Science.gov

Sample records for affect motor activity

  1. Neuromodulation of parietal and motor activity affects motor planning and execution.

    PubMed

    Convento, Silvia; Bolognini, Nadia; Fusaro, Martina; Lollo, Federica; Vallar, Giuseppe

    2014-08-01

    Transcranial direct current stimulation (tDCS) is a non-invasive tool, which effectively modulates behavior, and related brain activity. When applied to the primary motor cortex (M1), tDCS affects motor function, enhancing or decreasing performance of both healthy participants and brain-damaged patients. Beyond M1, the posterior parietal cortex (PPC) is also crucially involved in controlling and guiding movement. Therefore, we explored whether the modulation of cortical excitability within PPC can also affect hand motor function in healthy right-handed participants. In Experiment 1, anodal tDCS (2 mA, 10 min) was applied to PPC and to M1 of both hemispheres. Skilled motor function of the non-dominant left hand, measured using the Jebsen-Taylor Hand Function Test (JTT), improved after anodal tDCS of the right, contralateral M1, as well as after the anodal stimulation of the left, ipsilateral PPC. Conversely, in Experiment 2, cathodal tDCS of the left PPC, or of the right M1, reduced motor performance of the left hand. Finally, Experiment 3 shows that the anodal tDCS of the left PPC selectively facilitated action planning, while the anodal tDCS of the right M1 modulated action execution only. This evidence shows that motor improvement induced by left parietal and right motor stimulations relies on substantial different mechanisms, opening up novel perspectives in the neurorehabilitation of stroke patients with motor and apraxic disorders.

  2. Interleukin-18 regulates motor activity, anxiety and spatial learning without affecting synaptic plasticity.

    PubMed

    Yaguchi, Takahiro; Nagata, Tetsu; Yang, Dongqin; Nishizaki, Tomoyuki

    2010-01-01

    Expression of Schaffer collateral-CA1 long-term potentiation (LTP) and long-term depression (LTD) was not affected in hippocampal slices from wild-type mice pretreated with lipopolysaccharide (0.25mg/kg, i.p.), to increase interleukin-18 (IL-18) concentrations in the brain. For IL-18 knock-out (IL-18 KO) mice, the LTP was still expressed, the extent being similar to that for wild-type mice. In the open-field test to assess motor activity, rearing activity for IL-18 KO mice was significantly suppressed as compared with that for wild-type mice, without significant difference in the locomotion activity between two groups. In the passive avoidance test to assess fear memory, the retention latency for IL-18 KO mice was much shorter than for wild-type mice, without significant difference in the acquisition latency between two groups. In the water maze test, the acquisition latency for IL-18 KO mice significantly prolonged as compared with that for wild-type mice, without significant difference in the retention latency between two groups. For IL-18 KO mice, intraventricular injection with IL-18 for 4 days (total, 240 fg) prior to water maze task shortened the prolonged acquisition latency, reaching a level similar to that for wild-type mice. The results of the present study, thus, suggest that IL-18 is a critical regulator for exploratory activity, fear memory, and spatial learning.

  3. Activation of less affected corticospinal tract and poor motor outcome in hemiplegic pediatric patients: a diffusion tensor tractography imaging study.

    PubMed

    Kim, Jin Hyun; Son, Su Min

    2015-12-01

    The less affected hemisphere is important in motor recovery in mature brains. However, in terms of motor outcome in immature brains, no study has been reported on the less affected corticospinal tract in hemiplegic pediatric patients. Therefore, we examined the relationship between the condition of the less affected corticospinal tract and motor function in hemiplegic pediatric patients. Forty patients with hemiplegia due to perinatal or prenatal injury (13.7 ± 3.0 months) and 40 age-matched typically developing controls were recruited. These patients were divided into two age-matched groups, the high functioning group (20 patients) and the low functioning group (20 patients) using functional level of hemiplegia scale. Diffusion tensor tractography images showed that compared with the control group, the patient group of the less affected corticospinal tract showed significantly increased fiber number and significantly decreased fractional anisotropy value. Significantly increased fiber number and significantly decreased fractional anisotropy value in the low functioning group were observed than in the high functioning group. These findings suggest that activation of the less affected hemisphere presenting as increased fiber number and decreased fractional anisotropy value is related to poor motor function in pediatric hemiplegic patients.

  4. Activation of less affected corticospinal tract and poor motor outcome in hemiplegic pediatric patients: a diffusion tensor tractography imaging study

    PubMed Central

    Kim, Jin Hyun; Son, Su Min

    2015-01-01

    The less affected hemisphere is important in motor recovery in mature brains. However, in terms of motor outcome in immature brains, no study has been reported on the less affected corticospinal tract in hemiplegic pediatric patients. Therefore, we examined the relationship between the condition of the less affected corticospinal tract and motor function in hemiplegic pediatric patients. Forty patients with hemiplegia due to perinatal or prenatal injury (13.7 ± 3.0 months) and 40 age-matched typically developing controls were recruited. These patients were divided into two age-matched groups, the high functioning group (20 patients) and the low functioning group (20 patients) using functional level of hemiplegia scale. Diffusion tensor tractography images showed that compared with the control group, the patient group of the less affected corticospinal tract showed significantly increased fiber number and significantly decreased fractional anisotropy value. Significantly increased fiber number and significantly decreased fractional anisotropy value in the low functioning group were observed than in the high functioning group. These findings suggest that activation of the less affected hemisphere presenting as increased fiber number and decreased fractional anisotropy value is related to poor motor function in pediatric hemiplegic patients. PMID:26889198

  5. Reactive oxygen species scavenger N-acetyl cysteine reduces methamphetamine-induced hyperthermia without affecting motor activity in mice

    PubMed Central

    Sanchez-Alavez, Manuel; Bortell, Nikki; Galmozzi, Andrea; Conti, Bruno; Marcondes, Maria Cecilia G.

    2014-01-01

    Hyperthermia is a potentially lethal side effect of Methamphetamine (Meth) abuse, which involves the participation of peripheral thermogenic sites such as the Brown Adipose Tissue (BAT). In a previous study we found that the anti-oxidant N-acetyl cysteine (NAC) can prevent the high increase in temperature in a mouse model of Meth-hyperthermia. Here, we have further explored the ability of NAC to modulate Meth-induced hyperthermia in correlation with changes in BAT. We found that NAC treatment in controls causes hypothermia, and, when administered prior or upon the onset of Meth-induced hyperthermia, can ameliorate the temperature increase and preserve mitochondrial numbers and integrity, without affecting locomotor activity. This was different from Dantrolene, which decreased motor activity without affecting temperature. The effects of NAC were seen in spite of its inability to recover the decrease of mitochondrial superoxide induced in BAT by Meth. In addition, NAC did not prevent the Meth-induced decrease of BAT glutathione. Treatment with S-adenosyl-L-methionine, which improves glutathione activity, had an effect in ameliorating Meth-induced hyperthermia, but also modulated motor activity. This suggests a role for the remaining glutathione for controlling temperature. However, the mechanism by which NAC operates is independent of glutathione levels in BAT and specific to temperature. Our results show that, in spite of the absence of a clear mechanism of action, NAC is a pharmacological tool to examine the dissociation between Meth-induced hyperthermia and motor activity, and a drug of potential utility in treating the hyperthermia associated with Meth-abuse. PMID:26346736

  6. Motor activity affects adult skeletal muscle re-innervation acting via tyrosine kinase receptors.

    PubMed

    Sartini, Stefano; Bartolini, Fanny; Ambrogini, Patrizia; Betti, Michele; Ciuffoli, Stefano; Lattanzi, Davide; Di Palma, Michael; Cuppini, Riccardo

    2013-05-01

    Recently, muscle expression of brain-derived neurotrophic factor (BDNF) mRNA and protein under activity control has been reported. BDNF is a neurotrophin known to be involved in axon sprouting in the CNS. Hence, we set out to study the effect of chronic treadmill mid-intensity running on adult rat muscle re-innervation, and to explore the involvement of BDNF and tropomyosin-related kinase (Trk) receptors. After nerve crush, muscle re-innervation was evaluated using intracellular recordings, tension recordings, immunostaining and Western blot analyses. An enhanced muscle multiple innervation was found in running rats that was fully reversed to control values blocking Trk receptors or interrupting the running activity. An increase in muscle multiple innervation was also found in sedentary rats treated with a selective TrkB receptor agonist. The expression of TrkB receptors by intramuscular axons was demonstrated, and increased muscle expression of BDNF was found in running animals. The increase in muscle multiple innervation was consistent with the faster muscle re-innervation that we found in running animals. We conclude that, when regenerating axons contact muscle cells, muscle activity progressively increases modulating BDNF and possibly other growth factors, which in turn, acting via Trk receptors, induce axon sprouting to re-innervate skeletal muscle.

  7. Cyclic motor activity; migrating motor complex: 1985.

    PubMed

    Sarna, S K

    1985-10-01

    Most of the gastrointestinal tract and the biliary tract have a cyclic motor activity. The electric counterpart of this motor activity is called cyclic myoelectric activity. A typical motor cycle in the LES, stomach, and small intestine is composed of a quiescent state, followed by progressively increasing amplitude and frequency of contractions culminating in a state of maximal contractile activity. The colonic motor cycle has only the quiescent and the contractile states. In the small intestine, these motor complexes migrate in an aborad direction, and in the colon in both orad and aborad directions. The mechanisms of initiation and migration of these complexes are best understood in the small intestine. Both the initiation and migration of these complexes seem to be controlled by enteric neural mechanisms. The functions of the enteric mechanisms may be modulated by the central nervous system and by circulating endogenous substances. The mechanisms of initiation of these complexes are not completely understood in the rest of the gastrointestinal tract and in the biliary tract. The physiologic function of these motor complexes that occur only after several hours of fast in the upper gastrointestinal tract of nonruminants may be to clean the digestive tract of residual food, secretions, and cellular debris. This function is aided by a coordinated secretion of enzymes, acid, and bicarbonate. In ruminants, phase III activity is associated with the distal propulsion of ingested food. The function of colonic motor complexes that are not coordinated with the cyclic motor activities of the rest of the gastrointestinal tract may be only to move contents back and forth for optimal absorption. PMID:3896912

  8. Motor Execution Affects Action Prediction

    ERIC Educational Resources Information Center

    Springer, Anne; Brandstadter, Simone; Liepelt, Roman; Birngruber, Teresa; Giese, Martin; Mechsner, Franz; Prinz, Wolfgang

    2011-01-01

    Previous studies provided evidence of the claim that the prediction of occluded action involves real-time simulation. We report two experiments that aimed to study how real-time simulation is affected by simultaneous action execution under conditions of full, partial or no overlap between observed and executed actions. This overlap was analysed by…

  9. Environmental Factors Affecting Preschoolers' Motor Development

    ERIC Educational Resources Information Center

    Venetsanou, Fotini; Kambas, Antonis

    2010-01-01

    The process of development occurs according to the pattern established by the genetic potential and also by the influence of environmental factors. The aim of the present study was to focus on the main environmental factors affecting motor development. The review of the literature revealed that family features, such as socioeconomic status,…

  10. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood

    PubMed Central

    Shoykhet, Michael; Middleton, Jason W.

    2016-01-01

    Normal maturation of sensory information processing in the cortex requires patterned synaptic activity during developmentally regulated critical periods. During early development, spontaneous synaptic activity establishes required patterns of synaptic input, and during later development it influences patterns of sensory experience-dependent neuronal firing. Thalamocortical neurons occupy a critical position in regulating the flow of patterned sensory information from the periphery to the cortex. Abnormal thalamocortical inputs may permanently affect the organization and function of cortical neuronal circuits, especially if they occur during a critical developmental window. We examined the effect of cardiac arrest (CA)-associated global brain hypoxia-ischemia in developing rats on spontaneous and evoked firing of somatosensory thalamocortical neurons and on large-scale correlations in the motor thalamocortical circuit. The mean spontaneous and sensory-evoked firing rate activity and variability were higher in CA injured rats. Furthermore, spontaneous and sensory-evoked activity and variability were correlated in uninjured rats, but not correlated in neurons from CA rats. Abnormal activity patterns of ventroposterior medial nucleus (VPm) neurons persisted into adulthood. Additionally, we found that neurons in the entopeduncular nucleus (EPN) in the basal ganglia had lower firing rates yet had higher variability and higher levels of burst firing after injury. Correlated levels of power in local field potentials (LFPs) between the EPN and the motor cortex (MCx) were also disrupted by injury. Our findings indicate that hypoxic-ischemic injury during development leads to abnormal spontaneous and sensory stimulus-evoked input patterns from thalamus to cortex. Abnormal thalamic inputs likely permanently and detrimentally affect the organization of cortical circuitry and processing of sensory information. Hypoxic-ischemic injury also leads to abnormal single neuron and

  11. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood

    PubMed Central

    Shoykhet, Michael; Middleton, Jason W.

    2016-01-01

    Normal maturation of sensory information processing in the cortex requires patterned synaptic activity during developmentally regulated critical periods. During early development, spontaneous synaptic activity establishes required patterns of synaptic input, and during later development it influences patterns of sensory experience-dependent neuronal firing. Thalamocortical neurons occupy a critical position in regulating the flow of patterned sensory information from the periphery to the cortex. Abnormal thalamocortical inputs may permanently affect the organization and function of cortical neuronal circuits, especially if they occur during a critical developmental window. We examined the effect of cardiac arrest (CA)-associated global brain hypoxia-ischemia in developing rats on spontaneous and evoked firing of somatosensory thalamocortical neurons and on large-scale correlations in the motor thalamocortical circuit. The mean spontaneous and sensory-evoked firing rate activity and variability were higher in CA injured rats. Furthermore, spontaneous and sensory-evoked activity and variability were correlated in uninjured rats, but not correlated in neurons from CA rats. Abnormal activity patterns of ventroposterior medial nucleus (VPm) neurons persisted into adulthood. Additionally, we found that neurons in the entopeduncular nucleus (EPN) in the basal ganglia had lower firing rates yet had higher variability and higher levels of burst firing after injury. Correlated levels of power in local field potentials (LFPs) between the EPN and the motor cortex (MCx) were also disrupted by injury. Our findings indicate that hypoxic-ischemic injury during development leads to abnormal spontaneous and sensory stimulus-evoked input patterns from thalamus to cortex. Abnormal thalamic inputs likely permanently and detrimentally affect the organization of cortical circuitry and processing of sensory information. Hypoxic-ischemic injury also leads to abnormal single neuron and

  12. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood.

    PubMed

    Shoykhet, Michael; Middleton, Jason W

    2016-01-01

    Normal maturation of sensory information processing in the cortex requires patterned synaptic activity during developmentally regulated critical periods. During early development, spontaneous synaptic activity establishes required patterns of synaptic input, and during later development it influences patterns of sensory experience-dependent neuronal firing. Thalamocortical neurons occupy a critical position in regulating the flow of patterned sensory information from the periphery to the cortex. Abnormal thalamocortical inputs may permanently affect the organization and function of cortical neuronal circuits, especially if they occur during a critical developmental window. We examined the effect of cardiac arrest (CA)-associated global brain hypoxia-ischemia in developing rats on spontaneous and evoked firing of somatosensory thalamocortical neurons and on large-scale correlations in the motor thalamocortical circuit. The mean spontaneous and sensory-evoked firing rate activity and variability were higher in CA injured rats. Furthermore, spontaneous and sensory-evoked activity and variability were correlated in uninjured rats, but not correlated in neurons from CA rats. Abnormal activity patterns of ventroposterior medial nucleus (VPm) neurons persisted into adulthood. Additionally, we found that neurons in the entopeduncular nucleus (EPN) in the basal ganglia had lower firing rates yet had higher variability and higher levels of burst firing after injury. Correlated levels of power in local field potentials (LFPs) between the EPN and the motor cortex (MCx) were also disrupted by injury. Our findings indicate that hypoxic-ischemic injury during development leads to abnormal spontaneous and sensory stimulus-evoked input patterns from thalamus to cortex. Abnormal thalamic inputs likely permanently and detrimentally affect the organization of cortical circuitry and processing of sensory information. Hypoxic-ischemic injury also leads to abnormal single neuron and

  13. Disrupting vagal feedback affects birdsong motor control

    PubMed Central

    Méndez, Jorge M.; Dall'Asén, Analía G.; Goller, Franz

    2010-01-01

    Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback. PMID:21113000

  14. Activities for a Perceptual Motor Program.

    ERIC Educational Resources Information Center

    Brinning, Dorothy; And Others

    Perceptual motor activities for physically handicapped children are presented in the areas of fine and gross motor skills. Also detailed are activities to develop body image, visual motor skills, and tactile and auditory perception. (JD)

  15. Emergence of Motor Circuit Activity

    PubMed Central

    Law, Chris; Paquet, Michel; Kania, Artur

    2014-01-01

    In the developing nervous system, ordered neuronal activity patterns can occur even in the absence of sensory input and to investigate how these arise, we have used the model system of the embryonic chicken spinal motor circuit, focusing on motor neurons of the lateral motor column (LMC). At the earliest stages of their molecular differentiation, we can detect differences between medial and lateral LMC neurons in terms of expression of neurotransmitter receptor subunits, including CHRNA5, CHRNA7, GRIN2A, GRIK1, HTR1A and HTR1B, as well as the KCC2 transporter. Using patch-clamp recordings we also demonstrate that medial and lateral LMC motor neurons have subtly different activity patterns that reflect the differential expression of neurotransmitter receptor subunits. Using a combination of patch-clamp recordings in single neurons and calcium-imaging of motor neuron populations, we demonstrate that inhibition of nicotinic, muscarinic or GABA-ergic activity, has profound effects of motor circuit activity during the initial stages of neuromuscular junction formation. Finally, by analysing the activity of large populations of motor neurons at different developmental stages, we show that the asynchronous, disordered neuronal activity that occurs at early stages of circuit formation develops into organised, synchronous activity evident at the stage of LMC neuron muscle innervation. In light of the considerable diversity of neurotransmitter receptor expression, activity patterns in the LMC are surprisingly similar between neuronal types, however the emergence of patterned activity, in conjunction with the differential expression of transmitter systems likely leads to the development of near-mature patterns of locomotor activity by perinatal ages. PMID:24722186

  16. Low brain histamine content affects ethanol-induced motor impairment.

    PubMed

    Lintunen, Minnamaija; Raatesalmi, Kristiina; Sallmen, Tina; Anichtchik, Oleg; Karlstedt, Kaj; Kaslin, Jan; Kiianmaa, Kalervo; Korpi, Esa R; Panula, Pertti

    2002-02-01

    The effect of ethanol on motor performance in humans is well established but how neural mechanisms are affected by ethanol action remains largely unknown. To investigate whether the brain histaminergic system is important in it, we used a genetic model consisting of rat lines selectively outbred for differential ethanol sensitivity. Ethanol-sensitive rats had lower levels of brain histamine and lower densities of histamine-immunoreactive fibers than ethanol-insensitive rats, although both rat lines showed no changes in histamine synthesizing neurons. Lowering the high brain histamine content of the ethanol-insensitive rats with alpha-fluoromethylhistidine before ethanol administration increased their ethanol sensitivity in a behavioral motor function test. Higher H3 receptor ligand binding and histamine-induced G-protein activation was detected in several brain regions of ethanol-naive ethanol-sensitive rats. Brain histamine levels and possibly signaling via H3 receptors may thus correlate with genetic differences in ethanol-induced motor impairment.

  17. Motor activity improves temporal expectancy.

    PubMed

    Fautrelle, Lilian; Mareschal, Denis; French, Robert; Addyman, Caspar; Thomas, Elizabeth

    2015-01-01

    Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments. PMID:25806813

  18. Motor activity improves temporal expectancy.

    PubMed

    Fautrelle, Lilian; Mareschal, Denis; French, Robert; Addyman, Caspar; Thomas, Elizabeth

    2015-01-01

    Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments.

  19. Motor Activity Improves Temporal Expectancy

    PubMed Central

    Fautrelle, Lilian; Mareschal, Denis; French, Robert; Addyman, Caspar; Thomas, Elizabeth

    2015-01-01

    Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments. PMID:25806813

  20. Counterfactual thinking affects the excitability of the motor cortex.

    PubMed

    Vicario, Carmelo M; Rafal, Robert D; Avenanti, Alessio

    2015-04-01

    Evidence suggests that monetary reward and affective experiences induce activity in the cortical motor system. Nevertheless, it is unclear whether counterfactual thinking related to wrong choices that lead to monetary loss and regret affects motor excitability. Using transcranial magnetic stimulation (TMS) of the motor cortex, we measured corticospinal excitability of 2 groups of healthy humans asked to actively guess the winning key among two possible alternatives (choice group); or passively assist to monetary outcomes randomly selected by the computer program (follow group). Results document a selective increment of the corticospinal excitability when a monetary loss outcome followed the key selection (i.e., in the choice group). On the other hand, no change in corticospinal excitability was found when participants passively assisted to a monetary loss randomly selected by the computer program (i.e., follow group). These findings suggest that counterfactual thinking and the negative emotional experiences arising from choices causing monetary loss--i.e., "I would have won instead of lost money if I'd made a different choice"--are mapped in the motor system.

  1. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the dose or equivalent independent variable. A single administration of the dose (or equivalent... systematically related to treatment. Among the variables which can affect motor activity are sound level, size... addition to the reporting requirements specified under 40 CFR part 792, subpart J the final test...

  2. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the dose or equivalent independent variable. A single administration of the dose (or equivalent... systematically related to treatment. Among the variables which can affect motor activity are sound level, size... addition to the reporting requirements specified under 40 CFR part 792, subpart J the final test...

  3. Flibanserin, a drug intended for treatment of hypoactive sexual desire disorder in pre-menopausal women, affects spontaneous motor activity and brain neurochemistry in female rats.

    PubMed

    Ferger, Boris; Shimasaki, Makoto; Ceci, Angelo; Ittrich, Carina; Allers, Kelly A; Sommer, Bernd

    2010-06-01

    Flibanserin, a 5-HT(1A) receptor agonist and 5-HT(2A) receptor antagonist, is being developed for the treatment of hypoactive sexual desire disorder (HSDD) in pre-menopausal women. Here, we investigated the effects of acute administration of flibanserin (15 and 45 mg/kg, p.o.) and the selective 5-HT(1A) receptor agonist (+)-8-OH-DPAT (1 mg/kg, i.p.) on neurotransmitter levels in brain areas of female rats. Specifically, levels of dopamine (DA) and serotonin (5-HT) and neurotransmitter metabolites were examined in prefrontal cortex (PFC), nucleus accumbens, hypothalamus and brain stem using high performance liquid chromatography coupled to electrochemical detection. In addition, spontaneous motor activity was determined in an automated motor activity system. Flibanserin (45 mg/kg) but not (+)-8-OH-DPAT significantly reduced motor activity, when compared to vehicle controls. Specifically, the DA turnover was significantly increased (279%) in the PFC after flibanserin treatment but less pronounced (159%) after 8-OH-DPAT administration. Serotonin tissue levels were not altered in any of the investigated brain regions upon flibanserin treatment. However, flibanserin produced a significant decrease of the major serotonin metabolite 5-hydroxyindoleacetic acid and 5-HT turnover in the PFC, nucleus accumbens, hypothalamus and brain stem similar to (+)-8-OH-DPAT. In conclusion, the present study indicates that flibanserin is able to modulate dopaminergic and serotonergic activity in distinct brain areas. The observed effects in the PFC on dopaminergic markers are different from those induced by (+)-8-OH-DPAT and may contribute to its therapeutic efficacy in HSDD. The effects of flibanserin on spontaneous motor behaviour are in agreement with its receptor profile and underscore that flibanserin is devoid of any locomotor hyperactivity inducing properties.

  4. Motor activity under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Kopanev, V. I.; Cherepakhin, M. A.; Yuganov, Y. M.

    1975-01-01

    The material presented on the motor activity under weightless conditions (brief and long) leads to the conclusion that it is not significantly disrupted, if those being examined are secured at the workplaces. Some discoordination of movement, moderately expressed disruption of the precision of reproduction of assigned muscular forces, etc., were observed. Motor disorders decrease significantly in proportion to the length of stay under weightless conditions. This apparently takes place, as a consequence of formation of a new functional system, adequate to the conditions of weightlessness. Tests on intact and labyrinthectomized animals have demonstrated that signaling from the inner ear receptors is superfluous in weightlessness, since it promotes the onset of disruptions in the combined work of the position analyzers.

  5. Awareness affects motor planning for goal-oriented actions.

    PubMed

    Bozzacchi, Chiara; Giusti, Maria Assunta; Pitzalis, Sabrina; Spinelli, Donatella; Di Russo, Francesco

    2012-02-01

    We studied pre-movement cortical activity related to praxic actions performed at self-paced rate and having ecological meanings and functions. Motor-related cortical potentials were recorded using 64-channels EEG in two experiments. Experiment 1 included 15 subjects performing in separate blocks two object-oriented actions: grasping a tea-cup and impossible grasping of a tea-cup (same goal but the grasp was mechanically hindered). Experiment 2 included a subset of 7 subjects from Exp. 1 and the action was reaching a tea-cup; this control condition had a different goal but was kinematically similar to impossible grasping. Different activity patterns in terms of onset, amplitude, duration and, at least in part, sources were recorded in the preparation phase (BP component) according to the specific action and to the possibility of accomplishing it. The main result is that parietal areas were involved in grasping preparation (called "posterior" BP) and not in reaching and impossible grasping preparation. The anterior frontal-central activity (called "anterior" BP) during preparation for grasping started earlier than the other two conditions. The cortical activity during preparation for reaching was similar to that for impossible grasping, except for a frontal activity only detected in the latter condition. It is concluded that the action preparation, even in its early phase, is affected by action meaning and by the awareness of being able to perform the requested action.

  6. Laterality affects spontaneous recovery of contralateral hand motor function following motor cortex injury in rhesus monkeys.

    PubMed

    Darling, Warren G; Helle, Nicole; Pizzimenti, Marc A; Rotella, Diane L; Hynes, Stephanie M; Ge, Jizhi; Stilwell-Morecraft, Kimberly S; Morecraft, Robert J

    2013-07-01

    The purpose of this study was to test whether brain laterality influences spontaneous recovery of hand motor function after controlled brain injuries to arm areas of M1 and lateral premotor cortex (LPMC) of the hemisphere contralateral to the preferred hand in rhesus monkeys. We hypothesized that monkeys with stronger hand preference would exhibit poorer recovery of skilled hand use after such brain injury. Degree of handedness was assessed using a standard dexterity board task in which subjects could use either hand to retrieve small food pellets. Fine hand/digit motor function was assessed using a modified dexterity board before and after the M1 and LPMC lesions in ten monkeys. We found a strong negative relationship between the degree of handedness and the recovery of manipulation skill, demonstrating that higher hand preference was associated with poorer recovery of hand fine motor function. We also observed that monkeys with larger lesions within M1 and LPMC had greater initial impairment of manipulation and poorer recovery of reaching skill. We conclude that monkeys with a stronger hand preference are likely to show poorer recovery of contralesional hand fine motor skill after isolated brain lesions affecting the lateral frontal motor areas. These data may be extended to suggest that humans who exhibit weak hand dominance, and perhaps individuals who use both hands for fine motor tasks, may have a more favorable potential for recovery after a unilateral stroke or brain injury affecting the lateral cortical motor areas than individuals with a high degree of hand dominance.

  7. The origin of word-related motor activity.

    PubMed

    Papeo, Liuba; Lingnau, Angelika; Agosta, Sara; Pascual-Leone, Alvaro; Battelli, Lorella; Caramazza, Alfonso

    2015-06-01

    Conceptual processing of verbs consistently recruits the left posterior middle temporal gyrus (lpMTG). The left precentral motor cortex also responds to verbs, with higher activity for action than nonaction verbs. The early timing of this effect has suggested that motor features of words' meaning are accessed directly, bypassing access to conceptual representations in lpMTG. An alternative hypothesis is that the retrieval of conceptual representations in lpMTG is necessary to drive more specific, motor-related representations in the precentral gyrus. To test these hypotheses, we first showed that repetitive transcranial magnetic stimulation (rTMS) applied to the verb-preferring lpMTG site selectively impoverished the semantic processing of verbs. In a second experiment, rTMS perturbation of lpMTG, relative to no stimulation (no-rTMS), eliminated the action-nonaction verb distinction in motor activity, as indexed by motor-evoked potentials induced in peripheral muscles with single-pulse TMS over the left primary motor cortex. rTMS pertubation of an occipital control site, relative to no-rTMS, did not affect the action-nonaction verb distinction in motor activity, but the verb contrast did not differ reliably from the lpMTG effect. The results show that lpMTG carries core semantic information necessary to drive the activation of specific (motor) features in the precentral gyrus.

  8. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    PubMed

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation.

  9. Motor Activity and the Education of Retardates.

    ERIC Educational Resources Information Center

    Cratty, Bryant J.

    Presented are chapters concerned with the relationship of motor activity to education. The topics discussed are research, movement and performance in infants and children, principles of teaching motor skills; arousal level and attention; scribbling, drawing, writing, strength, flexibility, endurance, and control of large muscles; music and rhythm;…

  10. Motor Inhibition Affects the Speed But Not Accuracy of Aimed Limb Movements in an Insect

    PubMed Central

    Calas-List, Delphine; Clare, Anthony J.; Komissarova, Alexandra; Nielsen, Thomas A.

    2014-01-01

    When reaching toward a target, human subjects use slower movements to achieve higher accuracy, and this can be accompanied by increased limb impedance (stiffness, viscosity) that stabilizes movements against motor noise and external perturbation. In arthropods, the activity of common inhibitory motor neurons influences limb impedance, so we hypothesized that this might provide a mechanism for speed and accuracy control of aimed movements in insects. We recorded simultaneously from excitatory leg motor neurons and from an identified common inhibitory motor neuron (CI1) in locusts that performed natural aimed scratching movements. We related limb movement kinematics to recorded motor activity and demonstrate that imposed alterations in the activity of CI1 influenced these kinematics. We manipulated the activity of CI1 by injecting depolarizing or hyperpolarizing current or killing the cell using laser photoablation. Naturally higher levels of inhibitory activity accompanied faster movements. Experimentally biasing the firing rate downward, or stopping firing completely, led to slower movements mediated by changes at several joints of the limb. Despite this, we found no effect on overall movement accuracy. We conclude that inhibitory modulation of joint stiffness has effects across most of the working range of the insect limb, with a pronounced effect on the overall velocity of natural movements independent of their accuracy. Passive joint forces that are greatest at extreme joint angles may enhance accuracy and are not affected by motor inhibition. PMID:24872556

  11. Motor patterns during active electrosensory acquisition

    PubMed Central

    Hofmann, Volker; Geurten, Bart R. H.; Sanguinetti-Scheck, Juan I.; Gómez-Sena, Leonel; Engelmann, Jacob

    2014-01-01

    Motor patterns displayed during active electrosensory acquisition of information seem to be an essential part of a sensory strategy by which weakly electric fish actively generate and shape sensory flow. These active sensing strategies are expected to adaptively optimize ongoing behavior with respect to either motor efficiency or sensory information gained. The tight link between the motor domain and sensory perception in active electrolocation make weakly electric fish like Gnathonemus petersii an ideal system for studying sensory-motor interactions in the form of active sensing strategies. Analyzing the movements and electric signals of solitary fish during unrestrained exploration of objects in the dark, we here present the first formal quantification of motor patterns used by fish during electrolocation. Based on a cluster analysis of the kinematic values we categorized the basic units of motion. These were then analyzed for their associative grouping to identify and extract short coherent chains of behavior. This enabled the description of sensory behavior on different levels of complexity: from single movements, over short behaviors to more complex behavioral sequences during which the kinematics alter between different behaviors. We present detailed data for three classified patterns and provide evidence that these can be considered as motor components of active sensing strategies. In accordance with the idea of active sensing strategies, we found categorical motor patterns to be modified by the sensory context. In addition these motor patterns were linked with changes in the temporal sampling in form of differing electric organ discharge frequencies and differing spatial distributions. The ability to detect such strategies quantitatively will allow future research to investigate the impact of such behaviors on sensing. PMID:24904337

  12. Motor patterns during active electrosensory acquisition.

    PubMed

    Hofmann, Volker; Geurten, Bart R H; Sanguinetti-Scheck, Juan I; Gómez-Sena, Leonel; Engelmann, Jacob

    2014-01-01

    Motor patterns displayed during active electrosensory acquisition of information seem to be an essential part of a sensory strategy by which weakly electric fish actively generate and shape sensory flow. These active sensing strategies are expected to adaptively optimize ongoing behavior with respect to either motor efficiency or sensory information gained. The tight link between the motor domain and sensory perception in active electrolocation make weakly electric fish like Gnathonemus petersii an ideal system for studying sensory-motor interactions in the form of active sensing strategies. Analyzing the movements and electric signals of solitary fish during unrestrained exploration of objects in the dark, we here present the first formal quantification of motor patterns used by fish during electrolocation. Based on a cluster analysis of the kinematic values we categorized the basic units of motion. These were then analyzed for their associative grouping to identify and extract short coherent chains of behavior. This enabled the description of sensory behavior on different levels of complexity: from single movements, over short behaviors to more complex behavioral sequences during which the kinematics alter between different behaviors. We present detailed data for three classified patterns and provide evidence that these can be considered as motor components of active sensing strategies. In accordance with the idea of active sensing strategies, we found categorical motor patterns to be modified by the sensory context. In addition these motor patterns were linked with changes in the temporal sampling in form of differing electric organ discharge frequencies and differing spatial distributions. The ability to detect such strategies quantitatively will allow future research to investigate the impact of such behaviors on sensing. PMID:24904337

  13. Social interaction is associated with changes in infants’ motor activity

    PubMed Central

    Scola, Céline; Bourjade, Marie; Jover, Marianne

    2015-01-01

    Background In developmental research, infants are commonly assumed to be early stakeholders in interactions with their caregivers. The tools that infants can use to interact with others vary from visual contact to smiling or vocalizing, and also include motor activity. However, surprisingly few studies have explored how the nature and context of social interactions affect infants’ engagement in motor activity. Methods We investigated the kinematic properties of foot and face movements produced by 11 infants aged between 5 and 9 months during six contrasting dyadic episodes (i.e. passive presence of a stranger or the infant's mother, weak or intense interaction with the stranger/mother as she sings a nursery play song). Results The infants’ face and foot motor activity was significantly reduced during the interactive episodes, compared with the episodes without any interaction, in both the mother and stranger conditions. Furthermore, the level of their motor activity was significantly lower in the stranger condition than in the mother one for some parameters. Conclusion These results are in line with those reported by previous studies and confirm the relevance of using motor activity to delineate the early forms of interactive episodes in infants. PMID:26546793

  14. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke.

    PubMed

    Pariente, J; Loubinoux, I; Carel, C; Albucher, J F; Leger, A; Manelfe, C; Rascol, O; Chollet, F

    2001-12-01

    In order to determine the influence of a single dose of fluoxetine on the cerebral motor activation of lacunar stroke patients in the early phase of recovery, we conducted a prospective, double-blind, crossover, placebo-controlled study on 8 patients with pure motor hemiparesia. Each patient underwent two functional magnetic resonance imaging (fMRI) examinations: one under fluoxetine and one under placebo. The first was performed 2 weeks after stroke onset and the second a week later. During the two fMRI examinations, patients performed an active controlled motor task with the affected hand and a passive one conducted by the examiner with the same hand. Motor performance was evaluated by motor tests under placebo and under fluoxetine immediately before the examinations to investigate the effect of fluoxetine on motor function. Under fluoxetine, during the active motor task, hyperactivation in the ipsilesional primary motor cortex was found. Moreover, fluoxetine significantly improved motor skills of the affected side. We found that a single dose of fluoxetine was enough to modulate cerebral sensory-motor activation in patients. This redistribution of activation toward the motor cortex output activation was associated with an enhancement of motor performance. PMID:11761469

  15. Motor skill learning requires active central myelination.

    PubMed

    McKenzie, Ian A; Ohayon, David; Li, Huiliang; de Faria, Joana Paes; Emery, Ben; Tohyama, Koujiro; Richardson, William D

    2014-10-17

    Myelin-forming oligodendrocytes (OLs) are formed continuously in the healthy adult brain. In this work, we study the function of these late-forming cells and the myelin they produce. Learning a new motor skill (such as juggling) alters the structure of the brain's white matter, which contains many OLs, suggesting that late-born OLs might contribute to motor learning. Consistent with this idea, we show that production of newly formed OLs is briefly accelerated in mice that learn a new skill (running on a "complex wheel" with irregularly spaced rungs). By genetically manipulating the transcription factor myelin regulatory factor in OL precursors, we blocked production of new OLs during adulthood without affecting preexisting OLs or myelin. This prevented the mice from mastering the complex wheel. Thus, generation of new OLs and myelin is important for learning motor skills. PMID:25324381

  16. Effects of motor fatigue on human brain activity, an fMRI study.

    PubMed

    van Duinen, Hiske; Renken, Remco; Maurits, Natasha; Zijdewind, Inge

    2007-05-01

    The main purpose of this study was to investigate effects of motor fatigue on brain activation in humans, using fMRI. First, we assessed brain activation that correlated with muscle activity during brief contractions at different force levels (force modulation). Second, a similar analysis was done for sustained contractions inducing motor fatigue. Third, we studied changes in brain activation due to motor fatigue over time. And fourth, we investigated cross-over effects of fatigue by comparing brain activation before and after the fatiguing condition during simple and high-order motor tasks (reaction time tasks). Several motor areas in the brain showed increased activity with increased muscle activity, both during force modulation and motor fatigue. Interestingly, the cerebellum showed a smaller increase in activation, during compensatory activation due to fatigue, while additional activation was found in the pre-supplementary motor area and in a frontal area. During motor fatigue, there was a decrease in force production, an increase in force variability, and an increase in muscle activity. Brain areas comparable with the aforementioned areas also showed stronger activation over time. After fatigue, reaction time task performance remained the same (compared to before fatigue), while increased activation in orbitofrontal areas was found. Furthermore, there was a reduction in subjects' maximal voluntary contraction force, accompanied by a decrease in activation of the supplementary motor area (SMA). These results suggest that especially the activity in the SMA and frontal areas is affected by motor fatigue.

  17. Motor neuronal activity varies least among individuals when it matters most for behavior

    PubMed Central

    Cullins, Miranda J.; Shaw, Kendrick M.; Gill, Jeffrey P.

    2014-01-01

    How does motor neuronal variability affect behavior? To explore this question, we quantified activity of multiple individual identified motor neurons mediating biting and swallowing in intact, behaving Aplysia californica by recording from the protractor muscle and the three nerves containing the majority of motor neurons controlling the feeding musculature. We measured multiple motor components: duration of the activity of identified motor neurons as well as their relative timing. At the same time, we measured behavioral efficacy: amplitude of grasping movement during biting and amplitude of net inward food movement during swallowing. We observed that the total duration of the behaviors varied: Within animals, biting duration shortened from the first to the second and third bites; between animals, biting and swallowing durations varied. To study other sources of variation, motor components were divided by behavior duration (i.e., normalized). Even after normalization, distributions of motor component durations could distinguish animals as unique individuals. However, the degree to which a motor component varied among individuals depended on the role of that motor component in a behavior. Motor neuronal activity that was essential for the expression of biting or swallowing was similar among animals, whereas motor neuronal activity that was not essential for that behavior varied more from individual to individual. These results suggest that motor neuronal activity that matters most for the expression of a particular behavior may vary least from individual to individual. Shaping individual variability to ensure behavioral efficacy may be a general principle for the operation of motor systems. PMID:25411463

  18. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicle is used in administering the test substance, a vehicle control group. If the toxic properties of...) General. In the assessment and evaluation of the toxic characteristics of a substance, determination of the effects of administration of the substance on motor activity is......

  19. ACTIVITIES OF HUMAN GENIOGLOSSUS MOTOR UNITS

    PubMed Central

    Bailey, E. Fiona

    2011-01-01

    Upper airway muscles play an important role in regulating airway lumen and in increasing the ability of the pharynx to remain patent in the face of subatmospheric intraluminal pressures produced during inspiration. Due to the considerable technical challenges associated with recording from muscles of the upper airway, much of the experimental work conducted in human subjects has centered on recording respiratory-related activities of the extrinsic tongue protudor muscle, the genioglossus (GG). The GG is one of eight muscles that invest the human tongue (Abd-El-Malek, 1939). All eight muscles are innervated by the hypoglossal nerve (cranial nerve XII) the cell bodies of which are located in the hypoglossal motor nucleus (HMN) of the caudal medulla. Much of the earlier work on the respiratory-related activity of XII motoneurons was based on recordings obtained from single motor axons dissected from the whole XII nerve or from whole muscle GG EMG recordings. Detailed information regarding respiratory-related GG motor unit activities was lacking until as recently as 2006. This paper examines key findings that have emerged from the last decade of work conducted in human subjects. Wherever appropriate, these results are compared with results obtained from in vitro and in vivo studies conducted in non-human mammals. The review is written with the objective of facilitating some discussion and some new thoughts regarding future research directions. The material is framed around four topics: a) Motor unit type, b) Rate coding and recruitment, c) Motor unit activity patterns, and d) A compartment based view of pharyngeal airway control. PMID:21558022

  20. Abstract art and cortical motor activation: an EEG study

    PubMed Central

    Umilta', M. Alessandra; Berchio, Cristina; Sestito, Mariateresa; Freedberg, David; Gallese, Vittorio

    2012-01-01

    The role of the motor system in the perception of visual art remains to be better understood. Earlier studies on the visual perception of abstract art (from Gestalt theory, as in Arnheim, 1954 and 1988, to balance preference studies as in Locher and Stappers, 2002, and more recent work by Locher et al., 2007; Redies, 2007, and Taylor et al., 2011), neglected the question, while the field of neuroesthetics (Ramachandran and Hirstein, 1999; Zeki, 1999) mostly concentrated on figurative works. Much recent work has demonstrated the multimodality of vision, encompassing the activation of motor, somatosensory, and viscero-motor brain regions. The present study investigated whether the observation of high-resolution digitized static images of abstract paintings by Lucio Fontana is associated with specific cortical motor activation in the beholder's brain. Mu rhythm suppression was evoked by the observation of original art works but not by control stimuli (as in the case of graphically modified versions of these works). Most interestingly, previous visual exposure to the stimuli did not affect the mu rhythm suppression induced by their observation. The present results clearly show the involvement of the cortical motor system in the viewing of static abstract art works. PMID:23162456

  1. Active training paradigm for motor imagery BCI.

    PubMed

    Li, Junhua; Zhang, Liqing

    2012-06-01

    Brain-computer interface (BCI) allows the use of brain activities for people to directly communicate with the external world or to control external devices without participation of any peripheral nerves and muscles. Motor imagery is one of the most popular modes in the research field of brain-computer interface. Although motor imagery BCI has some advantages compared with other modes of BCI, such as asynchronization, it is necessary to require training sessions before using it. The performance of trained BCI system depends on the quality of training samples or the subject engagement. In order to improve training effect and decrease training time, we proposed a new paradigm where subjects participated in training more actively than in the traditional paradigm. In the traditional paradigm, a cue (to indicate what kind of motor imagery should be imagined during the current trial) is given to the subject at the beginning of a trial or during a trial, and this cue is also used as a label for this trial. It is usually assumed that labels for trials are accurate in the traditional paradigm, although subjects may not have performed the required or correct kind of motor imagery, and trials may thus be mislabeled. And then those mislabeled trials give rise to interference during model training. In our proposed paradigm, the subject is required to reconfirm the label and can correct the label when necessary. This active training paradigm may generate better training samples with fewer inconsistent labels because it overcomes mistakes when subject's motor imagination does not match the given cues. The experiments confirm that our proposed paradigm achieves better performance; the improvement is significant according to statistical analysis. PMID:22476215

  2. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    ERIC Educational Resources Information Center

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  3. Testing the embodied account of object naming: a concurrent motor task affects naming artifacts and animals.

    PubMed

    Matheson, Heath E; White, Nicole; McMullen, Patricia A

    2014-01-01

    Embodied theories of object representation propose that the same neural networks are involved in encoding and retrieving object knowledge. In the present study, we investigated whether motor programs play a causal role in the retrieval of object names. Participants performed an object-naming task while squeezing a sponge with either their right or left hand. The objects were artifacts (e.g. hammer) or animals (e.g. giraffe) and were presented in an orientation that favored a grasp or not. We hypothesized that, if activation of motor programs is necessary to retrieve object knowledge, then concurrent motor activity would interfere with naming manipulable artifacts but not non-manipulable animals. In Experiment 1, we observed naming interference for all objects oriented towards the occupied hand. In Experiment 2, we presented the objects in more 'canonical orientations'. Participants named all objects more quickly when they were oriented towards the occupied hand. Together, these interference/facilitation effects suggest that concurrent motor activity affects naming for both categories. These results also suggest that picture-plane orientation interacts with an attentional bias that is elicited by the objects and their relationship to the occupied hand. These results may be more parsimoniously accounted for by a domain-general attentional effect, constraining the embodied theory of object representations. We suggest that researchers should scrutinize attentional accounts of other embodied cognitive effects.

  4. Testing the embodied account of object naming: a concurrent motor task affects naming artifacts and animals.

    PubMed

    Matheson, Heath E; White, Nicole; McMullen, Patricia A

    2014-01-01

    Embodied theories of object representation propose that the same neural networks are involved in encoding and retrieving object knowledge. In the present study, we investigated whether motor programs play a causal role in the retrieval of object names. Participants performed an object-naming task while squeezing a sponge with either their right or left hand. The objects were artifacts (e.g. hammer) or animals (e.g. giraffe) and were presented in an orientation that favored a grasp or not. We hypothesized that, if activation of motor programs is necessary to retrieve object knowledge, then concurrent motor activity would interfere with naming manipulable artifacts but not non-manipulable animals. In Experiment 1, we observed naming interference for all objects oriented towards the occupied hand. In Experiment 2, we presented the objects in more 'canonical orientations'. Participants named all objects more quickly when they were oriented towards the occupied hand. Together, these interference/facilitation effects suggest that concurrent motor activity affects naming for both categories. These results also suggest that picture-plane orientation interacts with an attentional bias that is elicited by the objects and their relationship to the occupied hand. These results may be more parsimoniously accounted for by a domain-general attentional effect, constraining the embodied theory of object representations. We suggest that researchers should scrutinize attentional accounts of other embodied cognitive effects. PMID:24291119

  5. [Quantification of motor activity in biomedicine].

    PubMed

    Giannazzo, E

    1993-01-01

    A computer-assisted analysis of motor activity was carried out using ultrasound waves, that are not invasive and free from any kind of interference, because of their specific characteristics. We worked out the Doppler's effect which determines a frequency variation on the reflected wave from any body in motion. That variation is linked to the velocity of the moving body and the superimposition of the emitted wave with those reflected, results in beats, which have a frequency proportional to the motor activity velocity. Our research group planned and carried out an electronic quantification apparatus that can be interfaced with a personal computer system by means of an Analog to Digital acquisition card. The performed test on the apparatus confirmed that the theory that the number of antinodes detected was proportional to the space covered by the moving body. The equipment was also tested on several types of animals.

  6. Activity-driven synaptic and axonal degeneration in canine motor neuron disease.

    PubMed

    Carrasco, Dario I; Rich, Mark M; Wang, Qingbo; Cope, Timothy C; Pinter, Martin J

    2004-08-01

    The role of neuronal activity in the pathogenesis of neurodegenerative disease is largely unknown. In this study, we examined the effects of increasing motor neuron activity on the pathogenesis of a canine version of inherited motor neuron disease (hereditary canine spinal muscular atrophy). Activity of motor neurons innervating the ankle extensor muscle medial gastrocnemius (MG) was increased by denervating close synergist muscles. In affected animals, 4 wk of synergist denervation accelerated loss of motor-unit function relative to control muscles and decreased motor axon conduction velocities. Slowing of axon conduction was greatest in the most distal portions of motor axons. Morphological analysis of neuromuscular junctions (NMJs) showed that these functional changes were associated with increased loss of intact innervation and with the appearance of significant motor axon and motor terminal sprouting. These effects were not observed in the MG muscles of age-matched, normal animals with synergist denervation for 5 wk. The results indicate that motor neuron action potential activity is a major contributing factor to the loss of motor-unit function and degeneration in inherited canine motor neuron disease.

  7. Effects of Adjuvant Mental Practice on Affected Upper Limb Function Following a Stroke: Results of Three-Dimensional Motion Analysis, Fugl-Meyer Assessment of the Upper Extremity and Motor Activity Logs

    PubMed Central

    2016-01-01

    Objective To investigate the effects of adjuvant mental practice (MP) on affected upper limb function following a stroke using three-dimensional (3D) motion analysis. Methods In this AB/BA crossover study, we studied 10 hemiplegic patients who had a stroke within the past 6 months. The patients were randomly allocated to two groups: one group received MP combined with conventional rehabilitation therapy for the first 3 weeks followed by conventional rehabilitation therapy alone for the final 3 weeks; the other group received the same therapy but in reverse order. The MP tasks included drinking from a cup and opening a door. MP was individually administered for 20 minutes, 3 days a week for 3 weeks. To assess the tasks, we used 3D motion analysis and three additional tests: the Fugl-Meyer Assessment of the upper extremity (FMA-UE) and the motor activity logs for amount of use (MAL-AOU) and quality of movement (MAL-QOM). Assessments were performed immediately before treatment (T0), 3 weeks into treatment (T1), and 6 weeks into treatment (T2). Results Based on the results of the 3D motion analysis and the FMA-UE index (p=0.106), the MAL-AOU scale (p=0.092), and MAL-QOM scale (p=0.273), adjuvant MP did not result in significant improvements. Conclusion Adjuvant MP had no significant effect on upper limb function following a stroke, according to 3D motion analysis and three clinical assessment tools (the FMA-UE index and the two MAL scales). The importance of this study is its use of objective 3D motion analysis to evaluate the effects of MP. Further studies will be needed to validate these findings. PMID:27446776

  8. Observation of microtubule-based motor protein activity.

    PubMed

    Sloboda, Roger D

    2015-02-01

    It is possible to detect the presence of motor proteins that have the ability to translocate particles along microtubules. The two procedures described here were developed to detect microtubule-dependent motor protein activity in cell lysates or of purified proteins. In the first procedure, latex beads bound to the putative motor protein are assayed for their ability to translocate along microtubules in an ATP-dependent fashion. If motor protein activity is present, it will bind to the beads and translocate them unidirectionally along the microtubules. In the second procedure, motor proteins induce microtubule gliding over a glass coverslip surface that is coated with active motor protein. Because the mass of a microtubule is negligible compared to that of a coverslip or slide, the microtubule glides over the glass surface when the surface is coated with active motor protein. Also included here are descriptions of assays designed to determine the directionality of movement of microtubule-based motor proteins. PMID:25646501

  9. Structural brain correlates of unconstrained motor activity in people with schizophrenia.

    PubMed

    Farrow, Tom F D; Hunter, Michael D; Wilkinson, Iain D; Green, Russell D J; Spence, Sean A

    2005-11-01

    Avolition affects quality of life in chronic schizophrenia. We investigated the relationship between unconstrained motor activity and the volume of key executive brain regions in 16 male patients with schizophrenia. Wristworn actigraphy monitors were used to record motor activity over a 20 h period. Structural magnetic resonance imaging brain scans were parcellated and individual volumes for anterior cingulate cortex and dorsolateral prefrontal cortex extracted. Patients'total activity was positively correlated with volume of left anterior cingulate cortex. These data suggest that the volume of specific executive structures may affect (quantifiable) motor behaviours, having further implications for models of the 'will' and avolition.

  10. Processing abstract language modulates motor system activity.

    PubMed

    Glenberg, Arthur M; Sato, Marc; Cattaneo, Luigi; Riggio, Lucia; Palumbo, Daniele; Buccino, Giovanni

    2008-06-01

    Embodiment theory proposes that neural systems for perception and action are also engaged during language comprehension. Previous neuroimaging and neurophysiological studies have only been able to demonstrate modulation of action systems during comprehension of concrete language. We provide neurophysiological evidence for modulation of motor system activity during the comprehension of both concrete and abstract language. In Experiment 1, when the described direction of object transfer or information transfer (e.g., away from the reader to another) matched the literal direction of a hand movement used to make a response, speed of responding was faster than when the two directions mismatched (an action-sentence compatibility effect). In Experiment 2, we used single-pulse transcranial magnetic stimulation to study changes in the corticospinal motor pathways to hand muscles while reading the same sentences. Relative to sentences that do not describe transfer, there is greater modulation of activity in the hand muscles when reading sentences describing transfer of both concrete objects and abstract information. These findings are discussed in relation to the human mirror neuron system. PMID:18470821

  11. Fine Motor Activities Program to Promote Fine Motor Skills in a Case Study of Down's Syndrome.

    PubMed

    Lersilp, Suchitporn; Putthinoi, Supawadee; Panyo, Kewalin

    2016-01-01

    Children with Down's syndrome have developmental delays, particularly regarding cognitive and motor development. Fine motor skill problems are related to motor development. They have impact on occupational performances in school-age children with Down's syndrome because they relate to participation in school activities, such as grasping, writing, and carrying out self-care duties. This study aimed to develop a fine motor activities program and to examine the efficiency of the program that promoted fine motor skills in a case study of Down's syndrome. The case study subject was an 8 -year-old male called Kai, who had Down's syndrome. He was a first grader in a regular school that provided classrooms for students with special needs. This study used the fine motor activities program with assessment tools, which included 3 subtests of the Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2) that applied to Upper-limb coordination, Fine motor precision and Manual dexterity; as well as the In-hand Manipulation Checklist, and Jamar Hand Dynamometer Grip Test. The fine motor activities program was implemented separately and consisted of 3 sessions of 45 activities per week for 5 weeks, with each session taking 45 minutes. The results showed obvious improvement of fine motor skills, including bilateral hand coordination, hand prehension, manual dexterity, in-hand manipulation, and hand muscle strength. This positive result was an example of a fine motor intervention program designed and developed for therapists and related service providers in choosing activities that enhance fine motor skills in children with Down's syndrome. PMID:27357876

  12. The centre of the brain: topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia.

    PubMed

    Arsalidou, Marie; Duerden, Emma G; Taylor, Margot J

    2013-11-01

    The basal ganglia have traditionally been viewed as motor processing nuclei; however, functional neuroimaging evidence has implicated these structures in more complex cognitive and affective processes that are fundamental for a range of human activities. Using quantitative meta-analysis methods we assessed the functional subdivisions of basal ganglia nuclei in relation to motor (body and eye movements), cognitive (working-memory and executive), affective (emotion and reward) and somatosensory functions in healthy participants. We document affective processes in the anterior parts of the caudate head with the most overlap within the left hemisphere. Cognitive processes showed the most widespread response, whereas motor processes occupied more central structures. On the basis of these demonstrated functional roles of the basal ganglia, we provide a new comprehensive topographical model of these nuclei and insight into how they are linked to a wide range of behaviors. PMID:22711692

  13. Short-Term Limb Immobilization Affects Cognitive Motor Processes

    ERIC Educational Resources Information Center

    Toussaint, Lucette; Meugnot, Aurore

    2013-01-01

    We examined the effects of a brief period of limb immobilization on the cognitive level of action control. A splint placed on the participants' left hand was used as a means of immobilization. We used a hand mental rotation task to investigate the immobilization-induced effects on motor imagery performance (Experiments 1 and 2) and a number mental…

  14. Electrodermal activity analysis during affective haptic elicitation.

    PubMed

    Greco, Alberto; Valenza, Gaetano; Nardelli, Mimma; Bianchi, Matteo; Lanata, Antonio; Scilingo, Enzo Pasquale

    2015-08-01

    This paper investigates how the autonomic nervous system dynamics, quantified through the analysis of the electrodermal activity (EDA), is modulated according to affective haptic stimuli. Specifically, a haptic display able to convey caress-like stimuli is presented to 32 healthy subjects (16 female). Each stimulus is changed according to six combinations of three velocities and two forces levels of two motors stretching a strip of fabric. Subjects were also asked to score each stimulus in terms of arousal (high/low activation) and valence (pleasant/unpleasant), in agreement with the circumplex model of affect. EDA was processed using a deconvolutive method, separating tonic and phasic components. A statistical analysis was performed in order to identify significant differences in EDA features among force and velocity levels, as well as in their valence and arousal scores. Results show that the simulated caress induced by the haptic display significantly affects the EDA. In detail, the phasic component seems to be inversely related to the valence score. This finding is new and promising, since it can be used, e.g., as an additional cue for haptics design. PMID:26737605

  15. Motor and non-motor error and the influence of error magnitude on brain activity.

    PubMed

    Nadig, Karin Graziella; Jäncke, Lutz; Lüchinger, Roger; Lutz, Kai

    2010-04-01

    It has been shown that frontal cortical areas increase their activity during error perception and error processing. However, it is not yet clear whether perception of motor errors is processed in the same frontal areas as perception of errors in cognitive tasks. It is also unclear whether brain activity level is influenced by the magnitude of error. For this purpose, we conducted a study in which subjects were confronted with motor and non-motor errors, and had them perform a sensorimotor transformation task in which they were likely to commit motor errors of different magnitudes (internal errors). In addition to the internally committed motor errors, non-motor errors (external errors) were added to the feedback in some trials. We found that activity in the anterior insula, inferior frontal gyrus (IFG), cerebellum, precuneus, and posterior medial frontal cortex (pMFC) correlated positively with the magnitude of external errors. The middle frontal gyrus (MFG) and the pMFC cortex correlated positively with the magnitude of the total error fed back to subjects (internal plus external). No significant positive correlation between internal error and brain activity could be detected. These results indicate that motor errors have a differential effect on brain activity compared with non-motor errors.

