-motor activity improved by using a corner reflector. It presents results of mathematical simulation of bioradar signal reflection from the animal with the help of finite-difference time-domain method. It was proved both by theoretical and experimental results that a corner reflector usage during monitoring of small laboratory animals loco-motor activity improved the effectiveness of the method by reducing the dependency of the power flux density level from the distance between antennas block and the object.

  10. [Glutamatergic neurotransmitter system in regulation of the gastrointestinal tract motor activity].

    PubMed

    Alekseeva, E V; Popova, T S; Sal'nikov, P S

    2015-01-01

    The review include actual facts, demonstrating high probability of glutamatergic neurotransmitter system role in the regulation of the gastrointestinal tract motor activity. These facts suggest significant role of the glutamatergic neurotransmitter system dysfunction in forming motor activity disorders of the digestive tract, including in patients in critical condition. The analysis is based on results of multiple experimental and clinical researches of glutamic acid and other components of the glutamatergic neurotransmitter system in central nervous system and autonomic nervous system (with the accent on the enteral nervous system) in normal conditions and with functioning changes of the glutamatergic neurotransmitter system in case of inflammation, hupoxia, stress and in critical condition. PMID:26852608

  11. Regulation of pumping function of the heart in developing body under changing regimens of motor activity.

    PubMed

    Vafina, E Z; Abzalov, R A; Abzalov, N I; Nikitin, A S; Gulyakov, A A

    2014-06-01

    We analyzed parameters of the pumping function of the heart in rats subjected to enhanced motor activity after a preliminary 70-day hypokinesia under conditions of α- and β-adrenergic receptor stimulation with norepinephrine followed by blockade of β-adrenergic receptor with propranolol (obsidian) and α1-adrenergic receptors with doxazosin. After norepinephrine administration, the HR and cardiac output were higher in rats with enhanced physical activity after preliminary hypokinesia than in rats with low physical activity. After propranolol administration, stroke volume and cardiac output in 100-day-old rats with limited activity were lower, and HR higher was than in rats with enhanced physical activity after preliminary 70-day hypokinesia. After administration of doxazosin, rats with limited motor activity demonstrated more pronounced changes in HR than rats with enhanced physical activity after preliminary 70-day hypokinesia. PMID:24970234

  12. The Promotion of Gross and Fine Motor Development for Infants and Toddlers: Developmentally Appropriate Activities for Parents and Teachers.

    ERIC Educational Resources Information Center

    Thompson, Debra S.

    In recognition of the close relationship between motor skill and cognitive development in the first 2 years of life, this guide presents 78 developmentally appropriate activities that parents and teachers can use to enhance infant and toddler motor development. Activities are categorized by age group as follows: (1) 16 activities for newborn to…

  13. The Impact of Physical Activity on Non-Motor Symptoms in Parkinson's Disease: A Systematic Review.

    PubMed

    Cusso, Melanie E; Donald, Kenneth J; Khoo, Tien K

    2016-01-01

    Parkinson's disease (PD) is a neurological disorder that is associated with both motor and non-motor symptoms (NMS). The management of PD is primarily via pharmaceutical treatment; however, non-pharmaceutical interventions have become increasingly recognized in the management of motor and NMS. In this review, the efficacy of physical activity, including physiotherapy and occupational therapy, as an intervention in NMS will be assessed. The papers were extracted between the 20th and 22nd of June 2016 from PubMed, Web of Science, Medline, Ovid, SportsDiscuss, and Scopus using the MeSH search terms "Parkinson's," "Parkinson," and "Parkinsonism" in conjunction with "exercise," "physical activity," "physiotherapy," "occupational therapy," "physical therapy," "rehabilitation," "dance," and "martial arts." Twenty studies matched inclusion criteria of having 10 or more participants with diagnosed idiopathic PD participating in the intervention as well as having to evaluate the effects of physical activity on NMS in PD as controlled, randomized intervention studies. The outcomes of interest were NMS, including depression, cognition, fatigue, apathy, anxiety, and sleep. Risk of bias in the studies was evaluated using the Cochrane Collaboration's tool for assessing risk of bias. Comparability of the various intervention methods, however, was challenging due to demographic variability and methodological differences. Nevertheless, physical activity can positively impact the global NMS burden including depression, apathy, fatigue, day time sleepiness, sleep, and cognition, thus supporting its therapeutic potential in neurodegenerative conditions such as PD. It is recommended that further adequately powered studies are conducted to assess the therapeutic role of physical activity on both motor and non-motor aspects of PD. These studies should be optimally designed to assess non-motor elements of disease using instruments validated in PD. PMID:27583249

  14. A Quality Improvement Study on Avoidable Stressors and Countermeasures Affecting Surgical Motor Performance and Learning

    PubMed Central

    Conrad, Claudius; Konuk, Yusuf; Werner, Paul D.; Cao, Caroline G.; Warshaw, Andrew L.; Rattner, David W.; Stangenberg, Lars; Ott, Harald C.; Jones, Daniel B.; Miller, Diane L; Gee, Denise W.

    2012-01-01

    OBJECTIVE To explore how the two most important components of surgical performance - speed and accuracy - are influenced by different forms of stress and what the impact of music on these factors is. SUMMARY BACKGROUND DATA Based on a recently published pilot study on surgical experts, we designed an experiment examining the effects of auditory stress, mental stress, and music on surgical performance and learning, and then correlated the data psychometric measures to the role of music in a novice surgeon’s life. METHODS 31 surgeons were recruited for a crossover study. Surgeons were randomized to four simple standardized tasks to be performed on the Surgical SIM VR laparoscopic simulator, allowing exact tracking of speed and accuracy. Tasks were performed under a variety of conditions, including silence, dichotic music (auditory stress), defined classical music (auditory relaxation), and mental loading (mental arithmetic tasks). Tasks were performed twice to test for memory consolidation and to accommodate for baseline variability. Performance was correlated to the Brief Musical Experience Questionnaire (MEQ). RESULTS Mental loading influences performance with respect to accuracy, speed, and recall more negatively than does auditory stress. Defined classical music might lead to minimally worse performance initially, but leads to significantly improved memory consolidation. Furthermore, psychologic testing of the volunteers suggests that surgeons with greater musical commitment, measured by the MEQ, perform worse under the mental loading condition. CONCLUSION Mental distraction and auditory stress negatively affect specific components of surgical learning and performance. If used appropriately, classical music may positively affect surgical memory consolidation. It also may be possible to predict surgeons’ performance and learning under stress through psychological tests on the role of music in a surgeon’s life. Further investigation is necessary to determine

  15. EEG spectra, behavioral states and motor activity in rats exposed to acetylcholinesterase inhibitor chlorpyrifos.

    PubMed

    Timofeeva, Olga A; Gordon, Christopher J

    2002-06-01

    Exposure to organophosphates (OP) has been associated with sleep disorders such as insomnia and "excessive dreaming." The central mechanisms of these effects are not well understood. OPs inhibit acetylcholinesterase (AChE) activity, leading to a hyperactivity of the brain cholinergic systems that are involved in sleep regulation. We studied alterations in the EEG, behavioral states, motor activity and core temperature in rats orally administered with 10 or 40 mg/kg of the OP insecticide chlorpyrifos (CHP). Occipital EEG, motor activity and core temperature were recorded with telemetric transmitters. Behavioral sleep-wake states were visually scored. Both doses of CHP produced alterations of the EEG (decrease in power of sigma/beta and increase in slow theta and fast gamma bands) characteristic of arousal. EEG alterations were consistent with behavioral changes such as an increase in wakefulness and a decrease in sleep. Waking immobility was a prevalent behavior. We did not detect any overt signs of CHP toxicity, such as an abnormal posture or gait, suggesting that reduced locomotion can be a result of central effects of CHP (such as activation of cholinergic motor inhibitory system) rather than peripheral (such as an impairment of neuromuscular function). Changes in the EEG and behavior occurred independently of the decrease in core temperature. Increased wakefulness together with reduced motor activity after exposure to CHP seems to be a result of hyperactivity in brain cholinergic neuronal networks. PMID:12175464

  16. Quantification of motor cortex activity and full-body biomechanics during unconstrained locomotion.

    PubMed

    Prilutsky, Boris I; Sirota, Mikhail G; Gregor, Robert J; Beloozerova, Irina N

    2005-10-01

    Recent progress in the understanding of motor cortex function has been achieved primarily by simultaneously recording motor cortex neuron activity and the movement kinematics of the corresponding limb. We have expanded this approach by combining high-quality cortical single-unit activity recordings with synchronized recordings of full-body kinematics and kinetics in the freely behaving cat. The method is illustrated by selected results obtained from two cats tested while walking on a flat surface. Using this method, the activity of 43 pyramidal tract neurons (PTNs) was recorded, averaged over 10 bins of a locomotion cycle, and compared with full-body mechanics by means of principal component and multivariate linear regression analyses. Patterns of 24 PTNs (56%) and 219 biomechanical variables (73%) were classified into just four groups of inter-correlated variables that accounted for 91% of the total variance, indicating that many of the recorded variables had similar patterns. The ensemble activity of different groups of two to eight PTNs accurately predicted the 10-bin patterns of all biomechanical variables (neural decoding) and vice versa; different small groups of mechanical variables accurately predicted the 10-bin pattern of each PTN (neural encoding). We conclude that comparison of motor cortex activity with full-body biomechanics may be a useful tool in further elucidating the function of the motor cortex. PMID:15888524

  17. Influence of motor imagination on cortical activation during functional electrical stimulation

    PubMed Central

    Reynolds, Clare; Osuagwu, Bethel A.; Vuckovic, Aleksandra

    2015-01-01

    Objective Motor imagination (MI) and functional electrical stimulation (FES) can activate the sensory-motor cortex through efferent and afferent pathways respectively. Motor imagination can be used as a control strategy to activate FES through a brain–computer interface as the part of a rehabilitation therapy. It is believed that precise timing between the onset of MI and FES is important for strengthening the cortico-spinal pathways but it is not known whether prolonged MI during FES influences cortical response. Methods Electroencephalogram was measured in ten able-bodied participants using MI strategy to control FES through a BCI system. Event related synchronisation/desynchronisation (ERS/ERD) over the sensory-motor cortex was analysed and compared in three paradigms: MI before FES, MI before and during FES and FES alone activated automatically. Results MI practiced both before and during FES produced strongest ERD. When MI only preceded FES it resulted in a weaker beta ERD during FES than when FES was activated automatically. Following termination of FES, beta ERD returns to the baseline level within 0.5 s while alpha ERD took longer than 1 s. Conclusions When MI and FES are combined for rehabilitation purposes it is recommended that MI is practiced throughout FES activation period. Significance The study is relevant for neurorehabilitation of movement. PMID:25454278

  18. Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging

    PubMed Central

    Khan, Bilal; Chand, Pankaj; Alexandrakis, George

    2011-01-01

    Functional near infrared (fNIR) imaging was used to identify spatiotemporal relations between spatially distinct cortical regions activated during various hand and arm motion protocols. Imaging was performed over a field of view (FOV, 12 x 8.4 cm) including the secondary motor, primary sensorimotor, and the posterior parietal cortices over a single brain hemisphere. This is a more extended FOV than typically used in current fNIR studies. Three subjects performed four motor tasks that induced activation over this extended FOV. The tasks included card flipping (pronation and supination) that, to our knowledge, has not been performed in previous functional magnetic resonance imaging (fMRI) or fNIR studies. An earlier rise and a longer duration of the hemodynamic activation response were found in tasks requiring increased physical or mental effort. Additionally, analysis of activation images by cluster component analysis (CCA) demonstrated that cortical regions can be grouped into clusters, which can be adjacent or distant from each other, that have similar temporal activation patterns depending on whether the performed motor task is guided by visual or tactile feedback. These analyses highlight the future potential of fNIR imaging to tackle clinically relevant questions regarding the spatiotemporal relations between different sensorimotor cortex regions, e.g. ones involved in the rehabilitation response to motor impairments. PMID:22162826

  19. Automatic ultrarapid activation and inhibition of cortical motor systems in spoken word comprehension.

    PubMed

    Shtyrov, Yury; Butorina, Anna; Nikolaeva, Anastasia; Stroganova, Tatiana

    2014-05-01

    To address the hotly debated question of motor system involvement in language comprehension, we recorded neuromagnetic responses elicited in the human brain by unattended action-related spoken verbs and nouns and scrutinized their timecourse and neuroanatomical substrates. We found that already very early on, from ∼80 ms after disambiguation point when the words could be identified from the available acoustic information, both verbs and nouns produced characteristic somatotopic activations in the motor strip, with words related to different body parts activating the corresponding body representations. Strikingly, along with this category-specific activation, we observed suppression of motor-cortex activation by competitor words with incompatible semantics, documenting operation of the neurophysiological principles of lateral/surround inhibition in neural word processing. The extremely early onset of these activations and deactivations, their emergence in the absence of attention, and their similar presence for words of different lexical classes strongly suggest automatic involvement of motor-specific circuits in the perception of action-related language. PMID:24753617

  20. Brain oscillatory activity during motor imagery in EEG-fMRI coregistration.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2010-12-01

    The purpose of the present work was to investigate the correlation between topographical changes in brain oscillatory activity and the blood oxygenation level-dependent (BOLD) signal during a motor imagery (MI) task using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) coregistration. EEG was recorded in 7 healthy subjects inside a 1.5 T MR scanner during the imagination of the kinesthetic experience of movement. A Fast Fourier Transform was applied to EEG signal in the rest and active conditions. We used the event-related-synchronization (ERS)/desynchronization (ERD) approach to characterize where the imagination of movement produces a decrease in alpha and beta power. The mean alpha map showed ERD decrease localized over the contralateral sensory motor area (SM1c) and a light desynchronization in the ipsilateral sensory motor area (SM1i); whereas the mean beta map showed ERD decrease over the supplementary motor area (SMA). fMRI showed significant activation in SMA, SM1c, SM1i. The correlation is negative in the contralateral side and positive in the ipsilateral side. Using combined EEG-fMRI signals we obtained useful new information on the description of the changes in oscillatory activity in alpha and beta bands during MI and on the investigation of the sites of BOLD activity as possible sources in generating these rhythms. By correlating BOLD and ERD/ERS we may identify more accurately which regions contribute to changes of the electrical response. PMID:20850237

  1. Neuroinflammation contributes to hypokinesia in rats with hepatic encephalopathy: ibuprofen restores its motor activity.

    PubMed

    Cauli, Omar; Rodrigo, Regina; Piedrafita, Blanca; Llansola, Marta; Mansouri, Mohammad T; Felipo, Vicente

    2009-05-01

    Patients with hepatic encephalopathy show altered motor function, psychomotor slowing, and hypokinesia, which are reproduced in rats with portacaval shunts (PCS). Increased extracellular glutamate in substantia nigra pars reticulata (SNr) is responsible for hypokinesia in PCS rats. The mechanisms by which liver failure leads to increased extracellular glutamate in SNr remain unclear. Inflammation seems to act synergistically with hyperammonemia to induce neurological alterations in hepatic encephalopathy. It is therefore possible that inflammation-associated alterations may contribute to motor alterations in hepatic encephalopathy. The aim of this work was to assess whether treatment with an antiinflammatory, ibuprofen, is able to normalize extracellular glutamate in SNr and/or to improve hypokinesia in PCS rats. The amounts of the glutamate transporters GLT-1 and EAAC-1 are reduced by 26% and 32%, respectively, in SNr of PCS rats. This reduction is associated with a tenfold increase in extracellular glutamate in SNr and a reduction in motor activity. Chronic treatment with 30 mg/kg ibuprofen completely normalizes the amount of GLT-1 and EAAC-1 and significantly reduces (by 53%) extracellular glutamate in SNr of PCS rats. Moreover, ibuprofen, at 15 or 30 (but not at 5) mg/kg/day, completely eliminates hypokinesia, restoring normal motor activity. This supports the idea that inflammation is a main contributor to the induction of hypokinesia in hepatic encephalopathy. Moreover, these data point to the possible therapeutic utility of decreasing inflammation, by safe procedures, in the treatment of the motor deficits in patients with hepatic encephalopathy. PMID:19025766

  2. Spinal segment-specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans.

    PubMed

    Sayenko, Dimitry G; Atkinson, Darryn A; Dy, Christine J; Gurley, Katelyn M; Smith, Valerie L; Angeli, Claudia; Harkema, Susan J; Edgerton, V Reggie; Gerasimenko, Yury P

    2015-06-01

    Transcutaneous and epidural electrical spinal cord stimulation techniques are becoming more valuable as electrophysiological and clinical tools. Recently, we observed selective activation of proximal and distal motor pools during epidural spinal stimulation. In the present study, we hypothesized that the characteristics of recruitment curves obtained from leg muscles will reflect a relative preferential activation of proximal and distal motor pools based on their arrangement along the lumbosacral enlargement. The purpose was to describe the electrophysiological responses to transcutaneous stimulation in leg muscles innervated by motoneurons from different segmental levels. Stimulation delivered along the rostrocaudal axis of the lumbosacral enlargement in the supine position resulted in a selective topographical recruitment of proximal and distal leg muscles, as described by threshold intensity, slope of the recruitment curves, and plateau point intensity and magnitude. Relatively selective recruitment of proximal and distal motor pools can be titrated by optimizing the site and intensity level of stimulation to excite a given combination of motor pools. The slope of the recruitment of particular muscles allows characterization of the properties of afferents projecting to specific motoneuron pools, as well as to the type and size of the motoneurons. The location and intensity of transcutaneous spinal electrical stimulation are critical to target particular neural structures across different motor pools in investigation of specific neuromodulatory effects. Finally, the asymmetry in bilateral evoked potentials is inevitable and can be attributed to both anatomical and functional peculiarities of individual muscles or muscle groups. PMID:25814642

  3. Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation

    PubMed Central

    Strey, K.A.; Nichols, N.L.; Baertsch, N.A.; Broytman, O.; Baker-Herman, T.L.

    2012-01-01

    The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF, and that iPMF consists of at least two mechanistically distinct phases: 1) an early, labile phase that requires atypical PKC (PKCζ and/or PKCΙ/λ) activity to transition to a 2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKCζ/Ι and the scaffolding protein ZIP/p62 in spinal regions associated with the phrenic motor pool. Although PKCζ/Ι activity is necessary for iPMF, spinal aPKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that: 1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool, and 2) inactivity-induced increases in phrenic inspiratory output require local PKCζ/Ι activity to stabilize into a long-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system where prolonged inactivity ends life. PMID:23152633

  4. Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation.

    PubMed

    Strey, Kristi A; Nichols, Nicole L; Baertsch, Nathan A; Broytman, Oleg; Baker-Herman, Tracy L

    2012-11-14

    The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF and that iPMF consists of at least two mechanistically distinct phases: (1) an early, labile phase that requires atypical PKC (PKCζ and/or PKCι/λ) activity to transition to a (2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKCζ/ι and the scaffolding protein ZIP (PKCζ-interacting protein)/p62 in spinal regions associated with the phrenic motor pool. Although PKCζ/ι activity is necessary for iPMF, spinal atypical PKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that (1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool and (2) inactivity-induced increases in phrenic inspiratory output require local PKCζ/ι activity to stabilize into a long-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system in which prolonged inactivity ends life. PMID:23152633

  5. Brain activity during observation and motor imagery of different balance tasks: an fMRI study.

    PubMed

    Taube, Wolfgang; Mouthon, Michael; Leukel, Christian; Hoogewoud, Henri-Marcel; Annoni, Jean-Marie; Keller, Martin

    2015-03-01

    After immobilization, patients show impaired postural control and increased risk of falling. Therefore, loss of balance control should already be counteracted during immobilization. Previously, studies have demonstrated that both motor imagery (MI) and action observation (AO) can improve motor performance. The current study elaborated how the brain is activated during imagination and observation of different postural tasks to provide recommendations about the conception of non-physical balance training. For this purpose, participants were tested in a within-subject design in an fMRI-scanner in three different conditions: (a) AO + MI, (b) AO, and (c) MI. In (a) participants were instructed to imagine themselves as the person pictured in the video whereas in (b) they were instructed simply to watch the video. In (c) subjects closed their eyes and kinesthetically imagined the task displayed in the video. Two tasks were evaluated in each condition: (i) static standing balance and (ii) dynamic standing balance (medio-lateral perturbation). In all conditions the start of a new trial was indicated every 2 sec by a sound. During AO + MI of the dynamic task, participants activated motor centers including the putamen, cerebellum, supplementary motor area, premotor cortices (PMv/d) and primary motor cortex (M1). MI showed a similar pattern but no activity in M1 and PMv/d. In the SMA and cerebellum, activity was generally higher in the dynamic than in the static condition. AO did not significantly activate any of these brain areas. Our results showed that (I) mainly AO + MI, but also MI, activate brain regions important for balance control; (II) participants display higher levels of brain activation in the more demanding balance task; (III) there is a significant difference between AO + MI and AO. Consequently, best training effects should be expected when participants apply MI during AO (AO + MI) of challenging postural tasks. PMID:25461711

  6. Differences in Movement Mechanics, Electromyographic, and Motor Cortex Activity Between Accurate and Nonaccurate Stepping

    PubMed Central

    Farrell, Bradley J.; Sirota, Mikhail G.; Prilutsky, Boris I.

    2010-01-01

    What are the differences in mechanics, muscle, and motor cortex activity between accurate and nonaccurate movements? We addressed this question in relation to walking. We assessed full-body mechanics (229 variables), activity of 8 limb muscles, and activity of 63 neurons from the motor cortex forelimb representation during well-trained locomotion with different demands on the accuracy of paw placement in cats: during locomotion on a continuous surface and along horizontal ladders with crosspieces of different widths. We found that with increasing accuracy demands, cats assumed a more bent-forward posture (by lowering the center of mass, rotating the neck and head down, and by increasing flexion of the distal joints) and stepped on the support surface with less spatial variability. On the ladder, the wrist flexion moment was lower throughout stance, whereas ankle and knee extension moments were higher and hip moment was lower during early stance compared with unconstrained locomotion. The horizontal velocity time histories of paws were symmetric and smooth and did not differ among the tasks. Most of the other mechanical variables also did not depend on accuracy demands. Selected distal muscles slightly enhanced their activity with increasing accuracy demands. However, in a majority of motor cortex cells, discharge rate means, peaks, and depths of stride-related frequency modulation changed dramatically during accurate stepping as compared with simple walking. In addition, in 30% of neurons periods of stride-related elevation in firing became shorter and in 20–25% of neurons activity or depth of frequency modulation increased, albeit not linearly, with increasing accuracy demands. Considering the relatively small changes in locomotor mechanics and substantial changes in motor cortex activity with increasing accuracy demands, we conclude that during practiced accurate stepping the activity of motor cortex reflects other processes, likely those that involve

  7. Differences in movement mechanics, electromyographic, and motor cortex activity between accurate and nonaccurate stepping.

    PubMed

    Beloozerova, Irina N; Farrell, Bradley J; Sirota, Mikhail G; Prilutsky, Boris I

    2010-04-01

    What are the differences in mechanics, muscle, and motor cortex activity between accurate and nonaccurate movements? We addressed this question in relation to walking. We assessed full-body mechanics (229 variables), activity of 8 limb muscles, and activity of 63 neurons from the motor cortex forelimb representation during well-trained locomotion with different demands on the accuracy of paw placement in cats: during locomotion on a continuous surface and along horizontal ladders with crosspieces of different widths. We found that with increasing accuracy demands, cats assumed a more bent-forward posture (by lowering the center of mass, rotating the neck and head down, and by increasing flexion of the distal joints) and stepped on the support surface with less spatial variability. On the ladder, the wrist flexion moment was lower throughout stance, whereas ankle and knee extension moments were higher and hip moment was lower during early stance compared with unconstrained locomotion. The horizontal velocity time histories of paws were symmetric and smooth and did not differ among the tasks. Most of the other mechanical variables also did not depend on accuracy demands. Selected distal muscles slightly enhanced their activity with increasing accuracy demands. However, in a majority of motor cortex cells, discharge rate means, peaks, and depths of stride-related frequency modulation changed dramatically during accurate stepping as compared with simple walking. In addition, in 30% of neurons periods of stride-related elevation in firing became shorter and in 20-25% of neurons activity or depth of frequency modulation increased, albeit not linearly, with increasing accuracy demands. Considering the relatively small changes in locomotor mechanics and substantial changes in motor cortex activity with increasing accuracy demands, we conclude that during practiced accurate stepping the activity of motor cortex reflects other processes, likely those that involve integration

  8. Corrugator activity confirms immediate negative affect in surprise.

    PubMed

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes. PMID:25762956

  9. Corrugator activity confirms immediate negative affect in surprise

    PubMed Central

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes. PMID:25762956

  10. The Pediatric Motor Activity Log-Revised: Assessing Real-world Arm Use in Children with Cerebral Palsy

    PubMed Central

    Uswatte, Gitendra; Taub, Edward; Griffin, Angi; Vogtle, Laura; Rowe, Jan; Barman, Joydip

    2012-01-01

    Objective Widely accepted models of disability suggest that actual use of an impaired upper-extremity in everyday life frequently deviates from its motor capacity, as measured by laboratory tests. Yet, direct measures of real-world use of an impaired upper-extremity are rare in pediatric neurorehabilitation. This paper examines how well the Pediatric Motor Activity Log-Revised (PMAL-R) measures this parameter, when the PMAL-R is administered as a structured interview as originally designed. Design Parents of sixty children between 2–8 years with upper-extremity hemiparesis due to cerebral palsy (CP) completed the PMAL-R twice. Additionally, the children were videotaped during play structured to elicit spontaneous arm use. More-affected arm use was scored by masked raters; it was thought to reflect everyday activity since no cues were given about which arm to employ. Testing sessions were separated by 3 weeks, during which 29 children received upper-extremity rehabilitation and 31 did not. Results The PMAL-R had high internal consistency (Cronbach's α = .93) and test-retest reliability (r = .89). Convergent validity was supported by a strong correlation between changes in PMAL-R scores and more-affected arm use during play, r(53) = .5, p < .001. Conclusions The PMAL-R interview is a reliable and valid measure of upper-extremity pediatric neurorehabilitation outcome. PMID:22686553

  11. Using hierarchical clustering methods to classify motor activities of COPD patients from wearable sensor data

    PubMed Central

    Sherrill, Delsey M; Moy, Marilyn L; Reilly, John J; Bonato, Paolo

    2005-01-01

    Background Advances in miniature sensor technology have led to the development of wearable systems that allow one to monitor motor activities in the field. A variety of classifiers have been proposed in the past, but little has been done toward developing systematic approaches to assess the feasibility of discriminating the motor tasks of interest and to guide the choice of the classifier architecture. Methods A technique is introduced to address this problem according to a hierarchical framework and its use is demonstrated for the application of detecting motor activities in patients with chronic obstructive pulmonary disease (COPD) undergoing pulmonary rehabilitation. Accelerometers were used to collect data for 10 different classes of activity. Features were extracted to capture essential properties of the data set and reduce the dimensionality of the problem at hand. Cluster measures were utilized to find natural groupings in the data set and then construct a hierarchy of the relationships between clusters to guide the process of merging clusters that are too similar to distinguish reliably. It provides a means to assess whether the benefits of merging for performance of a classifier outweigh the loss of resolution incurred through merging. Results Analysis of the COPD data set demonstrated that motor tasks related to ambulation can be reliably discriminated from tasks performed in a seated position with the legs in motion or stationary using two features derived from one accelerometer. Classifying motor tasks within the category of activities related to ambulation requires more advanced techniques. While in certain cases all the tasks could be accurately classified, in others merging clusters associated with different motor tasks was necessary. When merging clusters, it was found that the proposed method could lead to more than 12% improvement in classifier accuracy while retaining resolution of 4 tasks. Conclusion Hierarchical clustering methods are relevant

  12. The Reinforcement of First Grade Science Concepts with the Use of Motor Learning Activities.

    ERIC Educational Resources Information Center

    Prager, Iris J.

    In order to test the theory that selected first-grade science concepts could be successfully reinforced with the use of motor activities, 52 first-graders were exposed to certain experimental procedures. Two separate classes of 25 students (group A) and 27 students (group B) underwent a pretest. Both classes were then taught through traditional…

  13. Effect of Robertsonian translocations on the motor activity rhythm in the house mouse.

    PubMed

    Sans-Fuentes, Maria Assumpció; López-Fuster, María José; Ventura, Jacint; Díez-Noguera, Antoni; Cambras, Trinitat

    2005-09-01

    Here we studied the circadian rhythm of motor activity in two groups of wild house mice from the chromosomal polymorphic zone of Barcelona, which differed in diploid number (2n): standard (2n = 40), with all acrocentric chromosomes, and Robertsonian (2n = 29-32), with several Robertsonian translocations. Motor activity under three lighting conditions, light-dark cycle, constant darkness, and constant light, was recorded for each mouse. The motor activity rhythm was examined by Fourier analysis and the daily power spectra were obtained. On the basis of the mean power spectrum of each animal and under each lighting condition, stepwise discriminant analyses were performed to classify the two chromosomal groups. This method allowed the correct classification of a large number of animals, the rhythms of about 2-2.6 hour periods being the most significant, with higher values in Robertsonian than in standard mice. Our results indicate that the daily motor activity pattern differs between the two chromosomal groups and its analysis may have a valuable interest for behavioral investigations on Robertsonian polymorphic zones of this species. PMID:16184488

  14. The influence of motor activity on the development of cardiac arrhythmias during experimental emotional stress

    NASA Technical Reports Server (NTRS)

    Ulyaninskiy, L. S.; Urmancheyeva, T. G.; Stepanyan, Y. P.; Fufacheva, A. A.; Gritsak, A. V.; Kuznetsova, B. A.; Kvitka, A. A.

    1982-01-01

    Experimental emotional stress which can produce various disorders of cardiac rhythm: sinus tachycardia, atrial fibrillation, ventricular, extrasystoles and paroxysmal ventricular tachysystoles was studied. In these conditions the adrenalin content in the blood and myocardium is increased 3 to 4 times. It is found that moderate motor activity leads to a relative decrease of adrenalin in the myocardium and arrest of cardiac arrhythmias.

  15. MOTOR ACTIVITY IN DEVELOPMENTAL NEUROTOXICITY TESTING: A CROSS-LABORATORY COMPARISON OF CONTROL DATA.

    EPA Science Inventory

    The USEPA Developmental Neurotoxicity (DNT) Study Test Guideline (OPPTS 870.6300) calls for a battery of functional and neuropathological assessments in offspring during and following maternal exposure. The battery includes measurement of motor activity on post-natal days (PND) ...

  16. INVESTIGATIONS OF AMITRAZ NEUROTOXICITY IN RATS. III. EFFECTS ON MOTOR ACTIVITY AND INHIBITION OF MONOAMINE OXIDASE

    EPA Science Inventory

    The formamidine pesticide amitraz (AMZ) produces many behavioral and physiological changes in rats. o explore possible neurochemical mechanisms for the behavioral effects of AMZ, we examined the dose effect and time course of AMZ on motor activity, monoamine oxidase (MAO) and ace...

  17. Less precise motor control leads to increased agonist-antagonist muscle activation during stick balancing.

    PubMed

    Reeves, N Peter; Popovich, John M; Vijayanagar, Vilok; Pathak, Pramod K

    2016-06-01

    Human motor control has constraints in terms of its responsiveness, which limit its ability to successfully perform tasks. In a previous study, it was shown that the ability to balance an upright stick became progressively more challenging as the natural frequency (angular velocity without control) of the stick increased. Furthermore, forearm and trunk agonist and antagonist muscle activation increased as the natural frequency of the stick increased, providing evidence that the central nervous system produces agonist-antagonist muscle activation to match task dynamics. In the present study, visual feedback of the stick position was influenced by changing where subject focused on the stick during stick balancing. It was hypothesized that a lower focal height would degrade motor control (more uncertainty in tracking stick position), thus making balancing more challenging. The probability of successfully balancing the stick at four different focal heights was determined along with the average angular velocity of the stick. Electromyographic signals from forearm and trunk muscles were also recorded. As expected, the probability of successfully balancing the stick decreased and the average angular velocity of the stick increased as subjects focused lower on the stick. In addition, changes in the level of agonist and antagonist muscle activation in the forearm and trunk was linearly related to changes in the angular velocity of the stick during balancing. One possible explanation for this is that the central nervous system increases muscle activation to account for less precise motor control, possibly to improve the responsiveness of human motor control. PMID:27010497

  18. Evidence for Dose-Additive Effects of Pyrethroids on Motor Activity in Rats

    EPA Science Inventory

    BACKGROUND: Pyrethroids are neurotoxic insecticides used in a variety of indoor and outdoor applications. Previous research characterized the acute dose-effect functions for 11 pyrethroids administered orally in corn oil (1 mL/kg) based on assessment of motor activity. OBJECTIVES...