  16. Motor activity of pregnant tethered sows.

    PubMed

    Cariolet, R; Dantzer, R

    1984-01-01

    Continuous recording of body postures (standing or lying) using photocells connected to an event recorder was carried out on 125 pregnant sows tethered either by a thoracic girth or by a neck harness in six different farms, at different times of the year. Standing activity occupied an average of 250 min per day. This position occurred mainly during daytime, with amount of standing during the night (10 p.m. to 6 p.m.) averaging less than 2% of the total time. This mean value was found in 4 farms out of 6. However, on one farm, standing postures lasted 390 min and this hyperactivity was associated with stereotypes. In another farm, time spent standing did not exceed 180 min. In all cases, multiparous sows spent about 60% more time standing than first or second litter sows. Time spent standing was dependent on other animal characteristics such as physical condition and foot condition, and also on environmental factors. Activity rhythms were synchronized by food distribution. These results are discussed together with the potential of using motor activity to characterize adaptability of sows to tethering.

  17. Physical activity and motor decline in older persons.

    PubMed

    Buchman, A S; Boyle, P A; Wilson, R S; Bienias, Julia L; Bennett, D A

    2007-03-01

    We tested the hypothesis that physical activity modifies the course of age-related motor decline. More than 850 older participants of the Rush Memory and Aging Project underwent baseline assessment of physical activity and annual motor testing for up to 8 years. Nine strength measures and nine motor performance measures were summarized into composite measures of motor function. In generalized estimating equation models, global motor function declined during follow-up (estimate, -0.072; SE, 0.008; P < 0.001). Each additional hour of physical activity at baseline was associated with about a 5% decrease in the rate of global motor function decline (estimate, 0.004; SE, 0.001; P = 0.007). Secondary analyses suggested that the association of physical activity with motor decline was mostly due to the effect of physical activity on the rate of motor performance decline. Thus, higher levels of physical activity are associated with a slower rate of motor decline in older persons.

  18. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    PubMed

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  19. Altered cortico-basal ganglia motor pathways reflect reduced volitional motor activity in schizophrenia.

    PubMed

    Bracht, Tobias; Schnell, Susanne; Federspiel, Andrea; Razavi, Nadja; Horn, Helge; Strik, Werner; Wiest, Roland; Dierks, Thomas; Müller, Thomas J; Walther, Sebastian

    2013-02-01

    Little is known about the neurobiology of hypokinesia in schizophrenia. Therefore, the aim of this study was to investigate alterations of white matter motor pathways in schizophrenia and to relate our findings to objectively measured motor activity. We examined 21 schizophrenia patients and 21 healthy controls using diffusion tensor imaging and actigraphy. We applied a probabilistic fibre tracking approach to investigate pathways connecting the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the supplementary motor area proper (SMA-proper), the primary motor cortex (M1), the caudate nucleus, the striatum, the pallidum and the thalamus. Schizophrenia patients had lower activity levels than controls. In schizophrenia we found higher probability indices forming part of a bundle of interest (PIBI) in pathways connecting rACC, pre-SMA and SMA-proper as well as in pathways connecting M1 and pre-SMA with caudate nucleus, putamen, pallidum and thalamus and a reduced spatial extension of motor pathways in schizophrenia. There was a positive correlation between PIBI and activity level in the right pre-SMA-pallidum and the left M1-thalamus connection in healthy controls, and in the left pre-SMA-SMA-proper pathway in schizophrenia. Our results point to reduced volitional motor activity and altered motor pathway organisation in schizophrenia. The identified associations between the amount of movement and structural connectivity of motor pathways suggest dysfunction of cortico-basal ganglia pathways in the pathophysiology of hypokinesia in schizophrenia. Schizophrenia patients may use cortical pathways involving the supplementary motor area to compensate for basal ganglia dysfunction.

  20. Reduced motor cortex activity during movement preparation following a period of motor skill practice.

    PubMed

    Wright, David J; Holmes, Paul; Di Russo, Francesco; Loporto, Michela; Smith, Dave

    2012-01-01

    Experts in a skill produce movement-related cortical potentials (MRCPs) of smaller amplitude and later onset than novices. This may indicate that, following long-term training, experts require less effort to plan motor skill performance. However, no longitudinal evidence exists to support this claim. To address this, EEG was used to study the effect of motor skill training on cortical activity related to motor planning. Ten non-musicians took part in a 5-week training study learning to play guitar. At week 1, the MRCP was recorded from motor areas whilst participants played the G Major scale. Following a period of practice of the scale, the MRCP was recorded again at week 5. Results showed that the amplitude of the later pre-movement components were smaller at week 5 compared to week 1. This may indicate that, following training, less activity at motor cortex sites is involved in motor skill preparation. This supports claims for a more efficient motor preparation following motor skill training. PMID:23251647

  1. Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas.

    PubMed

    Pilgramm, Sebastian; de Haas, Benjamin; Helm, Fabian; Zentgraf, Karen; Stark, Rudolf; Munzert, Jörn; Krüger, Britta

    2016-01-01

    How motor maps are organized while imagining actions is an intensely debated issue. It is particularly unclear whether motor imagery relies on action-specific representations in premotor and posterior parietal cortices. This study tackled this issue by attempting to decode the content of motor imagery from spatial patterns of Blood Oxygen Level Dependent (BOLD) signals recorded in the frontoparietal motor imagery network. During fMRI-scanning, 20 right-handed volunteers worked on three experimental conditions and one baseline condition. In the experimental conditions, they had to imagine three different types of right-hand actions: an aiming movement, an extension-flexion movement, and a squeezing movement. The identity of imagined actions was decoded from the spatial patterns of BOLD signals they evoked in premotor and posterior parietal cortices using multivoxel pattern analysis. Results showed that the content of motor imagery (i.e., the action type) could be decoded significantly above chance level from the spatial patterns of BOLD signals in both frontal (PMC, M1) and parietal areas (SPL, IPL, IPS). An exploratory searchlight analysis revealed significant clusters motor- and motor-associated cortices, as well as in visual cortices. Hence, the data provide evidence that patterns of activity within premotor and posterior parietal cortex vary systematically with the specific type of hand action being imagined. PMID:26452176

  2. Motor and non-motor circuitry activation induced by subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson’s disease patients: Intraoperative fMRI for DBS

    PubMed Central

    Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.

    2015-01-01

    Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412

  3. A structural pathway for activation of the kinesin motor ATPase

    PubMed Central

    Yun, Mikyung; Zhang, Xiaohua; Park, Cheon-Gil; Park, Hee-Won; Endow, Sharyn A.

    2001-01-01

    Molecular motors move along actin or microtubules by rapidly hydrolyzing ATP and undergoing changes in filament-binding affinity with steps of the nucleotide hydrolysis cycle. It is generally accepted that motor binding to its filament greatly increases the rate of ATP hydrolysis, but the structural changes in the motor associated with ATPase activation are not known. To identify the conformational changes underlying motor movement on its filament, we solved the crystal structures of three kinesin mutants that decouple nucleotide and microtubule binding by the motor, and block microtubule-activated, but not basal, ATPase activity. Conformational changes in the structures include a disordered loop and helices in the switch I region and a visible switch II loop, which is disordered in wild-type structures. Switch I moved closer to the bound nucleotide in two mutant structures, perturbing water-mediated interactions with the Mg2+. This could weaken Mg2+ binding and accelerate ADP release to activate the motor ATPase. The structural changes we observe define a signaling pathway within the motor for ATPase activation that is likely to be essential for motor movement on microtubules. PMID:11387196

  4. Effects of laxative and nonlaxative hydrophilic polymers on canine small intestinal motor activity.

    PubMed

    Russell, J; Bass, P

    1986-03-01

    Bulk-forming laxatives increase fecal volume and elicit aborally directed colonic motility patterns. Recently, it was demonstrated that test meals of the bulk-laxative fibers (cellulose and bran) elicited organized jejunal motor activity while nonlaxative fiber meals (guar) elicited unorganized jejunal motor activity. However, whether bulk-forming laxatives, as a class of compounds, differentially affect small intestinal motility has not been studied. Therefore, a study was made of the effects of the bulk laxatives psyllium and polycarbophil and the nonlaxative pectin on canine jejunal motor activity. Psyllium and pectin are examples of dietary fiber, while polycarbophil is a synthetic polymer. Pectin and psyllium test meals presented as viscous gels. In contrast, polycarbophil meals presented as a combination of discrete particles plus meal water. After each meal, measurements were made of the jejunal motility index, the time of reappearance of interdigestive burst activity, and overall motility patterns. Pectin and psyllium meals increased in viscosity as meal fiber content increased. As meal content and hence viscosity increased, both the laxative (psyllium) and nonlaxative (pectin) fiber meals elicited increasing jejunal motor activity and delays in the reappearance of the burst interval. For both fiber types, motor activity presented as randomly appearing contractions. In contrast, meals of the laxative polycarbophil elicited no more motor activity than the saline control meal. However, this control-level amount of activity presented as propagated clusters of contractions, ie, the "laxative-induced pattern." Polycarbophil did not delay the reappearance of burst activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Phrenic long-term facilitation requires PKCθ activity within phrenic motor neurons.

    PubMed

    Devinney, Michael J; Fields, Daryl P; Huxtable, Adrianne G; Peterson, Timothy J; Dale, Erica A; Mitchell, Gordon S

    2015-05-27

    Acute intermittent hypoxia (AIH) induces a form of spinal motor plasticity known as phrenic long-term facilitation (pLTF); pLTF is a prolonged increase in phrenic motor output after AIH has ended. In anesthetized rats, we demonstrate that pLTF requires activity of the novel PKC isoform, PKCθ, and that the relevant PKCθ is within phrenic motor neurons. Whereas spinal PKCθ inhibitors block pLTF, inhibitors targeting other PKC isoforms do not. PKCθ is highly expressed in phrenic motor neurons, and PKCθ knockdown with intrapleural siRNAs abolishes pLTF. Intrapleural siRNAs targeting PKCζ, an atypical PKC isoform expressed in phrenic motor neurons that underlies a distinct form of phrenic motor plasticity, does not affect pLTF. Thus, PKCθ plays a critical role in spinal AIH-induced respiratory motor plasticity, and the relevant PKCθ is localized within phrenic motor neurons. Intrapleural siRNA delivery has considerable potential as a therapeutic tool to selectively manipulate plasticity in vital respiratory motor neurons. PMID:26019328

  6. Phrenic Long-Term Facilitation Requires PKCθ Activity within Phrenic Motor Neurons

    PubMed Central

    Devinney, Michael J.; Fields, Daryl P.; Huxtable, Adrianne G.; Peterson, Timothy J.; Dale, Erica A.

    2015-01-01

    Acute intermittent hypoxia (AIH) induces a form of spinal motor plasticity known as phrenic long-term facilitation (pLTF); pLTF is a prolonged increase in phrenic motor output after AIH has ended. In anesthetized rats, we demonstrate that pLTF requires activity of the novel PKC isoform, PKCθ, and that the relevant PKCθ is within phrenic motor neurons. Whereas spinal PKCθ inhibitors block pLTF, inhibitors targeting other PKC isoforms do not. PKCθ is highly expressed in phrenic motor neurons, and PKCθ knockdown with intrapleural siRNAs abolishes pLTF. Intrapleural siRNAs targeting PKCζ, an atypical PKC isoform expressed in phrenic motor neurons that underlies a distinct form of phrenic motor plasticity, does not affect pLTF. Thus, PKCθ plays a critical role in spinal AIH-induced respiratory motor plasticity, and the relevant PKCθ is localized within phrenic motor neurons. Intrapleural siRNA delivery has considerable potential as a therapeutic tool to selectively manipulate plasticity in vital respiratory motor neurons. PMID:26019328

  7. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules.

    PubMed

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y; Rymer, William Z

    2016-03-21

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy.

  8. Focus of Attention Affects Performance of Motor Skills in Music

    ERIC Educational Resources Information Center

    Duke, Robert A.; Cash, Carla Davis; Allen, Sarah E.

    2011-01-01

    To test the extent to which learners performing a simple keyboard passage would be affected by directing their focus of attention to different aspects of their movements, 16 music majors performed a brief keyboard passage under each of four focus conditions arranged in a counterbalanced design--a total of 64 experimental sessions. As they…

  9. Motor Cortex Activity Organizes the Developing Rubrospinal System.

    PubMed

    Williams, Preston T J A; Martin, John H

    2015-09-30

    The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. Significance statement: Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to

  10. Motor Cortex Activity Organizes the Developing Rubrospinal System

    PubMed Central

    Williams, Preston T.J.A.

    2015-01-01

    The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. SIGNIFICANCE STATEMENT Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to

  11. Motor Cortex Activity Organizes the Developing Rubrospinal System.

    PubMed

    Williams, Preston T J A; Martin, John H

    2015-09-30

    The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. Significance statement: Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to

  12. Does the addition of a nerve wrap to a motor nerve repair affect motor outcomes?

    PubMed

    Lee, Joo-Yup; Parisi, Thomas J; Friedrich, Patricia F; Bishop, Allen T; Shin, Alexander Y

    2014-10-01

    The purpose of this study was to evaluate the effect of wrapping bioabsorbable nerve conduit around primary suture repair on motor nerve regeneration in a rat model. Forty rats were randomly divided into two experimental groups according to the type of repair of the rat sciatic nerve: group I had primary suture repair; group II had primary suture repair and bioabsorbable collagen nerve conduit (NeuraGen® 1.5 mm, Integra LifeSciences Corp., Plainsboro, NJ) wrapped around the repair. At 12 weeks, no significant differences in the percentage of recovery between the two groups were observed with respect to compound muscle action potentials, isometric muscle force, and muscle weight (P = 0.816, P = 0.698, P = 0.861, respectively). Histomorphometric analysis as compared to the non-operative sites was also not significantly different between the two groups in terms of number of myelinated axons, myelinated fiber area, and nerve fiber density (P = 0.368, P = 0.968, P = 0.071, respectively). Perineural scar tissue formation was greater in primary suture repair group (0.36 ± 0.15) than in primary repair plus conduit wrapping group (0.17 ± 0.08). This difference was statistically significant (P < 0.001). Wrapping bioabsorbable nerve conduit around primary nerve repair can decrease perineural scar tissue formation. Although the scar-decreasing effect of bioabsorbable nerve wrap does not translate into better motor nerve recovery in this study, it might have an effect on the functional outcome in humans where scar formation is much more evident than in rats.

  13. Learning to associate novel words with motor actions: language-induced motor activity following short training.

    PubMed

    Fargier, Raphaël; Paulignan, Yves; Boulenger, Véronique; Monaghan, Padraic; Reboul, Anne; Nazir, Tatjana A

    2012-07-01

    Action words referring to face, arm or leg actions activate areas along the motor strip that also control the planning and execution of the actions specified by the words. This electroencephalogram (EEG) study aimed to test the learning profile of this language-induced motor activity. Participants were trained to associate novel verbal stimuli to videos of object-oriented hand and arm movements or animated visual images on two consecutive days. Each training session was preceded and followed by a test-session with isolated videos and verbal stimuli. We measured motor-related brain activity (reflected by a desynchronization in the μ frequency bands; 8-12 Hz range) localized at centro-parietal and fronto-central electrodes. We compared activity from viewing the videos to activity resulting from processing the language stimuli only. At centro-parietal electrodes, stable action-related μ suppression was observed during viewing of videos in each test-session of the two days. For processing of verbal stimuli associated with motor actions, a similar pattern of activity was evident only in the second test-session of Day 1. Over the fronto-central regions, μ suppression was observed in the second test-session of Day 2 for the videos and in the second test-session of Day 1 for the verbal stimuli. Whereas the centro-parietal μ suppression can be attributed to motor events actually experienced during training, the fronto-central μ suppression seems to serve as a convergence zone that mediates underspecified motor information. Consequently, sensory-motor reactivations through which concepts are comprehended seem to differ in neural dynamics from those implicated in their acquisition.

  14. Individual variation in sleep and motor activity in rats.

    PubMed

    Tang, Xiangdong; Yang, Linghui; Sanford, Larry D

    2007-06-01

    We examined individual differences in sleep and motor activity across 2 consecutive days in rats. EEG and motor activity were recorded via telemetry in Wistar rats (n=29) for 48h under well-habituated conditions. Rats were grouped based on sleep amounts and stability across days (short [SS, n=7], intermediate [IS, n=15] and long [LS, n=7] sleep) and comparisons were conducted to determine group differences for measures of sleep and motor activity. We found that correlations across recording days were significant for all selected sleep measures and motor activity counts. Rankings for 24h total sleep time and non-rapid eye movement sleep (NREM) were SSmotor activity counts (per waking min) were greater (32-38%) in SS compared to LS rats on both recording days. The results indicate that individual differences in sleep and motor activity in Wistar rats are stable across days. Differences between SS and LS rats have parallels to those reported for short and long sleep humans.

  15. Motor cortex activity predicts response alternation during sensorimotor decisions

    PubMed Central

    Pape, Anna-Antonia; Siegel, Markus

    2016-01-01

    Our actions are constantly guided by decisions based on sensory information. The motor cortex is traditionally viewed as the final output stage in this process, merely executing motor responses based on these decisions. However, it is not clear if, beyond this role, the motor cortex itself impacts response selection. Here, we report activity fluctuations over motor cortex measured using MEG, which are unrelated to choice content and predict responses to a visuomotor task seconds before decisions are made. These fluctuations are strongly influenced by the previous trial's response and predict a tendency to switch between response alternatives for consecutive decisions. This alternation behaviour depends on the size of neural signals still present from the previous response. Our results uncover a response-alternation bias in sensorimotor decision making. Furthermore, they suggest that motor cortex is more than an output stage and instead shapes response selection during sensorimotor decision making. PMID:27713396

  16. Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas

    PubMed Central

    Pilgramm, Sebastian; de Haas, Benjamin; Helm, Fabian; Zentgraf, Karen; Stark, Rudolf; Munzert, Jörn

    2015-01-01

    Abstract How motor maps are organized while imagining actions is an intensely debated issue. It is particularly unclear whether motor imagery relies on action‐specific representations in premotor and posterior parietal cortices. This study tackled this issue by attempting to decode the content of motor imagery from spatial patterns of Blood Oxygen Level Dependent (BOLD) signals recorded in the frontoparietal motor imagery network. During fMRI‐scanning, 20 right‐handed volunteers worked on three experimental conditions and one baseline condition. In the experimental conditions, they had to imagine three different types of right‐hand actions: an aiming movement, an extension–flexion movement, and a squeezing movement. The identity of imagined actions was decoded from the spatial patterns of BOLD signals they evoked in premotor and posterior parietal cortices using multivoxel pattern analysis. Results showed that the content of motor imagery (i.e., the action type) could be decoded significantly above chance level from the spatial patterns of BOLD signals in both frontal (PMC, M1) and parietal areas (SPL, IPL, IPS). An exploratory searchlight analysis revealed significant clusters motor‐ and motor‐associated cortices, as well as in visual cortices. Hence, the data provide evidence that patterns of activity within premotor and posterior parietal cortex vary systematically with the specific type of hand action being imagined. Hum Brain Mapp 37:81–93, 2016. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26452176

  17. White matter integrity associated with volitional motor activity.

    PubMed

    Walther, Sebastian; Federspiel, Andrea; Horn, Helge; Wiest, Roland; Dierks, Thomas; Strik, Werner; Müller, Thomas J

    2010-03-31

    Variations of white matter integrity have been associated with interindividual differences in brain function. Still, little is known about the impact of white matter integrity on quantitative motor behaviour. Diffusion tensor imaging and continuous wrist actigraphy were measured on the same day in 12 individuals. Fractional anisotropy as measure of white matter integrity was correlated with the motor activity level. Positive correlations of fractional anisotropy and activity level were detected in the cingulum and the right superior longitudinal fasciculus underneath the precentral gyrus. Negative correlations were found in the left corticobulbar tract, in the right posterior corpus callosum and in the left superior longitudinal fasciculus. Volitional motor activity was associated with white matter integrity in motor relevant fiber tracts.

  18. Adaptations of motor neural structures' activity to lapses in attention.

    PubMed

    Derosière, Gérard; Billot, Maxime; Ward, E Tomas; Perrey, Stéphane

    2015-01-01

    Sustained attention is fundamental for cognition and when impaired, impacts negatively on important contemporary living skills. Degradation in sustained attention is characterized by the time-on-task (TOT) effect, which manifests as a gradual increase in reaction time (RT). The TOT effect is accompanied by changes in relative brain activity patterns in attention-related areas, most noticeably in the prefrontal cortex (PFC) and the right parietal areas. However, activity changes in task-relevant motor structures have not been confirmed to date. This article describes an investigation of such motor-related activity changes as measured with 1) the time course of corticospinal excitability (CSE) through single-pulse transcranial magnetic stimulation; and 2) the changes in activity of premotor (PMC), primary motor (M1), PFC, and right parietal areas by means of near-infrared spectroscopy, during a sustained attention RT task exhibiting the TOT effect. Our results corroborate established findings such as a significant increase (P < 0.05) in lateral prefrontal and right parietal areas activity after the emergence of the TOT effect but also reveal adaptations in the form of motor activity changes--in particular, a significant increase in CSE (P < 0.01) and in primary motor area (M1) activity (P < 0.05).

  19. Central sensory motor pathways are less affected than peripheral in chronic renal failure.

    PubMed

    Kalita, J; Misra, U K; Rajani, M; Kumar, A

    2004-01-01

    In chronic renal failure, peripheral neuropathy although is well recognised but there are only a few studies on the evaluation of central sensory pathways and none on central motor pathways. This study is aimed at the evaluation of peripheral and central sensory motor pathways. In this prospective hospital based study, 19 patients with chronic renal failure on regular hemodialysis were included. They were subjected to detailed clinical evaluation and blood urea nitrogen, serum creatinine, serum protein, haemoglobin and vasculitic profile were carried out in all the patients. Peroneal motor conduction, sural sensory conduction, tibial somatosensory evoked potential (SEP) and motor evoked potential to tibialis anterior (CMCT-TA) were carried out in all the patients and the results correlated with clinical and biochemical parameters. The mean age of the patients was 34.6 y and 1 of them was female. The duration of renal failure ranged between 0.3 and 5 years. Nerve conduction studies were abnormal in 12 patients of whom sural nerve conduction was abnormal in 10 and peroneal in 8 patients. Central conduction, motor or sensory or both were abnormal in 5 patients. Central motor conduction time to tibialis anterior was marginally prolonged in 3 patients and tibial SEPs were recordable in 2 and prolonged in 1 patient. The central and peripheral conduction did not correlate with duration of illness, serum creatinine and hemoglobin levels. It is concluded that central pathways are less frequently and less severely affected than the peripheral in chronic renal failure. PMID:15008018

  20. Telemetric motor activity in children. A preliminary study.

    PubMed

    Foster, F G; McPartland, R J; Kupfer, D J

    1977-01-01

    A lightweight telemetric mobility sensing system was used to study the relationship between high levels of motor activity during free-play and school performance. Among the 21 normal children, there was a significant correlation between high ankle motor activity during free-play, poor school achievement, the presence of neurological soft signs, and a poor self-image. Those normals whose free-play ankle activity was above the mean, also had significantly more errors and performed at a significantly lower level on the Bender Visual Motor Gestalt Test than children whose activity was below the mean. This preliminary study suggests that the telemetric mobility sensing system can be easily applied to children to assess clinically relevant components of psychomotor activity.

  1. Chronic hyperammonemia alters the circadian rhythms of corticosteroid hormone levels and of motor activity in rats.

    PubMed

    Ahabrach, Hanan; Piedrafita, Blanca; Ayad, Abdelmalik; El Mlili, Nisrin; Errami, Mohammed; Felipo, Vicente; Llansola, Marta

    2010-05-15

    Patients with liver cirrhosis may present hepatic encephalopathy with a wide range of neurological disturbances and alterations in sleep quality and in the sleep-wake circadian rhythm. Hyperammonemia is a main contributor to the neurological alterations in hepatic encephalopathy. We have assessed, in an animal model of chronic hyperammonemia without liver failure, the effects of hyperammonemia per se on the circadian rhythms of motor activity, temperature, and plasma levels of adrenal corticosteroid hormones. Chronic hyperammonemia alters the circadian rhythms of locomotor activity and of cortisol and corticosterone levels in blood. Different types of motor activity are affected differentially. Hyperammonemia significantly alters the rhythm of spontaneous ambulatory activity, reducing strongly ambulatory counts and slightly average velocity during the night (the active phase) but not during the day, resulting in altered circadian rhythms. In contrast, hyperammonemia did not affect wheel running at all, indicating that it affects spontaneous but not voluntary activity. Vertical activity was affected only very slightly, indicating that hyperammonemia does not induce anxiety. Hyperammonemia abolished completely the circadian rhythm of corticosteroid hormones in plasma, completely eliminating the peaks of cortisol and corticosterone present in control rats at the start of the dark period. The data reported show that chronic hyperammonemia, similar to that present in patients with liver cirrhosis, alters the circadian rhythms of corticosteroid hormones and of motor activity. This suggests that hyperammonemia would be a relevant contributor to the alterations in corticosteroid hormones and in circadian rhythms in patients with liver cirrhosis.

  2. Developmental changes in motor cortex activity as infants develop functional motor skills.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Meehan, Sean K; Ulrich, Beverly D

    2016-09-01

    Despite extensive research examining overt behavioral changes of motor skills in infants, the neural basis underlying the emergence of functional motor control has yet to be determined. We used functional near-infrared spectroscopy (fNIRS) to record hemodynamic activity of the primary motor cortex (M1) from 22 infants (11 six month-olds, 11 twelve month-olds) as they reached for an object, and stepped while supported over a treadmill. Based on the developmental systems framework, we hypothesized that as infants increased goal-directed experience, neural activity shifts from a diffused to focal pattern. Results showed that for reaching, younger infants showed diffuse areas of M1 activity that became focused by 12 months. For elicited stepping, younger infants produced much less M1 activity which shifted to diffuse activity by 12 months. Thus, the data suggest that as infants gain goal-directed experience, M1 activity emerges, initially showing a diffuse area of activity, becoming refined as the behavior stabilizes. Our data begin to document the cortical activity underlying early functional skill acquisition.

  3. A Methanol Extract of Brugmansia arborea Affects the Reinforcing and Motor Effects of Morphine and Cocaine in Mice

    PubMed Central

    Bracci, Antonio; Daza-Losada, Manuel; Aguilar, Maria; Miñarro, José; Rodríguez-Arias, Marta

    2013-01-01

    Previous reports have shown that several of the effects of morphine, including the development of tolerance and physical withdrawal symptoms, are reduced by extracts of Brugmansia arborea (L.) Lagerheim (Solanaceae) (B. arborea). In the present study we evaluate the action of the methanol extract of B. arborea (7.5–60 mg/kg) on the motor and reinforcing effects of morphine (20 and 40 mg/kg) and cocaine (25 mg/kg) using the conditioned place preference (CPP) procedure. At the doses employed, B. arborea did not affect motor activity or induce any effect on CPP. The extract partially counteracted morphine-induced motor activity and completely blocked the CPP induced by 20 mg/kg morphine. On the other hand, B. arborea blocked cocaine-induced hyperactivity but did not block cocaine-induced CPP. Reinstatement of extinguished preference with a priming dose of morphine or cocaine was also inhibited by B. arborea. The complex mechanism of action of B. arborea, which affects the dopaminergic and the cholinergic systems, seems to provide a neurobiological substrate for the effects observed. Considered as a whole, these results point to B. arborea as a useful tool for the treatment of morphine or cocaine abuse. PMID:23533488

  4. Dissociating motivational direction and affective valence: specific emotions alter central motor processes.

    PubMed

    Coombes, Stephen A; Cauraugh, James H; Janelle, Christopher M

    2007-11-01

    We aimed to clarify the relation between affective valence and motivational direction by specifying how central and peripheral components of extension movements are altered according to specific unpleasant affective states. As predicted, premotor reaction time was quicker for extension movements initiated during exposure to attack than for extension movements initiated during exposure to all other valence categories (mutilation, erotic couples, opposite-sex nudes, neutral humans, household objects, blank). Exposure to erotic couples and mutilations yielded greater peak force than exposure to images of attack, neutral humans, and household objects. Finally, motor reaction time and peak electromyographic amplitude were not altered by valence. These findings indicate that unpleasant states do not unilaterally prime withdrawal movements, and that the quick execution of extension movements during exposure to threatening images is due to rapid premotor, rather than motor, reaction time. Collectively, our findings support the call for dissociating motivational direction and affective valence. PMID:17958705

  5. The Dynamic Association between Motor Skill Development and Physical Activity

    ERIC Educational Resources Information Center

    Stodden, David F.; Goodway, Jacqueline D.

    2007-01-01

    Although significant attention has been given to promoting physical activity among children, little attention has been given to the developmental process of how children learn to move or to the changing role that motor skill development plays in children's physical activity levels as they grow. In order to successfully address the obesity…

  6. Probing the Mechanism of Oscillations in Newborn Motor Activity.

    ERIC Educational Resources Information Center

    Robertson, Steven S.

    1993-01-01

    Cyclical fluctuation in spontaneous motor activity (CM) emerges in fetus and persists in newborn. This "resetting" experiment perturbed CM by noise stimulus during infants' active sleep. Pre- and postperturbation CM were measured and compared. Subjects were 33 infants between 1 and 3 days of age. The stimulus induced a relative slowing of CM…

  7. Cortical entrainment of human hypoglossal motor unit activities

    PubMed Central

    Laine, Christopher M.; Nickerson, Laura A.

    2012-01-01

    Output from the primary motor cortex contains oscillations that can have frequency-specific effects on the firing of motoneurons (MNs). Whereas much is known about the effects of oscillatory cortical drive on the output of spinal MN pools, considerably less is known about the effects on cranial motor nuclei, which govern speech/oromotor control. Here, we investigated cortical input to one such motor pool, the hypoglossal motor nucleus (HMN), which controls muscles of the tongue. We recorded intramuscular genioglossus electromyogram (EMG) and scalp EEG from healthy adult subjects performing a tongue protrusion task. Cortical entrainment of HMN population activity was assessed by measuring coherence between EEG and multiunit EMG activity. In addition, cortical entrainment of individual MN firing activity was assessed by measuring phase locking between single motor unit (SMU) action potentials and EEG oscillations. We found that cortical entrainment of multiunit activity was detectable within the 15- to 40-Hz frequency range but was inconsistent across recordings. By comparison, cortical entrainment of SMU spike timing was reliable within the same frequency range. Furthermore, this effect was found to be intermittent over time. Our study represents an important step in understanding corticomuscular synchronization in the context of human oromotor control and is the first study to document SMU entrainment by cortical oscillations in vivo. PMID:22049332

  8. Level of independence of motor unit properties from neuromuscular activity.

    PubMed

    Pierotti, D J; Roy, R R; Hodgson, J A; Edgerton, V R

    1994-11-01

    Neuromuscular activity was eliminated in the tibialis anterior muscle of adult cats for 6 months by spinal isolation (SI), i.e., complete spinal cord transections at T-12-13 and at L-7-S-1, plus bilateral dorsal rhizotomy between the two transection sites. One motor unit from each muscle was isolated using ventral root teasing procedures and physiologically tested. The fibers belonging to each motor unit were visualized in PAS-stained sections by the loss of glycogen following prolonged repetitive stimulation. Qualitatively, the normal enzymatic interrelationships among fibers identified by myosin heavy chain composition were unchanged by SI. Generally, each motor unit from SI cats were of a single myosin immunohistochemical type. The same physiological motor unit types that typify control muscles were found in SI cats. In SI compared to control cats, there was approximately a 10% increase in the number of muscle fibers expressing fast myosin. Mean fiber activity levels of ATPase and SDH for a given fiber type (based on MHC antibody reactions) decreased by approximately 10% and 25%, whereas GPD activity increased approximately 35%. It is concluded that differential levels or patterns of activity are not essential to maintain the range of histochemical and physiological motor unit types found in the tibialis anterior of normal adult cats.

  9. An investigation of the factors affecting flatfoot in children with delayed motor development.

    PubMed

    Chen, Kun-Chung; Tung, Li-Chen; Tung, Chien-Hung; Yeh, Chih-Jung; Yang, Jeng-Feng; Wang, Chun-Hou

    2014-03-01

    This study investigated the prevalence of flatfoot in children with delayed motor development and the relevant factors affecting it. In total, 121 preschool-aged children aged 3-6 with delayed motor development (male: 81; female: 40) were enrolled in the motor-developmentally delayed children group, and 4 times that number, a total of 484 children (male: 324; female: 160), of gender- and age-matched normal developmental children were used as a control group for further analyses. The age was from 3.0 to 6.9 years old for the participants. The judgment criterion of flatfoot was the Chippaux-Smirak index >62.70%, in footprint measurement. The results showed that the prevalence of flatfoot in children with motor developmental delay was higher than that in normal developmental children, approximately 58.7%, and that it decreased with age from 62.8% of 3-year-olds to 50.0% of 6-year-olds. The results also showed that motor-developmentally delayed children with flatfoot are at about 1.5 times the risk of normal developmental children (odds ratio=1.511, p=0.005). In addition, the prevalence of flatfoot is relatively higher in overweight children with delayed motor development, and that in obese children is even as high as 95.8% (23/24). Children with both excessive joint laxity and delayed development are more likely to suffer from flatfoot. The findings of this study can serve as a reference for clinical workers to deal with foot issues in children with delayed motor development.

  10. Mushroom bodies enhance initial motor activity in Drosophila.

    PubMed

    Serway, Christine N; Kaufman, Rebecca R; Strauss, Roland; de Belle, J Steven

    2009-01-01

    The central body (or central complex, CCX) and the mushroom bodies (MBs) are brain structures in most insect phyla that have been shown to influence aspects of locomotion. The CCX regulates motor coordination and enhances activity while MBs have, thus far, been shown to suppress motor activity levels measured over time intervals ranging from hours to weeks. In this report, we investigate MB involvement in motor behavior during the initial stages (15 minutes) of walking in Buridan's paradigm. We measured aspects of walking in flies that had MB lesions induced by mutations in six different genes and by chemical ablation. All tested flies were later examined histologically to assess MB neuroanatomy. Mutant strains with MB structural defects were generally less active in walking than wild-type flies. Most mutants in which MBs were also ablated with hydroxyurea (HU) showed additional activity decrements. Variation in measures of velocity and orientation to landmarks among wild-type and mutant flies was attributed to pleiotropy, rather than to MB lesions. We conclude that MBs upregulate activity during the initial stages of walking, but suppress activity thereafter. An MB influence on decision making has been shown in a wide range of complex behaviors. We suggest that MBs provide appropriate contextual information to motor output systems in the brain, indirectly fine tuning walking by modifying the quantity (i.e., activity) of behavior.

  11. Unraveling the Relationship between Motor Symptoms, Affective States and Contextual Factors in Parkinson’s Disease: A Feasibility Study of the Experience Sampling Method

    PubMed Central

    Kuijf, Mark L.; Van Oostenbrugge, Robert J.; van Os, Jim; Leentjens, Albert F. G.

    2016-01-01

    Background In Parkinson's disease (PD), the complex relationship between motor symptoms, affective states, and contextual factors remains to be elucidated. The Experience Sampling Method provides (ESM) a novel approach to this issue. Using a mobile device with a special purpose application (app), motor symptoms, affective states and contextual factors are assessed repeatedly at random moments in the flow of daily life, yielding an intensive time series of symptoms and experience. The aim of this study was to study the feasibility of this method. Method We studied the feasibility of a five-day period of ESM in PD and its ability to objectify diurnal fluctuations in motor symptom severity and their relation with affect and contextual factors in five PD patients with motor fluctuations. Results Participants achieved a high compliance, with 84% of assessment moments completed without disturbance of daily activities. The utility of the device was rated 8 on a 10-point scale. We were able to capture extensive diurnal fluctuations that were not revealed by routine clinical assessment. In addition, we were able to detect clinically relevant associations between motor symptoms, emotional fluctuations and contextual factors at an intra-individual level. Conclusions ESM represents a viable and novel approach to elucidate relationships between motor symptoms, affective states and contextual factors at the level of individual subjects. ESM holds promise for clinical practice and scientific research. PMID:26962853

  12. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla

    PubMed Central

    Dum, Richard P.; Levinthal, David J.; Strick, Peter L.

    2016-01-01

    Modern medicine has generally viewed the concept of “psychosomatic” disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  13. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla.

    PubMed

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2016-08-30

    Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  14. Differences in hemodynamic activations between motor imagery and upper limb FES with NIRS.

    PubMed

    Schürholz, Markus; Rana, Mohit; Robinson, Neethu; Ramos-Murguialday, Ander; Cho, Woosang; Rohm, Martin; Rupp, Rudiger; Birbaumer, Niels; Sitaram, Ranganatha

    2012-01-01

    A brain-computer interface (BCI) based on near-infrared spectroscopy (NIRS) could act as a tool for rehabilitation of stroke patients due to the neural activity induced by motor imagery aided by real-time feedback of hemodynamic activation. When combined with functional electrical stimulation (FES) of the affected limb, BCI is expected to have an even greater benefit due to the contingency established between motor imagery and afferent, haptic feedback from stimulation. Yet, few studies have explored such an approach, presumably due to the difficulty in dissociating and thus decoding the hemodynamic response (HDR) between motor imagery and peripheral stimulation. Here, for the first time, we demonstrate that NIRS signals elicited by motor imagery can be reliably discriminated from those due to FES, by first performing a univariate analysis of the NIRS signals, and subsequently by multivariate pattern classification. Our results showing that robust classification of motor imagery from the rest condition is possible support previous findings that imagery could be used to drive a BCI based on NIRS. More importantly, we demonstrate for the first time the successful classification of motor imagery and FES, indicating that it is technically feasible to implement a contingent NIRS-BCI with FES. PMID:23366984

  15. A circuit for motor cortical modulation of auditory cortical activity.

    PubMed

    Nelson, Anders; Schneider, David M; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan; Mooney, Richard

    2013-09-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  16. The origin of segmentation motor activity in the intestine.

    PubMed

    Huizinga, Jan D; Chen, Ji-Hong; Zhu, Yong Fang; Pawelka, Andrew; McGinn, Ryan J; Bardakjian, Berj L; Parsons, Sean P; Kunze, Wolfgang A; Wu, Richard You; Bercik, Premysl; Khoshdel, Amir; Chen, Sifeng; Yin, Sheng; Zhang, Qian; Yu, Yuanjie; Gao, Qingmin; Li, Kongling; Hu, Xinghai; Zarate, Natalia; Collins, Phillip; Pistilli, Marc; Ma, Junling; Zhang, Ruixue; Chen, David

    2014-01-01

    The segmentation motor activity of the gut that facilitates absorption of nutrients was first described in the late 19th century, but the fundamental mechanisms underlying it remain poorly understood. The dominant theory suggests alternate excitation and inhibition from the enteric nervous system. Here we demonstrate that typical segmentation can occur after total nerve blockade. The segmentation motor pattern emerges when the amplitude of the dominant pacemaker, the slow wave generated by interstitial cells of Cajal associated with the myenteric plexus (ICC-MP), is modulated by the phase of induced lower frequency rhythmic transient depolarizations, generated by ICC associated with the deep muscular plexus (ICC-DMP), resulting in a waxing and waning of the amplitude of the slow wave and a rhythmic checkered pattern of segmentation motor activity. Phase-amplitude modulation of the slow waves points to an underlying system of coupled nonlinear oscillators originating in the networks of ICC.

  17. Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory

    PubMed Central

    Moseley, Rachel L.; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V.; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view ‘emotion actions’ as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed. PMID:25278250

  18. Lost for emotion words: what motor and limbic brain activity reveals about autism and semantic theory.

    PubMed

    Moseley, Rachel L; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view 'emotion actions' as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed.

  19. Brains and Brawn: Complex Motor Activities to Maximize Cognitive Enhancement

    ERIC Educational Resources Information Center

    Moreau, David

    2015-01-01

    The target articles in this special issue address the timely question of embodied cognition in the classroom, and in particular the potential of this approach to facilitate learning in children. The interest for motor activities within settings that typically give little space to nontraditional content is proof of a shift from a Cartesian…

  20. Face Preference in Infancy and Its Relation to Motor Activity

    ERIC Educational Resources Information Center

    Libertus, Klaus; Needham, Amy

    2014-01-01

    Infants' preference for faces was investigated in a cross-sectional sample of 75 children, aged 3 to 11 months, and 23 adults. A visual preference paradigm was used where pairs of faces and toys were presented side-by-side while eye gaze was recorded. In addition, motor activity was assessed via parent report and the relation between motor…

  1. Recreational Activities and Motor Skills of Children in Kindergarten

    ERIC Educational Resources Information Center

    Temple, Viviene A.; Crane, Jeff R.; Brown, Amy; Williams, Buffy-Lynne; Bell, Rick I.

    2016-01-01

    Background: Developmental theorists suggest that physical activity during early childhood promotes fundamental motor skill (FMS) proficiency; and that differences in FMS proficiency are largely related to children's experiences. Aim: To examine associations between participation in different types of recreation/leisure and FMS proficiency of boys…

  2. Sport and Other Motor Activities of Warsaw Students

    ERIC Educational Resources Information Center

    Biernat, Elzbieta

    2011-01-01

    Study aim: To assess the engagement of students of Warsaw university schools in sports and in recreational motor activities. Material and methods: A cohort (n = 1100) of students attending B.S. or M.S. courses at 6 university schools in Warsaw were studied by applying questionnaire techniques. The questions pertained to participation in…

  3. Aberrant Neuromagnetic Activation in the Motor Cortex in Children with Acute Migraine: A Magnetoencephalography Study

    PubMed Central

    Guo, Xinyao; Xiang, Jing; Wang, Yingying; O’Brien, Hope; Kabbouche, Marielle; Horn, Paul; Powers, Scott W.; Hershey, Andrew D.

    2012-01-01

    Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65–150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems. PMID:23185541

  4. Aberrant neuromagnetic activation in the motor cortex in children with acute migraine: a magnetoencephalography study.

    PubMed

    Guo, Xinyao; Xiang, Jing; Wang, Yingying; O'Brien, Hope; Kabbouche, Marielle; Horn, Paul; Powers, Scott W; Hershey, Andrew D

    2012-01-01

    Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65-150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems.

  5. Perinatal thiamine restriction affects central GABA and glutamate concentrations and motor behavior of adult rat offspring.

    PubMed

    Ferreira-Vieira, Talita Hélen; de Freitas-Silva, Danielle Marra; Ribeiro, Andrea Frozino; Pereira, Sílvia Rejane Castanheira; Ribeiro, Ângela Maria

    2016-03-23

    The purposes of the present study were to investigate the effects of perinatal thiamine deficiency, from the 11th day of gestation until the 5th day of lactation, on motor behavior and neurochemical parameters in adult rat offspring, using 3-month-old, adult, male Wistar rats. All rats were submitted to motor tests, using the rotarod and paw print tasks. After behavioral tests, their thalamus, cerebellum and spinal cord were dissected for glutamate and GABA quantifications by high performance liquid chromatography. The thiamine-restricted mothers (RM) group showed a significant reduction of time spent on the rotarod at 25 rpm and an increase in hind-base width. A significant decrease of glutamate concentration in the cerebellum and an increase of GABA concentrations in the thalamus were also observed. For the offspring from control mothers (CM) group there were significant correlations between thalamic GABA concentrations and both rotarod performance and average hind-base width. In addition, for rats from the RM group a significant correlation between stride length and cerebellar GABA concentration was found. These results show that the deficiency of thiamine during an early developmental period affects certain motor behavior parameters and GABA and glutamate levels in specific brain areas. Hence, a thiamine deficiency episode during an early developmental period can induce motor impairments and excitatory and inhibitory neurotransmitter changes that are persistent and detectable in later periods of life. PMID:26836141

  6. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.

    PubMed

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.

  7. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    PubMed Central

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10–12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant’s MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642

  8. Dynamical behaviors of a plate activated by an induction motor

    NASA Astrophysics Data System (ADS)

    Tcheutchoua Fossi, D. O.; Woafo, P.

    2010-08-01

    Dynamics and chaotification of a system consisting of an induction motor activating a mobile plate (with variable contents) fixed to a spring are studied. The dynamical model of the device is presented and the electromechanical equations are formulated. The oscillations of the plate are analyzed through variations of the following reliable control parameters: phase voltage supply of the motor, frequency of the external source and mass of the plate. The dynamics of the system near the fundamental resonance region presents jump phenomenon. Mapping of the control parameters planes in terms of types of motion reveals period- n motion, quasi-periodicity and chaos. Anti-control of chaos of the induction motor is also obtained using the field-oriented control associated to the time delay feedback control.

  9. Predictive motor activation during action observation in human infants.

    PubMed

    Southgate, Victoria; Johnson, Mark H; Osborne, Tamsin; Csibra, Gergely

    2009-12-23

    Certain regions of the human brain are activated both during action execution and action observation. This so-called 'mirror neuron system' has been proposed to enable an observer to understand an action through a process of internal motor simulation. Although there has been much speculation about the existence of such a system from early in life, to date there is little direct evidence that young infants recruit brain areas involved in action production during action observation. To address this question, we identified the individual frequency range in which sensorimotor alpha-band activity was attenuated in nine-month-old infants' electroencephalographs (EEGs) during elicited reaching for objects, and measured whether activity in this frequency range was also modulated by observing others' actions. We found that observing a grasping action resulted in motor activation in the infant brain, but that this activity began prior to observation of the action, once it could be anticipated. These results demonstrate not only that infants, like adults, display overlapping neural activity during execution and observation of actions, but that this activation, rather than being directly induced by the visual input, is driven by infants' understanding of a forthcoming action. These results provide support for theories implicating the motor system in action prediction. PMID:19675001

  10. Vicarious motor activation during action perception: beyond correlational evidence

    PubMed Central

    Avenanti, Alessio; Candidi, Matteo; Urgesi, Cosimo

    2013-01-01

    Neurophysiological and imaging studies have shown that seeing the actions of other individuals brings about the vicarious activation of motor regions involved in performing the same actions. While this suggests a simulative mechanism mediating the perception of others' actions, one cannot use such evidence to make inferences about the functional significance of vicarious activations. Indeed, a central aim in social neuroscience is to comprehend how vicarious activations allow the understanding of other people's behavior, and this requires to use stimulation or lesion methods to establish causal links from brain activity to cognitive functions. In the present work, we review studies investigating the effects of transient manipulations of brain activity or stable lesions in the motor system on individuals' ability to perceive and understand the actions of others. We conclude there is now compelling evidence that neural activity in the motor system is critical for such cognitive ability. More research using causal methods, however, is needed in order to disclose the limits and the conditions under which vicarious activations are required to perceive and understand actions of others as well as their emotions and somatic feelings. PMID:23675338

  11. Hyperactivity and Motoric Activity in ADHD: Characterization, Assessment, and Intervention

    PubMed Central

    Gawrilow, Caterina; Kühnhausen, Jan; Schmid, Johanna; Stadler, Gertraud

    2014-01-01

    The aim of the present literature review is threefold. (1) We will review theories, models, and studies on symptomatic hyperactivity and motoric activity in attention-deficit/hyperactivity disorder (ADHD). (2) Another focus will be on assessment methods that have been proven to be effective in the detection of hyperactivity and motoric activity in children, adolescents, and adults with and without ADHD and emerging areas of research in the field of ADHD. We will compare subjective methods (i.e., rating scales) and objective methods (i.e., accelerometers). (3) Finally, physical activity intervention studies aiming at a modification of activity and overactive behavior will be summarized that seem to be promising candidates for alleviating hyperactivity symptoms in children, adolescents, and adults with ADHD. PMID:25506329

  12. Discharge pattern of tonically activated motor units during unloading.

    PubMed

    Gerilovsky, L; Struppler, A; Velho, F; Niehage, O

    1990-12-01

    In order to analyse the EMG pattern during unloading of brachial biceps muscle, the interference EMG and single motor unit activity were investigated. The measurements were done on seven healthy subjects with two types of unloading techniques: a) active unloading, when the subjects resisted against an external load (10, 20, 30 and 40 N) which is suddenly released, and b) passive unloading, performed by low inertia torque motors with independently adjustable background extension and suddenly applied flexion torques. Following active unloading the silent period duration, the amplitude of the rebound and its segmentation into consecutive bursts is changing with initial load, whereas the silent period latency remains constant. Following passive unloading the acceleration influences predominantly the amplitude of the rebound, without changing its latency and silent period duration. The initial voluntary activity influences both silent period duration and rebound parameters (latency, amplitude and duration). PMID:2286170

  13. Subcortical evoked activity and motor enhancement in Parkinson's disease.

    PubMed

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Khan, Sadaquate; Javed, Shazia; Gill, Steven S; Ashkan, Keyoumars; Akram, Harith; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Green, Alexander L; Aziz, Tipu; Brown, Peter

    2016-03-01

    Enhancements in motor performance have been demonstrated in response to intense stimuli both in healthy subjects and in the form of 'paradoxical kinesis' in patients with Parkinson's disease. Here we identify a mid-latency evoked potential in local field potential recordings from the region of the subthalamic nucleus, which scales in amplitude with both the intensity of the stimulus delivered and corresponding enhancements in biomechanical measures of maximal handgrips, independent of the dopaminergic state of our subjects with Parkinson's disease. Recordings of a similar evoked potential in the related pedunculopontine nucleus - a key component of the reticular activating system - provide support for this neural signature in the subthalmic nucleus being a novel correlate of ascending arousal, propagated from the reticular activating system to exert an 'energizing' influence on motor circuitry. Future manipulation of this system linking arousal and motor performance may provide a novel approach for the non-dopaminergic enhancement of motor performance in patients with hypokinetic disorders such as Parkinson's disease.

  14. Subcortical evoked activity and motor enhancement in Parkinson's disease

    PubMed Central

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Khan, Sadaquate; Javed, Shazia; Gill, Steven S.; Ashkan, Keyoumars; Akram, Harith; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Green, Alexander L.; Aziz, Tipu; Brown, Peter

    2016-01-01

    Enhancements in motor performance have been demonstrated in response to intense stimuli both in healthy subjects and in the form of ‘paradoxical kinesis’ in patients with Parkinson's disease. Here we identify a mid-latency evoked potential in local field potential recordings from the region of the subthalamic nucleus, which scales in amplitude with both the intensity of the stimulus delivered and corresponding enhancements in biomechanical measures of maximal handgrips, independent of the dopaminergic state of our subjects with Parkinson's disease. Recordings of a similar evoked potential in the related pedunculopontine nucleus – a key component of the reticular activating system – provide support for this neural signature in the subthalmic nucleus being a novel correlate of ascending arousal, propagated from the reticular activating system to exert an ‘energizing’ influence on motor circuitry. Future manipulation of this system linking arousal and motor performance may provide a novel approach for the non-dopaminergic enhancement of motor performance in patients with hypokinetic disorders such as Parkinson's disease. PMID:26687971

  15. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    PubMed

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  16. Ice nucleus activity measurements of solid rocket motor exhaust particles

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Compiler)

    1986-01-01

    The ice Nucleus activity of exhaust particles generated from combustion of Space Shuttle propellant in small rocket motors has been measured. The activity at -20 C was substantially lower than that of aerosols generated by unpressurized combustion of propellant samples in previous studies. The activity decays rapidly with time and is decreased further in the presence of moist air. These tests corroborate the low effectivity ice nucleus measurement results obtained in the exhaust ground cloud of the Space Shuttle. Such low ice nucleus activity implies that Space Shuttle induced inadvertent weather modification via an ice phase process is extremely unlikely.

  17. Approaches to Programs of Motor Development and Activities for Young Children.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin. Div. of Curriculum Development.

    This teaching guide for motor development in the primary grades describes various areas of concern in motor development and suggests activities for the development of young children in each area. Section I discusses the importance of motor development. The next six sections define and describe particular areas of motor development and suggest…

  18. Chemical and thermal modulation of molecular motor activities

    NASA Astrophysics Data System (ADS)

    Hong, Weili

    Molecular motors of kinesin and dynein families are responsible for various intracellular activities, from long distance movement of organelles, vesicles, protein complexes, and mRNAs to powering mitotic processes. They can take nanometer steps using chemical energy from the hydrolysis of ATP (adenosine triphosphate), and their dysfunction is involved in many neurodegenerative diseases that require long distance transport of cargos. Here I report on the study of the properties of molecular motors at a single-molecule level using optical trappings. I first studied the inhibition properties of kinesin motors by marine natural compound adociasulfates. I showed that adociasulfates compete with microtubules for binding to kinesins and thus inhibit kinesins' activity. Although adociasulfates are a strong inhibitor for all kinesin members, they show a much higher inhibition effect for conventional kinesins than for mitotic kinesins. Thus adociasulfates can be used to specifically inhibit conventional kinesins. By comparing the inhibition of kinesins by two structurally similar adociasulfates, one can see that the negatively charged sulfate residue of adociasulfates can be replaced by other negative residues and thus make it possible for adociasulfate-derived compounds to be more cell permeable. Kinesins and dyneins move cargos towards opposite directions along a microtubule. Cargos with both kinesins and dyneins attached often move bidirectionally due to undergoing a tug-of-war between the oppositely moving kinesin and dynein motors. Here I studied the effect of temperature on microtubule-based kinesin and dynein motor transport. While kinesins' and dyneins' velocities are closely matched above 15 °C, below this temperature the dyneins' velocity decreases much faster than the kinesins'. The kinesins' and dyneins' forces do not measurably change with temperature. The results suggest that temperature has significant effects on bidirectional transport and can be used to

  19. Neural oscillations: beta band activity across motor networks.

    PubMed

    Khanna, Preeya; Carmena, Jose M

    2015-06-01

    Local field potential (LFP) activity in motor cortical and basal ganglia regions exhibits prominent beta (15-40Hz) oscillations during reaching and grasping, muscular contraction, and attention tasks. While in vitro and computational work has revealed specific mechanisms that may give rise to the frequency and duration of this oscillation, there is still controversy about what behavioral processes ultimately drive it. Here, simultaneous behavioral and large-scale neural recording experiments from non-human primate and human subjects are reviewed in the context of specific hypotheses about how beta band activity is generated. Finally, a new experimental paradigm utilizing operant conditioning combined with motor tasks is proposed as a way to further investigate this oscillation. PMID:25528615

  20. Gross motor development and physical activity in kindergarten age children.

    PubMed

    Colella, Dario; Morano, Milena

    2011-10-01

    Physical activity in kindergarten is a fundamental part of the child's educational process. Body experience and physical activity contribute to the development of self-awareness and the learning of different modes of expression, as well as encouraging the acquisition of physically active lifestyles. Recent scientific evidence has confirmed the role of physical activity in disease prevention and quality of life improvement, and stressed the importance of integrated educational programmes promoting physical activity and healthy eating habits. A key priority of scientific research is to identify the opportunities and methods of motor learning and to increase the daily physical activity levels of children by reducing sedentary time and promoting active play and transport (i.e. walking, cycling). Family, school and community involvement are all needed to assure adherence to the official guidelines on how much physical activity children need to boost their health and stave off obesity.

  1. The effect of oral motor activity on the athletic performance of professional golfers.

    PubMed

    Ringhof, Steffen; Hellmann, Daniel; Meier, Florian; Etz, Eike; Schindler, Hans J; Stein, Thorsten

    2015-01-01

    Human motor control is based on complex sensorimotor processes. Recent research has shown that neuromuscular activity of the craniomandibular system (CMS) might affect human motor control. In particular, improvements in postural stability and muscle strength have been observed as a result of voluntary jaw clenching. Potential benefits of jaw aligning appliances on muscle strength and golf performance have also been described. These reports are highly contradictory, however, and the oral motor task performed is often unclear. The purpose of our study was, therefore, to investigate the effect of submaximum biting on golf performance via shot precision and shot length over three different distances. Participants were 14 male professional golfers - seven with sleep bruxism and seven without - randomly performing golf shots over 60m, 160m, or driving distance while either biting on an oral splint or biting on their teeth; habitual jaw position served as the control condition. Statistical analysis revealed that oral motor activity did not systematically affect golf performance in respect of shot precision or shot length for 60m, 160 m, or driving distance. These findings were reinforced by impact variables such as club head speed and ball speed, which were also not indicative of significant effects. The results thus showed that the strength improvements and stabilizing effects described previously are, apparently, not transferable to such coordination-demanding sports as golf. This could be due to the divergent motor demands associated with postural control and muscle strength on the one hand and the complex coordination of a golf swing on the other. Interestingly, subjects without sleep bruxism performed significantly better at the short distance (60 m) than those with bruxism. Because of the multifactorial etiology of parafunctional CMS activity, conclusions about the need for dental treatment to improve sports performance are, however, completely unwarranted.