  19. The Effect of Fine Motor Skill Activities on Kindergarten Student Attention

    ERIC Educational Resources Information Center

    Stewart, Roger A.; Rule, Audrey C.; Giordano, Debra A.

    2007-01-01

    This study explored the effect of fine motor skill activities on the development of attention in kindergarteners (n = 68) in five classes at a suburban public school in the Intermountain West through a pretest/posttest experimental group (n = 36) control group (n = 32) design. All children received the regular curriculum which included typical…

  20. TOLERANCE AND SENSITIZATION TO WEEKLY NICOTINE EXPOSURES ON THE MOTOR ACTIVITY OF RATS.

    EPA Science Inventory

    Motor activity was examined in adult female Long-Evans rats in a photocell device during daily (M-F) 30-min sessions. Following adaptation to the testing routine the rats were divided into six groups of eight that were designated to receive either nothing (non-injected control),...

  1. SENSITIZATION AND TOLERANCE WITH EPISODIC (WEEKLY) NICOTINE ON MOTOR ACTIVITY IN RATS.

    EPA Science Inventory

    These studies grew out of an unexpected finding from investigations of the neurobehavioral toxicity of PCBs. This paper shows that episodic, or recurring intermittent acute exposures to nicotine produce dramatic and long-lasting changes in the motor activity of laboratory rats. ...

  2. NEUROBEHAVIORAL DATA INTERPRETATION IN NEUROTOXICITY STUDIES: FOB, MOTOR ACTIVITY AND FUNCTION

    EPA Science Inventory

    Neurobehavioral evaluations are emerging as a key component in neurotoxicity testing. The tests most often used for screening are the functional observational battery (FOB) and motor activity. The FOB is a series of non-invasive observational and manipulative measures which ass...

  3. Educational Gymnastics: The Effectiveness of Montessori Practical Life Activities in Developing Fine Motor Skills in Kindergartners

    ERIC Educational Resources Information Center

    Bhatia, Punum; Davis, Alan; Shamas-Brandt, Ellen

    2015-01-01

    Research Findings: A quasi-experiment was undertaken to test the effect of Montessori practical life activities on kindergarten children's fine motor development and hand dominance over an 8-month period. Participants were 50 children age 5 in 4 Montessori schools and 50 students age 5 in a kindergarten program in a high-performing suburban…

  4. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music.

    PubMed

    Olshansky, Michael P; Bar, Rachel J; Fogarty, Mary; DeSouza, Joseph F X

    2015-01-01

    The current study used functional magnetic resonance imaging to examine the neural activity of an expert dancer with 35 years of break-dancing experience during the kinesthetic motor imagery (KMI) of dance accompanied by highly familiar and unfamiliar music. The goal of this study was to examine the effect of musical familiarity on neural activity underlying KMI within a highly experienced dancer. In order to investigate this in both primary sensory and motor planning cortical areas, we examined the effects of music familiarity on the primary auditory cortex [Heschl's gyrus (HG)] and the supplementary motor area (SMA). Our findings reveal reduced HG activity and greater SMA activity during imagined dance to familiar music compared to unfamiliar music. We propose that one's internal representations of dance moves are influenced by auditory stimuli and may be specific to a dance style and the music accompanying it. PMID:25301352

  5. Successful Treatment of Phantom Limb Pain by 1 Hz Repetitive Transcranial Magnetic Stimulation Over Affected Supplementary Motor Complex: A Case Report

    PubMed Central

    Lee, Jong-Hoo; Byun, Jeong-Hyun; Choe, Yu-Ri; Lim, Seung-Kyu; Lee, Ka-Young

    2015-01-01

    A 37-year-old man with a right transfemoral amputation suffered from severe phantom limb pain (PLP). After targeting the affected supplementary motor complex (SMC) or primary motor cortex (PMC) using a neuro-navigation system with 800 stimuli of 1 Hz repetitive transcranial magnetic stimulation (rTMS) at 85% of resting motor threshold, the 1 Hz rTMS over SMC dramatically reduced his visual analog scale (VAS) of PLP from 7 to 0. However, the 1 Hz rTMS over PMC failed to reduce pain. To our knowledge, this is the first case report of a successfully treated severe PLP with a low frequency rTMS over SMC in affected hemisphere. PMID:26361601

  6. Successful Treatment of Phantom Limb Pain by 1 Hz Repetitive Transcranial Magnetic Stimulation Over Affected Supplementary Motor Complex: A Case Report.

    PubMed

    Lee, Jong-Hoo; Byun, Jeong-Hyun; Choe, Yu-Ri; Lim, Seung-Kyu; Lee, Ka-Young; Choi, In-Sung

    2015-08-01

    A 37-year-old man with a right transfemoral amputation suffered from severe phantom limb pain (PLP). After targeting the affected supplementary motor complex (SMC) or primary motor cortex (PMC) using a neuro-navigation system with 800 stimuli of 1 Hz repetitive transcranial magnetic stimulation (rTMS) at 85% of resting motor threshold, the 1 Hz rTMS over SMC dramatically reduced his visual analog scale (VAS) of PLP from 7 to 0. However, the 1 Hz rTMS over PMC failed to reduce pain. To our knowledge, this is the first case report of a successfully treated severe PLP with a low frequency rTMS over SMC in affected hemisphere. PMID:26361601

  7. Motor Cortex Microcircuit Simulation Based on Brain Activity Mapping

    PubMed Central

    Chadderdon, George L.; Mohan, Ashutosh; Suter, Benjamin A.; Neymotin, Samuel A.; Kerr, Cliff C.; Francis, Joseph T.; Shepherd, Gordon M. G.; Lytton, William W.

    2016-01-01

    The deceptively simple laminar structure of neocortex belies the complexity of intra- and interlaminar connectivity. We developed a computational model based primarily on a unified set of brain activity mapping studies of mouse M1. The simulation consisted of 775 spiking neurons of 10 cell types with detailed population-to-population connectivity. Static analysis of connectivity with graph-theoretic tools revealed that the corticostriatal population showed strong centrality, suggesting that would provide a network hub. Subsequent dynamical analysis confirmed this observation, in addition to revealing network dynamics that cannot be readily predicted through analysis of the wiring diagram alone. Activation thresholds depended on the stimulated layer. Low stimulation produced transient activation, while stronger activation produced sustained oscillations where the threshold for sustained responses varied by layer: 13% in layer 2/3, 54% in layer 5A, 25% in layer 5B, and 17% in layer 6. The frequency and phase of the resulting oscillation also depended on stimulation layer. By demonstrating the effectiveness of combined static and dynamic analysis, our results show how static brain maps can be related to the results of brain activity mapping. PMID:24708371

  8. Changing ideas about others' intentions: updating prior expectations tunes activity in the human motor system.

    PubMed

    Jacquet, Pierre O; Roy, Alice C; Chambon, Valérian; Borghi, Anna M; Salemme, Roméo; Farnè, Alessandro; Reilly, Karen T

    2016-01-01

    Predicting intentions from observing another agent's behaviours is often thought to depend on motor resonance - i.e., the motor system's response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers' prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others' intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction. PMID:27243157

  9. Changing ideas about others’ intentions: updating prior expectations tunes activity in the human motor system

    PubMed Central

    Jacquet, Pierre O.; Roy, Alice C.; Chambon, Valérian; Borghi, Anna M.; Salemme, Roméo; Farnè, Alessandro; Reilly, Karen T.

    2016-01-01

    Predicting intentions from observing another agent’s behaviours is often thought to depend on motor resonance – i.e., the motor system’s response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers’ prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others’ intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction. PMID:27243157

  10. Patterns of motor activity in the isolated nerve cord of the octopus arm.

    PubMed

    Gutfreund, Yoram; Matzner, Henry; Flash, Tamar; Hochner, Binyamin

    2006-12-01

    The extremely flexible octopus arm provides a unique opportunity for studying movement control in a highly redundant motor system. We describe a novel preparation that allows analysis of the peripheral nervous system of the octopus arm and its interaction with the muscular and mechanosensory elements of the arm's intrinsic muscular system. First we examined the synaptic responses in muscle fibers to identify the motor pathways from the axial nerve cord of the arm to the surrounding musculature. We show that the motor axons project to the muscles via nerve roots originating laterally from the arm nerve cord. The motor field of each nerve is limited to the region where the nerve enters the arm musculature. The same roots also carry afferent mechanosensory information from the intrinsic muscle to the axial nerve cord. Next, we characterized the pattern of activity generated in the dorsal roots by electrically stimulating the axial nerve cord. The evoked activity, although far reaching and long lasting, cannot alone account for the arm extension movements generated by similar electrical stimulation. The mismatch between patterns of activity in the isolated cord and in an intact arm may stem from the involvement of mechanosensory feedback in natural arm extension. PMID:17179381

  11. Dynamic reorganization of neural activity in motor cortex during new sequence production.

    PubMed

    Lu, Xiaofeng; Ashe, James

    2015-09-01

    Although previous studies have shown that primary motor cortex (M1) neurons are modulated during the performance of a sequence of movements, it is not known how this neural activity in the M1 reorganizes during new learning of sequence-dependent motor skills. Here we trained monkeys to move to each of four spatial targets to produce multiple distinct sequences of movements in which the spatial organization of the targets determined uniquely the serial order of the movements. After the monkeys memorized the sequences, we changed one element of these over-practised sequences and the subjects were required to learn the new sequence through trial and error. When one element in an over-learned four-element sequence was changed, the sequence-specific neural activity was totally disrupted, but relatively minor changes in the direction-specific activity were observed. The data suggest that sequential motor skills are represented within M1 in the context of the complete sequential behavior rather than as a series of single consecutive movements; and sequence-specific neurons in the M1 are involved in new learning of sequence by using memorized knowledge to acquire complex motor skill efficiently. PMID:26202600

  12. Human movements and abstract motion displays activate different processes in the observer's motor system.

    PubMed

    Agosta, Sara; Battelli, Lorella; Casile, Antonino

    2016-04-15

    Brain imaging studies have shown that observation of both bodily movements and abstract motion displays complying with human kinematics activate the observer's motor cortex. However, it is unknown whether the same processes are active in the two conditions. Here, we addressed this issue using transcranial magnetic stimulation (TMS) to directly compare cortico-spinal excitability during observation of actions and motion stimuli that complied with or violated normal human kinematics. We found that kinematics significantly modulated the motor-evoked potentials (MEPs) produced by TMS during observation of both human and abstract motion stimuli. However, only the temporal unfolding of cortico-spinal excitability during observation of human movements significantly correlated with instantaneous stimulus velocity. This correlation was present for normal movements and also for a subset of the movements having unnatural kinematics. Furthermore, bodily movements for which we found no correlation between MEPs and stimulus velocity produced significantly higher MEPs. Our novel results suggest a dissociation in how human movements and abstract motion displays engage the observer's motor system. Specifically, while both stimulus types significantly activate the observer's motor cortex, only bodily movements produce patterns of cortico-spinal excitability that closely follow the velocity profile of the observed movement. This internal "re-enactment" of observed bodily movements seems to be only partially attuned to normal human kinematics. PMID:26854559

  13. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  14. Increased activity in frontal motor cortex compensates impaired speech perception in older adults

    PubMed Central

    Du, Yi; Buchsbaum, Bradley R.; Grady, Cheryl L.; Alain, Claude

    2016-01-01

    Understanding speech in noisy environments is challenging, especially for seniors. Although evidence suggests that older adults increasingly recruit prefrontal cortices to offset reduced periphery and central auditory processing, the brain mechanisms underlying such compensation remain elusive. Here we show that relative to young adults, older adults show higher activation of frontal speech motor areas as measured by functional MRI during a syllable identification task at varying signal-to-noise ratios. This increased activity correlates with improved speech discrimination performance in older adults. Multivoxel pattern classification reveals that despite an overall phoneme dedifferentiation, older adults show greater specificity of phoneme representations in frontal articulatory regions than auditory regions. Moreover, older adults with stronger frontal activity have higher phoneme specificity in frontal and auditory regions. Thus, preserved phoneme specificity and upregulation of activity in speech motor regions provide a means of compensation in older adults for decoding impoverished speech representations in adverse listening conditions. PMID:27483187

  15. Affective Analgesia following Muscarinic Activation of the Ventral Tegmental Area in Rats

    PubMed Central

    Kender, Robert G.; Harte, Steven E.; Munn, Elizabeth M.; Borszcz, George S.

    2009-01-01

    Cholinergic stimulation of dopamine neurons in the ventral tegmental area (VTA) underlies activation of the brain reward circuitry. Activation of this circuit is proposed to preferentially suppress the affective reaction to noxious stimulation. Vocalization afterdischarges (VADs) are a validated model of the affective response of rats to noxious tailshock. The antinociceptive action of the acetylcholine agonist carbachol microinjected into the VTA on VAD threshold was compared to its effect on the thresholds of other tailshock-elicited responses (VDS = vocalizations during shock, and SMR = spinal motor reflexes). Whereas VADs are organized within the forebrain, VDSs and SMRs are organized at medullary and spinal levels of the neuraxis, respectively. Carbachol (1 μg, 2 μg, and 4 μg) injected into VTA produced dose-dependent increases in VAD and VDS thresholds, although increases in VAD threshold were significantly greater than increases in VDS threshold. Administration of carbachol into VTA failed to elevate SMR threshold. Elevations in vocalization thresholds produced by intra-VTA carbachol were reversed in a dose-dependent manner by local administration of the muscarinic receptor antagonist atropine sulfate (30 μg and 60 μg). These results provide the first demonstration of the involvement of the VTA in muscarinic-induced suppression of pain affect. Perspective Cholinergic activation of the brain reward circuit produced a preferential suppression of rats’ affective reaction to noxious stimulation. The neurobiology that relates reinforcement to suppression of pain affect may provide insights into new treatments for pain and its associated affective disorders. PMID:18387853

  16. Sleep and duodenal motor activity in patients with severe non-ulcer dyspepsia.

    PubMed Central

    David, D; Mertz, H; Fefer, L; Sytnik, B; Raeen, H; Niazi, N; Kodner, A; Mayer, E A

    1994-01-01

    The prevalence of sleep disturbances was studied in patients with severe non-ulcer dyspepsia. It was also considered if the change in sleep pattern was associated with changes in the rhythmic fasting motor activity of the gastrointestinal tract, and if motor events correlate with the patient's symptoms. Motor activity in the duodenum was monitored over a 24 hour period under freely ambulatory conditions in 10 healthy controls and in 10 patients with severe non-ulcer dyspepsia using a transnasally placed catheter with six solid state pressure transducers connected to a digital data logging device. Symptoms and sleep disturbance were assessed by questionnaire and diary. Based on their symptoms, the patients were separated into two groups: those with dyspepsia symptoms only (non-ulcer dyspepsia; n = 5) and those with dyspepsia and additional functional symptoms thought to arise from the lower gastrointestinal tract (non-ulcer dyspepsia+irritable bowel syndrome; n = 5). When compared with either the control or the non-ulcer dyspepsia+irritable bowel syndrome group, non-ulcer dyspepsia patients had a considerably decreased number of migrating motor complexes during the nocturnal period (0.7 v 4.6), a decreased percentage of nocturnal phase I (5.2% v 78.0%), and an increased percentage of the nocturnal period in phase II (94% v 15.4%). Patients with non-ulcer dyspepsia+irritable bowel syndrome were not different from normal controls. Four of the non-ulcer dyspepsia patients and all of the non-ulcer dyspepsia+irritable bowel syndrome patients reported difficulties with sleep. Clusters of high amplitude tonic and phasic activity, not accompanied by subjective reports of discomfort were noted in several patients in both groups during the study. In eight of 10 patients, abdominal pain was reported during normal motor activity, while in one patient, pain correlated with phase III of the migrating motor complex. In contrast with previous reports in patients with irritable

  17. Subthalamic nucleus activity in the awake hemiparkinsonian rat: relationships with motor and cognitive networks.

    PubMed

    Delaville, Claire; McCoy, Alex J; Gerber, Colin M; Cruz, Ana V; Walters, Judith R

    2015-04-29

    Oscillatory activity in both beta and gamma ranges has been recorded in the subthalamic nucleus (STN) of Parkinson's disease (PD) patients and linked to motor function, with beta activity considered antikinetic, and gamma activity, prokinetic. However, the extent to which nonmotor networks contribute to this activity is unclear. This study uses hemiparkinsonian rats performing a treadmill walking task to compare synchronized STN local field potential (LFP) activity with activity in motor cortex (MCx) and medial prefrontal cortex (mPFC), areas involved in motor and cognitive processes, respectively. Data show increases in STN and MCx 29-36 Hz LFP spectral power and coherence after dopamine depletion, which are reduced by apomorphine and levodopa treatments. In contrast, recordings from mPFC 3 weeks after dopamine depletion failed to show peaks in 29-36 Hz LFP power. However, mPFC and STN both showed peaks in the 45-55 Hz frequency range in LFP power and coherence during walking before and 21 days after dopamine depletion. Interestingly, power in this low gamma range was transiently reduced in both mPFC and STN after dopamine depletion but recovered by day 21. In contrast to the 45-55 Hz activity, the amplitude of the exaggerated 29-36 Hz rhythm in the STN was modulated by paw movement. Furthermore, as in PD patients, after dopamine treatment a third band (high gamma) emerged in the lesioned hemisphere. The results suggest that STN integrates activity from both motor and cognitive networks in a manner that varies with frequency, behavioral state, and the integrity of the dopamine system. PMID:25926466

  18. Subthalamic Nucleus Activity in the Awake Hemiparkinsonian Rat: Relationships with Motor and Cognitive Networks

    PubMed Central

    Delaville, Claire; McCoy, Alex J.; Gerber, Colin M.; Cruz, Ana V.

    2015-01-01

    Oscillatory activity in both beta and gamma ranges has been recorded in the subthalamic nucleus (STN) of Parkinson's disease (PD) patients and linked to motor function, with beta activity considered antikinetic, and gamma activity, prokinetic. However, the extent to which nonmotor networks contribute to this activity is unclear. This study uses hemiparkinsonian rats performing a treadmill walking task to compare synchronized STN local field potential (LFP) activity with activity in motor cortex (MCx) and medial prefrontal cortex (mPFC), areas involved in motor and cognitive processes, respectively. Data show increases in STN and MCx 29–36 Hz LFP spectral power and coherence after dopamine depletion, which are reduced by apomorphine and levodopa treatments. In contrast, recordings from mPFC 3 weeks after dopamine depletion failed to show peaks in 29–36 Hz LFP power. However, mPFC and STN both showed peaks in the 45–55 Hz frequency range in LFP power and coherence during walking before and 21 days after dopamine depletion. Interestingly, power in this low gamma range was transiently reduced in both mPFC and STN after dopamine depletion but recovered by day 21. In contrast to the 45–55 Hz activity, the amplitude of the exaggerated 29–36 Hz rhythm in the STN was modulated by paw movement. Furthermore, as in PD patients, after dopamine treatment a third band (high gamma) emerged in the lesioned hemisphere. The results suggest that STN integrates activity from both motor and cognitive networks in a manner that varies with frequency, behavioral state, and the integrity of the dopamine system. PMID:25926466

  19. Effect of light on the activity of motor cortex neurons during locomotion

    PubMed Central

    Armer, Madison C.; Nilaweera, Wijitha U.; Rivers, Trevor J.; Dasgupta, Namrata M.; Beloozerova, Irina N.

    2013-01-01

    The motor cortex plays a critical role in accurate visually guided movements such as reaching and target stepping. However, the manner in which vision influences the movement-related activity of neurons in the motor cortex is not well understood. In this study we have investigated how the locomotion-related activity of neurons in the motor cortex is modified when subjects switch between walking in the darkness and in light. Three adult cats were trained to walk through corridors of an experimental chamber for a food reward. On randomly selected trials, lights were extinguished for approximately four seconds when the cat was in a straight portion of the chamber's corridor. Discharges of 146 neurons from layer V of the motor cortex, including 51 pyramidal tract cells (PTNs), were recorded and compared between light and dark conditions. It was found that while cats’ movements during locomotion in light and darkness were similar (as judged from the analysis of three-dimensional limb kinematics and the activity of limb muscles), the firing behavior of 49% (71/146) of neurons was different between the two walking conditions. This included differences in the mean discharge rate (19%, 28/146 of neurons), depth of stride-related frequency modulation (24%, 32/131), duration of the period of elevated firing ([PEF], 19%, 25/131), and number of PEFs among stride-related neurons (26%, 34/131). 20% of responding neurons exhibited more than one type of change. We conclude that visual input plays a very significant role in determining neuronal activity in the motor cortex during locomotion by altering one, or occasionally multiple, parameters of locomotion-related discharges of its neurons. PMID:23680161

  20. Patterns of regional brain activation associated with different forms of motor learning.

    PubMed

    Ghilardi, M; Ghez, C; Dhawan, V; Moeller, J; Mentis, M; Nakamura, T; Antonini, A; Eidelberg, D

    2000-07-14

    To examine the variations in regional cerebral blood flow during execution and learning of reaching movements, we employed a family of kinematically and dynamically controlled motor tasks in which cognitive, mnemonic and executive features of performance were differentiated and characterized quantitatively. During 15O-labeled water positron emission tomography (PET) scans, twelve right-handed subjects moved their dominant hand on a digitizing tablet from a central location to equidistant targets displayed with a cursor on a computer screen in synchrony with a tone. In the preceding week, all subjects practiced three motor tasks: 1) movements to a predictable sequence of targets; 2) learning of new visuomotor transformations in which screen cursor motion was rotated by 30 degrees -60 degrees; 3) learning new target sequences by trial and error, by using previously acquired routines in a task placing heavy load on spatial working memory. The control condition was observing screen and audio displays. Subtraction images were analyzed with Statistical Parametric Mapping to identify significant brain activation foci. Execution of predictable sequences was characterized by a modest decrease in movement time and spatial error. The underlying pattern of activation involved primary motor and sensory areas, cerebellum, basal ganglia. Adaptation to a rotated reference frame, a form of procedural learning, was associated with decrease in the imposed directional bias. This task was associated with activation in the right posterior parietal cortex. New sequences were learned explicitly. Significant activation was found in dorsolateral prefrontal and anterior cingulate cortices. In this study, we have introduced a series of flexible motor tasks with similar kinematic characteristics and different spatial attributes. These tasks can be used to assess specific aspects of motor learning with imaging in health and disease. PMID:10882792

  1. Effects of bilateral training on motor function, amount of activity and activity intensity measured with an accelerometer of patients with stroke

    PubMed Central

    Shim, Sunhwa; Jung, Jinhwa

    2015-01-01

    [Purpose] This study investigated the recovery of arm function and the functional use of the affected limb in real life of stroke patients after bilateral arm training. [Subjects] Twenty patients with stroke were randomly allocated to the BT (bilateral training group, n=10) and UT (unilateral training group, n=10) groups. [Methods] The BT group performed functional tasks with both hand symmetrically, the UT group performed tasks with only the affected hand for 30 minutes a session 5 times a week over 6 weeks. Before and after the intervention, accelerometers (Actisleep), functional independence measure (FIM) and manual function test (MFT) were used to assess subjects’ abilities. [Results] The BT group showed a significant improvement in FIM total score, motor subtotal score and MFT score of affected side compared to the UT group. The BT group showed a more quantitative increase in the amount of activity of the affected side than the UT group. Regarding activity intensity, the BT group showed a decrease in the sedentary level and an increase of the moderate level on the affected side compared to the UT group. [Conclusion] We found that programs tailored to the characteristics of stroke patients and continuous monitoring of physical activity using an accelerometer minimized possible future disability and improved the patients’ quality of life. PMID:25931723

  2. Active Transport of Nanomaterials Using Motor Proteins -Final Report

    SciTech Connect

    Hess, Henry

    2005-09-01

    During the six months of funding we have focused first on the completion of the research begun at the University of Washington in the previous funding cycle. Specifically, we developed a method to polymerize oriented networks of microtubules on lithographically patterned surfaces (M.S. thesis Robert Doot). The properties of active transport have been studied detail, yielding insights into the dispersion mechanisms (Nitta et al.). The assembly of multifunctional structures with a microtubule core has been investigated (Ramachandran et al.). Isaac Luria (B.S. in physics, U. of Florida 2005) worked on the directed assembly of nanoscale, non-equilibrium structures as a summer intern. He is now a graduate student in my group at the University of Florida. T. Nitta and H. Hess: Dispersion in Active Transport by Kinesin-Powered Molecular Shuttles, Nano Letters, 5, 1337-1342 (2005) S. Ramachandran, K.-H. Ernst, G. D. Bachand, V. Vogel, H. Hess*: Selective Loading of Kinesin-Powered Molecular Shuttles with Protein Cargo and its Application to Biosensing, submitted to Small (2005)

  3. Cerebral cortical activity associated with non-experts' most accurate motor performance.

    PubMed

    Dyke, Ford; Godwin, Maurice M; Goel, Paras; Rehm, Jared; Rietschel, Jeremy C; Hunt, Carly A; Miller, Matthew W

    2014-10-01

    This study's specific aim was to determine if non-experts' most accurate motor performance is associated with verbal-analytic- and working memory-related cerebral cortical activity during motor preparation. To assess this, EEG was recorded from non-expert golfers executing putts; EEG spectral power and coherence were calculated for the epoch preceding putt execution; and spectral power and coherence for the five most accurate putts were contrasted with that for the five least accurate. Results revealed marked power in the theta frequency bandwidth at all cerebral cortical regions for the most accurate putts relative to the least accurate, and considerable power in the low-beta frequency bandwidth at the left temporal region for the most accurate compared to the least. As theta power is associated with working memory and low-beta power at the left temporal region with verbal analysis, results suggest non-experts' most accurate motor performance is associated with verbal-analytic- and working memory-related cerebral cortical activity during motor preparation. PMID:25058623

  4. Active contractility and motor-driven effective interactions in a model cytoskeleton

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter

    2013-03-01

    Contractile forces are essential for many developmental processes involving cell shape change and tissue deformation. Recent experiments on reconstituted actomyosin network, the major component of the contractile machinery, have shown that active contractility occurs above a threshold motor concentration and within a window of cross-link concentration. We present a microscopic dynamic model that incorporates two essential aspects of actomyosin self-organization: the asymmetric load response of individual actin filaments and the correlated motor-driven events mimicking myosin-induced filament sliding. Using computer simulations, we examine how the concentration and susceptibility of motors contribute to their collective behavior and interplay with the network connectivity to regulate macroscopic contractility. Our model is shown to capture the formation and dynamics of contractile structures and agree with the observed dependence of active contractility on microscopic parameters. We further provide a theoretical framework to investigate the intricate interplay between local force generation, network connectivity and collective action of molecular motors. This framework is capable of accommodating both regular and heterogeneous pattern formation, arrested coarsening and macroscopic contraction in a unified manner. This work is supported by NSF via Grant PHY-0822283 and the Bullard-Welch Chair at Rice University.

  5. Effects of the potassium channel blocking dendrotoxins on acetylcholine release and motor nerve terminal activity.

    PubMed

    Anderson, A J; Harvey, A L

    1988-01-01

    1. The effects of the K+ channel blocking toxins, the dendrotoxins, on neuromuscular transmission and motor nerve terminal activity were assessed on frog cutaneous pectoris, mouse diaphragm and mouse triangularis sterni nerve-muscle preparations. Endplate potentials (e.p.ps) and miniature e.p.ps were recorded with intracellular microelectrodes, and nerve terminal spikes were recorded with extracellular electrodes placed in the perineural sheaths of motor nerves. 2. Dendrotoxin from green mamba (Dendroaspis angusticeps) venom and toxin I from black mamba (D. polylepis) venom increased the amplitude of e.p.ps by increasing quantal content, and also induced repetitive e.p.ps. 3. Perineural recordings revealed that dendrotoxins could decrease the component of the waveform associated with K+ currents at the nerve terminals, and induce repetitive activation of nerve terminals. 4. In frog motor nerves, dendrotoxins are known to block the fast f1 component of the K+ current at nodes of Ranvier. Blockade of a similar component of the K+ current at motor nerve terminals may be responsible for the effects of these toxins on neuromuscular transmission. 5. Similar conclusions can be drawn from the results obtained from mouse neuromuscular junctions. PMID:2450611

  6. Human Immunodeficiency Syndromes Affecting Human Natural Killer Cell Cytolytic Activity

    PubMed Central

    Ham, Hyoungjun; Billadeau, Daniel D.

    2013-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent fusion, promotes the release of the lytic granule contents into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process. PMID:24478771

  7. The effects of sleep, wake activity and time-on-task on offline motor sequence learning.

    PubMed

    Landry, Shane; Anderson, Clare; Conduit, Russell

    2016-01-01

    While intervening sleep promotes the consolidation of memory, it is well established that cognitive interference from competing stimuli can impede memory retention. The current study examined changes in motor skill learning across periods of wakefulness with and without competing stimuli, and periods of sleep with and without disruption from external stimuli. A napping study design was adopted where participants (N=44) either had (1) a 30min nap composed of Non-Rapid Eye Movement (NREM) sleep, (2) 30min NREM nap fragmented by audio tone induced arousals, (3) 45min of quiet wakefulness, or (4) 45min of active wakefulness. Measures of subjective sleepiness (KSS), alertness (PVT) and motor skill learning (Sequential Finger Tapping Task, SFTT) were completed in the morning and evening to assess performance pre- and post-nap or wakefulness. Following a practice session, change in motor skill performance was measured over a 10min post training rest interval, as well as following a 7h morning to evening interval comprising one of the four study conditions. A significant offline enhancement in motor task performance (13-23%) was observed following 10min of rest in all conditions. Following the long delay with the intervening nap/wake condition, there were no further offline gains or losses in performance in any sleep (uninterrupted/fragmented) or wake (quiet/active) condition. The current findings suggest that after controlling for offline gains in performance that occur after a brief rest and likely to due to the dissipation of fatigue, the subsequent effect of an intervening sleep or wake period on motor skill consolidation is not significant. Consistent with this null result, the impact of disrupting the sleep episode or manipulating activity during intervening wake also appears to be negligible. PMID:26655281

  8. Sensory activity affects sensory axon development in C. elegans.

    PubMed

    Peckol, E L; Zallen, J A; Yarrow, J C; Bargmann, C I

    1999-05-01

    The simple nervous system of the nematode C. elegans consists of 302 neurons with highly reproducible morphologies, suggesting a hard-wired program of axon guidance. Surprisingly, we show here that sensory activity shapes sensory axon morphology in C. elegans. A class of mutants with deformed sensory cilia at their dendrite endings have extra axon branches, suggesting that sensory deprivation disrupts axon outgrowth. Mutations that alter calcium channels or membrane potential cause similar defects. Cell-specific perturbations of sensory activity can cause cell-autonomous changes in axon morphology. Although the sensory axons initially reach their targets in the embryo, the mutations that alter sensory activity cause extra axon growth late in development. Thus, perturbations of activity affect the maintenance of sensory axon morphology after an initial pattern of innervation is established. This system provides a genetically tractable model for identifying molecular mechanisms linking neuronal activity to nervous system structure. PMID:10101123

  9. Regional vulnerability of the hippocampus to repeated motor activity deprivation.

    PubMed

    Faraji, Jamshid; Soltanpour, Nabiollah; Moeeini, Reza; Hosseini, Seyed Abedin; Pakdel, Shiva; Moharrerie, Alireza; Arjang, Kaveh; Soltanpour, Nasrin; Metz, Gerlinde A S

    2016-03-15

    Spontaneous vertical and horizontal exploratory movements are integral components of rodent behavior. Little is known, however, about the structural and functional consequences of restricted spontaneous exploration. Here, we report two experiments to probe whether restriction in vertical activity (rearing) in rats could induce neuro-hormonal and behavioral disturbances. Rearing movements in rats were deprived for 3h/day for 30 consecutive days by placing the animal into a circular tunnel task. Rats temporarily deprived of rearing behavior showed elevated plasma corticosterone levels but no detectable psychological distress and/or anxiety-related behavior within an elevated plus maze. However, rats emitted a greater number of 22-kHz ultrasonic vocalizations and spent significantly more time vocalizing than controls when deprived of their rearing behavior. Despite intact spatial performance within wet- and dry-land spatial tasks, rearing-deprived rats also exhibited a significant alteration in search strategies within both spatial tasks along with reduced volume and neuron number in the hippocampal subregion CA2. These data suggest a new approach to test the importance of free exploratory behavior in endocrine and structural manifestations. The results support a central role of the CA2 in spontaneous exploratory behavior and vulnerability to psychological stress. PMID:26723539

  10. Nano-engineered living bacterial motors for active microfluidic mixing.

    PubMed

    Al-Fandi, M; Jaradat, M A K; Fandi, K; Beech, J P; Tegenfeldt, J O; Yih, T C

    2010-09-01

    Active micromixers with rotating elements are attractive microfluidic actuators in many applications because of their mixing ability at a short distance. However, miniaturising the impeller design poses technical challenges including the fabrication and driving means. As a possible solution inspired by macro magnetic bar-stirrers, this study proposes the use of tethered, rotating bacteria as mixing elements. A tethered cell is a genetically engineered, harmless Escherichia coli (E. coli) attached to a surface by a single, shortened flagellum. The tethered flagellum acts as a pivot around which the entire cell body smoothly rotates. Videomicroscopy, image analysis and computational fluid dynamics (CFD) are utilised to demonstrate a proof-of-concept for the micro mixing process. Flow visualisation experiments show that a approximately 3 microm long tethered E. coli rotating at approximately 240 rpm can circulate a 1 microm polystyrene bead in the adjacent area at an average speed of nearly 4 microm/s. The Peclet (Peb) number for the stirred bead is evaluated to approximately 4. CFD simulations show that the rotary motion of a tethered E. coli rotating at 240 rpm can generate fluid velocities, up to 37 microm/s bordering the cell envelop. Based on these simulations, the Strouhal number (St) is calculated to about 2. This hybrid bio-inorganic micromxer could be used as a local, disposable mixer. PMID:20726672

  11. [The motor activity as an age parameter of the rat (authors transl)].

    PubMed

    Hofecker, G; Kment, A; Niedermüller, H

    1978-05-01

    The motor activity as an behavioural parameter provides information about the functional state of the organism as a whole. Therefore it is an important age parameter. The results of activity measurements, however, depend strongly on the method of registration. Using 3 groups of male Sprague-Dawley rats aged 9, 15 and 29 months two methods have been tested: 1) An electronic recording: the rats were registrated in their normal cages on the Animex-Activity-Meter during the dark-phase in complete darkness. The activity measured by this method has been regarded as spontaneous activity. 2) A kinematographic method: the rats were registrated in a changed environment at constant light during the dark-phase. The activity assessed by this method has been regarded as reactive activity. Spontaneous and reactive activity show a different age dependence. For the use of the motor activity as an age parameter, both, spontaneous and reactive activity, should be assessed to get a better information about the ageing of the different functional levels of the systems governing the animal's behaviour. PMID:26274

  12. Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation.

    PubMed

    Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin; Escobar, Carolina; Buijs, Ruud M; Hu, Kun

    2016-01-01

    One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only increases activity levels before the feeding period but also alters the temporal organization of motor activity fluctuations over a wide range of time scales from minutes up to 24 h. We demonstrate this multiscale alteration by assessing fractal patterns in motor activity fluctuations-similar fluctuation structure at different time scales-that are robust in intact animals with ad libitum food access but are disrupted under food restriction. In addition, we show that fractal activity patterns in rats with ad libitum food access are also perturbed by lesion of the dorsomedial hypothalamic (DMH)-a neural node that is involved in food anticipatory behavior. Instead of further disrupting fractal regulation, food restriction restores the disrupted fractal patterns in these animals after the DMH lesion despite the persistence of the 24-h rhythms. This compensatory effect of food restriction is more clearly pronounced in the same animals after the additional lesion of the suprachiasmatic nucleus (SCN)-the central master clock in the circadian system that generates and orchestrates circadian rhythms in behavior and physiological functions in synchrony with day-night cycles. Moreover, all observed influences of food restriction persist even when data during the food anticipatory and feeding period are excluded. These results indicate that food restriction impacts dynamics of motor activity at different time scales across the entire circadian/daily cycle, which is likely caused by the competition between the food-induced time cue and the light-entrained circadian rhythm of the SCN. The

  13. Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation

    PubMed Central

    Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin; Escobar, Carolina; Buijs, Ruud M.; Hu, Kun

    2016-01-01

    One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only increases activity levels before the feeding period but also alters the temporal organization of motor activity fluctuations over a wide range of time scales from minutes up to 24 h. We demonstrate this multiscale alteration by assessing fractal patterns in motor activity fluctuations—similar fluctuation structure at different time scales—that are robust in intact animals with ad libitum food access but are disrupted under food restriction. In addition, we show that fractal activity patterns in rats with ad libitum food access are also perturbed by lesion of the dorsomedial hypothalamic (DMH)—a neural node that is involved in food anticipatory behavior. Instead of further disrupting fractal regulation, food restriction restores the disrupted fractal patterns in these animals after the DMH lesion despite the persistence of the 24-h rhythms. This compensatory effect of food restriction is more clearly pronounced in the same animals after the additional lesion of the suprachiasmatic nucleus (SCN)—the central master clock in the circadian system that generates and orchestrates circadian rhythms in behavior and physiological functions in synchrony with day-night cycles. Moreover, all observed influences of food restriction persist even when data during the food anticipatory and feeding period are excluded. These results indicate that food restriction impacts dynamics of motor activity at different time scales across the entire circadian/daily cycle, which is likely caused by the competition between the food-induced time cue and the light-entrained circadian rhythm of the

  14. The effect of involuntary motor activity on myoelectric pattern recognition: a case study with chronic stroke patients

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Zev Rymer, William; Zhou, Ping

    2013-08-01

    Objective. This study investigates the effect of the involuntary motor activity of paretic-spastic muscles on the classification of surface electromyography (EMG) signals. Approach. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at relatively slow and fast speeds. For each stroke subject, the degree of involuntary motor activity present in the voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from the slow and fast sessions. Main results. Across all tested stroke subjects, our results revealed that when involuntary surface EMG is absent or present in both the training and testing datasets, high accuracies (>96%, >98%, respectively, averaged over all the subjects) can be achieved in the classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either the training or testing datasets, the classification accuracies were dramatically reduced (<89%, <85%, respectively). However, if both the training and testing datasets contained EMG signals with the presence and absence of involuntary EMG interference, high accuracies were still achieved (>97%). Significance. The findings of this study can be used to guide the appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation.

  15. How does the anthropogenic activity affect the spring discharge?

    NASA Astrophysics Data System (ADS)

    Hao, Yonghong; Zhang, Juan; Wang, Jiaojiao; Li, Ruifang; Hao, Pengmei; Zhan, Hongbin

    2016-09-01

    Karst hydrological process has largely been altered by climate change and human activity. In many places throughout the world, human activity (e.g. groundwater pumping and dewatering from mining) has intensified and surpassed climate change, where human activity becomes the primary factor that affects groundwater system. But it is still largely unclear how the human activity affects spring discharge in magnitude and periodicity. This study investigates the effects of anthropogenic activity on spring discharge, using the Xin'an Springs of China as an example. The Xin'an Spring discharge were divided into two time periods: the pre-development period from 1956 to 1971 and the post-development period from 1972 to 2013. We confirm the dividing time (i.e. 1971) of these two periods using the Wilcoxon rank-sum test. Then the wavelet transform and wavelet coherence were used to analyze the karst hydrological processes for the two periods respectively. We analyze the correlations of precipitation and the Xin'an spring discharge with the monsoons including the Indian Summer Monsoon (ISM) and the West North Pacific Monsoon (WNPM) and the climate teleconnections including El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), respectively. The results indicated that the spring discharge was attenuated about 19.63% under the influence of human activity in the Xin'an Springs basin. However, human activity did not alter the size of the resonance frequencies between the spring discharge and the monsoons. In contrast, it reinforced the periodicities of the monsoons-driven spring discharge. It suggested that human has adapted to the major climate periodicities, and human activity had the same rhyme with the primary climate periodicity. In return, human activity enhances the correlation between the monsoons and the spring discharge.

  16. Active Motor Training Has Long-term Effects on Infants' Object Exploration.

    PubMed

    Wiesen, Sarah E; Watkins, Rachel M; Needham, Amy Work

    2016-01-01

    Long-term changes in infants' behavior as a result of active motor training were studied. Thirty-two infants completed three visits to the laboratory. At the first visit, infants were 3 months old and completed an object exploration assessment. Then the experimenter demonstrated the motor training procedures appropriate for the infant's experimental condition, and parents took home custom infant mittens (either sticky or non-sticky) and a bag of lightweight toys to practice with their infants. Over the course of the following 2 weeks, infants participated in 10 sessions of either active (sticky) or passive (non-sticky) mittens training at home with their parents. Infants who participated in active mittens training wore mittens with the palms covered in Velcro, allowing them to pick up and move around small toys. Infants who participated in passive mittens training wore non-sticky mittens, and their parents moved the toys through their visual fields on their behalf. After completing the training, infants returned to the lab for the second visit. At visit two, infants participated in another object exploration assessment as well as a reaching assessment. Parents returned the training materials to the lab at the second visit, and were told not to continue any specific training regimen from this point forward. Two months later, when infants were about 5.5 months of age, they returned to the lab for a third visit. At the third visit, infants completed the same two assessments as during the second visit. The results of this study indicate that infants who participated in active motor training engaged in more sophisticated object exploration when compared to infants who received passive training. These findings are consistent with others in the literature showing that active motor training at 3 months of age facilitates the processes of object exploration and engagement. The current results and others reveal that the effects of early experience can last long after

  17. Active Motor Training Has Long-term Effects on Infants’ Object Exploration

    PubMed Central

    Wiesen, Sarah E.; Watkins, Rachel M.; Needham, Amy Work

    2016-01-01

    Long-term changes in infants’ behavior as a result of active motor training were studied. Thirty-two infants completed three visits to the laboratory. At the first visit, infants were 3 months old and completed an object exploration assessment. Then the experimenter demonstrated the motor training procedures appropriate for the infant’s experimental condition, and parents took home custom infant mittens (either sticky or non-sticky) and a bag of lightweight toys to practice with their infants. Over the course of the following 2 weeks, infants participated in 10 sessions of either active (sticky) or passive (non-sticky) mittens training at home with their parents. Infants who participated in active mittens training wore mittens with the palms covered in Velcro, allowing them to pick up and move around small toys. Infants who participated in passive mittens training wore non-sticky mittens, and their parents moved the toys through their visual fields on their behalf. After completing the training, infants returned to the lab for the second visit. At visit two, infants participated in another object exploration assessment as well as a reaching assessment. Parents returned the training materials to the lab at the second visit, and were told not to continue any specific training regimen from this point forward. Two months later, when infants were about 5.5 months of age, they returned to the lab for a third visit. At the third visit, infants completed the same two assessments as during the second visit. The results of this study indicate that infants who participated in active motor training engaged in more sophisticated object exploration when compared to infants who received passive training. These findings are consistent with others in the literature showing that active motor training at 3 months of age facilitates the processes of object exploration and engagement. The current results and others reveal that the effects of early experience can last long after

  18. Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Seidenberg, Mark S; Gross, William L; Conant, Lisa L; Binder, Jeffrey R

    2015-09-01

    While major advances have been made in uncovering the neural processes underlying perceptual representations, our grasp of how the brain gives rise to conceptual knowledge remains relatively poor. Recent work has provided strong evidence that concepts rely, at least in part, on the same sensory and motor neural systems through which they were acquired, but it is still unclear whether the neural code for concept representation uses information about sensory-motor features to discriminate between concepts. In the present study, we investigate this question by asking whether an encoding model based on five semantic attributes directly related to sensory-motor experience - sound, color, visual motion, shape, and manipulation - can successfully predict patterns of brain activation elicited by individual lexical concepts. We collected ratings on the relevance of these five attributes to the meaning of 820 words, and used these ratings as predictors in a multiple regression model of the fMRI signal associated with the words in a separate group of participants. The five resulting activation maps were then combined by linear summation to predict the distributed activation pattern elicited by a novel set of 80 test words. The encoding model predicted the activation patterns elicited by the test words significantly better than chance. As expected, prediction was successful for concrete but not for abstract concepts. Comparisons between encoding models based on different combinations of attributes indicate that all five attributes contribute to the representation of concrete concepts. Consistent with embodied theories of semantics, these results show, for the first time, that the distributed activation pattern associated with a concept combines information about different sensory-motor attributes according to their respective relevance. Future research should investigate how additional features of phenomenal experience contribute to the neural representation of conceptual

  19. Factors Affecting Psychosocial and Motor Development in 3-Year-Old Children Who Are Deaf or Hard of Hearing.

    PubMed

    Leigh, Greg; Ching, Teresa Y C; Crowe, Kathryn; Cupples, Linda; Marnane, Vivienne; Seeto, Mark

    2015-10-01

    Previous research has shown an association between children's development of psychosocial and motor skills. This study evaluated the development of these skills in 301 three-year-old deaf and hard of hearing children (M: 37.8 months) and considered a range of possible predictors including gender, birth weight, age at first fitting with hearing devices, hearing device used, presence of additional disabilities, severity of hearing loss, maternal education, socio-economic status (SES), language ability, and communication mode. Caregivers reported on children's development using the Child Development Inventory (CDI). On average, both psychosocial and motor development quotients were within the typical range for hearing children, with large individual differences. There was a positive correlation between language ability and both social and motor development, and also between social and motor development. Age at first fitting of hearing aids (as an indicator of age at identification of hearing loss), SES, degree of hearing loss, and maternal education were not significant predictors of social skill or motor development, whereas presence of additional disabilities and birth weight were. Girls performed better than boys on all but the Gross Motor subscale of the CDI. Children with hearing aids tended to perform better than those with cochlear implants on the Gross Motor subscale. PMID:26209447

  20. Body side-specific control of motor activity during turning in a walking animal

    PubMed Central

    Gruhn, Matthias; Rosenbaum, Philipp; Bockemühl, Till; Büschges, Ansgar

    2016-01-01

    Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task. DOI: http://dx.doi.org/10.7554/eLife.13799.001 PMID:27130731

  1. PROMOTING GROSS MOTOR SKILLS IN TODDLERS: THE ACTIVE BEGINNINGS PILOT CLUSTER RANDOMIZED TRIAL.

    PubMed

    Veldman, Sanne L C; Okely, Anthony D; Jones, Rachel A

    2015-12-01

    This study examined the feasibility, acceptability, and potential efficacy of a gross motor skill program for toddlers. An 8-wk. skills program in which children practiced three skills was implemented for 10 min. daily in two randomly designated childcare centers. Two other centers served as the control group. Recruitment and retention rates were collected for feasibility. Data on professional development, children's participation, program duration, and appropriateness of the lessons were collected for acceptability, and the Test of Gross Motor Development-2 and Get Skilled, Get Active (total of 28 points) were used to look at the potential efficacy. The participants were 60 toddlers (M age=2.5 yr., SD=0.4; n=29 boys), and the retention rate was 95%. Overall participation was 76%, and educators rated 98% of the lessons as appropriate. Compared with the control group, the intervention group showed significantly greater improvements in motor skills (p<.05, Cohen's d=1.13). This study shows that a brief intervention, which is easy to integrate on a daily basis in childcare settings, can improve motor skills among toddlers. PMID:26682608

  2. Role of GluR1 in Activity-Dependent Motor System Development

    PubMed Central

    Zhang, Lei; Schessl, Joachim; Werner, Markus; Bonnemann, Carsten; Xiong, Guoxiang; Mojsilovic-Petrovic, Jelena; Zhou, Weiguo; Cohen, Akiva; Seeburg, Peter; Misawa, Hidemi; Jayaram, Aditi; Personius, Kirkwood; Hollmann, Michael; Sprengel, Rolf

    2008-01-01

    Activity-dependent specification of neuronal architecture during early postnatal life is essential for refining the precision of communication between neurons. In the spinal cord under normal circumstances, the AMPA receptor subunit GluR1 is expressed at high levels by motor neurons and surrounding interneurons during this critical developmental period, although the role it plays in circuit formation and locomotor behavior is unknown. Here, we show that GluR1 promotes dendrite growth in a non-cell-autonomous manner in vitro and in vivo. The mal-development of motor neuron dendrites is associated with changes in the pattern of interneuronal connectivity within the segmental spinal cord and defects in strength and endurance. Transgenic expression of GluR1 in adult motor neurons leads to dendrite remodeling and supernormal locomotor function. GluR1 expression by neurons within the segmental spinal cord plays an essential role in formation of the neural network that underlies normal motor behavior. PMID:18829953

  3. Extraction of motion strength and motor activity signals from video recordings of neonatal seizures.

    PubMed

    Karayiannis, N B; Srinivasan, S; Bhattacharya, R; Wise, M S; Frost, J D; Mizrahi, E M

    2001-09-01

    This paper presents two methods developed to extract quantitative information from video recordings of neonatal seizures in the form of temporal motion strength and motor activity signals. Motion strength signals are extracted by measuring the area of the body parts that move during the seizure and the relative speed of motion using a combination of spatiotemporal subband decomposition of video, nonlinear filtering, and segmentation. Motor activity signals are extracted by tracking selected anatomical sites during the seizure using a modified version of a feature-tracking procedure developed for video, known as the Kanade-Lucas-Tomasi (KLT) algorithm. The experiments indicate that the temporal signals produced by the proposed methods provide the basis for differentiating myoclonic from focal clonic seizures and distinguishing these types of neonatal seizures from normal infant behaviors. PMID:11585212

  4. Shuttle Rocket Motor Program: NASA should delay awarding some construction contracts. Report to the Chair, Subcommittee on Government Activities and Transportation, Committee on Government Operations, House of Representatives

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Even though the executive branch has proposed terminating the Advanced Solid Rocket Motor (ASRM) program, NASA is proceeding with all construction activity planned for FY 1992 to avoid schedule slippage if the program is reinstated by Congress. However, NASA could delay some construction activities for at least a few months without affecting the current launch data schedule. For example, NASA could delay Yellow Creek's motor storage and dock projects, Stennis' dock project, and Kennedy's rotation processing and surge facility and dock projects. Starting all construction activities as originally planned could result in unnecessarily incurring additional costs and termination liability if the funding for FY 1993 is not provided. If Congress decides to continue the program, construction could still be completed in time to avoid schedule slippage.

  5. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study.

    PubMed

    Popescu, Mihai; Otsuka, Asuka; Ioannides, Andreas A

    2004-04-01

    There are formidable problems in studying how 'real' music engages the brain over wide ranges of temporal scales extending from milliseconds to a lifetime. In this work, we recorded the magnetoencephalographic signal while subjects listened to music as it unfolded over long periods of time (seconds), and we developed and applied methods to correlate the time course of the regional brain activations with the dynamic aspects of the musical sound. We showed that frontal areas generally respond with slow time constants to the music, reflecting their more integrative mode; motor-related areas showed transient-mode responses to fine temporal scale structures of the sound. The study combined novel analysis techniques designed to capture and quantify fine temporal sequencing from the authentic musical piece (characterized by a clearly defined rhythm and melodic structure) with the extraction of relevant features from the dynamics of the regional brain activations. The results demonstrated that activity in motor-related structures, specifically in lateral premotor areas, supplementary motor areas, and somatomotor areas, correlated with measures of rhythmicity derived from the music. These correlations showed distinct laterality depending on how the musical performance deviated from the strict tempo of the music score, that is, depending on the musical expression. PMID:15050586

  6. Neck motor unit activities induced by inputs from periodontal mechanoreceptors in rats.

    PubMed

    Zeredo, J L; Toda, K; Soma, K

    2002-01-01

    Clinical evidence suggests that head movements may be coupled with oro-facial functions, which are predominantly controlled by somatosensory inputs from the oro-facial area. However, the effects of specific modalities of sensory inputs on the neck muscles' motor activity are still unclear. In the present study, natural pressure stimulation was applied to the rat's upper first molars, while motor unit electromyographic activity was recorded from the dorsal neck splenius muscle. During the hold phase of pressure stimulation, clear tonic discharges were elicited in the splenius muscles on both sides. Mean threshold values were 622.3 mN (+/- 19.6 SEM, n = 39) and 496.8 mN (+/- 26.4 SEM, n = 43) for ipsi- and contralateral sides, respectively (p < 0.001, Mann-Whitney U test). Analysis of our data suggests that periodontal inputs may play an important role in controlling the motor activity of neck muscles, in addition to its well-known coordination of the masticatory function. PMID:11820365

  7. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Black, Michael J.

    2008-12-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. Disclosure. JPD is the Chief Scientific Officer and a director of Cyberkinetics Neurotechnology Systems (CYKN); he holds stock and receives compensation. JDS has been a consultant for CYKN. LRH receives clinical trial support from CYKN.

  8. The influence of social evaluation on cerebral cortical activity and motor performance: a study of "Real-Life" competition.

    PubMed

    Hatfield, Bradley D; Costanzo, Michelle E; Goodman, Ronald N; Lo, Li-Chuan; Oh, Hyuk; Rietschel, Jeremy C; Saffer, Mark; Bradberry, Trent; Contreras-Vidal, Jose; Haufler, Amy

    2013-11-01

    Motor performance in a social evaluative environment was examined in participants (N = 19) who completed a pistol shooting task under both performance-alone (PA) and competitive (C) conditions. Electroencephalographic (EEG), autonomic, and psychoendocrine activity were recorded in addition to kinematic measures of the aiming behavior. State anxiety, heart rate, and cortisol were modestly elevated during C and accompanied by relative desynchrony of high-alpha power, increased cortico-cortical communication between motor and non-motor regions, and degradation of the fluency of aiming trajectory, but maintenance of performance outcome (i.e., score). The findings reveal that performance in a complex social-evaluative environment characterized by competition results in elevated cortical activity beyond that essentially required for motor performance that translated as less efficient motor behavior. PMID:23954302

  9. Metal Toxicity Affects Fungal and Bacterial Activities in Soil Differently

    PubMed Central

    Rajapaksha, R. M. C. P.; Tobor-Kapłon, M. A; Bååth, E.

    2004-01-01

    Although the toxic effect of heavy metals on soil microorganism activity is well known, little is known about the effects on different organism groups. The influence of heavy metal addition on total, bacterial, and fungal activities was therefore studied for up to 60 days in a laboratory experiment using forest soil contaminated with different concentrations of Zn or Cu. The effects of the metals differed between the different activity measurements. During the first week after metal addition, the total activity (respiration rate) decreased by 30% at the highest level of contamination and then remained stable during the 60 days of incubation. The bacterial activity (thymidine incorporation rate) decreased during the first days with the level of metal contamination, resulting in a 90% decrease at the highest level of contamination. Bacterial activity then slowly recovered to values similar to those of the control soil. The recovery was faster when soil pH, which had decreased due to metal addition, was restored to control values by liming. Fungal activity (acetate-in-ergosterol incorporation rate) initially increased with the level of metal contamination, being up to 3 and 7 times higher than that in the control samples during the first week at the highest levels of Zn and Cu addition, respectively. The positive effect of metal addition on fungal activity then decreased, but fungal activity was still higher in contaminated than in control soil after 35 days. This is the first direct evidence that fungal and bacterial activities in soil are differently affected by heavy metals. The different responses of bacteria and fungi to heavy metals were reflected in an increase in the relative fungal/bacterial ratio (estimated using phospholipid fatty acid analysis) with increased metal load. PMID:15128558

  10. Metal toxicity affects fungal and bacterial activities in soil differently.

    PubMed

    Rajapaksha, R M C P; Tobor-Kapłon, M A; Bååth, E

    2004-05-01

    Although the toxic effect of heavy metals on soil microorganism activity is well known, little is known about the effects on different organism groups. The influence of heavy metal addition on total, bacterial, and fungal activities was therefore studied for up to 60 days in a laboratory experiment using forest soil contaminated with different concentrations of Zn or Cu. The effects of the metals differed between the different activity measurements. During the first week after metal addition, the total activity (respiration rate) decreased by 30% at the highest level of contamination and then remained stable during the 60 days of incubation. The bacterial activity (thymidine incorporation rate) decreased during the first days with the level of metal contamination, resulting in a 90% decrease at the highest level of contamination. Bacterial activity then slowly recovered to values similar to those of the control soil. The recovery was faster when soil pH, which had decreased due to metal addition, was restored to control values by liming. Fungal activity (acetate-in-ergosterol incorporation rate) initially increased with the level of metal contamination, being up to 3 and 7 times higher than that in the control samples during the first week at the highest levels of Zn and Cu addition, respectively. The positive effect of metal addition on fungal activity then decreased, but fungal activity was still higher in contaminated than in control soil after 35 days. This is the first direct evidence that fungal and bacterial activities in soil are differently affected by heavy metals. The different responses of bacteria and fungi to heavy metals were reflected in an increase in the relative fungal/bacterial ratio (estimated using phospholipid fatty acid analysis) with increased metal load. PMID:15128558

  11. [The blood glucose content in newborn rats depending on level and pattern of spontaneous motor activity].

    PubMed

    Kuznetsov, S V; Selina, E N; Kuznetsova, N N

    2011-01-01

    Earlier we have shown that administration to newborn rats of the pentose phosphate cycle inhibitor hydroquinone leads to a change in intensity and pattern of spontaneous periodic motor activity (SPMA) characteristic of early stages of development. The most typical was the disappearance of the rest period from the near-minute cycle "activity--rest" and the appearance of uninterrupted motor activity. In several cases, especially after 10 days of development, there was noted an enhancement in the SMPA pattern of the motor activity complexes following in the decasecond rhythm. In this study, on the 3-10-day old rats maintained under conditions of free behavior there was studied the blood glucose content in the animals at various periods of the activity-rest cycle. Apart from the SPMA phase, its composition (pattern) characterizing the maturity level and functional state of spinal motor centers was taken into account. In the 3, 7 and 10-day old rats at the rest period, the glucose concentration was established to differ depending on the motor activity pattern. In the case of the decasecond periodicity, it amounts to 5.7 +/- 0.2, 6.3 +/- +/- 0.3, and 7.7 +/- 0.3 mmol/l, while at the minute one--6.1 +/- 0.4, 7.8 +/- 0.3, and 7.8 +/- 0.1 mmol/l. At the moment of bursts of motor excitation, the glucose concentration falls to 5.2 +/- 0.1, 6.1 +/- 0.4, and 7.1 +/- +/- 0.3 mm at the decasecond and to 5.4 +/- 0.5, 6.7 +/- 0.2, and 7.6 +/- 0.3 mmol/l at the near-minute rhythm (for the 3, 7 and 10-day old animals, respectively). The results obtained on the 5-day rat pups differ qualitatively from those observed in other age groups. Thus, the glucose concentration at the rest period amounts to 6.8 +/- 0.2 at the decasecond and to 6.7 +/- 0.4 mmol/l at the nearminute periodicity. At the period of motor excitation accompanied by the presence of the decasecond activity rhythm, the glucose concentration falls to the level of 6.0 +/- 0.2 mmol/l by differing statistically significantly

  12. Motile properties of the bi-directional kinesin-5 Cin8 are affected by phosphorylation in its motor domain

    PubMed Central

    Shapira, Ofer; Gheber, Larisa

    2016-01-01

    The Saccharomyces cerevisiae kinesin-5 Cin8 performs essential mitotic functions in spindle assembly and anaphase B spindle elongation. Recent work has shown that Cin8 is a bi-directional motor which moves towards the minus-end of microtubules (MTs) under high ionic strength (IS) conditions and changes directionality in low IS conditions and when bound between anti-parallel microtubules. Previous work from our laboratory has also indicated that Cin8 is differentially phosphorylated during late anaphase at cyclin-dependent kinase 1 (Cdk1)-specific sites located in its motor domain. In vivo, such phosphorylation causes Cin8 detachment from spindles and reduces the spindle elongation rate, while maintaining proper spindle morphology. To study the effect of phosphorylation on Cin8 motor function, we examined in vitro motile properties of wild type Cin8, as well as its phosphorylation using phospho-deficient and phospho-mimic variants, in a single molecule fluorescence motility assay. Analysis was performed on whole cell extracts and on purified Cin8 samples. We found that addition of negative charges in the phospho-mimic mutant weakened the MT-motor interaction, increased motor velocity and promoted minus-end-directed motility. These results indicate that phosphorylation in the catalytic domain of Cin8 regulates its motor function. PMID:27216310

  13. Body stability and muscle and motor cortex activity during walking with wide stance.

    PubMed

    Farrell, Brad J; Bulgakova, Margarita A; Beloozerova, Irina N; Sirota, Mikhail G; Prilutsky, Boris I

    2014-08-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  14. Body stability and muscle and motor cortex activity during walking with wide stance

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Beloozerova, Irina N.; Sirota, Mikhail G.

    2014-01-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  15. Normal activation of the supplementary motor area in patients with Parkinson's disease undergoing long-term treatment with levodopa.

    PubMed Central

    Rascol, O; Sabatini, U; Chollet, F; Fabre, N; Senard, J M; Montastruc, J L; Celsis, P; Marc-Vergnes, J P; Rascol, A

    1994-01-01

    Regional cerebral blood flow (rCBF) changes in cortical motor areas were measured during a movement of the dominant right hand in 15 patients with Parkinson's disease deprived of their usual levodopa treatment, in 11 patients with Parkinson's disease undergoing long-term treatment with levodopa, and in 15 normal volunteers. The supplementary motor areas were significantly activated in the normal subjects and in the patients receiving levodopa but not in the patients deprived of levodopa. The contralateral primary sensory motor area was significantly activated in all three groups. The ipsilateral primary sensory motor cortex was not activated in the normal subjects and the non-treated patients but was in the patients treated with levodopa. It is concluded that the supplementary motor area hypoactivation which is observed in akinetic non-treated patients with Parkinson's disease is not present in patients undergoing long-term treatment with levodopa. This result suggests that (a) levodopa improves the functional activity of supplementary motor areas in Parkinson's disease and (b) there is no pharmacological tolerance to this effect. The ipsilateral primary motor cortex activation observed in the patients treated with levodopa could be related to levodopa-induced abnormal involuntary movements. PMID:8201325

  16. Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions

    PubMed Central

    Cools, Roshan; Nakamura, Kae; Daw, Nathaniel D

    2011-01-01

    Serotonin, like dopamine (DA), has long been implicated in adaptive behavior, including decision making and reinforcement learning. However, although the two neuromodulators are tightly related and have a similar degree of functional importance, compared with DA, we have a much less specific understanding about the mechanisms by which serotonin affects behavior. Here, we draw on recent work on computational models of dopaminergic function to suggest a framework by which many of the seemingly diverse functions associated with both DA and serotonin—comprising both affective and activational ones, as well as a number of other functions not overtly related to either—can be seen as consequences of a single root mechanism. PMID:20736991

  17. Factors affecting the behavior of unburned carbon upon steam activation

    NASA Astrophysics Data System (ADS)

    Lu, Zhe

    The main objective of this study is to investigate the factors that could affect the behavior of unburned carbon samples upon steam activation. Through this work, the relationships among the factors that could influence the carbon-steam reaction with the surface area of the produced activated carbon were explored. Statistical analysis was used to relate the chemical and physical properties of the unburned carbon to the surface area of the activated carbon. Six unburned carbons were selected as feedstocks for activated carbon, and marked as UCA through UCF. The unburned carbons were activated using steam at 850°C for 90 minutes, and the surface areas of their activated counterparts were measured using N2 adsorption isotherms at 77K. The activated carbons produced from different unburned carbon precursors presented different surface areas at similar carbon burn-off levels. Moreover, in different carbon burn-off regions, the sequences for surface area of activated carbons from different unburned carbon samples were different. The factors that may affect the carbon-steam gasification reactions, including the concentration of carbon active sites, the crystallite size of the carbon, the intrinsic porous structure of carbon, and the inorganic impurities, were investigated. All unburned carbons investigated in this study were similar in that they showed the very broad (002) and (10 ) carbon peaks, which are characteristic of highly disordered carbonaceous materials. In this study, the unburned carbon samples contained about 17--48% of inorganic impurities. Compared to coals, the unburned carbon samples contain a larger amount of inorganic impurities as a result of the burn-off, or at lease part, of the carbon during the combustion process. These inorganic particles were divided into two groups in terms of the way they are associated with carbon particles: free single particles, and particles combined with carbon particles. As indicated from the present work, unburned

  18. RELATIONSHIP BETWEEN SERUM CHOLINESTERASE ACTIVITY AND THE CHANGE IN BODY TEMPERATURE AND MOTOR ACTIVITY IN THE RAT: A DOSE RESPONSE STUDY OF DIISOPROPYL FLUOROPHATE (DFP)

    EPA Science Inventory

    Risk assessment of the neurotoxicology of organophosphate (OP) pesticides calls for a thorough understanding of the relationship between tissue cholinesterase (ChE) activity and changes in behavioral and autonomic responses to OP treatment. To address this issue, motor activity, ...