  2. The effect of oral motor activity on the athletic performance of professional golfers

    PubMed Central

    Ringhof, Steffen; Hellmann, Daniel; Meier, Florian; Etz, Eike; Schindler, Hans J.; Stein, Thorsten

    2015-01-01

    Human motor control is based on complex sensorimotor processes. Recent research has shown that neuromuscular activity of the craniomandibular system (CMS) might affect human motor control. In particular, improvements in postural stability and muscle strength have been observed as a result of voluntary jaw clenching. Potential benefits of jaw aligning appliances on muscle strength and golf performance have also been described. These reports are highly contradictory, however, and the oral motor task performed is often unclear. The purpose of our study was, therefore, to investigate the effect of submaximum biting on golf performance via shot precision and shot length over three different distances. Participants were 14 male professional golfers – seven with sleep bruxism and seven without – randomly performing golf shots over 60m, 160m, or driving distance while either biting on an oral splint or biting on their teeth; habitual jaw position served as the control condition. Statistical analysis revealed that oral motor activity did not systematically affect golf performance in respect of shot precision or shot length for 60m, 160 m, or driving distance. These findings were reinforced by impact variables such as club head speed and ball speed, which were also not indicative of significant effects. The results thus showed that the strength improvements and stabilizing effects described previously are, apparently, not transferable to such coordination-demanding sports as golf. This could be due to the divergent motor demands associated with postural control and muscle strength on the one hand and the complex coordination of a golf swing on the other. Interestingly, subjects without sleep bruxism performed significantly better at the short distance (60 m) than those with bruxism. Because of the multifactorial etiology of parafunctional CMS activity, conclusions about the need for dental treatment to improve sports performance are, however, completely unwarranted. PMID

  3. The effect of oral motor activity on the athletic performance of professional golfers.

    PubMed

    Ringhof, Steffen; Hellmann, Daniel; Meier, Florian; Etz, Eike; Schindler, Hans J; Stein, Thorsten

    2015-01-01

    Human motor control is based on complex sensorimotor processes. Recent research has shown that neuromuscular activity of the craniomandibular system (CMS) might affect human motor control. In particular, improvements in postural stability and muscle strength have been observed as a result of voluntary jaw clenching. Potential benefits of jaw aligning appliances on muscle strength and golf performance have also been described. These reports are highly contradictory, however, and the oral motor task performed is often unclear. The purpose of our study was, therefore, to investigate the effect of submaximum biting on golf performance via shot precision and shot length over three different distances. Participants were 14 male professional golfers - seven with sleep bruxism and seven without - randomly performing golf shots over 60m, 160m, or driving distance while either biting on an oral splint or biting on their teeth; habitual jaw position served as the control condition. Statistical analysis revealed that oral motor activity did not systematically affect golf performance in respect of shot precision or shot length for 60m, 160 m, or driving distance. These findings were reinforced by impact variables such as club head speed and ball speed, which were also not indicative of significant effects. The results thus showed that the strength improvements and stabilizing effects described previously are, apparently, not transferable to such coordination-demanding sports as golf. This could be due to the divergent motor demands associated with postural control and muscle strength on the one hand and the complex coordination of a golf swing on the other. Interestingly, subjects without sleep bruxism performed significantly better at the short distance (60 m) than those with bruxism. Because of the multifactorial etiology of parafunctional CMS activity, conclusions about the need for dental treatment to improve sports performance are, however, completely unwarranted. PMID

  4. A mouse model of non-motor symptoms in Parkinson's disease: focus on pharmacological interventions targeting affective dysfunctions

    PubMed Central

    Bonito-Oliva, Alessandra; Masini, Débora; Fisone, Gilberto

    2014-01-01

    Non-motor symptoms, including psychiatric disorders, are increasingly recognized as a major challenge in the treatment of Parkinson's disease (PD). These ailments, which often appear in the early stage of the disease, affect a large number of patients and are only partly resolved by conventional antiparkinsonian medications, such as L-DOPA. Here, we investigated non-motor symptoms of PD in a mouse model based on bilateral injection of the toxin 6-hydroxydopamine (6-OHDA) in the dorsal striatum. This model presented only subtle gait modifications, which did not affect horizontal motor activity in the open-field test. Bilateral 6-OHDA lesion also impaired olfactory discrimination, in line with the anosmia typically observed in early stage parkinsonism. The effect of 6-OHDA was then examined for mood-related dysfunctions. Lesioned mice showed increased immobility in the forced swim test and tail suspension test, two behavioral paradigms of depression. Moreover, the lesion exerted anxiogenic effects, as shown by reduced time spent in the open arms, in the elevated plus maze test, and by increased thigmotaxis in the open-field test. L-DOPA did not modify depressive- and anxiety-like behaviors, which were instead counteracted by the dopamine D2/D3 receptor agonist, pramipexole. Reboxetine, a noradrenaline reuptake inhibitor, was also able to revert the depressive and anxiogenic effects produced by the lesion with 6-OHDA. Interestingly, pre-treatment with desipramine prior to injection of 6-OHDA, which is commonly used to preserve noradrenaline neurons, did not modify the effect of the lesion on depressive- and anxiety-like behaviors. Thus, in the present model, mood-related conditions are independent of the reduction of noradrenaline caused by 6-OHDA. Based on these findings we propose that the anti-depressive and anxiolytic action of reboxetine is mediated by promoting dopamine transmission through blockade of dopamine uptake from residual noradrenergic terminals. PMID

  5. Impaired oculo-motor behaviour affects both reading and scene perception in neglect patients.

    PubMed

    Primativo, Silvia; Arduino, Lisa S; Daini, Roberta; De Luca, Maria; Toneatto, Carlo; Martelli, Marialuisa

    2015-04-01

    Unilateral spatial neglect (USN) is a common neuropsychological disorder following a right-sided brain lesion. Although USN is mostly characterized by symptoms involving the left hemispace, other symptoms are not left lateralized. Recently, it was shown that patients with neglect dyslexia, a reading disturbance that affects about 40% of USN patients, manifest a non-lateralized impairment of eye movement behaviour in association with their reading deficit when they read aloud and perform non-verbal saccadic tasks (Primativo et al., 2013). In the present paper, we aimed to demonstrate that the eye movement impairment shown by some USN patients reflects a more general oculo-motor disorder that is not confined to orthographic material, the horizontal axis or constrained saccadic tasks. We conjectured that inaccurate oculo-motor behaviour in USN patients indicates the presence of a reading deficit. With this aim we evaluated 20 patients, i.e., 10 right-sided brain-damaged patients without neglect and 10 patients affected by USN. On the basis of the patients' eye movement patterns during a scene exploration task, we found that 4 out of the 10 USN patients presented an abnormal oculo-motor pattern. These same four patients (but not the others) also failed in performing 5 different saccadic tasks and produced neglect dyslexia reading errors in both single words and texts. First, we show that a large proportion of USN patients have inaccurate eye movement behaviour in non-reading tasks. Second, we demonstrate that this exploratory deficit is predictive of the reading impairment. Thus, we conclude that the eye movement deficit prevents reading and impairs the performance on many other perceptual tests, including scene exploration. The large percentage of patients with impaired eye-movement pattern suggests that particular attention should be paid to eye movement behaviour during the diagnostic phase in order to program the best rehabilitation strategy for each patient. PMID

  6. Active Affective Learning for Accelerated Schools.

    ERIC Educational Resources Information Center

    Richardson, Robert B.

    This paper provides the groundwork for Active Affective Learning and teaching adapted to the needs of the disadvantaged, at-risk students served by the Accelerated Schools Movement. One of the "golden rules" for the practice of Accelerated Learning, according to psychiatrist Georgi Lozanov, has been to maintain an "up-beat" classroom presentation…

  7. Chronic Assessment of Diaphragm Muscle EMG Activity across Motor Behaviors

    PubMed Central

    Mantilla, Carlos B.; Seven, Yasin B.; Hurtado-Palomino, Juan N.; Zhan, Wen-Zhi; Sieck, Gary C.

    2011-01-01

    The diaphragm muscle is main inspiratory muscle in mammals. Quantitative analyses documenting the reliability of chronic diaphragm EMG recordings are lacking. Assessment of ventilatory and non-ventilatory motor behaviors may facilitate evaluating diaphragm EMG activity over time. We hypothesized that normalization of diaphragm EMG amplitude across behaviors provides stable and reliable parameters for longitudinal assessments of diaphragm activity. We found that diaphragm EMG activity shows substantial intra-animal variability over 6 weeks, with coefficient of variation (CV) for different behaviors ~29–42%. Normalization of diaphragm EMG activity to near maximal behaviors (e.g., deep breathing) reduced intra-animal variability over time (CV ~22–29%). Plethysmographic measurements of eupneic ventilation were also stable over 6 weeks (CV ~13% for minute ventilation). Thus, stable and reliable measurements of diaphragm EMG activity can be obtained longitudinally using chronically implanted electrodes by examining multiple motor behaviors. By quantitatively determining the reliability of longitudinal diaphragm EMG analyses, we provide an important tool for evaluating the progression of diseases or injuries that impair ventilation. PMID:21414423

  8. Brain acetylcholinesterase activity in Wistar and August rats with low and high motor activity (a cytochemical study).

    PubMed

    Sergutina, A V; Rakhmanova, V I

    2014-08-01

    Acetylcholinesterase activity was quantitatively evaluated by cytochemical method in brain structures (layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, hippocampus CA3 field) of August and Wistar rats demonstrating high and low motor activity in the open field test. In August rats, acetylcholinesterase activity in the analyzed brain structures prevailed in animals with high motor activity in comparison with rats with low motor activity. In Wistar rats, the differences between the animals demonstrating high and low motor activity were less pronounced, but varied depending on the experimental series of studies. Comparisons of August rats with low motor activity and Wistar rats with high motor activity (maximum difference of motor function in these animals) revealed significant excess of acetylcholinesterase activity in layer III of the sensorimotor cortex in August rats and no differences in other brain structures of the examined animals.

  9. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    NASA Astrophysics Data System (ADS)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  10. Relation between cooperative molecular motors and active Brownian particles.

    PubMed

    Touya, Clément; Schwalger, Tilo; Lindner, Benjamin

    2011-05-01

    Active Brownian particles (ABPs), obeying a nonlinear Langevin equation with speed-dependent drift and noise amplitude, are well-known models used to describe self-propelled motion in biology. In this paper we study a model describing the stochastic dynamics of a group of coupled molecular motors (CMMs). Using two independent numerical methods, one based on the stationary velocity distribution of the motors and the other one on the local increments (also known as the Kramers-Moyal coefficients) of the velocity, we establish a connection between the CMM and the ABP models. The parameters extracted for the ABP via the two methods show good agreement for both symmetric and asymmetric cases and are independent of N, the number of motors, provided that N is not too small. This indicates that one can indeed describe the CMM problem with a simpler ABP model. However, the power spectrum of velocity fluctuations in the CMM model reveals a peak at a finite frequency, a peak which is absent in the velocity spectrum of the ABP model. This implies richer dynamic features of the CMM model which cannot be captured by an ABP model.

  11. Selective breeding for endurance running capacity affects cognitive but not motor learning in rats.

    PubMed

    Wikgren, Jan; Mertikas, Georgios G; Raussi, Pekka; Tirkkonen, Riina; Äyräväinen, Laura; Pelto-Huikko, Markku; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2012-05-15

    The ability to utilize oxygen has been shown to affect a wide variety of physiological factors often considered beneficial for survival. As the ability to learn can be seen as one of the core factors of survival in mammals, we studied whether selective breeding for endurance running, an indication of aerobic capacity, also has an effect on learning. Rats selectively bred over 23 generations for their ability to perform forced treadmill running were trained in an appetitively motivated discrimination-reversal classical conditioning task, an alternating T-maze task followed by a rule change (from a shift-win to stay-win rule) and motor learning task. In the discrimination-reversal and T-maze tasks, the high-capacity runner (HCR) rats outperformed the low-capacity runner (LCR) rats, most notably in the phases requiring flexible cognition. In the Rotarod (motor-learning) task, the HCR animals were overall more agile but learned at a similar rate with the LCR group as a function of training. We conclude that the intrinsic ability to utilize oxygen is associated especially with tasks requiring plasticity of the brain structures implicated in flexible cognition.

  12. Selective breeding for endurance running capacity affects cognitive but not motor learning in rats

    PubMed Central

    Wikgren, Jan; Mertikas, Georgios; Raussi, Pekka; Tirkkonen, Riina; Äyräväinen, Laura; Pelto-Huikko, Markku; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2012-01-01

    The ability to utilize oxygen has been shown to affect a wide variety of physiological factors often considered beneficial for survival. As the ability to learn can be seen as one of the core factors of survival in mammals, we studied whether selective breeding for endurance running, an indication of aerobic capacity, also has an effect on learning. Rats selectively bred over 23 generations for their ability to perform forced treadmill running were trained in an appetitively motivated discrimination-reversal classical conditioning task, an alternating T-maze task followed by a rule change (from a shift-win to stay-win rule) and motor learning task. In the discrimination-reversal and T-maze tasks, the high-capacity runner (HCR) rats outperformed the low-capacity runner (LCR) rats, most notably in the phases requiring flexible cognition. In the Rotarod (motor-learning) task, the HCR animals were overall more agile but learned at a similar rate with the LCR group as a function of training. We conclude that the intrinsic ability to utilize oxygen is associated especially with tasks requiring plasticity of the brain structures implicated in flexible cognition. PMID:22285210

  13. When music tempo affects the temporal congruence between physical practice and motor imagery.

    PubMed

    Debarnot, Ursula; Guillot, Aymeric

    2014-06-01

    When people listen to music, they hear beat and a metrical structure in the rhythm; these perceived patterns enable coordination with the music. A clear correspondence between the tempo of actual movement (e.g., walking) and that of music has been demonstrated, but whether similar coordination occurs during motor imagery is unknown. Twenty participants walked naturally for 8m, either physically or mentally, while listening to slow and fast music, or not listening to anything at all (control condition). Executed and imagined walking times were recorded to assess the temporal congruence between physical practice (PP) and motor imagery (MI). Results showed a difference when comparing slow and fast time conditions, but each of these durations did not differ from soundless condition times, hence showing that body movement may not necessarily change in order to synchronize with music. However, the main finding revealed that the ability to achieve temporal congruence between PP and MI times was altered when listening to either slow or fast music. These data suggest that when physical movement is modulated with respect to the musical tempo, the MI efficacy of the corresponding movement may be affected by the rhythm of the music. Practical applications in sport are discussed as athletes frequently listen to music before competing while they mentally practice their movements to be performed.

  14. Active learning of novel sound-producing objects: motor reactivation and enhancement of visuo-motor connectivity.

    PubMed

    Butler, Andrew J; James, Karin Harman

    2013-02-01

    Our experience with the world commonly involves physical interaction with objects enabling us to learn associations between multisensory information perceived during an event and our actions that create an event. The interplay among active interactions during learning and multisensory integration of object properties is not well understood. To better understand how action might enhance multisensory associative recognition, we investigated the interplay among motor and perceptual systems after active learning. Fifteen participants were included in an fMRI study during which they learned visuo-auditory-motor associations between novel objects and the sounds they produce, either through self-generated actions on the objects (active learning) or by observing an experimenter produce the actions (passive learning). Immediately after learning, behavioral and BOLD fMRI measures were collected while perceiving the objects used during unisensory and multisensory training in associative perception and recognition tasks. Active learning was faster and led to more accurate recognition of audiovisual associations than passive learning. Functional ROI analyses showed that in motor, somatosensory, and cerebellar regions there was greater activation during both the perception and recognition of actively learned associations. Finally, functional connectivity between visual- and motor-related processing regions was enhanced during the presentation of actively learned audiovisual associations. Overall, the results of the current study clarify and extend our own previous work [Butler, A. J., James, T. W., & Harman James, K. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations. Journal of Cognitive Neuroscience, 23, 3515-3528, 2011] by providing several novel findings and highlighting the task-based nature of motor reactivation and retrieval after active learning.

  15. Decreased motor activity of hyperactive children on dextroamphetamine during active gym program.

    PubMed

    Rapoport, J L; Tepsic, P N; Grice, J; Johnson, C; Langer, D

    1980-07-01

    The motor activity of 10 hyperactive boys was measured during eight 1-hour active gym classes. Children received either dextroaomphetamine (0.5 mg/kg) or placebo elixir before each class, in a double-blind design. The program for each of the classes was participation in the active sports: hockey, basketball, and/or roller skating; the "task" throughout each hour was to play vigorously and continuously. The boys' mean hourly activity following amphetamine was slightly but significantly less than that following placebo. This finding is contradictory to the hypothesis that improved attention to an active task on stimulant would result in increased motor activity, and suggests the possibility of an independent direct effect of amphetamine on the motor system.

  16. Age independent and position-dependent alterations in motor unit activity of the biceps brachii.

    PubMed

    Harwood, B; Edwards, D L; Jakobi, J M

    2010-09-01

    In the biceps brachii, age-related differences in synaptic excitability and muscle architecture may affect motor unit (MU) activity differently depending on the position of the forearm. It was hypothesised that as a result of these age-related differences, greater changes in MU activity would accompany a change in forearm position in old when compared with young men. Six young (22 +/- 3 years) and six old (84 +/- 3 years) men maintained isometric elbow flexion at 10% of maximal voluntary contraction (MVC) during changes in forearm position. Forty-nine MUs in the short (SBB) and long (LBB) heads of the biceps brachii were followed. Motor unit recruitment and de-recruitment thresholds, motor unit discharge rates (MUDRs), and MU discharge variability were measured. Although an age-related decrease in MU recruitment thresholds, and increase in MU discharge variability was evident, changes in forearm position influenced MUDRs similarly in young and old men (P = 0.27). Motor unit recruitment thresholds of the SBB were highest in the pronated position (8.2 +/- 2.9 %MVC), whereas in the LBB they were highest in the supinated position (8.6 +/- 2.0 %MVC). Motor unit discharge rates of the LBB did not change with forearm position. In the SBB, MUDRs were highest when the forearm was supinated, and also greater when compared with the LBB in this position. No position-dependent changes were observed for MU discharge variability in the LBB, but the SBB exhibited greatest MU discharge variability in the pronated position. The results suggest that MU activity is modulated following a change in forearm position, but the response is similar in young and old adults.

  17. Voltage-sensitive dye imaging of primary motor cortex activity produced by ventral tegmental area stimulation.

    PubMed

    Kunori, Nobuo; Kajiwara, Riichi; Takashima, Ichiro

    2014-06-25

    The primary motor cortex (M1) receives dopaminergic projections from the ventral tegmental area (VTA) through the mesocortical dopamine pathway. However, few studies have focused on changes in M1 neuronal activity caused by VTA activation. To address this issue, we used voltage-sensitive dye imaging (VSD) to reveal the spatiotemporal dynamics of M1 activity induced by single-pulse stimulation of VTA in anesthetized rats. VSD imaging showed that brief electrical stimulation of unilateral VTA elicited a short-latency excitatory-inhibitory sequence of neuronal activity not only in the ipsilateral but also in the contralateral M1. The contralateral M1 response was not affected by pharmacological blockade of ipsilateral M1 activity, but it was completely abolished by corpus callosum transection. Although the VTA-evoked neuronal activity extended throughout the entire M1, we found the most prominent activity in the forelimb area of M1. The 6-OHDA-lesioned VTA failed to evoke M1 activity. Furthermore, both excitatory and inhibitory intact VTA-induced activity was entirely extinguished by blocking glutamate receptors in the target M1. When intracortical microstimulation of M1 was paired with VTA stimulation, the evoked forelimb muscle activity was facilitated or inhibited, depending on the interval between the two stimuli. These findings suggest that VTA neurons directly modulate the excitability of M1 neurons via fast glutamate signaling and, consequently, may control the last cortical stage of motor command processing. PMID:24966388

  18. Do recreational activities affect coastal biodiversity?

    NASA Astrophysics Data System (ADS)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors ("diving" and "fishing"). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  19. Time required for motor activity in lucid dreams.

    PubMed

    Erlacher, Daniel; Schredl, Michael

    2004-12-01

    The present study investigated the relationship between the time required for specific tasks (counting and performing squats) in lucid dreams and in the waking state. Five proficient lucid dreamers (26-34 yr. old, M=29.8, SD=3.0; one woman and four men) participated. Analysis showed that the time needed for counting in a lucid dream is comparable to the time needed for counting in wakefulness, but motor activities required more time in lucid dreams than in the waking state. PMID:15739850

  20. Time required for motor activity in lucid dreams.

    PubMed

    Erlacher, Daniel; Schredl, Michael

    2004-12-01

    The present study investigated the relationship between the time required for specific tasks (counting and performing squats) in lucid dreams and in the waking state. Five proficient lucid dreamers (26-34 yr. old, M=29.8, SD=3.0; one woman and four men) participated. Analysis showed that the time needed for counting in a lucid dream is comparable to the time needed for counting in wakefulness, but motor activities required more time in lucid dreams than in the waking state.

  1. Emotion affects action: Midcingulate cortex as a pivotal node of interaction between negative emotion and motor signals.

    PubMed

    Pereira, Mirtes Garcia; de Oliveira, Letícia; Erthal, Fátima Smith; Joffily, Mateus; Mocaiber, Izabela F; Volchan, Eliane; Pessoa, Luiz

    2010-03-01

    Affective pictures drive the activity of brain networks and impact behavior. We showed previously that viewing unpleasant pictures interfered in the performance of a basic nonemotional visual detection task. In the present study, we employed functional magnetic resonance imaging to test the hypothesis that behavioral interference may result from the interaction between negatively valenced and motor-related signals in the brain. As in our previous study (Pereira et al., 2006), participants performed a simple target detection task that followed the presentation of unpleasant or neutral pictures. Our results revealed that an unpleasant emotional context modulated evoked responses in several regions engaged by the simple target detection task. In particular, the midcingulate cortex was recruited when participants performed target detection trials during the unpleasant context, and signal responses in this region closely mirrored the pattern of behavioral interference (as revealed via reaction time). Our findings suggest that the midcingulate cortex may be an important site for the interaction between negatively valenced signals and motor signals in the brain and that it may be involved in the implementation of defensive responses, such as freezing.

  2. Done that: short-term repetition related modulations of motor cortex activity as a stable signature for overnight motor memory consolidation.

    PubMed

    Gabitov, Ella; Manor, David; Karni, Avi

    2014-12-01

    An almost universally accepted tacit expectation is that learning and memory consolidation processes must be reflected in the average brain activity in brain areas relevant to task performance. Motor cortex (M1) plasticity has been implicated in motor skill acquisition and its consolidation. Nevertheless, no consistent pattern of changes in the average signal, related to motor learning or motor memory consolidation following a single session of training, has emerged from imaging studies. Here we show that the pattern and magnitude of short-term brain activity modulations in response to task repetition, in M1, may provide a robust signature for effective motor memory consolidation processes. We studied participants during the paced performance of a finger-to-thumb opposition sequence (FOS), intensively trained a day earlier, and a similarly constructed untrained FOS. In addition to within-session "on-line" gains, most participants expressed delayed, consolidation-phase gains in the performance of the trained FOS. The execution of the trained FOS induced repetition enhancements in the contralateral M1 and bilaterally in the medial-temporal lobes, offsetting novelty-related repetition suppression effects. Moreover, the M1 modulations were positively correlated with the magnitude of each participant's overnight delayed gains but not with absolute performance levels. Our results suggest that short-term enhancements of brain signals upon task repetition reflect the effectiveness of overnight motor memory consolidation. We propose that procedural memory consolidation processes may affect the excitation-inhibition balance within cortical representations of the trained movements; this new balance is better reflected in repetition effects than in the average level of evoked neural activity. PMID:24893741

  3. Activity of motor cortex neurons during backward locomotion.

    PubMed

    Zelenin, P V; Deliagina, T G; Orlovsky, G N; Karayannidou, A; Stout, E E; Sirota, M G; Beloozerova, I N

    2011-06-01

    Forward walking (FW) and backward walking (BW) are two important forms of locomotion in quadrupeds. Participation of the motor cortex in the control of FW has been intensively studied, whereas cortical activity during BW has never been investigated. The aim of this study was to analyze locomotion-related activity of the motor cortex during BW and compare it with that during FW. For this purpose, we recorded activity of individual neurons in the cat during BW and FW. We found that the discharge frequency in almost all neurons was modulated in the rhythm of stepping during both FW and BW. However, the modulation patterns during BW and FW were different in 80% of neurons. To determine the source of modulating influences (forelimb controllers vs. hindlimb controllers), the neurons were recorded not only during quadrupedal locomotion but also during bipedal locomotion (with either forelimbs or hindlimbs walking), and their modulation patterns were compared. We found that during BW (like during FW), modulation in some neurons was determined by inputs from limb controllers of only one girdle, whereas the other neurons received inputs from both girdles. The combinations of inputs could depend on the direction of locomotion. Most often (in 51% of forelimb-related neurons and in 34% of the hindlimb-related neurons), the neurons received inputs only from their own girdle when this girdle was leading and from both girdles when this girdle was trailing. This reconfiguration of inputs suggests flexibility of the functional roles of individual cortical neurons during different forms of locomotion.

  4. Selective Gating of Neuronal Activity by Intrinsic Properties in Distinct Motor Rhythms.

    PubMed

    Li, Wen-Chang

    2015-07-01

    Many neural circuits show fast reconfiguration following altered sensory or modulatory inputs to generate stereotyped outputs. In the motor circuit of Xenopus tadpoles, I study how certain voltage-dependent ionic currents affect firing thresholds and contribute to circuit reconfiguration to generate two distinct motor patterns, swimming and struggling. Firing thresholds of excitatory interneurons [i.e., descending interneurons (dINs)] in the swimming central pattern generator are raised by depolarization due to the inactivation of Na(+) currents. In contrast, the thresholds of other types of neurons active in swimming or struggling are raised by hyperpolarization from the activation of fast transient K(+) currents. The firing thresholds are then compared with the excitatory synaptic drives, which are revealed by blocking action potentials intracellularly using QX314 during swimming and struggling. During swimming, transient K(+) currents lower neuronal excitability and gate out neurons with weak excitation, whereas their inactivation by strong excitation in other neurons increases excitability and enables fast synaptic potentials to drive reliable firing. During struggling, continuous sensory inputs lead to high levels of network excitation. This allows the inactivation of Na(+) currents and suppression of dIN activity while inactivating transient K(+) currents, recruiting neurons that are not active in swimming. Therefore, differential expression of these currents between neuron types can explain why synaptic strength does not predict firing reliability/intensity during swimming and struggling. These data show that intrinsic properties can override fast synaptic potentials, mediate circuit reconfiguration, and contribute to motor-pattern switching.

  5. [The motor activity study segment as pilot study of The Child and Adolescent Health Survey].

    PubMed

    Kahl, H; Emmel, J

    2002-12-01

    In the Health Survey for Children and Adolescents the examination of motor activity is one aspect of physical health covered by the study. This underlines the importance of physical activity for physical development in early years. This first representative child and adolescent study for Germany intends to obtain data on motor activity and to allow for the implementation of specific intervention programmes encouraging physical activity. The specific general conditions under which the survey is conducted restrict the selection and scope of possible instruments to a minimal programme, including fitness tests, strength in combination with endurance and coordinative skills as well as flexibility. In a pilot study the suitability, feasibility and the obtained evidence of selected single motor tests were tested. This article explains the choice of instruments and methods used in the examination of physical fitness. It also discusses methodological difficulties which affect the standardisation of tests and the requirements regarding personnel. A major concern of the pilot study was the evaluation of tested instruments with regard to gender and age differences. For the main survey the following tests are recommended: coordination (balancing backwards, one-leg-footing, sideway jumping), perseverance (sit-ups, push-ups), and flexibility (trunk bending).

  6. Poly I:C induced microglial activation impairs motor activity in adult rats.

    PubMed

    Patro, I K; Amit; Shrivastava, M; Bhumika, S; Patro, N

    2010-02-01

    Polyinosinic:polycytidic acid (poly I:C) is a synthetic double stranded RNA, which mimics with viral genome and mediates immune activation response similar to double stranded RNA virus infection into the brain. Microglial cells are the immune competent cells of the central nervous system having Toll like receptors-3 on their surface. Upon establishing that poly I:C infusion into the brain causes microgliosis by creating a viral infection model, the present study was designed to evaluate the effects of microglial activation following poly I:C infusion on motor activity. We infused 100 microl of 1% solution of Poly I:C in TBE buffer directly into the lateral ventricle and TBE buffer as vehicle to controls. A significantly higher microglial cell count as compared to control on 2, 3 and 7 days post infusion was recorded. Motor activity and microglial cell count was assessed in both controls and poly I:C infused rats on 1, 2, 3, 7, 14, 21 and 28 days post infusion. A significant decrease in motor activity and motor coordination occurred with respect to control. The results clearly demonstrate that microglial activation has a direct relevance with decreased motor activity. Findings could also have their importance in understanding the role of microglial cells on behavioral aspects in viral diseases.

  7. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study.

    PubMed

    Hou, Li J; Song, Zheng; Pan, Zhu J; Cheng, Jia L; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state.

  8. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study

    PubMed Central

    Hou, Li J.; Song, Zheng; Pan, Zhu J.; Cheng, Jia L.; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  9. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study.

    PubMed

    Hou, Li J; Song, Zheng; Pan, Zhu J; Cheng, Jia L; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  10. From Spontaneous Motor Activity to Coordinated Behaviour: A Developmental Model

    PubMed Central

    Marques, Hugo Gravato; Bharadwaj, Arjun; Iida, Fumiya

    2014-01-01

    In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions. PMID:25057775

  11. Resting state cerebral blood flow and objective motor activity reveal basal ganglia dysfunction in schizophrenia.

    PubMed

    Walther, Sebastian; Federspiel, Andrea; Horn, Helge; Razavi, Nadja; Wiest, Roland; Dierks, Thomas; Strik, Werner; Müller, Thomas Jörg

    2011-05-31

    Reduced motor activity has been reported in schizophrenia and was associated with subtype, psychopathology and medication. Still, little is known about the neurobiology of motor retardation. To identify neural correlates of motor activity, resting state cerebral blood flow (CBF) was correlated with objective motor activity of the same day. Participants comprised 11 schizophrenia patients and 14 controls who underwent magnetic resonance imaging with arterial spin labeling and wrist actigraphy. Patients had reduced activity levels and reduced perfusion of the left parahippocampal gyrus, left middle temporal gyrus, right thalamus, and right prefrontal cortex. In controls, but not in schizophrenia, CBF was correlated with activity in the right thalamic ventral anterior (VA) nucleus, a key module within basal ganglia-cortical motor circuits. In contrast, only in schizophrenia patients positive correlations of CBF and motor activity were found in bilateral prefrontal areas and in the right rostral cingulate motor area (rCMA). Grey matter volume correlated with motor activity only in the left posterior cingulate cortex of the patients. The findings suggest that basal ganglia motor control is impaired in schizophrenia. In addition, CBF of cortical areas critical for motor control was associated with volitional motor behavior, which may be a compensatory mechanism for basal ganglia dysfunction.

  12. Active Learning: Learning a Motor Skill Without a Coach

    PubMed Central

    Huang, Vincent S.; Shadmehr, Reza; Diedrichsen, Jörn

    2008-01-01

    When we learn a new skill (e.g., golf) without a coach, we are “active learners”: we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence. PMID:18509079

  13. Active learning: learning a motor skill without a coach.

    PubMed

    Huang, Vincent S; Shadmehr, Reza; Diedrichsen, Jörn

    2008-08-01

    When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence. PMID:18509079

  14. Active stresses and hydrodynamics of microtubule/motor-protein assemblies

    NASA Astrophysics Data System (ADS)

    Shelley, Michael

    2014-03-01

    In biologically-inspired soft active materials, chemical energy (typically from ATP) is transduced to generate active stresses arising from reconiguration or forcing of the microstructure. This can lead to novel material organization, mechanical properties, and active flows. While much focus has been on active gels and motile suspensions, another important class are suspensions of microtubules (MTs) crosslinked by motile molecular motors. These are central actors in biological phenomena such as pronuclear transport and spindle formation. Here we develop a multi-scale theory for studying such systems. At the discrete level, we use Brownian dynamics of MTs with moving crosslinks to study microscopic organization and active stress development. We observe, surprisingly, that activity generated extensile stresses arise from both polarity sorting and crosslink relaxation. These simulations estimate polarity-dependent active stress coeffcients in a Doi-Onsager kinetic theory - similar to those developed previously for motile suspensions - that captures polarity sorting and induced hydrodynamic flows. In simulating recent experiments of active flows on immersed surfaces, the model exhibits turbulent-like dynamics, and the continous generation and annihilation of disclination defects associated with coherent flow structures. We can associate the system's coherent features with instabilities of aligned linear and nonlinear states.

  15. The effect of MK-801 on motor activity and c-Fos protein expression in the brain of adolescent Wistar rats.

    PubMed

    Pesić, Vesna; Popić, Jelena; Milanović, Desanka; Loncarević-Vasiljković, Natasa; Rakić, Ljubisa; Kanazir, Selma; Ruzdijić, Sabera

    2010-03-19

    The changes that occur during adolescence have a profound impact on the brain and behavior later in life. In this work we examined changes in motor activity during habituation to a novel environment and after treatment with MK-801 (0.025, 0.05, 0.1mg/kg) in peripubertal, pubertal and adult Wistar rats. The involvement of the motor cortex and striatum in motor activity was assessed by analyzing changes in c-Fos protein levels that served as an indicator of neuronal activity. During the habituation period, locomotor activity in peripubertal rats was higher during the first 10 min than in other groups. The same amount of stereotypy-like movements was detected in all three groups. MK-801 induced dose- and age-dependent changes in motor activity. Peripubertal rats were the most sensitive to treatment with MK-801. We also report a surprising finding that systemic application of MK-801 induced a similar age-related profile of changes in motor activity and c-Fos protein expression in the motor cortex but no c-Fos induction in the striatum. Our results demonstrate that, depending on the phase of adolescence the same dose of MK-801 affected behavioral functions in a different manner and that activity of the motor cortex rather than striatal activity was linked to drug-motor activity interactions.

  16. Familiarity modulates motor activation while other species' actions are observed: a magnetic stimulation study.

    PubMed

    Amoruso, Lucia; Urgesi, Cosimo

    2016-03-01

    Observing other people's actions facilitates the observer's motor system as compared with observing the same individuals at rest. This motor activation is thought to result from mirror-like activity in fronto-parietal areas, which enhances the excitability of the primary motor cortex via cortico-cortical pathways. Although covert motor activation in response to observed actions has been widely investigated between conspecifics, how humans cope with other species' actions has received less attention. For example, it remains unclear whether the human motor system is activated by observing other species' actions, and whether prior familiarity with the non-conspecific agent modulates this activation. Here, we combined single-pulse transcranial magnetic stimulation and motor-evoked potential recording to explore the impact of familiarity on motor activation during the observation of non-conspecific actions. Videos displaying actions performed either by a conspecific (human) or by a non-conspecific (dog) were shown to individuals who had prior familiarity or no familiarity at all with the non-conspecific agent. We found that, whereas individuals with long-lasting familiarity showed similar levels of motor activation for human and canine actions, individuals who had no familiarity showed higher motor activation for human than for canine actions. These findings suggest that the human motor system is flexible enough to resonate with other species, and that familiarity plays a key role in tuning this ability. PMID:26666833

  17. The influence of motor expertise on the brain activity of motor task performance: A meta-analysis of functional magnetic resonance imaging studies.

    PubMed

    Yang, Jie

    2015-06-01

    Previous research has investigated the influence of long-term motor training on the brain activity of motor processes, but the findings are inconsistent. To clarify how acquiring motor expertise induces cortical reorganization during motor task performance, the current study conducted a quantitative meta-analysis on 26 functional magnetic resonance imaging (fMRI) studies that investigate motor task performance in people with long-term motor training experience (e.g., athletes, musicians, and dancers) and control participants. Meta-analysis of the brain activation in motor experts and novices showed similar effects in the bilateral frontal and parietal regions. The meta-analysis on the contrast between motor experts and novices indicated that experts showed stronger effects in the left inferior parietal lobule (BA 40) than did novices in motor execution and prediction tasks. In motor observation tasks, experts showed stronger effects in the left inferior frontal gyrus (BA 9) and left precentral gyrus (BA 6) than novices. On the contrary, novices had stronger effects in the right motor areas and basal ganglia as compared with motor experts. These results indicate that motor experts have effect increases in brain areas involved in action planning and action comprehension, and suggest that intensive motor training might elaborate the motor representation related to the task performance.

  18. Nanometer precision robot for active photonics alignment using INCHWORM motors

    NASA Astrophysics Data System (ADS)

    Henderson, David A.; Ragona, Sid P.

    2001-05-01

    To keep pace with the increasing demand for higher throughput, lower cost per unit and tighter specifications, manufacturers of fiber optic devices are now looking towards a new generation of automated alignment tools. The ideal alignment tool has six degrees-of-freedom (DOF), (X,Y,Z, Yaw, Pitch, Roll) repeatability better than 50 nanometers, travel greater than 10 millimeters and is fully automated. In this paper we describe the use of INCHWORM motor technology to produce a new nano-robotic system that demonstrates a major advancement toward the ideal photonics alignment tool. The INCHWORM actuator is uniquely suited to provide nanometer resolution movements over tens of millimeters of range with very high stiffness and stability. The clamp-extend-clamp-retract stepping sequence produces direct linear motion with no backlash. INCHWORM motors are integrated in cross roller bearing stages to achieve 20 nanometer and 0.1 arc second closed-loop resolution. The high stiffness and stability of the solid-state piezoelectric actuators hold position to a single count on a glass scale encoder while generating zero heat. Mounting fixtures hold optical elements so that their geometric centers coincide with the virtual point of rotation. Active alignment processes for selected photonics components, as well as intensity maps of components are presented.

  19. IH activity is increased in populations of slow versus fast motor axons of the rat

    PubMed Central

    Lorenz, Chad; Jones, Kelvin E.

    2014-01-01

    Much is known about the electrophysiological variation in motoneuron somata across different motor units. However, comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague–Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus (“slow motor axons”) and the other group innervating the tibialis anterior (“fast motor axons”) muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001) or 20% of axon threshold (Z = 2.67, p = 0.008). Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003). In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047) accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH) than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions. PMID:25309406

  20. Motor imagery-based brain activity parallels that of motor execution: evidence from magnetic source imaging of cortical oscillations.

    PubMed

    Kraeutner, Sarah; Gionfriddo, Alicia; Bardouille, Timothy; Boe, Shaun

    2014-11-01

    Motor imagery (MI) is a form of practice in which an individual mentally performs a motor task. Previous research suggests that skill acquisition via MI is facilitated by repetitive activation of brain regions in the sensorimotor network similar to that of motor execution, however this evidence is conflicting. Further, many studies do not control for overt muscle activity and thus the activation patterns reported for MI may be driven in part by actual movement. The purpose of the current research is to further establish MI as a secondary modality of skill acquisition by providing electrophysiological evidence of an overlap between brain areas recruited for motor execution and imagery. Non-disabled participants (N=18; 24.7±3.8 years) performed both execution and imagery of a unilateral sequence button-press task. Magnetoencephalography (MEG) was utilized to capture neural activity, while electromyography used to rigorously monitor muscle activity. Event-related synchronization/desynchronization (ERS/ERD) analysis was conducted in the beta frequency band (15-30 Hz). Whole head dual-state beamformer analysis was applied to MEG data and 3D t-tests were conducted after Talairach normalization. Source-level analysis showed that MI has similar patterns of spatial activity as ME, including activation of contralateral primary motor and somatosensory cortices. However, this activation is significantly less intense during MI (p<0.05). As well, activation during ME was more lateralized (i.e., within the contralateral hemisphere). These results confirm that ME and MI have similar spatial activation patterns. Thus, the current research provides direct electrophysiological evidence to further establish MI as a secondary form of skill acquisition.

  1. M-wave properties during progressive motor unit activation by transcutaneous stimulation.

    PubMed

    Farina, Dario; Blanchietti, Andrea; Pozzo, Marco; Merletti, Roberto

    2004-08-01

    The aim of this study was to interpret changes in experimentally recorded M waves with progressive motor unit (MU) activation based on simulation of the surface electromyogram. Activation order during transcutaneous electrical stimulation was analyzed by investigating M-wave average rectified value, spectral properties, and conduction velocity (CV) during electrically elicited contractions. M-waves were detected from the biceps brachii muscle of 10 healthy male subjects by a linear adhesive array of eight electrodes. Electrical stimulation was delivered to the motor point at either constant current intensity (40, 60, 80, and 100% of the supramaximal stimulation current) or with linearly increasing current. A model of surface electromyogram generation that varied activation order based on MU size and location was used to interpret the experimental results. From the experimental and model analysis, it was found that 1) MUs tended to be activated from low to high CV and from the superficial to the deep muscle layers with increasing transcutaneous electrical stimulation of the biceps brachii muscle, and 2) characteristic spectral frequencies of the M-wave were affected by many factors other than average CV (such as the activation order by MU location or the spread of the MU innervation zones and CVs), thus decreasing with a concomitant increase in CV during progressive MU activation.

  2. Actin network architecture can determine myosin motor activity.

    PubMed

    Reymann, Anne-Cécile; Boujemaa-Paterski, Rajaa; Martiel, Jean-Louis; Guérin, Christophe; Cao, Wenxiang; Chin, Harvey F; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2012-06-01

    The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.

  3. Modulation of motor cortex neuronal activity and motor behavior during subthalamic nucleus stimulation in the normal primate.

    PubMed

    Johnson, Luke A; Xu, Weidong; Baker, Kenneth B; Zhang, Jianyu; Vitek, Jerrold L

    2015-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical therapy for advanced Parkinson's disease (PD). An emerging hypothesis is that the therapeutic benefit of DBS is derived from direct modulation of primary motor cortex (M1), yet little is known about the influence of STN DBS on individual neurons in M1. We investigated the effect of STN DBS, delivered at discrete interval intensities (20, 40, 60, 80, and 100%) of corticospinal tract threshold (CSTT), on motor performance and M1 neuronal activity in a naive nonhuman primate. Motor performance during a food reach and retrieval task improved during low-intensity stimulation (20% CSTT) but worsened as intensity approached the threshold for activation of corticospinal fibers (80% and 100% CSTT). To assess cortical effects of STN DBS, spontaneous, extracellular neuronal activity was collected from M1 neurons before, during, and after DBS at the same CSTT stimulus intensities. STN DBS significantly modulated the firing of a majority of M1 neurons; however, the direction of effect varied with stimulus intensity such that, at 20% CSTT, most neurons were suppressed, whereas at the highest stimulus intensities the majority of neurons were activated. At a population level, firing rates increased as stimulus intensity increased. These results show that STN DBS influences both motor performance and M1 neuronal activity systematically according to stimulus intensity. In addition, the unanticipated reduction in reach times suggests that STN DBS, at stimulus intensities lower than typically used for treatment of PD motor signs, can enhance normal motor performance.

  4. [The effect of different motor regimens modulating spontaneous activity on rat behavior].

    PubMed

    Kulikov, V P; Kiselev, V I; Konev, I V

    1993-01-01

    A method was developed of non-stressful modulation of spontaneous motor activity of rats. Restraint of mobility was found to inhibit spontaneous activity. Physiological stimulation of muscle activity by means of complication of food-procuring behaviour was accompanied by increase of spontaneous activity. Physiological stimulation of motor activity was characterized by stability of orienting-exploratory behaviour, emotional reactivity, expression of "freedom response", the best learning and working abilities of the animals. Regimes with imposing or restriction of muscle activity favoured the inhibition of spontaneous activity and the decrease of efficiency of adaptive behaviour. Motor regimes accompanied by increase of spontaneous activity were found to be optimal for adaptive behaviour.

  5. Motor unit regulation of mammalian pharyngeal dilator muscle activity.

    PubMed Central

    van Lunteren, E; Dick, T E

    1989-01-01

    The present study examined the cellular regulation of one of the pharyngeal dilator muscles, the geniohyoid, by assessing its motor unit (MU) behavior in anesthetized cats. During spontaneous breathing, MU that (a) were active during inspiration only (I-MU) and (b) were active during both inspiration and expiration (I/E-MU) were identified. I-MU had a later inspiratory onset time and a shorter duration of inspiratory firing than did I/E-MU (P less than 0.002 and P less than 0.0001, respectively). I-MU were usually quiescent whereas I/E-MU were usually active during the last 20% of inspiration. I/E-MU fired more rapidly (P less than 0.00001) and for relatively longer periods of time (P less than 0.00001) during inspiration than during expiration. End-expiratory airway occlusion (preventing lung expansion during inspiration) augmented the inspiratory activity of both I-MU and I/E-MU. Conversely, end-expiratory airway occlusion reduced the absolute and relative firing durations (P less than 0.002 and P less than 0.00002, respectively) and the firing frequency (P less than 0.001) of I/E-MU activity during expiration. These results indicate that (a) the complex pattern of pharyngeal dilator muscle activity is due to the integrated activity of a heterogeneous group of MU, (b) changes in the degree to which pharyngeal dilator muscles are active result from combinations of MU recruitment/decruitment and modulations of the frequency and duration of MU firing, and (c) gating of lung-volume afferent information occurs during the respiratory cycle. PMID:2760202

  6. Effect Anticipation Affects Perceptual, Cognitive, and Motor Phases of Response Preparation: Evidence from an Event-Related Potential (ERP) Study

    PubMed Central

    Harrison, Neil R.; Ziessler, Michael

    2016-01-01

    The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.’s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation. PMID:26858621

  7. Effect Anticipation Affects Perceptual, Cognitive, and Motor Phases of Response Preparation: Evidence from an Event-Related Potential (ERP) Study.

    PubMed

    Harrison, Neil R; Ziessler, Michael

    2016-01-01

    The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.'s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation.

  8. Brain Activity, Personality Traits and Affect: Electrocortical Activity in Reaction to Affective Film Stimuli

    NASA Astrophysics Data System (ADS)

    Makvand Hosseini, Sh.; Azad Fallah, P.; Rasoolzadeh Tabatabaei, S. K.; Ghannadyan Ladani, S. H.; Heise, C.

    We studied the patterns of activation over the cerebral cortex in reaction to affective film stimuli in four groups of extroverts, introverts, neurotics and emotionally stables. Measures of extraversion and neuroticism were collected and resting EEG was recorded from 40 right handed undergraduate female students (19-23) on one occasion for five 30s periods in baseline condition and in affective states. Mean log-transformed absolute alpha power was extracted from 12 electrode sites and analyzed. Patterns of activation were different in personality groups. Different patterns of asymmetries were observed in personality groups in reaction to affective stimuli. Results were partly consistent with approach and withdrawal model and provided supportive evidence for the role of right frontal asymmetry in negative affects in two groups (introverts and emotionally stables) as well as the role of right central asymmetry (increase on right and decrease on left) in active affective states (anxiety and happiness) in all personality groups. Results were also emphasized on the role of decrease activity relative to baseline in cortical regions (bilaterally in frontal and unilaterally in left parietal and temporal regions) in moderating of positive and negative emotion.

  9. Rate of Physical Growth and Its Affect on Head Start Children's Motor and Cognitive Development.

    ERIC Educational Resources Information Center

    Marcon, Rebecca A.

    In the United States, growth retardation is higher among low-income children, with adverse cognitive effects of undernutrition more prevalent when combined with poverty. This study examined anthropometric indicators of physical development and their relationship to motor and cognitive development in Head Start children. Motor integration and…

  10. Association between daily activities, process skills, and motor skills in community-dwelling patients after left hemiparetic stroke

    PubMed Central

    Ahn, Sinae

    2016-01-01

    [Purpose] The purpose of this study was to evaluate the relationships between daily activities, information processing, and motor skills in individuals with hemineglect after having a left hemiparetic stroke. [Subjects and Methods] The instrumental activities of daily living of 35 patients (22 male and 13 female; age: 57.1 ± 16.9 years) with hemineglect after having a left hemiparetic stroke were assessed by using three clinical measurement tools, including activity card sorting, assessment of motor and process skills, and the modified Barthel Index. [Results] The results of the regression analysis indicated that the patients’ processing skills in instrumental activities of daily living after having a left hemiparetic stroke were reduced. Participation in leisure and social activities was also affected as assessed by using the modified Barthel Index. [Conclusion] This study supports the clinical need for rehabilitation intervention after a left hemiparetic stroke to improve patients’ processing skills and independence in performing activities of daily living. PMID:27390426

  11. Motor overflow in children with attention-deficit/hyperactivity disorder is associated with decreased extent of neural activation in the motor cortex.

    PubMed

    Gaddis, Andrew; Rosch, Keri S; Dirlikov, Benjamin; Crocetti, Deana; MacNeil, Lindsey; Barber, Anita D; Muschelli, John; Caffo, Brian; Pekar, James J; Mostofsky, Stewart H

    2015-09-30

    Motor overflow is a developmental phenomenon that typically disappears by late childhood. Abnormal persistence of motor overflow is often present in children with attention-deficit/hyperactivity disorder (ADHD). This study employed functional magnetic resonance imaging (fMRI) during a finger-sequencing task to examine whether excessive motor overflow in children with ADHD is associated with decreased extent of motor circuit activation. Thirty-four right-handed children (18 typically developing controls, 16 ADHD) completed fMRI while performing a finger-sequencing task. Motor overflow was evaluated during a finger-sequencing task and a motor examination (the PANESS) performed outside the scanner. Diagnostic differences in behavioral measures of overflow and extent of activation in the contralateral and ipsilateral motor network ROIs were examined, along with correlations between overflow and extent of activation. Children with ADHD demonstrated greater overflow and lesser extent of activation in left primary motor cortex (BA4) and bilateral premotor cortex (BA6) and supplementary motor area (SMA) during right-hand finger-sequencing compared to controls. Decreased extent of primary motor and premotor activation correlated with increased hand-related overflow movements in children with ADHD but not controls. These findings suggest that overflow movements in children with ADHD may reflect decreased recruitment of neural circuitry involved in active inhibition of homologous motor circuitry unnecessary to task execution.

  12. Alterations in cognitive performance and affect-arousal state during fluctuations in motor function in Parkinson's disease.

    PubMed Central

    Brown, R G; Marsden, C D; Quinn, N; Wyke, M A

    1984-01-01

    Sixteen patients with idiopathic Parkinson's disease were selected who were all showing severe fluctuations in motor function ("on-off" phenomenon). Measures of cognitive function and of subjective affect/arousal state were taken on two occasions, once when "on" and once when "off". Twenty-five matched normal controls were also assessed on the same measures. Results revealed, on the average, a drop in cognitive function plus an adverse swing in affect/arousal state, in the patient group in the "off" condition, compared to the levels when "on". Analysis of the data suggested that the main factor associated with cognitive function when "off" was not the severity of disability but the level of affect/arousal. The fluctuations in cognitive function found tended to be mild relative to the severe changes in motor ability, and were present in only a proportion of patients. PMID:6736975

  13. Affect-specific activation of shared networks for perception and execution of facial expressions.

    PubMed

    Kircher, Tilo; Pohl, Anna; Krach, Sören; Thimm, Markus; Schulte-Rüther, Martin; Anders, Silke; Mathiak, Klaus

    2013-04-01

    Previous studies have shown overlapping neural activations for observation and execution or imitation of emotional facial expressions. These shared representations have been assumed to provide indirect evidence for a human mirror neuron system, which is suggested to be a prerequisite of action comprehension. We aimed at clarifying whether shared representations in and beyond human mirror areas are specifically activated by affective facial expressions or whether they are activated by facial expressions independent of the emotional meaning. During neuroimaging, participants observed and executed happy and non-emotional facial expressions. Shared representations were revealed for happy facial expressions in the pars opercularis, the precentral gyrus, in the superior temporal gyrus/medial temporal gyrus (MTG), in the pre-supplementary motor area and in the right amygdala. All areas showed less pronounced activation in the non-emotional condition. When directly compared, significant stronger neural responses emerged for happy facial expressions in the pre-supplementary motor area and in the MTG than for non-emotional stimuli. We assume that activation of shared representations depends on the affect and (social) relevance of the facial expression. The pre-supplementary motor area is a core-shared representation-structure supporting observation and execution of affective contagious facial expressions and might have a modulatory role during the preparation of executing happy facial expressions.

  14. cVEMP morphology changes with recording electrode position, but single motor unit activity remains constant.

    PubMed

    Rosengren, Sally M; Colebatch, James G; Borire, Adeniyi; Straumann, Dominik; Weber, Konrad P

    2016-04-15

    Cervical vestibular evoked myogenic potentials (cVEMPs) recorded over the lower quarter of the sternocleidomastoid (SCM) muscle in normal subjects may have opposite polarity to those recorded over the midpoint. It has thus been suggested that vestibular projections to the lower part of SCM might be excitatory rather than inhibitory. We tested the hypothesis that the SCM muscle receives both inhibitory and excitatory vestibular inputs. We recorded cVEMPs in 10 normal subjects with surface electrodes placed at multiple sites along the anterior (sternal) component of the SCM muscle. We compared several reference sites: sternum, ipsilateral and contralateral earlobes, and contralateral wrist. In five subjects, single motor unit responses were recorded at the upper, middle, and lower parts of the SCM muscle using concentric needle electrodes. The surface cVEMP had the typical positive-negative polarity at the midpoint of the SCM muscle. In all subjects, as the recording electrode was moved toward each insertion point, p13 amplitude became smaller and p13 latency increased, then the polarity inverted to a negative-positive waveform (n1-p1). Changing the reference site did not affect reflex polarity. There was a significant short-latency change in activity in 61/63 single motor units, and in each case this was a decrease or gap in firing, indicating an inhibitory reflex. Single motor unit recordings showed that the reflex was inhibitory along the entire SCM muscle. The cVEMP surface waveform inversion near the mastoid and sternal insertion points likely reflects volume conduction of the potential occurring with increasing distance from the motor point. PMID:26796756

  15. Altered Cerebral Perfusion in Executive, Affective, and Motor Networks During Adolescent Depression

    PubMed Central

    Ho, Tiffany C.; Wu, Jing; Shin, David D.; Liu, Thomas T.; Tapert, Susan F.; Yang, Guang; Connolly, Colm G.; Frank, Guido K.W.; Max, Jeffrey E.; Wolkowitz, Owen; Eisendrath, Stuart; Hoeft, Fumiko; Banerjee, Dipavo; Hood, Korey; Hendren, Robert L.; Paulus, Martin P.; Simmons, Alan N.; Yang, Tony T.

    2013-01-01

    Objective While substantial literature has reported regional cerebral blood flow (rCBF) abnormalities in adults with depression, these studies commonly necessitated the injection of radioisotopes into subjects. The recent development of arterial spin labeling (ASL), however, allows for noninvasive measurements of rCBF. Currently, no published ASL studies have examined cerebral perfusion in adolescents with depression. Thus, the aim of the present study was to examine baseline cerebral perfusion in adolescent depression using a newly developed ASL technique: pseudocontinuous arterial spin labeling (PCASL). Method 25 medication-naive adolescents (ages 13–17 years) diagnosed with major depressive disorder (MDD) and 26 well-matched controls underwent functional magnetic resonance imaging. Baseline rCBF was measured via a novel PCASL method that optimizes tagging efficiency. Results Voxel-based whole brain analyses revealed significant frontal, limbic, paralimbic, and cingulate hypoperfusion in the group with depression (p<0.05, corrected). Hyperperfusion was also observed within the subcallosal cingulate, putamen, and fusiform gyrus (p<0.05, corrected). Similarly, region-of-interest analyses revealed amygdalar and insular hypoperfusion in the group with depression, as well as hyperperfusion in the putamen and superior insula (p<0.05, corrected). Conclusions Adolescents with depression and healthy adolescents appear to differ on rCBF in executive, affective, and motor networks. Dysfunction in these regions may contribute to the cognitive, emotional, and psychomotor symptoms commonly present in adolescent depression. These findings point to possible biomarkers for adolescent depression that could inform early interventions and treatments and establishes a methodology for using PCASL to noninvasively measure rCBF in clinical and healthy adolescent populations. PMID:24074474

  16. Intranasal dopamine application increases dopaminergic activity in the neostriatum and nucleus accumbens and enhances motor activity in the open field.

    PubMed

    de Souza Silva, M A; Topic, B; Huston, J P; Mattern, C

    2008-03-01

    Dopamine (DA) plays an important role in a number of behavioral processes and neurological disorders. The intranasal administration of DA provides improved brain penetrability in comparison to systemic administration. We investigated the effects of intranasal administration of DA on the activity of dopaminergic neurons of the mesostriatal and mesolimbic systems and on motor activity. Rats previously implanted with guide-cannulae in the neostriatum (NS) and nucleus accumbens (NAc) were submitted to microdialysis procedure under urethane anesthesia. Vehicle or DA (0.03, 0.3, or 3.0 mg/kg) was administered bilaterally into the nostrils. In a separate study, animals received an intraperitoneal (i.p.) injection of vehicle or DA (0.03, 0.3, 3.0, or 30.0 mg/kg). Samples were collected every 10 min and analyzed for the content of DA and metabolites using high-performance liquid chromatography. For the open field study, rats were given intranasal vehicle or DA (0.03, 0.3, or 3.0 mg/kg) and placed into the field for 30 min. Motor activity (locomotion and rearing) and grooming were analyzed in blocks of 10 min using Ethovision. Intranasal DA (3.0 mg/kg) significantly increased DA levels in the NS and NAc immediately after administration. A comparable effect was obtained only after i.p. administration of 30 mg/kg DA. In the open field, the 3.0 mg/kg dose significantly decreased grooming behavior in the second 10 min interval and significantly increased locomotor activity in the third 10 min interval. The data indicate that intranasal administration of DA can influence dopaminergic functions and motor activity, and has a potential application in the therapy of diseases affecting the dopaminergic system.