  19. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease.

    PubMed

    Weiss, Daniel; Klotz, Rosa; Govindan, Rathinaswamy B; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko; Gharabaghi, Alireza

    2015-03-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with 'stimulation on' compared to 'stimulation off' on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With 'stimulation on', interhemispheric cortico

  20. Environmental layout complexity affects neural activity during navigation in humans.

    PubMed

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. PMID:26990572

  1. Assessing Upper Extremity Motor Function in Practice of Virtual Activities of Daily Living

    PubMed Central

    Adams, Richard J.; Lichter, Matthew D.; Krepkovich, Eileen T.; Ellington, Allison; White, Marga; Diamond, Paul T.

    2015-01-01

    A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An Unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user’s avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman’s rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs. PMID:25265612

  2. Abnormal Motor Activity and Thermoregulation in a Schizophrenia Rat Model for Translational Science

    PubMed Central

    2015-01-01

    Background Schizophrenia is accompanied by altered motor activity and abnormal thermoregulation; therefore, the presence of these symptoms can enhance the face validity of a schizophrenia animal model. The goal was to characterize these parameters in freely moving condition of a new substrain of rats showing several schizophrenia-related alterations. Methods Male Wistar rats were used: the new substrain housed individually (for four weeks) and treated subchronically with ketamine, and naive animals without any manipulations. Adult animals were implanted with E-Mitter transponders intraabdominally to record body temperature and locomotor activity continuously. The circadian rhythm of these parameters and the acute effects of changes in light conditions were analyzed under undisturbed circumstances, and the effects of different interventions (handling, bed changing or intraperitoneal vehicle injection) were also determined. Results Decreased motor activity with fragmented pattern was observed in the new substrain. However, these animals had higher body temperature during the active phase, and they showed wider range of its alterations, too. The changes in light conditions and different interventions produced blunted hyperactivity and altered body temperature responses in the new substrain. Poincaré plot analysis of body temperature revealed enhanced short- and long-term variabilities during the active phase compared to the inactive phase in both groups. Furthermore, the new substrain showed increased short- and long-term variabilities with lower degree of asymmetry suggesting autonomic dysregulation. Conclusions In summary, the new substrain with schizophrenia-related phenomena showed disturbed motor activity and thermoregulation suggesting that these objectively determined parameters can be biomarkers in translational research. PMID:26629908

  3. Laterality of brain activity during motor imagery is modulated by the provision of source level neurofeedback.

    PubMed

    Boe, Shaun; Gionfriddo, Alicia; Kraeutner, Sarah; Tremblay, Antoine; Little, Graham; Bardouille, Timothy

    2014-11-01

    Motor imagery (MI) may be effective as an adjunct to physical practice for motor skill acquisition. For example, MI is emerging as an effective treatment in stroke neurorehabilitation. As in physical practice, the repetitive activation of neural pathways during MI can drive short- and long-term brain changes that underlie functional recovery. However, the lack of feedback about MI performance may be a factor limiting its effectiveness. The provision of feedback about MI-related brain activity may overcome this limitation by providing the opportunity for individuals to monitor their own performance of this endogenous process. We completed a controlled study to isolate neurofeedback as the factor driving changes in MI-related brain activity across repeated sessions. Eighteen healthy participants took part in 3 sessions comprised of both actual and imagined performance of a button press task. During MI, participants in the neurofeedback group received source level feedback based on activity from the left and right sensorimotor cortex obtained using magnetoencephalography. Participants in the control group received no neurofeedback. MI-related brain activity increased in the sensorimotor cortex contralateral to the imagined movement across sessions in the neurofeedback group, but not in controls. Task performance improved across sessions but did not differ between groups. Our results indicate that the provision of neurofeedback during MI allows healthy individuals to modulate regional brain activity. This finding has the potential to improve the effectiveness of MI as a tool in neurorehabilitation. PMID:24999037

  4. Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity.

    PubMed

    Hill, Dan N; Bermejo, Roberto; Zeigler, H Philip; Kleinfeld, David

    2008-03-26

    The biomechanics of a motor plant constrain the behavioral strategies that an animal has available to extract information from its environment. We used the rat vibrissa system as a model for active sensing and determined the pattern of muscle activity that drives rhythmic exploratory whisking. Our approach made use of electromyography to measure the activation of all relevant muscles in both head-fixed and unrestrained rats and two-dimensional imaging to monitor the position of the vibrissae in head-fixed rats. Our essential finding is that the periodic motion of the vibrissae and mystacial pad during whisking results from three phases of muscle activity. First, the vibrissae are thrust forward as the rostral extrinsic muscle, musculus (m.) nasalis, contracts to pull the pad and initiate protraction. Second, late in protraction, the intrinsic muscles pivot the vibrissae farther forward. Third, retraction involves the cessation of m. nasalis and intrinsic muscle activity and the contraction of the caudal extrinsic muscles m. nasolabialis and m. maxillolabialis to pull the pad and the vibrissae backward. We developed a biomechanical model of the whisking motor plant that incorporates the measured muscular mechanics along with movement vectors observed from direct muscle stimulation in anesthetized rats. The results of simulations of the model quantify how the combination of extrinsic and intrinsic muscle activity leads to an enhanced range of vibrissa motion than would be available from the intrinsic muscles alone. PMID:18367610

  5. Calorigenic effect of adrenaline in rats under conditions of restricted motor activity

    NASA Technical Reports Server (NTRS)

    Tomaszewska, L.; Kaciuba-Uscilko, H.; Kozlowski, S.

    1980-01-01

    In previous studies, it was demonstrated that long term restricted motor activity in rats induces a decrease in body weight, an increase in release of adrenaline, and a decrease in the release of noradrenaline with the urine, as well as a reduction in activity of the thymus gland and level of thyroxin in the blood. At the same time, a decrease was found in the internal body temperature that was accompanied by an increase in the rate of metabolism in the state of rest. An investigation is presented which attempts to clarify whether the calorigenic effect of adrenaline under conditions of increased metabolism in the period of immobility is exposed to changes.

  6. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures

    PubMed Central

    Sohn, M. Hongchul; Ting, Lena H.

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  7. Brain Activity During a Motor Learning Task: An fMRI and Skin Conductance Study

    PubMed Central

    MacIntosh, Bradley J.; Mraz, Richard; McIlroy, William E.; Graham, Simon J.

    2016-01-01

    Measuring electrodermal activity (EDA) during fMRI is an effective means of studying the influence of task-related arousal, inferred from autonomic nervous system activity, on brain activation patterns. The goals of this study were: (1) to measure reliable EDA from healthy individuals during fMRI involving an effortful unilateral motor task, (2) to explore how EDA recordings can be used to augment fMRI data analysis. In addition to conventional hemodynamic modeling, skin conductance time series data were used as model waveforms to generate activation images from fMRI data. Activations from the EDA model produced significantly different brain regions from those obtained with a standard hemodynamic model, primarily in the insula and cingulate cortices. Onsets of the EDA changes were synchronous with the hemodynamic model, but EDA data showed additional transient features, such as a decrease in amplitude with time, and helped to provide behavioral evidence suggesting task difficulty decreased with movement repetition. Univariate statistics also confirmed that several brain regions showed early versus late session effects. Partial least squares (PLS) multivariate analysis of EDA and fMRI data provided complimentary, additional insight on how the motor network varied over the course of a single fMRI session. Brain regions identified in this manner included the insula, cingulate gyrus, pre- and postcentral gyri, putamen and parietal cortices. These results suggest that recording EDA during motor fMRI experiments provides complementary information that can be used to improve the fMRI analysis, particularly when behavioral or task effects are difficult to model a priori. PMID:17318835

  8. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    PubMed

    Ward, Patricia J; Jones, Laura N; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C; English, Arthur W

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  9. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo

    PubMed Central

    Ward, Patricia J.; Jones, Laura N.; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C.; English, Arthur W.

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  10. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  11. Evaluation of macrophage antiviral activity in patients affected by neoplasia.

    PubMed

    Merendino, R A; Iannello, D; Arena, A; Bonina, L; Greco, V; Mesiti, M; Chillemi, S; Mastroeni, P

    1988-01-01

    The intrinsic antiviral activity of macrophages has been studied in healthy donors and in patients affected by breast cancer and melanoma. In vitro differentiated macrophages from blood-derived monocytes were infected with measles virus, herpes simplex virus type 2 and adenovirus 17. The challenge was carried out with different multiplicities of infection and the synthesis of virus was tested by evaluating the single cycle growth curve in 24 h. The results obtained show that the restriction of virus infectivity by macrophages is strongly influenced by the multiplicity of infection. This was particularly evident with the adenovirus 17. Moreover, macrophages from patients with melanoma and breast cancer showed an impairment of the intrinsic antiviral activity in comparison with normal subjects. PMID:2842553

  12. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  13. Comparison of acute effects of heroin and Kerack on sensory and motor activity of honey bees (Apis mellifera)

    PubMed Central

    Hassanpour-Ezatti, Majid

    2015-01-01

    Objective(s): Previous studies demonstrated a functional similarity between vertebrate and honey bee nervous systems. The aim of the present study was to compare the effects of heroin and Iranian street Kerack, a combination of heroin and caffeine, on sensory threshold and locomotor activity in honey bees. Materials and Methods: All drugs were given orally to honey bees 30 min before each experiment. The levels of these drugs and their metabolites in brain samples of honey bees were determined by GC/MS. The sucrose sensitivity test was used for evaluation of changes in honey bees’ sensory threshold. Following the administration of both drugs, the honey bees’ locomotor activity changes were evaluated in open fields. Results: 6-acetylmorphine had a higher concentration in comparison with other heroin metabolites in honey bees’ brains. Concentration of the compound in the brain was directly proportional to the amount ingested. Heroin reduced the sensory threshold of honey bees, but Kerack increased it in the same doses. Locomotor activity of honey bee in open field was enhanced after the administration of both drugs. However, immobility time of honey bees was only affected by high doses of heroin. Conclusion: Acute effects of heroin andKerack on the sensory and motor functions of honey bees were different. Findings of this research suggest that these differences originated from the activation of different neurotransmitter systems by caffeine together with activation of opioid receptors by heroin. PMID:26019799

  14. Neocerebellar control of the motor activity: experimental analysis in the rat. Comparative aspects.

    PubMed

    Cicirata, F; Angaut, P; Pantó, M R; Serapide, M F

    1989-01-01

    The results collected by electrical microstimulation of the nucleus lateralis of the cerebellum in anaesthetized rats may be summarized as follows. The stimulations evoked motor effects in head and forelimb principally whereas hindlimb was only occasionally involved. The movements were prevalently segregated to only one joint (simple movements), in a lesser degree they involved two or three segments (complex movements). Simple and complex movements were apparently distributed in the nuclear mass without topographical segregation or preferentiality. The electromyographic records suggest that the neocerebellar movements are of synergistic nature. A somatotopical organization was evidenced within the nucleus lateralis: 3 specific functional regions were identified in the caudorostral nuclear extension. They concern the forelimb (caudally), head (centrally) and hindlimb (rostrally). This somatotopical organization persisted unmodified following elimination of either the cerebral motor cortex alone or in addition to that of the red nucleus. The nuclear subdivisions of the cerebellar nucleus lateralis showed functional differences: (1) the dorsolateral hump of Goodman et al. was principally involved in lip movements; (2) the subnucleus lateralis parvocellularis elicited movements of single vibrissae, neck and medio-distal segments of the forelimb, prevalently; (3) the magnocellular subdivision essentially controlled both limbs with large prevalence for their medio-proximal segments. To identify the functional role of the different descending pathways which relay the neocerebellum to the cord, the motor effects evoked in intact rats were compared with those elicited in rats submitted to cortical ablation and/or to lesion of the red nucleus region. The integrity of the cerebral cortex was essential only for distalmost forelimb motor activities. After lesion of the rubral region (which concomitantly eliminates corticospinal output), the stimulation of the nucleus lateralis

  15. The Relationship of Neuronal Activity within the Sensori-Motor Region of the Subthalamic Nucleus to Speech

    ERIC Educational Resources Information Center

    Watson, Peter; Montgomery, Erwin B., Jr.

    2006-01-01

    Microelectrode recordings of human sensori-motor subthalamic neuronal activity during spoken sentence and syllable-repetition tasks provided an opportunity to evaluate the relationship between changes in neuronal activities and specific aspects of these vocal behaviors. Observed patterns of neuronal activity included a build up of activity in…

  16. Can stereotype threat affect motor performance in the absence of explicit monitoring processes? Evidence using a strength task.

    PubMed

    Chalabaev, Aïna; Brisswalter, Jeanick; Radel, Rémi; Coombes, Stephen A; Easthope, Christopher; Clément-Guillotin, Corentin

    2013-04-01

    Previous evidence shows that stereotype threat impairs complex motor skills through increased conscious monitoring of task performance. Given that one-step motor skills may not be susceptible to these processes, we examined whether performance on a simple strength task may be reduced under stereotype threat. Forty females and males performed maximum voluntary contractions under stereotypical or nullified-stereotype conditions. Results showed that the velocity of force production within the first milliseconds of the contraction decreased in females when the negative stereotype was induced, whereas maximal force did not change. In males, the stereotype induction only increased maximal force. These findings suggest that stereotype threat may impair motor skills in the absence of explicit monitoring processes, by influencing the planning stage of force production. PMID:23535978

  17. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water

    SciTech Connect

    Bowyer, John F.; Latendresse, John R.; Delongchamp, Robert R.; Warbritton, Alan R.; Thomas, Monzy; Divine, Becky; Doerge, Daniel R.

    2009-11-01

    A study was undertaken to determine whether alterations in the gene expression or overt histological signs of neurotoxicity in selected regions of the forebrain might occur from acrylamide exposure via drinking water. Gene expression at the mRNA level was evaluated by cDNA array and/or RT-PCR analysis in the striatum, substantia nigra and parietal cortex of rat after a 2-week acrylamide exposure. The highest dose tested (maximally tolerated) of approximately 44 mg/kg/day resulted in a significant decreased body weight, sluggishness, and locomotor activity reduction. These physiological effects were not accompanied by prominent changes in gene expression in the forebrain. All the expression changes seen in the 1200 genes that were evaluated in the three brain regions were <= 1.5-fold, and most not significant. Very few, if any, statistically significant changes were seen in mRNA levels of the more than 50 genes directly related to the cholinergic, noradrenergic, GABAergic or glutamatergic neurotransmitter systems in the striatum, substantia nigra or parietal cortex. All the expression changes observed in genes related to dopaminergic function were less than 1.5-fold and not statistically significant and the 5HT1b receptor was the only serotonin-related gene affected. Therefore, gene expression changes were few and modest in basal ganglia and sensory cortex at a time when the behavioral manifestations of acrylamide toxicity had become prominent. No histological evidence of axonal, dendritic or neuronal cell body damage was found in the forebrain due to the acrylamide exposure. As well, microglial activation was not present. These findings are consistent with the absence of expression changes in genes related to changes in neuroinflammation or neurotoxicity. Over all, these data suggest that oral ingestion of acrylamide in drinking water or food, even at maximally tolerable levels, induced neither marked changes in gene expression nor neurotoxicity in the motor and

  18. Differential Neural Processing during Motor Imagery of Daily Activities in Chronic Low Back Pain Patients

    PubMed Central

    Vrana, Andrea; Hotz-Boendermaker, Sabina; Stämpfli, Philipp; Hänggi, Jürgen; Seifritz, Erich; Humphreys, B. Kim; Meier, Michael L.

    2015-01-01

    Chronic low back pain (chronic LBP) is both debilitating for patients but also a major burden on the health care system. Previous studies reported various maladaptive structural and functional changes among chronic LBP patients on spine- and supraspinal levels including behavioral alterations. However, evidence for cortical reorganization in the sensorimotor system of chronic LBP patients is scarce. Motor Imagery (MI) is suitable for investigating the cortical sensorimotor network as it serves as a proxy for motor execution. Our aim was to investigate differential MI-driven cortical processing in chronic LBP compared to healthy controls (HC) by means of functional magnetic resonance imaging (fMRI). Twenty-nine subjects (15 chronic LBP patients, 14 HC) were included in the current study. MI stimuli consisted of randomly presented video clips showing every-day activities involving different whole-body movements as well as walking on even ground and walking downstairs and upstairs. Guided by the video clips, subjects had to perform MI of these activities, subsequently rating the vividness of their MI performance. Brain activity analysis revealed that chronic LBP patients exhibited significantly reduced activity compared to HC subjects in MI-related brain regions, namely the left supplementary motor area and right superior temporal sulcus. Furthermore, psycho-physiological-interaction analysis yielded significantly enhanced functional connectivity (FC) between various MI-associated brain regions in chronic LBP patients indicating diffuse and non-specific changes in FC. Current results demonstrate initial findings about differences in MI-driven cortical processing in chronic LBP pointing towards reorganization processes in the sensorimotor network. PMID:26569602

  19. Longitudinal Changes in the Motor Learning-Related Brain Activation Response in Presymptomatic Huntington's Disease

    PubMed Central

    Holtbernd, Florian; Tang, Chris C.; Feigin, Andrew; Dhawan, Vijay; Ghilardi, Maria Felice; Paulsen, Jane S.; Guttman, Mark; Eidelberg, David

    2016-01-01

    Neurocognitive decline, including deficits in motor learning, occurs in the presymptomatic phase of Huntington’s disease (HD) and precedes the onset of motor symptoms. Findings from recent neuroimaging studies have linked these deficits to alterations in fronto-striatal and fronto-parietal brain networks. However, little is known about the temporal dynamics of these networks when subjects approach phenoconversion. Here, 10 subjects with presymptomatic HD were scanned with 15O-labeled water at baseline and again 1.5 years later while performing a motor sequence learning task and a kinematically matched control task. Spatial covariance analysis was utilized to characterize patterns of change in learning-related neural activation occurring over time in these individuals. Pattern expression was compared to corresponding values in 10 age-matched healthy control subjects. Spatial covariance analysis revealed significant longitudinal changes in the expression of a specific learning-related activation pattern characterized by increasing activity in the right orbitofrontal cortex, with concurrent reductions in the right medial prefrontal and posterior cingulate regions, the left insula, left precuneus, and left cerebellum. Changes in the expression of this pattern over time correlated with baseline measurements of disease burden and learning performance. The network changes were accompanied by modest improvement in learning performance that took place concurrently in the gene carriers. The presence of increased network activity in the setting of stable task performance is consistent with a discrete compensatory mechanism. The findings suggest that this effect is most pronounced in the late presymptomatic phase of HD, as subjects approach clinical onset. PMID:27192167

  20. Human Motor Cortical Activity Is Selectively Phase-Entrained on Underlying Rhythms

    PubMed Central

    Miller, Kai J.; Hermes, Dora; Honey, Christopher J.; Hebb, Adam O.; Ramsey, Nick F.; Knight, Robert T.; Ojemann, Jeffrey G.; Fetz, Eberhard E.

    2012-01-01

    The functional significance of electrical rhythms in the mammalian brain remains uncertain. In the motor cortex, the 12–20 Hz beta rhythm is known to transiently decrease in amplitude during movement, and to be altered in many motor diseases. Here we show that the activity of neuronal populations is phase-coupled with the beta rhythm on rapid timescales, and describe how the strength of this relation changes with movement. To investigate the relationship of the beta rhythm to neuronal dynamics, we measured local cortical activity using arrays of subdural electrocorticographic (ECoG) electrodes in human patients performing simple movement tasks. In addition to rhythmic brain processes, ECoG potentials also reveal a spectrally broadband motif that reflects the aggregate neural population activity beneath each electrode. During movement, the amplitude of this broadband motif follows the dynamics of individual fingers, with somatotopically specific responses for different fingers at different sites on the pre-central gyrus. The 12–20 Hz beta rhythm, in contrast, is widespread as well as spatially coherent within sulcal boundaries and decreases in amplitude across the pre- and post-central gyri in a diffuse manner that is not finger-specific. We find that the amplitude of this broadband motif is entrained on the phase of the beta rhythm, as well as rhythms at other frequencies, in peri-central cortex during fixation. During finger movement, the beta phase-entrainment is diminished or eliminated. We suggest that the beta rhythm may be more than a resting rhythm, and that this entrainment may reflect a suppressive mechanism for actively gating motor function. PMID:22969416

  1. Human motor cortical activity is selectively phase-entrained on underlying rhythms.

    PubMed

    Miller, Kai J; Hermes, Dora; Honey, Christopher J; Hebb, Adam O; Ramsey, Nick F; Knight, Robert T; Ojemann, Jeffrey G; Fetz, Eberhard E

    2012-01-01

    The functional significance of electrical rhythms in the mammalian brain remains uncertain. In the motor cortex, the 12-20 Hz beta rhythm is known to transiently decrease in amplitude during movement, and to be altered in many motor diseases. Here we show that the activity of neuronal populations is phase-coupled with the beta rhythm on rapid timescales, and describe how the strength of this relation changes with movement. To investigate the relationship of the beta rhythm to neuronal dynamics, we measured local cortical activity using arrays of subdural electrocorticographic (ECoG) electrodes in human patients performing simple movement tasks. In addition to rhythmic brain processes, ECoG potentials also reveal a spectrally broadband motif that reflects the aggregate neural population activity beneath each electrode. During movement, the amplitude of this broadband motif follows the dynamics of individual fingers, with somatotopically specific responses for different fingers at different sites on the pre-central gyrus. The 12-20 Hz beta rhythm, in contrast, is widespread as well as spatially coherent within sulcal boundaries and decreases in amplitude across the pre- and post-central gyri in a diffuse manner that is not finger-specific. We find that the amplitude of this broadband motif is entrained on the phase of the beta rhythm, as well as rhythms at other frequencies, in peri-central cortex during fixation. During finger movement, the beta phase-entrainment is diminished or eliminated. We suggest that the beta rhythm may be more than a resting rhythm, and that this entrainment may reflect a suppressive mechanism for actively gating motor function. PMID:22969416

  2. Differential Neural Processing during Motor Imagery of Daily Activities in Chronic Low Back Pain Patients.

    PubMed

    Vrana, Andrea; Hotz-Boendermaker, Sabina; Stämpfli, Philipp; Hänggi, Jürgen; Seifritz, Erich; Humphreys, B Kim; Meier, Michael L

    2015-01-01

    Chronic low back pain (chronic LBP) is both debilitating for patients but also a major burden on the health care system. Previous studies reported various maladaptive structural and functional changes among chronic LBP patients on spine- and supraspinal levels including behavioral alterations. However, evidence for cortical reorganization in the sensorimotor system of chronic LBP patients is scarce. Motor Imagery (MI) is suitable for investigating the cortical sensorimotor network as it serves as a proxy for motor execution. Our aim was to investigate differential MI-driven cortical processing in chronic LBP compared to healthy controls (HC) by means of functional magnetic resonance imaging (fMRI). Twenty-nine subjects (15 chronic LBP patients, 14 HC) were included in the current study. MI stimuli consisted of randomly presented video clips showing every-day activities involving different whole-body movements as well as walking on even ground and walking downstairs and upstairs. Guided by the video clips, subjects had to perform MI of these activities, subsequently rating the vividness of their MI performance. Brain activity analysis revealed that chronic LBP patients exhibited significantly reduced activity compared to HC subjects in MI-related brain regions, namely the left supplementary motor area and right superior temporal sulcus. Furthermore, psycho-physiological-interaction analysis yielded significantly enhanced functional connectivity (FC) between various MI-associated brain regions in chronic LBP patients indicating diffuse and non-specific changes in FC. Current results demonstrate initial findings about differences in MI-driven cortical processing in chronic LBP pointing towards reorganization processes in the sensorimotor network. PMID:26569602

  3. Sensory-motor system identification of active perception in ecologically valid environments

    NASA Astrophysics Data System (ADS)

    Abbott, William; Thomik, Andreas; Faisal, A. Aldo

    2015-03-01

    The brain is a dynamical system mapping sensory inputs to motor actions. This relationship has been widely characterised by reductionist controlled experiments. Here we present work moving out of the lab ``into the wild'' to capture, rather than constrain, sensory inputs and motor outputs, by recording 90% of sensory inputs using head mounted eye-tracking, scene camera and microphone as well as recording 95% of skeletal motor outputs by motion tracking 51 degrees of freedom in the body and a total of 40 degrees of freedom from the hands. We can thus begin to systematically characterise the perception-action loop through system identification. This enables use to evaluate classical relationships in ecologically valid settings and behaviours including 3 daily scenarios: breakfast in the kitchen, evening chores and activities and in-door ambulation . This level of data richness (97 DOF, 60Hz), coupled with the extensive recordings of natural perceptual and behavioural data (total > 30 hrs, 10 subjects) enables us to answer general questions of how lab tasks and protocols will produce systematically different results from those found in daily life.

  4. Short report: effect of two prokinetic drugs on the electrical and motor activity of the small bowel in dogs.

    PubMed

    Defilippi, C; Gomez, E

    1993-06-01

    The effects of trimebutine and domperidone, on the electrical and motor activity of the upper small bowel in dogs, were studied simultaneously by means of a suction electrode and a manometric catheter. Trimebutine, given during phases I and II of the migratory motor complex, was followed by a period of regular spike potentials and contractions; the increased motor activity was significantly greater when the drug was given during phase II. Domperidone, when injected in phase I, was followed by an irregular pattern of spike potentials and contractions of low amplitude. By contrast, activity was not augmented when the drug was given during phase II. We conclude that the effects of drugs, such as trimebutine and domperidone, on the canine small bowel are influenced by the phase of the migratory motor complex. PMID:8364138

  5. Spontaneous activity in electromyography may differentiate certain benign lower motor neuron disease forms from amyotrophic lateral sclerosis.

    PubMed

    Jokela, Manu E; Jääskeläinen, Satu K; Sandell, Satu; Palmio, Johanna; Penttilä, Sini; Saukkonen, Annamaija; Soikkeli, Raija; Udd, Bjarne

    2015-08-15

    There is limited data on electromyography (EMG) findings in other motor neuron disorders than amyotrophic lateral sclerosis (ALS). We assessed whether the distribution of active denervation detected by EMG, i.e. fibrillations and fasciculations, differs between ALS and slowly progressive motor neuron disorders. We compared the initial EMG findings of 43 clinically confirmed, consecutive ALS patients with those of 41 genetically confirmed Late-onset Spinal Motor Neuronopathy and 14 Spinal and Bulbar Muscular Atrophy patients. Spontaneous activity was more frequently detected in the first dorsal interosseus and deltoid muscles of ALS patients than in patients with the slowly progressive motor neuron diseases. The most important observation was that absent fibrillations in the first dorsal interosseus muscle identified the benign forms with sensitivities of 66%-77% and a specificity of 93%. The distribution of active denervation may help to separate ALS from mimicking disorders at an early stage. PMID:26059445

  6. Differences in cortical activity related to motor planning between experienced guitarists and non-musicians during guitar playing.

    PubMed

    Wright, David J; Holmes, Paul S; Di Russo, Francesco; Loporto, Michela; Smith, Dave

    2012-06-01

    The influence of motor skill learning on movement-related brain activity was investigated using electroencephalography. Previous research has indicated that experienced performers display movement-related cortical potentials (MRCPs) of smaller amplitude and later onset compared to novices. Unfortunately, previous studies have lacked ecological validity with experimenters recording the MRCP prior to simple motor tasks and applying the results to more complex motor skills. This study replicated previous research using an ecologically valid motor skill; recording the MRCP from a group of experienced guitarists and a control group of non-musicians while they played a simple scale on the guitar. Results indicated no difference between groups in early motor planning. In contrast, the later, negative slope and motor potential components were of smaller amplitude and the negative slope began later in the experienced guitarists. The data may indicate that, for experienced guitarists, a reduced level of effort is required during the motor preparation phase of the task. These findings have implications for musical instrument learning as well as motor skill acquisition in general. PMID:21899906

  7. Gender differential effects of developmental exposure to methyl-mercury, polychlorinated biphenyls 126 or 153, or its combinations on motor activity and coordination.

    PubMed

    Cauli, Omar; Piedrafita, Blanca; Llansola, Marta; Felipo, Vicente

    2013-09-01

    Polychlorinated biphenyls (PCBs) and methylmercury (MeHg) are persistent organic pollutants accumulating in the food chain. Pre- and neonatal exposure to these neurotoxicants may affect brain development and lead to long-lasting alterations in cerebral function, which can result in motor alterations in youth and/or adulthood. Some neurotoxicants induce gender specific effects. The aims of the present work were to: (1) assess the effects of developmental exposure to MeHg, PCB 153 or PCB 126 on spontaneous locomotor and vertical activity and motor coordination when the rats are 2-month old; (2) assess whether perinatal exposure to combinations of MeHg with PCB153 or PCB126 alter the effects of the individual neurotoxicants; (3) follow the progression of motor alterations when the rats are 3-, 5- and 7-month old; (4) assess if the effects are similar or different in males and females. Pregnant rats were treated with MeHg (0.5mg/kgday); PCB126 (100ng/kgday) or PCB153 (1mg/kgday) or with combinations of MeHg with each PCB, administered in food from gestational day 7 until weaning at post-natal day 21. PCB 126 impaired motor coordination at 2 months in males but not in females. PCB 153 impaired coordination both in males and females. Combinations of MeHg with PCB153 or PCB126 did not affect motor coordination, indicating that MeHg counteracts the effects of the PBCs. The combination of MeHg and PCB153 induces hypolocomotion at 2 months but hyperactivity at 7 months while the individual compounds did not induce any effect. PCB126 induced gender selective effects, reducing locomotor activity at 2 months in females but not in males. The combination of MeHg and PCB126 behaves as PCB126 alone. All compounds and combinations tested induce gender-selective alterations in vertical activity. The effects on locomotor and vertical activity change with age in the same rats. At 2 months all compounds and combinations reduce vertical activity in females but not in males. At 7 months

  8. Mephedrone ('bath salt') elicits conditioned place preference and dopamine-sensitive motor activation.

    PubMed

    Lisek, Renata; Xu, Wei; Yuvasheva, Ekaterina; Chiu, Yi-Ting; Reitz, Allen B; Liu-Chen, Lee-Yuan; Rawls, Scott M

    2012-11-01

    Abuse of a dangerous street drug called mephedrone (4-methylmethcathinone) has become commonplace in the United States. Mephedrone is hypothesized to possess abuse liability, share pharmacological properties with psychostimulants, and display toxicity that has been linked to fatalities and non-fatal overdoses. Knowledge about the pharmacology of mephedrone has been obtained primarily from surveys of drug abusers and emergency room visits rather than experimental studies. The present study used motor activity and conditioned place preference (CPP) assays to investigate behavioral effects of mephedrone. Acute mephedrone (3, 5, 10, 30 mg/kg, ip) administration increased ambulatory activity in rats. Mephedrone (5 mg/kg, ip)-induced ambulation was inhibited by pretreatment with a dopamine D1 receptor antagonist (SCH 23390) (0.5, 1, 2 mg/kg, ip) and enhanced by pretreatment with a dopamine D2 receptor antagonist (sulpiride) (2 mg/kg, ip). Rats injected for 5 days with low dose mephedrone (0.5 mg/kg, ip) and then challenged with mephedrone (0.5 mg/kg, ip) following 10 days of abstinence displayed sensitization of ambulatory activity. In CPP experiments, mephedrone (30 mg/kg, ip) conditioning elicited a preference shift in both rats and mice. The CPP and dopamine-sensitive motor activation produced by mephedrone is suggestive of abuse liability and indicates commonalities between the neuropharmacological profiles of mephedrone and established drugs of abuse. PMID:22652295

  9. Interaction between auditory and motor activities in an avian song control nucleus.

    PubMed Central

    McCasland, J S; Konishi, M

    1981-01-01

    Discrete telencephalic nuclei HVc (hyperstriatum ventrale, pars caudale) and RA (nucleus robustus archistriatalis) have been implicated by lesion studies in the control of vocalization in songbirds. We demonstrate directly the role of HVc in vocalization by presenting neuronal recordings taken from HVc of singing birds. Intracellular recordings from anesthetized birds have shown that many neurons in HVc respond to auditory stimuli. We confirm this result in the extracellular recordings from awake-behaving birds and further demonstrate responses of HVc neurons to playback of the bird's own song. The functional significance of these responses is not yet clear, but behavioral studies show that auditory feedback plays a crucial role in the development of normal song. We show that the song-correlated temporal pattern of neural activity persists even in the deaf bird. Furthermore, we show that in the normal bird, the activity pattern correlated with production of certain song elements can be clearly distinguished from the pattern of auditory responses to the same song elements. This result implies that an interaction occurs in HVc of the singing bird between motor and auditory activity. Through experiments involving playback of sound while the bird is singing, we show that the interaction consists of motor inhibition of auditory activity in HVc and that this inhibition decays slowly over a period of seconds after the song terminates. PMID:6950421

  10. Model for a flexible motor memory based on a self-active recurrent neural network.

    PubMed

    Boström, Kim Joris; Wagner, Heiko; Prieske, Markus; de Lussanet, Marc

    2013-10-01

    Using recent recurrent network architecture based on the reservoir computing approach, we propose and numerically simulate a model that is focused on the aspects of a flexible motor memory for the storage of elementary movement patterns into the synaptic weights of a neural network, so that the patterns can be retrieved at any time by simple static commands. The resulting motor memory is flexible in that it is capable to continuously modulate the stored patterns. The modulation consists in an approximately linear inter- and extrapolation, generating a large space of possible movements that have not been learned before. A recurrent network of thousand neurons is trained in a manner that corresponds to a realistic exercising scenario, with experimentally measured muscular activations and with kinetic data representing proprioceptive feedback. The network is "self-active" in that it maintains recurrent flow of activation even in the absence of input, a feature that resembles the "resting-state activity" found in the human and animal brain. The model involves the concept of "neural outsourcing" which amounts to the permanent shifting of computational load from higher to lower-level neural structures, which might help to explain why humans are able to execute learned skills in a fluent and flexible manner without the need for attention to the details of the movement. PMID:24120277

  11. Robot-assisted motor activation monitored by time-domain optical brain imaging

    NASA Astrophysics Data System (ADS)

    Steinkellner, O.; Wabnitz, H.; Schmid, S.; Steingräber, R.; Schmidt, H.; Krüger, J.; Macdonald, R.