  17. Multimotor transport in a system of active and inactive kinesin-1 motors.

    PubMed

    Scharrel, Lara; Ma, Rui; Schneider, René; Jülicher, Frank; Diez, Stefan

    2014-07-15

    Long-range directional transport in cells is facilitated by microtubule-based motor proteins. One example is transport in a nerve cell, where small groups of motor proteins, such as kinesins and cytoplasmic dynein, work together to ensure the supply and clearance of cellular material along the axon. Defects in axonal transport have been linked to Alzheimer's and other neurodegenerative diseases. However, it is not known in detail how multimotor-based cargo transport is impaired if a fraction of the motors are defective. To mimic impaired multimotor transport in vitro, we performed gliding motility assays with varying fractions of active kinesin-1 motors and inactive kinesin-1 motor mutants. We found that impaired transport manifests in multiple motility regimes: 1), a fast-motility regime characterized by gliding at velocities close to the single-molecule velocity of the active motors; 2), a slow-motility regime characterized by gliding at close-to zero velocity or full stopping; and 3), a regime in which fast and slow motilities coexist. Notably, the transition from the fast to the slow regime occurred sharply at a threshold fraction of active motors. Based on single-motor parameters, we developed a stochastic model and a mean-field theoretical description that explain our experimental findings. Our results demonstrate that impaired multimotor transport mostly occurs in an either/or fashion: depending on the ratio of active to inactive motors, transport is either performed at close to full speed or is out of action.

  18. Activation of thalamus in motor imagery results from gating by hypnosis.

    PubMed

    Müller, Katharina; Bacht, Katrin; Prochnow, Denise; Schramm, Stefanie; Seitz, Rüdiger J

    2013-02-01

    The ability to mentally imagine the performance of automatic movements has been well-established being employed in sports and physiotherapy as a tool for motor learning and rehabilitation. This is probably mediated by engagement of the same brain areas as during real motor performance. Here we investigated the effect of hypnotic trance on the cerebral activation pattern engaged in motor imagery in 16 healthy, right-handed subjects using fMRI. Motor imagery as compared with rest was related to activations in the left medial frontal areas (preSMA/SMA), prefrontal- and frontal areas, putamen and inferior parietal areas. When compared with performance of the same movements motor imagery resulted in activation of the left middle frontal cortex, precuneus, and posterior cingulate. Under hypnotic trance there was one extra-activation in the left thalamus which occurred specifically in the motor imagery condition. The regional beta indices were highly correlated among the areas of the cortical-subcortical motor network. Our data accord with the notion that hypnotic trance enhances the motor control circuit engaged in motor imagery by modulating the gating function of the thalamus.

  19. Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation

    PubMed Central

    Hoffman, M S; Mitchell, G S

    2011-01-01

    Abstract Acute intermittent hypoxia elicits a form of serotonin-dependent respiratory plasticity known as phrenic long term facilitation (pLTF). Episodic spinal serotonin-2 (5-HT2) receptor activation on or near phrenic motor neurons is necessary for pLTF. A hallmark of pLTF is the requirement for serotonin-dependent synthesis of brain-derived neurotrophic factor (BDNF), and activation of its high affinity receptor, TrkB. Activation of spinal Gs protein-coupled adenosine 2A receptors (GsPCRs) elicits a unique form of long-lasting phrenic motor facilitation (PMF), but via unique mechanisms (BDNF independent TrkB trans-activation). We hypothesized that other GsPCRs elicit PMF, specifically serotonin-7 (5-HT7) receptors, which are expressed in phrenic motor neurons. Cervical spinal (C4) injections of a selective 5-HT7 receptor agonist, AS-19 (10 μm, 5 μl; 3 × 5 min), in anaesthetized, vagotomized and ventilated male Sprague–Dawley rats elicited long-lasting PMF (>120 min), an effect prevented by pretreatment with a 5-HT7 receptor antagonist (SB 269970; 5 mm, 7 μl). GsPCR activation ‘trans-activates’ TrkB by increasing synthesis of an immature TrkB isoform. Spinal injection of a TrkB inhibitor (k252a) and siRNAs that prevent TrkB (but not BDNF) mRNA translation both blocked 5-HT7 agonist-induced PMF, confirming a requirement for TrkB synthesis and activity. k252a affected late PMF (≥90 min) only. Spinal inhibition of the PI3K/AKT pathway blocked 5-HT7 agonist-induced PMF, whereas MEK/ERK inhibition delayed, but did not block, PMF. An understanding of signalling mechanisms giving rise to PMF may guide development of novel therapeutic strategies to treat ventilatory control disorders associated with respiratory insufficiency, such as spinal injury and motor neuron disease. PMID:21242254

  20. Effects of posture-related changes in motor cortical output on central oscillatory activity of pathological origin in humans.

    PubMed

    Mazzocchio, Riccardo; Gelli, Francesca; Del Santo, Francesco; Popa, Traian; Rossi, Alessandro

    2008-08-01

    Changes in shoulder position influence motor cortical outflow to Abductor Digiti Minimi (ADM) muscle in healthy humans. We examined whether these changes may affect finger tremor of central origin. Subjects had their shoulder positioned in two different configurations: 30 degrees horizontal adduction (ANT) and 30 degrees horizontal abduction (POST) with respect to neutral position at 0 degrees in the horizontal plane. In healthy subjects, patients with Parkinsonian tremor (PT) and essential tremor (ET), transcranial magnetic stimulation (TMS) of the motor cortex was performed under resting and active conditions in ANT and POST. PT, ET and physiological tremor (PhT) were studied by accelerometric recordings from the little finger and by EMG activity from ADM and Extensor Carpi Radialis (ECR) in ANT and POST. In healthy and ET subjects, ADM motor evoked responses (MEPs) to TMS were smaller under resting, but larger under active conditions in POST. In PT patients, MEPs showed no difference at rest in ANT but were lower during ADM activation in POST. PT decreased, whereas ET increased in POST. These changes were paralleled by a decrease in PT EMG power and an increase in ET EMG power in POST. In PhT, there was no difference in tremor amplitude between ANT and POST. PT decrease and ET increase in POST parallel the changes in motor cortical outflow to ADM induced by modification of shoulder position under active conditions. This may be evidence for altered premotor-motor interaction at cortical level in PT, and for a role of the motor cortex in generating ET. PMID:18597745

  1. Ipsilesional motor-evoked potential absence in pediatric hemiparesis impacts tracking accuracy of the less affected hand.

    PubMed

    Cassidy, Jessica M; Carey, James R; Lu, Chiahao; Krach, Linda E; Feyma, Tim; Durfee, William K; Gillick, Bernadette T

    2015-12-01

    This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional (I/C) volume ratio for the primary motor cortex (M1) and posterior limb of internal capsule (PLIC) were done using two-sample t-tests. Participants showing an ipsilesional MEP response demonstrated superior tracking performance from the less affected hand (p=0.016) and significantly higher I/C volume ratios for M1 (p=0.028) and PLIC (p=0.005) compared to participants without an ipsilesional MEP response. Group differences in finger tracking accuracy from the affected hand were not significant. These results highlight differentiating factors amongst children with congenital hemiparesis showing contrasting MEP responses: less affected hand performance and preserved M1 and PLIC volume. Along with MEP status, these factors pose important clinical implications in pediatric stroke rehabilitation. These findings may also reflect competitive developmental processes associated with the preservation of affected hand function at the expense of some function in the less affected hand. PMID:26426515

  2. A positive association between active lifestyle and hemispheric lateralization for motor control and learning in older adults.

    PubMed

    Wang, Jinsung; D'Amato, Arthur; Bambrough, Jennifer; Swartz, Ann M; Miller, Nora E

    2016-11-01

    Physical activity (PA) is well known to have general health benefits for older adults, but it is unclear whether it can also positively affect brain function involved in motor control and learning. We have previously shown that interlimb transfer of visuomotor adaptation occurs asymmetrically in young adults, while that occurs symmetrically in older adults, which suggests that the lateralized function of each hemisphere during motor tasks is diminished with aging. Here, we investigated the association between the level of PA and hemispheric motor lateralization by comparing the pattern of interlimb transfer following visuomotor adaptation between physically active and inactive older adults. Subjects were divided into two groups based on their PA level (active, inactive). They were further divided into two groups, such that a half of the subjects in each group adapted to a 30° rotation during targeted reaching movements with the left arm first, then with the right arm; and the other half with the right arm first, then with the left arm. Results indicated asymmetrical transfer (from left to right only) in the active subjects, whereas symmetrical transfer (from left to right, and vice versa) was observed in the inactive subjects. These findings suggest that older adults who maintain active lifestyle have a central nervous system that is more intact in terms of its lateralized motor function as compared with those who are inactive. PMID:27481694

  3. Motor coordination as predictor of physical activity in childhood.

    PubMed

    Lopes, V P; Rodrigues, L P; Maia, J A R; Malina, R M

    2011-10-01

    This study considers relationships among motor coordination (MC), physical fitness (PF) and physical activity (PA) in children followed longitudinally from 6 to 10 years. It is hypothesized that MC is a significant and primary predictor of PA in children. Subjects were 142 girls and 143 boys. Height, weight and skinfolds; PA (Godin-Shephard questionnaire); MC (Körperkoordination Test für Kinder); and PF (five fitness items) were measured. Hierarchical linear modeling with MC and PF as predictors of PA was used. The retained model indicated that PA at baseline differed significantly between boys (48.3 MET/week) and girls (40.0 MET/week). The interaction of MC and 1 mile run/walk had a positive influence on level of PA. The general trend for a decrease in PA level across years was attenuated or amplified depending on initial level of MC. The estimated rate of decline in PA was negligible for children with higher levels of MC at 6 years, but was augmented by 2.58 and 2.47 units each year, respectively, for children with low and average levels of initial MC. In conclusion MC is an important predictor of PA in children 6-10 years of age.

  4. Stem cell cytoskeleton is slaved to active motors

    NASA Astrophysics Data System (ADS)

    Rehfeldt, Florian; Brown, Andre; Engler, Adam; Discher, Dennis

    2007-03-01

    Cells feel their physical microenvironment through their adhesion and respond to it in various ways. Indeed, matrix elasticity can even guide the differentiation of human adult mesenchymal stem cells (MSCs) [Engler et al. Cell 2006]. Sparse cultures of MSCs on elastic collagen--coated substrates that are respectively soft, stiff, or extremely stiff were shown to induce neurogenesis, myogenesis, and osteogenesis. Lineage commitment was evaluated by morphological analysis, protein expression profiles, and transcription microarrays. Differentiation could be completely blocked with a specific non-muscle myosin II (NMM II) inhibitor, suggesting that contractile motor activity is essential for the cells to sense matrix elasticity. Current studies by AFM and near-field fluorescence imaging show that NMM II inhibition in stem cells on rigid glass surfaces promotes actin-rich dendritic outgrowth resembling neurite extension. Dynamic cell studies have been conducted to elucidate the complex molecular interplay of the contractile apparatus in response to selected physical and biochemical stimuli. Additional insight is being gained by using AFM to investigate the local elasticity of the cell's cytoskeletal force sensing machinery.

  5. Remote control of molecular motors using light-activated gearshifting

    NASA Astrophysics Data System (ADS)

    Bryant, Zev

    2013-03-01

    Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in vivo and provide sophisticated components for directed nanoscale transport in vitro. We previously constructed myosin motors that respond to a change in [Ca++] by reversing their direction of motion along the polarized actin filament. To expand the potential applications of controllable molecular motors, we have now developed myosins that shift gears in response to blue light illumination. Light is a versatile control signal that can be readily modulated in time and space, and is generally orthogonal to cellular signaling. Using structure-guided protein engineering, we have incorporated LOV photoreceptor domains into the lever arms of chimeric myosins, resulting in motors that robustly speed up, slow down, or switch directions upon illumination. These genetically encoded motors should be directly deployable inside living cells. Our successful designs include constructs based on two different myosin classes, and we show that optical velocity control can be implemented in motors that move at microns/sec speeds, enabling practical biological and bioengineering applications.

  6. Factors affecting the severity of motor vehicle traffic crashes involving elderly drivers in Ontario.

    PubMed

    Zhang, J; Lindsay, J; Clarke, K; Robbins, G; Mao, Y

    2000-01-01

    A population-based cross-sectional study was conducted to examine factors affecting the severity of motor vehicle traffic crashes (MVTCs) involving elderly drivers in Ontario. The study population included drivers aged 65 and over involved in injury-producing MVTCs between 1988 and 1993 on Ontario public roads. Information was obtained from the Canadian Traffic Accident Information Databank (TRAID) compiled from police reports. The severity of MVTC was classified as fatal, major, minor or minimal. Comparisons between fatal-, major-, minor- and minimal-injury crashes were conducted. Percentage distributions of crashes at each level of severity involving elderly drivers were examined according to specific factors and tested using the X2 test. Multivariate unconditional logistic regression was used to calculate the estimated relative risk as odds ratios (ORs) while controlling for confounding factors. A number of factors were significantly related to the increased risk of fatal-injury in crashes compared with a reference category for each variable. These included age (OR = 1.4 for 70-79 and OR = 2.3 for 80 + ), sex (OR = 1.4 for males), failing to yield right-of-way/disobeying traffic signs (OR = 1.7), non-use of seat belts (OR = 4.0), ejection from vehicle (OR = 11.3), intersection without traffic controls (OR = 1.7), roads with higher speed limits (OR = 7.9 for 70-90 km/h; OR= 5.8 for 100 km/h), snowy weather (OR= 1.6), head-on collisions (OR=55.1), two-vehicle turning collisions (OR = 3.1 for left-turn, OR = 8.7 for right-turn), overtaking (OR = 5.6), and changing lanes (OR = 2.1). Adverse medical/physical conditions increased the risk of fatality by a factor of 5 for drivers 75-79 years of age and a factor of 3.5 for those 80 years and over. However, in the age group 65-74, medical/physical condition did not appear to be related to risk of fatality. Similar but weaker associations between these factors and risk of major- and minor-injury in crashes were also

  7. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex.

    PubMed

    Di Lazzaro, Vincenzo; Rothwell, John C

    2014-10-01

    A number of methods have been developed recently that stimulate the human brain non-invasively through the intact scalp. The most common are transcranial magnetic stimulation (TMS), transcranial electric stimulation (TES) and transcranial direct current stimulation (TDCS). They are widely used to probe function and connectivity of brain areas as well as therapeutically in a variety of conditions such as depression or stroke. They are much less focal than conventional invasive methods which use small electrodes placed on or in the brain and are often thought to activate all classes of neurones in the stimulated area. However, this is not true. A large body of evidence from experiments on the motor cortex shows that non-invasive methods of brain stimulation can be surprisingly selective and that adjusting the intensity and direction of stimulation can activate different classes of inhibitory and excitatory inputs to the corticospinal output cells. Here we review data that have elucidated the action of TMS and TES, concentrating mainly on the most direct evidence available from spinal epidural recordings of the descending corticospinal volleys. The results show that it is potentially possible to test and condition specific neural circuits in motor cortex that could be affected differentially by disease, or be used in different forms of natural behaviour. However, there is substantial interindividual variability in the specificity of these protocols. Perhaps in the future it will be possible, with the advances currently being made to model the electrical fields induced in individual brains, to develop forms of stimulation that can reliably target more specific populations of neurones, and open up the internal circuitry of the motor cortex for study in behaving humans. PMID:25172954

  8. ACR-12 ionotropic acetylcholine receptor complexes regulate inhibitory motor neuron activity in Caenorhabditis elegans.

    PubMed

    Petrash, Hilary A; Philbrook, Alison; Haburcak, Marian; Barbagallo, Belinda; Francis, Michael M

    2013-03-27

    Heterogeneity in the composition of neurotransmitter receptors is thought to provide functional diversity that may be important in patterning neural activity and shaping behavior (Dani and Bertrand, 2007; Sassoè-Pognetto, 2011). However, this idea has remained difficult to evaluate directly because of the complexity of neuronal connectivity patterns and uncertainty about the molecular composition of specific receptor types in vivo. Here we dissect how molecular diversity across receptor types contributes to the coordinated activity of excitatory and inhibitory motor neurons in the nematode Caenorhabditis elegans. We show that excitatory and inhibitory motor neurons express distinct populations of ionotropic acetylcholine receptors (iAChRs) requiring the ACR-12 subunit. The activity level of excitatory motor neurons is influenced through activation of nonsynaptic iAChRs (Jospin et al., 2009; Barbagallo et al., 2010). In contrast, synaptic coupling of excitatory and inhibitory motor neurons is achieved through a second population of iAChRs specifically localized at postsynaptic sites on inhibitory motor neurons. Loss of ACR-12 iAChRs from inhibitory motor neurons leads to reduced synaptic drive, decreased inhibitory neuromuscular signaling, and variability in the sinusoidal motor pattern. Our results provide new insights into mechanisms that establish appropriately balanced excitation and inhibition in the generation of a rhythmic motor behavior and reveal functionally diverse roles for iAChR-mediated signaling in this process. PMID:23536067

  9. Neural Activation in Humans during a Simple Motor Task Differs between BDNF Polymorphisms

    PubMed Central

    Cárdenas-Morales, Lizbeth; Grön, Georg; Sim, Eun-Jin; Stingl, Julia C.; Kammer, Thomas

    2014-01-01

    The BDNF Val66Met polymorphism has been linked to decreased synaptic plasticity involved in motor learning tasks. We investigated whether individual differences in this polymorphism may promote differences in neural activity during a two-alternative forced-choice motor performance. In two separate sessions, the BOLD signal from 22 right-handed healthy men was measured during button presses with the left and right index finger upon visual presentation of an arrow. 11 men were Val66Val carriers (ValVal group), the other 11 men carried either the Val66Met or the Met66Met polymorphism (Non-ValVal group). Reaction times, resting and active motor thresholds did not differ between ValVal and Non-ValVal groups. Compared to the ValVal group the Non-ValVal group showed significantly higher BOLD signals in the right SMA and motor cingulate cortex during motor performance. This difference was highly consistent for both hands and across all four sessions. Our finding suggests that this BDNF polymorphism may not only influence complex performance during motor learning but is already associated with activation differences during rather simple motor tasks. The higher BOLD signal observed in Non-ValVal subjects suggests the presence of cumulative effects of the polymorphism on the motor system, and may reflect compensatory functional activation mediating equal behavioral performance between groups. PMID:24828051

  10. Children Move to Learn: A Guide to Planning Gross Motor Activities.

    ERIC Educational Resources Information Center

    Kline, Judy

    This guide for persons working with young children with gross motor delays is designed to be used in the assessment of gross motor abilities, the detection and identification of delays and the planning and implementation of appropriate Individual Activity Plans (IAP) for correcting the delays. Observation guidelines in the form of questions (Can…

  11. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  12. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  13. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  14. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  15. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  16. Effects of VIP and NO on the motor activity of vascularly perfused rat proximal colon.

    PubMed

    Kumano, K; Fujimura, M; Oshima, S; Yamamoto, H; Hayashi, N; Nakamura, T; Fujimiya, M

    2001-01-01

    The effects of vasoactive intestinal polypeptide (VIP) and nitric oxide (NO) on the motor activity of the rat proximal colon were examined in an ex vivo model of vascularly perfused rat proximal colon. VIP reduced motor activity and this inhibitory effect was not altered by either atropine, hexamethonium, tetrodotoxin (TTX) nor TTX plus acetylcholine (ACh), but was completely antagonized by NO synthase inhibitor N(G)-nitro-L-arginine (L-NA) and by VIP receptor antagonist, VIP(10-28). These results suggest that VIP may exert a direct inhibitory effect on the motor activity of the rat proximal colon via a VIP receptor located on the smooth muscle and this effect is mediated by NO but not by cholinergic pathways. Atropine and hexamethonium reduced but ACh stimulated motor activity and the effect of ACh was not changed by TTX, suggesting that the cholinergic pathway may exert a direct stimulatory effect on motor activity. Single injection of TTX, VIP(10-28) or L-NA induced a marked increase in motor activity, suggesting that the motor activity of rat proximal colon is tonically suppressed by VIP and NO generating pathways, and elimination of inhibitory neurotransmission by TTX may induce an abnormal increase of the motor activity. The interaction between VIP and NO in regulation of motor activity was further examined by a measurement of NO release from vascularly perfused rat proximal colon. Results showed that NO release was significantly increased during infusion of VIP and this response was reversed by L-NA. These results suggest that VIP generating neurons may inhibit colonic motility by stimulating endogenous NO production in either smooth muscle cells or nerve terminals.

  17. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele

    PubMed Central

    Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-01-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia–cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia–cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons (‘mirror neurons’) in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia–cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger

  18. Bridging music and speech rhythm: rhythmic priming and audio-motor training affect speech perception.

    PubMed

    Cason, Nia; Astésano, Corine; Schön, Daniele

    2015-02-01

    Following findings that musical rhythmic priming enhances subsequent speech perception, we investigated whether rhythmic priming for spoken sentences can enhance phonological processing - the building blocks of speech - and whether audio-motor training enhances this effect. Participants heard a metrical prime followed by a sentence (with a matching/mismatching prosodic structure), for which they performed a phoneme detection task. Behavioural (RT) data was collected from two groups: one who received audio-motor training, and one who did not. We hypothesised that 1) phonological processing would be enhanced in matching conditions, and 2) audio-motor training with the musical rhythms would enhance this effect. Indeed, providing a matching rhythmic prime context resulted in faster phoneme detection, thus revealing a cross-domain effect of musical rhythm on phonological processing. In addition, our results indicate that rhythmic audio-motor training enhances this priming effect. These results have important implications for rhythm-based speech therapies, and suggest that metrical rhythm in music and speech may rely on shared temporal processing brain resources. PMID:25553343

  19. How Can a Traditional Greek Dances Programme Affect the Motor Proficiency of Pre-School Children?

    ERIC Educational Resources Information Center

    Venetsanou, Fotini; Kambas, Antonis

    2004-01-01

    The purpose of this article is to investigate the effect of an introductory traditional Greek dances programme on the motor proficiency development of pre-school-age children. The sample of this research consisted of 66 students (36 boys and 30 girls) attending public kindergarten in Argolida prefecture (Greece), aged 4-6 years (X = 59.79 plus or…

  20. Non-motorized voluntary running does not affect experimental and spontaneous metastasis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the effects of non-motorized voluntary running on experimental metastasis of B16BL/6 melanoma and spontaneous metastasis of Lewis lung carcinoma (LLC) in male C57BL/6 mice. After 9 weeks of running, mice (n = 30 per group) received an intravenous injection of B16BL/6 c...

  1. Bridging music and speech rhythm: rhythmic priming and audio-motor training affect speech perception.

    PubMed

    Cason, Nia; Astésano, Corine; Schön, Daniele

    2015-02-01

    Following findings that musical rhythmic priming enhances subsequent speech perception, we investigated whether rhythmic priming for spoken sentences can enhance phonological processing - the building blocks of speech - and whether audio-motor training enhances this effect. Participants heard a metrical prime followed by a sentence (with a matching/mismatching prosodic structure), for which they performed a phoneme detection task. Behavioural (RT) data was collected from two groups: one who received audio-motor training, and one who did not. We hypothesised that 1) phonological processing would be enhanced in matching conditions, and 2) audio-motor training with the musical rhythms would enhance this effect. Indeed, providing a matching rhythmic prime context resulted in faster phoneme detection, thus revealing a cross-domain effect of musical rhythm on phonological processing. In addition, our results indicate that rhythmic audio-motor training enhances this priming effect. These results have important implications for rhythm-based speech therapies, and suggest that metrical rhythm in music and speech may rely on shared temporal processing brain resources.

  2. Melatonin ineffective in neuronal ceroid lipofuscinosis patients with fragmented or normal motor activity rhythms recorded by wrist actigraphy.

    PubMed

    Hätönen, T; Kirveskari, E; Heiskala, H; Sainio, K; Laakso, M L; Santavuori, P

    1999-04-01

    Melatonin was tested as a sleeping pill in five patients with neuronal ceroid lipofuscinoses. The single-blind, placebo-controlled study consisted of motor activity recordings, sleep logs, and administration of placebo or melatonin (2.5 or 5 mg). Daily motor activity rhythms were measured by wrist actigraphy during four 7-day periods (baseline, placebo, melatonin 2.5 mg, and melatonin 5 mg). The placebo or melatonin was administered in the evenings for 3 weeks, and the recordings were made during the last week of the 3-week treatment. Sleep logs were kept by the caregivers during the recordings. Based on period analyses, the activity recordings were evaluated to display a normal (24-h) or fragmented rhythm. Three patients had normal motor activity patterns during the baseline recordings, and administration of placebo or melatonin did not affect their rest/activity rhythms. Two patients had abnormally fragmented activity rhythms during the baseline periods, and administration of placebo or melatonin did not induce synchronization. According to the actigraphic data, there were no changes in activity rhythms resulting from administration of melatonin. However, based on the observations, three families reported that melatonin slightly improved the sleep quality of the patients. These controversial findings show the difficulties involved in specifying the role of melatonin in modulating sleep. Thus, we conclude that more evidence is required before the significance of melatonin as a sleeping pill is defined. PMID:10191137

  3. Melatonin ineffective in neuronal ceroid lipofuscinosis patients with fragmented or normal motor activity rhythms recorded by wrist actigraphy.

    PubMed

    Hätönen, T; Kirveskari, E; Heiskala, H; Sainio, K; Laakso, M L; Santavuori, P

    1999-04-01

    Melatonin was tested as a sleeping pill in five patients with neuronal ceroid lipofuscinoses. The single-blind, placebo-controlled study consisted of motor activity recordings, sleep logs, and administration of placebo or melatonin (2.5 or 5 mg). Daily motor activity rhythms were measured by wrist actigraphy during four 7-day periods (baseline, placebo, melatonin 2.5 mg, and melatonin 5 mg). The placebo or melatonin was administered in the evenings for 3 weeks, and the recordings were made during the last week of the 3-week treatment. Sleep logs were kept by the caregivers during the recordings. Based on period analyses, the activity recordings were evaluated to display a normal (24-h) or fragmented rhythm. Three patients had normal motor activity patterns during the baseline recordings, and administration of placebo or melatonin did not affect their rest/activity rhythms. Two patients had abnormally fragmented activity rhythms during the baseline periods, and administration of placebo or melatonin did not induce synchronization. According to the actigraphic data, there were no changes in activity rhythms resulting from administration of melatonin. However, based on the observations, three families reported that melatonin slightly improved the sleep quality of the patients. These controversial findings show the difficulties involved in specifying the role of melatonin in modulating sleep. Thus, we conclude that more evidence is required before the significance of melatonin as a sleeping pill is defined.

  4. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits.

    PubMed

    Patel, Jyoti C; Rossignol, Elsa; Rice, Margaret E; Machold, Robert P

    2012-01-01

    Dopamine transmission is critical for exploratory motor behaviour. A key regulator is acetylcholine; forebrain acetylcholine regulates striatal dopamine release, whereas brainstem cholinergic inputs regulate the transition of dopamine neurons from tonic to burst firing modes. How these sources of cholinergic activity combine to control dopamine efflux and exploratory motor behaviour is unclear. Here we show that mice lacking total forebrain acetylcholine exhibit enhanced frequency-dependent striatal dopamine release and are hyperactive in a novel environment, whereas mice lacking rostral brainstem acetylcholine are hypoactive. Exploratory motor behaviour is normalized by the removal of both cholinergic sources. Involvement of dopamine in the exploratory motor phenotypes observed in these mutants is indicated by their altered sensitivity to the dopamine D2 receptor antagonist raclopride. These results support a model in which forebrain and brainstem cholinergic systems act in tandem to regulate striatal dopamine signalling for proper control of motor activity.

  5. The affective modulation of motor awareness in anosognosia for hemiplegia: Behavioural and lesion evidence

    PubMed Central

    Besharati, Sahba; Forkel, Stephanie J.; Kopelman, Michael; Solms, Mark; Jenkinson, Paul M.; Fotopoulou, Aikaterini

    2014-01-01

    The possible role of emotion in anosognosia for hemiplegia (i.e., denial of motor deficits contralateral to a brain lesion), has long been debated between psychodynamic and neurocognitive theories. However, there are only a handful of case studies focussing on this topic, and the precise role of emotion in anosognosia for hemiplegia requires empirical investigation. In the present study, we aimed to investigate how negative and positive emotions influence motor awareness in anosognosia. Positive and negative emotions were induced under carefully-controlled experimental conditions in right-hemisphere stroke patients with anosognosia for hemiplegia (n = 11) and controls with clinically normal awareness (n = 10). Only the negative, emotion induction condition resulted in a significant improvement of motor awareness in anosognosic patients compared to controls; the positive emotion induction did not. Using lesion overlay and voxel-based lesion-symptom mapping approaches, we also investigated the brain lesions associated with the diagnosis of anosognosia, as well as with performance on the experimental task. Anatomical areas that are commonly damaged in AHP included the right-hemisphere motor and sensory cortices, the inferior frontal cortex, and the insula. Additionally, the insula, putamen and anterior periventricular white matter were associated with less awareness change following the negative emotion induction. This study suggests that motor unawareness and the observed lack of negative emotions about one's disabilities cannot be adequately explained by either purely motivational or neurocognitive accounts. Instead, we propose an integrative account in which insular and striatal lesions result in weak interoceptive and motivational signals. These deficits lead to faulty inferences about the self, involving a difficulty to personalise new sensorimotor information, and an abnormal adherence to premorbid beliefs about the body. PMID:25481471

  6. Evidence of central cholinergic mechanisms in the appearance of affective aggressive behaviour: dissociation of aggression from autonomic and motor phenomena.

    PubMed

    Beleslin, D B; Samardzić, R

    1979-04-11

    Carbachol, muscarine, eserine and neostigmine injected into the cerebral ventricles of conscious cats evoked emotional behaviour with aggression, autonomic and motor phenomena as well as clonic-tonic convulsions. The main and the most impressive feature of the gross behavioural effects of intraventricular carbachol, muscarine, eserine and neostigmine in conscious cats was the affective type of aggression. However, neostigmine produced aggressive behaviour only in about one-quarter of the experiments. After intraventricular hemicholinium-3 and triethylcholine carbachol, muscarine, eserine and neostigmine elicited autonomic and motor phenomena. In these cats cholinomimetics and anticholinesterases evoked only slight hissing and snarling. Choline administered into the cerebral ventricles of hemicholinium-3 and triethylcholine-treated cats restored the emotional behaviour with aggression, autonomic and motor phenomena as well as clonic-tonic convulsions to intraventricular carbachol, muscarine, eserine and neostigmine. The restored gross behavioural changes to eserine were almost of the same intensity, while those to carbachol and muscarine were of lesser intensity than in control cats. From these experiments it is concluded that cholinergic neurones are involved in the appearance of the affective type of aggression resulting from intraventricular carbachol, muscarine, eserine and neostigmine. PMID:111280

  7. Patterns of presynaptic activity and synaptic strength interact to produce motor output.

    PubMed

    Wright, Terrence Michael; Calabrese, Ronald L

    2011-11-30

    Motor neuron activity is coordinated by premotor networks into a functional motor pattern by complex patterns of synaptic drive. These patterns combine both the temporal pattern of spikes of the premotor network and the profiles of synaptic strengths (i.e., conductances). Given the complexity of premotor networks in vertebrates, it has been difficult to ascertain the relative contributions of temporal patterns and synaptic strength profiles to the motor patterns observed in these animals. Here, we use the leech (Hirudo sp.) heartbeat central pattern generator (CPG), in which we can measure both the temporal pattern and the synaptic strength profiles of the entire premotor network and the motor outflow in individual animals. In this system, a series of motor neurons all receive input from the same premotor interneurons of the CPG but must be coordinated differentially to produce a functional pattern. These properties allow a theoretical and experimental dissection of the rules that govern how temporal patterns and synaptic strength profiles are combined in motor neurons so that functional motor patterns emerge, including an analysis of the impact of animal-to-animal variation in input to such variation in output. In the leech, segmental heart motor neurons are coordinated alternately in a synchronous and peristaltic pattern. We show that synchronous motor patterns result from a nearly synchronous premotor temporal pattern produced by the leech heartbeat CPG. For peristaltic motor patterns, the staggered premotor temporal pattern determines the phase range over which segmental motor neurons can fire while synaptic strength profiles define the intersegmental motor phase progression realized.

  8. Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells

    PubMed Central

    Duregotti, Elisa; Negro, Samuele; Scorzeto, Michele; Zornetta, Irene; Dickinson, Bryan C.; Chang, Christopher J.; Montecucco, Cesare; Rigoni, Michela

    2015-01-01

    An acute and highly reproducible motor axon terminal degeneration followed by complete regeneration is induced by some animal presynaptic neurotoxins, representing an appropriate and controlled system to dissect the molecular mechanisms underlying degeneration and regeneration of peripheral nerve terminals. We have previously shown that nerve terminals exposed to spider or snake presynaptic neurotoxins degenerate as a result of calcium overload and mitochondrial failure. Here we show that toxin-treated primary neurons release signaling molecules derived from mitochondria: hydrogen peroxide, mitochondrial DNA, and cytochrome c. These molecules activate isolated primary Schwann cells, Schwann cells cocultured with neurons and at neuromuscular junction in vivo through the MAPK pathway. We propose that this inter- and intracellular signaling is involved in triggering the regeneration of peripheral nerve terminals affected by other forms of neurodegenerative diseases. PMID:25605902

  9. Relationship of mercury to cognitive, affective and perceptual motor functioning in a normal sample in Hawaii

    SciTech Connect

    Sine, L.F.

    1983-01-01

    Although the effects of toxic levels of mercury have been well documented, the effects of subclinical levels of mercury on normal populations have generally not been studied. The purpose of this investigation was to assess the impact of mercury risk factors on cognition, affect, psychopathology, and known mercury-related symptoms in a normal sample in Hawaii exposed to subclinical although elevated levels of elemental mercury through inhalation associated with volcanic activity and of methylmercury mostly through ingestion of large ocean species fish. The following summarizes the findings and conclusions of the study: 1) a four week test-retest reliability using 41 of the subjects showed that the 41 measures used in the study exhibited an average correlation of .78. Using all 413 subjects, the average internal consistency measured by Cronbach's ..cap alpha.. was .82 for the 17 affect, psychopathology, and symptom measures; 2) nine mercury source variables were used to predict the amount of total mercury in hair. Interestingly, none of the source variables predicted hair total mercury; 3) the source variables in addition to hair total mercury and statistical control variables were used to predict the twenty-two functioning variables in the four domains cited above with a relative absence of relationships noted. This finding indicates that the normal population in Hawaii appears not to be at risk; and 4) one historical mercury source variable, reported fish intake when young, related to six functioning variables - the psychopathology measures of Somatization, Obsessive-Compulsive and Anxiety as well as the Sensory, Affect and Mental symptoms - with Beta weights in the .15 to .20 range. The implications of the findings were discussed and suggestions offered for future research especially with respect to specific high risk subgroups.

  10. Analysis of automated quantification of motor activity in REM sleep behaviour disorder.

    PubMed

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle; Kempfner, Lykke; Jennum, Poul

    2015-10-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters for motor activity were defined. Motor activity was detected and quantified automatically. The optimal parameters for separating RBD patients from controls were investigated by identifying the greatest area under the receiver operating curve from a total of 648 possible combinations. The optimal parameters were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep. The method was stable and can be used to differentiate RBD from controls and to quantify motor activity during REM sleep in patients with neurodegeneration. No control had more than 30% of REM sleep with increased motor activity; patients with known RBD had as low activity as 4.5%. We developed and applied a sensitive, quantitative, automatic algorithm to evaluate loss of atonia in RBD patients. PMID:25923472

  11. Analysis of automated quantification of motor activity in REM sleep behaviour disorder.

    PubMed

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle; Kempfner, Lykke; Jennum, Poul

    2015-10-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters for motor activity were defined. Motor activity was detected and quantified automatically. The optimal parameters for separating RBD patients from controls were investigated by identifying the greatest area under the receiver operating curve from a total of 648 possible combinations. The optimal parameters were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep. The method was stable and can be used to differentiate RBD from controls and to quantify motor activity during REM sleep in patients with neurodegeneration. No control had more than 30% of REM sleep with increased motor activity; patients with known RBD had as low activity as 4.5%. We developed and applied a sensitive, quantitative, automatic algorithm to evaluate loss of atonia in RBD patients.

  12. Rectification of SEMG as a tool to demonstrate synchronous motor unit activity during vibration.

    PubMed

    Sebik, Oguz; Karacan, Ilhan; Cidem, Muharrem; Türker, Kemal S

    2013-04-01

    The use of surface electromyography (SEMG) in vibration studies is problematic since motion artifacts occupy the same frequency band with the SEMG signal containing information on synchronous motor unit activity. We hypothesize that using a harsher, 80-500 Hz band-pass filter and using rectification can help eliminate motion artifacts and provide a way to observe synchronous motor unit activity that is phase locked to vibration using SEMG recordings only. Multi Motor Unit (MMU) action potentials using intramuscular electrodes along with SEMG were recorded from the gastrocnemius medialis (GM) of six healthy male volunteers. Data were collected during whole body vibration, using vibration frequencies of 30 Hz, 35 Hz, 40 Hz or 50 Hz. A computer simulation was used to investigate the efficacy of filtering under different scenarios: with or without artifacts and/or motor unit synchronization. Our findings indicate that motor unit synchronization took place during WBV as verified by MMU recordings. A harsh filtering regimen along with rectification proved successful in demonstrating motor unit synchronization in SEMG recordings. Our findings were further supported by the results from the computer simulation, which indicated that filtering and rectification was efficient in discriminating motion artifacts from motor unit synchronization. We suggest that the proposed signal processing technique may provide a new methodology to evaluate the effects of vibration treatments using only SEMG. This is a major advantage, as this non-intrusive method is able to overcome movement artifacts and also indicate the synchronization of underlying motor units.

  13. [Hygienic assessment of organization of motor activity in primary class pupils of full-day schools].

    PubMed

    Khramtsov, P I; Bakanov, I M

    2009-01-01

    The impact of a routine with the traditional organization of motor activity, a more extensive motor regimen with additional lessons of physical training, eurhythmics, and swimming, as well as a motor regimen of prophylactic and health-improving orientation of the Health School, which is at the most integrated into an educational process, on exercise performance, lung capacity, carpal muscle strength, physical fitness, and nonspecific resistance was studied in 156 first-to-second-form pupils at a two-year follow-up. The traditional motor regimen was found to fail to significantly increase functional parameters. Higher increment rates of the study parameters were observed with the extensive motor regimen. The Health School motor regimen providing a uniform motor activity distribution in the first and second half of a day and a predominance of a dynamic component over a statistical one was also favorable to the maintenance of increment rates of the parameters at 2 years of the follow-up, which implies the developing nature of this regimen. Hygienic recommendations to optimize the traditional motor regimen were worked out for full-day school pupils.

  14. De novo dominant variants affecting the motor domain of KIF1A are a cause of PEHO syndrome.

    PubMed

    Langlois, Sylvie; Tarailo-Graovac, Maja; Sayson, Bryan; Drögemöller, Britt; Swenerton, Anne; Ross, Colin Jd; Wasserman, Wyeth W; van Karnebeek, Clara Dm

    2016-06-01

    PEHO syndrome (OMIM no. 260565) is characterized by myoclonic jerking and infantile spasms, profound psychomotor retardation with the absence of motor milestones and speech, absence or early loss of visual fixation with atrophy of optic discs by 2 years of age and progressive brain atrophy on neuroimaging. We describe the results of a genomic study of a girl with PEHO syndrome and review the literature on cases with a disease-causing variant in the same gene. Exome sequencing of the index and unaffected parents followed by Sanger confirmation identified nine candidate genes harboring nonsynonymous rare variants identified by trio whole-exome sequencing. The de novo variant, a missense variant (c.296C>T, p.(T99M)), affecting the motor domain of KIF1A was considered the pathogenic mutation. The literature review revealed 24 cases with disease-causing variants in the motor domain of KIF1A, of which three met all the criteria for PEHO syndrome and an additional patient with incomplete clinical data met four of the five criteria. If the criteria were modified to include cases with any convulsive disorder and less profound intellectual disability, a total of six patients met all five of the criteria, three patients met four of the criteria and six met three of the criteria. Our results indicate that the molecular basis for PEHO syndrome, in at least a subset of patients, is a dominant KIF1A variant affecting the motor domain of the protein. Variable expressivity is seen with recurrent variants causing the full phenotype of PEHO syndrome in some patients and in other patients, a partial or milder PEHO phenotype.

  15. A Guide for Perceptual-Motor Training Activities.

    ERIC Educational Resources Information Center

    South Euclid - Lyndhurst City Schools, Lyndhurst, OH.

    This document has been prepared as part of a kindergarten perceptual-training program of the South Euclid-Lyndhurst City School District near Cleveland, Ohio. The guide contains information on training and procedures related to perceptual-motor learning. This information is structured primarily into 150 lesson plans, devised as 30-minute sessions…

  16. Project Success for the SLD Child, Motor-Perception Activities.

    ERIC Educational Resources Information Center

    Wayne - Carroll Public Schools, Wayne, NE.

    Presented is a curriculum guide for a perceptual motor program which was developed by Project Success (Nebraska) through a Title III grant for language learning disabled elementary level students in kindergarten through grade 3. The program is said to be arranged in a hierarchy of skills ranging from simple to complex and to be written so that the…

  17. Hypocretinergic neurons are activated in conjunction with goal-oriented survival-related motor behaviors.

    PubMed

    Torterolo, Pablo; Ramos, Oscar V; Sampogna, Sharon; Chase, Michael H

    2011-10-24

    Hypocretinergic neurons are located in the area of the lateral hypothalamus which is responsible for mediating goal-directed, survival-related behaviors. Consequently, we hypothesize that the hypocretinergic system functions to promote these behaviors including those patterns of somatomotor activation upon which they are based. Further, we hypothesize that the hypocretinergic system is not involved with repetitive motor activities unless they occur in conjunction with the goal-oriented behaviors that are governed by the lateral hypothalamus. In order to determine the veracity of these hypotheses, we examined Fos immunoreactivity (as a marker of neuronal activity) in hypocretinergic neurons in the cat during: a) Exploratory Motor Activity; b) Locomotion without Reward; c) Locomotion with Reward; and d) Wakefulness without Motor Activity. Significantly greater numbers of hypocretinergic neurons expressed c-fos when the animals were exploring an unknown environment during Exploratory Motor Activity compared with all other paradigms. In addition, a larger number of Hcrt+Fos+neurons were activated during Locomotion with Reward than during Wakefulness without Motor Activity. Finally, very few hypocretinergic neurons were activated during Locomotion without Reward and Wakefulness without Motor Activity, wherein there was an absence of goal-directed activities. We conclude that the hypocretinergic system does not promote wakefulness per se or motor activity per se but is responsible for mediating specific goal-oriented behaviors that take place during wakefulness. Accordingly, we suggest that the hypocretinergic system is responsible for controlling the somatomotor system and coordinating its activity with other systems in order to produce successful goal-oriented survival-related behaviors that are controlled by the lateral hypothalamus. PMID:21839102

  18. Hypocretinergic neurons are activated in conjunction with goal-oriented survival-related motor behaviors.

    PubMed

    Torterolo, Pablo; Ramos, Oscar V; Sampogna, Sharon; Chase, Michael H

    2011-10-24

    Hypocretinergic neurons are located in the area of the lateral hypothalamus which is responsible for mediating goal-directed, survival-related behaviors. Consequently, we hypothesize that the hypocretinergic system functions to promote these behaviors including those patterns of somatomotor activation upon which they are based. Further, we hypothesize that the hypocretinergic system is not involved with repetitive motor activities unless they occur in conjunction with the goal-oriented behaviors that are governed by the lateral hypothalamus. In order to determine the veracity of these hypotheses, we examined Fos immunoreactivity (as a marker of neuronal activity) in hypocretinergic neurons in the cat during: a) Exploratory Motor Activity; b) Locomotion without Reward; c) Locomotion with Reward; and d) Wakefulness without Motor Activity. Significantly greater numbers of hypocretinergic neurons expressed c-fos when the animals were exploring an unknown environment during Exploratory Motor Activity compared with all other paradigms. In addition, a larger number of Hcrt+Fos+neurons were activated during Locomotion with Reward than during Wakefulness without Motor Activity. Finally, very few hypocretinergic neurons were activated during Locomotion without Reward and Wakefulness without Motor Activity, wherein there was an absence of goal-directed activities. We conclude that the hypocretinergic system does not promote wakefulness per se or motor activity per se but is responsible for mediating specific goal-oriented behaviors that take place during wakefulness. Accordingly, we suggest that the hypocretinergic system is responsible for controlling the somatomotor system and coordinating its activity with other systems in order to produce successful goal-oriented survival-related behaviors that are controlled by the lateral hypothalamus.

  19. Demonstration of motor imagery movement and phantom movement-related neuronal activity in human thalamus.

    PubMed

    Anderson, William S; Weiss, Nirit; Lawson, Herman Christopher; Ohara, Shinji; Rowland, Lance; Lenz, Frederick A

    2011-01-26

    Functional imaging studies show that motor imagery activates multiple structures in the human forebrain. We now show that phantom movements in an amputee and imagined movements in intact individuals elicit responses from neurons in several human thalamic nuclei. These include the somatic sensory nucleus receiving input from the periphery (ventral caudal), and the motor nuclei receiving input from the cerebellum [ventral intermediate (Vim)] and the basal ganglia [ventral oral posterior (Vop)]. Seven neurons in the amputee showed phantom movement-related activity (three Vim, two Vop, and two ventral caudal). In addition, seven neurons in a group of three controls showed motor imagery-related activity (four Vim and three Vop). These studies were performed during single neuron recording sessions in patients undergoing therapeutic treatment of phantom pain, tremor, and chronic pain conditions by thalamic stimulation. The activity of neurons in these sensory and motor nuclei, respectively, may encode the expected sensory consequences and the dynamics of planned movements.

  20. Indatraline: synthesis and effect on the motor activity of Wistar rats.

    PubMed

    Kameyama, Márcia; Siqueira, Fernanda A; Garcia-Mijares, Miriam; Silva, Luiz F; Silva, Maria T A

    2011-11-10

    A new approach for the synthesis of indatraline was developed using as the key step an iodine(III)-mediated ring contraction of a 1,2-dihydronaphthalene derivative. Behavioral tests were conducted to evaluate the effect of indatraline and of its precursor indanamide on the motor activity of Wistar rats. Specific indexes for ambulation, raising and stereotypy were computed one, two and three hours after i.p. drug administration. Indatraline effects on motor activity lasted for at least three hours. On the other hand, no significant differences in motor activity were observed using indanamide. The results suggest that indatraline has a long lasting effect on motor activity and add evidence in favor of the potential use of that compound as a substitute in cocaine addiction.

  1. CORRELATIONS OF PESTICIDE-INDUCED CHOLINESTERASE INHIBITION AND MOTOR ACTIVITY CHANGES IN ADULT RATS.

    EPA Science Inventory

    The acute neurobehavioral effects of acetylcholinesterase-inhibiting pesticides are primarily due to overstimulation of the cholinergic system. Lowered motor activity levels represent a sensitive endpoint with which to monitor functional changes in laboratory animals exposed to ...

  2. The relationship between actual motor competence and physical activity in children: mediating roles of perceived motor competence and health-related physical fitness.

    PubMed

    Khodaverdi, Zeinab; Bahram, Abbas; Stodden, David; Kazemnejad, Anoshirvan

    2016-08-01

    The purpose of this study was to investigate whether perceived motor competence and components of health-related physical fitness mediated the relationship between actual motor competence and physical activity in 8- to 9-year-old Iranian girls. A convenience sample of 352 girls (mean age = 8.7, SD = 0.3 years) participated in the study. Actual motor competence, perceived motor competence and children's physical activity were assessed using the Test of Gross Motor Development-2, the physical ability sub-scale of Marsh's Self-Description Questionnaire and Physical Activity Questionnaire for Older Children, respectively. Body mass index, the 600 yard run/walk, curl-ups, push-ups, and back-saver sit and reach tests assessed health-related physical fitness. Preacher & Hayes (2004) bootstrap method was used to assess the potential mediating effects of fitness and perceived competence on the direct relationship between actual motor competence and physical activity. Regression analyses revealed that aerobic fitness (b = .28, 95% CI = [.21, .39]), as the only fitness measure, and perceived competence (b = .16, 95% CI = [.12, .32]) were measures that mediated the relationship between actual motor competence and physical activity with the models. Development of strategies targeting motor skill acquisition, children's self-perceptions of competence and cardiorespiratory fitness should be targeted to promote girls' moderate-to-vigorous physical activity.

  3. p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury.

    PubMed

    Floriddia, Elisa M; Rathore, Khizr I; Tedeschi, Andrea; Quadrato, Giorgia; Wuttke, Anja; Lueckmann, Jan-Matthis; Kigerl, Kristina A; Popovich, Phillip G; Di Giovanni, Simone

    2012-10-01

    Following spinal trauma, the limited physiological axonal sprouting that contributes to partial recovery of function is dependent upon the intrinsic properties of neurons as well as the inhibitory glial environment. The transcription factor p53 is involved in DNA repair, cell cycle, cell survival, and axonal outgrowth, suggesting p53 as key modifier of axonal and glial responses influencing functional recovery following spinal injury. Indeed, in a spinal cord dorsal hemisection injury model, we observed a significant impairment in locomotor recovery in p53(-/-) versus wild-type mice. p53(-/-) spinal cords showed an increased number of activated microglia/macrophages and a larger scar at the lesion site. Loss- and gain-of-function experiments suggested p53 as a direct regulator of microglia/macrophages proliferation. At the axonal level, p53(-/-) mice showed a more pronounced dieback of the corticospinal tract (CST) and a decreased sprouting capacity of both CST and spinal serotoninergic fibers. In vivo expression of p53 in the sensorimotor cortex rescued and enhanced the sprouting potential of the CST in p53(-/-) mice, while, similarly, p53 expression in p53(-/-) cultured cortical neurons rescued a defect in neurite outgrowth, suggesting a direct role for p53 in regulating the intrinsic sprouting ability of CNS neurons. In conclusion, we show that p53 plays an important regulatory role at both extrinsic and intrinsic levels affecting the recovery of motor function following spinal cord injury. Therefore, we propose p53 as a novel potential multilevel therapeutic target for spinal cord injury.

  4. Phasic Motor Activity of Respiratory and Non-Respiratory Muscles in REM Sleep

    PubMed Central

    Fraigne, Jimmy J.; Orem, John M.

    2011-01-01

    data. There is a drive in REM sleep that affects specifically respiratory muscles. The characteristic increase in respiratory frequency during REM sleep is induced by this drive. Citation: Fraigne JJ; Orem JM. Phasic motor activity of respiratory and non-respiratory muscles in REM sleep. SLEEP 2011;34(4):425-434. PMID:21461320

  5. Physical Activity Affects Brain Integrity in HIV + Individuals

    PubMed Central

    Ortega, Mario; Baker, Laurie M.; Vaida, Florin; Paul, Robert; Basco, Brian; Ances, Beau M.

    2015-01-01

    Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV−) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV +) individuals. Seventy HIV + individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV + individuals were classified as physically active (any energy expended above resting expenditure, n = 22) or sedentary (n = 48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV + individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p = .034). Physically active HIV + individuals performed better on executive (p = .040, unadjusted; p = .043, adjusted) but not motor function (p = .17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson’s r = 0.45, p = 0.035) but not motor (r = 0.21; p = .35) performance. In adjusted analyses the physically active HIV + individuals had larger putamen volumes (p = .019). A positive relationship exists between PA and brain integrity in HIV + individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV + individuals. PMID:26581799

  6. Rhythmic motor activity and interlimb co-ordination in the developing pouch young of a wallaby (Macropus eugenii).

    PubMed Central

    Ho, S M

    1997-01-01

    1. The forelimb motor behaviour of developing wallaby was studied. A clock-like alternating movement was reactivated whenever the animal was removed from the pouch. 2. Forelimb stepping frequency increased during the first 3 weeks of development, while the phase relationship remained constant. Forelimb activity could be affected by altering the afferent feedback from the contralateral limb, or an increase in ambient temperature. 3. In vitro experiments were performed using an isolated brainstem-spinal cord preparation from animals up to 6 weeks postnatal. Fictive locomotor activity could be evoked by electrical stimulation or bath-applied NMDA (< 10 microM). 4. Bath-applied strychnine (10-25 microM) and bicuculline (10-50 microM) disrupted the phase relationship between motor pools, while rhythmic motor discharge remained in the absence of these inhibitory pathways. 5. The present findings indicate that the pattern generator that underlies the robust forelimb movement during the first journey to the pouch is retained for different motor functions during in-pouch development. The neural network that underlies such behaviour can be divided into two major components, a rhythm generator within each hemicord, and a pattern co-ordinating pathway which involve both glycinergic and GABAergic interneurones. PMID:9218221

  7. Interleukin-6 Deficiency Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutation

    PubMed Central

    Han, Yongmei; Ripley, Barry; Serada, Satoshi; Naka, Tetsuji; Fujimoto, Minoru

    2016-01-01

    Background & Aim Amyotrophic Lateral Sclerosis (ALS) is an adult-onset, progressive, motor neuron degenerative disease. Recent evidence indicates that inflammation is associated with many neurodegenerative diseases including ALS. Previously, abnormal levels of inflammatory cytokines including IL-1β, IL-6 and TNF-α were described in ALS patients and/or in mouse ALS models. In addition, one study showed that blocking IL-1β could slow down progression of ALS-like symptoms in mice. In this study, we examined a role for IL-6 in ALS, using an animal model for familial ALS. Methods Mice with mutant SOD1 (G93A) transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG) mice were assessed by real time PCR. Mice were then crossed with IL-6(-/-) mice to generate SOD1TG/IL-6(-/-) mice. SOD1 TG/IL-6(-/-) mice (n = 17) were compared with SOD1 TG/IL-6(+/-) mice (n = 18), SOD1 TG/IL-6(+/+) mice (n = 11), WT mice (n = 15), IL-6(+/-) mice (n = 5) and IL-6(-/-) mice (n = 8), with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups. Results Levels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/-) mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days), similarly to SOD1 TG /IL-6(+/+) mice (164.31±12.16 days). Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/-) mice and SOD1 TG /IL-6 (+/+) mice. Conclusion These results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations. PMID:27070121

  8. Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity.

    PubMed

    Robles-Mendoza, Cecilia; Zúñiga-Lagunes, Sebastian R; Ponce de León-Hill, Claudia A; Hernández-Soto, Jesús; Vanegas-Pérez, Cecilia

    2011-10-01

    The axolotl Ambystoma mexicanum is a neotenic salamander considered a good biological model due to its ability to regenerate limbs, tail, brain and heart cells. Nevertheless, severe reduction of A. mexicanum wild populations in the lacustrine area of Xochimilco, the natural habitat of the axolotl, could be related to several environmental pressures as the presence of organophosphate pesticides (OPPs), intensively applied in agricultural activities in Xochimilco. Thus the aim of this study was to evaluate the effect of environmentally realistic chlorpyrifos (CPF) concentrations, a OPP commonly used in this zone, on esterases activity (acetylcholinesterase and carboxylesterase) and bioconcentration of CPF and to relate them with the motor activity of A. mexicanum juveniles. Axolotls were exposed 48 h to 0.05 and 0.1mg CPF/L, and the responses were evaluated at the end of the CPF exposure. Results suggest that CPF is bioconcentrated into axolotls and that the CPF internal concentrations are related with the observed inhibition activity of AChE (>50%) and CbE (≈ 50%). CPF concentration responsible of the inhibition of the 50% of AChE activity (IC50) was estimated in 0.04 mg CPF/L; however IC50 for CbE activity was not possible to calculate since inhibition levels were lower than 50%, results that suggest a higher resistance of CbE enzymatic activity to CPF. However, motor activity was a more sensitive endpoint to CPF poisoning since time that axolotls spent active and walking, frequency and speed of swimming, frequency of prey attack were reduced >90% of control groups. The motor activity alterations in the axolotl could be related with the registered esterases inhibition. Thus important alterations on axolotls were identified even at short time and low concentrations of CPF exposure. Also, it was possible to link biochemical responses as esterases activity with higher levels of biological organization as behavior. This study provides tools for the regulation of the

  9. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.

    PubMed

    Huang, Dandan; Lin, Peter; Fei, Ding-Yu; Chen, Xuedong; Bai, Ou

    2009-08-01

    This study aims to explore whether human intentions to move or cease to move right and left hands can be decoded from spatiotemporal features in non-invasive EEG in order to control a discrete two-dimensional cursor movement for a potential multidimensional brain-computer interface (BCI). Five naïve subjects performed either sustaining or stopping a motor task with time locking to a predefined time window by using motor execution with physical movement or motor imagery. Spatial filtering, temporal filtering, feature selection and classification methods were explored. The performance of the proposed BCI was evaluated by both offline classification and online two-dimensional cursor control. Event-related desynchronization (ERD) and post-movement event-related synchronization (ERS) were observed on the contralateral hemisphere to the hand moved for both motor execution and motor imagery. Feature analysis showed that EEG beta band activity in the contralateral hemisphere over the motor cortex provided the best detection of either sustained or ceased movement of the right or left hand. The offline classification of four motor tasks (sustain or cease to move right or left hand) provided 10-fold cross-validation accuracy as high as 88% for motor execution and 73% for motor imagery. The subjects participating in experiments with physical movement were able to complete the online game with motor execution at an average accuracy of 85.5 +/- 4.65%; the subjects participating in motor imagery study also completed the game successfully. The proposed BCI provides a new practical multidimensional method by noninvasive EEG signal associated with human natural behavior, which does not need long-term training.

  10. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control

    NASA Astrophysics Data System (ADS)

    Huang, Dandan; Lin, Peter; Fei, Ding-Yu; Chen, Xuedong; Bai, Ou

    2009-08-01

    This study aims to explore whether human intentions to move or cease to move right and left hands can be decoded from spatiotemporal features in non-invasive EEG in order to control a discrete two-dimensional cursor movement for a potential multidimensional brain-computer interface (BCI). Five naïve subjects performed either sustaining or stopping a motor task with time locking to a predefined time window by using motor execution with physical movement or motor imagery. Spatial filtering, temporal filtering, feature selection and classification methods were explored. The performance of the proposed BCI was evaluated by both offline classification and online two-dimensional cursor control. Event-related desynchronization (ERD) and post-movement event-related synchronization (ERS) were observed on the contralateral hemisphere to the hand moved for both motor execution and motor imagery. Feature analysis showed that EEG beta band activity in the contralateral hemisphere over the motor cortex provided the best detection of either sustained or ceased movement of the right or left hand. The offline classification of four motor tasks (sustain or cease to move right or left hand) provided 10-fold cross-validation accuracy as high as 88% for motor execution and 73% for motor imagery. The subjects participating in experiments with physical movement were able to complete the online game with motor execution at an average accuracy of 85.5 ± 4.65%; the subjects participating in motor imagery study also completed the game successfully. The proposed BCI provides a new practical multidimensional method by noninvasive EEG signal associated with human natural behavior, which does not need long-term training.

  11. The use of fluorine-18 fluorodeoxyglucose positron emission tomography for imaging human motor neuronal activation in the brain

    PubMed Central

    PAHK, KISOO; PARK, KUN-WOO; PYUN, SUNG BOM; LEE, JAE SUNG; KIM, SUNGEUN; CHOE, JAE GOL

    2015-01-01

    The present study aimed to visualize human motor neuronal activation in the brain using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET), and to develop an FDG-PET procedure for imaging neuronal activation. A male volunteer underwent 20 min periods of rest and motor activation, whilst being assessed using FDG-PET on two consecutive days. The motor task, which involved repetitively grasping and releasing the right hand, was performed during the initial 5 min of the activation period. Subtraction of the rest period signal from the activation PET images was performed using the subtraction ictal single-photon emission computed tomography co-registered to magnetic resonance imaging method. The subtracted image detected activation of the contralateral (left) primary motor cortex, supplementary motor area, and ipsilateral (right) cerebellum. In the present study, FDG-PET detected significantly increased motor-associated activation of the brain in a subject performing a motor task. PMID:26668604

  12. [Indexes of integrative activity of motor system in norm and at neuromotor pathology].

    PubMed

    Aleksanian, Z A; Romanov, S P

    2012-11-01

    Characteristics of integrative activity of motor control system are received by the methods of the time series analysis. The methods allow to give an objective estimation of human brain pyramidal and extrapyramidal systems functional state. Authors consider the voluntary regulation of isometric effort as a model of movement and investigate this effort as the integrative motor output of a motor control system. Using of peculiar methodology of non-invasive research of parameters of isometric effort as indexes of CNS integrative activity, and application of modern methods of the time-series analysis has allowed to receive a new data concerning an estimation of activity of structures of motor control system in norm and in some neurodegenerative diseases of CNS (Parkinson's diseases, multiple sclerosis). These results represent the new knowledge in the field of movement physiology, and also expand opportunity of hardware diagnostics of neuromotor dysfunctions.

  13. Motor neuron-specific overexpression of the presynaptic choline transporter: impact on motor endurance and evoked muscle activity.

    PubMed

    Lund, D; Ruggiero, A M; Ferguson, S M; Wright, J; English, B A; Reisz, P A; Whitaker, S M; Peltier, A C; Blakely, R D

    2010-12-29

    The presynaptic, hemicholinium-3 sensitive, high-affinity choline transporter (CHT) supplies choline for acetylcholine (ACh) synthesis. In mice, a homozygous deletion of CHT (CHT-/-) leads to premature cessation of spontaneous or evoked neuromuscular signaling and is associated with perinatal cyanosis and lethality within 1 h. Heterozygous (CHT+/-) mice exhibit diminished brain ACh levels and demonstrate an inability to sustain vigorous motor activity. We sought to explore the contribution of CHT gene dosage to motor function in greater detail using transgenic mice where CHT is expressed under control of the motor neuron promoter Hb9 (Hb9:CHT). On a CHT-/- background, the Hb9:CHT transgene conferred mice with the ability to move and breath for a postnatal period of ∼24 h, thus increasing survival. Conversely, Hb9:CHT expression on a wild-type background (CHT+/+;Hb9:CHT) leads to an increased capacity for treadmill running compared to wild-type littermates. Analysis of the stimulated compound muscle action potential (CMAP) in these animals under basal conditions established that CHT+/+;Hb9:CHT mice display an unexpected, bidirectional change, producing either elevated or reduced CMAP amplitude, relative to CHT+/+ animals. To examine whether these two groups arise from underlying changes in synaptic properties, we used high-frequency stimulation of motor axons to assess CMAP recovery kinetics. Although CHT+/+; Hb9:CHT mice in the two groups display an equivalent, time-dependent reduction in CMAP amplitude, animals with a higher basal CMAP amplitude demonstrate a significantly enhanced rate of recovery. To explain our findings, we propose a model whereby CHT support for neuromuscular signaling involves contributions to ACh synthesis as well as cholinergic synaptic vesicle availability.

  14. Early motor skill competence as a mediator of child and adult physical activity

    PubMed Central

    Loprinzi, Paul D.; Davis, Robert E.; Fu, Yang-Chieh

    2015-01-01

    Objective: In order to effectively promote physical activity (PA) during childhood, and across the lifespan, a better understanding of the role of early motor skill development on child and adult PA is needed. Methods: Here, we propose a conceptual model delineating the hypothesized influence of motor skill development on child and adult PA, while providing an overview of the current empirical research related to this model. Results: There is consistent and emerging evidence showing that adequate motor skill competence, particularly locomotor and gross motor skills, is associated with increased PA levels during the preschool, child, and adolescent years, with early motor skill development also influencing enjoyment of PA as well as long-term PA and motor skill performance. The physical education setting appears to be a well-suited environment for motor skill development. Conclusion: Employing appropriate strategies to target motor skill development across the childhood years is of paramount interest in helping shape children's PA behavior, their experiences related to PA, as well as maintain their PA. PMID:26844157

  15. Brain Activation Patterns Characterizing Different Phases of Motor Action: Execution, Choice and Ideation.

    PubMed

    Gardini, Simona; Venneri, Annalena; McGeown, William Jonathan; Toraci, Cristian; Nocetti, Luca; Porro, Carlo Adolfo; Caffarra, Paolo

    2016-09-01

    Motor behaviour is controlled by a large set of interacting neural structures, subserving the different components involved in hierarchical motor processes. Few studies have investigated the neural substrate of higher-order motor ideation, i.e. the mental operation of conceiving a movement. The aim of this functional magnetic resonance imaging study was to segregate the neural structures involved in motor ideation from those involved in movement choice and execution. An index finger movement paradigm was adopted, including three different conditions: performing a pre-specified movement, choosing and executing a movement and ideating a movement of choice. The tasks involved either the right or left hand, in separate runs. Neuroimaging results were obtained by comparing the different experimental conditions and computing conjunction maps of the right and left hands for each contrast. Pre-specified movement execution was supported by bilateral fronto-parietal motor regions, the cerebellum and putamen. Choosing and executing finger movement involved mainly left fronto-temporal areas and the anterior cingulate. Motor ideation activated almost exclusively left hemisphere regions, including the inferior, middle and superior frontal regions, middle temporal and middle occipital gyri. These findings show that motor ideation is controlled by a cortical network mainly involved in abstract thinking, cognitive and motor control, semantic and visual imagery processes. PMID:27072014

  16. How actin initiates the motor activity of Myosin.

    PubMed

    Llinas, Paola; Isabet, Tatiana; Song, Lin; Ropars, Virginie; Zong, Bin; Benisty, Hannah; Sirigu, Serena; Morris, Carl; Kikuti, Carlos; Safer, Dan; Sweeney, H Lee; Houdusse, Anne

    2015-05-26

    Fundamental to cellular processes are directional movements driven by molecular motors. A common theme for these and other molecular machines driven by ATP is that controlled release of hydrolysis products is essential for using the chemical energy efficiently. Mechanochemical transduction by myosin motors on actin is coupled to unknown structural changes that result in the sequential release of inorganic phosphate (Pi) and MgADP. We present here a myosin structure possessing an actin-binding interface and a tunnel (back door) that creates an escape route for Pi with a minimal rotation of the myosin lever arm that drives movements. We propose that this state represents the beginning of the powerstroke on actin and that Pi translocation from the nucleotide pocket triggered by actin binding initiates myosin force generation. This elucidates how actin initiates force generation and movement and may represent a strategy common to many molecular machines.

  17. Nitrergic signalling via interstitial cells of Cajal regulates motor activity in murine colon.

    PubMed

    Lies, Barbara; Beck, Katharina; Keppler, Jonas; Saur, Dieter; Groneberg, Dieter; Friebe, Andreas

    2015-10-15

    In the enteric nervous systems, NO is released from nitrergic neurons as a major inhibitory neurotransmitter. NO acts via NO-sensitive guanylyl cyclase (NO-GC), which is found in different gastrointestinal (GI) cell types including smooth muscle cells (SMCs) and interstitial cells of Cajal (ICC). The precise mechanism of nitrergic signalling through these two cell types to regulate colonic spontaneous contractions is not fully understood yet. In the present study we investigated the impact of endogenous and exogenous NO on colonic contractile motor activity using mice lacking nitric oxide-sensitive guanylyl cyclase (NO-GC) globally and specifically in SMCs and ICC. Longitudinal smooth muscle of proximal colon from wild-type (WT) and knockout (KO) mouse strains exhibited spontaneous contractile activity ex vivo. WT and smooth muscle-specific guanylyl cyclase knockout (SMC-GCKO) colon showed an arrhythmic contractile activity with varying amplitudes and frequencies. In contrast, colon from global and ICC-specific guanylyl cyclase knockout (ICC-GCKO) animals showed a regular contractile rhythm with constant duration and amplitude of the rhythmic contractions. Nerve blockade (tetrodotoxin) or specific blockade of NO signalling (L-NAME, ODQ) did not significantly affect contractions of GCKO and ICC-GCKO colon whereas the arrhythmic contractile patterns of WT and SMC-GCKO colon were transformed into uniform motor patterns. In contrast, the response to electric field-stimulated neuronal NO release was similar in SMC-GCKO and global GCKO. In conclusion, our results indicate that basal enteric NO release acts via myenteric ICC to influence the generation of spontaneous contractions whereas the effects of elevated endogenous NO are mediated by SMCs in the murine proximal colon.

  18. Strain and sex differences in repeated ethanol treatment-induced motor activity in quasi-congenic mice.

    PubMed

    Sershen, H; Hashim, A; Vadasz, C

    2002-08-01

    The B6.C quasi-congenic Recombinant QTL Introgression (RQI) strains of the b4i5 series have similar genetic background, but differ in about 5% of their genome from the C57BL/6ByJ (B6) background strain because they carry short chromosome segments introgressed from the BALB/cJ (C) donor strain. These RQI strains were derived from mouse lines selectively bred for high activity of mesencephalic tyrosine hydroxylase (TH/MES), therefore genetic variation in dopamine system-related behaviours, such as ethanol-induced motor activity, can be expected. Males and females of 17 RQI and two progenitor strains were tested for initial motor activity for 15 min after a habituating injection of saline, which was followed by an i.p. injection of saline or ethanol (2 g/kg) and an additional test of motor activity for 30 min. This procedure was repeated during 4 subsequent days. In all strains, the first-day ethanol treatment showed an inhibitory effect. With repetition of the treatment the inhibitory effect decreased, and a stimulatory effect could be observed with significant strain- and sex-dependent variation. Females exhibited higher activity in the saline group than males, and reached an equilibrium of inhibition and stimulation sooner than males with repetition of the ethanol treatment. The highest (> 25-fold) difference in activity after repeated ethanol treatment was detected between females of the two strains B6.Cb4i5-Alpha4/Vad and B6.Cb4i5-Beta13/Vad. These results firstly suggest that females are more sensitive to repeated ethanol exposure than males, secondly they support the observations that ethanol has both inhibitory and stimulatory effects on motor activity, which are affected by sex, genotype, and repetition of treatment, and thirdly offer new quasi-congenic animal models with highly different responses to ethanol allowing one to more quickly move to gene detection.

  19. Mutations affecting enzymatic activity in liver arginase

    SciTech Connect

    Vockley, J.G.; Tabor, D.E.; Goodman, B.K.

    1994-09-01

    The hydrolysis of arginine to ornithine and urea is catalyzed by arginase in the last step of the urea cycle. We examined a group of arginase deficient patients by PCR-SSCP analysis to characterize the molecular basis of this disorder. A heterogeneous population of nonsense mutations, microdeletions, and missense mutations has been identified in our cohort. Microdeletions which introduce premature stop codons downstream of the deletion and nonsense mutations result in no arginase activity. These mutations occur randomly along the gene. The majority of missense mutations identified appear to occur in regions of high cross-species homology. To test the effect of these missense mutations on arginase activity, site-directed mutagenesis was used to re-create the patient mutations for in vivo expression studies in a prokaryotic fusion-protein expression system. Of 4 different missense mutations identified in 6 individuals, only one was located outside of a conserved region. The three substitution mutations within the conserved regions had a significant effect on enzymatic activity (0-3.1 nmole/30min, normal is 1300-1400 nmoles/30min, as determined by in vitro arginase assay), while the fourth mutation, a T to S substitution, did not. In addition, site-directed mutagenesis was utilized to create mutations not in residues postulated to play a significant role in the enzymatic function or active site formation in manganese-binding proteins such as arginase. We have determined that the substitution of glycine for a histidine residue, located in a very highly conserved region of exon 3, and the substitution of a histidine and an aspartic acid residue within a similarly conserved region in exon 4, totally abolishes enzymatic activity. Mutations substituting glycine for an additional histidine and aspartic acid residue in exon 4 and two aspartic acid residues in exon 7 have also been created. We are currently in the process of characterizing these mutations.

  20. Variations of intestinal motor activity in bladder replacements and in the intestine.

    PubMed

    Lobel, B; Guille, F; Olivo, J F; Gosselin, A; Goldwasser, B

    1993-12-01

    Urinary reservoirs are made from intestinal segments. The motor activity of the intestinal tract is regulated by hormonal and neurological controls. This study compares the motor activity of intestine in situ with those of a neobladder, following oral intake. The changes in motor activity before and after ingestion of standardized 570 Kcal meal were measured simultaneously in the duodenum and in the neobladder of 4 patients who underwent a Camey tubularized ileocystoplasty. Similar motor movements were produced in the graft and in the duodenum. Modifications due to oral intake were then measured in 14 patients with various types of urinary reservoirs (ilea, ileo-colic or colic; and tubularized or detubularized) by measuring the pressure inside the graft. After oral intake the compliance of the detubularized colic and ileocolic reservoirs was greater than that of ileal reservoirs, even after detubularization, since the motor activity and the basal pressure increased greatly in the tubularized or detubularized ileal bladders and much less in the detubularized colic and ileocolic bladders. It is well known that digestion is maximal in the second half of the night, therefore this link between intestinal and neobladder motor activity might explain one of several mechanisms involved in nocturnal increase in reservoir pressure and urine incontinence.

  1. Physical activity and obesity mediate the association between childhood motor function and adolescents' academic achievement.

    PubMed

    Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-29

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement.

  2. Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement

    PubMed Central

    Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-01

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents’ academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents’ academic achievement via physical inactivity (B = –0.023, 95% confidence interval = –0.031, –0.015) and obesity (B = –0.025, 95% confidence interval = –0.039, –0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents’ academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558

  3. High-resolution genetic mapping of mammalian motor activity levels in mice.

    PubMed

    Kas, M J H; de Mooij-van Malsen, J G; de Krom, M; van Gassen, K L I; van Lith, H A; Olivier, B; Oppelaar, H; Hendriks, J; de Wit, M; Groot Koerkamp, M J A; Holstege, F C P; van Oost, B A; de Graan, P N E

    2009-02-01

    The generation of motor activity levels is under tight neural control to execute essential behaviors, such as movement toward food or for social interaction. To identify novel neurobiological mechanisms underlying motor activity levels, we studied a panel of chromosome substitution (CS) strains derived from mice with high (C57BL/6J strain) or low motor activity levels (A/J strain) using automated home cage behavioral registration. In this study, we genetically mapped the expression of baseline motor activity levels (horizontal distance moved) to mouse chromosome 1. Further genetic mapping of this trait revealed an 8.3-Mb quantitative trait locus (QTL) interval. This locus is distinct from the QTL interval for open-field anxiety-related motor behavior on this chromosome. By data mining, an existing phenotypic and genotypic data set of 2445 genetically heterogeneous mice (http://gscan.well.ox.ac.uk/), we confirmed linkage to the peak marker at 79 970 253 bp and refined the QTL to a 312-kb interval containing a single gene (A830043J08Rik). Sequence analysis showed a nucleotide deletion in the 3' untranslated region of the Riken gene. Genome-wide microarray gene expression profiling in brains of discordant F(2) individuals from CS strain 1 showed a significant upregulation of Epha4 in low-active F(2) individuals. Inclusion of a genetic marker for Epha4 confirmed that this gene is located outside of the QTL interval. Both Epha4 and A830043J08Rik are expressed in brain motor circuits, and similar to Epha4 mutants, we found linkage between reduced motor neurons number and A/J chromosome 1. Our findings provide a novel QTL and a potential downstream target underlying motor circuitry development and the expression of physical activity levels.

  4. A Field-Based Testing Protocol for Assessing Gross Motor Skills in Preschool Children: The Children's Activity and Movement in Preschool Study Motor Skills Protocol

    ERIC Educational Resources Information Center

    Williams, Harriet G.; Pfeiffer, Karin A.; Dowda, Marsha; Jeter, Chevy; Jones, Shaverra; Pate, Russell R.

    2009-01-01

    The purpose of this study was to develop a valid and reliable tool for use in assessing motor skills in preschool children in field-based settings. The development of the Children's Activity and Movement in Preschool Study Motor Skills Protocol included evidence of its reliability and validity for use in field-based environments as part of large…

  5. Subacute exposure to 50-Hz electromagnetic fields affect prenatal and neonatal mice's motor coordination

    NASA Astrophysics Data System (ADS)

    Sakhnini, Lama; Ali, Hassan Al; Qassab, Narjis Al; Arab, Eman Al; Kamal, Amer

    2012-04-01

    In this study, we investigate the possible effect of ELF-EMFs on motor performance in mice (prenatal and neonatal exposed mice). The mice performance is evaluated after 5 days of subacute exposure. Immature mice have been chosen for this study because the immature rodent brain still has the capacity to undergo proliferation, differentiation, and reorganization. Results from the rotarod experiments demonstrated a pronounced deficit in the learning abilities of the prenatal exposed groups, but no pronounced effect was observed for the neonatal exposed group.

  6. When Do Motor Behaviors (Mis)Match Affective Stimuli? An Evaluative Coding View of Approach and Avoidance Reactions

    ERIC Educational Resources Information Center

    Eder, Andreas B.; Rothermund, Klaus

    2008-01-01

    Affective-mapping effects between affective stimuli and lever movements are critically dependent upon the evaluative meaning of the response labels that are used in the task instructions. In Experiments 1 and 2, affective-mapping effects predicted by specific-muscle-activation and distance-regulation accounts were replicated when the standard…

  7. Orientation-dependent changes in single motor neuron activity during adaptive soft-bodied locomotion.

    PubMed

    Metallo, Cinzia; Trimmer, Barry A

    2015-01-01

    Recent major advances in understanding the organizational principles underlying motor control have focused on a small number of animal species with stiff articulated skeletons. These model systems have the advantage of easily quantifiable mechanics, but the neural codes underlying different movements are difficult to characterize because they typically involve a large population of neurons controlling each muscle. As a result, studying how neural codes drive adaptive changes in behavior is extremely challenging. This problem is highly simplified in the tobacco hawkmoth Manduca sexta, which, in its larval stage (caterpillar), is predominantly soft-bodied. Since each M. sexta muscle is innervated by one, occasionally two, excitatory motor neurons, the electrical activity generated by each muscle can be mapped to individual motor neurons. In the present study, muscle activation patterns were converted into motor neuron frequency patterns by identifying single excitatory junction potentials within recorded electromyographic traces. This conversion was carried out with single motor neuron resolution thanks to the high signal selectivity of newly developed flexible microelectrode arrays, which were specifically designed to record from M. sexta muscles. It was discovered that the timing of motor neuron activity and gait kinematics depend on the orientation of the plane of motion during locomotion. We report that, during climbing, the motor neurons monitored in the present study shift their activity to correlate with movements in the animal's more anterior segments. This orientation-dependent shift in motor activity is in agreement with the expected shift in the propulsive forces required for climbing. Our results suggest that, contrary to what has been previously hypothesized, M.sexta uses central command timing for adaptive load compensation. PMID:25765841

  8. Drosophila Ten-m and Filamin Affect Motor Neuron Growth Cone Guidance

    PubMed Central

    Zheng, Lihua; Michelson, Yehudit; Freger, Vita; Avraham, Ziva; Venken, Koen J. T.; Bellen, Hugo J.; Justice, Monica J.; Wides, Ron

    2011-01-01

    The Drosophila Ten-m (also called Tenascin-major, or odd Oz (odz)) gene has been associated with a pair-rule phenotype. We identified and characterized new alleles of Drosophila Ten-m to establish that this gene is not responsible for segmentation defects but rather causes defects in motor neuron axon routing. In Ten-m mutants the inter-segmental nerve (ISN) often crosses segment boundaries and fasciculates with the ISN in the adjacent segment. Ten-m is expressed in the central nervous system and epidermal stripes during the stages when the growth cones of the neurons that form the ISN navigate to their targets. Over-expression of Ten-m in epidermal cells also leads to ISN misrouting. We also found that Filamin, an actin binding protein, physically interacts with the Ten-m protein. Mutations in cheerio, which encodes Filamin, cause defects in motor neuron axon routing like those of Ten-m. During embryonic development, the expression of Filamin and Ten-m partially overlap in ectodermal cells. These results suggest that Ten-m and Filamin in epidermal cells might together influence growth cone progression. PMID:21857973

  9. Activation of the motor cortex during phasic rapid eye movement sleep

    PubMed Central

    De Carli, Fabrizio; Proserpio, Paola; Morrone, Elisa; Sartori, Ivana; Ferrara, Michele; Gibbs, Steve Alex; De Gennaro, Luigi; Lo Russo, Giorgio

    2016-01-01

    When dreaming during rapid eye movement (REM) sleep, we can perform complex motor behaviors while remaining motionless. How the motor cortex behaves during this state remains unknown. Here, using intracerebral electrodes sampling the human motor cortex in pharmacoresistant epileptic patients, we report a pattern of electroencephalographic activation during REM sleep similar to that observed during the performance of a voluntary movement during wakefulness. This pattern is present during phasic REM sleep but not during tonic REM sleep, the latter resembling relaxed wakefulness. This finding may help clarify certain phenomenological aspects observed in REM sleep behavior disorder. Ann Neurol 2016;79:326–330 PMID:26575212

  10. Cytoskeletal motor-driven active self-assembly in in vitro systems.

    PubMed

    Lam, A T; VanDelinder, V; Kabir, A M R; Hess, H; Bachand, G D; Kakugo, A

    2016-01-28

    Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. We focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode which complements robotic manipulation and passive self-assembly.

  11. Measurements of Myosin-II Motor Activity During Cytokinesis in Fission Yeast.

    PubMed

    Tang, Qing; Pollard, Luther W; Lord, Matthew

    2016-01-01

    Fission yeast myosin-II (Myo2p) represents the critical actin-based motor protein that drives actomyosin ring assembly and constriction during cytokinesis. We detail three different methods to measure Myo2p motor function. Actin-activated ATPases provide a readout of actomyosin ATPase motor activity in a bulk assay; actin filament motility assays reveal the speed and efficiency of myosin-driven actin filament gliding (when motors are anchored); myosin-bead motility assays reveal the speed and efficiency of myosin ensembles traveling along actin filaments (when actin is anchored). Collectively, these methods allow us to combine the standard in vivo approaches common to fission yeast with in vitro biochemical methods to learn more about the mechanistic action of myosin-II during cytokinesis.

  12. Biologically active extracts with kidney affections applications

    NASA Astrophysics Data System (ADS)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  13. Chapter 6: Children's Environmental Access in Relation to Motor Competence, Physical Activity, and Fitness

    ERIC Educational Resources Information Center

    Erwin, Heather E.; Woods, Amelia Mays; Woods, Martha K.; Castelli, Darla M.

    2007-01-01

    The purpose of this study was to examine levels of physical activity engagement, motor competence, and physical fitness as related to child access to physical activity facilities in the home and school environments. The present investigation attempts to further efforts to examine the relationship between physical activity levels and access.…

  14. Get Kids Moving: Simple Activities To Build Gross-Motor Skills.

    ERIC Educational Resources Information Center

    Texas Child Care, 2003

    2003-01-01

    Highlights the importance of activities to build gross motor skills and provides hints for encouraging such activities. Specific areas of activities presented are: (1) running and jumping; (2) music games; (3) action games; (4) races; (5) bed sheets or parachutes; (6) hula hoops; (7) balls; (8) batting; (9) balance; and (10) creative movement. (SD)

  15. An identified glutamatergic interneuron patterns feeding motor activity via both excitation and inhibition.

    PubMed

    Quinlan, E M; Gregory, K; Murphy, A D

    1995-03-01

    1. Previously we demonstrated that glutamate is an important neurotransmitter in the CNS of Helisoma. Exogenous glutamate applied to the buccal ganglia mimicked both the excitatory and inhibitory effects of subunit 2 (S2) of the tripartite central pattern generator (CPG) on S2 postsynaptic motor neurons. Here we identify buccal interneuron B2 as an S2 interneuron by utilizing a combination of electrophysiology, pharmacology, and intracellular staining. In addition, neurons that were electrophysiologically and morphologically characterized as neuron B2 demonstrated antiglutamate immunoreactivity, suggesting that neuron B2 is a source of endogenous glutamate in the buccal ganglia. 2. Depolarization of neuron B2 evoked excitatory postsynaptic potentials in motor neurons excited by S2. The excitatory effects of B2 depolarization and S2 activation were reversibly antagonized by the ionotropic glutamate receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione, similar to the antagonism shown previously for application of exogenous glutamate. Depolarization of neuron B2 also evoked inhibitory postsynaptic potentials in motor neurons inhibited by S2. When such motor neurons were maintained in isolated cell culture, application of exogenous glutamate produced a direct hyperpolarization of the membrane potential. 3. The activity of neuron B2 is necessary for the production of the standard pattern of buccal motor neuron activity, which underlies functional feeding movements. The subunits of the tripartite buccal CPG must be active in the temporal sequence S1-S2-S3 to produce the standard feeding pattern. Rhythmic inhibition from neuron B2 terminated activity in S1 postsynaptic motor neurons and entrained the frequency of activity in S3 postsynaptic motor neurons. Hyperpolarization of neuron B2 disrupted the production of the standard motor pattern by eliminating S2 postsynaptic potentials in identified buccal motor neurons, thereby prolonging S1 activity and disrupting S3

  16. Neurotensin Changes Propulsive Activity into a Segmental Motor Pattern in the Rat Colon

    PubMed Central

    Li, Hongfei; Chen, Ji-Hong; Yang, Zixian; Huang, Min; Yu, Yuanjie; Tan, Shiyun; Luo, Hesheng; Huizinga, Jan D

    2016-01-01

    Background/Aims Neurotensin is a gut-brain peptide with both inhibitory and excitatory actions on the colonic musculature; our objective was to understand the implications of this for motor patterns occurring in the intact colon of the rat. Methods The effects of neurotensin with concentrations ranging from 0.1–100 nM were studied in the intact rat colon in vitro, by investigating spatio-temporal maps created from video recordings of colonic motility before and after neurotensin. Results Low concentration of neurotensin (0.1–1 nM) inhibited propagating long distance contractions and rhythmic propagating motor complexes; in its place a slow propagating rhythmic segmental motor pattern developed. The neurotensin receptor 1 antagonist SR-48692 prevented the development of the segmental motor pattern. Higher concentrations of neurotensin (10 nM and 100 nM) were capable of restoring long distance contraction activity and inhibiting the segmental activity. The slow propagating segmental contraction showed a rhythmic contraction—relaxation cycle at the slow wave frequency originating from the interstitial cells of Cajal associated with the myenteric plexus pacemaker. High concentrations given without prior additions of low concentrations did not evoke the segmental motor pattern. These actions occurred when neurotensin was given in the bath solution or intraluminally. The segmental motor pattern evoked by neurotensin was inhibited by the neural conduction blocker lidocaine. Conclusions Neurotensin (0.1–1 nM) inhibits the dominant propulsive motor patterns of the colon and a distinct motor pattern of rhythmic slow propagating segmental contractions develops. This motor pattern has the hallmarks of haustral boundary contractions. PMID:26882114

  17. [Participation of the primary motor cortex in programming of muscle activity during catching of falling object].

    PubMed

    Kazennikov, O V; Lipshits, M I

    2011-01-01

    Object fell into the cup that sitting subject held between thumb and index fingers. Transcranial magnetic stimulation (TMS) of the primary motor cortex was performed early before and during anticipatory grip force increasing. Comparison of current EMG activity of adductor pollicis brevis and first dorsal interosseous muscles and responses of these muscles on TMS showed that responses were increased before the raising of muscle activity. From the other side only slight augmentation of responses was observed during subsequent strong muscle activation. It is assumed that the increasing of the TMS responses that occurred before the initiation of muscle activity reflects the enhancement ofthe motor cortex excitability associated to specific processes related to the motor cortex participation in programming of the muscles activities. PMID:22117465

  18. Locomotor corollary activation of trigeminal motoneurons: coupling of discrete motor behaviors.

    PubMed

    Hänzi, Sara; Banchi, Roberto; Straka, Hans; Chagnaud, Boris P

    2015-06-01

    During motor behavior, corollary discharges of the underlying motor commands inform sensory-motor systems about impending or ongoing movements. These signals generally limit the impact of self-generated sensory stimuli but also induce motor reactions that stabilize sensory perception. Here, we demonstrate in isolated preparations of Xenopus laevis tadpoles that locomotor corollary discharge provokes a retraction of the mechanoreceptive tentacles during fictive swimming. In the absence of sensory feedback, these signals activate a cluster of trigeminal motoneurons that cause a contraction of the tentacle muscle. This corollary discharge encodes duration and strength of locomotor activity, thereby ensuring a reliable coupling between locomotion and tentacle motion. The strict phase coupling between the trigeminal and spinal motor activity, present in many cases, suggests that the respective corollary discharge is causally related to the ongoing locomotor output and derives at least in part from the spinal central pattern generator; however, additional contributions from midbrain and/or hindbrain locomotor centers are likely. The swimming-related retraction might protect the touch-receptive Merkel cells on the tentacle from sensory over-stimulation and damage and/or reduce the hydrodynamic drag. The intrinsic nature of the coupling of tentacle retraction to locomotion is an excellent example of a context-dependent, direct link between otherwise discrete motor behaviors.

  19. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    NASA Technical Reports Server (NTRS)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  20. Alterations of white matter integrity related to motor activity in schizophrenia.

    PubMed

    Walther, Sebastian; Federspiel, Andrea; Horn, Helge; Razavi, Nadja; Wiest, Roland; Dierks, Thomas; Strik, Werner; Müller, Thomas J

    2011-06-01

    Altered structural connectivity is a key finding in schizophrenia, but the meaning of white matter alterations for behavior is rarely studied. In healthy subjects, motor activity correlated with white matter integrity in motor tracts. To explore the relation of motor activity and fractional anisotropy (FA) in schizophrenia, we investigated 19 schizophrenia patients and 24 healthy control subjects using Diffusion Tensor Imaging (DTI) and actigraphy on the same day. Schizophrenia patients had lower activity levels (AL). In both groups linear relations of AL and FA were detected in several brain regions. Schizophrenia patients had lower FA values in prefrontal and left temporal clusters. Furthermore, using a general linear model, we found linear negative associations of FA and AL underneath the right supplemental motor area (SMA), the right precentral gyrus and posterior cingulum in patients. This effect within the SMA was not seen in controls. This association in schizophrenia patients may contribute to the well known dysfunctions of motor control. Thus, structural disconnectivity could lead to disturbed motor behavior in schizophrenia.

  1. Sensorimotor restriction affects complex movement topography and reachable space in the rat motor cortex

    PubMed Central

    Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco

    2014-01-01

    Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems. PMID:25565987

  2. Increased muscle activation following motor imagery during the rehabilitation of the anterior cruciate ligament.

    PubMed

    Lebon, Florent; Guillot, Aymeric; Collet, Christian

    2012-03-01

    Motor imagery (MI) is the mental representation of an action without any concomitant movement. MI has been used frequently after peripheral injuries to decrease pain and facilitate rehabilitation. However, little is known about the effects of MI on muscle activation underlying the motor recovery. This study aimed to assess the therapeutic effects of MI on the activation of lower limb muscles, as well as on the time course of functional recovery and pain after surgery of the anterior cruciate ligament (ACL). Twelve patients with a torn ACL were randomly assigned to a MI or control group, who both received a series of physiotherapy. Electromyographic activity of the quadriceps, pain, anthropometrical data, and lower limb motor ability were measured throughout a 12-session therapy. The data provided evidence that MI elicited greater muscle activation, even though imagery practice did not result in pain decrease. Muscle activation increase might originate from a redistribution of the central neuronal activity, as there was no anthropometric change in lower limb muscles after imagery practice. This study confirmed the effectiveness of integrating MI in a rehabilitation process by facilitating muscular properties recovery following motor impairment. MI may thus be considered a reliable adjunct therapy to help injured patients to recover motor functions after reconstructive surgery of ACL.

  3. Advances in selective activation of muscles for non-invasive motor neuroprostheses.

    PubMed

    Koutsou, Aikaterini D; Moreno, Juan C; Del Ama, Antonio J; Rocon, Eduardo; Pons, José L

    2016-01-01

    Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via transcutaneous electrodes. In this paper we review the principles and achievements during the last decade on techniques for artificial motor unit recruitment to improve the selective activation of muscles. We review the key factors affecting the outcome of muscle force production via multi-pad transcutaneous electrical stimulation and discuss how stimulation parameters can be set to optimize external activation of body segments. A detailed review of existing electrode array systems proposed by different research teams is also provided. Furthermore, a review of the targeted applications of existing electrode arrays for control of upper and lower limb NPs is provided. Eventually, last section demonstrates the potential of electrode arrays to overcome the major challenges of NPs for compensation and rehabilitation of patient-specific impairments. PMID:27296478

  4. Advances in selective activation of muscles for non-invasive motor neuroprostheses.

    PubMed

    Koutsou, Aikaterini D; Moreno, Juan C; Del Ama, Antonio J; Rocon, Eduardo; Pons, José L

    2016-06-13

    Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via transcutaneous electrodes. In this paper we review the principles and achievements during the last decade on techniques for artificial motor unit recruitment to improve the selective activation of muscles. We review the key factors affecting the outcome of muscle force production via multi-pad transcutaneous electrical stimulation and discuss how stimulation parameters can be set to optimize external activation of body segments. A detailed review of existing electrode array systems proposed by different research teams is also provided. Furthermore, a review of the targeted applications of existing electrode arrays for control of upper and lower limb NPs is provided. Eventually, last section demonstrates the potential of electrode arrays to overcome the major challenges of NPs for compensation and rehabilitation of patient-specific impairments.

  5. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    PubMed

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies.

  6. Effects of viewing affective pictures on sEMG activity of masticatory and postural muscles.

    PubMed

    D'Attilio, Michele; Rodolfino, Daria; Saccucci, Matteo; Abate, Michele; Romani, Gian Luca; Festa, Felice; Merla, Arcangelo

    2013-06-01

    Recently there has been an upsurge of interest in the question to what extent the human motor control system is influenced by the emotional state of the actor. The aim of this study was to evaluate whether emotional inputs modify the activity of masticatory and postural muscles. Twenty healthy young adults viewed affective pictures, while surface electromyography (sEMG) of masticatory and postural muscles was recorded to investigate the coupling between emotional reactions and body muscular activity. One hundred and twenty pictures, chosen from the International Affective Picture System (IAPS), divided in two blocks of six sets, were presented to the subjects. sEMG data were statistically analyzed (RM ANOVA on Ranks). Root Mean Square (RMS) amplitudes, comparing the subsequent sets (Neutral, Unpleasant, Neutral, Pleasant) with the first and the last Baseline set, changed significantly only randomly. The results show that emotional inputs seems not influence the activity of masticatory and postural muscles, recorded by sEMG.

  7. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground.

    PubMed

    Tortella, Patrizia; Haga, Monika; Loras, Håvard; Sigmundsson, Hermundur; Fumagalli, Guido

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens.

  8. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground.

    PubMed

    Tortella, Patrizia; Haga, Monika; Loras, Håvard; Sigmundsson, Hermundur; Fumagalli, Guido

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985

  9. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground

    PubMed Central

    Tortella, Patrizia; Haga, Monika; Loras, Håvard

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985

  10. Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: a near-infrared spectroscopy study.

    PubMed

    Mandrick, Kevin; Derosiere, Gérard; Dray, Gérard; Coulon, Denis; Micallef, Jean-Paul; Perrey, Stéphane

    2013-07-01

    Functional near-infrared spectroscopy (fNIRS) is suitable for investigating cerebral oxygenation changes during motor and/or mental tasks. In the present study, we investigated how an additional mental load during a motor task at two submaximal loadings affects the fNIRS-measured brain activation over the right prefrontal cortex (PFC). Fifteen healthy males performed isometric grasping contractions at 15% and 30% of the maximal voluntary contraction (MVC) with or without an additional mental (i.e., arithmetic) task. Mental performance, force variability, fNIRS and subjective perception responses were measured in each condition. The performance of the mental task decreased significantly while the force variability increased significantly at 30% MVC as compared to 15% MVC, suggesting that performance of dual-task required more attentional resources. PFC activity increased significantly as the effort increased from 15% to 30% MVC (p<.001). Although a larger change in the deoxyhemoglobin was observed in dual-task conditions (p=.051), PFC activity did not change significantly as compared to the motor tasks alone. In summary, participants were unable to invest more attention and effort in performing the more difficult levels in order to maintain adequate mental performance.

  11. Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: a near-infrared spectroscopy study.

    PubMed

    Mandrick, Kevin; Derosiere, Gérard; Dray, Gérard; Coulon, Denis; Micallef, Jean-Paul; Perrey, Stéphane

    2013-07-01

    Functional near-infrared spectroscopy (fNIRS) is suitable for investigating cerebral oxygenation changes during motor and/or mental tasks. In the present study, we investigated how an additional mental load during a motor task at two submaximal loadings affects the fNIRS-measured brain activation over the right prefrontal cortex (PFC). Fifteen healthy males performed isometric grasping contractions at 15% and 30% of the maximal voluntary contraction (MVC) with or without an additional mental (i.e., arithmetic) task. Mental performance, force variability, fNIRS and subjective perception responses were measured in each condition. The performance of the mental task decreased significantly while the force variability increased significantly at 30% MVC as compared to 15% MVC, suggesting that performance of dual-task required more attentional resources. PFC activity increased significantly as the effort increased from 15% to 30% MVC (p<.001). Although a larger change in the deoxyhemoglobin was observed in dual-task conditions (p=.051), PFC activity did not change significantly as compared to the motor tasks alone. In summary, participants were unable to invest more attention and effort in performing the more difficult levels in order to maintain adequate mental performance. PMID:23665138

  12. Motor units in incomplete spinal cord injury: electrical activity, contractile properties and the effects of biofeedback.

    PubMed

    Stein, R B; Brucker, B S; Ayyar, D R

    1990-10-01

    The electrical and contractile properties of hand muscles in a selected population of quadriplegic subjects were studied intensively before and after EMG biofeedback. Spontaneously active motor units and units that could only be slowly and weakly activated were observed in these subjects, in addition to units that were voluntarily activated normally. This suggests a considerable overlap of surviving motor neurons to a single muscle that are below, near or above the level of a lesion. Despite the common occurrence of polyphasic potentials and other signs of neuromuscular reinnervation, the average twitch tension of single motor units in hand muscles of quadriplegic subjects was not significantly different from that in control subjects. Nor did it increase after biofeedback training that typically increased the peak surface EMG by a factor of 2-5 times. The percentage of spontaneously active units was also constant. The surface EMG may be increased during biofeedback by using higher firing rates in motor units that can already be activated, rather than by recruiting previously unavailable motor units. PMID:2266370

  13. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

    PubMed

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks. PMID:24015241

  14. Enhanced Activation of Motor Execution Networks Using Action Observation Combined with Imagination of Lower Limb Movements

    PubMed Central

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S.; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks. PMID:24015241

  15. Body side-specific control of motor activity during turning in a walking animal.

    PubMed

    Gruhn, Matthias; Rosenbaum, Philipp; Bockemühl, Till; Büschges, Ansgar

    2016-04-27

    Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task.

  16. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex.

    PubMed

    Marins, Theo F; Rodrigues, Erika C; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832

  17. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex

    PubMed Central

    Marins, Theo F.; Rodrigues, Erika C.; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832

  18. Pomegranate supplementation improves affective and motor behavior in mice after radiation exposure.

    PubMed

    Dulcich, Melissa S; Hartman, Richard E

    2013-01-01

    Currently, NASA has plans for extended space travel, and previous research indicates that space radiation can have negative effects on cognitive skills as well as physical and mental health. With long-term space travel, astronauts will be exposed to greater radiation levels. Research shows that an antioxidant-enriched diet may offer some protection against the cellular effects of radiation and may provide significant neuroprotection from the effects of radiation-induced cognitive and behavioral skill deficits. Ninety-six C57BL/6 mice (48 pomegranate fed and 48 control) were irradiated with proton radiation (2 Gy), and two-month postradiation behaviors were assessed using a battery of behavioral tests to measure cognitive and motor functions. Proton irradiation was associated with depression-like behaviors in the tail suspension test, but this effect was ameliorated by the pomegranate diet. Males, in general, displayed worse coordination and balance than females on the rotarod task, and the pomegranate diet ameliorated this effect. Overall, it appears that proton irradiation, which may be encountered in space, may induce a different pattern of behavioral deficits in males than females and that a pomegranate diet may confer protection against some of those effects.

  19. Pomegranate Supplementation Improves Affective and Motor Behavior in Mice after Radiation Exposure

    PubMed Central

    Dulcich, Melissa S.; Hartman, Richard E.

    2013-01-01

    Currently, NASA has plans for extended space travel, and previous research indicates that space radiation can have negative effects on cognitive skills as well as physical and mental health. With long-term space travel, astronauts will be exposed to greater radiation levels. Research shows that an antioxidant-enriched diet may offer some protection against the cellular effects of radiation and may provide significant neuroprotection from the effects of radiation-induced cognitive and behavioral skill deficits. Ninety-six C57BL/6 mice (48 pomegranate fed and 48 control) were irradiated with proton radiation (2 Gy), and two-month postradiation behaviors were assessed using a battery of behavioral tests to measure cognitive and motor functions. Proton irradiation was associated with depression-like behaviors in the tail suspension test, but this effect was ameliorated by the pomegranate diet. Males, in general, displayed worse coordination and balance than females on the rotarod task, and the pomegranate diet ameliorated this effect. Overall, it appears that proton irradiation, which may be encountered in space, may induce a different pattern of behavioral deficits in males than females and that a pomegranate diet may confer protection against some of those effects. PMID:23662154

  20. A Compilation of Perceptual Motor Activities to Aid in the Development of the Orthopedically Handicapped Child.

    ERIC Educational Resources Information Center

    Howell, Michelle; And Others

    Provided is information on games, activities, and resources for enhancing perceptual motor development in the orthopedically handicapped child. Compiled are materials which include the following: an explanation of bilateral, alternating lateral, and integrated lateral games and activities for developing awareness of the two sides of the body; a…

  1. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship

    ERIC Educational Resources Information Center

    Stodden, David F.; Goodway, Jacqueline D.; Langendorfer, Stephen J.; Roberton, Mary Ann; Rudisill, Mary E.; Garcia, Clersida; Garcia, Luis E.

    2008-01-01

    Although significant attention has been paid to promoting the importance of physical activity in children, adolescents, and adults, we do not currently understand how to promote sustained physical activity levels throughout the lifespan. We contend that previous research has failed to consider the dynamic and synergistic role that motor skill…

  2. Modulation of Motor Area Activity during Observation of Unnatural Body Movements

    ERIC Educational Resources Information Center

    Shimada, Sotaro; Oki, Kazuma

    2012-01-01

    The mirror neuron system (MNS) is activated when observing the actions of others. However, it remains unclear whether the MNS responds more strongly to natural bodily actions in the observer's motor repertoire than to unnatural actions. We investigated whether MNS activity is modulated by the unnaturalness of an observed action by inserting short…

  3. The Longitudinal Course of Gross Motor Activity in Schizophrenia – Within and between Episodes

    PubMed Central

    Walther, Sebastian; Stegmayer, Katharina; Horn, Helge; Rampa, Luca; Razavi, Nadja; Müller, Thomas J.; Strik, Werner

    2015-01-01

    Schizophrenia is associated with heterogeneous course of positive and negative symptoms. In addition, reduced motor activity as measured by wrist actigraphy has been reported. However, longitudinal studies of spontaneous motor activity are missing. We aimed to explore whether activity levels were stable within and between psychotic episodes. Furthermore, we investigated the association with the course of negative symptoms. In 45 medicated patients, we investigated motor behavior within a psychotic episode. In addition, we followed 18 medicated patients across 2 episodes. Wrist actigraphy and psychopathological ratings were applied. Within an episode symptoms changed but activity levels did not vary systematically. Activity at baseline predicted the course of negative symptoms. Between two episodes activity recordings were much more stable. Again, activity at the index episode predicted the outcome of negative symptoms. In sum, spontaneous motor activity shares trait and state characteristics, the latter are associated with negative symptom course. Actigraphy may therefore become an important ambulatory instrument to monitor negative symptoms and treatment outcome in schizophrenia. PMID:25698981

  4. Associations among Elementary School Children’s Actual Motor Competence, Perceived Motor Competence, Physical Activity and BMI: A Cross-Sectional Study

    PubMed Central

    Stodden, David; Brian, Ali; True, Larissa; Cardon, Greet; Tallir, Isabel; Haerens, Leen

    2016-01-01

    Background Positive associations between motor competence and physical activity have been identified by means of variable-centered analyses. To expand the understanding of these associations, this study used a person-centered approach to investigate whether different combinations (i.e., profiles) of actual and perceived motor competence exist (aim 1); and to examine differences in physical activity levels (aim 2) and weight status (aim 3) among children with different motor competence-based profiles. Materials and Methods Children’s (N = 361; 180 boys = 50%; Mage = 9.50±1.24yrs) actual motor competence was measured with the Test of Gross Motor Development-2 and their perceived motor competence via the Self Perception Profile for Children. We assessed physical activity via accelerometers; height through stadiometers, and weight through scales. Cluster analyses (aim 1) and MANCOVAs (aim 2 & 3) were used to analyze the data. Results The analysis generated two predictable groups: one group displaying relatively high levels of both actual (M TGMD-2 percentile = 42.54, SD = 2.33) and perceived motor competence (M = 3.42, SD = .37; high-high), and one group with relatively low levels of both (M percentile = 9.71, SD = 3.21; M PMC = 2.52, SD = .35; low-low). One additional group was also identified as having relatively low levels of actual motor competence (M percentile = 4.22, SD = 2.85) but relatively high levels of perceived motor competence (M = 3.52, SD = .30; low-high). The high-high group demonstrated higher daily physical activity (M = 48.39±2.03) and lower BMI (M = 18.13±.43) than the low-low group (MMVPA = 37.93±2.01; MBMI = 20.22±.42). The low-high group had similar physical activity-levels as the low-low group (M = 36.21±2.18) and did not significantly differ in BMI (M = 19.49±.46) from the other two groups. Conclusions A combination of high actual and perceived motor competence is related to higher physical activity and lower weight status. It is thus

  5. Poor supplementary motor area activation differentiates auditory verbal hallucination from imagining the hallucination☆

    PubMed Central

    Raij, Tuukka T.; Riekki, Tapani J.J.

    2012-01-01

    Neuronal underpinnings of auditory verbal hallucination remain poorly understood. One suggested mechanism is brain activation that is similar to verbal imagery but occurs without the proper activation of the neuronal systems that are required to tag the origins of verbal imagery in one's mind. Such neuronal systems involve the supplementary motor area. The supplementary motor area has been associated with awareness of intention to make a hand movement, but whether this region is related to the sense of ownership of one's verbal thought remains poorly known. We hypothesized that the supplementary motor area is related to the distinction between one's own mental processing (auditory verbal imagery) and similar processing that is attributed to non-self author (auditory verbal hallucination). To test this hypothesis, we asked patients to signal the onset and offset of their auditory verbal hallucinations during functional magnetic resonance imaging. During non-hallucination periods, we asked the same patients to imagine the hallucination they had previously experienced. In addition, healthy control subjects signaled the onset and offset of self-paced imagery of similar voices. Both hallucinations and the imagery of hallucinations were associated with similar activation strengths of the fronto-temporal language-related circuitries, but the supplementary motor area was activated more strongly during the imagery than during hallucination. These findings suggest that auditory verbal hallucination resembles verbal imagery in language processing, but without the involvement of the supplementary motor area, which may subserve the sense of ownership of one's own verbal imagery. PMID:24179739

  6. Poor supplementary motor area activation differentiates auditory verbal hallucination from imagining the hallucination.

    PubMed

    Raij, Tuukka T; Riekki, Tapani J J

    2012-01-01

    Neuronal underpinnings of auditory verbal hallucination remain poorly understood. One suggested mechanism is brain activation that is similar to verbal imagery but occurs without the proper activation of the neuronal systems that are required to tag the origins of verbal imagery in one's mind. Such neuronal systems involve the supplementary motor area. The supplementary motor area has been associated with awareness of intention to make a hand movement, but whether this region is related to the sense of ownership of one's verbal thought remains poorly known. We hypothesized that the supplementary motor area is related to the distinction between one's own mental processing (auditory verbal imagery) and similar processing that is attributed to non-self author (auditory verbal hallucination). To test this hypothesis, we asked patients to signal the onset and offset of their auditory verbal hallucinations during functional magnetic resonance imaging. During non-hallucination periods, we asked the same patients to imagine the hallucination they had previously experienced. In addition, healthy control subjects signaled the onset and offset of self-paced imagery of similar voices. Both hallucinations and the imagery of hallucinations were associated with similar activation strengths of the fronto-temporal language-related circuitries, but the supplementary motor area was activated more strongly during the imagery than during hallucination. These findings suggest that auditory verbal hallucination resembles verbal imagery in language processing, but without the involvement of the supplementary motor area, which may subserve the sense of ownership of one's own verbal imagery. PMID:24179739

  7. Motor speech impairment, activity, and participation in children with cerebral palsy.

    PubMed

    Mei, Cristina; Reilly, Sheena; Reddihough, Dinah; Mensah, Fiona; Morgan, Angela

    2014-08-01

    The present study used a population-based sample of children with cerebral palsy (CP) to estimate the prevalence of motor speech impairment and its association with activity and participation. A sample of 79 Victorian children aged 4 years 11 months to 6 years 5 months was recruited through the Victorian CP Register. The presence of motor speech impairment was recorded using the Viking Speech Scale (VSS). Activity and participation outcomes included speech intelligibility (the National Technical Institute for the Deaf rating scale, NTID), the Functional Communication Classification System (FCCS) and Communication Function Classification System (CFCS). A parent completed rating scale was used to examine the association between motor speech impairment and participation. Ninety per cent (71/79) of children demonstrated a motor speech impairment. Strong associations were found between the VSS and NTID (< .001), CFCS (< .001), and FCCS levels (<.001). VSS levels III-IV were significantly associated with restrictions in home, school, and community-based participation as perceived by parents. Although some diversity in activity and participation outcomes was observed within specific VSS levels, the results of this study suggested that children with mild motor speech impairments are more likely to demonstrate superior activity and participation outcomes compared to children with moderate or severe deficits.

  8. Repeated exposures to chlorpyrifos lead to spatial memory retrieval impairment and motor activity alteration.

    PubMed

    Yan, Changhui; Jiao, Lifei; Zhao, Jun; Yang, Haiying; Peng, Shuangqing

    2012-07-01

    Chlorpyrifos (CPF) is one of the most commonly used insecticides throughout the world and has become one of the major pesticides detected in farm products. Chronic exposures to CPF, especially at the dosages without eliciting any systemic toxicity, require greater attention. The purpose of this study was, therefore, to evaluate the behavioral effects of repeated low doses (doses that do not produce overt signs of cholinergic toxicity) of CPF in adult rats. Male rats were given 0, 1.0, 5.0 or 10.0mg/kg of CPF through intragastric administration daily for 4 consecutive weeks. The behavioral functions were assessed in a series of behavioral tests, including water maze task, open-field test, grip strength and rotarod test. Furthermore, the present study was designed to evaluate the effects of repeated exposures to CPF on water maze recall and not acquisition. The results showed that the selected doses only had mild inhibition effects on cholinesterase activity, and have no effects on weight gain and daily food consumption. Performances in the spatial retention task (Morris water maze) were impaired after the 4-week exposure to CPF, but the performances of grip strength and rotarod test were not affected. Motor activities in the open field were changed, especially the time spent in the central zone increased. The results indicated that repeated exposures to low doses of CPF may lead to spatial recall impairments, behavioral abnormalities. However, the underlying mechanism needs further investigations.

  9. Endogenous patterns of activity are required for the maturation of a motor network

    PubMed Central

    Crisp, Sarah J.; Evers, Jan Felix; Bate, Michael

    2011-01-01

    Many parts of the nervous system become active before development is complete, including the embryonic spinal cord. Remarkably, although the subject has been debated for over a century (Harrison, 1904), it is still unclear whether such activity is required for normal development of motor circuitry. In Drosophila, embryonic motor output is initially poorly organised, and coordinated crawling-like behaviour gradually emerges over the subsequent phase of development. We show that reversibly blocking synaptic transmission during this phase severely delays the first appearance of coordinated movements. When we interfere with the pattern of neuronal firing during this period, coordination is also delayed or blocked. We conclude that there is a period during which endogenous patterns of neuronal activity are required for the normal development of motor circuits in Drosophila. PMID:21775590

  10. Effect of slice orientation on reproducibility of fMRI motor activation at 3 Tesla.

    PubMed

    Gustard, S; Fadili, J; Williams, E J; Hall, L D; Carpenter, T A; Brett, M; Bullmore, E T

    2001-12-01

    The effect of slice orientation on reproducibility and sensitivity of 3T fMRI activation using a motor task has been investigated in six normal volunteers. Four slice orientations were used; axial, oblique axial, coronal and sagittal. We applied analysis of variance (ANOVA) to suprathreshold voxel statistics to quantify variability in activation between orientations and between subjects. We also assessed signal detection accuracy in voxels across the whole brain by using a finite mixture model to fit receiver operating characteristic (ROC) curves to the data. Preliminary findings suggest that suprathreshold cluster characteristics demonstrate high motor reproducibility across subjects and orientations, although a significant difference between slice orientations in number of activated voxels was demonstrated in left motor cortex but not cerebellum. Subtle inter-orientation differences are highlighted in the ROC analyses, which are not obvious by ANOVA; the oblique axial slice orientation offers the highest signal detection accuracy, whereas coronal slices give the lowest.