    2011-07-01

    Robot-assisted motor rehabilitation proved to be an effective supplement to conventional hand-to-hand therapy in stroke patients. In order to analyze and understand motor learning and performance during rehabilitation it is desirable to develop a monitor to provide objective measures of the corresponding brain activity at the rehabilitation progress. We used a portable time-domain near-infrared reflectometer to monitor the hemodynamic brain response to distal upper extremity activities. Four healthy volunteers performed two different robot-assisted wrist/forearm movements, flexion-extension and pronation-supination in comparison with an unassisted squeeze ball exercise. A special headgear with four optical measurement positions to include parts of the pre- and postcentral gyrus provided a good overlap with the expected activation areas. Data analysis based on variance of time-of-flight distributions of photons through tissue was chosen to provide a suitable representation of intracerebral signals. In all subjects several of the four detection channels showed a response. In some cases indications were found of differences in localization of the activated areas for the various tasks.

  12. Motor-driven marginal band coiling promotes cell shape change during platelet activation

    PubMed Central

    Diagouraga, Boubou; Grichine, Alexei; Fertin, Arnold; Wang, Jin; Khochbin, Saadi

    2014-01-01

    Platelets float in the blood as discoid particles. Their shape is maintained by microtubules organized in a ring structure, the so-called marginal band (MB), in the periphery of resting platelets. Platelets are activated after vessel injury and undergo a major shape change known as disc to sphere transition. It has been suggested that actomyosin tension induces the contraction of the MB to a smaller ring. In this paper, we show that antagonistic microtubule motors keep the MB in its resting state. During platelet activation, dynein slides microtubules apart, leading to MB extension rather than contraction. The MB then starts to coil, thereby inducing the spherical shape of activating platelets. Newly polymerizing microtubules within the coiled MB will then take a new path to form the smaller microtubule ring, in concerted action with actomyosin tension. These results present a new view of the platelet activation mechanism and reveal principal mechanistic features underlying cellular shape changes. PMID:24421335

  13. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43

    PubMed Central

    Koyama, Akihide; Sugai, Akihiro; Kato, Taisuke; Ishihara, Tomohiko; Shiga, Atsushi; Toyoshima, Yasuko; Koyama, Misaki; Konno, Takuya; Hirokawa, Sachiko; Yokoseki, Akio; Nishizawa, Masatoyo; Kakita, Akiyoshi; Takahashi, Hitoshi; Onodera, Osamu

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder. In motor neurons of ALS, TAR DNA binding protein-43 (TDP-43), a nuclear protein encoded by TARDBP, is absent from the nucleus and forms cytoplasmic inclusions. TDP-43 auto-regulates the amount by regulating the TARDBP mRNA, which has three polyadenylation signals (PASs) and three additional alternative introns within the last exon. However, it is still unclear how the autoregulatory mechanism works and how the status of autoregulation in ALS motor neurons without nuclear TDP-43 is. Here we show that TDP-43 inhibits the selection of the most proximal PAS and induces splicing of multiple alternative introns in TARDBP mRNA to decrease the amount of cytoplasmic TARDBP mRNA by nonsense-mediated mRNA decay. When TDP-43 is depleted, the TARDBP mRNA uses the most proximal PAS and is increased in the cytoplasm. Finally, we have demonstrated that in ALS motor neurons—especially neurons with mislocalized TDP-43—the amount of TARDBP mRNA is increased in the cytoplasm. Our observations indicate that nuclear TDP-43 contributes to the autoregulation and suggests that the absence of nuclear TDP-43 induces an abnormal autoregulation and increases the amount of TARDBP mRNA. The vicious cycle might accelerate the disease progression of ALS. PMID:27257061

  14. Anxiety affecting parkinsonian outcome and motor efficiency in adults of an Ohio community with environmental airborne manganese exposure.

    EPA Science Inventory

    Manganese (Mn) is a nutrient and neurotoxicant sometimes associated with mood, motor and neurological effects. Reports of health effects from occupational exposure to Mn are well known, but the reported links to environmental airborne Mn (Mn-Air) are less conclusive. Marietta, OH...

  15. Factors Affecting Psychosocial and Motor Development in 3-Year-Old Children Who Are Deaf or Hard of Hearing

    ERIC Educational Resources Information Center

    Leigh, Greg; Ching, Teresa Y. C.; Crowe, Kathryn; Cupples, Linda; Marnane, Vivienne; Seeto, Mark

    2015-01-01

    Previous research has shown an association between children's development of psychosocial and motor skills. This study evaluated the development of these skills in 301 three-year-old deaf and hard of hearing children (M: 37.8 months) and considered a range of possible predictors including gender, birth weight, age at first fitting with hearing…

  16. Motor Control in Children with ADHD and Non-Affected Siblings: Deficits Most Pronounced Using the Left Hand

    ERIC Educational Resources Information Center

    Rommelse, Nanda N. J.; Altink, Marieke E.; Oosterlaan, Jaap; Buschgens, Cathelijne J. M.; Buitelaar, Jan; De Sonneville, Leo M. J.; Sergeant, Joseph A.

    2007-01-01

    Background: Attention-deficit/hyperactivity disorder (ADHD) is strongly influenced by heritability. Identifying heritable vulnerability traits (endophenotypes) that mark a relatively high risk of developing the disorder can contribute to the identification of risk genes. A fruitful area for the search for such endophenotypes may be motor control…

  17. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43.

    PubMed

    Koyama, Akihide; Sugai, Akihiro; Kato, Taisuke; Ishihara, Tomohiko; Shiga, Atsushi; Toyoshima, Yasuko; Koyama, Misaki; Konno, Takuya; Hirokawa, Sachiko; Yokoseki, Akio; Nishizawa, Masatoyo; Kakita, Akiyoshi; Takahashi, Hitoshi; Onodera, Osamu

    2016-07-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder. In motor neurons of ALS, TAR DNA binding protein-43 (TDP-43), a nuclear protein encoded by TARDBP, is absent from the nucleus and forms cytoplasmic inclusions. TDP-43 auto-regulates the amount by regulating the TARDBP mRNA, which has three polyadenylation signals (PASs) and three additional alternative introns within the last exon. However, it is still unclear how the autoregulatory mechanism works and how the status of autoregulation in ALS motor neurons without nuclear TDP-43 is. Here we show that TDP-43 inhibits the selection of the most proximal PAS and induces splicing of multiple alternative introns in TARDBP mRNA to decrease the amount of cytoplasmic TARDBP mRNA by nonsense-mediated mRNA decay. When TDP-43 is depleted, the TARDBP mRNA uses the most proximal PAS and is increased in the cytoplasm. Finally, we have demonstrated that in ALS motor neurons-especially neurons with mislocalized TDP-43-the amount of TARDBP mRNA is increased in the cytoplasm. Our observations indicate that nuclear TDP-43 contributes to the autoregulation and suggests that the absence of nuclear TDP-43 induces an abnormal autoregulation and increases the amount of TARDBP mRNA. The vicious cycle might accelerate the disease progression of ALS. PMID:27257061

  18. 4-Aminopyridine Induced Activity Rescues Hypoexcitable Motor Neurons from Amyotrophic Lateral Sclerosis Patient-Derived Induced Pluripotent Stem Cells.

    PubMed

    Naujock, Maximilian; Stanslowsky, Nancy; Bufler, Sebastian; Naumann, Marcel; Reinhardt, Peter; Sterneckert, Jared; Kefalakes, Ekaterini; Kassebaum, Carola; Bursch, Franziska; Lojewski, Xenia; Storch, Alexander; Frickenhaus, Marie; Boeckers, Tobias M; Putz, Stefan; Demestre, Maria; Liebau, Stefan; Klingenstein, Moritz; Ludolph, Albert C; Dengler, Reinhard; Kim, Kwang-Soo; Hermann, Andreas; Wegner, Florian; Petri, Susanne

    2016-06-01

    Despite decades of research on amyotrophic lateral sclerosis (ALS), there is only one approved drug, which minimally extends patient survival. Here, we investigated pathophysiological mechanisms underlying ALS using motor neurons (MNs) differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying mutations in FUS or SOD1. Patient-derived MNs were less active and excitable compared to healthy controls, due to reduced Na(+) /K(+) ratios in both ALS groups accompanied by elevated potassium channel (FUS) and attenuated sodium channel expression levels (FUS, SOD1). ALS iPSC-derived MNs showed elevated endoplasmic reticulum stress (ER) levels and increased caspase activation. Treatment with the FDA approved drug 4-Aminopyridine (4AP) restored ion-channel imbalances, increased neuronal activity levels and decreased ER stress and caspase activation. This study provides novel pathophysiological data, including a mechanistic explanation for the observed hypoexcitability in patient-derived MNs and a new therapeutic strategy to provide neuroprotection in MNs affected by ALS. Stem Cells 2016;34:1563-1575. PMID:26946488

  19. Language affects patterns of brain activation associated with perceptual decision.

    PubMed

    Tan, Li Hai; Chan, Alice H D; Kay, Paul; Khong, Pek-Lan; Yip, Lawrance K C; Luke, Kang-Kwong

    2008-03-11

    Well over half a century ago, Benjamin Lee Whorf [Carroll JB (1956) Language, Thought, and Reality: Selected Writings of Benjamin Lee Whorf (MIT Press, Cambridge, MA)] proposed that language affects perception and thought and is used to segment nature, a hypothesis that has since been tested by linguistic and behavioral studies. Although clear Whorfian effects have been found, it has not yet been demonstrated that language influences brain activity associated with perception and/or immediate postperceptual processes (referred hereafter as "perceptual decision"). Here, by using functional magnetic resonance imaging, we show that brain regions mediating language processes participate in neural networks activated by perceptual decision. When subjects performed a perceptual discrimination task on easy-to-name and hard-to-name colored squares, largely overlapping cortical regions were identified, which included areas of the occipital cortex critical for color vision and regions in the bilateral frontal gyrus. Crucially, however, in comparison with hard-to-name colored squares, perceptual discrimination of easy-to-name colors evoked stronger activation in the left posterior superior temporal gyrus and inferior parietal lobule, two regions responsible for word-finding processes, as demonstrated by a localizer experiment that uses an explicit color patch naming task. This finding suggests that the language-processing areas of the brain are directly involved in visual perceptual decision, thus providing neuroimaging support for the Whorf hypothesis. PMID:18316728

  20. Differences in motor activation of voluntary and reflex cough in humans

    PubMed Central

    Lasserson, D; Mills, K; Arunachalam, R; Polkey, M; Moxham, J; Kalra, L

    2006-01-01

    Objectives To study motor activation patterns of voluntary and reflex cough adjusted for cough flow rates. Methods Surface electromyography (EMG) and cough flow rate were measured in 10 healthy volunteers. Voluntary cough was assessed for 20 efforts in each quintile of increasing cough flow rate. Reflex cough was assessed for 25 efforts produced by nebulised l‐tartaric acid. EMG was recorded over the expiratory (rectus abdominis, obliques, lower intercostals) and accessory (trapezius, pectoralis major, deltoid, latissimus dorsi) muscles. EMG activity, burst duration and onset were compared for each quintile of voluntary cough, and between voluntary and reflex cough matched for cough flow rate. Results EMG activity and burst duration of expiratory and accessory muscles during voluntary cough increased in proportion to cough flow. Expiratory muscles had longer EMG burst duration (difference 68 ms (95% CI 34 to 102), p<0.01) and earlier onset of EMG activity (difference 44 ms (95% CI 20 to 68), p<0.0001) compared with accessory muscles. EMG activity in all muscles was increased (mean 110.2% v 56.1%, p<0.001) and burst duration (mean 206 ms v 280 ms, p = 0.013) decreased in reflex cough compared with voluntary cough of equal flow rate. There were no differences in EMG onset (difference 8 ms (95% CI 25 to −9) or burst duration (difference 27 ms (95% CI 58 to −4) between expiratory and accessory muscles. Conclusions Functional organisation of motor activity differs between voluntary and reflex cough. Voluntary cough is characterised by sequential activation whereas reflex cough is associated with early and simultaneous activation of expiratory and accessory muscles. PMID:16601089

  1. Effects of Metoclopramide on Esophageal Motor Activity and Esophagogastric Junction Compliance in Healthy Volunteers

    PubMed Central

    Mikami, Hironobu; Ishimura, Norihisa; Fukazawa, Kousuke; Okada, Mayumi; Izumi, Daisuke; Shimura, Shino; Okimoto, Eiko; Aimi, Masahito; Ishihara, Shunji; Kinoshita, Yoshikazu

    2016-01-01

    Background/Aims Prokinetic drugs such as metoclopramide are frequently used as second-line therapy for patients with gastroesophageal reflux disease. However, their beneficial effects remain unclear. Esophageal motor activities and compliance of the esophagogastric junction (EGJ) are important for prevention of gastroesophageal reflux. Although metoclopramide has been reported to increase lower esophageal sphincter (LES) pressure, its effects on EGJ compliance have not been evaluated. In the present study, we investigated the effects of metoclopramide on esophageal motor activities and EGJ compliance. Methods Nine healthy male volunteers without abdominal symptoms were enrolled. Peristaltic esophageal contractions and LES pressure were examined using high-resolution esophageal manometry, while EGJ compliance was evaluated with an endoluminal functional lumen-imaging probe. After obtaining baseline values for esophageal motor activities and EGJ compliance, metoclopramide (10 mg) was intravenously administered, then all measurements were repeated at 15 minutes after administration in each subject. Results Following administration of metoclopramide, mean resting LES pressure was significantly increased as compared with the baseline (13.7 ± 9.2 vs 26.7 ± 8.8 mmHg, P < 0.05). In addition, metoclopramide significantly augmented peristaltic contractions, especially in the distal esophageal segment (P < 0.05). On the other hand, distensibility index did not change after administration (4.5 ± 0.5 vs 4.1 ± 0.5 mm2/mmHg), suggesting no significant effect of metoclopramide on EGJ compliance. Conclusions Metoclopramide augmented esophageal contractions without changing EGJ compliance in healthy adults. PMID:26507875

  2. [Quantitative estimation of connection of the heart rate rhythm with motor activity in rat fetuses].

    PubMed

    Vdovichenko, N D; Timofeeva, O P; Bursian, A V

    2014-01-01

    In rat fetuses at E17-20 with preserved placental circulation with use of mathematical analysis there were revealed value and character of connections of slow wave oscillations of the heart rhythm with motor activity for 30 min of observation. In the software "PowerGraph 3.3.8", normalization and filtration of the studied signals were performed at three frequency diapasons: D1 - 0.02-0.2 Hz (5-50 s), D2 - 0.0083-0.02 Hz (50 s-2 min), and D3 - 0.0017-0.0083 Hz (2-10 min). The EMG curves filtrated by diapasons or piezograms were compared with periodograms in the corresponding diapasons of the heart rhythm variations. In the software "Origin 8.0", quantitative estimation of the degree of intersystemic interrelations for each frequency diapason was performed by Pearson correlation of coefficient, by the correlation connection value, and by the time shift of maximum of cross-correlation function. It has been established that in the frequency D1, regardless of age, the connection of heart rhythm oscillations with motor activity is expressed weakly. In the frequency diapason D2, the connection in most cases is located in the zone of weak and moderate correlations. In the multiminute diapason (D3), the connection is more pronounced. The number of animals that have a significant value of the correlation connection rises. The fetal MA fires in the decasecond diapason in all age groups are accompanied by short-time decelerations of the heart rhythms. In the minute diapason, there is observed a transition from positive connections at E17 and E18 to the negative ones at E19-20. Results of the study are considered in association with age-related changes of ratios of positive and negative oscillations of the heart rhythm change depending on the character of motor activity. PMID:25486813

  3. Chronic hyperhydration and hematological changes in trained subjects during prolonged restriction of motor activity

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Yaroshenko, Michael N.; Federenko, Youri F.

    1995-08-01

    The objective of this investigation was to evaluate the effect of a daily intake of fluid and salt supplementation (FSS) on the hemoglobin content of endurance trained athletes during hypokinesia (decreased number of steps from 10,000 to 3000 steps per day). The studies were performed on 30 long-distance runners who had a VO 2max average of 66 ml kg -1 min -1 and were in the age range of 19-24 years. Prior to their exposure to hypokinesia (HK) of 364 days, all volunteers were on an average of 10,000 steps per day. All volunteers were divided into three equal groups: the first group underwent normal ambulatory life (control subjects), the second group was kept under continuous restriction of motor activity (hypokinetic subjects) and the third group was placed under continuous restriction of motor activity and consumed 26 ml water kg -1 body weight daily and 0.1 g sodium chloride kg -1 body weight in the form of supplementation (hyperhydrated subjects). For simulation of the hypokinetic effect, the number of steps taken per day by the second and third groups of volunteers was restricted to an average of 3000. During the hypokinetic period we determined reticulocytes (Rt), hemoglobin (Hb), hematocrit (Hct), plasma volume (PV), red blood cell (RBC) mass and VO 2max. In hyperhydrated volunteers the content of Hb and Hct decreased significantly, while PV, RBC mass and Rt count increased significantly. In hypokinetic volunteers Hb and Hct increased, while PV, RBC and Rt decreased significantly. It was concluded that chronic hyperhydration may be used to attentuate an increase in the Hb content of physically conditioned subjects during prolonged restriction of motor activity.

  4. Motor control or graded activity exercises for chronic low back pain? A randomised controlled trial

    PubMed Central

    Macedo, Luciana G; Latimer, Jane; Maher, Chris G; Hodges, Paul W; Nicholas, Michael; Tonkin, Lois; McAuley, James H; Stafford, Ryan

    2008-01-01

    Background Chronic low back pain remains a major health problem in Australia and around the world. Unfortunately the majority of treatments for this condition produce small effects because not all patients respond to each treatment. It appears that only 25–50% of patients respond to exercise. The two most popular types of exercise for low back pain are graded activity and motor control exercises. At present however, there are no guidelines to help clinicians select the best treatment for a patient. As a result, time and money are wasted on treatments which ultimately fail to help the patient. Methods This paper describes the protocol of a randomised clinical trial comparing the effects of motor control exercises with a graded activity program in the treatment of chronic non specific low back pain. Further analysis will identify clinical features that may predict a patient's response to each treatment. One hundred and seventy two participants will be randomly allocated to receive either a program of motor control exercises or graded activity. Measures of outcome will be obtained at 2, 6 and 12 months after randomisation. The primary outcomes are: pain (average pain intensity over the last week) and function (patient-specific functional scale) at 2 and 6 months. Potential treatment effect modifiers will be measured at baseline. Discussion This trial will not only evaluate which exercise approach is more effective in general for patients will chronic low back pain, but will also determine which exercise approach is best for an individual patient. Trial registration number ACTRN12607000432415 PMID:18454877

  5. Exposure to altered gravity during specific developmental periods differentially affects growth, development, the cerebellum and motor functions in male and female rats

    NASA Astrophysics Data System (ADS)

    Nguon, K.; Ladd, B.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that neonatal cerebellar structure and motor coordination may be particularly vulnerable to the effects of hypergravity during specific developmental stages. To test this hypothesis, we compared neurodevelopment, motor behavior and cerebellar structure in rat neonates exposed to 1.65 G on a 24-ft centrifuge during discrete periods of time: the 2nd week of pregnancy [gestational day (G) 8 through G15; group A], the 3rd week of pregnancy (G15 through birth on G22/G23; group B), the 1st week of nursing [birth through postnatal day (P) 6; group C], the 2nd and 3rd weeks of nursing (P6 through P21; group D), the combined 2nd and 3rd weeks of pregnancy and nursing (G8 through P21; group E) and stationary control (SC) neonates (group F). Prenatal exposure to hypergravity resulted in intrauterine growth retardation as reflected by a decrease in the number of pups in a litter and lower average mass at birth. Exposure to hypergravity immediately after birth impaired the righting response on P3, while the startle response in both males and females was most affected by exposure during the 2nd and 3rd weeks after birth. Hypergravity exposure also impaired motor functions, as evidenced by poorer performance on a rotarod; while both males and females exposed to hypergravity during the 2nd and 3rd weeks after birth performed poorly on P21, male neonates were most dramatically affected by exposure to hypergravity during the second week of gestation, when the duration of their recorded stay on the rotarod was one half that of SC males. Cerebellar mass was most reduced by later postnatal exposure. Thus, for the developing rat cerebellum, the postnatal period that overlaps the brain growth spurt is the most vulnerable to hypergravity. However, male motor behavior is also affected by midpregnancy exposure to

  6. Primary motor cortex activity reduction under the regulation of SMA by real-time fMRI

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Zhao, Xiaojie; Li, Yi; Yao, Li; Chen, Kewei

    2012-03-01

    Real-time fMRI (rtfMRI) is a new technology which allows human subjects to observe and control their own BOLD signal change from one or more localized brain regions during scanning. Current rtfMRI-neurofeedback studies mainly focused on the target region itself without considering other related regions influenced by the real-time feedback. However, there always exits important directional influence between many of cooperative regions. On the other hand, rtfMRI based on motor imagery mainly aimed at somatomotor cortex or primary motor area, whereas supplement motor area (SMA) was a relatively more integrated and pivotal region. In this study, we investigated whether the activities of SMA can be controlled utilizing different motor imagery strategies, and whether there exists any possible impact on an unregulated but related region, primary motor cortex (M1). SMA was first localized using overt finger tapping task, the activities of SMA were feedback to subjects visually on line during each of two subsequent imagery motor movement sessions. All thirteen healthy participants were found to be able to successfully control their SMA activities by self-fit imagery strategies which involved no actual motor movements. The activation of right M1 was also found to be significantly reduced in both intensity and extent with the neurofeedback process targeted at SMA, suggestive that not only the part of motor cortex activities were influenced under the regulation of a key region SMA, but also the increased difference between SMA and M1 might reflect the potential learning effect.

  7. Assessing the feasibility of time-resolved fNIRS to detect brain activity during motor imagery

    NASA Astrophysics Data System (ADS)

    Abdalmalak, Androu; Milej, Daniel; Diop, Mamadou; Naci, Lorina; Owen, Adrian M.; St. Lawrence, Keith

    2016-03-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical technique for detecting brain activity, which has been previously used during motor and motor executive tasks. There is an increasing interest in using fNIRS as a brain computer interface (BCI) for patients who lack the physical, but not the mental, ability to respond to commands. The goal of this study is to assess the feasibility of time-resolved fNIRS to detect brain activity during motor imagery. Stability tests were conducted to ensure the temporal stability of the signal, and motor imagery data were acquired on healthy subjects. The NIRS probes were placed on the scalp over the premotor cortex (PMC) and supplementary motor area (SMA), as these areas are responsible for motion planning. To confirm the fNIRS results, subjects underwent functional magnetic resonance imaging (fMRI) while performing the same task. Seven subjects have participated to date, and significant activation in the SMA and/or the PMC during motor imagery was detected by both fMRI and fNIRS in 4 of the 7 subjects. No activation was detected by either technique in the remaining three participants, which was not unexpected due to the nature of the task. The agreement between the two imaging modalities highlights the potential of fNIRS as a BCI, which could be adapted for bedside studies of patients with disorders of consciousness.

  8. Spinal adenosine A2a receptor activation elicits long-lasting phrenic motor facilitation.

    PubMed

    Golder, Francis J; Ranganathan, Lavanya; Satriotomo, Irawan; Hoffman, Michael; Lovett-Barr, Mary Rachael; Watters, Jyoti J; Baker-Herman, Tracy L; Mitchell, Gordon S

    2008-02-27

    Acute intermittent hypoxia elicits a form of spinal, brain-derived neurotrophic factor (BDNF)-dependent respiratory plasticity known as phrenic long-term facilitation. Ligands that activate G(s)-protein-coupled receptors, such as the adenosine 2a receptor, mimic the effects of neurotrophins in vitro by transactivating their high-affinity receptor tyrosine kinases, the Trk receptors. Thus, we hypothesized that A2a receptor agonists would elicit phrenic long-term facilitation by mimicking the effects of BDNF on TrkB receptors. Here we demonstrate that spinal A2a receptor agonists transactivate TrkB receptors in the rat cervical spinal cord near phrenic motoneurons, thus inducing long-lasting (hours) phrenic motor facilitation. A2a receptor activation increased phosphorylation and new synthesis of an immature TrkB protein, induced TrkB signaling through Akt, and strengthened synaptic pathways to phrenic motoneurons. RNA interference targeting TrkB mRNA demonstrated that new TrkB protein synthesis is necessary for A2a-induced phrenic motor facilitation. A2a receptor activation also increased breathing in unanesthetized rats, and improved breathing in rats with cervical spinal injuries. Thus, small, highly permeable drugs (such as adenosine receptor agonists) that transactivate TrkB receptors may provide an effective therapeutic strategy in the treatment of patients with ventilatory control disorders, such as obstructive sleep apnea, or respiratory insufficiency after spinal injury or during neurodegenerative diseases. PMID:18305238

  9. VARIABILITY IN THE PREWEANLING ONTOGENY OF MOTOR ACTIVITY IN RATS: INFLUENCE OF DEVICE, TEST DAY, AND RAT SUPPLIER.

    EPA Science Inventory

    Current developmental neurotoxicity testing guidelines include evaluation of preweanling motor activity in rats. The ontogeny of activity levels as well as within-session habituation may be measured by repeatedly testing subjects at specific days of age. Activity levels are i...

  10. Methylmercury exposure affects motor performance of a riverine population of the Tapajós river, Brazilian Amazon.

    PubMed

    Dolbec, J; Mergler, D; Sousa Passos, C J; Sousa de Morais, S; Lebel, J

    2000-04-01

    Gold mining and deforestation in the Brazilian Amazon are increasing mercury pollution of the extensive water system, exposing riverine populations to organic mercury through fish-eating. The aim of the present study was to evaluate the effect of such exposure on motor performance. This cross-sectional study was carried out in May 1996, in a village located on the banks of the Tapajós river in the Amazonian Basin, Brazil. Information concerning sociodemographics, health, smoking habits, alcohol drinking, dietary habits and work history were collected using an interview-administered questionnaire. Mercury concentrations were measured by cold vapor atomic absorption in blood and hair of each participant, of whom those aged between 15 and 79 years were assessed for motor performance (n = 84). Psychomotor performance was evaluated using the Santa Ana manual dexterity test, the Grooved Pegboard Fine motor test and the fingertapping motor speed test. Motor strength was measured by dynamometry for grip and pinch strength. Following the exclusion of 16 persons for previous head injury, working with mercury in the goldmining sites, or for diabetes, the relationship between performance and bioindicators of mercury was examined using multivariate statistical analyses, taking into account covariables. All participants in the study reported eating fish, which comprised 61.8% of the total meals eaten during the preceding week. The median hair total mercury concentration was 9 microg/g. Organic mercury accounted for 94.4 = 1.9% of the total mercury levels. Multivariate analysis of variance indicated that hair mercury was inversely associated with overall performance on the psychomotor tests, while a tendency was observed with blood mercury. Semipartial regression analyses showed that hair total mercury accounted for 8% to 16% of the variance of psychomotor performance. Neither hair nor blood total mercury was associated with the results of the strength tests in women and men

  11. Superior Sensory, Motor, and Cognitive Performance in Elderly Individuals with Multi-Year Dancing Activities

    PubMed Central

    Kattenstroth, Jan-Christoph; Kolankowska, Izabella; Kalisch, Tobias; Dinse, Hubert R.

    2010-01-01

    Aging is associated with a progressive decline of mental and physical abilities. Considering the current demographic changes in many civilizations there is an urgent need for measures permitting an independent lifestyle into old age. The critical role of physical exercise in mediating and maintaining physical and mental fitness is well-acknowledged. Dance, in addition to physical activity, combines emotions, social interaction, sensory stimulation, motor coordination and music, thereby creating enriched environmental conditions for human individuals. Here we demonstrate the impact of multi-year (average 16.5 years) amateur dancing (AD) in a group of elderly subjects (aged 65–84 years) as compared to education-, gender- and aged-matched controls (CG) having no record of dancing or sporting activities. Besides posture and balance parameters, we tested reaction times, motor behavior, tactile and cognitive performance. In each of the different domains investigated, the AD group had a superior performance as compared to the non-dancer CG group. Analysis of individual performance revealed that the best participants of the AD group were not better than individuals of the CG group. Instead, the AD group lacked individuals showing poor performance, which was frequently observed for the CG group. This observation implies that maintaining a regular schedule of dancing into old age can preserve cognitive, motor and perceptual abilities and prevent them from degradation. We conclude that the far-reaching beneficial effects found in the AD group make dance, beyond its ability to facilitate balance and posture, a prime candidate for the preservation of everyday life competence of elderly individuals. PMID:20725636

  12. Short-term effects of integrated motor imagery practice on muscle activation and force performance.

    PubMed

    Di Rienzo, F; Blache, Y; Kanthack, T F D; Monteil, K; Collet, C; Guillot, A

    2015-10-01

    The effect of motor imagery (MI) practice on isometric force development is well-documented. However, whether practicing MI during rest periods of physical training improves the forthcoming performance remains unexplored. We involved 18 athletes in a counterbalanced design including three physical training sessions scheduled over five consecutive days. Training involved 10 maximal isometric contractions against a force plate, with the elbow at 90°. During two sessions, we integrated MI practice (focusing on either muscle activation or relaxation) during the inter-trial rest periods. We measured muscle performance from force plate and electromyograms of the biceps brachii and anterior deltoideus. We continuously monitored electrodermal activity (EDA) to control sympathetic nervous system activity. MI of muscle activation resulted in higher isometric force as compared to both MI of muscle relaxation and passive recovery (respectively +2.1% and +3.5%). MI practice of muscle relaxation also outperformed the control condition (+1.9%). Increased activation of the biceps brachii was recorded under both MI practice conditions compared to control. Biceps brachii activation was similar between the two MI practice conditions, but electromyography revealed a marginal trend toward greater activation of the anterior deltoideus during MI practice of muscle activation. EDA and self-reports indicated that these effects were independent from physiological arousal and motivation. These results might account for priming effects of MI practice yielding to higher muscle activation and force performance. Present findings may be of interest for applications in sports training and neurologic rehabilitation. PMID:26241339

  13. [THE INFLUENCE OF LEU-ENKEPHALIN AND MEDICAL PLANTS ON MOTOR ACTIVITY OF STOMACH IN DOGS].