  11. Twenty four hour manometric recording of colonic motor activity in healthy man.

    PubMed Central

    Narducci, F; Bassotti, G; Gaburri, M; Morelli, A

    1987-01-01

    The motor activity of the transverse, descending, and sigmoid colon was recorded for 24 hours in 14 healthy volunteers with a colonoscope positioned catheter. During the study the patients ate two 1000 kcal mixed meals and one continental breakfast. Colonic motor activity was low before meals and minimal during sleep; the motility index increased significantly after meals and at morning awakening. Most of the motor activity was represented by low amplitude contractions present singly or in bursts, which showed no recognisable pattern. All but two subjects also showed isolated high amplitude (up to 200 mmHg) contractions that propagated peristaltically over long distances at approximately 1 cm/sec. Most of these contractions occurred after morning awakening, and some in the late postprandial period, with a mean of 4.4/subject/24 h. The peristaltic contractions were often felt as an urge to defecate or preceded defecation, and could represent the manometric equivalent of the mass movements. PMID:3817580

  12. Androgens affect muscle, motor neuron, and survival in a mouse model of SOD1-related amyotrophic lateral sclerosis.

    PubMed

    Aggarwal, Tanya; Polanco, Maria J; Scaramuzzino, Chiara; Rocchi, Anna; Milioto, Carmelo; Emionite, Laura; Ognio, Emanuela; Sambataro, Fabio; Galbiati, Mariarita; Poletti, Angelo; Pennuto, Maria

    2014-08-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of upper and lower motor neurons and skeletal muscle atrophy. Epidemiologic and experimental evidence suggest the involvement of androgens in ALS pathogenesis, but the mechanism through which androgens modify the ALS phenotype is unknown. Here, we show that androgen ablation by surgical castration extends survival and disease duration of a transgenic mouse model of ALS expressing mutant human SOD1 (hSOD1-G93A). Furthermore, long-term treatment of orchiectomized hSOD1-G93A mice with nandrolone decanoate (ND), an anabolic androgenic steroid, worsened disease manifestations. ND treatment induced muscle fiber hypertrophy but caused motor neuron death. ND negatively affected survival, thereby dissociating skeletal muscle pathology from life span in this ALS mouse model. Interestingly, orchiectomy decreased androgen receptor levels in the spinal cord and muscle, whereas ND treatment had the opposite effect. Notably, stimulation with ND promoted the recruitment of endogenous androgen receptor into biochemical complexes that were insoluble in sodium dodecyl sulfate, a finding consistent with protein aggregation. Overall, our results shed light on the role of androgens as modifiers of ALS pathogenesis via dysregulation of androgen receptor homeostasis.

  13. Single motor unit activity in human extraocular muscles during the vestibulo-ocular reflex.

    PubMed

    Weber, Konrad P; Rosengren, Sally M; Michels, Rike; Sturm, Veit; Straumann, Dominik; Landau, Klara

    2012-07-01

    Motor unit activity in human eye muscles during the vestibulo-ocular reflex (VOR) is not well understood, since the associated head and eye movements normally preclude single unit recordings. Therefore we recorded single motor unit activity following bursts of skull vibration and sound, two vestibular otolith stimuli that elicit only small head and eye movements. Inferior oblique (IO) and inferior rectus (IR) muscle activity was measured in healthy humans with concentric needle electrodes. Vibration elicited highly synchronous, short-latency bursts of motor unit activity in the IO (latency: 10.5 ms) and IR (14.5 ms) muscles. The activation patterns of the two muscles were similar, but reciprocal, with delayed activation of the IR muscle. Sound produced short-latency excitation of the IO muscle (13.3 ms) in the eye contralateral to the stimulus. Simultaneous needle and surface recordings identified the IO as the muscle of origin of the vestibular evoked myogenic potential (oVEMP) thus validating the physiological basis of this recently developed clinical test of otolith function. Single extraocular motor unit recordings provide a window into neural activity in humans that can normally only be examined using animal models and help identify the pathways of the translational VOR from otoliths to individual eye muscles.

  14. [Spinal circuit motor plasticity mechanisms in long-term sports activity adaptation].

    PubMed

    Andriianova, E Iu; Lanskaia, O V

    2014-01-01

    Man interacts with the environment through motor activities getting considerable sensor information from numerous internal and external sources. There is significant evidence of I-a afferents sensor information being critical in initiating of functional and morphological transformations in the periods of both development and maturation of cortex and spinal cord. Ia fibers ability to transmit sensor information, generated by muscle and motor activities, causes plastic changes in the central nervous system, enabling man to acquire new skills and movements and develop them. Therefore, understanding of activity-dependent neural plasticity mechanisms is of great importance in developing methods to perfect motor function, for example, in doing sports. This article presents the results of investigation of activity-dependent changes in spinal cord circuits in athletes. There are new data of cervical and lumbosacral motor spinal system plasticity as a result of various longterm sports activities. It is shown, in particular, that, in comparison with non-athletes, in the spinal cord of ski-racers and basketball-players the representation area of upper and lower extremities muscles alpha-motorneurons with high reflex excitability is extended. Moreover,.the direction of the extension was specified by the upper segments activity. Besides, the volume of some revealed signs of cervical and lumbosacral spinal cord plasticity in the ski-racers, involved into moderate cyclic activity, was higher than that in the basketball-players, whose movements are more various.

  15. Differential long-term effects of developmental exposure to polychlorinated biphenyls 52, 138 or 180 on motor activity and neurotransmission. Gender dependence and mechanisms involved.

    PubMed

    Boix, Jordi; Cauli, Omar; Leslie, Heather; Felipo, Vicente

    2011-01-01

    Developmental exposure to polychlorinated biphenyls (PCBs) induces motor alterations in humans by unknown mechanisms. It remains unclear whether: (a) all non-dioxin-like (NDL) PCBs are neurotoxic or it depends on the grade of chlorination; (b) they have different neurotoxicity mechanisms; (c) they affect differently males and females. The aims of this work were to assess: (1) whether perinatal exposure to 3 NDL-PCBs with different grades of chlorination, (PCBs 52, 138 or 180) affects differentially motor activity in adult rats; (2) whether the effects are different in males or females and (3) the mechanisms involved in impaired motor activity. Rats were exposed to PCBs from gestational day 7 to post-natal day 21. Experiments were performed when the rats were 4 months-old. PCB52 did not affect motor activity, PCB180 reduced it in males but not in females and PCB138 reduced activity both in males and females. PCB52 or 138 did not affect extracellular dopamine in nucleus accumbens (NAcc). PCB180 increased it both in males and females. Extracellular glutamate in NAcc was reduced by the three PCBs. Activation of metabotropic glutamate receptors (mGluRs) in NAcc increased extracellular dopamine in control rats and in those exposed to PCB52 and reduced dopamine in rats exposed to PCB180. In rats exposed to PCB138 activation of mGluRs increases dopamine in females and reduces it in males. The opposite changes were observed for glutamate. mGluRs activation reduced extracellular glutamate in control rats and in those exposed to PCB52 and increased glutamate in rats exposed to PCB180. In rats exposed to PCB138 activation of mGluRs reduces glutamate in females and increases it in males. The data support that different NDL-PCBs affect differently motor activity. Increased glutamate release in NAcc following activation of mGluRs would be involved in reduced dopamine release and reduced motor activity in rats exposed to PCB138 or 180.

  16. Hypoactivity Affects IGF-1 Level and PI3K/AKT Signaling Pathway in Cerebral Structures Implied in Motor Control

    PubMed Central

    Mysoet, Julien; Canu, Marie-Hélène; Cieniewski-Bernard, Caroline; Bastide, Bruno; Dupont, Erwan

    2014-01-01

    A chronic reduction in neuromuscular activity through prolonged body immobilization in human alters motor task performance through a combination of peripheral and central factors. Studies performed in a rat model of sensorimotor restriction have shown functional and biochemical changes in sensorimotor cortex. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of Insulin-like Growth Factor 1 (IGF-1), a growth factor known to mediate neuronal excitability and synaptic plasticity by inducing phosphorylation cascades which include the PI3K–AKT pathway. In order to better understand the influence of IGF-1 in cortical plasticity in rats submitted to a sensorimotor restriction, we analyzed the effect of hindlimb unloading on IGF-1 and its main molecular pathway in structures implied in motor control (sensorimotor cortex, striatum, cerebellum). IGF-1 level was determined by ELISA, and phosphorylation of its receptor and proteins of the PI3K–AKT pathway by immunoblot. In the sensorimotor cortex, our results indicate that HU induces a decrease in IGF-1 level; this alteration is associated to a decrease in activation of PI3K-AKT pathway. The same effect was observed in the striatum, although to a lower extent. No variation was noticed in the cerebellum. These results suggest that IGF-1 might contribute to cortical and striatal plasticity induced by a chronic sensorimotor restriction. PMID:25226394

  17. Does lunisolar gravitational tide affect the activity of animals?

    NASA Astrophysics Data System (ADS)

    Deshcherevskii, A. V.; Sidorin, A. Ya.

    2010-12-01

    Multiyear time series obtained by the continuous instrumental monitoring of the electrical activity (EA) of weakly electric fish Gnathonemus leopoldianus and the motor activity (MA) of the freshwater catfish Hoplosternum thoracatum and the cockroach Blaberus craniifer are compared to the parameters of the lunisolar gravitational tide. These curves are observed to be very similar for a large number of time intervals. However, a more detailed analysis shows this to be only a superficial resemblance caused by the closeness of the periods of diurnal and semidiurnal rhythms of bioindicator activity (the dominant rhythms in EA and MA patterns) and the periods of main gravitational tidal waves. It is concluded that the lunisolar gravitational tide has no significant effect on animal behavior in our experiment.

  18. Effect of percutaneous stimulation at different spinal levels on the activation of sensory and motor roots.

    PubMed

    Roy, François D; Gibson, Grady; Stein, Richard B

    2012-11-01

    Percutaneous spinal stimulation is a promising new technique for understanding human spinal reflexes and for evaluating the pathophysiology of motor roots. Previous studies have generally stimulated the T11/T12 or T12/L1 vertebral junctions, sites that overlie the lumbosacral enlargement. The present study sought to determine the best location for targeting sensory and motor roots during sitting. We used paired stimuli, 50 ms apart, to distinguish the contribution of the reflex and motor components which make up the root evoked potential. This assumed that post-stimulation attenuation, primarily through homosynaptic depression, would abolish the second potential if it was trans-synaptic in origin. Conversely, successive responses would be unchanged if motor roots were being stimulated. Here, we show that sensory root reflexes were optimally elicited with percutaneous stimulation over the L1-L3 vertebrae. However, the optimal position varied between subjects and depended on the target muscle being studied. A collision test showed that the reflex recorded in pre-tibial flexors was low in amplitude and was prone to crosstalk from neighbouring muscles. In contrast to the reflex response, direct motor root activation was optimal with stimulation over the more caudal L5-S1 vertebrae. The present results support the utility of paired stimulation for evaluating the topographical recruitment of sensory and motor roots to human leg muscles.

  19. ATP-dependent motor activity of the transcription termination factor Rho from Mycobacterium tuberculosis.

    PubMed

    D'Heygère, François; Schwartz, Annie; Coste, Franck; Castaing, Bertrand; Boudvillain, Marc

    2015-07-13

    The bacterial transcription termination factor Rho-a ring-shaped molecular motor displaying directional, ATP-dependent RNA helicase/translocase activity-is an interesting therapeutic target. Recently, Rho from Mycobacterium tuberculosis (MtbRho) has been proposed to operate by a mechanism uncoupled from molecular motor action, suggesting that the manner used by Rho to dissociate transcriptional complexes is not conserved throughout the bacterial kingdom. Here, however, we demonstrate that MtbRho is a bona fide molecular motor and directional helicase which requires a catalytic site competent for ATP hydrolysis to disrupt RNA duplexes or transcription elongation complexes. Moreover, we show that idiosyncratic features of the MtbRho enzyme are conferred by a large, hydrophilic insertion in its N-terminal 'RNA binding' domain and by a non-canonical R-loop residue in its C-terminal 'motor' domain. We also show that the 'motor' domain of MtbRho has a low apparent affinity for the Rho inhibitor bicyclomycin, thereby contributing to explain why M. tuberculosis is resistant to this drug. Overall, our findings support that, in spite of adjustments of the Rho motor to specific traits of its hosting bacterium, the basic principles of Rho action are conserved across species and could thus constitute pertinent screening criteria in high-throughput searches of new Rho inhibitors.

  20. A non-mitotic CENP-E homolog in Dictyostelium discoideum with slow motor activity.

    PubMed

    Kösem, Süleyman; Ökten, Zeynep; Ho, Thi-Hieu; Trommler, Gudrun; Koonce, Michael P; Samereier, Matthias; Müller-Taubenberger, Annette

    2013-02-15

    Kinesins are ATP-dependent molecular motors that mediate unidirectional intracellular transport along microtubules. Dictyostelium discoideum has 13 different kinesin isoforms including two members of the kinesin-7 family, Kif4 and Kif11. While Kif4 is structurally and functionally related to centromere-associated CENP-E proteins involved in the transport of chromosomes to the poles during mitosis, the function of the unusually short CENP-E variant Kif11 is unclear. Here we show that orthologs of short CENP-E variants are present in plants and fungi, and analyze functional properties of the Dictyostelium CENP-E version, Kif11. Gene knockout mutants reveal that Kif11 is not required for mitosis or development. Imaging of GFP-labeled Kif11 expressing Dictyostelium cells indicates that Kif11 is a plus-end directed motor that accumulates at microtubule plus ends. By multiple motor gliding assays, we show that Kif11 moves with an average velocity of 38nm/s, thus defining Kif11 as a very slow motor. The activity of the Kif11 motor appears to be modulated via interactions with the non-catalytic tail region. Our work highlights a subclass of kinesin-7-like motors that function outside of a role in mitosis.

  1. Can Kinesiological Activities Change "Pure" Motor Development in Preschool Children during One School Year?

    PubMed

    Krneta, Željko; Casals, Cristina; Bala, Gustav; Madić, Dejan; Pavlović, Slobodan; Drid, Patrik

    2015-07-01

    The purpose of this study was to evaluate the effects of an additional, organized, and more intensive kinesiological treatment on "pure" motor abilities in preschool children. In the present study an experimental treatment was carried out on a sample of 37 preschool boys by applying kinesiological activities. The 60 minute treatment was applied over a period of one school year (9 months), twice a week. A control group of 31 boys were trained according to the regular program for preschool institutions. Treatment effects were assessed by 8 motor ability tests and 5 anthropometric measures. The significant differences between the groups, which were observed after the final measurement and compared to the initial one, proved that the kinesiological treatment had a positive impact on the general development of "pure" motor abilities. The most significant effect of experimental kinesiological treatment was the improvement in whole body force, flexibility and coordination of preschool boys. These findings, obtained only in one school year, point to the importance of physical exercise and the application of additional kinesiological activities with various modalities, to improve motor development, even morphological growth and development in preschool children. The effects of the perennial application of kinesiological activities, under the supervision of kinesiological professionals, could be beneficial and could form the basis for a better biological and motor development in older age.

  2. Altered motor activity of alternative splice variants of the mammalian kinesin-3 protein KIF1B.

    PubMed

    Matsushita, Masafumi; Yamamoto, Ruri; Mitsui, Keiji; Kanazawa, Hiroshi

    2009-11-01

    Several mammalian kinesin motor proteins exist as multiple isoforms that arise from alternative splicing of a single gene. However, the roles of many motor protein splice variants remain unclear. The kinesin-3 motor protein KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein. The insertions are located in the loop region containing the lysine-rich cluster, also known as the K-loop, and in the hinge region adjacent to the motor domain. To clarify the functions of these alternative splice variants of KIF1B, we examined the biochemical properties of recombinant KIF1B with and without insertion sequences. In a microtubule-dependent ATPase assay, KIF1B variants that contained both insertions had higher activity and affinity for microtubules than KIF1B variants that contained no insertions. Mutational analysis of the K-loop insertion revealed that variants with a longer insertion sequence at this site had higher activity. However, the velocity of movement in motility assays was similar between KIF1B with and without insertion sequences. Our results indicate that splicing isoforms of KIF1B that vary in their insertion sequences have different motor activities.

  3. Non-exercise physical activity attenuates motor symptoms in Parkinson disease independent from nigrostriatal degeneration

    PubMed Central

    Snider, Jon; Müller, Martijn L.T.M; Kotagal, Vikas; Koeppe, Robert A; Scott, Peter J.H.; Frey, Kirk A; Albin, Roger L.; Bohnen, Nicolaas I.

    2015-01-01

    Objective To investigate the relationship between time spent in non-exercise and exercise physical activity and severity of motor functions in Parkinson disease (PD). Background Increasing motor impairments of PD incline many patients to a sedentary lifestyle. We investigated the relationship between duration of both non-exercise and exercise physical activity over a 4-week period using the Community Health Activities Model Program for Seniors (CHAMPS) questionnaire and severity of clinical motor symptoms in PD. We accounted for the magnitude of nigrostriatal degeneration. Methods Cross-sectional study. PD subjects, n=48 (40M); 69.4±7.4 (56–84) years old; 8.4±4.2 (2.5–20) years motor disease duration, mean UPDRS motor score 27.5 ± 10.3 (7–53) and mean MMSE score 28.4 ± 1.9 (22–30) underwent [11C]dihydrotetrabenazine (DTBZ) PET imaging to assess nigrostriatal denervation and completed the CHAMPS questionnaire and clinical assessment. Results Bivariate correlations showed an inverse relationship between motor UPDRS severity scores and duration of non-exercise physical activity (R= −0.37, P=0.0099) but not with duration of exercise physical activity (R= −0.05, P= 0.76) over 4 weeks. Multiple regression analysis using UPDRS motor score as outcome variable demonstrated a significant regressor effect for duration of non-exercise physical activity (F=6.15, P=0.017) while accounting for effects of nigrostriatal degeneration (F=4.93, P=0.032), levodopa-equivalent dose (LED; F=1.07, P=0.31), age (F=4.37, P=0.043) and duration of disease (F=1.46, P=0.23; total model (F=5.76, P=0.0004). Conclusions Non-exercise physical activity is a correlate of motor symptom severity in PD independent of the magnitude of nigrostriatal degeneration. Non-exercise physical activity may have positive effects on functional performance in PD. PMID:26330028

  4. A threat to a virtual hand elicits motor cortex activation.

    PubMed

    González-Franco, Mar; Peck, Tabitha C; Rodríguez-Fornells, Antoni; Slater, Mel

    2014-03-01

    We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant's virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3-C4) negativity were clearly observed when the virtual hand was threatened-as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.

  5. Effect of lower-limb joint models on subject-specific musculoskeletal models and simulations of daily motor activities.

    PubMed

    Valente, Giordano; Pitto, Lorenzo; Stagni, Rita; Taddei, Fulvia

    2015-12-16

    Understanding the validity of using musculoskeletal models is critical, making important to assess how model parameters affect predictions. In particular, assumptions on joint models can affect predictions from simulations of movement, and the identification of image-based joints is unavoidably affected by uncertainty that can decrease the benefits of increasing model complexity. We evaluated the effect of different lower-limb joint models on muscle and joint contact forces during four motor tasks, and assessed the sensitivity to the uncertainties in the identification of anatomical four-bar-linkage joints. Three MRI-based musculoskeletal models having different knee and ankle joint models were created and used for the purpose. Model predictions were compared against a baseline model including simpler and widely-adopted joints. In addition, a probabilistic analysis was performed by perturbing four-bar-linkage joint parameters according to their uncertainty. The differences between models depended on the motor task analyzed, and there could be marked differences at peak loading (up to 2.40 BW at the knee and 1.54 BW at the ankle), although they were rather small over the motor task cycles (up to 0.59 BW at the knee and 0.31 BW at the ankle). The model including more degrees of freedom showed more discrepancies in predicted muscle activations compared to measured muscle activity. Further, including image-based four-bar-linkages was robust to simulate walking, chair rise and stair ascent, but not stair descent (peak standard deviation of 2.66 BW), suggesting that joint model complexity should be set according to the imaging dataset available and the intended application, performing sensitivity analyses. PMID:26506255

  6. Longitudinal assessment of leg motor activity and sleep patterns in infants with and without Down syndrome.

    PubMed

    McKay, Sandra M; Angulo-Barroso, Rosa M

    2006-04-01

    Whether infants with Down syndrome (DS) perform leg movements with the same frequency and quality as their typical development (TD) counterparts is equivocal. Furthermore, the relationship between these early leg movements and later onset of locomotor milestones has only been partially explored. The aims of this study were two-fold: (1) to describe the longitudinal leg activity in infants with and without DS (3-6 months), and (2) to examine sleeping patterns and leg activity during the night. In addition, the relationships between leg activities and sleep patterns with locomotor development were explored. An activity monitor was placed monthly on the infant's ankle for 48 h. Data were analyzed to separate day-night, high-low activity, and sleep fragmentation. The results indicate that infants with DS produced more low intensity activity and more fragmented sleep. These findings are discussed in relation to the influence of early motor activity on achievement of functional motor behavior.

  7. Regulation of pumping function of the heart in developing body under changing regimens of motor activity.

    PubMed

    Vafina, E Z; Abzalov, R A; Abzalov, N I; Nikitin, A S; Gulyakov, A A

    2014-06-01

    We analyzed parameters of the pumping function of the heart in rats subjected to enhanced motor activity after a preliminary 70-day hypokinesia under conditions of α- and β-adrenergic receptor stimulation with norepinephrine followed by blockade of β-adrenergic receptor with propranolol (obsidian) and α1-adrenergic receptors with doxazosin. After norepinephrine administration, the HR and cardiac output were higher in rats with enhanced physical activity after preliminary hypokinesia than in rats with low physical activity. After propranolol administration, stroke volume and cardiac output in 100-day-old rats with limited activity were lower, and HR higher was than in rats with enhanced physical activity after preliminary 70-day hypokinesia. After administration of doxazosin, rats with limited motor activity demonstrated more pronounced changes in HR than rats with enhanced physical activity after preliminary 70-day hypokinesia. PMID:24970234

  8. Regulation of pumping function of the heart in developing body under changing regimens of motor activity.

    PubMed

    Vafina, E Z; Abzalov, R A; Abzalov, N I; Nikitin, A S; Gulyakov, A A

    2014-06-01

    We analyzed parameters of the pumping function of the heart in rats subjected to enhanced motor activity after a preliminary 70-day hypokinesia under conditions of α- and β-adrenergic receptor stimulation with norepinephrine followed by blockade of β-adrenergic receptor with propranolol (obsidian) and α1-adrenergic receptors with doxazosin. After norepinephrine administration, the HR and cardiac output were higher in rats with enhanced physical activity after preliminary hypokinesia than in rats with low physical activity. After propranolol administration, stroke volume and cardiac output in 100-day-old rats with limited activity were lower, and HR higher was than in rats with enhanced physical activity after preliminary 70-day hypokinesia. After administration of doxazosin, rats with limited motor activity demonstrated more pronounced changes in HR than rats with enhanced physical activity after preliminary 70-day hypokinesia.

  9. The Promotion of Gross and Fine Motor Development for Infants and Toddlers: Developmentally Appropriate Activities for Parents and Teachers.

    ERIC Educational Resources Information Center

    Thompson, Debra S.

    In recognition of the close relationship between motor skill and cognitive development in the first 2 years of life, this guide presents 78 developmentally appropriate activities that parents and teachers can use to enhance infant and toddler motor development. Activities are categorized by age group as follows: (1) 16 activities for newborn to…

  10. The Impact of Physical Activity on Non-Motor Symptoms in Parkinson's Disease: A Systematic Review.

    PubMed

    Cusso, Melanie E; Donald, Kenneth J; Khoo, Tien K

    2016-01-01

    Parkinson's disease (PD) is a neurological disorder that is associated with both motor and non-motor symptoms (NMS). The management of PD is primarily via pharmaceutical treatment; however, non-pharmaceutical interventions have become increasingly recognized in the management of motor and NMS. In this review, the efficacy of physical activity, including physiotherapy and occupational therapy, as an intervention in NMS will be assessed. The papers were extracted between the 20th and 22nd of June 2016 from PubMed, Web of Science, Medline, Ovid, SportsDiscuss, and Scopus using the MeSH search terms "Parkinson's," "Parkinson," and "Parkinsonism" in conjunction with "exercise," "physical activity," "physiotherapy," "occupational therapy," "physical therapy," "rehabilitation," "dance," and "martial arts." Twenty studies matched inclusion criteria of having 10 or more participants with diagnosed idiopathic PD participating in the intervention as well as having to evaluate the effects of physical activity on NMS in PD as controlled, randomized intervention studies. The outcomes of interest were NMS, including depression, cognition, fatigue, apathy, anxiety, and sleep. Risk of bias in the studies was evaluated using the Cochrane Collaboration's tool for assessing risk of bias. Comparability of the various intervention methods, however, was challenging due to demographic variability and methodological differences. Nevertheless, physical activity can positively impact the global NMS burden including depression, apathy, fatigue, day time sleepiness, sleep, and cognition, thus supporting its therapeutic potential in neurodegenerative conditions such as PD. It is recommended that further adequately powered studies are conducted to assess the therapeutic role of physical activity on both motor and non-motor aspects of PD. These studies should be optimally designed to assess non-motor elements of disease using instruments validated in PD. PMID:27583249

  11. Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats.

    PubMed

    Veasey, S C; Fornal, C A; Metzler, C W; Jacobs, B L

    1995-07-01

    Serotonergic neuronal responses during three specific motor activities were studied in nuclei raphe obscurus (NRO) and raphe pallidus (NRP) of freely moving cats by means of extracellular single-unit recordings. Responses to treadmill-induced locomotion were primarily excitatory, with 21 of 24 neurons displaying increased firing rates, directly related to treadmill speed. Individual regression analyses determined three response patterns: maximal activation at low speed (0.25 m/sec), augmentation of neuronal activity only at high treadmill speed (0.77 m/sec), and a linear increase. A smaller fraction of NRO and NRP serotonergic neurons (6 of 27) also responded to hypercarbic ventilatory challenge with increased firing rates. The magnitude of neuronal response was dependent upon the fraction of inspired CO2 and was related to ventilatory motor output, specifically, inspiratory amplitude. A subgroup of neurons responsive to hypercarbia in wakefulness demonstrated significant reductions in neuronal response to hypercarbia in slow-wave sleep. Finally, unit activity for 12 of 29 cells increased in response to spontaneous feeding, displaying two distinct patterns of neuronal response in relation to onset and termination of feeding: rapid activation and deactivation versus a gradual increase and decrease. More than half of the cells studied under all three conditions were responsive to more than one motor task. These results indicate that serotonergic caudal raphe neurons are responsive to specific motor system challenges, with many neurons responsive to multiple motor tasks, and that the responsiveness of serotonergic neurons to at least one motor task, hypercarbic ventilatory challenge, is state dependent.

  12. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception.

    PubMed

    Turner, Clare E; Byblow, Winston D; Stinear, Cathy M; Gant, Nicholas

    2014-09-01

    The presence of carbohydrate in the human mouth has been associated with the facilitation of motor output and improvements in physical performance. Oral receptors have been identified as a potential mode of afferent transduction for this novel form of nutrient signalling that is distinct from taste. In the current study oral exposure to carbohydrate was combined with a motor task in a neuroimaging environment to identify areas of the brain involved in this phenomenon. A mouth-rinsing protocol was conducted whilst carbohydrate (CHO) and taste-matched placebo (PLA) solutions were delivered and recovered from the mouths of 10 healthy volunteers within a double-blind, counterbalanced design. This protocol eliminates post-oral factors and controls for the perceptual qualities of solutions. Functional magnetic resonance imaging of the brain was used to identify cortical areas responsive to oral carbohydrate during rest and activity phases of a hand-grip motor task. Mean blood-oxygen-level dependent signal change experienced in the contralateral primary sensorimotor cortex was larger for CHO compared with PLA during the motor task when contrasted with a control condition. Areas of activation associated with CHO exclusively were observed over the primary taste cortex and regions involved in visual perception. Regions in the limbic system associated with reward were also significantly more active with CHO. This is the first demonstration that oral carbohydrate signalling can increase activation within the primary sensorimotor cortex during physical activity and enhance activation of neural networks involved in sensory perception.

  13. A novel method for counting spontaneous motor activity in the rat.

    PubMed

    Masuo, Y; Matsumoto, Y; Morita, S; Noguchi, J

    1997-10-01

    Motor activity is a good index for studying the effects of pharmacological agents. Previous investigations have measured spontaneous motor activity by counting the number of times that an animal interrupts a magnetic field or photocell beam. Quite recently, a novel activity-monitoring system, Supermex, was developed. In this system, a sensor detects the radiated body heat of an animal. The Supermex method enables an investigator to perform multi-channel measurement at low cost. Any size home cage may be used, as long as its geometry cannot block the beam's contact with the animal. Operation is very simple and sensitivity adjustment is not required after the sensor-mount position and height from the cage floor are fixed. In the present study we first used the Supermex system to examine the effects of intracerebroventricular (i.c.v.) administration of a known stimulant, thyrotropin-releasing hormone (TRH). Our results confirmed the suitability of this system for testing spontaneous motor activity. We further studied the effects of pituitary adenylate cyclase-activating polypeptide (PACAP) and its related peptide, vasoactive intestinal polypeptide (VIP), on spontaneous motor activity.

  14. Methylphenidate-induced motor activity in rats: modulation by melatonin and vasopressin.

    PubMed

    Appenrodt, Edgar; Schwarzberg, Helmut

    2003-04-01

    Methylphenidate (MPH), a dopamine (DA) reuptake inhibitor, is well known to enhance motor activity, in part depending on the time of its application during the light-dark cycle. Moreover, after MPH administration, the hypothalamo-neurohypophysial axis including the neuropeptide vasopressin (AVP) was found influenced. Both the latter and behavioural effects of central AVP can also be modulated by the pineal gland with its light-dark-dependent activity. The present study was performed to investigate whether the pineal gland, its hormone melatonin (Mel), and AVP are involved in the MPH-evoked stimulation of activity. After application of 10 mg/kg MPH, the motor activity in pinealectomised (PE) rats was significantly higher than in sham-operated (SO) animals. After application of 250 microg Mel before MPH treatment, the stimulation of motor activity was diminished in PE rats and augmented in SO animals; however, when SO and PE rats were compared after Mel pretreatment, the reaction to MPH was nearly identical. Blocking the endogenous AVP by 25 or 1 microg of the V1a receptor antagonist d(CH(2))(5)[Tyr(Me)(2)]AVP (AAVP) before MPH treatment significantly augmented the motor activity in SO rats only and abolished the differences seen between SO and PE animals after MPH application. The present results indicate that the behavioural stimulation of MPH was modulated by both the pineal gland with its hormone Mel as well as the neuropeptide AVP.

  15. Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning

    NASA Astrophysics Data System (ADS)

    Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.

    1995-12-01

    The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.

  16. Activation of conventional kinesin motors in clusters by Shaw voltage-gated K+ channels

    PubMed Central

    Barry, Joshua; Xu, Mingxuan; Gu, Yuanzheng; Dangel, Andrew W.; Jukkola, Peter; Shrestha, Chandra; Gu, Chen

    2013-01-01

    Summary The conventional kinesin motor transports many different cargos to specific locations in neurons. How cargos regulate motor function remains unclear. Here we focus on KIF5, the heavy chain of conventional kinesin, and report that the Kv3 (Shaw) voltage-gated K+ channel, the only known tetrameric KIF5-binding protein, clusters and activates KIF5 motors during axonal transport. Endogenous KIF5 often forms clusters along axons, suggesting a potential role of KIF5-binding proteins. Our biochemical assays reveal that the high-affinity multimeric binding between the Kv3.1 T1 domain and KIF5B requires three basic residues in the KIF5B tail. Kv3.1 T1 competes with the motor domain and microtubules, but not with kinesin light chain 1 (KLC1), for binding to the KIF5B tail. Live-cell imaging assays show that four KIF5-binding proteins, Kv3.1, KLC1 and two synaptic proteins SNAP25 and VAMP2, differ in how they regulate KIF5B distribution. Only Kv3.1 markedly increases the frequency and number of KIF5B-YFP anterograde puncta. Deletion of Kv3.1 channels reduces KIF5 clusters in mouse cerebellar neurons. Therefore, clustering and activation of KIF5 motors by Kv3 regulate the motor number in carrier vesicles containing the channel proteins, contributing not only to the specificity of Kv3 channel transport, but also to the cargo-mediated regulation of motor function. PMID:23487040

  17. Effect of the Children's Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial.

    PubMed

    Robinson, Leah E; Palmer, Kara K; Bub, Kristen L

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children's Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p < 0.001). In regard to motor skills, post hoc comparisons found that all children improved their motor skills (p < 0.05), but the CHAMP group improved significantly more than the control group (p < 0.001). Children in CHAMP maintained their self-regulation scores across time, while children in the control group scored significantly lower than the CHAMP group at the posttest (p < 0.05). CHAMP is a mastery climate movement program that enhance skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool

  18. Effect of the Children’s Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial

    PubMed Central

    Robinson, Leah E.; Palmer, Kara K.; Bub, Kristen L.

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children’s Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p < 0.001). In regard to motor skills, post hoc comparisons found that all children improved their motor skills (p < 0.05), but the CHAMP group improved significantly more than the control group (p < 0.001). Children in CHAMP maintained their self-regulation scores across time, while children in the control group scored significantly lower than the CHAMP group at the posttest (p < 0.05). CHAMP is a mastery climate movement program that enhance skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool

  19. Effect of the Children's Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial.

    PubMed

    Robinson, Leah E; Palmer, Kara K; Bub, Kristen L

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children's Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p < 0.001). In regard to motor skills, post hoc comparisons found that all children improved their motor skills (p < 0.05), but the CHAMP group improved significantly more than the control group (p < 0.001). Children in CHAMP maintained their self-regulation scores across time, while children in the control group scored significantly lower than the CHAMP group at the posttest (p < 0.05). CHAMP is a mastery climate movement program that enhance skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool

  20. Effect of the Children’s Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial

    PubMed Central

    Robinson, Leah E.; Palmer, Kara K.; Bub, Kristen L.

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children’s Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p < 0.001). In regard to motor skills, post hoc comparisons found that all children improved their motor skills (p < 0.05), but the CHAMP group improved significantly more than the control group (p < 0.001). Children in CHAMP maintained their self-regulation scores across time, while children in the control group scored significantly lower than the CHAMP group at the posttest (p < 0.05). CHAMP is a mastery climate movement program that enhance skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool

  1. Automatic ultrarapid activation and inhibition of cortical motor systems in spoken word comprehension

    PubMed Central

    Shtyrov, Yury; Butorina, Anna; Nikolaeva, Anastasia; Stroganova, Tatiana

    2014-01-01

    To address the hotly debated question of motor system involvement in language comprehension, we recorded neuromagnetic responses elicited in the human brain by unattended action-related spoken verbs and nouns and scrutinized their timecourse and neuroanatomical substrates. We found that already very early on, from ∼80 ms after disambiguation point when the words could be identified from the available acoustic information, both verbs and nouns produced characteristic somatotopic activations in the motor strip, with words related to different body parts activating the corresponding body representations. Strikingly, along with this category-specific activation, we observed suppression of motor-cortex activation by competitor words with incompatible semantics, documenting operation of the neurophysiological principles of lateral/surround inhibition in neural word processing. The extremely early onset of these activations and deactivations, their emergence in the absence of attention, and their similar presence for words of different lexical classes strongly suggest automatic involvement of motor-specific circuits in the perception of action-related language. PMID:24753617

  2. Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging

    PubMed Central

    Khan, Bilal; Chand, Pankaj; Alexandrakis, George

    2011-01-01

    Functional near infrared (fNIR) imaging was used to identify spatiotemporal relations between spatially distinct cortical regions activated during various hand and arm motion protocols. Imaging was performed over a field of view (FOV, 12 x 8.4 cm) including the secondary motor, primary sensorimotor, and the posterior parietal cortices over a single brain hemisphere. This is a more extended FOV than typically used in current fNIR studies. Three subjects performed four motor tasks that induced activation over this extended FOV. The tasks included card flipping (pronation and supination) that, to our knowledge, has not been performed in previous functional magnetic resonance imaging (fMRI) or fNIR studies. An earlier rise and a longer duration of the hemodynamic activation response were found in tasks requiring increased physical or mental effort. Additionally, analysis of activation images by cluster component analysis (CCA) demonstrated that cortical regions can be grouped into clusters, which can be adjacent or distant from each other, that have similar temporal activation patterns depending on whether the performed motor task is guided by visual or tactile feedback. These analyses highlight the future potential of fNIR imaging to tackle clinically relevant questions regarding the spatiotemporal relations between different sensorimotor cortex regions, e.g. ones involved in the rehabilitation response to motor impairments. PMID:22162826

  3. Influence of motor imagination on cortical activation during functional electrical stimulation

    PubMed Central

    Reynolds, Clare; Osuagwu, Bethel A.; Vuckovic, Aleksandra

    2015-01-01

    Objective Motor imagination (MI) and functional electrical stimulation (FES) can activate the sensory-motor cortex through efferent and afferent pathways respectively. Motor imagination can be used as a control strategy to activate FES through a brain–computer interface as the part of a rehabilitation therapy. It is believed that precise timing between the onset of MI and FES is important for strengthening the cortico-spinal pathways but it is not known whether prolonged MI during FES influences cortical response. Methods Electroencephalogram was measured in ten able-bodied participants using MI strategy to control FES through a BCI system. Event related synchronisation/desynchronisation (ERS/ERD) over the sensory-motor cortex was analysed and compared in three paradigms: MI before FES, MI before and during FES and FES alone activated automatically. Results MI practiced both before and during FES produced strongest ERD. When MI only preceded FES it resulted in a weaker beta ERD during FES than when FES was activated automatically. Following termination of FES, beta ERD returns to the baseline level within 0.5 s while alpha ERD took longer than 1 s. Conclusions When MI and FES are combined for rehabilitation purposes it is recommended that MI is practiced throughout FES activation period. Significance The study is relevant for neurorehabilitation of movement. PMID:25454278

  4. EEG spectra, behavioral states and motor activity in rats exposed to acetylcholinesterase inhibitor chlorpyrifos.

    PubMed

    Timofeeva, Olga A; Gordon, Christopher J

    2002-06-01

    Exposure to organophosphates (OP) has been associated with sleep disorders such as insomnia and "excessive dreaming." The central mechanisms of these effects are not well understood. OPs inhibit acetylcholinesterase (AChE) activity, leading to a hyperactivity of the brain cholinergic systems that are involved in sleep regulation. We studied alterations in the EEG, behavioral states, motor activity and core temperature in rats orally administered with 10 or 40 mg/kg of the OP insecticide chlorpyrifos (CHP). Occipital EEG, motor activity and core temperature were recorded with telemetric transmitters. Behavioral sleep-wake states were visually scored. Both doses of CHP produced alterations of the EEG (decrease in power of sigma/beta and increase in slow theta and fast gamma bands) characteristic of arousal. EEG alterations were consistent with behavioral changes such as an increase in wakefulness and a decrease in sleep. Waking immobility was a prevalent behavior. We did not detect any overt signs of CHP toxicity, such as an abnormal posture or gait, suggesting that reduced locomotion can be a result of central effects of CHP (such as activation of cholinergic motor inhibitory system) rather than peripheral (such as an impairment of neuromuscular function). Changes in the EEG and behavior occurred independently of the decrease in core temperature. Increased wakefulness together with reduced motor activity after exposure to CHP seems to be a result of hyperactivity in brain cholinergic neuronal networks. PMID:12175464

  5. Quantification of motor cortex activity and full-body biomechanics during unconstrained locomotion.

    PubMed

    Prilutsky, Boris I; Sirota, Mikhail G; Gregor, Robert J; Beloozerova, Irina N

    2005-10-01

    Recent progress in the understanding of motor cortex function has been achieved primarily by simultaneously recording motor cortex neuron activity and the movement kinematics of the corresponding limb. We have expanded this approach by combining high-quality cortical single-unit activity recordings with synchronized recordings of full-body kinematics and kinetics in the freely behaving cat. The method is illustrated by selected results obtained from two cats tested while walking on a flat surface. Using this method, the activity of 43 pyramidal tract neurons (PTNs) was recorded, averaged over 10 bins of a locomotion cycle, and compared with full-body mechanics by means of principal component and multivariate linear regression analyses. Patterns of 24 PTNs (56%) and 219 biomechanical variables (73%) were classified into just four groups of inter-correlated variables that accounted for 91% of the total variance, indicating that many of the recorded variables had similar patterns. The ensemble activity of different groups of two to eight PTNs accurately predicted the 10-bin patterns of all biomechanical variables (neural decoding) and vice versa; different small groups of mechanical variables accurately predicted the 10-bin pattern of each PTN (neural encoding). We conclude that comparison of motor cortex activity with full-body biomechanics may be a useful tool in further elucidating the function of the motor cortex.

  6. Brain oscillatory activity during motor imagery in EEG-fMRI coregistration.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2010-12-01

    The purpose of the present work was to investigate the correlation between topographical changes in brain oscillatory activity and the blood oxygenation level-dependent (BOLD) signal during a motor imagery (MI) task using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) coregistration. EEG was recorded in 7 healthy subjects inside a 1.5 T MR scanner during the imagination of the kinesthetic experience of movement. A Fast Fourier Transform was applied to EEG signal in the rest and active conditions. We used the event-related-synchronization (ERS)/desynchronization (ERD) approach to characterize where the imagination of movement produces a decrease in alpha and beta power. The mean alpha map showed ERD decrease localized over the contralateral sensory motor area (SM1c) and a light desynchronization in the ipsilateral sensory motor area (SM1i); whereas the mean beta map showed ERD decrease over the supplementary motor area (SMA). fMRI showed significant activation in SMA, SM1c, SM1i. The correlation is negative in the contralateral side and positive in the ipsilateral side. Using combined EEG-fMRI signals we obtained useful new information on the description of the changes in oscillatory activity in alpha and beta bands during MI and on the investigation of the sites of BOLD activity as possible sources in generating these rhythms. By correlating BOLD and ERD/ERS we may identify more accurately which regions contribute to changes of the electrical response. PMID:20850237

  7. Automatic ultrarapid activation and inhibition of cortical motor systems in spoken word comprehension.

    PubMed

    Shtyrov, Yury; Butorina, Anna; Nikolaeva, Anastasia; Stroganova, Tatiana

    2014-05-01

    To address the hotly debated question of motor system involvement in language comprehension, we recorded neuromagnetic responses elicited in the human brain by unattended action-related spoken verbs and nouns and scrutinized their timecourse and neuroanatomical substrates. We found that already very early on, from ∼80 ms after disambiguation point when the words could be identified from the available acoustic information, both verbs and nouns produced characteristic somatotopic activations in the motor strip, with words related to different body parts activating the corresponding body representations. Strikingly, along with this category-specific activation, we observed suppression of motor-cortex activation by competitor words with incompatible semantics, documenting operation of the neurophysiological principles of lateral/surround inhibition in neural word processing. The extremely early onset of these activations and deactivations, their emergence in the absence of attention, and their similar presence for words of different lexical classes strongly suggest automatic involvement of motor-specific circuits in the perception of action-related language.

  8. Out of control: Diminished prefrontal activity coincides with impaired motor performance due to choking under pressure

    PubMed Central

    Lee, Taraz G.; Grafton, Scott T.

    2014-01-01

    There are three non-exclusive theoretical explanations for the paradoxical collapse of performance due to large financial incentives. It has been proposed that “choking under pressure” is either due to distraction, interference via an increase in top-down control and performance monitoring, or excessive levels of arousal in the face of large losses. Given the known neural architecture involved in executive control and reward, we used fMRI of human participants during incentivized motor performance to provide evidence to support and/or reconcile these competing models in a visuomotor task. We show that the execution of a pre-trained motor task during neuroimaging is impaired by high rewards. BOLD activity occurring prior to movement onset is increased in dorsolateral prefrontal cortex and functional connectivity between this region and motor cortex is likewise increased just prior to choking. However, the extent of this increase in functional connectivity is inversely related to a participant's propensity to choke, suggesting that a failure in exerting top-down influence on motor control underlies choking under pressure due to large incentives. These results are consistent with a distraction account of choking and suggest that frontal influences on motor activity are necessary to protect performance from vulnerability under pressure. PMID:25449744

  9. Effects of Optogenetic Activation of Corticothalamic Terminals in the Motor Thalamus of Awake Monkeys

    PubMed Central

    Hu, Xing; Smith, Yoland; Wichmann, Thomas

    2016-01-01

    The role of the corticothalamic projection in the ventral motor thalamus remains poorly understood. Therefore, we studied the electrophysiological responses of neurons in the basal ganglia and cerebellar receiving-territories of the motor thalamus (BGMT and CbMT, respectively) using optogenetic activation of corticothalamic projections in awake rhesus macaques. After injections of viral vectors carrying the excitatory opsins ChR2 or C1V1 into the primary motor and premotor cortices of two monkeys, we used optrodes to light activate opsin-expressing neurons in cortex or their terminals in the thalamus while simultaneously recording the extracellular activity of neurons in the vicinity of the stimulation sites. As expected, light activation of opsins in the cerebral cortex evoked robust, short-latency increases in firing of cortical neurons. In contrast, light stimulation of corticothalamic terminals induced small-amplitude, long-latency increases and/or decreases of activity in thalamic neurons. In postmortem material, opsins were found to be expressed in cell bodies and dendrites of cortical neurons and along their corticothalamic projections. At the electron microscopic level, opsin labeling was confined to unmyelinated preterminal axons and small terminals that formed asymmetric synapses with dendrites of projection neurons or GABAergic interneurons in BGMT and CbMT and with neurons in the reticular thalamic nucleus. The morphological features of the transfected terminals, along with the long latency and complex physiological responses of thalamic neurons to their activation, suggest a modulatory role of corticothalamic afferents upon the primate ventral motor thalamus. SIGNIFICANCE STATEMENT This study provides the first analysis of the physiological effects of cortical inputs on the activity of neurons in the primate ventral motor thalamus using light activation of opsin-containing corticothalamic terminals in awake monkeys. We found that selective light

  10. Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation.

    PubMed

    Strey, Kristi A; Nichols, Nicole L; Baertsch, Nathan A; Broytman, Oleg; Baker-Herman, Tracy L

    2012-11-14

    The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF and that iPMF consists of at least two mechanistically distinct phases: (1) an early, labile phase that requires atypical PKC (PKCζ and/or PKCι/λ) activity to transition to a (2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKCζ/ι and the scaffolding protein ZIP (PKCζ-interacting protein)/p62 in spinal regions associated with the phrenic motor pool. Although PKCζ/ι activity is necessary for iPMF, spinal atypical PKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that (1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool and (2) inactivity-induced increases in phrenic inspiratory output require local PKCζ/ι activity to stabilize into a long-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system in which prolonged inactivity ends life. PMID:23152633

  11. Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training.

    PubMed

    Bermúdez i Badia, S; García Morgade, A; Samaha, H; Verschure, P F M J

    2013-03-01

    Stroke is one of the leading causes of adult disability with high economical and societal costs. In recent years, novel rehabilitation paradigms have been proposed to address the life-long plasticity of the brain to regain motor function. We propose a hybrid brain-computer interface (BCI)-virtual reality (VR) system that combines a personalized motor training in a VR environment, exploiting brain mechanisms for action execution and observation, and a neuro-feedback paradigm using mental imagery as a way to engage secondary or indirect pathways to access undamaged cortico-spinal tracts. Furthermore, we present the development and validation experiments of the proposed system. More specifically, EEG data on nine naïve healthy subjects show that a simultaneous motor activity and motor imagery paradigm is more effective at engaging cortical motor areas and related networks to a larger extent. Additionally, we propose a motor imagery driven BCI-VR version of our system that was evaluated with nine different healthy subjects. Data show that users are capable of controlling a virtual avatar in a motor imagery training task that dynamically adjusts its difficulty to the capabilities of the user. User self-report questionnaires indicate enjoyment and acceptance of the proposed system.

  12. Evolution of motor activity tests into a screening reality.

    PubMed

    Mullenix, P J

    1989-03-01

    Measures of activity have changed in ways that their utility in screening for neurotoxicity has vastly improved. New computer pattern recognition systems now provide rapid, objective tools for identifying animal behavior. Advances in data analysis procedures have replaced the percent change in overall activity level with measures of initiations, total time and temporal structure for multiple behaviors and sequences. These advances can distinguish hyperactivities induced by different mechanisms and rank their neurotoxic potential, a feat not possible with photocell devices generally used in laboratories today. With the recent technological improvements, it is possible that a measure of activity will become one of the best predictors of malfunction in the central nervous system.

  13. The multifaceted nature of the relationship between performance and brain activity in motor sequence learning.

    PubMed

    Orban, Pierre; Peigneux, Philippe; Lungu, Ovidiu; Albouy, Geneviève; Breton, Estelle; Laberenne, Frédéric; Benali, Habib; Maquet, Pierre; Doyon, Julien

    2010-01-01

    The 'learning and performance' conundrum has for a long time puzzled the field of cognitive neuroscience. Deciphering the genuine functional neuroanatomy of motor sequence learning, among that of other skills, has thereby been hampered. The main caveat is that changes in neural activity that inherently accompany task practice may not only reflect the learning process per se, but also the basic motor implementation of improved performance. Previous research has attempted to control for a performance confound in brain activity by adopting methodologies that prevent changes in performance. However, blocking the expression of performance is likely to distort the very nature of the motor sequence learning process, and may thus represent a major confound in itself. In the present study, we postulated that both learning-dependent plasticity mechanisms and learning-independent implementation processes are nested within the relationship that exists between performance and brain activity. Functional magnetic resonance imaging (fMRI) was used to map brain responses in healthy volunteers while they either (a) learned a novel sequence, (b) produced a highly automatized sequence or (c) executed non-sequential movements matched for speed frequency. In order to dissociate between qualitatively distinct, but intertwined, relationships between performance and neural activity, our analyses focused on correlations between variations in performance and brain activity, and how this relationship differs or shares commonalities between conditions. Results revealed that activity in the putamen and contralateral lobule VI of the cerebellum most strongly correlated with performance during learning per se, suggesting their key role in this process. By contrast, activity in a parallel cerebellar network, as well as in motor and premotor cortical areas, was modulated by performance during learning and during one or both control condition(s), suggesting the primary contribution of these areas in

  14. Motor Physical Therapy Affects Muscle Collagen Type I and Decreases Gait Speed in Dystrophin-Deficient Dogs

    PubMed Central

    Gaiad, Thaís P.; Araujo, Karla P. C.; Serrão, Júlio C.; Miglino, Maria A.; Ambrósio, Carlos Eduardo

    2014-01-01

    Golden Retriever Muscular Dystrophy (GRMD) is a dystrophin-deficient canine model genetically homologous to Duchenne Muscular Dystrophy (DMD) in humans. Muscular fibrosis secondary to cycles of degeneration/regeneration of dystrophic muscle tissue and muscular weakness leads to biomechanical adaptation that impairs the quality of gait. Physical therapy (PT) is one of the supportive therapies available for DMD, however, motor PT approaches have controversial recommendations and there is no consensus regarding the type and intensity of physical therapy. In this study we investigated the effect of physical therapy on gait biomechanics and muscular collagen deposition types I and III in dystrophin-deficient dogs. Two dystrophic dogs (treated dogs-TD) underwent a PT protocol of active walking exercise, 3×/week, 40 minutes/day, 12 weeks. Two dystrophic control dogs (CD) maintained their routine of activities of daily living. At t0 (pre) and t1 (post-physical therapy), collagen type I and III were assessed by immunohistochemistry and gait biomechanics were analyzed. Angular displacement of shoulder, elbow, carpal, hip, stifle and tarsal joint and vertical (Fy), mediolateral (Fz) and craniocaudal (Fx) ground reaction forces (GRF) were assessed. Wilcoxon test was used to verify the difference of biomechanical variables between t0 and t1, considering p<.05. Type I collagen of endomysium suffered the influence of PT, as well as gait speed that had decreased from t0 to t1 (p<.000). The PT protocol employed accelerates morphological alterations on dystrophic muscle and promotes a slower velocity of gait. Control dogs which maintained their routine of activities of daily living seem to have found a better balance between movement and preservation of motor function. PMID:24713872

  15. The Pediatric Motor Activity Log-Revised: Assessing Real-world Arm Use in Children with Cerebral Palsy

    PubMed Central

    Uswatte, Gitendra; Taub, Edward; Griffin, Angi; Vogtle, Laura; Rowe, Jan; Barman, Joydip

    2012-01-01

    Objective Widely accepted models of disability suggest that actual use of an impaired upper-extremity in everyday life frequently deviates from its motor capacity, as measured by laboratory tests. Yet, direct measures of real-world use of an impaired upper-extremity are rare in pediatric neurorehabilitation. This paper examines how well the Pediatric Motor Activity Log-Revised (PMAL-R) measures this parameter, when the PMAL-R is administered as a structured interview as originally designed. Design Parents of sixty children between 2–8 years with upper-extremity hemiparesis due to cerebral palsy (CP) completed the PMAL-R twice. Additionally, the children were videotaped during play structured to elicit spontaneous arm use. More-affected arm use was scored by masked raters; it was thought to reflect everyday activity since no cues were given about which arm to employ. Testing sessions were separated by 3 weeks, during which 29 children received upper-extremity rehabilitation and 31 did not. Results The PMAL-R had high internal consistency (Cronbach's α = .93) and test-retest reliability (r = .89). Convergent validity was supported by a strong correlation between changes in PMAL-R scores and more-affected arm use during play, r(53) = .5, p < .001. Conclusions The PMAL-R interview is a reliable and valid measure of upper-extremity pediatric neurorehabilitation outcome. PMID:22686553

  16. Educational Gymnastics: The Effectiveness of Montessori Practical Life Activities in Developing Fine Motor Skills in Kindergartners

    ERIC Educational Resources Information Center

    Bhatia, Punum; Davis, Alan; Shamas-Brandt, Ellen

    2015-01-01

    Research Findings: A quasi-experiment was undertaken to test the effect of Montessori practical life activities on kindergarten children's fine motor development and hand dominance over an 8-month period. Participants were 50 children age 5 in 4 Montessori schools and 50 students age 5 in a kindergarten program in a high-performing suburban…

  17. Evidence for Dose-Additive Effects of Pyrethroids on Motor Activity in Rats

    EPA Science Inventory

    BACKGROUND: Pyrethroids are neurotoxic insecticides used in a variety of indoor and outdoor applications. Previous research characterized the acute dose-effect functions for 11 pyrethroids administered orally in corn oil (1 mL/kg) based on assessment of motor activity. OBJECTIVES...

  18. TOLERANCE AND SENSITIZATION TO WEEKLY NICOTINE EXPOSURES ON THE MOTOR ACTIVITY OF RATS.

    EPA Science Inventory

    Motor activity was examined in adult female Long-Evans rats in a photocell device during daily (M-F) 30-min sessions. Following adaptation to the testing routine the rats were divided into six groups of eight that were designated to receive either nothing (non-injected control),...

  19. Physical activity, physical fitness, gross motor coordination, and metabolic syndrome: focus of twin research in Portugal.

    PubMed

    Maia, José António Ribeiro; Santos, Daniel; de Freitas, Duarte Luis; Thomis, Martine

    2013-02-01

    A very brief history of Portuguese twin research in sport and human movement sciences is presented. Recruitment procedures, zygosity determination, and phenotypes are given for twins and their parents from the mainland, and Azores and Madeira archipelagos. Preliminary findings are mostly related to physical activity, health-related physical fitness, gross motor coordination, neuromotor development, and metabolic syndrome traits.

  20. The influence of motor activity on the development of cardiac arrhythmias during experimental emotional stress

    NASA Technical Reports Server (NTRS)

    Ulyaninskiy, L. S.; Urmancheyeva, T. G.; Stepanyan, Y. P.; Fufacheva, A. A.; Gritsak, A. V.; Kuznetsova, B. A.; Kvitka, A. A.

    1982-01-01

    Experimental emotional stress which can produce various disorders of cardiac rhythm: sinus tachycardia, atrial fibrillation, ventricular, extrasystoles and paroxysmal ventricular tachysystoles was studied. In these conditions the adrenalin content in the blood and myocardium is increased 3 to 4 times. It is found that moderate motor activity leads to a relative decrease of adrenalin in the myocardium and arrest of cardiac arrhythmias.

  1. Agriculture--Agricultural Mechanics, Electric Motors. Kit No. 56. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Bomar, William

    An instructor's manual and student activity guide on agricultural mechanics (electric motors) are provided in this set of prevocational education materials which focuses on the vocational area of agriculture. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings:…

  2. SENSITIZATION AND TOLERANCE WITH EPISODIC (WEEKLY) NICOTINE ON MOTOR ACTIVITY IN RATS.

    EPA Science Inventory

    These studies grew out of an unexpected finding from investigations of the neurobehavioral toxicity of PCBs. This paper shows that episodic, or recurring intermittent acute exposures to nicotine produce dramatic and long-lasting changes in the motor activity of laboratory rats. ...