    PubMed

    Vymjatnina, Z K; Prosekina, E Y; Tomova, T A

    2015-01-01

    The aim of the real research was a study influence of leu-enkephalin and extracts from the leaves of goose-grass large, of burdock of felted and root of chicory on the motor function of stomach for dogs. The study was carried out on 6 outbred dogs-males, by mass 14-17 kg, with the fistula of stomach by Basov. A leu-enkephalin ("Vector", Russia) was entered intravenously in a dose 7 mcg/kg. The corresponding plant-based preparations entered perorally during 10-14 days to beginning of experiments, on an empty stomach, in a volume a no more than 20 ml. Experiments put in a morning clock, in 16-18 hours after eating, after the careful washing of stomach. For 30 mines to the record of motive activity of stomach an animal was enter a peptide or gave a corresponding extract as water or spirit infusion. At the choice of doses of vegetable preparations came from the before obtained data about the antiulcerous action of the used plants. The conduct of peptide rendered considerable stimulant influence on motor activity of stomach, that was expressed in the increase of period of work and increase of force of reductions especially tonic. All used plants preparations rendered modulating influence on motive activity of stomach. Changes consisted in strengthening of tonic and oppressing of phase component. The most considerable decline of amount of phase reductions caused application of extract of goose-grass. Not only an amount but also force of phase reductions diminished thus. An extract from the root of chicory less considerably reduced the arnount of Phase reJuctions, but here substantially increased their force. All used herbal medicines stimulated tonic activity. Thus, peptide and all studied herbal medicines stimulated motion activity of the stomach that could cause acceleration of evacuation of food to duodenum. Such effect should be considered while choosing the medicine for correction of stomach functional activity. PMID:26931013

  14. Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat.

    PubMed

    Farrell, Brad J; Bulgakova, Margarita A; Sirota, Mikhail G; Prilutsky, Boris I; Beloozerova, Irina N

    2015-11-01

    How do cats manage to walk so graciously on top of narrow fences or windowsills high above the ground while apparently exerting little effort? In this study we investigated cat full-body mechanics and the activity of limb muscles and motor cortex during walking along a narrow 5-cm path on the ground. We tested the hypotheses that during narrow walking 1) lateral stability would be lower because of the decreased base-of-support area and 2) the motor cortex activity would increase stride-related modulation because of imposed demands on lateral stability and paw placement accuracy. We measured medio-lateral and rostro-caudal dynamic stability derived from the extrapolated center of mass position with respect to the boundaries of the support area. We found that cats were statically stable in the frontal plane during both unconstrained and narrow-path walking. During narrow-path walking, cats walked slightly slower with more adducted limbs, produced smaller lateral forces by hindlimbs, and had elevated muscle activities. Of 174 neurons recorded in cortical layer V, 87% of forelimb-related neurons (from 114) and 90% of hindlimb-related neurons (from 60) had activities during narrow-path walking distinct from unconstrained walking: more often they had a higher mean discharge rate, lower depth of stride-related modulation, and/or longer period of activation during the stride. These activity changes appeared to contribute to control of accurate paw placement in the medio-lateral direction, the width of the stride, rather than to lateral stability control, as the stability demands on narrow-path and unconstrained walking were similar. PMID:26354314

  15. Electrocorticographic activity over sensorimotor cortex and motor function in awake behaving rats

    PubMed Central

    Chen, Xiang Yang; Wolpaw, Jonathan R.

    2015-01-01

    Sensorimotor cortex exerts both short-term and long-term control over the spinal reflex pathways that serve motor behaviors. Better understanding of this control could offer new possibilities for restoring function after central nervous system trauma or disease. We examined the impact of ongoing sensorimotor cortex (SMC) activity on the largely monosynaptic pathway of the H-reflex, the electrical analog of the spinal stretch reflex. In 41 awake adult rats, we measured soleus electromyographic (EMG) activity, the soleus H-reflex, and electrocorticographic activity over the contralateral SMC while rats were producing steady-state soleus EMG activity. Principal component analysis of electrocorticographic frequency spectra before H-reflex elicitation consistently revealed three frequency bands: μβ (5–30 Hz), low γ (γ1; 40–85 Hz), and high γ (γ2; 100–200 Hz). Ongoing (i.e., background) soleus EMG amplitude correlated negatively with μβ power and positively with γ1 power. In contrast, H-reflex size correlated positively with μβ power and negatively with γ1 power, but only when background soleus EMG amplitude was included in the linear model. These results support the hypothesis that increased SMC activation (indicated by decrease in μβ power and/or increase in γ1 power) simultaneously potentiates the H-reflex by exciting spinal motoneurons and suppresses it by decreasing the efficacy of the afferent input. They may help guide the development of new rehabilitation methods and of brain-computer interfaces that use SMC activity as a substitute for lost or impaired motor outputs. PMID:25632076

  16. Inaudible high-frequency sounds affect brain activity: hypersonic effect.

    PubMed

    Oohashi, T; Nishina, E; Honda, M; Yonekura, Y; Fuwamoto, Y; Kawai, N; Maekawa, T; Nakamura, S; Fukuyama, H; Shibasaki, H

    2000-06-01

    Although it is generally accepted that humans cannot perceive sounds in the frequency range above 20 kHz, the question of whether the existence of such "inaudible" high-frequency components may affect the acoustic perception of audible sounds remains unanswered. In this study, we used noninvasive physiological measurements of brain responses to provide evidence that sounds containing high-frequency components (HFCs) above the audible range significantly affect the brain activity of listeners. We used the gamelan music of Bali, which is extremely rich in HFCs with a nonstationary structure, as a natural sound source, dividing it into two components: an audible low-frequency component (LFC) below 22 kHz and an HFC above 22 kHz. Brain electrical activity and regional cerebral blood flow (rCBF) were measured as markers of neuronal activity while subjects were exposed to sounds with various combinations of LFCs and HFCs. None of the subjects recognized the HFC as sound when it was presented alone. Nevertheless, the power spectra of the alpha frequency range of the spontaneous electroencephalogram (alpha-EEG) recorded from the occipital region increased with statistical significance when the subjects were exposed to sound containing both an HFC and an LFC, compared with an otherwise identical sound from which the HFC was removed (i.e., LFC alone). In contrast, compared with the baseline, no enhancement of alpha-EEG was evident when either an HFC or an LFC was presented separately. Positron emission tomography measurements revealed that, when an HFC and an LFC were presented together, the rCBF in the brain stem and the left thalamus increased significantly compared with a sound lacking the HFC above 22 kHz but that was otherwise identical. Simultaneous EEG measurements showed that the power of occipital alpha-EEGs correlated significantly with the rCBF in the left thalamus. Psychological evaluation indicated that the subjects felt the sound containing an HFC to be more

  17. 75 FR 77940 - Agency Information Collection Activities; Extension of a Currently-Approved Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... Federal Motor Carrier Safety Administration Agency Information Collection Activities; Extension of a... AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice and request for comments... identify designated/restricted routes and restrictions or limitations affecting how motor carriers...

  18. From Cerebellar Activation and Connectivity to Cognition: A Review of the Quadrato Motor Training

    PubMed Central

    Ben-Soussan, Tal Dotan; Glicksohn, Joseph; Berkovich-Ohana, Aviva

    2015-01-01

    The importance of the cerebellum is increasingly recognized, not only in motor control but also in cognitive learning and function. Nevertheless, the relationship between training-induced cerebellar activation and electrophysiological and structural changes in humans has yet to be established. In the current paper, we suggest a general model tying cerebellar function to cognitive improvement, via neuronal synchronization, as well as biochemical and anatomical changes. We then suggest that sensorimotor training provides an optimal paradigm to test the proposed model and review supporting evidence of Quadrato Motor Training (QMT), a sensorimotor training aimed at increasing attention and coordination. Subsequently, we discuss the possible mechanisms through which QMT may exert its beneficial effects on cognition (e.g., increased creativity, reflectivity, and reading), focusing on cerebellar alpha activity as a possible mediating mechanism allowing cognitive improvement, molecular and anatomical changes. Using the example of QMT research, this paper emphasizes the importance of investigating whole-body sensorimotor training paradigms utilizing a multidisciplinary approach and its implications to healthy brain development. PMID:26539545

  19. From Cerebellar Activation and Connectivity to Cognition: A Review of the Quadrato Motor Training.

    PubMed

    Ben-Soussan, Tal Dotan; Glicksohn, Joseph; Berkovich-Ohana, Aviva

    2015-01-01

    The importance of the cerebellum is increasingly recognized, not only in motor control but also in cognitive learning and function. Nevertheless, the relationship between training-induced cerebellar activation and electrophysiological and structural changes in humans has yet to be established. In the current paper, we suggest a general model tying cerebellar function to cognitive improvement, via neuronal synchronization, as well as biochemical and anatomical changes. We then suggest that sensorimotor training provides an optimal paradigm to test the proposed model and review supporting evidence of Quadrato Motor Training (QMT), a sensorimotor training aimed at increasing attention and coordination. Subsequently, we discuss the possible mechanisms through which QMT may exert its beneficial effects on cognition (e.g., increased creativity, reflectivity, and reading), focusing on cerebellar alpha activity as a possible mediating mechanism allowing cognitive improvement, molecular and anatomical changes. Using the example of QMT research, this paper emphasizes the importance of investigating whole-body sensorimotor training paradigms utilizing a multidisciplinary approach and its implications to healthy brain development. PMID:26539545

  20. Dopaminergic modulation of motor neuron activity and neuromuscular function in Drosophila melanogaster.

    PubMed

    Cooper, R L; Neckameyer, W S

    1999-02-01

    Dopamine is found in both neuronal and non-neuronal tissues in the larval stage of the fruit fly, Drosophila melanogaster, and functions as a signaling molecule in the nervous system. Although dopaminergic neurons in the central nervous system (CNS) were previously thought solely to be interneurons, recent studies suggest that dopamine may also act as a neuromodulator in humoral pathways. We examined both application of dopamine on intact larval CNS-segmental preparations and isolated neuromuscular junctions (NMJs). Dopamine rapidly decreased the rhythmicity of the CNS motor activity. Application of dopamine on neuromuscular preparations of the segmental muscles 6 and 7 resulted in a dose-responsive decrease in the excitatory junction potentials (EJPs). With the use of focal, macro-patch synaptic current recordings the quantal evoked transmission showed a depression of vesicular release at concentrations of 10 microM. Higher concentrations (1 mM) produced a rapid decrement in evoked vesicular release. Dopamine did not alter the shape of the spontaneous synaptic currents, suggesting that dopamine does not alter the postsynaptic muscle fiber receptiveness to the glutaminergic motor nerve transmission. The effects are presynaptic in causing a reduction in the number of vesicles that are stimulated to be released due to neural activity. PMID:10327610

  1. Relationships between physical activity and motor skills in middle school children.

    PubMed

    Reed, Julian A; Metzker, Andrea; Phillips, D Allen

    2004-10-01

    The purpose of this study was to examine the relationships between physical activity measured as pedometer steps and performance on three motor skill tests. A secondary purpose was to determine if middle school children are meeting the recommendation for the number of daily steps. A sample (n =217) of 6th, 7th and 8th grade students participated. Each subject wore a Digi-Walker pedometer for three consecutive days. Subjects additionally recorded their pedometer steps in two 45 min.-physical education classes. There were strong significant correlations between daily steps taken by boys and girls, pedometer steps during physical education class and the AAHPERD Passing Test and the Bass Stick Balance. Similar correlations were weaker for the Side-Step Agility Test. Multivariate analysis of variance was utilized to examine variability of the three skills test by sex and year in school. Differences between students in Grades 7 and 8 on the AAHPERD Passing Test were significant. In addition, significant differences between daily pedometer steps and steps during physical education between Grades 6 and 7 were observed. Boys and girls had similar means on the AAHPERD Passing Test and Bass Stick Balance Test, but not on the Side-Step Agility Test. Scores on the three movement skills tested in this study were not strongly related to physical activity of the entire sample. Steps taken by middle school children appear not to be related to these measures of motor skills. PMID:15560336

  2. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease

    PubMed Central

    Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko

    2015-01-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson’s disease. Here, we set out to address the motor network activity and synchronization in Parkinson’s disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson’s disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with ‘stimulation on’ compared to ‘stimulation off’ on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With ‘stimulation on’, interhemispheric cortico

  3. Network feedback regulates motor output across a range of modulatory neuron activity.

    PubMed

    Spencer, Robert M; Blitz, Dawn M

    2016-06-01

    Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5-35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation. PMID:27030739

  4. Analysis of neural activity in human motor cortex -- Towards brain machine interface system

    NASA Astrophysics Data System (ADS)

    Secundo, Lavi

    , the correlation of ECoG activity to kinematic parameters of arm movement is context-dependent, an important constraint to consider in future development of BMI systems. The third chapter delves into a fundamental organizational principle of the primate motor system---cortical control of contralateral limb movements. However, ipsilateral motor areas also appear to play a role in the control of ipsilateral limb movements. Several studies in monkeys have shown that individual neurons in ipsilateral primary motor cortex (M1) may represent, on average, the direction of movements of the ipsilateral arm. Given the increasing body of evidence demonstrating that neural ensembles can reliably represent information with a high temporal resolution, here we characterize the distributed neural representation of ipsilateral upper limb kinematics in both monkey and man. In two macaque monkeys trained to perform center-out reaching movements, we found that the ensemble spiking activity in M1 could continuously represent ipsilateral limb position. We also recorded cortical field potentials from three human subjects and also consistently found evidence of a neural representation for ipsilateral movement parameters. Together, our results demonstrate the presence of a high-fidelity neural representation for ipsilateral movement and illustrates that it can be successfully incorporated into a brain-machine interface.

  5. Neural co-activation as a yardstick of implicit motor learning and the propensity for conscious control of movement.

    PubMed

    Zhu, F F; Poolton, J M; Wilson, M R; Maxwell, J P; Masters, R S W

    2011-04-01

    Two studies examined EEG co-activation (coherence) between the verbal-analytical (T3) and motor planning (Fz) regions during a golf putting task. In Study 1, participants with a strong propensity to consciously monitor and control their movements, determined psychometrically by high scores on a movement specific Reinvestment Scale, displayed more alpha2 T3-Fz co-activation than participants with a weak propensity. In Study 2, participants who practiced a golf putting task implicitly (via an errorless learning protocol) displayed less alpha2 T3-Fz co-activation than those who practiced explicitly (by errorful learning). In addition, explicit but not implicit motor learners displayed more T3-Fz co-activation during golf putting under pressure, implying that verbal-analytical processing of putting movements increased under pressure. These findings provide neuropsychological evidence that supports claims that implicit motor learning can be used to limit movement specific reinvestment. PMID:21315795

  6. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex

    PubMed Central

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B.; Vargas-Irwin, Carlos E.; Ozden, Ilker; Zimmermann, Jonas B.; May, Travis; Agha, Naubahar S.; Wang, Jing

    2015-01-01

    Transient gamma-band (40–80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions. PMID:25761956

  7. Effects of physical activity on executive function and motor performance in children with ADHD.

    PubMed

    Ziereis, Susanne; Jansen, Petra

    2015-03-01

    Children with Attention-Deficit/Hyperactivity Disorder (ADHD) often show major deficits in motor and cognitive abilities. Pharmacological treatment is commonly used to reduce ADHD symptoms. However, non-pharmacologic treatment methods would be preferred by parents, children and psychiatrists. Physical activity (PA) has been demonstrated to improve cognitive functioning in healthy populations. It can be hypothesized that there are similar beneficial effects in children with ADHD, however, very little is known about this issue. The purpose of the present study was to determine whether PA improves cognitive performance in children with ADHD. A total of 43 children with ADHD (32 boys and 11 girls) aged between seven and 12 years took part in the study. To investigate whether potential effects on executive functioning depend on the kind of PA, two different 12-week training programs were implemented. The study-design consisted of two experimental groups (EG1, n=13; EG2, n=14) and a wait-list control group (CG, n=16). Participants in EG1 took part in a training which focused on the abilities ball handling, balance and manual dexterity. Participants in EG2 group were trained in sports without a specific focus. The children in the CG group received no intervention. Participants completed assessments of working memory (WM) and motor performance before, immediately after the first training week and one week after the last session. After the 12-week intervention period, several measures of the EG1 and EG2s significantly improved over time. Furthermore, between group comparisons demonstrated significant improvements in both EG1 and EG2 compared to the CG in variables assessing WM performance and motor performance. These findings support the hypothesis that long-term PA has a positive effect on executive functions of children with ADHD, regardless of the specificity of the PA. The outcomes indicated that regular PA can be used as a complementary or alternative non

  8. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex.

    PubMed

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B; Vargas-Irwin, Carlos E; Ozden, Ilker; Zimmermann, Jonas B; May, Travis; Agha, Naubahar S; Wang, Jing; Nurmikko, Arto V

    2015-06-01

    Transient gamma-band (40-80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions. PMID:25761956

  9. Activity-dependent competition regulates motor neuron axon pathfinding via PlexinA3

    PubMed Central

    Plazas, Paola V.; Nicol, Xavier; Spitzer, Nicholas C.

    2013-01-01

    The role of electrical activity in axon guidance has been extensively studied in vitro. To better understand its role in the intact nervous system, we imaged intracellular Ca2+ in zebrafish primary motor neurons (PMN) during axon pathfinding in vivo. We found that PMN generate specific patterns of Ca2+ spikes at different developmental stages. Spikes arose in the distal axon of PMN and were propagated to the cell body. Suppression of Ca2+ spiking activity in single PMN led to stereotyped errors, but silencing all electrical activity had no effect on axon guidance, indicating that an activity-based competition rule regulates this process. This competition was not mediated by synaptic transmission. Combination of PlexinA3 knockdown with suppression of Ca2+ activity in single PMN produced a synergistic increase in the incidence of pathfinding errors. However, expression of PlexinA3 transcripts was not regulated by activity. Our results provide an in vivo demonstration of the intersection of spontaneous electrical activity with the PlexinA3 guidance molecule receptor in regulation of axon pathfinding. PMID:23302694

  10. Complement activity is associated with disease severity in multifocal motor neuropathy

    PubMed Central

    Vlam, Lotte; Cats, Elisabeth A.; Harschnitz, Oliver; Jansen, Marc D.; Piepers, Sanne; Veldink, Jan Herman; Franssen, Hessel; Stork, Abraham C.J.; Heezius, Erik; Rooijakkers, Suzan H.M.; Herpers, Bjorn L.; van Strijp, Jos A.; van den Berg, Leonard H.

    2015-01-01

    Objective: To investigate whether high innate activity of the classical and lectin pathways of complement is associated with multifocal motor neuropathy (MMN) and whether levels of innate complement activity or the potential of anti-GM1 antibodies to activate the complement system correlate with disease severity. Methods: We performed a case-control study including 79 patients with MMN and 79 matched healthy controls. Muscle weakness was documented with Medical Research Council scale sum score and axonal loss with nerve conduction studies. Activity of the classical and lectin pathways of complement was assessed by ELISA. We also determined serum mannose-binding lectin (MBL) concentrations and polymorphisms in the MBL gene (MBL2) and quantified complement-activating properties of anti-GM1 IgM antibodies by ELISA. Results: Activity of the classical and lectin pathways, MBL2 genotypes, and serum MBL concentrations did not differ between patients and controls. Complement activation by anti-GM1 IgM antibodies was exclusively mediated through the classical pathway and correlated with antibody titers (p < 0.001). Logistic regression analysis showed that both high innate activity of the classical pathway of complement and high complement-activating capacity of anti-GM1 IgM antibodies were significantly associated with more severe muscle weakness and axonal loss. Conclusion: High innate activity of the classical pathway of complement and efficient complement-activating properties of anti-GM1 IgM antibodies are determinants of disease severity in patients with MMN. These findings underline the importance of anti-GM1 antibody–mediated complement activation in the pathogenesis and clinical course of MMN. PMID:26161430

  11. Treating apraxia of speech with an implicit protocol that activates speech motor areas via inner speech

    PubMed Central

    Farias, Dana; Davis, Christine Herrick; Wilson, Stephen M

    2014-01-01

    Background Treatments of apraxia of speech (AOS) have traditionally relied on overt practice. One alternative to this method is implicit phoneme manipulation which was derived from early models on inner speech. Implicit phoneme manipulation requires the participant to covertly move and combine phonemes to form a new word. This process engages a system of self-monitoring which is referred to as fully conscious inner speech. Aims The present study aims to advance the understanding and validity of a new treatment for AOS, implicit phoneme manipulation. Tasks were designed to answer the following questions. 1. Would the practice of implicit phoneme manipulation improve the overt production of complex consonant blends in words? 2. Would this improvement generalize to untrained complex and simpler consonant blends in words? 3. Would these treatment tasks activate regions known to support motor planning and programming as verified by fMRI? Method & Procedures The participant was asked to covertly manipulate phonemes to create a new word and to associate this newly formed word to a target picture among 4 phonologically-related choices. To avoid overt practice, probes were collected only after each block of training was completed. Probe sessions assessed the effects of implicit practice on the overt production of simple and complex consonant blends in words. An imaging protocol compared semantic baseline tasks to treatment tasks to verify that implicit phoneme manipulation activated brain regions of interest. Outcomes & Results Behavioral: Response to implicit training of complex consonant blends resulted in improvements which were maintained 6 weeks after treatment. Further, this treatment generalized to simpler consonant blends in words. Imaging: Functional imaging during implicit phoneme manipulation showed significant activation in brain regions responsible for phonological processing when compared to the baseline semantic task. Conclusions Implicit phoneme manipulation

  12. Relaxation training affects success and activation on a teaching test.

    PubMed

    Helin, P; Hänninen, O

    1987-12-01

    We studied the effects of an audiocassette-relaxation training period (ART) and its timing on success at a teaching test (lecture type), on observed tension and on a number of physiological responses. The electrical activity of the upper trapezius muscle (EMG), heart rate (HR) and blood pressure (BP), of female and male instructor candidates, were examined before, during and after the teaching test as well as during its critique. The relaxation period (18 min) was presented either on the preceding night (ARTnt) or immediately before the teaching test (ARTimm). The influence of personality (types A-B and extrovert-introvert) was also studied. ART improved success at the teaching test in both sexes. In males (but not in females), ARTimm decreased EMG level during the test, but ARTnt increased EMG at the test period as compared to the control group. In females, both ARTnt and ARTimm lowered HR more than in the control group. ARTimm lowered systolic BP in both sexes. Personality types affected the ART responses; ART was more beneficial for type A than B subjects. PMID:3325481

  13. Decreased Connectivity and Cerebellar Activity in Autism during Motor Task Performance

    ERIC Educational Resources Information Center

    Mostofsky, Stewart H.; Powell, Stephanie K.; Simmonds, Daniel J.; Goldberg, Melissa C.; Caffo, Brian; Pekar, James J.

    2009-01-01

    Although motor deficits are common in autism, the neural correlates underlying the disruption of even basic motor execution are unknown. Motor deficits may be some of the earliest identifiable signs of abnormal development and increased understanding of their neural underpinnings may provide insight into autism-associated differences in parallel…

  14. Short-term testosterone manipulations do not affect cognition or motor function but differentially modulate emotions in young and older male rhesus monkeys

    PubMed Central

    Kelly, Brian; Maguire-Herring, Vanessa; Rose, Christian M.; Gore, Heather E.; Ferrigno, Stephen; Novak, Melinda A.; Lacreuse, Agnès

    2014-01-01

    Human aging is characterized by declines in cognition and fine motor function as well as improved emotional regulation. In men, declining levels of testosterone (T) with age have been implicated in the development of these age-related changes. However, studies examining the effects of T replacement on cognition, emotion and fine motor function in older men have not provided consistent results. Rhesus monkeys (Macaca mulatta) are excellent models for human cognitive aging and may provide novel insights on this issue. We tested 10 aged intact male rhesus monkeys (mean age = 19, range 15–25) on a battery of cognitive, motor and emotional tasks at baseline and under low or high T experimental conditions. Their performance was compared to that of 6 young males previously tested in the same paradigm (Lacreuse et al., 2009; Lacreuse et al., 2010). Following a 4-week baseline testing period, monkeys were treated with a gonadotropin releasing hormone agonist (Depot Lupron, 200 µg/kg) to suppress endogenous T and were tested on the task battery under a 4-week high T condition (injection of Lupron + T enanthate, 20 mg/kg, n = 8) or 4-week low T condition (injection of Lupron + oil vehicle, n = 8) before crossing over to the opposite treatment. The cognitive tasks consisted of the Delayed Non-Matching-to-Sample (DNMS), the Delayed Response (DR), and the Delayed Recognition Span Test (spatial-DRST). The emotional tasks included an object Approach-Avoidance task and a task in which monkeys were played videos of unfamiliar conspecifics in different emotional context (Social Playbacks). The fine motor task was the Lifesaver task that required monkeys to remove a Lifesaver candy from rods of different complexity. T manipulations did not significantly affect visual recognition memory, working memory, reference memory or fine motor function at any age. In the Approach-Avoidance task, older monkeys, but not younger monkeys, spent more time in proximity of novel objects in the high

  15. Short-term testosterone manipulations do not affect cognition or motor function but differentially modulate emotions in young and older male rhesus monkeys.

    PubMed

    Kelly, Brian; Maguire-Herring, Vanessa; Rose, Christian M; Gore, Heather E; Ferrigno, Stephen; Novak, Melinda A; Lacreuse, Agnès

    2014-11-01

    Human aging is characterized by declines in cognition and fine motor function as well as improved emotional regulation. In men, declining levels of testosterone (T) with age have been implicated in the development of these age-related changes. However, studies examining the effects of T replacement on cognition, emotion and fine motor function in older men have not provided consistent results. Rhesus monkeys (Macaca mulatta) are excellent models for human cognitive aging and may provide novel insights on this issue. We tested 10 aged intact male rhesus monkeys (mean age=19, range 15-25) on a battery of cognitive, motor and emotional tasks at baseline and under low or high T experimental conditions. Their performance was compared to that of 6 young males previously tested in the same paradigm (Lacreuse et al., 2009; Lacreuse et al., 2010). Following a 4-week baseline testing period, monkeys were treated with a gonadotropin releasing hormone agonist (Depot Lupron, 200 μg/kg) to suppress endogenous T and were tested on the task battery under a 4-week high T condition (injection of Lupron+T enanthate, 20 mg/kg, n=8) or 4-week low T condition (injection of Lupron+oil vehicle, n=8) before crossing over to the opposite treatment. The cognitive tasks consisted of the Delayed Non-Matching-to-Sample (DNMS), the Delayed Response (DR), and the Delayed Recognition Span Test (spatial-DRST). The emotional tasks included an object Approach-Avoidance task and a task in which monkeys were played videos of unfamiliar conspecifics in different emotional context (Social Playbacks). The fine motor task was the Lifesaver task that required monkeys to remove a Lifesaver candy from rods of different complexity. T manipulations did not significantly affect visual recognition memory, working memory, reference memory or fine motor function at any age. In the Approach-Avoidance task, older monkeys, but not younger monkeys, spent more time in proximity of novel objects in the high T condition

  16. Systematic review of the relationship between habitual physical activity and motor capacity in children with cerebral palsy.

    PubMed

    Keawutan, Piyapa; Bell, Kristie; Davies, Peter S W; Boyd, Roslyn N

    2014-06-01

    Habitual physical activity (HPA) has many benefits for general health. Motor capacity in children with cerebral palsy (CP) can impact on their HPA. This study aimed to systematically review the available literature on the relationship between HPA and motor capacity in children with CP aged 3-12 years for all gross motor functional abilities (GMFCS I-V) compared to typically developing children. Five electronic databases (Pubmed, Cochrane, Embase, Cinahl and Web of Science from 1989 to November, 2013) were searched using keywords "children with cerebral palsy", "physical activity", "motor capacity" and "motor function" including their synonyms and MesH terms. Studies were included if they (i) were conducted in children with CP aged between 3 and 12 years, (ii) assessed HPA or time spent sedentary, (iii) assessed motor capacity in order to evaluate the relationship between HPA and motor capacity. All articles retrieved were reviewed by two independent reviewers and discussed until they reached consensus. Study quality of reporting was evaluated using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) criteria. Search results identified 864 articles but after review of the title and abstract only 21 articles warranted closer consideration. Ten articles met the strict inclusion criteria as nine articles did not assess HPA and two were conference abstracts. Study quality assessment (STROBE) found nine articles were good quality (≥ 60%) and one was poor quality (55.9%). Participants were mean age 8.4 (SD=2.1) years (range 2-17 years) and included children at all GMFCS levels (3 studies), while seven studies only recruited GMFCS level I-III. HPA measurements were either subjective (Activity Scale for Kids, Dutch Questionnaire of Participation in physical activity and assessment of participation in physical education at school and regular physical activity in leisure time) or objective (StepWatch(®) and ActiGraph(®)7164). Nine studies

  17. Motor Ability and Weight Status Are Determinants of Out-of-School Activity Participation for Children with Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Fong, Shirley S. M.; Lee, Velma Y. L.; Chan, Nerita N. C.; Chan, Rachel S. H.; Chak, Wai-Kwong; Pang, Marco Y. C.

    2011-01-01

    According to the International Classification of Functioning, Disability and Health model endorsed by the World Health Organization, participation in everyday activities is integral to normal child development. However, little is known about the influence of motor ability and weight status on physical activity participation in children with…

  18. Influence of respiratory motor neurone activity on human autonomic and haemodynamic rhythms

    NASA Technical Reports Server (NTRS)

    Gonschorek, A. S.; Lu, L. L.; Halliwill, J. R.; Beightol, L. A.; Taylor, J. A.; Painter, J. A.; Warzel, H.; Eckberg, D. L.

    2001-01-01

    Although humans hold great advantages over other species as subjects for biomedical research, they also bring major disadvantages. One is that among the many rhythmic physiological signals that can be recorded, there is no sure way to know which individual change precedes another, or which change represents cause and which represents effect. In an attempt to deal with the inherent complexity of research conducted in intact human subjects, we developed and used a structural equation model to analyse responses of healthy young men to pharmacological changes of arterial pressure and graded inspiratory resistance, before and after vagomimetic atropine. Our model yielded a good fit of the experimental data, with a system weighted R2 of 0.77, and suggested that our treatments exerted both direct and indirect influences on the variables we measured. Thus, infusions of nitroprusside and phenylephrine exerted all of their direct effects by lowering and raising arterial pressure; the changes of R-R intervals, respiratory sinus arrhythmia and arterial pressure fluctuations that these drugs provoked, were indirect consequences of arterial pressure changes. The only direct effect of increased inspiratory resistance was augmentation of arterial pressure fluctuations. These results may provide a new way to disentangle and understand responses of intact human subjects to experimental forcings. The principal new insight we derived from our modelling is that respiratory gating of vagal-cardiac motor neurone firing is nearly maximal at usual levels of arterial pressure and inspiratory motor neurone activity.

  19. Defining Optimal Aerobic Exercise Parameters to Affect Complex Motor and Cognitive Outcomes after Stroke: A Systematic Review and Synthesis

    PubMed Central

    Hasan, S. M. Mahmudul; Rancourt, Samantha N.; Austin, Mark W.; Ploughman, Michelle

    2016-01-01

    Although poststroke aerobic exercise (AE) increases markers of neuroplasticity and protects perilesional tissue, the degree to which it enhances complex motor or cognitive outcomes is unknown. Previous research suggests that timing and dosage of exercise may be important. We synthesized data from clinical and animal studies in order to determine optimal AE training parameters and recovery outcomes for future research. Using predefined criteria, we included clinical trials of stroke of any type or duration and animal studies employing any established models of stroke. Of the 5,259 titles returned, 52 articles met our criteria, measuring the effects of AE on balance, lower extremity coordination, upper limb motor skills, learning, processing speed, memory, and executive function. We found that early-initiated low-to-moderate intensity AE improved locomotor coordination in rodents. In clinical trials, AE improved balance and lower limb coordination irrespective of intervention modality or parameter. In contrast, fine upper limb recovery was relatively resistant to AE. In terms of cognitive outcomes, poststroke AE in animals improved memory and learning, except when training was too intense. However, in clinical trials, combined training protocols more consistently improved cognition. We noted a paucity of studies examining the benefits of AE on recovery beyond cessation of the intervention. PMID:26881101

  20. Defining Optimal Aerobic Exercise Parameters to Affect Complex Motor and Cognitive Outcomes after Stroke: A Systematic Review and Synthesis.