  3. Less precise motor control leads to increased agonist-antagonist muscle activation during stick balancing.

    PubMed

    Reeves, N Peter; Popovich, John M; Vijayanagar, Vilok; Pathak, Pramod K

    2016-06-01

    Human motor control has constraints in terms of its responsiveness, which limit its ability to successfully perform tasks. In a previous study, it was shown that the ability to balance an upright stick became progressively more challenging as the natural frequency (angular velocity without control) of the stick increased. Furthermore, forearm and trunk agonist and antagonist muscle activation increased as the natural frequency of the stick increased, providing evidence that the central nervous system produces agonist-antagonist muscle activation to match task dynamics. In the present study, visual feedback of the stick position was influenced by changing where subject focused on the stick during stick balancing. It was hypothesized that a lower focal height would degrade motor control (more uncertainty in tracking stick position), thus making balancing more challenging. The probability of successfully balancing the stick at four different focal heights was determined along with the average angular velocity of the stick. Electromyographic signals from forearm and trunk muscles were also recorded. As expected, the probability of successfully balancing the stick decreased and the average angular velocity of the stick increased as subjects focused lower on the stick. In addition, changes in the level of agonist and antagonist muscle activation in the forearm and trunk was linearly related to changes in the angular velocity of the stick during balancing. One possible explanation for this is that the central nervous system increases muscle activation to account for less precise motor control, possibly to improve the responsiveness of human motor control. PMID:27010497

  4. The Effect of Fine Motor Skill Activities on Kindergarten Student Attention

    ERIC Educational Resources Information Center

    Stewart, Roger A.; Rule, Audrey C.; Giordano, Debra A.

    2007-01-01

    This study explored the effect of fine motor skill activities on the development of attention in kindergarteners (n = 68) in five classes at a suburban public school in the Intermountain West through a pretest/posttest experimental group (n = 36) control group (n = 32) design. All children received the regular curriculum which included typical…

  5. Less precise motor control leads to increased agonist-antagonist muscle activation during stick balancing.

    PubMed

    Reeves, N Peter; Popovich, John M; Vijayanagar, Vilok; Pathak, Pramod K

    2016-06-01

    Human motor control has constraints in terms of its responsiveness, which limit its ability to successfully perform tasks. In a previous study, it was shown that the ability to balance an upright stick became progressively more challenging as the natural frequency (angular velocity without control) of the stick increased. Furthermore, forearm and trunk agonist and antagonist muscle activation increased as the natural frequency of the stick increased, providing evidence that the central nervous system produces agonist-antagonist muscle activation to match task dynamics. In the present study, visual feedback of the stick position was influenced by changing where subject focused on the stick during stick balancing. It was hypothesized that a lower focal height would degrade motor control (more uncertainty in tracking stick position), thus making balancing more challenging. The probability of successfully balancing the stick at four different focal heights was determined along with the average angular velocity of the stick. Electromyographic signals from forearm and trunk muscles were also recorded. As expected, the probability of successfully balancing the stick decreased and the average angular velocity of the stick increased as subjects focused lower on the stick. In addition, changes in the level of agonist and antagonist muscle activation in the forearm and trunk was linearly related to changes in the angular velocity of the stick during balancing. One possible explanation for this is that the central nervous system increases muscle activation to account for less precise motor control, possibly to improve the responsiveness of human motor control.

  6. Abnormal activation of the motor cortical network in idiopathic scoliosis demonstrated by functional MRI.

    PubMed

    Domenech, Julio; García-Martí, G; Martí-Bonmatí, L; Barrios, C; Tormos, J M; Pascual-Leone, A

    2011-07-01

    The aetiology of idiopathic scoliosis (IS) remains unknown, but there is growing support for the possibility of an underlying neurological disorder. Functional magnetic resonance imaging (fMRI) can characterize the abnormal activation of the sensorimotor brain network in movement disorders and could provide further insights into the neuropathogenesis of IS. Twenty subjects were included in the study; 10 adolescents with IS (mean age of 15.2, 8 girls and 2 boys) and 10 age-matched healthy controls. The average Cobb angle of the primary curve in the IS patients was 35° (range 27°-55°). All participants underwent a block-design fMRI experiment in a 1.5-Tesla MRI scanner to explore cortical activation following a simple motor task. Rest periods alternated with activation periods during which participants were required to open and close their hand at an internally paced rate of approximately 1 Hz. Data were analyzed with Statistical Parametric Mapping (SPM5) including age, sex and laterality as nuisance variables to minimise the presence of bias in the results. Compared to controls, IS patients showed significant increases in blood oxygenation level dependent (BOLD) activity in contralateral supplementary motor area when performing the motor task with either hand. No significant differences were observed when testing between groups in the functional activation in the primary motor cortex, premotor cortex and somatosensory cortex. Additionally, the IS group showed a greater interhemispheric asymmetry index than the control group (0.30 vs. 0.13, p < 0.001). This study demonstrates an abnormal pattern of brain activation in secondary motor areas during movement execution in patients with IS. These findings support the hypothesis that a sensorimotor integration disorder underlies the pathogenesis of IS.

  7. Extended Practice of a Motor Skill Is Associated with Reduced Metabolic Activity in M1

    PubMed Central

    PICARD, NATHALIE; MATSUZAKA, YOSHIYA; STRICK, PETER L.

    2013-01-01

    How does long-term training and the development of motor skill modify the activity of the primary motor cortex (M1)? To address this issue we trained monkeys for ~1–6 years to perform visually-guided and internally-generated sequences of reaching movements. Then, we used 14C-2-deoxyglucose (2DG) uptake and single neuron recording to measure metabolic and neuron activity in M1. After extended practice, we observed a profound reduction of metabolic activity in M1 for the performance of internally-generated compared to visually-guided tasks. In contrast, measures of neuron firing displayed little difference during the two tasks. These findings suggest that the development of skill through extended practice results in a reduction in the synaptic activity required to produce internally-generated, but not visually-guided sequences of movements. Thus, practice leading to skilled performance results in more efficient generation of neuronal activity in M1. PMID:23912947

  8. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music.

    PubMed

    Olshansky, Michael P; Bar, Rachel J; Fogarty, Mary; DeSouza, Joseph F X

    2015-01-01

    The current study used functional magnetic resonance imaging to examine the neural activity of an expert dancer with 35 years of break-dancing experience during the kinesthetic motor imagery (KMI) of dance accompanied by highly familiar and unfamiliar music. The goal of this study was to examine the effect of musical familiarity on neural activity underlying KMI within a highly experienced dancer. In order to investigate this in both primary sensory and motor planning cortical areas, we examined the effects of music familiarity on the primary auditory cortex [Heschl's gyrus (HG)] and the supplementary motor area (SMA). Our findings reveal reduced HG activity and greater SMA activity during imagined dance to familiar music compared to unfamiliar music. We propose that one's internal representations of dance moves are influenced by auditory stimuli and may be specific to a dance style and the music accompanying it.

  9. [Dependence of acoustic-motor reaction of healthy individuals from geomagnetic activity].

    PubMed

    Hryhor'ev, P E; Poskotynova, L V; Tsandekov, P A; Vaĭserman, A M

    2009-01-01

    During February-April, 2008 using special computer test, a daily monitoring of simple acoustic-motor reaction was carried out in 18 healthy tested individuals. We found a significant decrease in the speed of acoustic-motor reaction the day before and the same day geomagnetic disturbance occurred, as well as the same and 2-3 days after a geomagnetic calm occurred. Presumably, either an essential increase or a decreases of geomagnetic activity are adverse factors for the functional state of a central nervous system. PMID:19526866

  10. Electromyographic Activity of Hand Muscles in a Motor Coordination Game: Effect of Incentive Scheme and Its Relation with Social Capital

    PubMed Central

    Censolo, Roberto; Craighero, Laila; Ponti, Giovanni; Rizzo, Leonzio; Canto, Rosario; Fadiga, Luciano

    2011-01-01

    Background A vast body of social and cognitive psychology studies in humans reports evidence that external rewards, typically monetary ones, undermine intrinsic motivation. These findings challenge the standard selfish-rationality assumption at the core of economic reasoning. In the present work we aimed at investigating whether the different modulation of a given monetary reward automatically and unconsciously affects effort and performance of participants involved in a game devoid of visual and verbal interaction and without any perspective-taking activity. Methodology/Principal Findings Twelve pairs of participants were submitted to a simple motor coordination game while recording the electromyographic activity of First Dorsal Interosseus (FDI), the muscle mainly involved in the task. EMG data show a clear effect of alternative rewards strategies on subjects' motor behavior. Moreover, participants' stock of relevant past social experiences, measured by a specifically designed questionnaire, was significantly correlated with EMG activity, showing that only low social capital subjects responded to monetary incentives consistently with a standard rationality prediction. Conclusions/Significance Our findings show that the effect of extrinsic motivations on performance may arise outside social contexts involving complex cognitive processes due to conscious perspective-taking activity. More importantly, the peculiar performance of low social capital individuals, in agreement with standard economic reasoning, adds to the knowledge of the circumstances that makes the crowding out/in of intrinsic motivation likely to occur. This may help in improving the prediction and accuracy of economic models and reconcile this puzzling effect of external incentives with economic theory. PMID:21464986

  11. Changing ideas about others’ intentions: updating prior expectations tunes activity in the human motor system

    PubMed Central

    Jacquet, Pierre O.; Roy, Alice C.; Chambon, Valérian; Borghi, Anna M.; Salemme, Roméo; Farnè, Alessandro; Reilly, Karen T.

    2016-01-01

    Predicting intentions from observing another agent’s behaviours is often thought to depend on motor resonance – i.e., the motor system’s response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers’ prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others’ intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction. PMID:27243157

  12. Effect of hindlimb unloading on motor activity in adult rats: impact of prenatal stress.

    PubMed

    Canu, M H; Darnaudéry, M; Falempin, M; Maccari, S; Viltart, O

    2007-02-01

    Environmental changes that occur in daily life or, in particular, in situations like actual or simulated microgravity require neuronal adaptation of sensory and motor functions. Such conditions can exert long-lasting disturbances on an individual's adaptive ability. Additionally, prenatal stress also leads to behavioral and physiological abnormalities in adulthood. Therefore, the aims of the present study were (a) to evaluate in adult rats the behavioral motor adaptation that follows 14 days of exposure to simulated microgravity (hindlimb unloading) and (b) to determine whether restraint prenatal stress influences this motor adaptation. For this purpose, the authors assessed rats' motor reactivity to novelty, their skilled walking on a ladder, and their swimming performance. Results showed that unloading severely impaired motor activity and skilled walking. By contrast, it had no effect on swimming performance. Moreover, results demonstrated for the first time that restraint prenatal stress exacerbates the effects of unloading. These results are consistent with the role of a steady prenatal environment in allowing an adequate development and maturation of sensorimotor systems to generate adapted responses to environmental challenges during adulthood. PMID:17324062

  13. Dynamic reorganization of neural activity in motor cortex during new sequence production.

    PubMed

    Lu, Xiaofeng; Ashe, James

    2015-09-01

    Although previous studies have shown that primary motor cortex (M1) neurons are modulated during the performance of a sequence of movements, it is not known how this neural activity in the M1 reorganizes during new learning of sequence-dependent motor skills. Here we trained monkeys to move to each of four spatial targets to produce multiple distinct sequences of movements in which the spatial organization of the targets determined uniquely the serial order of the movements. After the monkeys memorized the sequences, we changed one element of these over-practised sequences and the subjects were required to learn the new sequence through trial and error. When one element in an over-learned four-element sequence was changed, the sequence-specific neural activity was totally disrupted, but relatively minor changes in the direction-specific activity were observed. The data suggest that sequential motor skills are represented within M1 in the context of the complete sequential behavior rather than as a series of single consecutive movements; and sequence-specific neurons in the M1 are involved in new learning of sequence by using memorized knowledge to acquire complex motor skill efficiently.

  14. Cerebral Activity Associated with Transient Sleep-Facilitated Reduction in Motor Memory Vulnerability to Interference

    PubMed Central

    Albouy, Geneviève; King, Bradley R.; Schmidt, Christina; Desseilles, Martin; Dang-Vu, Thien Thanh; Balteau, Evelyne; Phillips, Christophe; Degueldre, Christian; Orban, Pierre; Benali, Habib; Peigneux, Philippe; Luxen, André; Karni, Avi; Doyon, Julien; Maquet, Pierre; Korman, Maria

    2016-01-01

    Motor memory consolidation is characterized, in part, by a sleep-facilitated decrease in susceptibility to subsequent interfering experiences. Surprisingly, the cerebral substrates supporting this phenomenon have never been examined. We used fMRI to investigate the neural correlates of the influence of sleep on interference to motor memory consolidation. Healthy young adults were trained on a sequential motor task, and subsequently practiced a second competing sequence after an interval including diurnal sleep or wakefulness. Participants were then retested on the initial sequence 8 h and 24 h (including nocturnal sleep) after training. Results demonstrated that a post-training nap significantly protected memory against interference at 8 h and modulated the link between cerebral activity and behavior, such that a smaller post-interference decrease in cortico-striatal activity was associated with better performance. Interestingly, the protective effect of a nap was only transitory, as both groups performed similarly at 24 h. Activity in cortico-striatal areas that was disrupted during the day, presumably due to interference and accentuated in the absence of a nap, was restored overnight. Altogether, our findings offer the first evidence that cortico-striatal areas play a critical role in the transient sleep-facilitated reduction in motor memory vulnerability and in the overnight restoration of previously degraded memories. PMID:27725727

  15. Introduction of a method for quantitative evaluation of spontaneous motor activity development with age in infants.

    PubMed

    Disselhorst-Klug, Catherine; Heinze, Franziska; Breitbach-Faller, Nico; Schmitz-Rode, Thomas; Rau, Günter

    2012-04-01

    Coordination between perception and action is required to interact with the environment successfully. This is already trained by very young infants who perform spontaneous movements to learn how their body interacts with the environment. The strategies used by the infants for this purpose change with age. Therefore, very early progresses in action control made by the infants can be investigated by monitoring the development of spontaneous motor activity. In this paper, an objective method is introduced, which allows the quantitative evaluation of the development of spontaneous motor activity in newborns. The introduced methodology is based on the acquisition of spontaneous movement trajectories of the feet by 3D movement analysis and subsequent calculation of specific movement parameters from them. With these movement-based parameters, it was possible to provide an objective description of age-dependent developmental steps in healthy newborns younger than 6 months. Furthermore, it has been shown that pathologies like infantile cerebral palsy influence development of motor activity significantly. Since the introduced methodology is objective and quantitative, it is suitable to monitor how newborns train their cognitive processes, which will enable them to cope with their environment by motor interaction.

  16. Motor activity-induced dopamine release in the substantia nigra is regulated by muscarinic receptors.

    PubMed

    Andersson, Daniel R; Björnsson, Evelina; Bergquist, Filip; Nissbrandt, Hans

    2010-01-01

    Nigro-striatal neurons release dopamine not only from their axon terminals in the striatum, but also from somata and dendrites in the substantia nigra. Somatodendritic dopamine release in the substantia nigra can facilitate motor function by mechanisms that may act independently of axon terminal dopamine release in the striatum. The dopamine neurons in the substantia nigra receive a cholinergic input from the pedunculopontine nucleus. Despite recent efforts to introduce this nucleus as a potential target for deep brain stimulation to treat motor symptoms in Parkinson's disease; and the well-known antiparkinsonian effects of anticholinergic drugs; the cholinergic influence on somatodendritic dopamine release is not well understood. The aim of this study was to investigate the possible regulation of locomotor-induced dopamine release in the substantia nigra by endogenous acetylcholine release. In intact and 6-OHDA hemi-lesioned animals alike, the muscarinic antagonist scopolamine, when perfused in the substantia nigra, amplified the locomotor-induced somatodendritic dopamine release to approximately 200% of baseline, compared to 120-130% of baseline in vehicle-treated animals. A functional importance of nigral muscarinic receptor activation was demonstrated in hemi-lesioned animals, where motor performance was significantly improved by scopolamine to 82% of pre-lesion performance, as compared to 56% in vehicle-treated controls. The results indicate that muscarinic activity in the substantia nigra is of functional importance in an animal Parkinson's disease model, and strengthen the notion that nigral dopaminergic regulation of motor activity/performance is independent of striatal dopamine release.

  17. Dynamic reorganization of neural activity in motor cortex during new sequence production.

    PubMed

    Lu, Xiaofeng; Ashe, James

    2015-09-01

    Although previous studies have shown that primary motor cortex (M1) neurons are modulated during the performance of a sequence of movements, it is not known how this neural activity in the M1 reorganizes during new learning of sequence-dependent motor skills. Here we trained monkeys to move to each of four spatial targets to produce multiple distinct sequences of movements in which the spatial organization of the targets determined uniquely the serial order of the movements. After the monkeys memorized the sequences, we changed one element of these over-practised sequences and the subjects were required to learn the new sequence through trial and error. When one element in an over-learned four-element sequence was changed, the sequence-specific neural activity was totally disrupted, but relatively minor changes in the direction-specific activity were observed. The data suggest that sequential motor skills are represented within M1 in the context of the complete sequential behavior rather than as a series of single consecutive movements; and sequence-specific neurons in the M1 are involved in new learning of sequence by using memorized knowledge to acquire complex motor skill efficiently. PMID:26202600

  18. Molecular shuttles based on motor proteins: active transport in synthetic environments.

    PubMed

    Hess, H; Vogel, V

    2001-11-01

    Active transport in cells, utilizing molecular motors like kinesin and myosin, provides the inspiration for the integration of active transport into synthetic devices. Hybrid devices, employing motor proteins in a synthetic environment, are the first prototypes of molecular shuttles. Here the basic characteristics of motor proteins are discussed from an engineering point of view, and the experiments aimed at incorporating motor proteins, such as myosins and kinesins, into devices are reviewed. The key problems for the construction of a molecular shuttle are: guiding the direction of motion, controlling the speed, and loading and unloading of cargo. Various techniques, relying on surface topography and chemistry as well as flow fields and electric fields, have been developed to guide the movement of molecular shuttles on surfaces. The control of ATP concentration, acting as a fuel supply, can serve as a means to control the speed of movement. The loading process requires the coupling of cargo to the shuttle, ideally by a strong and specific link. Applications of molecular shuttles can be envisioned, e.g. in the field of nano-electro-mechanical systems (NEMS), where scaling laws favor active transport over fluid flow, and in the bottom-up assembly of novel materials.

  19. Increased activity in frontal motor cortex compensates impaired speech perception in older adults

    PubMed Central

    Du, Yi; Buchsbaum, Bradley R.; Grady, Cheryl L.; Alain, Claude

    2016-01-01

    Understanding speech in noisy environments is challenging, especially for seniors. Although evidence suggests that older adults increasingly recruit prefrontal cortices to offset reduced periphery and central auditory processing, the brain mechanisms underlying such compensation remain elusive. Here we show that relative to young adults, older adults show higher activation of frontal speech motor areas as measured by functional MRI during a syllable identification task at varying signal-to-noise ratios. This increased activity correlates with improved speech discrimination performance in older adults. Multivoxel pattern classification reveals that despite an overall phoneme dedifferentiation, older adults show greater specificity of phoneme representations in frontal articulatory regions than auditory regions. Moreover, older adults with stronger frontal activity have higher phoneme specificity in frontal and auditory regions. Thus, preserved phoneme specificity and upregulation of activity in speech motor regions provide a means of compensation in older adults for decoding impoverished speech representations in adverse listening conditions. PMID:27483187

  20. Successful Treatment of Phantom Limb Pain by 1 Hz Repetitive Transcranial Magnetic Stimulation Over Affected Supplementary Motor Complex: A Case Report

    PubMed Central

    Lee, Jong-Hoo; Byun, Jeong-Hyun; Choe, Yu-Ri; Lim, Seung-Kyu; Lee, Ka-Young

    2015-01-01

    A 37-year-old man with a right transfemoral amputation suffered from severe phantom limb pain (PLP). After targeting the affected supplementary motor complex (SMC) or primary motor cortex (PMC) using a neuro-navigation system with 800 stimuli of 1 Hz repetitive transcranial magnetic stimulation (rTMS) at 85% of resting motor threshold, the 1 Hz rTMS over SMC dramatically reduced his visual analog scale (VAS) of PLP from 7 to 0. However, the 1 Hz rTMS over PMC failed to reduce pain. To our knowledge, this is the first case report of a successfully treated severe PLP with a low frequency rTMS over SMC in affected hemisphere. PMID:26361601

  1. Successful Treatment of Phantom Limb Pain by 1 Hz Repetitive Transcranial Magnetic Stimulation Over Affected Supplementary Motor Complex: A Case Report.

    PubMed

    Lee, Jong-Hoo; Byun, Jeong-Hyun; Choe, Yu-Ri; Lim, Seung-Kyu; Lee, Ka-Young; Choi, In-Sung

    2015-08-01

    A 37-year-old man with a right transfemoral amputation suffered from severe phantom limb pain (PLP). After targeting the affected supplementary motor complex (SMC) or primary motor cortex (PMC) using a neuro-navigation system with 800 stimuli of 1 Hz repetitive transcranial magnetic stimulation (rTMS) at 85% of resting motor threshold, the 1 Hz rTMS over SMC dramatically reduced his visual analog scale (VAS) of PLP from 7 to 0. However, the 1 Hz rTMS over PMC failed to reduce pain. To our knowledge, this is the first case report of a successfully treated severe PLP with a low frequency rTMS over SMC in affected hemisphere. PMID:26361601

  2. Corrugator activity confirms immediate negative affect in surprise.

    PubMed

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes.

  3. Corrugator activity confirms immediate negative affect in surprise

    PubMed Central

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes. PMID:25762956

  4. Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study.

    PubMed

    Giovannelli, Fabio; Borgheresi, Alessandra; Balestrieri, Fabrizio; Zaccara, Gaetano; Viggiano, Maria Pia; Cincotta, Massimo; Ziemann, Ulf

    2009-11-15

    Brief interruption of voluntary EMG in a hand muscle by focal transcranial magnetic stimulation (TMS) of the ipsilateral primary motor cortex (M1), the so-called ipsilateral silent period (ISP), is a measure of interhemispheric motor inhibition. However, little is known about how volitional motor activity would modulate the ISP. Here we tested in 30 healthy adults to what extent and under what conditions voluntary activation of the stimulated right M1 by moving the left hand strengthens interhemispheric inhibition as indexed by an enhancement of the ISP area in the maximally contracting right first dorsal interosseous (FDI). Left index finger abduction, already at low levels of contraction, significantly enhanced the ISP compared to left hand at rest. Even imagination of left index finger movement enhanced the ISP compared to rest or mental calculation. This enhancement occurred in the absence of motor-evoked potential amplitude modulation in the left FDI, thus excluding a non-specific contribution from an increase in right M1 corticospinal excitability. Contraction of the left extensor indicis, but not contraction of more proximal left upper limb or left or right lower limb muscles also enhanced the ISP. A reaction time experiment showed that the ISP enhancement developed at a late stage of movement preparation just before or at movement onset. Interhemispheric inhibition of the motor-evoked potential as tested by a bifocal paired-pulse TMS protocol and thought to be mediated via a neuronal circuit different to the ISP was not enhanced when tested under identical motor task conditions. Finally, ISP enhancement by contraction of the left FDI correlated inversely with EMG mirror activity in the right FDI during phasic abductions of the left index finger. Our findings strongly suggest that voluntary M1 activation by real or imagined movement of the contralateral hand increases interhemispheric motor inhibition of the opposite M1. This phenomenon shows substantial

  5. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster

    PubMed Central

    Qiu, Shuang; Xiao, Chengfeng; Robertson, R. Meldrum

    2016-01-01

    There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stimulation) on motor activity in w1118 flies was investigated. Flies were exposed to a chronic pulsed light stimulation protocol prior to testing their performance in a standard locomotion assay. Flies responded to pulsed light stimulation with increased boundary preference and travel distance in a circular arena. In addition, pulsed light stimulation increased the power of extracellular electrical activity, leading to the enhancement of periodic electrical activity which was associated with a centrally-generated motor pattern (struggling behavior). In contrast, such periodic events were largely missing in w1118 flies without pulsed light treatment. These data suggest that the sensory stimulation induced a response in motor activity associated with the modifications of electrical activity in the central nervous system (CNS). Finally, without pulsed light treatment, the wild-type genetic background was associated with the occurrence of the periodic activity in wild-type Canton S (CS) flies, and w+ modulated the consistency of periodicity. We conclude that pulsed light stimulation modifies behavioral and electrophysiological activities in w1118 flies. These data provide a foundation for future research on the genetic mechanisms of neural plasticity underlying such behavioral modification. PMID:27684063

  6. Subthalamic nucleus activity in the awake hemiparkinsonian rat: relationships with motor and cognitive networks.

    PubMed

    Delaville, Claire; McCoy, Alex J; Gerber, Colin M; Cruz, Ana V; Walters, Judith R

    2015-04-29

    Oscillatory activity in both beta and gamma ranges has been recorded in the subthalamic nucleus (STN) of Parkinson's disease (PD) patients and linked to motor function, with beta activity considered antikinetic, and gamma activity, prokinetic. However, the extent to which nonmotor networks contribute to this activity is unclear. This study uses hemiparkinsonian rats performing a treadmill walking task to compare synchronized STN local field potential (LFP) activity with activity in motor cortex (MCx) and medial prefrontal cortex (mPFC), areas involved in motor and cognitive processes, respectively. Data show increases in STN and MCx 29-36 Hz LFP spectral power and coherence after dopamine depletion, which are reduced by apomorphine and levodopa treatments. In contrast, recordings from mPFC 3 weeks after dopamine depletion failed to show peaks in 29-36 Hz LFP power. However, mPFC and STN both showed peaks in the 45-55 Hz frequency range in LFP power and coherence during walking before and 21 days after dopamine depletion. Interestingly, power in this low gamma range was transiently reduced in both mPFC and STN after dopamine depletion but recovered by day 21. In contrast to the 45-55 Hz activity, the amplitude of the exaggerated 29-36 Hz rhythm in the STN was modulated by paw movement. Furthermore, as in PD patients, after dopamine treatment a third band (high gamma) emerged in the lesioned hemisphere. The results suggest that STN integrates activity from both motor and cognitive networks in a manner that varies with frequency, behavioral state, and the integrity of the dopamine system.

  7. Activity affects dendritic shape and synapse elimination during steroid controlled dendritic retraction in Manduca sexta.

    PubMed

    Duch, Carsten; Mentel, Tim

    2004-11-01

    Insect metamorphosis is a compelling example for dendritic and synaptic remodeling as larval and adult behaviors place distinct demands on the CNS. During the metamorphosis of the moth, Manduca sexta, many larval motoneurons are remodeled to serve a new function in the adult. During late larval life, steroid hormones trigger axonal and dendritic regression as well as larval synapse elimination. These regressive events are accompanied by stereotypical changes in motor behavior during the so-called wandering stages. Both normally occurring changes in dendritic shape and in motor output have previously been analyzed quantitatively for the individually identified motoneuron MN5. This study tested whether activity affected steroid-induced dendritic regression and synapse disassembly in MN5 by means of chronically implanted extracellular electrodes. Stimulating MN5 in vivo in intact, normally developing animals during a developmental period when it usually shows no activity significantly slowed the regression of high-order dendrites. Both physiological and anatomical analysis demonstrated that reduced dendritic regression was accompanied by a significant reduction in larval synapse disassembly. Therefore, steroid-induced alterations of dendritic shape and synaptic connectivity are modified by activity-dependent mechanisms. This interaction might be a common mechanism for rapid adjustments of rigid, inflexible, hormonal programs.

  8. Activity of human motor system during action observation is modulated by object presence.

    PubMed

    Villiger, Michael; Chandrasekharan, Sanjay; Welsh, Timothy N

    2011-03-01

    Neurons in the monkey mirror neuron system (MNS) become active when actions are observed or executed. Increases in activity are greater when objects are engaged than when the actions are mimed. This modulation occurs even when object manipulation is hidden from view. We examined whether human motor systems are similarly modulated during action observation because such observation-related modulations are potentially mediated by a putative human MNS. Transcranial magnetic stimulation (TMS) was used to elicit motor-evoked potentials (MEPs) of a grasping muscle while participants observed actual or pantomimed grasping movements whose endpoints were sometimes hidden from view. MEP amplitudes were found to be modulated by object presence. Critically, the object-based modulation was found when the participant directly observed object manipulation and when the object manipulation had to be inferred because it was hidden. These findings parallel studies of MNS activity in monkeys and support the hypothesis that the MNS influences motor system activity during action observation. Although the object-based modulation of MEP amplitudes was consistent with the hypotheses, the direction of the modulation was not--MEP amplitudes decreased during action observation in contrast to the increase that has previously been observed. We suggest that the decrease in MEP amplitude on object-present trials resulted from inhibitory mechanisms that were activated to suppress the observation-evoked response codes from generating overt muscle activity.

  9. Physical activity-associated gene expression signature in nonhuman primate motor cortex.

    PubMed

    Mitchell, Amanda C; Leak, Rehana K; Garbett, Krassimira; Zigmond, Michael J; Cameron, Judy L; Mirnics, Károly

    2012-03-01

    It has been established that weight gain and weight loss are heavily influenced by activity level. In this study, we hypothesized that the motor cortex exhibits a distinct physical activity-associated gene expression profile, which may underlie changes in weight associated with movement. Using DNA microarrays we profiled gene expression in the motor cortex of a group of 14 female rhesus monkeys (Macaca mulatta) with a wide range of stable physical activity levels. We found that neuronal growth factor signaling and nutrient sensing transcripts in the brain were highly correlated with physical activity. A follow-up of AKT3 expression changes (a gene at the apex of neuronal survival and nutrient sensing) revealed increased protein levels of total AKT, phosphorylated AKT, and forkhead box O3 (FOXO3), one of AKT's main downstream effectors. In addition, we successfully validated three other genes via quantitative polymerase chain reaction (qPCR) (cereblon (CRBN), origin recognition complex subunit 4-like, and pyruvate dehydrogenase 4 (PDK4)). We conclude that these genes are important in the physical activity-associated pathway in the motor cortex, and may be critical for physical activity-associated changes in body weight and neuroprotection.

  10. Motor activity and muscle properties in the hemidecerebellate cat.

    PubMed

    Stenvers, J W; Eerbeek, O; de Jong, J M; Meijer, A E

    1983-09-01

    Luciani's ipsilaterally acting 'trophic' cerebellar influence on striated muscle was reinvestigated in hemidecerebellate preparations of varying extent. Cats with hindlimb postural asymmetries for 4 or more days after the lesion developed a bilateral reduction of maximum tetanic tension and increased twitch/tetanus ratios of soleus. In addition, soleus on the side of the lesion lost force and weight, showed decreased twitch contraction and half-relaxation times, elevated myosin ATPase activity in part of its fibres, occasional fibre necrosis and a few snake coils. Protracted postural asymmetry occurred only if complete hemicerebellectomy included ablation of the lateral vestibular nucleus and extended for at least 3.0 mm across the midline into the contralateral vermal and intermediate cortex, especially of Larsell's lobuli IV and V. Most simply, the cerebellar effect on muscle is explained as the result of altered motoneuronal activation patterns. Comparison of the experimental soleus changes with Holmes's clinical findings in cases of cerebellar injury suggests that muscle itself participates in experimental and human cerebellar asthenia.

  11. Comparing the predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic brain injury.

    PubMed

    Zhao, Zaorui; Loane, David J; Murray, Michael G; Stoica, Bogdan A; Faden, Alan I

    2012-10-10

    Controlled cortical impact injury (CCI) is a widely-used, clinically-relevant model of traumatic brain injury (TBI). Although functional outcomes have been used for years in this model, little work has been done to compare the predictive value of various cognitive and sensorimotor assessment tests, singly or in combination. Such information would be particularly useful for assessing mechanisms of injury or therapeutic interventions. Following isoflurane anesthesia, C57BL/6 mice were subjected to sham, mild (5.0 m/sec), moderate (6.0 m/sec), or severe (7.5 m/sec) CCI. A battery of behavioral tests were evaluated and compared, including the standard Morris water maze (sMWM), reversal Morris water maze (rMWM), novel object recognition (NOR), passive avoidance (PA), tail-suspension (TS), beam walk (BW), and open-field locomotor activity. The BW task, performed at post-injury days (PID) 0, 1, 3, 7, 14, 21, and 28, showed good discrimination as a function of injury severity. The sMWM and rMWM tests (PID 14-23), as well as NOR (PID 24 and 25), effectively discriminated spatial and novel object learning and memory across injury severity levels. Notably, the rMWM showed the greatest separation between mild and moderate/severe injury. PA (PID 27 and 28) and TS (PID 24) also reflected differences across injury levels, but to a lesser degree. We also compared individual functional measures with histological outcomes such as lesion volume and neuronal cell loss across anatomical regions. In addition, we created a novel composite behavioral score index from individual complementary behavioral scores, and it provided superior discrimination across injury severities compared to individual tests. In summary, this study demonstrates the feasibility of using a larger number of complementary functional outcome behavioral tests than those traditionally employed to follow post-traumatic recovery after TBI, and suggests that the composite score may be a helpful tool for screening

  12. Comparing the predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic brain injury.

    PubMed

    Zhao, Zaorui; Loane, David J; Murray, Michael G; Stoica, Bogdan A; Faden, Alan I

    2012-10-10

    Controlled cortical impact injury (CCI) is a widely-used, clinically-relevant model of traumatic brain injury (TBI). Although functional outcomes have been used for years in this model, little work has been done to compare the predictive value of various cognitive and sensorimotor assessment tests, singly or in combination. Such information would be particularly useful for assessing mechanisms of injury or therapeutic interventions. Following isoflurane anesthesia, C57BL/6 mice were subjected to sham, mild (5.0 m/sec), moderate (6.0 m/sec), or severe (7.5 m/sec) CCI. A battery of behavioral tests were evaluated and compared, including the standard Morris water maze (sMWM), reversal Morris water maze (rMWM), novel object recognition (NOR), passive avoidance (PA), tail-suspension (TS), beam walk (BW), and open-field locomotor activity. The BW task, performed at post-injury days (PID) 0, 1, 3, 7, 14, 21, and 28, showed good discrimination as a function of injury severity. The sMWM and rMWM tests (PID 14-23), as well as NOR (PID 24 and 25), effectively discriminated spatial and novel object learning and memory across injury severity levels. Notably, the rMWM showed the greatest separation between mild and moderate/severe injury. PA (PID 27 and 28) and TS (PID 24) also reflected differences across injury levels, but to a lesser degree. We also compared individual functional measures with histological outcomes such as lesion volume and neuronal cell loss across anatomical regions. In addition, we created a novel composite behavioral score index from individual complementary behavioral scores, and it provided superior discrimination across injury severities compared to individual tests. In summary, this study demonstrates the feasibility of using a larger number of complementary functional outcome behavioral tests than those traditionally employed to follow post-traumatic recovery after TBI, and suggests that the composite score may be a helpful tool for screening

  13. Effect of high-fat intake on motor activity, homovanillic acid and 5-hydroxyindoleacetic acid levels in striatum and cortex of rats exposed to stress.

    PubMed

    Kirac, Deniz; Ozden, Inci; Yildirim, Alper; Genç, Ece

    2009-04-01

    The aim of the present study was to investigate whether high fat consumption changes the effects of stress on both motor activity performance, striatal and cortical dopamine and serotonin metabolites in rats. The animals were fed either with high fat or standard diet for 4 weeks. Restraint stress lasting for 15 min at +4 degrees C was applied daily to stress-exposed groups. Motor activity performance was measured weekly by using motor activity monitoring systems. At the end of the study, homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) levels of the striatum and cerebral cortex were measured by HPLCEC. It was observed that restraint stress increased locomotor activity and high-fat diet prevented this effect. Stress and high-fat intake had an additive decreasing effect on striatal HVA levels. 5-HIAA levels, on the other hand, were lower in both high fat and high fat + stress groups compared to the stress group. These results suggest that high-fat intake differentially affected the stress response on striatal dopaminergic and serotonergic neurons in rat brain regions studied and this may be related to the effects observed in motor activity performance.

  14. Cerebral cortical activity associated with non-experts' most accurate motor performance.

    PubMed

    Dyke, Ford; Godwin, Maurice M; Goel, Paras; Rehm, Jared; Rietschel, Jeremy C; Hunt, Carly A; Miller, Matthew W

    2014-10-01

    This study's specific aim was to determine if non-experts' most accurate motor performance is associated with verbal-analytic- and working memory-related cerebral cortical activity during motor preparation. To assess this, EEG was recorded from non-expert golfers executing putts; EEG spectral power and coherence were calculated for the epoch preceding putt execution; and spectral power and coherence for the five most accurate putts were contrasted with that for the five least accurate. Results revealed marked power in the theta frequency bandwidth at all cerebral cortical regions for the most accurate putts relative to the least accurate, and considerable power in the low-beta frequency bandwidth at the left temporal region for the most accurate compared to the least. As theta power is associated with working memory and low-beta power at the left temporal region with verbal analysis, results suggest non-experts' most accurate motor performance is associated with verbal-analytic- and working memory-related cerebral cortical activity during motor preparation. PMID:25058623

  15. Effects of bilateral training on motor function, amount of activity and activity intensity measured with an accelerometer of patients with stroke

    PubMed Central

    Shim, Sunhwa; Jung, Jinhwa

    2015-01-01

    [Purpose] This study investigated the recovery of arm function and the functional use of the affected limb in real life of stroke patients after bilateral arm training. [Subjects] Twenty patients with stroke were randomly allocated to the BT (bilateral training group, n=10) and UT (unilateral training group, n=10) groups. [Methods] The BT group performed functional tasks with both hand symmetrically, the UT group performed tasks with only the affected hand for 30 minutes a session 5 times a week over 6 weeks. Before and after the intervention, accelerometers (Actisleep), functional independence measure (FIM) and manual function test (MFT) were used to assess subjects’ abilities. [Results] The BT group showed a significant improvement in FIM total score, motor subtotal score and MFT score of affected side compared to the UT group. The BT group showed a more quantitative increase in the amount of activity of the affected side than the UT group. Regarding activity intensity, the BT group showed a decrease in the sedentary level and an increase of the moderate level on the affected side compared to the UT group. [Conclusion] We found that programs tailored to the characteristics of stroke patients and continuous monitoring of physical activity using an accelerometer minimized possible future disability and improved the patients’ quality of life. PMID:25931723

  16. A liquid phase based C. elegans behavioral analysis system identifies motor activity loss in a nematode Parkinson's disease model.

    PubMed

    Zheng, Maohua; Gorelenkova, Olga; Yang, Jiong; Feng, Zhaoyang

    2012-03-15

    Motor activity of Caenorhabditis elegans is widely used to study the mechanisms ranging from basic neuronal functions to human neurodegenerative diseases. It may also serve as a paradigm to screen for potential therapeutic reagents treating these diseases. Here, we developed an automated, 96-well plate and liquid phase based system that quantifies nematode motor activity in real time. Using this system, we identified an adult-onset, ageing-associated motor activity loss in a transgenic nematode line expressing human pathogenic G2019S mutant LRRK2 (leucine-rich repeat kinase 2), the leading genetic cause of Parkinson's disease characterized by dopaminergic neurodegeneration associated motor deficient mainly in elder citizens. Thus, our system may be used as a platform to screen for potential therapeutic drugs treating Parkinson's disease. It can also be used to monitor motor activity of nematodes in liquid phase at similar scenario.

  17. Short-term erythrosine B-induced inhibition of the brain regional serotonergic activity suppresses motor activity (exploratory behavior) of young adult mammals.

    PubMed

    Dalal, Arindam; Poddar, Mrinal K

    2009-06-01

    Previous studies showed that repeated ingestion of erythrosine B (artificial food color) developed behavioral hyperactivity, but nothing is known about its single administration effect as well as the neurochemical (s) involvement. The present study provides evidence that a single higher dosage (10, 100 or 200 mg/kg, p.o.) of erythrosine administration to young adult male rats reduced motor activity (MA) maximally at 2 h and brain regional (medulla-pons, hippocampus and hypothalamus) serotonergic activity (measuring steady-state levels of 5-HT and 5-HIAA, pargyline-induced 5-HT accumulation and 5-HIAA declination rate and 5-HT receptor binding) under similar experimental condition. The degree of erythrosine-induced inhibition of both MA and brain regional serotonergic activity was dosage dependent. Lower dosage (1 mg/kg, p.o.) did not affect either of the above. Erythrosine (100 or 200 mg/kg, p.o.)-induced MA suppression was also observed in the presence of specific MAO-A inhibitor, clorgyline (5 mg/kg, i.p.) or MAO-B inhibitor, deprenyl (5 mg/kg, i.p.); but their co-application (5 mg/kg, i.p., each) effectively prevented the erythrosine-induced motor suppression. Altogether these results suggest that a single higher dosage of erythrosine (10-200 mg/kg, p.o.) may reduce MA by reducing serotonergic activity with modulation of central dopaminergic activity depending on the brain regions.

  18. Prenatal lipopolysaccharide reduces motor activity after an immune challenge in adult male offspring.

    PubMed

    Kirsten, Thiago Berti; Taricano, Marina; Flório, Jorge Camilo; Palermo-Neto, João; Bernardi, Maria Martha

    2010-07-29

    Prenatal lipopolysaccharide (LPS) exposure causes reproductive, behavioral and neurochemical injuries in both the mother and pups. Previous investigations by our group showed that prenatal LPS administration (100 microg/kg, i.p.) on gestational day 9.5 impaired the male offspring's social behavior in infancy and adulthood. In the present study, we investigated whether these social behavioral changes were associated with motor activity impairment. Male rat pups treated prenatally with LPS or not were tested for reflexological development and open field general activity during infancy. In adulthood, animals were tested for open field general activity, haloperidol-induced catalepsy and apomorphine-induced stereotypy; striatal dopamine levels and turnover were also measured. Moreover, LPS-treated or untreated control pups were challenged with LPS in adulthood and observed for general activity in the open field. In relation to the control group, the motor behavior of prenatally treated male pups was unaffected at basal levels, both in infancy and in adulthood, but decreased general activity was observed in adulthood after an immune challenge. Also, striatal dopamine and metabolite levels were decreased in adulthood. In conclusion, prenatal LPS exposure disrupted the dopaminergic system involved with motor function, but this neurochemical effect was not accompanied by behavioral impairment, probably due to adaptive plasticity processes. Notwithstanding, behavioral impairment was revealed when animals were challenged with LPS, resulting in enhanced sickness behavior.

  19. Motor activation in literal and non-literal sentences: does time matter?

    PubMed Central

    Cacciari, Cristina; Pesciarelli, Francesca

    2013-01-01

    Despite the impressive amount of evidence showing involvement of the sensorimotor systems in language processing, important questions remain unsolved among which the relationship between non-literal uses of language and sensorimotor activation. The literature did not yet provide a univocal answer on whether the comprehension of non-literal, abstract motion sentences engages the same neural networks recruited for literal sentences. A previous TMS study using the same experimental materials of the present study showed activation for literal, fictive and metaphoric motion sentences but not for idiomatic ones. To evaluate whether this may depend on insufficient time for elaborating the idiomatic meaning, we conducted a behavioral experiment that used a sensibility judgment task performed by pressing a button either with a hand finger or with a foot. Motor activation is known to be sensitive to the action-congruency of the effector used for responding. Therefore, all other things being equal, significant differences between response emitted with an action-congruent or incongruent effector (foot vs. hand) may be attributed to motor activation. Foot-related action verbs were embedded in sentences conveying literal motion, fictive motion, metaphoric motion or idiomatic motion. Mental sentences were employed as a control condition. foot responses were significantly faster than finger responses but only in literal motion sentences. We hypothesize that motor activation may arise in early phases of comprehension processes (i.e., upon reading the verb) for then decaying as a function of the strength of the semantic motion component of the verb. PMID:23730278

  20. Regional vulnerability of the hippocampus to repeated motor activity deprivation.

    PubMed

    Faraji, Jamshid; Soltanpour, Nabiollah; Moeeini, Reza; Hosseini, Seyed Abedin; Pakdel, Shiva; Moharrerie, Alireza; Arjang, Kaveh; Soltanpour, Nasrin; Metz, Gerlinde A S

    2016-03-15

    Spontaneous vertical and horizontal exploratory movements are integral components of rodent behavior. Little is known, however, about the structural and functional consequences of restricted spontaneous exploration. Here, we report two experiments to probe whether restriction in vertical activity (rearing) in rats could induce neuro-hormonal and behavioral disturbances. Rearing movements in rats were deprived for 3h/day for 30 consecutive days by placing the animal into a circular tunnel task. Rats temporarily deprived of rearing behavior showed elevated plasma corticosterone levels but no detectable psychological distress and/or anxiety-related behavior within an elevated plus maze. However, rats emitted a greater number of 22-kHz ultrasonic vocalizations and spent significantly more time vocalizing than controls when deprived of their rearing behavior. Despite intact spatial performance within wet- and dry-land spatial tasks, rearing-deprived rats also exhibited a significant alteration in search strategies within both spatial tasks along with reduced volume and neuron number in the hippocampal subregion CA2. These data suggest a new approach to test the importance of free exploratory behavior in endocrine and structural manifestations. The results support a central role of the CA2 in spontaneous exploratory behavior and vulnerability to psychological stress. PMID:26723539

  1. Regional vulnerability of the hippocampus to repeated motor activity deprivation.

    PubMed

    Faraji, Jamshid; Soltanpour, Nabiollah; Moeeini, Reza; Hosseini, Seyed Abedin; Pakdel, Shiva; Moharrerie, Alireza; Arjang, Kaveh; Soltanpour, Nasrin; Metz, Gerlinde A S

    2016-03-15

    Spontaneous vertical and horizontal exploratory movements are integral components of rodent behavior. Little is known, however, about the structural and functional consequences of restricted spontaneous exploration. Here, we report two experiments to probe whether restriction in vertical activity (rearing) in rats could induce neuro-hormonal and behavioral disturbances. Rearing movements in rats were deprived for 3h/day for 30 consecutive days by placing the animal into a circular tunnel task. Rats temporarily deprived of rearing behavior showed elevated plasma corticosterone levels but no detectable psychological distress and/or anxiety-related behavior within an elevated plus maze. However, rats emitted a greater number of 22-kHz ultrasonic vocalizations and spent significantly more time vocalizing than controls when deprived of their rearing behavior. Despite intact spatial performance within wet- and dry-land spatial tasks, rearing-deprived rats also exhibited a significant alteration in search strategies within both spatial tasks along with reduced volume and neuron number in the hippocampal subregion CA2. These data suggest a new approach to test the importance of free exploratory behavior in endocrine and structural manifestations. The results support a central role of the CA2 in spontaneous exploratory behavior and vulnerability to psychological stress.

  2. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3 Activities... affecting commerce. Examples: 1. A foreign subsidiary of a U.S. corporation seeks to acquire a foreign business. The acquiring person includes the U.S. parent corporation. If the U.S. corporation, or...

  3. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3 Activities... affecting commerce. Examples: 1. A foreign subsidiary of a U.S. corporation seeks to acquire a foreign business. The acquiring person includes the U.S. parent corporation. If the U.S. corporation, or...

  4. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  5. Affective Analgesia following Muscarinic Activation of the Ventral Tegmental Area in Rats

    PubMed Central

    Kender, Robert G.; Harte, Steven E.; Munn, Elizabeth M.; Borszcz, George S.

    2009-01-01

    Cholinergic stimulation of dopamine neurons in the ventral tegmental area (VTA) underlies activation of the brain reward circuitry. Activation of this circuit is proposed to preferentially suppress the affective reaction to noxious stimulation. Vocalization afterdischarges (VADs) are a validated model of the affective response of rats to noxious tailshock. The antinociceptive action of the acetylcholine agonist carbachol microinjected into the VTA on VAD threshold was compared to its effect on the thresholds of other tailshock-elicited responses (VDS = vocalizations during shock, and SMR = spinal motor reflexes). Whereas VADs are organized within the forebrain, VDSs and SMRs are organized at medullary and spinal levels of the neuraxis, respectively. Carbachol (1 μg, 2 μg, and 4 μg) injected into VTA produced dose-dependent increases in VAD and VDS thresholds, although increases in VAD threshold were significantly greater than increases in VDS threshold. Administration of carbachol into VTA failed to elevate SMR threshold. Elevations in vocalization thresholds produced by intra-VTA carbachol were reversed in a dose-dependent manner by local administration of the muscarinic receptor antagonist atropine sulfate (30 μg and 60 μg). These results provide the first demonstration of the involvement of the VTA in muscarinic-induced suppression of pain affect. Perspective Cholinergic activation of the brain reward circuit produced a preferential suppression of rats’ affective reaction to noxious stimulation. The neurobiology that relates reinforcement to suppression of pain affect may provide insights into new treatments for pain and its associated affective disorders. PMID:18387853

  6. Altered Rolandic Gamma-Band Activation Associated with Motor Impairment and Ictal Network Desynchronization in Childhood Epilepsy

    PubMed Central

    Doesburg, Sam M.; Ibrahim, George M.; Smith, Mary Lou; Sharma, Rohit; Viljoen, Amrita; Chu, Bill; Rutka, James T.; Snead, O. Carter; Pang, Elizabeth W.

    2013-01-01

    Epilepsy is associated with an abnormal expression of neural oscillations and their synchronization across brain regions. Oscillatory brain activation and synchronization also play an important role in cognition, perception and motor control. Childhood epilepsy is associated with a variety of cognitive and motor deficits, but the relationship between altered functional brain responses in various frequency ranges and functional impairment in these children remains poorly understood. We investigated functional magnetoencephalographic (MEG) responses from motor cortex in multiple functionally relevant frequency bands following median nerve stimulation in twelve children with epilepsy, including four children with motor impairments. We demonstrated that children with motor impairments exhibit an excessive gamma-band response from Rolandic cortex, and that the magnitude of this Rolandic gamma response is negatively associated with motor function. Abnormal responses from motor cortex were also associated with ictal desynchronization of oscillations within Rolandic cortex measured using intracranial EEG (iEEG). These results provide the evidence that ictal disruption of motor networks is associated with an altered functional response from motor cortex, which is in turn associated with motor impairment. PMID:23383007

  7. Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation

    PubMed Central

    Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin; Escobar, Carolina; Buijs, Ruud M.; Hu, Kun

    2016-01-01

    One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only increases activity levels before the feeding period but also alters the temporal organization of motor activity fluctuations over a wide range of time scales from minutes up to 24 h. We demonstrate this multiscale alteration by assessing fractal patterns in motor activity fluctuations—similar fluctuation structure at different time scales—that are robust in intact animals with ad libitum food access but are disrupted under food restriction. In addition, we show that fractal activity patterns in rats with ad libitum food access are also perturbed by lesion of the dorsomedial hypothalamic (DMH)—a neural node that is involved in food anticipatory behavior. Instead of further disrupting fractal regulation, food restriction restores the disrupted fractal patterns in these animals after the DMH lesion despite the persistence of the 24-h rhythms. This compensatory effect of food restriction is more clearly pronounced in the same animals after the additional lesion of the suprachiasmatic nucleus (SCN)—the central master clock in the circadian system that generates and orchestrates circadian rhythms in behavior and physiological functions in synchrony with day-night cycles. Moreover, all observed influences of food restriction persist even when data during the food anticipatory and feeding period are excluded. These results indicate that food restriction impacts dynamics of motor activity at different time scales across the entire circadian/daily cycle, which is likely caused by the competition between the food-induced time cue and the light-entrained circadian rhythm of the

  8. Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation.

    PubMed

    Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin; Escobar, Carolina; Buijs, Ruud M; Hu, Kun

    2016-01-01

    One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only increases activity levels before the feeding period but also alters the temporal organization of motor activity fluctuations over a wide range of time scales from minutes up to 24 h. We demonstrate this multiscale alteration by assessing fractal patterns in motor activity fluctuations-similar fluctuation structure at different time scales-that are robust in intact animals with ad libitum food access but are disrupted under food restriction. In addition, we show that fractal activity patterns in rats with ad libitum food access are also perturbed by lesion of the dorsomedial hypothalamic (DMH)-a neural node that is involved in food anticipatory behavior. Instead of further disrupting fractal regulation, food restriction restores the disrupted fractal patterns in these animals after the DMH lesion despite the persistence of the 24-h rhythms. This compensatory effect of food restriction is more clearly pronounced in the same animals after the additional lesion of the suprachiasmatic nucleus (SCN)-the central master clock in the circadian system that generates and orchestrates circadian rhythms in behavior and physiological functions in synchrony with day-night cycles. Moreover, all observed influences of food restriction persist even when data during the food anticipatory and feeding period are excluded. These results indicate that food restriction impacts dynamics of motor activity at different time scales across the entire circadian/daily cycle, which is likely caused by the competition between the food-induced time cue and the light-entrained circadian rhythm of the SCN. The

  9. Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation.

    PubMed

    Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin; Escobar, Carolina; Buijs, Ruud M; Hu, Kun

    2016-01-01

    One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only increases activity levels before the feeding period but also alters the temporal organization of motor activity fluctuations over a wide range of time scales from minutes up to 24 h. We demonstrate this multiscale alteration by assessing fractal patterns in motor activity fluctuations-similar fluctuation structure at different time scales-that are robust in intact animals with ad libitum food access but are disrupted under food restriction. In addition, we show that fractal activity patterns in rats with ad libitum food access are also perturbed by lesion of the dorsomedial hypothalamic (DMH)-a neural node that is involved in food anticipatory behavior. Instead of further disrupting fractal regulation, food restriction restores the disrupted fractal patterns in these animals after the DMH lesion despite the persistence of the 24-h rhythms. This compensatory effect of food restriction is more clearly pronounced in the same animals after the additional lesion of the suprachiasmatic nucleus (SCN)-the central master clock in the circadian system that generates and orchestrates circadian rhythms in behavior and physiological functions in synchrony with day-night cycles. Moreover, all observed influences of food restriction persist even when data during the food anticipatory and feeding period are excluded. These results indicate that food restriction impacts dynamics of motor activity at different time scales across the entire circadian/daily cycle, which is likely caused by the competition between the food-induced time cue and the light-entrained circadian rhythm of the SCN. The

  10. Laterality of movement-related activity reflects transformation of coordinates in ventral premotor cortex and primary motor cortex of monkeys.

    PubMed

    Kurata, Kiyoshi

    2007-10-01

    The ventral premotor cortex (PMv) and the primary motor cortex (MI) of monkeys participate in various sensorimotor integrations, such as the transformation of coordinates from visual to motor space, because the areas contain movement-related neuronal activity reflecting either visual or motor space. In addition to relationship to visual and motor space, laterality of the activity could indicate stages in the visuomotor transformation. Thus we examined laterality and relationship to visual and motor space of movement-related neuronal activity in the PMv and MI of monkeys performing a fast-reaching task with the left or right arm, toward targets with visual and motor coordinates that had been dissociated by shift prisms. We determined laterality of each activity quantitatively and classified it into four types: activity that consistently depended on target locations in either head-centered visual coordinates (V-type) or motor coordinates (M-type) and those that had either differential or nondifferential activity for both coordinates (B- and N-types). A majority of M-type neurons in the areas had preferences for reaching movements with the arm contralateral to the hemisphere where neuronal activity was recorded. In contrast, most of the V-type neurons were recorded in the PMv and exhibited less laterality than the M-type. The B- and N-types were recorded in the PMv and MI and exhibited intermediate properties between the V- and M-types when laterality and correlations to visual and motor space of them were jointly examined. These results suggest that the cortical motor areas contribute to the transformation of coordinates to generate final motor commands.

  11. Active Motor Training Has Long-term Effects on Infants’ Object Exploration

    PubMed Central

    Wiesen, Sarah E.; Watkins, Rachel M.; Needham, Amy Work

    2016-01-01

    Long-term changes in infants’ behavior as a result of active motor training were studied. Thirty-two infants completed three visits to the laboratory. At the first visit, infants were 3 months old and completed an object exploration assessment. Then the experimenter demonstrated the motor training procedures appropriate for the infant’s experimental condition, and parents took home custom infant mittens (either sticky or non-sticky) and a bag of lightweight toys to practice with their infants. Over the course of the following 2 weeks, infants participated in 10 sessions of either active (sticky) or passive (non-sticky) mittens training at home with their parents. Infants who participated in active mittens training wore mittens with the palms covered in Velcro, allowing them to pick up and move around small toys. Infants who participated in passive mittens training wore non-sticky mittens, and their parents moved the toys through their visual fields on their behalf. After completing the training, infants returned to the lab for the second visit. At visit two, infants participated in another object exploration assessment as well as a reaching assessment. Parents returned the training materials to the lab at the second visit, and were told not to continue any specific training regimen from this point forward. Two months later, when infants were about 5.5 months of age, they returned to the lab for a third visit. At the third visit, infants completed the same two assessments as during the second visit. The results of this study indicate that infants who participated in active motor training engaged in more sophisticated object exploration when compared to infants who received passive training. These findings are consistent with others in the literature showing that active motor training at 3 months of age facilitates the processes of object exploration and engagement. The current results and others reveal that the effects of early experience can last long after

  12. Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes

    PubMed Central

    Fernandino, Leonardo; Humphries, Colin J.; Seidenberg, Mark S.; Gross, William L.; Conant, Lisa L.; Binder, Jeffrey R.