    PubMed

    Hasan, S M Mahmudul; Rancourt, Samantha N; Austin, Mark W; Ploughman, Michelle

    2016-01-01

    Although poststroke aerobic exercise (AE) increases markers of neuroplasticity and protects perilesional tissue, the degree to which it enhances complex motor or cognitive outcomes is unknown. Previous research suggests that timing and dosage of exercise may be important. We synthesized data from clinical and animal studies in order to determine optimal AE training parameters and recovery outcomes for future research. Using predefined criteria, we included clinical trials of stroke of any type or duration and animal studies employing any established models of stroke. Of the 5,259 titles returned, 52 articles met our criteria, measuring the effects of AE on balance, lower extremity coordination, upper limb motor skills, learning, processing speed, memory, and executive function. We found that early-initiated low-to-moderate intensity AE improved locomotor coordination in rodents. In clinical trials, AE improved balance and lower limb coordination irrespective of intervention modality or parameter. In contrast, fine upper limb recovery was relatively resistant to AE. In terms of cognitive outcomes, poststroke AE in animals improved memory and learning, except when training was too intense. However, in clinical trials, combined training protocols more consistently improved cognition. We noted a paucity of studies examining the benefits of AE on recovery beyond cessation of the intervention. PMID:26881101

  1. Mutation in E1, the Ubiquitin Activating Enzyme, Reduces Drosophila Lifespan and Results in Motor Impairment

    PubMed Central

    Liu, Hsiu-Yu; Pfleger, Cathie M.

    2013-01-01

    Neurodegenerative diseases cause tremendous suffering for those afflicted and their families. Many of these diseases involve accumulation of mis-folded or aggregated proteins thought to play a causal role in disease pathology. Ubiquitinated proteins are often found in these protein aggregates, and the aggregates themselves have been shown to inhibit the activity of the proteasome. These and other alterations in the Ubiquitin Pathway observed in neurodegenerative diseases have led to the question of whether impairment of the Ubiquitin Pathway on its own can increase mortality or if ongoing neurodegeneration alters Ubiquitin Pathway function as a side-effect. To address the role of the Ubiquitin Pathway in vivo, we studied loss-of-function mutations in the Drosophila Ubiquitin Activating Enzyme, Uba1 or E1, the most upstream enzyme in the Ubiquitin Pathway. Loss of only one functional copy of E1 caused a significant reduction in adult lifespan. Rare homozygous hypomorphic E1 mutants reached adulthood. These mutants exhibited further reduced lifespan and showed inappropriate Ras activation in the brain. Removing just one functional copy of Ras restored the lifespan of heterozygous E1 mutants to that of wild-type flies and increased the survival of homozygous E1 mutants. E1 homozygous mutants also showed severe motor impairment. Our findings suggest that processes that impair the Ubiquitin Pathway are sufficient to cause early mortality. Reduced lifespan and motor impairment are seen in the human disease X-linked Infantile Spinal Muscular Atrophy, which is associated with mutation in human E1 warranting further analysis of these mutants as a potential animal model for study of this disease. PMID:23382794

  2. Functional observational battery and motor activity in rats after single administration of two NHE 1 inhibitors

    SciTech Connect

    Huebler, Nicole; Gottschling, Barbara . E-mail: barbara.gottschling@merck.de; Jacobs, Maren; Landenberg, Friedrich von; Hewicker-Trautwein, Marion

    2005-11-01

    Two tests, a functional observational battery (FOB) and measurement of motor activity, have been used to screen the two NHE inhibitors EMD 96785 and EMD 125021 for neurobehavioral effects. These two NHE inhibitors, which exhibit a marked selectivity for the NHE 1 isoform, are under development in the research laboratories of Merck KGaA. NHE inhibitors are developed for the treatment of acute myocardial infarction and chronic heart failure. In prior studies with EMD 96785 and EMD 125021, clinical symptoms, such as uncoordinated movements and weakness of the hindlimbs, were detected in rats. The aim of this study was the evaluation of clinical findings in more detail using a FOB and measurement of motor activity in 96 female rats. The time course and reversibility of the adverse effects were investigated. The animals were treated with EMD 96785 or EMD 125021 by intravenous injection at a single dose of 100 mg/kg and four different time points (2 h, 1 day, 7 days and 21 days after treatment) were chosen for the clinical examination. This neurobehavioral test battery clearly detected neurological activity and defined time-course characteristics after treatment with EMD 96785 or EMD 125021. The various clinical parameters were grouped into functional-related domains and most alterations were seen in the domains of central nervous system and neuromuscular system. The most prominent clinical findings were seen with the pharmacologically more potent NHE inhibitor EMD 125021 when compared to EMD 96785. The clinical symptoms were proven to be reversible by 7 days after the single treatment for both compounds.

  3. Automated ambulatory assessment of cognitive performance, environmental conditions, and motor activity during military operations

    NASA Astrophysics Data System (ADS)

    Lieberman, Harris R.; Kramer, F. Matthew; Montain, Scott J.; Niro, Philip; Young, Andrew J.

    2005-05-01

    Until recently scientists had limited opportunities to study human cognitive performance in non-laboratory, fully ambulatory situations. Recently, advances in technology have made it possible to extend behavioral assessment to the field environment. One of the first devices to measure human behavior in the field was the wrist-worn actigraph. This device, now widely employed, can acquire minute-by-minute information on an individual"s level of motor activity. Actigraphs can, with reasonable accuracy, distinguish sleep from waking, the most critical and basic aspect of human behavior. However, rapid technologic advances have provided the opportunity to collect much more information from fully ambulatory humans. Our laboratory has developed a series of wrist-worn devices, which are not much larger then a watch, which can assess simple and choice reaction time, vigilance and memory. In addition, the devices can concurrently assess motor activity with much greater temporal resolution then the standard actigraph. Furthermore, they continuously monitor multiple environmental variables including temperature, humidity, sound and light. We have employed these monitors during training and simulated military operations to collect information that would typically be unavailable under such circumstances. In this paper we will describe various versions of the vigilance monitor and how each successive version extended the capabilities of the device. Samples of data from several studies are presented, included studies conducted in harsh field environments during simulated infantry assaults, a Marine Corps Officer training course and mechanized infantry (Stryker) operations. The monitors have been useful for documenting environmental conditions experienced by wearers, studying patterns of sleep and activity and examining the effects of nutritional manipulations on warfighter performance.

  4. Can short-term oral fine motor training affect precision of task performance and induce cortical plasticity of the jaw muscles?

    PubMed

    Zhang, Hong; Kumar, Abhishek; Kothari, Mohit; Luo, Xiaoping; Trulsson, Mats; Svensson, Krister G; Svensson, Peter

    2016-07-01

    The aim was to test the hypothesis that short-term oral sensorimotor training of the jaw muscles would increase the precision of task performance and induce neuroplastic changes in the corticomotor pathways, related to the masseter muscle. Fifteen healthy volunteers performed six series with ten trials of an oral sensorimotor task. The task was to manipulate and position a spherical chocolate candy in between the anterior teeth and split it into two equal halves. The precision of the task performance was evaluated by comparing the ratio between the two split halves. A series of "hold-and-split" tasks was also performed before and after the training. The hold force and split force along with the electromyographic (EMG) activity of jaw muscles were recorded. Motor-evoked potentials and cortical motor maps of the right masseter muscle were evoked by transcranial magnetic stimulation. There was a significant effect of series on the precision of the task performance during the short-term oral sensorimotor training (P < 0.002). The hold force during the "hold-and-split" task was significantly lower after training than before the short-term training (P = 0.011). However, there was no change in the split force and the EMG activity of the jaw muscles before and after the training. Further, there was a significant increase in the amplitude of the motor-evoked potentials (P < 0.016) and in the motor cortex map areas (P = 0.033), after the short-term oral sensorimotor training. Therefore, short-term oral sensorimotor task training increased the precision of task performance and induced signs of neuroplastic changes in the corticomotor pathways, related to the masseter muscle. PMID:26914481

  5. GABAA receptor antagonism at the hypoglossal motor nucleus increases genioglossus muscle activity in NREM but not REM sleep.

    PubMed

    Morrison, Janna L; Sood, Sandeep; Liu, Hattie; Park, Eileen; Nolan, Philip; Horner, Richard L

    2003-04-15

    The pharyngeal muscles, such as the genioglossus (GG) muscle of the tongue, are important for effective lung ventilation since they maintain an open airspace. Rapid-eye-movement (REM) sleep, however, recruits powerful neural mechanisms that can abolish GG activity, even during strong reflex respiratory stimulation by elevated CO2. In vitro studies have demonstrated the presence of GABAA receptors on hypoglossal motoneurons, and these and other data have led to the speculation that GABAA mechanisms may contribute to the suppression of hypoglossal motor outflow to the GG muscle in REM sleep. We have developed an animal model that allows us to chronically manipulate neurotransmission at the hypoglossal motor nucleus using microdialysis across natural sleep-wake states in rats. The present study tests the hypothesis that microdialysis perfusion of the GABAA receptor antagonist bicuculline into the hypoglossal motor nucleus will prevent the suppression of GG muscle activity in REM sleep during both room-air and CO2-stimulated breathing. Ten rats were implanted with electroencephalogram and neck muscle electrodes to record sleep-wake states, and GG and diaphragm electrodes for respiratory muscle recording. Microdialysis probes were implanted into the hypoglossal motor nucleus for perfusion of artificial cerebrospinal fluid (ACSF) or 100 microM bicuculline during room-air and CO2-stimulated breathing (7 % inspired CO2). GABAA receptor antagonism at the hypoglossal motor nucleus increased respiratory-related GG activity during both room-air (P = 0.01) and CO2-stimulated breathing (P = 0.007), indicating a background inhibitory GABA tone. However, the effects of bicuculline on GG activity depended on the prevailing sleep-wake state (P < 0.005), with bicuculline increasing GG activity in non-REM (NREM) sleep and wakefulness both in room air and hypercapnia (P < 0.01), but GG activity was effectively abolished in those REM periods without phasic twitches in the GG muscle

  6. The effect of fast and slow motor unit activation on whole-muscle mechanical performance: the size principle may not pose a mechanical paradox

    PubMed Central

    Holt, N. C.; Wakeling, J. M.; Biewener, A. A.

    2014-01-01

    The output of skeletal muscle can be varied by selectively recruiting different motor units. However, our knowledge of muscle function is largely derived from muscle in which all motor units are activated. This discrepancy may limit our understanding of in vivo muscle function. Hence, this study aimed to characterize the mechanical properties of muscle with different motor unit activation. We determined the isometric properties and isotonic force–velocity relationship of rat plantaris muscles in situ with all of the muscle active, 30% of the muscle containing predominately slower motor units active or 20% of the muscle containing predominately faster motor units active. There was a significant effect of active motor unit type on isometric force rise time (p < 0.001) and the force–velocity relationship (p < 0.001). Surprisingly, force rise time was longer and maximum shortening velocity higher when all motor units were active than when either fast or slow motor units were selectively activated. We propose this is due to the greater relative effects of factors such as series compliance and muscle resistance to shortening during sub-maximal contractions. The findings presented here suggest that recruitment according to the size principle, where slow motor units are activated first and faster ones recruited as demand increases, may not pose a mechanical paradox, as has been previously suggested. PMID:24695429

  7. Cocaine Increases Dopaminergic Neuron and Motor Activity via Midbrain α1 Adrenergic Signaling

    PubMed Central

    Goertz, Richard Brandon; Wanat, Matthew J; Gomez, Jorge A; Brown, Zeliene J; Phillips, Paul EM; Paladini, Carlos A

    2015-01-01

    Cocaine reinforcement is mediated by increased extracellular dopamine levels in the forebrain. This neurochemical effect was thought to require inhibition of dopamine reuptake, but cocaine is still reinforcing even in the absence of the dopamine transporter. Here, we demonstrate that the rapid elevation in dopamine levels and motor activity elicited by cocaine involves α1 receptor activation within the ventral midbrain. Activation of α1 receptors increases dopaminergic neuron burst firing by decreasing the calcium-activated potassium channel current (SK), as well as elevates dopaminergic neuron pacemaker firing through modulation of both SK and the hyperpolarization-activated cation currents (Ih). Furthermore, we found that cocaine increases both the pacemaker and burst-firing frequency of rat ventral-midbrain dopaminergic neurons through an α1 adrenergic receptor-dependent mechanism within the ventral tegmental area and substantia nigra pars compacta. These results demonstrate the mechanism underlying the critical role of α1 adrenergic receptors in the regulation of dopamine neurotransmission and behavior by cocaine. PMID:25374094

  8. Motor Cortex-Evoked Activity in Reciprocal Muscles Is Modulated by Reward Probability

    PubMed Central

    Suzuki, Makoto; Kirimoto, Hikari; Sugawara, Kazuhiro; Oyama, Mineo; Yamada, Sumio; Yamamoto, Jun-ichi; Matsunaga, Atsuhiko; Fukuda, Michinari; Onishi, Hideaki

    2014-01-01

    Horizontal intracortical projections for agonist and antagonist muscles exist in the primary motor cortex (M1), and reward may induce a reinforcement of transmission efficiency of intracortical circuits. We investigated reward-induced change in M1 excitability for agonist and antagonist muscles. Participants were 8 healthy volunteers. Probabilistic reward tasks comprised 3 conditions of 30 trials each: 30 trials contained 10% reward, 30 trials contained 50% reward, and 30 trials contained 90% reward. Each trial began with a cue (red fixation cross), followed by blue circle for 1 s. The subjects were instructed to perform wrist flexion and press a button with the dorsal aspect of middle finger phalanx as quickly as possible in response to disappearance of the blue circle without looking at their hand or the button. Two seconds after the button press, reward/non-reward stimulus was randomly presented for 2-s duration. The reward stimulus was a picture of Japanese 10-yen coin, and each subject received monetary reward at the end of experiment. Subjects were not informed of the reward probabilities. We delivered transcranial magnetic stimulation of the left M1 at the midpoint between center of gravities of agonist flexor carpi radialis (FCR) and antagonist extensor carpi radialis (ECR) muscles at 2 s after the red fixation cross and 1 s after the reward/non-reward stimuli. Relative motor evoked potential (MEP) amplitudes at 2 s after the red fixation cross were significantly higher for 10% reward probability than for 90% reward probability, whereas relative MEP amplitudes at 1 s after reward/non-reward stimuli were significantly higher for 90% reward probability than for 10% and 50% reward probabilities. These results implied that reward could affect the horizontal intracortical projections in M1 for agonist and antagonist muscles, and M1 excitability including the reward-related circuit before and after reward stimulus could be differently altered by reward

  9. Semitendinosus snapping: analysis of movement, electromyographic activities, muscle strength and endurance, motor control and joint position sense

    PubMed Central

    Guney, Hande; Kaya, Defne; Yilgor, Caglar; Cilli, Murat; Aritan, Serdar; Yuksel, Inci; Doral, Mahmut Nedim

    2013-01-01

    Summary A female ballet with a history of two-years of semi-tendinosus (ST) snapping was assessed. On physical examination snapping was observed during hyperextension of the knee. Neither any history of trauma nor treatment was recalled. Magnetic resonance imaging (MRI), movement analysis, onset timing of ST and Bisceps Femoris (BF), motor control, isokinetic muscle strength and endurance, joint position sense (JPS) were assessed. The MRI findings were normal. There were abnormal oscillations observed during hyperextension of the snapping knee compared to healthy side. There were no isokinetic muscle strength nor do muscle endurance differences. The motor control and JPS deficits were greater on the snapping knee than the healthy side. ST onset timing was earlier than BF on the snapping side. Snapping of the semitendinosus tendon has an adverse affect on JPS, motor control and onset timing of the knee muscles. PMID:24367776

  10. Cortico-cortical activity between the primary and supplementary motor cortex: An intraoperative near-infrared spectroscopy study

    PubMed Central

    Fukuda, Masafumi; Takao, Tetsuro; Hiraishi, Tetsuya; Aoki, Hiroshi; Ogura, Ryosuke; Sato, Yosuke; Fujii, Yukihiko

    2015-01-01

    Background: The supplementary motor area (SMA) makes multiple reciprocal connections to many areas of the cerebral cortices, such as the primary motor cortex (PMC), anterior cingulate cortex, and various regions in the parietal somatosensory cortex. In patients with SMA seizures, epileptic discharges from the SMA rapidly propagate to the PMC. We sought to determine whether near-infrared spectroscopy (NIRS) is able to intraoperatively display hemodynamic changes in epileptic network activities between the SMA and the PMC. Case Descriptions: In a 60-year-old male with SMA seizures, we intraoperatively delivered a 500 Hz, 5-train stimulation to the medial cortical surface and measured the resulting hemodynamic changes in the PMC by calculating the oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) concentration changes during stimulation. No hemodynamic changes in the lateral cortex were observed during stimulation of the medial surface corresponding to the foot motor areas. In contrast, both HbO2 and HbR increased in the lateral cortex corresponding to the hand motor areas when the seizure onset zone was stimulated. In the premotor cortex and the lateral cortex corresponding to the trunk motor areas, hemodynamic changes showed a pattern of increased HbO2 with decreased HbR. Conclusions: This is the first reported study using intraoperative NIRS to characterize the epileptic network activities between the SMA and PMC. Our intraoperative NIRS procedure may thus be useful in monitoring the activities of cortico-cortical neural pathways such as the language system. PMID:25883836

  11. The metalloprotease inhibitor 1,10-phenanthroline affects Schistosoma mansoni motor activity, egg laying and viability.

    PubMed

    Day, T A; Chen, G Z

    1998-04-01

    The Zn(2+)-chelating metalloprotease inhibitor 1,10-phenanthroline (phenanthroline, 5-150 microM) elicited dose-dependent contraction of the longitudinal and circular (transverse) musculature of adult male schistosomes. At the same concentrations, phenanthroline did not cause contraction of dispersed individual muscle fibres. The phenanthroline-induced contractions were reduced by the inclusion of 100 or 300 microM Zn2+ in the extracellular medium. Phenanthroline (0.5-150 microM) also inhibited the egg production of adult worm pairs in vitro, with a 98% reduction at 50 microM. When worm pairs were exposed to phenanthroline, the males detached from the dish and released the females, resulting in unpaired worms. At the higher concentrations (50 and 150 microM), the worms were killed in vitro. Worm burdens were reduced by over 50% in infected mice injected with phenanthroline (20 mg/kg/day for 4 days), but twice the dose resulted in only a 25% reduction. Phenanthroline injections also induced an hepatic shift and an unpairing of adult worms in infected mice, and the female worms appeared degenerate and lacked gut pigmentation. Mice fed a diet containing 0.3% phenanthroline received significant protection from infection when challenged with schistosome cercaria, where phenanthroline-fed mice had 94% fewer adult worms than control mice. The broad range of phenanthroline effects on schistosomes suggests broad and important functions for metalloproteases in these worms. PMID:9585934

  12. Force Feedback Controls Motor Activity and Mechanical Properties of Self-Assembling Branched Actin Networks.

    PubMed

    Bieling, Peter; Li, Tai-De; Weichsel, Julian; McGorty, Ryan; Jreij, Pamela; Huang, Bo; Fletcher, Daniel A; Mullins, R Dyche

    2016-01-14

    Branched actin networks--created by the Arp2/3 complex, capping protein, and a nucleation promoting factor--generate and transmit forces required for many cellular processes, but their response to force is poorly understood. To address this, we assembled branched actin networks in vitro from purified components and used simultaneous fluorescence and atomic force microscopy to quantify their molecular composition and material properties under various forces. Remarkably, mechanical loading of these self-assembling materials increases their density, power, and efficiency. Microscopically, increased density reflects increased filament number and altered geometry but no change in average length. Macroscopically, increased density enhances network stiffness and resistance to mechanical failure beyond those of isotropic actin networks. These effects endow branched actin networks with memory of their mechanical history that shapes their material properties and motor activity. This work reveals intrinsic force feedback mechanisms by which mechanical resistance makes self-assembling actin networks stiffer, stronger, and more powerful. PMID:26771487

  13. Switching strategies: a dolphin's use of passive and active acoustics to imitate motor actions.

    PubMed

    Jaakkola, Kelly; Guarino, Emily; Rodriguez, Mandy; Hecksher, Jane

    2013-09-01

    Scientists have long debated the extent to which animals can imitate. Observations of bottlenose dolphins suggest a sophisticated capacity for social imitation, but little is known about the nature of these abilities. Here, we explore the behavioral mechanisms underlying a dolphin's ability to copy motor actions while blindfolded (i.e., wearing eyecups). When a dolphin was asked to imitate a dolphin, a human, and then another dolphin blindfolded, his accuracy remained relatively consistent across models. However, his blindfolded echolocation dramatically increased when copying a human as compared to other dolphins, suggesting he actively switched between strategies: recognizing behaviors via characteristic sounds when possible, but via echolocation for the more novel sounding behaviors of the human. Such flexibility in changing perceptual routes demonstrates that the dolphin's imitation was not automatically elicited, but rather results from an intentional, problem-solving approach to imitation. PMID:23389771

  14. Activation of the motor protein upon attachment: Anchors weigh in on cytoplasmic dynein regulation.

    PubMed

    Ananthanarayanan, Vaishnavi

    2016-06-01

    Cytoplasmic dynein is the major minus-end-directed motor protein in eukaryotes, and has functions ranging from organelle and vesicle transport to spindle positioning and orientation. The mode of regulation of dynein in the cell remains elusive, but a tantalising possibility is that dynein is maintained in an inhibited, non-motile state until bound to cargo. In vivo, stable attachment of dynein to the cell membrane via anchor proteins enables dynein to produce force by pulling on microtubules and serves to organise the nuclear material. Anchor proteins of dynein assume diverse structures and functions and differ in their interaction with the membrane. In yeast, the anchor protein has come to the fore as one of the key mediators of dynein activity. In other systems, much is yet to be discovered about the anchors, but future work in this area will prove invaluable in understanding dynein regulation in the cell. PMID:27143631

  15. The Impact of Physical Activity on Non-Motor Symptoms in Parkinson’s Disease: A Systematic Review

    PubMed Central

    Cusso, Melanie E.; Donald, Kenneth J.; Khoo, Tien K.

    2016-01-01

    Parkinson’s disease (PD) is a neurological disorder that is associated with both motor and non-motor symptoms (NMS). The management of PD is primarily via pharmaceutical treatment; however, non-pharmaceutical interventions have become increasingly recognized in the management of motor and NMS. In this review, the efficacy of physical activity, including physiotherapy and occupational therapy, as an intervention in NMS will be assessed. The papers were extracted between the 20th and 22nd of June 2016 from PubMed, Web of Science, Medline, Ovid, SportsDiscuss, and Scopus using the MeSH search terms “Parkinson’s,” “Parkinson,” and “Parkinsonism” in conjunction with “exercise,” “physical activity,” “physiotherapy,” “occupational therapy,” “physical therapy,” “rehabilitation,” “dance,” and “martial arts.” Twenty studies matched inclusion criteria of having 10 or more participants with diagnosed idiopathic PD participating in the intervention as well as having to evaluate the effects of physical activity on NMS in PD as controlled, randomized intervention studies. The outcomes of interest were NMS, including depression, cognition, fatigue, apathy, anxiety, and sleep. Risk of bias in the studies was evaluated using the Cochrane Collaboration’s tool for assessing risk of bias. Comparability of the various intervention methods, however, was challenging due to demographic variability and methodological differences. Nevertheless, physical activity can positively impact the global NMS burden including depression, apathy, fatigue, day time sleepiness, sleep, and cognition, thus supporting its therapeutic potential in neurodegenerative conditions such as PD. It is recommended that further adequately powered studies are conducted to assess the therapeutic role of physical activity on both motor and non-motor aspects of PD. These studies should be optimally designed to assess non-motor elements of disease using instruments validated

  16. GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner

    PubMed Central

    Kotecki, Lydia; Hearing, Matthew; McCall, Nora M.; Marron Fernandez de Velasco, Ezequiel; Pravetoni, Marco; Arora, Devinder; Victoria, Nicole C.; Munoz, Michaelanne B.; Xia, Zhilian; Slesinger, Paul A.; Weaver, C. David

    2015-01-01

    G-protein-gated inwardly rectifying K+ (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential. PMID:25948263

  17. A system for automatic recording and analysis of motor activity in rats.

    PubMed

    Heredia-López, Francisco J; May-Tuyub, Rossana M; Bata-García, José L; Góngora-Alfaro, José L; Alvarez-Cervera, Fernando J

    2013-03-01

    We describe the design and evaluation of an electronic system for the automatic recording of motor activity in rats. The device continually locates the position of a rat inside a transparent acrylic cube (50 cm/side) with infrared sensors arranged on its walls so as to correspond to the x-, y-, and z-axes. The system is governed by two microcontrollers. The raw data are saved in a text file within a secure digital memory card, and offline analyses are performed with a library of programs that automatically compute several parameters based on the sequence of coordinates and the time of occurrence of each movement. Four analyses can be made at specified time intervals: traveled distance (cm), movement speed (cm/s), time spent in vertical exploration (s), and thigmotaxis (%). In addition, three analyses are made for the total duration of the experiment: time spent at each x-y coordinate pair (min), time spent on vertical exploration at each x-y coordinate pair (s), and frequency distribution of vertical exploration episodes of distinct durations. User profiles of frequently analyzed parameters may be created and saved for future experimental analyses, thus obtaining a full set of analyses for a group of rats in a short time. The performance of the developed system was assessed by recording the spontaneous motor activity of six rats, while their behaviors were simultaneously videotaped for manual analysis by two trained observers. A high and significant correlation was found between the values measured by the electronic system and by the observers. PMID:22707401

  18. 5'-Chloro-5'-deoxy-(±)-ENBA, a potent and selective adenosine A(1) receptor agonist, alleviates neuropathic pain in mice through functional glial and microglial changes without affecting motor or cardiovascular functions.

    PubMed

    Luongo, Livio; Petrelli, Riccardo; Gatta, Luisa; Giordano, Catia; Guida, Francesca; Vita, Patrizia; Franchetti, Palmarisa; Grifantini, Mario; de Novellis, Vito; Cappellacci, Loredana; Maione, Sabatino

    2012-01-01

    This study was undertaken in order to investigate the effect of chronic treatment with 5′-chloro-5′-deoxy-(±)-ENBA, a potent and highly selective agonist of human adenosine A(1) receptor, on thermal hyperalgesia and mechanical allodynia in a mouse model of neuropathic pain, the Spared Nerve Injury (SNI) of the sciatic nerve. Chronic systemic administration of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) reduced both mechanical allodynia and thermal hyperalgesia 3 and 7 days post-SNI, in a way prevented by DPCPX (3 mg/kg, i.p.), a selective A(1) adenosine receptor antagonist, without exerting any significant change on the motor coordination or arterial blood pressure. In addition, a single intraperitoneal injection of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) 7 days post-SNI also reduced both symptoms for at least two hours. SNI was associated with spinal changes in microglial activation ipsilaterally to the nerve injury. Activated, hypertrophic microglia were significantly reduced by 5′-chloro-5′-deoxy-(±)-ENBA chronic treatment. Our results demonstrated an involvement of adenosine A(1) receptor in the amplified nociceptive thresholds and in spinal glial and microglial changes occurred in neuropathic pain, without affecting motor coordination or blood pressure. Our data suggest a possible use of adenosine A(1) receptor agonist in neuropathic pain symptoms. PMID:23174891

  19. Effect of Imperatorin on the Spontaneous Motor Activity of Rat Isolated Jejunum Strips

    PubMed Central

    Mendel, Marta; Skalicka-Woźniak, Krystyna; Chłopecka, Magdalena; Dziekan, Natalia

    2015-01-01

    Imperatorin, a psoralen-type furanocoumarin, is a potent myorelaxant agent acting as a calcium antagonist on vascular smooth muscle. Its effects on other types of smooth muscle remain unknown. Therefore, the aim of this study was to investigate the hypothesized myorelaxant effect of imperatorin on gut motor activity and, possibly, to define the underlying mechanism of action. Imperatorin was made available for pharmacological studies from the fruits of the widely available Angelica officinalis through the application of high-performance countercurrent chromatography (HPCCC). Imperatorin generated reversible relaxation of jejunum strips dose-dependently (1–100 μM). At 25 and 50 μM, imperatorin caused relaxation comparable to the strength of the reaction induced by isoproterenol (Isop) at 0.1 μM. The observed response resulted neither from the activation of soluble guanylate cyclase, nor from β-adrenoreceptor involvement, nor from Ca2+-activated potassium channels. Imperatorin relaxed intestine strips precontracted with high potassium concentration, attenuated the force and duration of K+-induced contractions, and modulated the response of jejunum strips to acetylcholine. The results suggest that imperatorin probably interacts with various Ca2+ influx pathways in intestine smooth muscle. The types of some calcium channels involved in the activity of imperatorin will be examined in a subsequent study. PMID:26236380

  20. Positive affect modulates activity in the visual cortex to images of high calorie foods.

    PubMed

    Killgore, William D S; Yurgelun-Todd, Deborah A

    2007-05-01

    Activity within the visual cortex can be influenced by the emotional salience of a stimulus, but it is not clear whether such cortical activity is modulated by the affective status of the individual. This study used functional magnetic resonance imaging (fMRI) to examine the relationship between affect ratings on the Positive and Negative Affect Schedule and activity within the occipital cortex of 13 normal-weight women while viewing images of high calorie and low calorie foods. Regression analyses revealed that when participants viewed high calorie foods, Positive Affect correlated significantly with activity within the lingual gyrus and calcarine cortex, whereas Negative Affect was unrelated to visual cortex activity. In contrast, during presentations of low calorie foods, affect ratings, regardless of valence, were unrelated to occipital cortex activity. These findings suggest a mechanism whereby positive affective state may affect the early stages of sensory processing, possibly influencing subsequent perceptual experience of a stimulus. PMID:17464782

  1. Affect and Subsequent Physical Activity: An Ambulatory Assessment Study Examining the Affect-Activity Association in a Real-Life Context.

    PubMed

    Niermann, Christina Y N; Herrmann, Christian; von Haaren, Birte; van Kann, Dave; Woll, Alexander

    2016-01-01

    Traditionally, cognitive, motivational, and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship. An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M = 45.2, SD = 8.1) was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA) performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested. Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect. The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent. However, in

  2. Affect and Subsequent Physical Activity: An Ambulatory Assessment Study Examining the Affect-Activity Association in a Real-Life Context

    PubMed Central

    Niermann, Christina Y. N.; Herrmann, Christian; von Haaren, Birte; van Kann, Dave; Woll, Alexander

    2016-01-01

    Traditionally, cognitive, motivational, and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship. An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M = 45.2, SD = 8.1) was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA) performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested. Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect. The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent. However, in

  3. Motor ability and weight status are determinants of out-of-school activity participation for children with developmental coordination disorder.

    PubMed

    Fong, Shirley S M; Lee, Velma Y L; Chan, Nerita N C; Chan, Rachel S H; Chak, Wai-Kwong; Pang, Marco Y C

    2011-01-01

    According to the International Classification of Functioning, Disability and Health model endorsed by the World Health Organization, participation in everyday activities is integral to normal child development. However, little is known about the influence of motor ability and weight status on physical activity participation in children with developmental coordination disorder (DCD). This study aimed to (1) compare motor performance, weight status and pattern of out-of-school activity participation between children with DCD and those without; and (2) identify whether motor ability and weight status were determinants of participation patterns among children with DCD. We enrolled 81 children with DCD (boys, n = 63; girls, n = 18; mean age, 8.07 ± 1.5 years) and 67 typically developing children (boys, n = 48; girls, n = 19; mean age, 8.25 ± 1.6 years). Participation patterns (diversity, intensity, companionship, location, and enjoyment) were evaluated with the Children Assessment of Participation and Enjoyment. Motor ability was evaluated with the Movement Assessment Battery for Children, second edition (MABC-2). Other factors that may influence participation such as age, gender, and body weight were also recorded. Analysis of variance was used to compare outcome variables of the two groups, and significant determinants of activity participation were identified by multiple regression analysis. Children with DCD participated in fewer activities (i.e., limited participation diversity) and participated less frequently (i.e., limited participation intensity) than their typically developing peers; however, companionship, location of participation, and enjoyment level did not differ between the two groups. Children in the DCD group demonstrated significantly worse motor ability as assessed by the MABC-2. Further, a greater proportion of children in the DCD group were in the overweight/obese category compared with their typically developing peers. After accounting for the

  4. Effect of phenmetrazine, aminorex and (±) p-chloramphetamine on the motor activity and turnover rate of brain catecholamines

    PubMed Central

    Costa, E.; Naimzada, K. M.; Revuelta, A.

    1971-01-01

    1. The minimal doses (μmol/kg i.v.) of phenmetrazine, (±)-p-chloramphetamine, and aminorex which increase motor activity are 5·6, 3·5, and 1·5, respectively. We detected stereotype behaviour neither in rats receiving intravenous doses 3 times greater nor in animals injected intraperitoneally with 44, 62 and 112 μmol/kg of (±)-p-chloramphetamine, aminorex and phenmatrazine, respectively. 2. The latter doses of the three amphetamine congeners were tested for their action on tissue monoamine content. Only (±)-p-chloramphetamine decreased the concentration of tel-diencephalon 5-hydroxytryptamine (5-HT) and this decrease lasted longer than 24 hours. This and the other two amphetamine congeners failed to affect the concentration of noradrenaline (NA) in brain, heart and lung. 3. Aminorex (1·5 μmol/kg i.v.) and (±)-p-chloramphetamine (3·5 μmol/kg i.v.) decreased the turnover time of striatum dopamine (DM) but failed to change the turnover time of tel-diencephalon and brainstem NA. Phenmetrazine (5·6 μmol/kg i.v.) changed neither the turnover time of striatum DM nor that of NA in the two brain areas assayed. PMID:5157723

  5. Prolonged activity evokes potentiation and the "sag" phenomenon in slow motor units of rat soleus.

    PubMed

    Drzymała-Celichowska, Hanna; Raikova, Rositsa; Krutki, Piotr

    2016-01-01

    Slow motor units (MUs) have no sag in their unfused tetani. This study in anesthetized rats shows that the sag can be observed in slow soleus MUs after prolonged activity. Twitches and unfused tetanic contractions were recorded from male (n=35) and female (n=39) MUs before and after the four minutes of the fatigue test (trains of 13 pulses at 40 Hz repeated every second). After this activity twitch contractions potentiated and a shift in the steep part of the force-frequency curve towards lower frequencies was observed in both sexes. Initially no sag was visible in unfused tetani, but after the fatigue test the phenomenon was observed in 77% of male, while in 13% of female MUs, the result consistent with the previously reported higher content of IIa myosin and faster contraction of MUs in male soleus. The decomposition of tetani with sag into trains of twitch-shape responses to consecutive stimuli revealed higher forces of initial decomposed twitches than later. The revealed alterations the force development due to long-lasting activation of slow MUs were sex-related and more pronounced in male soleus. PMID:27373952

  6. Tum/RacGAP functions as a switch activating the Pav/kinesin-6 motor.

    PubMed

    Tao, Li; Fasulo, Barbara; Warecki, Brandt; Sullivan, William

    2016-01-01

    Centralspindlin is essential for central spindle and cleavage furrow formation. Drosophila centralspindlin consists of a kinesin-6 motor (Pav/kinesin-6) and a GTPase-activating protein (Tum/RacGAP). Centralspindlin localization to the central spindle is mediated by Pav/kinesin-6. While Tum/RacGAP has well-documented scaffolding functions, whether it influences Pav/kinesin-6 function is less well-explored. Here we demonstrate that both Pav/kinesin-6 and the centralspindlin complex (co-expressed Pav/Tum) have strong microtubule bundling activity. Centralspindlin also has robust plus-end-directed motility. In contrast, Pav/kinesin-6 alone cannot move microtubules. However, the addition of Tum/RacGAP or a 65 amino acid Tum/RacGAP fragment to Pav/kinesin-6 restores microtubule motility. Further, ATPase assays reveal that microtubule-stimulated ATPase activity of centralspindlin is seven times higher than that of Pav/kinesin-6. These findings are supported by in vivo studies demonstrating that in Tum/RacGAP-depleted S2 Drosophila cells, Pav/kinesin-6 exhibits severely reduced localization to the central spindle and an abnormal concentration at the centrosomes. PMID:27091402

  7. Tum/RacGAP functions as a switch activating the Pav/kinesin-6 motor

    PubMed Central

    Tao, Li; Fasulo, Barbara; Warecki, Brandt; Sullivan, William

    2016-01-01

    Centralspindlin is essential for central spindle and cleavage furrow formation. Drosophila centralspindlin consists of a kinesin-6 motor (Pav/kinesin-6) and a GTPase-activating protein (Tum/RacGAP). Centralspindlin localization to the central spindle is mediated by Pav/kinesin-6. While Tum/RacGAP has well-documented scaffolding functions, whether it influences Pav/kinesin-6 function is less well-explored. Here we demonstrate that both Pav/kinesin-6 and the centralspindlin complex (co-expressed Pav/Tum) have strong microtubule bundling activity. Centralspindlin also has robust plus-end-directed motility. In contrast, Pav/kinesin-6 alone cannot move microtubules. However, the addition of Tum/RacGAP or a 65 amino acid Tum/RacGAP fragment to Pav/kinesin-6 restores microtubule motility. Further, ATPase assays reveal that microtubule-stimulated ATPase activity of centralspindlin is seven times higher than that of Pav/kinesin-6. These findings are supported by in vivo studies demonstrating that in Tum/RacGAP-depleted S2 Drosophila cells, Pav/kinesin-6 exhibits severely reduced localization to the central spindle and an abnormal concentration at the centrosomes. PMID:27091402

  8. Activation of α2A-Containing Nicotinic Acetylcholine Receptors Mediates Nicotine-Induced Motor Output in Embryonic Zebrafish

    PubMed Central

    Menelaou, Evdokia; Udvadia, Ava J.; Tanguay, Robert L.; Svoboda, Kurt R.

    2014-01-01

    It is well established that cholinergic signaling has critical roles during central nervous system development. In physiological and behavioral studies, activation of nicotinic acetylcholine receptors has been implicated in mediating cholinergic signaling. In developing spinal cord, cholinergic transmission is associated with neural circuits responsible for producing locomotor behaviors. In this study, we investigated the expression pattern of the α2A nAChR subunit as evidence from others suggested it could be expressed by spinal neurons. In situ hybridization and immunohistochemistry revealed that the α2A nAChR subunits are expressed in spinal Rohon-Beard (RB) neurons and olfactory sensory neurons in young embryos. In order to examine the functional role of the α2A nAChR subunit during embryogenesis, we blocked its expression using antisense modified oligonucleotides. Blocking the expression of α2A nAChR subunits had no effect on spontaneous motor activity. However, it did alter the embryonic nicotine-induced motor output. This reduction in motor activity was not accompanied by defects in neuronal and muscle elements associated with the motor output. Moreover, the anatomy and functionality of RB neurons was normal even in the absence of the α2A nAChR subunit. Thus, we propose that α2A-containing nAChR are dispensable for normal RB development. However, in the context of nicotine-induced motor output, α2A-containing nAChRs on RB neurons provide the substrate that nicotine acts upon to induce the motor output. These findings also indicate that functional neuronal nAChRs are present within spinal cord at the time when locomotor output in zebrafish first begins to manifest itself. PMID:24738729

  9. EXEL; Experience for Children in Learning. Parent-Directed Activities to Develop: Oral Expression, Visual Discrimination, Auditory Discrimination, Motor Coordination.

    ERIC Educational Resources Information Center

    Behrmann, Polly; Millman, Joan

    The activities collected in this handbook are planned for parents to use with their children in a learning experience. They can also be used in the classroom. Sections contain games designed to develop visual discrimination, auditory discrimination, motor coordination and oral expression. An objective is given for each game, and directions for…

  10. The Importance of Motor Functional Levels from the Activity Limitation Perspective of ICF in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Mutlu, Akmer

    2010-01-01

    Our purpose in this study was to evaluate performance and capacity as defined by Gross Motor Function Classification System (GMFCS) and Manual Ability Classification System (MACS) from the "activity limitation" perspective of International Classification of Functioning, Disability, and Health (ICF) and to investigate the relationship between the…

  11. Directly Observed Physical Activity and Fundamental Motor Skills in Four-Year-Old Children in Day Care

    ERIC Educational Resources Information Center

    Iivonen, S.; Sääkslahti, A. K.; Mehtälä, A.; Villberg, J. J.; Soini, A.; Poskiparta, M.

    2016-01-01

    Physical activity (PA), its location, social interactions and fundamental motor skills (FMS) were investigated in four-year-old Finnish children in day care. Six skills in the stability, locomotor and manipulative domains were assessed in 53 children (24 boys, 29 girls, normal anthropometry) with the APM-Inventory manual for assessing children's…

  12. The Role of Motor Competence and Body Mass Index in Children's Activity Levels in Physical Education Classes

    ERIC Educational Resources Information Center

    Spessato, Barbara Coiro; Gabbard, Carl; Valentini, Nadia C.

    2013-01-01

    Our goal was to investigate the role of body mass index (BMI) and motor competence (MC) in children's physical activity (PA) levels during physical education (PE) classes. We assessed PA levels of 5-to-10-year old children ("n" = 264) with pedometers in four PE classes. MC was assessed using the TGMD-2 and BMI values were classified according to…

  13. COMPARISON OF NICOTINIC ANTAGONISTS IN BLOCKING THE EFFECT OF ANATOXIN-A AND NICOTINE ON THE MOTOR ACTIVITY OF RATS.

    EPA Science Inventory

    Anatoxin-a is a potent nicotinic agonist produced by many species and genera of cyanobacteria. Previous research showed that both anatoxin-a and nicotine produce dose-related decreases in the motor activity of rats. The two toxins differed, however, in their effects with weekly a...

  14. Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movements

    PubMed Central

    Riehle, Alexa; Wirtssohn, Sarah; Grün, Sonja; Brochier, Thomas

    2013-01-01

    Grasping an object involves shaping the hand and fingers in relation to the object’s physical properties. Following object contact, it also requires a fine adjustment of grasp forces for secure manipulation. Earlier studies suggest that the control of hand shaping and grasp force involve partially segregated motor cortical networks. However, it is still unclear how information originating from these networks is processed and integrated. We addressed this issue by analyzing massively parallel signals from population measures (local field potentials, LFPs) and single neuron spiking activities recorded simultaneously during a delayed reach-to-grasp task, by using a 100-electrode array chronically implanted in monkey motor cortex. Motor cortical LFPs exhibit a large multi-component movement-related potential (MRP) around movement onset. Here, we show that the peak amplitude of each MRP component and its latency with respect to movement onset vary along the cortical surface covered by the array. Using a comparative mapping approach, we suggest that the spatio-temporal structure of the MRP reflects the complex physical properties of the reach-to-grasp movement. In addition, we explored how the spatio-temporal structure of the MRP relates to two other measures of neuronal activity: the temporal profile of single neuron spiking activity at each electrode site and the somatosensory receptive field properties of single neuron activities. We observe that the spatial representations of LFP and spiking activities overlap extensively and relate to the spatial distribution of proximal and distal representations of the upper limb. Altogether, these data show that, in motor cortex, a precise spatio-temporal pattern of activation is involved for the control of reach-to-grasp movements and provide some new insight about the functional organization of motor cortex during reaching and object manipulation. PMID:23543888

  15. Inter-pulse Interval Affects the Size of Single-pulse TMS-induced Motor Evoked Potentials: A Reliability Study

    PubMed Central

    Vaseghi, Bita; Zoghi, Maryam; Jaberzadeh, Shapour

    2015-01-01

    Introduction: Measuring the size of motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS) is an investigational technique to show the level of corticospinal excitability; however, some of the fundamental methodological aspects of TMS (such as the effects of inter-pulse intervals (IPI) on MEP size) are not fully understood, this issue raises concerns about the reliability of MEPs, especially in pre-test post-test studies. Methods: MEP size at short and long IPIs was assessed during two separate sessions. Inter- and intra-session reliability of MEP size also was assessed at both short and long IPIs. Results: The results indicated that long IPIs induced larger MEPs (P< 0.05) across all time points. The intra-class correlation coefficient (ICC) indicated high intra- and inter-session reliability for short (0.87 to 0.96) and long (0.80 to 0.97) IPIs respectively. The amplitude of MEPs also had high intersession reliability for short (ICC=0.87) and long (ICC = 0.80) IPIs. Discussion: This study provides evidence that the length of IPIs determines the size of MEPs. As a result, it is recommended to add the length of IPI to the international checklist of considerations for TMS application.

  16. MEG brain activities reflecting affection for visual food stimuli.

    PubMed

    Kuriki, Shinya; Miyamura, Takahiro; Uchikawa, Yoshinori

    2010-01-01

    This study aimed to explore the modulation of alpha rhythm in response to food pictures with distinct affection values. We examined the method to discriminate subject's state, i.e., whether he/she liked the article of food or not, from MEG signals detected over the head. Pictures of familiar foods were used as affective stimuli, while those pictures with complementary color phase were used as non-affective stimuli. Alpha band signals in a narrow frequency window around the spectral peak of individual subjects were wavelet analyzed and phase-locked component to the stimulus onset was obtained as a complex number. The amplitude of the phase-locked component was averaged during 0-1 s after stimulus onset for 30 epochs in a measurement session and across 76 channels of MEG sensor. In statistical test of individual subjects, significant difference was found in the real part of the averaged phase-locked amplitude between the normal-color and reverse-color pictures. These results suggest that affective information processing of food pictures is reflected in the synchronized component of narrow band alpha rhythm. PMID:21096510

  17. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion

    PubMed Central

    Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta

    2015-01-01

    Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of

  18. Maladaptive Plasticity for Motor Recovery after Stroke: Mechanisms and Approaches

    PubMed Central

    Takeuchi, Naoyuki; Izumi, Shin-Ichi

    2012-01-01

    Many studies in human and animal models have shown that neural plasticity compensates for the loss of motor function after stroke. However, neural plasticity concerning compensatory movement, activated ipsilateral motor projections and competitive interaction after stroke contributes to maladaptive plasticity, which negatively affects motor recovery. Compensatory movement on the less-affected side helps to perform self-sustaining activity but also creates an inappropriate movement pattern and ultimately limits the normal motor pattern. The activated ipsilateral motor projections after stroke are unable to sufficiently support the disruption of the corticospinal motor projections and induce the abnormal movement linked to poor motor ability. The competitive interaction between both hemispheres induces abnormal interhemispheric inhibition that weakens motor function in stroke patients. Moreover, widespread disinhibition increases the risk of competitive interaction between the hand and the proximal arm, which results in an incomplete motor recovery. To minimize this maladaptive plasticity, rehabilitation programs should be selected according to the motor impairment of stroke patients. Noninvasive brain stimulation might also be useful for correcting maladaptive plasticity after stroke. Here, we review the underlying mechanisms of maladaptive plasticity after stroke and propose rehabilitation approaches for appropriate cortical reorganization. PMID:22792492

  19. Young Zanzibari Children with Iron Deficiency, Iron Deficiency Anemia, Stunting, or Malaria Have Lower Motor Activity Scores and Spend Less Time in Locomotion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Motor activity improves cognitive and social-emotional development through a child’s exploration of his or her physical and social environment. This study assessed anemia, iron deficiency, hemoglobin (Hb), length-for-age Z-score (LAZ), and malaria infection as predictors of motor activity in 771 chi...

  20. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  1. Mutation of the Zinc-Binding Metalloprotease Motif Affects Bacteroides fragilis Toxin Activity but Does Not Affect Propeptide Processing

    PubMed Central

    Franco, Augusto A.; Buckwold, Simy L.; Shin, Jai W.; Ascon, Miguel; Sears, Cynthia L.

    2005-01-01

    To evaluate the role of the zinc-binding metalloprotease in Bacteroides fragilis toxin (BFT) processing and activity, the zinc-binding consensus sequences (H348, E349, H352, G355, H358, and M366) were mutated by site-directed-mutagenesis. Our results indicated that single point mutations in the zinc-binding metalloprotease motif do not affect BFT processing but do reduce or eliminate BFT biologic activity in vitro. PMID:16041055

  2. The Homeostatic Interaction Between Anodal Transcranial Direct Current Stimulation and Motor Learning in Humans is Related to GABAA Activity

    PubMed Central

    Amadi, Ugwechi; Allman, Claire; Johansen-Berg, Heidi; Stagg, Charlotte J.

    2015-01-01

    Background The relative timing of plasticity-induction protocols is known to be crucial. For example, anodal transcranial direct current stimulation (tDCS), which increases cortical excitability and typically enhances plasticity, can impair performance if it is applied before a motor learning task. Such timing-dependent effects have been ascribed to homeostatic plasticity, but the specific synaptic site of this interaction remains unknown. Objective We wished to investigate the synaptic substrate, and in particular the role of inhibitory signaling, underpinning the behavioral effects of anodal tDCS in homeostatic interactions between anodal tDCS and motor learning. Methods We used transcranial magnetic stimulation (TMS) to investigate cortical excitability and inhibitory signaling following tDCS and motor learning. Each subject participated in four experimental sessions and data were analyzed using repeated measures ANOVAs and post-hoc t-tests as appropriate. Results As predicted, we found that anodal tDCS prior to the motor task decreased learning rates. This worsening of learning after tDCS was accompanied by a correlated increase in GABAA activity, as measured by TMS-assessed short interval intra-cortical inhibition (SICI). Conclusion This provides the first direct demonstration in humans that inhibitory synapses are the likely site for the interaction between anodal tDCS and motor learning, and further, that homeostatic plasticity at GABAA synapses has behavioral relevance in humans. PMID:26279408

  3. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity

    PubMed Central

    Jana, Biman; Onuchic, José N.

    2016-01-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. PMID:27494025

  4. A Strategy for Embedding Functional Motor and Early Numeracy Skill Instruction into Physical Education Activities

    ERIC Educational Resources Information Center

    Whinnery, Stacie B.; Whinnery, Keith W.; Eddins, Daisy

    2016-01-01

    This article addresses the challenges educators face when attempting to find a balance between both functional and academic skill instruction for students with severe, multiple disabilities including motor impairments. The authors describe a strategy that employs embedded instruction of early numeracy and functional motor skills during physical…

  5. Effects of Motor Activity on Children's Intentional and Incidental Memory for Spatial Locations.

    ERIC Educational Resources Information Center

    Herman, James F.; And Others

    1982-01-01

    Examines (1) the effect of increased motor involvement with an environment on children's memory for spatial locations, and (2) the effect of different degrees of motor involvement under intentional and incidental memory conditions. Thirty boys and 30 girls at each of kindergarten and third-grade levels were individually tested in a large-scale,…

  6. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity.

    PubMed

    Jana, Biman; Onuchic, José N

    2016-08-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. PMID:27494025

  7. Fundamental motor skill, physical activity, and sedentary behavior in socioeconomically disadvantaged kindergarteners.

    PubMed

    Gu, Xiangli

    2016-10-01

    Guided by Stodden et al's conceptual model, the main purpose of the study was to examine the relation between fundamental motor skills (FMS; locomotor and objective control skills), different intensity levels of physical activity (light PA [LPA], moderate-to-vigorous PA [MVPA], and vigorous PA[VPA]), and sedentary behavior (SB) in socioeconomically disadvantaged kindergarteners. A prospective design was used in this study and the data were collected across the 2013-2014 academic school year. Participants were 256 (129 boys; 127 girls; Mage = 5.37, SD = 0.48) kindergarteners recruited from three public schools in the southern United States. Results found that FMS were significantly related to LPA, MVPA, VPA, and SB. Regression analyses indicate that locomotor skills explained significant variance for LPA (6.4%; p < .01), MVPA (7.9%; p < .001), and VPA (5.3%; p < .01) after controlling for weight status. Mediational analysis supports the significant indirect effect of MVPA on the relation between FMS and SB (95% CI: [-0.019, -0.006]). Adequate FMS development during early childhood may result in participating in more varied physical activities, thus leading to lower risk of obesity-related behaviors. PMID:26691744

  8. Review of Physics Related Research and Development Activities in Nondestructive Characterization of Solid Rocket Motor Materials

    NASA Astrophysics Data System (ADS)

    Pearson, Lee H.

    1998-10-01

    The perception that solid rocket motors (srm) are of relatively simple mechanical construction with a long history in private, military, and NASA applications may lead some to believe that little is left to be done in terms of basic and applied research and development in support of this technology. The fact is that srm?s are very complicated primarily because of the complexity of the materials from which they are built. The reliability and performance of srm?s are determined by the ballistic and mechanical properties of each individual material component, and by the manufacturing processes that conjoin these materials. In order to insure reliability and good performance, there are on-going materials research and development activities in the srm community. Included are activities involving the development of nondestructive evaluation (NDE) methods used for materials and processes characterization. Typical applications include: detection and characterization of defects in fiber reinforced composite materials, detection of weak bonds and debonds, verification of surface cleanliness prior to bonding, characterization of aging materials and bondlines, measurement of elastic properties in filled polymeric materials, monitoring of cure in polymeric materials, and measurement of film or coating thicknesses. NDE methods and physics principles upon which they are based will be described. Challenges and future research and development directions will be identified.

  9. Multi-channel NIRS of the primary motor cortex to discriminate hand from foot activity

    NASA Astrophysics Data System (ADS)

    Koenraadt, K. L. M.; Duysens, J.; Smeenk, M.; Keijsers, N. L. W.

    2012-08-01

    The poor spatial resolution of near-infrared spectroscopy (NIRS) makes it difficult to distinguish two closely located cortical areas from each other. Here, a combination of multi-channel NIRS and a centre of gravity (CoG) approach (widely accepted in the field of transcranial magnetic stimulation; TMS) was used to discriminate between closely located cortical areas activated during hand and foot movements. Similarly, the possibility of separating the more anteriorly represented discrete movements from rhythmic movements was studied. Thirteen healthy right-handed subjects performed rhythmic or discrete (‘task’) hand or foot (‘extremity’) tapping. Hemodynamic responses were measured using an 8-channel NIRS setup. For oxyhemoglobin (OHb) and deoxyhemoglobin (HHb), a CoG was determined for each condition using the mean hemodynamic responses and the coordinates of the channels. Significant hemodynamic responses were found for hand and foot movements. Based on the HHb responses, the NIRS-CoG of hand movements was located 0.6 cm more laterally compared to the NIRS-CoG of foot movements. For OHb responses no difference in NIRS-CoG was found for ‘extremity’ nor for ‘task’. This is the first NIRS study showing hemodynamic responses for isolated foot movements. Furthermore, HHb responses have the potential to be used in multi-channel NIRS experiments requiring differential activation of motor cortex areas linked to either hand or foot movements.

  10. Determinants affecting physical activity levels in animal models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C L.; Wade, Charles E.

    2002-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play an underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multifactorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked, making it difficult to determine whether a single, combination, or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to the ventral medial hypothalamus, and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  11. Determinants Affecting Physical Activity Levels In Animal Models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C. L.; Wade, Charles E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play all underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multi-factorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked making it difficult to determine whether a single, combination or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to tile ventral medial hypothalamus and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  12. Stress affects salivary alpha-Amylase activity in bonobos.

    PubMed

    Behringer, Verena; Deschner, Tobias; Möstl, Erich; Selzer, Dieter; Hohmann, Gottfried

    2012-01-18

    Salivary alpha-Amylase (sAA) is a starch digesting enzyme. In addition to its function in the context of nutrition, sAA has also turned out to be useful for monitoring sympathetic nervous system activity. Recent studies on humans have found a relationship between intra-individual changes in sAA activity and physical and psychological stress. In studies on primates and other vertebrates, non-invasive monitoring of short-term stress responses is usually based on measurements of cortisol levels, which are indicative of hypothalamic-pituitary-adrenal activity. The few studies that have used both cortisol levels and sAA activity indicate that these two markers may respond differently and independently to different types of stress such that variation in the degree of the activation of different stress response systems might reflect alternative coping mechanisms or individual traits. Here, we present the first data on intra- and inter-individual variation of sAA activity in captive bonobos and compare the results with information from other ape species and humans. Our results indicate that sAA activity in the bonobo samples was significantly lower than in the human samples but within the range of other great ape species. In addition, sAA activity was significantly higher in samples collected at times when subjects had been exposed to stressors (judged by changes in behavioral patterns and cortisol levels) than in samples collected at other times. Our results indicate that bonobos possess functioning sAA and, as in other species, sAA activity is influenced by autonomic nervous system activity. Monitoring sAA activity could therefore be a useful tool for evaluating stress in bonobos. PMID:21945369

  13. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    PubMed Central

    Manto, Mario; Honnorat, Jérôme; Hampe, Christiane S.; Guerra-Narbona, Rafael; López-Ramos, Juan Carlos; Delgado-García, José María; Saitow, Fumihito; Suzuki, Hidenori; Yanagawa, Yuchio; Mizusawa, Hidehiro; Mitoma, Hiroshi

    2015-01-01

    Autoantibodies to the smaller isoform of glutamate decarboxylase (GAD) can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct GAD autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal GAD antibodies. We found that GAD autoantibodies present in patients with stiff person syndrome (n = 7) and cerebellar ataxia (n = 15) recognized an epitope distinct from that recognized by GAD autoantibodies present in patients with type 1 diabetes mellitus (n = 10) or limbic encephalitis (n = 4). We demonstrated that the administration of a monoclonal GAD antibody representing this epitope specificity; (1) disrupted in vitro the association of GAD with γ-Aminobutyric acid containing synaptic vesicles; (2) depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect; (3) significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task; (4) markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm; and (5) induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of GAD by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such GAD antibodies could be envisioned. PMID:25870548

  14. Remote control of myosin and kinesin motors using light-activated gearshifting.

    PubMed

    Nakamura, Muneaki; Chen, Lu; Howes, Stuart C; Schindler, Tony D; Nogales, Eva; Bryant, Zev

    2014-09-01

    Cytoskeletal motors perform critical force generation and transport functions in eukaryotic cells. Engineered modifications of motor function provide direct tests of protein structure-function relationships and potential tools for controlling cellular processes or for harnessing molecular transport in artificial systems. Here, we report the design and characterization of a panel of cytoskeletal motors that reversibly change gears--speed up, slow down or switch directions--when exposed to blue light. Our genetically encoded structural designs incorporate a photoactive protein domain to enable light-dependent conformational changes in an engineered lever arm. Using in vitro motility assays, we demonstrate robust spatiotemporal control over motor function and characterize the kinetics of the optical gearshifting mechanism. We have used a modular approach to create optical gearshifting motors for both actin-based and microtubule-based transport. PMID:25086603

  15. Remote control of myosin and kinesin motors using light-activated gearshifting

    PubMed Central

    Nakamura, Muneaki; Chen, Lu; Howes, Stuart C.; Schindler, Tony D.; Nogales, Eva

    2015-01-01

    Cytoskeletal motors perform critical force generation and transport functions in eukaryotic cells1,2. Engineered modifications of motor function provide direct tests of protein structure-function relationships and potential tools for controlling cellular processes or for harnessing molecular transport in artificial systems3,4. Here, we report the design and characterization of a panel of cytoskeletal motors that reversibly change gears—speed up, slow down or switch directions—when exposed to blue light. Our genetically encoded structural designs incorporate a photoactive protein domain to enable light-dependent conformational changes in an engineered lever arm. Using in vitro motility assays, we demonstrate robust spatiotemporal control over motor function and characterize the kinetics of the optical gearshifting mechanism. We have used a modular approach to create optical gearshifting motors for both actin-based and microtubule-based transport. PMID:25086603

  16. The effect of leisure activity golf practice on motor imagery: an fMRI study in middle adulthood.

    PubMed

    Bezzola, Ladina; Mérillat, Susan; Jäncke, Lutz

    2012-01-01

    Much is known about practice-induced plasticity of the motor system. But it is not clear how a physical training influences the mental rehearsal of the practiced task and its associated hemodynamic responses. In the present longitudinal study with two measurement time-points, we used the method of functional magnetic resonance imaging (fMRI) and a motor imagery task, in order to explore the dynamic neuro-functional changes induced by a highly complex physical training. The 11 golf novices between the age of 40 and 60 years practiced the motor training as leisure activity. Additionally, data from an age and sex-matched control group without golf training was collected. As a main result, we demonstrate that changes between the two measurement time-points were only found in the golf novice group. The golf novices showed a decrease in hemodynamic responses during the mental rehearsal of the golf swing in non-primary motor areas after the 40 h of golf practice. Thus, the results indicate that a complex physical leisure activity induces functional neuroplasticity in the seldom studied population of middle-aged adults, and that this effect is evident during mental rehearsal of the practiced task. This finding supports the idea that (a) a skill improvement is associated with a modified activation pattern in the associated neuronal network that can be identified during mental rehearsal of the practiced task, and that (b) a strict training protocol is not necessary to induce functional neuroplasticity. PMID:22479243

  17. The effect of leisure activity golf practice on motor imagery: an fMRI study in middle adulthood

    PubMed Central

    Bezzola, Ladina; Mérillat, Susan; Jäncke, Lutz

    2012-01-01

    Much is known about practice-induced plasticity of the motor system. But it is not clear how a physical training influences the mental rehearsal of the practiced task and its associated hemodynamic responses. In the present longitudinal study with two measurement time-points, we used the method of functional magnetic resonance imaging (fMRI) and a motor imagery task, in order to explore the dynamic neuro-functional changes induced by a highly complex physical training. The 11 golf novices between the age of 40 and 60 years practiced the motor training as leisure activity. Additionally, data from an age and sex-matched control group without golf training was collected. As a main result, we demonstrate that changes between the two measurement time-points were only found in the golf novice group. The golf novices showed a decrease in hemodynamic responses during the mental rehearsal of the golf swing in non-primary motor areas after the 40 h of golf practice. Thus, the results indicate that a complex physical leisure activity induces functional neuroplasticity in the seldom studied population of middle-aged adults, and that this effect is evident during mental rehearsal of the practiced task. This finding supports the idea that (a) a skill improvement is associated with a modified activation pattern in the associated neuronal network that can be identified during mental rehearsal of the practiced task, and that (b) a strict training protocol is not necessary to induce functional neuroplasticity. PMID:22479243

  18. Real-time tracking of motor response activation and response competition in a Stroop task in young children: a lateralized readiness potential study.

    PubMed

    Szucs, Dénes; Soltész, Fruzsina; Bryce, Donna; Whitebread, David

    2009-11-01

    The ability to select an appropriate motor response by resolving competition among alternative responses plays a major role in cognitive performance. fMRI studies suggest that the development of this skill is related to the maturation of the frontal cortex that underlies the improvement of motor inhibition abilities. However, fMRI cannot characterize the temporal properties of motor response competition and motor activation in general. We studied the development of the time course of resolving motor response competition. To this end, we used the lateralized readiness potential (LRP), an ERP measure, for tracking correct and incorrect motor cortex activation in children in real time. Fourteen children and 14 adults took part in an animal-size Stroop task where they selected between two animals, presented simultaneously on the computer screen, which was larger in real life. In the incongruent condition, the LRP detected stronger and longer lasting incorrect response activation in children than in adults. LRP results could explain behavioral congruency effects, the generally longer RT in children than in adults and the larger congruency effect in children than in adults. In contrast, the peak latency of ERP waves, usually associated with stimulus processing speed, could explain neither of the above effects. We conclude that the development of resolving motor response competition, relying on motor inhibition skills, is a crucial factor in child development. Our study demonstrates that the LRP is an excellent tool for studying motor activation in children. PMID:19296726

  19. ANALYSIS OF DISCRIMINATING FACTORS IN HUMAN ACTIVITIES THAT AFFECT EXPOSURE

    EPA Science Inventory

    Accurately modeling exposure to particulate matter (PM) and other pollutants ultimately involves the utilization of human location-activity databases to assist in understanding the potential variability of microenvironmental exposures. This paper critically considers and stati...

  20. Oxidative Activity of Heated Coal Affected by Antypirogens

    NASA Astrophysics Data System (ADS)

    Torosyan, V. F.; Torosyan, E. S.; Borovikov, I. F.; Yakutova, V. A.

    2016-04-01

    The effect of antypirogens on chemical activity of heated coal is studied. It is proved that ammonium sulfate, calcium phosphate, calcium chloride, calcium nitrate and acid fluoride are the most effective antypirogens.

  1. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function

    PubMed Central

    Nagayach, Aarti; Patro, Nisha; Patro, Ishan

    2014-01-01

    Behavioral impairments are the most empirical consequence of diabetes mellitus documented in both humans and animal models, but the underlying causes are still poorly understood. As the cerebellum plays a major role in coordination and execution of the motor functions, we investigated the possible involvement of glial activation, cellular degeneration and glutamate transportation in the cerebellum of rats, rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/kg body weight; intraperitoneally). Motor function alterations were studied using Rotarod test (motor coordination) and grip strength (muscle activity) at 2nd, 4th, 6th, 8th, 10th, and 12th week post-diabetic confirmation. Scenario of glial (astroglia and microglia) activation, cell death and glutamate transportation was gaged using immunohistochemistry, histological study and image analysis. Cellular degeneration was clearly demarcated in the diabetic cerebellum. Glial cells were showing sequential and marked activation foll