    2015-01-01

    While major advances have been made in uncovering the neural processes underlying perceptual representations, our grasp of how the brain gives rise to conceptual knowledge remains relatively poor. Recent work has provided strong evidence that concepts rely, at least in part, on the same sensory and motor neural systems through which they were acquired, but it is still unclear whether the neural code for concept representation uses information about sensory-motor features to discriminate between concepts. In the present study, we investigate this question by asking whether an encoding model based on five semantic attributes directly related to sensory-motor experience – sound, color, visual motion, shape, and manipulation – can successfully predict patterns of brain activation elicited by individual lexical concepts. We collected ratings on the relevance of these five attributes to the meaning of 820 words, and used these ratings as predictors in a multiple regression model of the fMRI signal associated with the words in a separate group of participants. The five resulting activation maps were then combined by linear summation to predict the distributed activation pattern elicited by a novel set of 80 test words. The encoding model predicted the activation patterns elicited by the test words significantly better than chance. As expected, prediction was successful for concrete but not for abstract concepts. Comparisons between encoding models based on different combinations of attributes indicate that all five attributes contribute to the representation of concrete concepts. Consistent with embodied theories of semantics, these results show, for the first time, that the distributed activation pattern associated with a concept combines information about different sensory-motor attributes according to their respective relevance. Future research should investigate how additional features of phenomenal experience contribute to the neural representation of conceptual

  13. Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Seidenberg, Mark S; Gross, William L; Conant, Lisa L; Binder, Jeffrey R

    2015-09-01

    While major advances have been made in uncovering the neural processes underlying perceptual representations, our grasp of how the brain gives rise to conceptual knowledge remains relatively poor. Recent work has provided strong evidence that concepts rely, at least in part, on the same sensory and motor neural systems through which they were acquired, but it is still unclear whether the neural code for concept representation uses information about sensory-motor features to discriminate between concepts. In the present study, we investigate this question by asking whether an encoding model based on five semantic attributes directly related to sensory-motor experience - sound, color, visual motion, shape, and manipulation - can successfully predict patterns of brain activation elicited by individual lexical concepts. We collected ratings on the relevance of these five attributes to the meaning of 820 words, and used these ratings as predictors in a multiple regression model of the fMRI signal associated with the words in a separate group of participants. The five resulting activation maps were then combined by linear summation to predict the distributed activation pattern elicited by a novel set of 80 test words. The encoding model predicted the activation patterns elicited by the test words significantly better than chance. As expected, prediction was successful for concrete but not for abstract concepts. Comparisons between encoding models based on different combinations of attributes indicate that all five attributes contribute to the representation of concrete concepts. Consistent with embodied theories of semantics, these results show, for the first time, that the distributed activation pattern associated with a concept combines information about different sensory-motor attributes according to their respective relevance. Future research should investigate how additional features of phenomenal experience contribute to the neural representation of conceptual

  14. Active Motor Training Has Long-term Effects on Infants' Object Exploration.

    PubMed

    Wiesen, Sarah E; Watkins, Rachel M; Needham, Amy Work

    2016-01-01

    Long-term changes in infants' behavior as a result of active motor training were studied. Thirty-two infants completed three visits to the laboratory. At the first visit, infants were 3 months old and completed an object exploration assessment. Then the experimenter demonstrated the motor training procedures appropriate for the infant's experimental condition, and parents took home custom infant mittens (either sticky or non-sticky) and a bag of lightweight toys to practice with their infants. Over the course of the following 2 weeks, infants participated in 10 sessions of either active (sticky) or passive (non-sticky) mittens training at home with their parents. Infants who participated in active mittens training wore mittens with the palms covered in Velcro, allowing them to pick up and move around small toys. Infants who participated in passive mittens training wore non-sticky mittens, and their parents moved the toys through their visual fields on their behalf. After completing the training, infants returned to the lab for the second visit. At visit two, infants participated in another object exploration assessment as well as a reaching assessment. Parents returned the training materials to the lab at the second visit, and were told not to continue any specific training regimen from this point forward. Two months later, when infants were about 5.5 months of age, they returned to the lab for a third visit. At the third visit, infants completed the same two assessments as during the second visit. The results of this study indicate that infants who participated in active motor training engaged in more sophisticated object exploration when compared to infants who received passive training. These findings are consistent with others in the literature showing that active motor training at 3 months of age facilitates the processes of object exploration and engagement. The current results and others reveal that the effects of early experience can last long after

  15. Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Seidenberg, Mark S; Gross, William L; Conant, Lisa L; Binder, Jeffrey R

    2015-09-01

    While major advances have been made in uncovering the neural processes underlying perceptual representations, our grasp of how the brain gives rise to conceptual knowledge remains relatively poor. Recent work has provided strong evidence that concepts rely, at least in part, on the same sensory and motor neural systems through which they were acquired, but it is still unclear whether the neural code for concept representation uses information about sensory-motor features to discriminate between concepts. In the present study, we investigate this question by asking whether an encoding model based on five semantic attributes directly related to sensory-motor experience - sound, color, visual motion, shape, and manipulation - can successfully predict patterns of brain activation elicited by individual lexical concepts. We collected ratings on the relevance of these five attributes to the meaning of 820 words, and used these ratings as predictors in a multiple regression model of the fMRI signal associated with the words in a separate group of participants. The five resulting activation maps were then combined by linear summation to predict the distributed activation pattern elicited by a novel set of 80 test words. The encoding model predicted the activation patterns elicited by the test words significantly better than chance. As expected, prediction was successful for concrete but not for abstract concepts. Comparisons between encoding models based on different combinations of attributes indicate that all five attributes contribute to the representation of concrete concepts. Consistent with embodied theories of semantics, these results show, for the first time, that the distributed activation pattern associated with a concept combines information about different sensory-motor attributes according to their respective relevance. Future research should investigate how additional features of phenomenal experience contribute to the neural representation of conceptual

  16. Ankyrin domain of myosin 16 influences motor function and decreases protein phosphatase catalytic activity.

    PubMed

    Kengyel, András; Bécsi, Bálint; Kónya, Zoltán; Sellers, James R; Erdődi, Ferenc; Nyitrai, Miklós

    2015-05-01

    The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ≈ 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1cα (K D ≈ 540 nM) and also to PP1cδ (K D ≈ 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins.

  17. Impact of lead sub-chronic toxicity on recognition memory and motor activity of Wistar rat.

    PubMed

    Azzaoui, F Z; Ahami, A O T; Khadmaoui, A

    2009-01-15

    The aim of this research was to investigate the impact of lead nitrate administered in drinking water during 90 days (sub-chronic toxicity), on body weight gain, motor activity, brain lead accumulation and especially on recognition memory of Wistar rats. Two groups of young female Wistar rats were used. Treated rats received 20 mg L(-1) of lead nitrate diluted in drinking water, while control rats received drinking water only, for 3 months. An evolution of body weight, motor activity, object recognition memory and measure of brain lead levels has been evaluated. The body weight was taken weekly, whereas the memory abilities and the motor activity are measured once every fortnight alternatively, by submitting rats to the Open Field (OF) test and to the Novel Object Recognizing (NOR) memory test. The results have shown a non significant effect in gain of body weight. However, a high significance was shown for horizontal activity (p<0.01), long memory term (p<0.01), at the end of testing period and for brain lead levels (p<0.05) between studied groups.

  18. Effects of novelty stress on hippocampal gene expression, corticosterone and motor activity in mice.

    PubMed

    Kurumaji, Akeo; Umino, Masakazu; Nishikawa, Toru

    2011-10-01

    Exposure to novelty, a mild psychological stressor, induces neuronal activations in the hippocampus of rodents, which may play an important role in the adaptation to stress. We examined the changes in three parameters, i.e., gene expression in the hippocampus using a RT-PCR method, corticosterone and motor activity, in mice exposed to a new environment for 120min. A sharp and short-lasting increase in the gene expression of a set of stress-related genes previously reported, e.g., Fos and Nr4a1, was observed during the stress, with a similar pattern of changes in corticosterone. The motor activity gradually decreased during the novelty stress, indicating a process of adaptation to the new environment. In addition, in order to minimize the effects of elevated adrenal hormones by the stress, we carried out experiments on adrenalectomized (ADX) mice. However, the adrenalectomy produced minimal changes in the pattern and the magnitude of the gene response after the stress, while the motor activity showed a relatively slower pattern of adaptation in the ADX mice. Hence, the present study suggests that there was a coordinated adaptation process to the new environment in mice, and that the transcriptional response was mediated by neuronal networks rather than by adrenal hormones.

  19. MicroRNA-125b regulates microglia activation and motor neuron death in ALS

    PubMed Central

    Parisi, C; Napoli, G; Amadio, S; Spalloni, A; Apolloni, S; Longone, P; Volonté, C

    2016-01-01

    Understanding the means by which microglia self-regulate the neuroinflammatory response helps modulating their reaction during neurodegeneration. In amyotrophic lateral sclerosis (ALS), classical NF-κB pathway is related to persistent microglia activation and motor neuron injury; however, mechanisms of negative control of NF-κB activity remain unexplored. One of the major players in the termination of classical NF-κB pathway is the ubiquitin-editing enzyme A20, which has recognized anti-inflammatory functions. Lately, microRNAs are emerging as potent fine-tuners of neuroinflammation and reported to be regulated in ALS, for instance, by purinergic P2X7 receptor activation. In this work, we uncover an interplay between miR-125b and A20 protein in the modulation of classical NF-κB signaling in microglia. In particular, we establish the existence of a pathological circuit in which termination of A20 function by miR-125b strengthens and prolongs the noxious P2X7 receptor-dependent activation of NF-κB in microglia, with deleterious consequences on motor neurons. We prove that, by restoring A20 levels, miR-125b inhibition then sustains motor neuron survival. These results introduce miR-125b as a key mediator of microglia dynamics in ALS. PMID:26794445

  20. Functional aging in the nervous system contributes to age-dependent motor activity decline in C. elegans.

    PubMed

    Liu, Jie; Zhang, Bi; Lei, Haoyun; Feng, Zhaoyang; Liu, Jianfeng; Hsu, Ao-Lin; Xu, X Z Shawn

    2013-09-01

    Aging is characterized by a progressive decline in multiple physiological functions (i.e., functional aging). As animals age, they exhibit a gradual loss in motor activity, but the underlying mechanisms remain unclear. Here we approach this question in C. elegans by functionally characterizing its aging nervous system and muscles. We find that motor neurons exhibit a progressive functional decline, beginning in early life. Surprisingly, body-wall muscles, which were previously thought to undergo functional aging, do not manifest such a decline until mid-late life. Notably, motor neurons first develop a deficit in synaptic vesicle fusion followed by that in quantal size and vesicle docking/priming, revealing specific functional deteriorations in synaptic transmission. Pharmacological stimulation of synaptic transmission can improve motor activity in aged animals. These results uncover a critical role for the nervous system in age-dependent motor activity decline in C. elegans and provide insights into how functional aging occurs in this organism.

  1. The effect of involuntary motor activity on myoelectric pattern recognition: a case study with chronic stroke patients

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Zev Rymer, William; Zhou, Ping

    2013-08-01

    Objective. This study investigates the effect of the involuntary motor activity of paretic-spastic muscles on the classification of surface electromyography (EMG) signals. Approach. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at relatively slow and fast speeds. For each stroke subject, the degree of involuntary motor activity present in the voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from the slow and fast sessions. Main results. Across all tested stroke subjects, our results revealed that when involuntary surface EMG is absent or present in both the training and testing datasets, high accuracies (>96%, >98%, respectively, averaged over all the subjects) can be achieved in the classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either the training or testing datasets, the classification accuracies were dramatically reduced (<89%, <85%, respectively). However, if both the training and testing datasets contained EMG signals with the presence and absence of involuntary EMG interference, high accuracies were still achieved (>97%). Significance. The findings of this study can be used to guide the appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation.

  2. Developmental Sequences of Perceptual-Motor Tasks, Movement Activities for Neurologically Handicapped and Retarded Children and Youth.

    ERIC Educational Resources Information Center

    Cratty, Bryant J.

    Intended for special education and physical education teachers, the handbook presents selected developmental sequences of activities based on the analysis of perceptual motor characteristics of groups of retarded and neurologically handicapped children. Four classifications of children and their perceptual motor characteristics are discussed: the…

  3. Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles.

    PubMed Central

    Nardone, A; Romanò, C; Schieppati, M

    1989-01-01

    1. We have investigated the possibility that voluntary muscle lengthening contractions can be performed by selective recruitment of fast-twitch motor units, accompanied by derecruitment of slow-twitch motor units. 2. The behaviour of motor units in soleus, gastrocnemius lateralis and gastrocnemius medialis muscles was studied during (a) controlled isotonic plantar flexion against a constant load (shortening contraction, S), maintained plantar flexion, or dorsal flexion resisting the load and gradually yielding to it (lengthening contraction, L), (b) isometric increasing or decreasing plantar torque accomplished by graded contraction or relaxation of the triceps surae muscles, (c) isometric or isotonic ballistic contractions, and (d) periodic, quasi-sinusoidal isotonic contractions at different velocities. The above tasks were performed under visual control of foot position, without activation of antagonist muscles. The motor units discharging during foot rotation were grouped on the basis of the phase(s) during which they were active as S, S + L and L. The units were also characterized according to both the level of isometric ramp plantar torque at which they were first recruited and the amplitude of their action potential. 3. S units were never active during dorsal flexion; some of them were active during the sustained contraction between plantar and dorsal flexion. Most S + L units were active also during the maintenance phase and were slowly derecruited during lengthening; their behaviour during foot rotations was similar to that during isometric contractions or relaxations. L units were never active during either plantar or maintained flexion, but discharged during lengthening contraction in a given range of rotation velocities; the velocity of lengthening consistently influenced the firing frequency of these units. Such dependence on velocity was not observed in S + L units. 4. A correlation was found between the amplitude of the action potential and the

  4. Increasing MuSK activity delays denervation and improves motor function in ALS mice.

    PubMed

    Pérez-García, María J; Burden, Steven J

    2012-09-27

    Amyotrophic lateral sclerosis (ALS) is a devastating disease that progresses from detachment of motor nerve terminals to complete muscle paralysis and lethal respiratory failure within 5 years of diagnosis. Genetic studies have linked mutations in several genes to ALS, and mice bearing mutations in SOD1 recapitulate hallmark features of the disease. We investigated whether disease symptoms can be ameliorated by co-opting the retrograde signaling pathway that promotes attachment of nerve terminals to muscle. We crossed SOD1G93A mice with transgenic mice that express MuSK, a receptor tyrosine kinase that is required for retrograde signaling, and we used histological and behavioral assays to assess motor innervation and behavior. A 3-fold increase in MuSK expression delayed the onset and reduced the extent of muscle denervation, improving motor function for more than a month without altering survival. These findings suggest that increasing MuSK activity by pharmacological means has the potential to improve motor function in ALS.

  5. Body side-specific control of motor activity during turning in a walking animal

    PubMed Central

    Gruhn, Matthias; Rosenbaum, Philipp; Bockemühl, Till; Büschges, Ansgar

    2016-01-01

    Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task. DOI: http://dx.doi.org/10.7554/eLife.13799.001 PMID:27130731

  6. Motor activity as an unbiased variable to assess anaphylaxis in allergic rats

    PubMed Central

    Abril-Gil, Mar; Garcia-Just, Alba; Cambras, Trinitat; Pérez-Cano, Francisco J; Castellote, Cristina; Franch, Àngels

    2015-01-01

    The release of mediators by mast cells triggers allergic symptoms involving various physiological systems and, in the most severe cases, the development of anaphylactic shock compromising mainly the nervous and cardiovascular systems. We aimed to establish variables to objectively study the anaphylactic response (AR) after an oral challenge in an allergy model. Brown Norway rats were immunized by intraperitoneal injection of ovalbumin with alum and toxin from Bordetella pertussis. Specific immunoglobulin (Ig) E antibodies were developed in immunized animals. Forty days after immunization, the rats were orally challenged with the allergen, and motor activity, body temperature and serum mast cell protease concentration were determined. The anaphylaxis induced a reduction in body temperature and a decrease in the number of animal movements, which was inversely correlated with serum mast cell protease release. In summary, motor activity is a reliable tool for assessing AR and also an unbiased method for screening new anti-allergic drugs. PMID:25716015

  7. Motor activity as an unbiased variable to assess anaphylaxis in allergic rats.

    PubMed

    Abril-Gil, Mar; Garcia-Just, Alba; Cambras, Trinitat; Pérez-Cano, Francisco J; Castellote, Cristina; Franch, Àngels; Castell, Margarida

    2015-10-01

    The release of mediators by mast cells triggers allergic symptoms involving various physiological systems and, in the most severe cases, the development of anaphylactic shock compromising mainly the nervous and cardiovascular systems. We aimed to establish variables to objectively study the anaphylactic response (AR) after an oral challenge in an allergy model. Brown Norway rats were immunized by intraperitoneal injection of ovalbumin with alum and toxin from Bordetella pertussis. Specific immunoglobulin (Ig) E antibodies were developed in immunized animals. Forty days after immunization, the rats were orally challenged with the allergen, and motor activity, body temperature and serum mast cell protease concentration were determined. The anaphylaxis induced a reduction in body temperature and a decrease in the number of animal movements, which was inversely correlated with serum mast cell protease release. In summary, motor activity is a reliable tool for assessing AR and also an unbiased method for screening new anti-allergic drugs.

  8. Factors Affecting Psychosocial and Motor Development in 3-Year-Old Children Who Are Deaf or Hard of Hearing.

    PubMed

    Leigh, Greg; Ching, Teresa Y C; Crowe, Kathryn; Cupples, Linda; Marnane, Vivienne; Seeto, Mark

    2015-10-01

    Previous research has shown an association between children's development of psychosocial and motor skills. This study evaluated the development of these skills in 301 three-year-old deaf and hard of hearing children (M: 37.8 months) and considered a range of possible predictors including gender, birth weight, age at first fitting with hearing devices, hearing device used, presence of additional disabilities, severity of hearing loss, maternal education, socio-economic status (SES), language ability, and communication mode. Caregivers reported on children's development using the Child Development Inventory (CDI). On average, both psychosocial and motor development quotients were within the typical range for hearing children, with large individual differences. There was a positive correlation between language ability and both social and motor development, and also between social and motor development. Age at first fitting of hearing aids (as an indicator of age at identification of hearing loss), SES, degree of hearing loss, and maternal education were not significant predictors of social skill or motor development, whereas presence of additional disabilities and birth weight were. Girls performed better than boys on all but the Gross Motor subscale of the CDI. Children with hearing aids tended to perform better than those with cochlear implants on the Gross Motor subscale.

  9. Factors Affecting Psychosocial and Motor Development in 3-Year-Old Children Who Are Deaf or Hard of Hearing

    PubMed Central

    Leigh, Greg; Ching, Teresa Y. C.; Crowe, Kathryn; Cupples, Linda; Marnane, Vivienne; Seeto, Mark

    2015-01-01

    Previous research has shown an association between children’s development of psychosocial and motor skills. This study evaluated the development of these skills in 301 three-year-old deaf and hard of hearing children (M: 37.8 months) and considered a range of possible predictors including gender, birth weight, age at first fitting with hearing devices, hearing device used, presence of additional disabilities, severity of hearing loss, maternal education, socio-economic status (SES), language ability, and communication mode. Caregivers reported on children’s development using the Child Development Inventory (CDI). On average, both psychosocial and motor development quotients were within the typical range for hearing children, with large individual differences. There was a positive correlation between language ability and both social and motor development, and also between social and motor development. Age at first fitting of hearing aids (as an indicator of age at identification of hearing loss), SES, degree of hearing loss, and maternal education were not significant predictors of social skill or motor development, whereas presence of additional disabilities and birth weight were. Girls performed better than boys on all but the Gross Motor subscale of the CDI. Children with hearing aids tended to perform better than those with cochlear implants on the Gross Motor subscale. PMID:26209447

  10. Automatic and imperative motor activations in stimulus-response compatibility: magnetoencephalographic analysis of upper and lower limbs.

    PubMed

    Kato, Yuichiro; Endo, Hiroshi; Kizuka, Tomohiro; Asami, Takaaki

    2006-01-01

    The stimulus-response (S-R) compatibility effect refers to the difference in performance due to the spatial S-R relationship in choice reaction time. We investigated the mechanism of neural activities in S-R compatibility at the level of the primary motor cortices for upper and lower limbs responses using magnetoencephalography (MEG). In the S-R compatible task, subjects were required to respond on the same side of the stimulus light using either an upper or lower limb. In the incompatible task, subjects were required to respond in the reverse manner. Premotor times of upper and lower limbs were faster for the compatible response than for the incompatible response. The neuromagnetic brain activities related to response execution were estimated using a multi-dipole model. Stimulus-locked MEG indicated that the current moments of motor dipoles for both effectors occurred bilaterally and reached the first peak at a constant delay irrespective of whether the task was compatible or incompatible. This indicates that the neural activation of the primary motor cortex is automatically synchronized with the stimulus onset. Response-locked MEG showed that the peak current moment of the motor dipole contralateral to the response was stronger for the compatible task than for the incompatible one regardless of whether the responses were made using the upper or lower limbs. The MEG results suggest that automatic motor activation facilitates imperative motor activation for a compatible response, whereas it is not sufficient to prime imperative motor activation for an incompatible response.

  11. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study.

    PubMed

    Popescu, Mihai; Otsuka, Asuka; Ioannides, Andreas A

    2004-04-01

    There are formidable problems in studying how 'real' music engages the brain over wide ranges of temporal scales extending from milliseconds to a lifetime. In this work, we recorded the magnetoencephalographic signal while subjects listened to music as it unfolded over long periods of time (seconds), and we developed and applied methods to correlate the time course of the regional brain activations with the dynamic aspects of the musical sound. We showed that frontal areas generally respond with slow time constants to the music, reflecting their more integrative mode; motor-related areas showed transient-mode responses to fine temporal scale structures of the sound. The study combined novel analysis techniques designed to capture and quantify fine temporal sequencing from the authentic musical piece (characterized by a clearly defined rhythm and melodic structure) with the extraction of relevant features from the dynamics of the regional brain activations. The results demonstrated that activity in motor-related structures, specifically in lateral premotor areas, supplementary motor areas, and somatomotor areas, correlated with measures of rhythmicity derived from the music. These correlations showed distinct laterality depending on how the musical performance deviated from the strict tempo of the music score, that is, depending on the musical expression.

  12. Action semantic knowledge about objects is supported by functional motor activation.

    PubMed

    van Elk, Michiel; van Schie, Hein T; Bekkering, Harold

    2009-08-01

    The present study assessed the functional organization of action semantics by asking subjects to categorize pictures of an actor holding objects with a correct or incorrect grip at either a correct or incorrect goal location. Overall, reaction times were slower if the object was presented with an inappropriate posture, and this effect was stronger for goal violations compared with grip violations (Experiment 1). In addition, the retrieval of action semantics was found accompanied by the implicit activation of motor representations. Body-related objects (e.g., cup) were classified faster when a movement toward the subject's body was required, whereas world-related objects (e.g., pincers) were responded to faster with a movement in the opposite direction (Experiments 2 and 3). In contrast, when subjects were required to retrieve only visual semantics (Experiment 4), no interference effects of postural information were observed, and motor representations were only partially activated. These findings suggest that action semantics can be accessed independently from visual semantics and that the retrieval of action semantics is supported by functional motor activation reflecting the prototypical use of an object.

  13. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia*

    PubMed Central

    Kim, Sung-Phil; Simeral, John D; Hochberg, Leigh R; Donoghue, John P; Black, Michael J

    2010-01-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. PMID:19015583

  14. Modulation of the inter-hemispheric asymmetry of motor-related brain activity using brain-computer interfaces.

    PubMed

    Pereira, Michael; Sobolewski, Aleksander; Millan, Jose Del R

    2015-01-01

    Non-invasive brain stimulation has shown promising results in neurorehabilitation for motor-impaired stroke patients, by rebalancing the relative involvement of each hemisphere in movement generation. Similarly, brain-computer interfaces have been used to successfully facilitate movement-related brain activity spared by the infarct. We propose to merge both approaches by using BCI to train stroke patients to rebalance their motor-related brain activity during motor tasks, through the use of online feedback. In this pilot study, we report results showing that some healthy subjects were able to learn to spontaneously up- and/or down-regulate their ipsilateral brain activity during a single session.

  15. UCS protein Rng3p is essential for myosin-II motor activity during cytokinesis in fission yeast.

    PubMed

    Stark, Benjamin C; James, Michael L; Pollard, Luther W; Sirotkin, Vladimir; Lord, Matthew

    2013-01-01

    UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.

  16. Shuttle Rocket Motor Program: NASA should delay awarding some construction contracts. Report to the Chair, Subcommittee on Government Activities and Transportation, Committee on Government Operations, House of Representatives

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Even though the executive branch has proposed terminating the Advanced Solid Rocket Motor (ASRM) program, NASA is proceeding with all construction activity planned for FY 1992 to avoid schedule slippage if the program is reinstated by Congress. However, NASA could delay some construction activities for at least a few months without affecting the current launch data schedule. For example, NASA could delay Yellow Creek's motor storage and dock projects, Stennis' dock project, and Kennedy's rotation processing and surge facility and dock projects. Starting all construction activities as originally planned could result in unnecessarily incurring additional costs and termination liability if the funding for FY 1993 is not provided. If Congress decides to continue the program, construction could still be completed in time to avoid schedule slippage.

  17. Cortical oscillatory activity and the induction of plasticity in the human motor cortex.

    PubMed

    McAllister, Suzanne M; Rothwell, John C; Ridding, Michael C

    2011-05-01

    Repetitive transcranial magnetic stimulation paradigms such as continuous theta burst stimulation (cTBS) induce long-term potentiation- and long-term depression-like plasticity in the human motor cortex. However, responses to cTBS are highly variable and may depend on the activity of the cortex at the time of stimulation. We investigated whether power in different electroencephalogram (EEG) frequency bands predicted the response to subsequent cTBS, and conversely whether cTBS had after-effects on the EEG. cTBS may utilize similar mechanisms of plasticity to motor learning; thus, we conducted a parallel set of experiments to test whether ongoing electroencephalography could predict performance of a visuomotor training task, and whether training itself had effects on the EEG. Motor evoked potentials (MEPs) provided an index of cortical excitability pre- and post-intervention. The EEG was recorded over the motor cortex pre- and post-intervention, and power spectra were computed. cTBS reduced MEP amplitudes; however, baseline power in the delta, theta, alpha or beta frequencies did not predict responses to cTBS or learning of the visuomotor training task. cTBS had no effect on delta, theta, alpha or beta power. In contrast, there was an increase in alpha power following visuomotor training that was positively correlated with changes in MEP amplitude post-training. The results suggest that the EEG is not a useful state-marker for predicting responses to plasticity-inducing paradigms. The correlation between alpha power and changes in corticospinal excitability following visuomotor training requires further investigation, but may be related to disengagement of the somatosensory system important for motor memory consolidation. PMID:21488985

  18. Phorbol esters and adenosine affect the readily releasable neurotransmitter pool by different mechanisms at amphibian motor nerve endings.

    PubMed

    Searl, T J; Silinsky, E M

    2003-12-01

    Phorbol esters and adenosine have been proposed to interact at common sites downstream of calcium entry at amphibian motor nerve endings. We thus studied the actions and interactions of phorbol esters and adenosine using electrophysiological recording techniques in conjunction with both binomial statistical analysis and high-frequency stimulation at the amphibian neuromuscular junction. To begin this study, we confirmed previous observations that synchronous evoked acetylcholine (ACh) release (reflected as endplate potentials, EPPs) is well described by a simple binomial distribution. We then used binomial analysis to study the effects of the phorbol ester phorbol dibutyrate (PDBu, 100 nM) and adenosine (50 microM) on the binomial parameters n (the number of calcium charged ACh quanta available for release) and p (the average probability of release), where the mean level of evoked ACh release (m) = np. We found that PDBu increased m by increasing the parameter n whilst adenosine reduced m by reducing n; neither agent affected the parameter p. PDBu had no effect on either the potency or efficacy of the inhibition produced by adenosine. Subtle differences between these two agents were revealed by the patterns of EPPs evoked by high-frequency trains of stimuli. Phorbol esters increased ACh release during the early phase of stimulation but not during the subsequent plateau phase. The inhibitory effect of adenosine was maximal at the beginning of the train and was still present with reduced efficacy during the plateau phase. When taken together with previous findings, these present results suggest that phorbol esters increase the immediately available store of synaptic vesicles by increasing the number of primed vesicles whilst adenosine acts at a later stage of the secretory process to decrease the number of calcium-charged primed vesicles.

  19. Frequency of climbing behavior as a predictor of altered motor activity in rat forced swimming test.

    PubMed

    Vieira, Cíntia; De Lima, Thereza C M; Carobrez, Antonio de Pádua; Lino-de-Oliveira, Cilene

    2008-11-14

    Previous work has shown that the frequency of climbing behavior in rats submitted to the forced swimming test (FST) correlated to the section's crosses in the open field test, which suggest it might be taken as a predictor of motor activity in rat FST. To investigate this proposal, the frequency, duration, as well as the ratio duration/frequency for each behavior expressed in the FST (immobility, swimming and climbing) were compared in animals treated with a motor stimulant, caffeine (CAF), and the antidepressant, clomipramine (CLM). Male Wistar rats were submitted to 15min of forced swimming (pre-test) and 24h later received saline (SAL, 1ml/kg, i.p.) or CAF (6.5mg/kg, i.p.) 30min prior a 5-min session (test) of FST. To validate experimental procedures, an additional group of rats received three injections of SAL (1ml/kg, i.p.) or clomipramine (CLM, 10mg/kg, i.p.) between the pre-test and test sessions. The results of the present study showed that both drugs, CLM and CAF, significantly reduced the duration of immobility and significantly increased the duration of swimming. In addition, CAF significantly decreased the ratio of immobility, and CLM significantly increased the ratio of swimming and climbing. Moreover, CLM significantly increased the duration of climbing but only CAF increased the frequency of climbing. Thus, it seems that the frequency of climbing could be a predictor of altered motor activity scored directly in the FST. Further, we believe that this parameter could be useful for fast and reliable discrimination between antidepressant drugs and stimulants of motor activity.

  20. How does the anthropogenic activity affect the spring discharge?

    NASA Astrophysics Data System (ADS)

    Hao, Yonghong; Zhang, Juan; Wang, Jiaojiao; Li, Ruifang; Hao, Pengmei; Zhan, Hongbin

    2016-09-01

    Karst hydrological process has largely been altered by climate change and human activity. In many places throughout the world, human activity (e.g. groundwater pumping and dewatering from mining) has intensified and surpassed climate change, where human activity becomes the primary factor that affects groundwater system. But it is still largely unclear how the human activity affects spring discharge in magnitude and periodicity. This study investigates the effects of anthropogenic activity on spring discharge, using the Xin'an Springs of China as an example. The Xin'an Spring discharge were divided into two time periods: the pre-development period from 1956 to 1971 and the post-development period from 1972 to 2013. We confirm the dividing time (i.e. 1971) of these two periods using the Wilcoxon rank-sum test. Then the wavelet transform and wavelet coherence were used to analyze the karst hydrological processes for the two periods respectively. We analyze the correlations of precipitation and the Xin'an spring discharge with the monsoons including the Indian Summer Monsoon (ISM) and the West North Pacific Monsoon (WNPM) and the climate teleconnections including El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), respectively. The results indicated that the spring discharge was attenuated about 19.63% under the influence of human activity in the Xin'an Springs basin. However, human activity did not alter the size of the resonance frequencies between the spring discharge and the monsoons. In contrast, it reinforced the periodicities of the monsoons-driven spring discharge. It suggested that human has adapted to the major climate periodicities, and human activity had the same rhyme with the primary climate periodicity. In return, human activity enhances the correlation between the monsoons and the spring discharge.

  1. Multiple types of control by identified interneurons in a sensory-activated rhythmic motor pattern.

    PubMed

    Kemenes, G; Staras, K; Benjamin, P R

    2001-04-15

    Modulatory interneurons that can drive central pattern generators (CPGs) are considered as good candidates for decision-making roles in rhythmic behaviors. Although the mechanisms by which such neurons activate their target CPGs are known in detail in many systems, their role in the sensory activation of CPG-driven behaviors is poorly understood. In the feeding system of the mollusc Lymnaea, one of the best-studied rhythmical networks, intracellular stimulation of either of two types of neuron, the cerebral ventral 1a (CV1a) and the slow oscillator (SO) cells, leads to robust CPG-driven fictive feeding patterns, suggesting that they might make an important contribution to natural food-activated behavior. In this paper we investigated this contribution using a lip-CNS preparation in which feeding was elicited with a natural chemostimulant rather than intracellular stimulation. We found that despite their CPG-driving capabilities, neither CV1a nor SO were involved in the initial activation of sucrose-evoked fictive feeding, whereas a CPG interneuron, N1M, was active first in almost all preparations. Instead, the two interneurons play important and distinct roles in determining the characteristics of the rhythmic motor output; CV1a by modulating motoneuron burst duration and SO by setting the frequency of the ongoing rhythm. This is an example of a distributed system in which (1) interneurons that drive similar motor patterns when activated artificially contribute differently to the shaping of the motor output when it is evoked by the relevant sensory input, and (2) a CPG rather than a modulatory interneuron type plays the most critical role in initiation of sensory-evoked rhythmic activity.

  2. Body stability and muscle and motor cortex activity during walking with wide stance

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Beloozerova, Irina N.; Sirota, Mikhail G.

    2014-01-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  3. Body stability and muscle and motor cortex activity during walking with wide stance.

    PubMed

    Farrell, Brad J; Bulgakova, Margarita A; Beloozerova, Irina N; Sirota, Mikhail G; Prilutsky, Boris I

    2014-08-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion.

  4. Differential effect of central command on aortic and carotid sinus baroreceptor-heart rate reflexes at the onset of spontaneous, fictive motor activity.

    PubMed

    Matsukawa, Kanji; Ishii, Kei; Kadowaki, Akito; Liang, Nan; Ishida, Tomoko

    2012-08-15

    Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in conscious cats and spontaneous contraction in decerebrate cats. The purpose of this study was to examine whether central command attenuates the sensitivity of the carotid sinus baroreceptor-HR reflex at the onset of spontaneous, fictive motor activity in paralyzed, decerebrate cats. We confirmed that aortic nerve (AN)-stimulation-induced bradycardia was markedly blunted to 26 ± 4.4% of the control (21 ± 1.3 beats/min) at the onset of spontaneous motor activity. Although the baroreflex bradycardia by electrical stimulation of the carotid sinus nerve (CSN) was suppressed (P < 0.05) to 86 ± 5.6% of the control (38 ± 1.2 beats/min), the inhibitory effect of spontaneous motor activity was much weaker (P < 0.05) with CSN stimulation than with AN stimulation. The baroreflex bradycardia elicited by brief occlusion of the abdominal aorta was blunted to 36% of the control (36 ± 1.6 beats/min) during spontaneous motor activity, suggesting that central command is able to inhibit the cardiomotor sensitivity of arterial baroreflexes as the net effect. Mechanical stretch of the triceps surae muscle never affected the baroreflex bradycardia elicited by AN or CSN stimulation and by aortic occlusion, suggesting that muscle mechanoreflex did not modify the cardiomotor sensitivity of aortic and carotid sinus baroreflex. Since the inhibitory effect of central command on the carotid baroreflex pathway, associated with spontaneous motor activity, was much weaker compared with the aortic baroreflex pathway, it is concluded that central command does not force a generalized modulation on the whole pathways of arterial baroreflexes but provides selective inhibition for the cardiomotor component of the aortic baroreflex.

  5. Motile properties of the bi-directional kinesin-5 Cin8 are affected by phosphorylation in its motor domain

    PubMed Central

    Shapira, Ofer; Gheber, Larisa

    2016-01-01

    The Saccharomyces cerevisiae kinesin-5 Cin8 performs essential mitotic functions in spindle assembly and anaphase B spindle elongation. Recent work has shown that Cin8 is a bi-directional motor which moves towards the minus-end of microtubules (MTs) under high ionic strength (IS) conditions and changes directionality in low IS conditions and when bound between anti-parallel microtubules. Previous work from our laboratory has also indicated that Cin8 is differentially phosphorylated during late anaphase at cyclin-dependent kinase 1 (Cdk1)-specific sites located in its motor domain. In vivo, such phosphorylation causes Cin8 detachment from spindles and reduces the spindle elongation rate, while maintaining proper spindle morphology. To study the effect of phosphorylation on Cin8 motor function, we examined in vitro motile properties of wild type Cin8, as well as its phosphorylation using phospho-deficient and phospho-mimic variants, in a single molecule fluorescence motility assay. Analysis was performed on whole cell extracts and on purified Cin8 samples. We found that addition of negative charges in the phospho-mimic mutant weakened the MT-motor interaction, increased motor velocity and promoted minus-end-directed motility. These results indicate that phosphorylation in the catalytic domain of Cin8 regulates its motor function. PMID:27216310

  6. Motile properties of the bi-directional kinesin-5 Cin8 are affected by phosphorylation in its motor domain.

    PubMed

    Shapira, Ofer; Gheber, Larisa

    2016-01-01

    The Saccharomyces cerevisiae kinesin-5 Cin8 performs essential mitotic functions in spindle assembly and anaphase B spindle elongation. Recent work has shown that Cin8 is a bi-directional motor which moves towards the minus-end of microtubules (MTs) under high ionic strength (IS) conditions and changes directionality in low IS conditions and when bound between anti-parallel microtubules. Previous work from our laboratory has also indicated that Cin8 is differentially phosphorylated during late anaphase at cyclin-dependent kinase 1 (Cdk1)-specific sites located in its motor domain. In vivo, such phosphorylation causes Cin8 detachment from spindles and reduces the spindle elongation rate, while maintaining proper spindle morphology. To study the effect of phosphorylation on Cin8 motor function, we examined in vitro motile properties of wild type Cin8, as well as its phosphorylation using phospho-deficient and phospho-mimic variants, in a single molecule fluorescence motility assay. Analysis was performed on whole cell extracts and on purified Cin8 samples. We found that addition of negative charges in the phospho-mimic mutant weakened the MT-motor interaction, increased motor velocity and promoted minus-end-directed motility. These results indicate that phosphorylation in the catalytic domain of Cin8 regulates its motor function. PMID:27216310

  7. Assessing upper extremity motor function in practice of virtual activities of daily living.

    PubMed

    Adams, Richard J; Lichter, Matthew D; Krepkovich, Eileen T; Ellington, Allison; White, Marga; Diamond, Paul T

    2015-03-01

    A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user's avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman's rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs.

  8. Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity.

    PubMed

    Ito, Kohji; Kashiyama, Taku; Shimada, Kiyo; Yamaguchi, Akira; Awata, Jun ya; Hachikubo, You; Manstein, Dietmar J; Yamamoto, Keiichi

    2003-12-26

    The mechanism and structural features that are responsible for the fast motility of Chara corallina myosin (CCM) have not been elucidated, so far. The low yields of native CCM that can be purified to homogeneity were the major reason for this. Here, we describe the expression of recombinant CCM motor domains, which support the fast movement of actin filaments in an in vitro motility assay. A CCM motor domain without light chain binding site moved actin filaments at a velocity of 8.8 microm/s at 30 degrees C and a CCM motor domain with an artificial lever arm consisting of two alpha-actinin repeats moved actin filaments at 16.2 microm/s. Both constructs displayed high actin-activated ATPase activities ( approximately 500 Pi/s/head), which is indicative of a very fast hydrolysis step. Our results provide an excellent system to dissect the specific structural and functional features that distinguish the myosin responsible for fast cytoplasmic streaming.

  9. Assessing upper extremity motor function in practice of virtual activities of daily living.

    PubMed

    Adams, Richard J; Lichter, Matthew D; Krepkovich, Eileen T; Ellington, Allison; White, Marga; Diamond, Paul T

    2015-03-01

    A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user's avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman's rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs. PMID:25265612

  10. The neurophysiology of response competition: motor cortex activation and inhibition following subliminal response priming.

    PubMed

    Praamstra, Peter; Seiss, Ellen

    2005-03-01

    Some widely used tasks in cognitive neuroscience depend on the induction of a response conflict between choice alternatives, involving partial activation of the incorrect response before the correct response is emitted. Although such ''conflict tasks'' are often used to investigate frontal-lobe-based conflict-monitoring processes, it is not known how response competition evolves in the motor cortex. To investigate the dynamics of motor cortex activation during response competition, we used a subliminal priming task that induced response competition while bypassing pre-response stage processing conflict. Analyses of movement-related EEG potentials supported an interaction between competing responses characterized by reciprocal inhibition. Inhibitory interactions between response channels contribute to the resolution of response conflict. However, the reciprocal inhibition at motor cortex level seemed to operate independent of higher level conflict-monitoring processes, which were relatively insensitive to response conflict induced by subliminal priming. These results elucidate how response conflict causes interference as well as the conditions under which frontal-lobe-based interference control processes are engaged.

  11. Examination of Hand Muscle Activation and Motor Unit Indices Derived from Surface EMG in Chronic Stroke

    PubMed Central

    Li, Xiaoyan; Liu, Jie; Li, Sheng; Wang, Ying-Chih

    2014-01-01

    In this study, we used muscle and motor unit indices, derived from convenient surface electromyography (EMG) measurements, for examination of paretic muscle changes post stroke. For 12 stroke subjects, compound muscle action potential and voluntary surface EMG signals were recorded from paretic and contralateral first dorsal interosseous, abductor pollicis brevis, and abductor digiti minimi muscles. Muscle activation index (AI), motor unit number index (MUNIX), and motor unit size index (MUSIX) were then calculated for each muscle. There was a significant AI reduction for all the three muscles in paretic side compared with contralateral side, providing an evidence of muscle activation deficiency after stroke. The hand MUNIX (defined by summing the values from the three muscles) was significantly reduced in paretic side compared with contralateral side, whereas the hand MUSIX was not significantly different. Furthermore, diverse changes in MUNIX and MUSIX were observed from the three muscles. A major feature of the present examinations is the primary reliance on surface EMG, which offers practical benefits because it is noninvasive, induces minimal discomfort and can be performed quickly. PMID:24967982

  12. Abnormal Motor Activity and Thermoregulation in a Schizophrenia Rat Model for Translational Science

    PubMed Central

    2015-01-01

    Background Schizophrenia is accompanied by altered motor activity and abnormal thermoregulation; therefore, the presence of these symptoms can enhance the face validity of a schizophrenia animal model. The goal was to characterize these parameters in freely moving condition of a new substrain of rats showing several schizophrenia-related alterations. Methods Male Wistar rats were used: the new substrain housed individually (for four weeks) and treated subchronically with ketamine, and naive animals without any manipulations. Adult animals were implanted with E-Mitter transponders intraabdominally to record body temperature and locomotor activity continuously. The circadian rhythm of these parameters and the acute effects of changes in light conditions were analyzed under undisturbed circumstances, and the effects of different interventions (handling, bed changing or intraperitoneal vehicle injection) were also determined. Results Decreased motor activity with fragmented pattern was observed in the new substrain. However, these animals had higher body temperature during the active phase, and they showed wider range of its alterations, too. The changes in light conditions and different interventions produced blunted hyperactivity and altered body temperature responses in the new substrain. Poincaré plot analysis of body temperature revealed enhanced short- and long-term variabilities during the active phase compared to the inactive phase in both groups. Furthermore, the new substrain showed increased short- and long-term variabilities with lower degree of asymmetry suggesting autonomic dysregulation. Conclusions In summary, the new substrain with schizophrenia-related phenomena showed disturbed motor activity and thermoregulation suggesting that these objectively determined parameters can be biomarkers in translational research. PMID:26629908

  13. Microtubule-dependent control of cell shape and pseudopodial activity is inhibited by the antibody to kinesin motor domain

    PubMed Central

    1993-01-01

    One of the major functions of cytoplasmic microtubules is their involvement in maintenance of asymmetric cell shape. Microtubules were considered to perform this function working as rigid structural elements. At the same time, microtubules play a critical role in intracellular organelle transport, and this fact raises the possibility that the involvement of microtubules in maintenance of cell shape may be mediated by directed transport of certain cellular components to a limited area of the cell surface (e.g., to the leading edge) rather than by their functioning as a mechanical support. To test this hypothesis we microinjected cultured human fibroblasts with the antibody (called HD antibody) raised against kinesin motor domain highly conserved among the different members of kinesin superfamily. As was shown before this antibody inhibits kinesin-dependent microtubule gliding in vitro and interferes with a number of microtubule-dependent transport processes in living cells. Preimmune IgG fraction was used for control experiments. Injections of fibroblasts with HD antibody but not with preimmune IgG significantly reduced their asymmetry, resulting in loss of long processes and elongated cell shape. In addition, antibody injection suppressed pseudopodial activity at the leading edge of fibroblasts moving into an experimentally made wound. Analysis of membrane organelle distribution showed that kinesin antibody induced clustering of mitochondria in perinuclear region and their withdrawal from peripheral parts of the cytoplasm. HD antibody does not affect either density or distribution of cytoplasmic microtubules. The results of our experiments show that many changes of phenotype induced in cells by microtubule-depolymerizing agents can be mimicked by the inhibition of motor proteins, and therefore microtubule functions in maintaining of the cell shape and polarity are mediated by motor proteins rather than by being provided by rigidity of tubulin polymer itself. PMID

  14. Factors affecting athletes’ motor behavior after the observation of scenes of cooperation and competition in competitive sport: the effect of sport attitude

    PubMed Central

    Stefani, Elisa De; De Marco, Doriana; Gentilucci, Maurizio

    2015-01-01

    Aim: This study delineated how observing sports scenes of cooperation or competition modulated an action of interaction, in expert athletes, depending on their specific sport attitude. Method: In a kinematic study, athletes were divided into two groups depending on their attitude toward teammates (cooperative or competitive). Participants observed sport scenes of cooperation and competition (basketball, soccer, water polo, volleyball, and rugby) and then they reached for, picked up, and placed an object on the hand of a conspecific (giving action). Mixed-design ANOVAs were carried out on the mean values of grasping-reaching parameters. Results: Data showed that the type of scene observed as well as the athletes’ attitude affected reach-to-grasp actions to give. In particular, the cooperative athletes were speeded when they observed scenes of cooperation compared to when they observed scenes of competition. Discussion: Participants were speeded when executing a giving action after observing actions of cooperation. This occurred only when they had a cooperative attitude. A match between attitude and intended action seems to be a necessary prerequisite for observing an effect of the observed type of scene on the performed action. It is possible that the observation of scenes of competition activated motor strategies which interfered with the strategies adopted by the cooperative participants to execute a cooperative (giving) sequence. PMID:26579031

  15. Laterality of brain activity during motor imagery is modulated by the provision of source level neurofeedback.

    PubMed

    Boe, Shaun; Gionfriddo, Alicia; Kraeutner, Sarah; Tremblay, Antoine; Little, Graham; Bardouille, Timothy

    2014-11-01

    Motor imagery (MI) may be effective as an adjunct to physical practice for motor skill acquisition. For example, MI is emerging as an effective treatment in stroke neurorehabilitation. As in physical practice, the repetitive activation of neural pathways during MI can drive short- and long-term brain changes that underlie functional recovery. However, the lack of feedback about MI performance may be a factor limiting its effectiveness. The provision of feedback about MI-related brain activity may overcome this limitation by providing the opportunity for individuals to monitor their own performance of this endogenous process. We completed a controlled study to isolate neurofeedback as the factor driving changes in MI-related brain activity across repeated sessions. Eighteen healthy participants took part in 3 sessions comprised of both actual and imagined performance of a button press task. During MI, participants in the neurofeedback group received source level feedback based on activity from the left and right sensorimotor cortex obtained using magnetoencephalography. Participants in the control group received no neurofeedback. MI-related brain activity increased in the sensorimotor cortex contralateral to the imagined movement across sessions in the neurofeedback group, but not in controls. Task performance improved across sessions but did not differ between groups. Our results indicate that the provision of neurofeedback during MI allows healthy individuals to modulate regional brain activity. This finding has the potential to improve the effectiveness of MI as a tool in neurorehabilitation.

  16. Calorigenic effect of adrenaline in rats under conditions of restricted motor activity

    NASA Technical Reports Server (NTRS)

    Tomaszewska, L.; Kaciuba-Uscilko, H.; Kozlowski, S.

    1980-01-01

    In previous studies, it was demonstrated that long term restricted motor activity in rats induces a decrease in body weight, an increase in release of adrenaline, and a decrease in the release of noradrenaline with the urine, as well as a reduction in activity of the thymus gland and level of thyroxin in the blood. At the same time, a decrease was found in the internal body temperature that was accompanied by an increase in the rate of metabolism in the state of rest. An investigation is presented which attempts to clarify whether the calorigenic effect of adrenaline under conditions of increased metabolism in the period of immobility is exposed to changes.

  17. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures

    PubMed Central

    Sohn, M. Hongchul; Ting, Lena H.

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  18. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  19. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo

    PubMed Central

    Ward, Patricia J.; Jones, Laura N.; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C.; English, Arthur W.

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  20. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    PubMed

    Ward, Patricia J; Jones, Laura N; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C; English, Arthur W

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  1. Action sentences activate sensory motor regions in the brain independently of their status of reality.

    PubMed

    de Vega, Manuel; León, Inmaculada; Hernández, Juan A; Valdés, Mitchell; Padrón, Iván; Ferstl, Evelyn C

    2014-07-01

    Some studies have reported that understanding concrete action-related words and sentences elicits activations of motor areas in the brain. The present fMRI study goes one step further by testing whether this is also the case for comprehension of nonfactual statements. Three linguistic structures were used (factuals, counterfactuals, and negations), referring either to actions or, as a control condition, to visual events. The results showed that action sentences elicited stronger activations than visual sentences in the SMA, extending to the primary motor area, as well as in regions generally associated with the planning and understanding of actions (left superior temporal gyrus, left and right supramarginal gyri). Also, we found stronger activations for action sentences than for visual sentences in the extrastriate body area, a region involved in the visual processing of human body movements. These action-related effects occurred not only in factuals but also in negations and counterfactuals, suggesting that brain regions involved in action understanding and planning are activated by default even when the actions are described as hypothetical or as not happening. Moreover, some of these regions overlapped with those activated during the observation of action videos, indicating that the act of understanding action language and that of observing real actions share neural networks. These results support the claim that embodied representations of linguistic meaning are important even in abstract linguistic contexts.

  2. Substrate elasticity affects bovine satellite cell activation kinetics in vitro.

    PubMed

    Lapin, M R; Gonzalez, J M; Johnson, S E

    2013-05-01

    Satellite cells support efficient postnatal skeletal muscle hypertrophy through fusion into the adjacent muscle fiber. Nuclear contribution allows for maintenance of the fiber myonuclear domain and proficient transcription of myogenic genes. Niche growth factors affect satellite cell biology; however, the interplay between fiber elasticity and microenvironment proteins remains largely unknown. The objective of the experiment was to examine the effects of hepatocyte growth factor (HGF) and surface elasticity on bovine satellite cell (BSC) activation kinetics in vitro. Young's elastic modulus was calculated for the semimembranosus (SM) and LM muscles of young bulls (5 d; n = 8) and adult cows (27 mo; n = 4) cattle. Results indicate that LM elasticity decreased (P < 0.05) with age; no difference in Young's modulus for the SM was noted. Bovine satellite cells were seeded atop polyacrylamide bioscaffolds with surface elasticities that mimic young bull and adult cow LM or traditional cultureware. Cells were maintained in low-serum media supplemented with 5 ng/mL HGF or vehicle only for 24 or 48 h. Activation was evaluated by proliferating cell nuclear antigen (PCNA) immunocytochemistry. Results indicate that BSC maintained on rigid surfaces were activated at 24 h and refractive to HGF supplementation. By contrast, fewer (P < 0.05) BSC had exited quiescence after 24 h of culture on surfaces reflective of either young bull (8.1 ± 1.7 kPa) or adult cow (14.6 ± 1.6 kPa) LM. Supplementation with HGF promoted activation of BSC cultured on bioscaffolds as measured by an increase (P < 0.05) in PCNA immunopositive cells. Culture on pliant surfaces affected neither activation kinetics nor numbers of Paired box 7 (Pax7) immunopositive muscle stem cells (P > 0.05). However, with increasing surface elasticity, an increase (P < 0.05) in the numbers of muscle progenitors was observed. These results confirm that biophysical and biochemical signals regulate BSC activation.

  3. Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase.

    PubMed

    Smith, Abigail J; Szczelkun, Mark D; Savery, Nigel J

    2007-01-01

    Motor proteins that couple ATP hydrolysis to movement along nucleic acids play a variety of essential roles in DNA metabolism. Often these enzymes function as components of macromolecular complexes, and DNA translocation by the motor protein drives movement of other components of the complex. In order to understand how the activity of motor proteins is regulated within multi-protein complexes we have studied the bacterial transcription-repair coupling factor, Mfd, which is a helicase superfamily 2 member that binds to RNA polymerase (RNAP) and removes stalled transcription complexes from DNA. Using an oligonucleotide displacement assay that monitors protein movement on double-stranded DNA we show that Mfd has little motor activity in isolation, but exhibits efficient oligonucleotide displacement activity when bound to a stalled transcription complex. Deletion of the C-terminal domain of Mfd increases the ATPase activity of the protein and allows efficient oligo-displacement in the absence of RNAP. Our results suggest that an autoinhibitory domain ensures the motor activity of Mfd is only functional within the correct macromolecular context: recruitment of Mfd to a stalled transcription complex relieves the autoinhibition and unmasks the motor activity.

  4. Comparison of acute effects of heroin and Kerack on sensory and motor activity of honey bees (Apis mellifera)

    PubMed Central

    Hassanpour-Ezatti, Majid

    2015-01-01

    Objective(s): Previous studies demonstrated a functional similarity between vertebrate and honey bee nervous systems. The aim of the present study was to compare the effects of heroin and Iranian street Kerack, a combination of heroin and caffeine, on sensory threshold and locomotor activity in honey bees. Materials and Methods: All drugs were given orally to honey bees 30 min before each experiment. The levels of these drugs and their metabolites in brain samples of honey bees were determined by GC/MS. The sucrose sensitivity test was used for evaluation of changes in honey bees’ sensory threshold. Following the administration of both drugs, the honey bees’ locomotor activity changes were evaluated in open fields. Results: 6-acetylmorphine had a higher concentration in comparison with other heroin metabolites in honey bees’ brains. Concentration of the compound in the brain was directly proportional to the amount ingested. Heroin reduced the sensory threshold of honey bees, but Kerack increased it in the same doses. Locomotor activity of honey bee in open field was enhanced after the administration of both drugs. However, immobility time of honey bees was only affected by high doses of heroin. Conclusion: Acute effects of heroin andKerack on the sensory and motor functions of honey bees were different. Findings of this research suggest that these differences originated from the activation of different neurotransmitter systems by caffeine together with activation of opioid receptors by heroin. PMID:26019799

  5. Oscillatory cortical activity during a motor task in a deafferented patient.

    PubMed

    Patino, Luis; Chakarov, Vihren; Schulte-Mönting, Jürgen; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana

    2006-07-01

    Little is known about the influence of the afferent peripheral feedback on the sensorimotor cortex activation. To answer this open question we investigated the alpha and beta band task-related spectral power decreases (TRPow) in the deafferented patient G.L. and compared the results to those of six healthy subjects. The patient has been deafferented up to the nose for 24 years but her motor fibers are unaffected and she can perform complex motor tasks under visual control. We recorded EEG (58 scalp positions) as well as the exerted force during a visuomotor task. The subjects had to maintain in precision grip an isometric force at 15% of the maximal voluntary contraction. In the patient we found a significantly higher alpha band spectral power during rest and larger alpha TRPow decreases during the motor task when compared to the healthy subjects' data. In contrast, we did not observe any significant differences between patient and controls for the beta band TRPow. The results indicate an altered functional alpha band network state in the patient, probably due to the chronic deafferentation leading to a deep 'idling' state of the contralateral sensorimotor area.

  6. Sensory-motor system identification of active perception in ecologically valid environments

    NASA Astrophysics Data System (ADS)

    Abbott, William; Thomik, Andreas; Faisal, A. Aldo

    2015-03-01

    The brain is a dynamical system mapping sensory inputs to motor actions. This relationship has been widely characterised by reductionist controlled experiments. Here we present work moving out of the lab ``into the wild'' to capture, rather than constrain, sensory inputs and motor outputs, by recording 90% of sensory inputs using head mounted eye-tracking, scene camera and microphone as well as recording 95% of skeletal motor outputs by motion tracking 51 degrees of freedom in the body and a total of 40 degrees of freedom from the hands. We can thus begin to systematically characterise the perception-action loop through system identification. This enables use to evaluate classical relationships in ecologically valid settings and behaviours including 3 daily scenarios: breakfast in the kitchen, evening chores and activities and in-door ambulation . This level of data richness (97 DOF, 60Hz), coupled with the extensive recordings of natural perceptual and behavioural data (total > 30 hrs, 10 subjects) enables us to answer general questions of how lab tasks and protocols will produce systematically different results from those found in daily life.

  7. Longitudinal and transverse propagation of surface mechanomyographic waves generated by single motor unit activity.

    PubMed

    Cescon, Corrado; Madeleine, Pascal; Farina, Dario

    2008-09-01

    Multi-channel surface mechanomyographic (MMG) signals generated by individual motor units were analyzed to investigate whether the surface mechanical waves induced by fiber contraction propagate over the skin surface. The MMG signals were recorded from the tibialis anterior muscle of ten healthy subjects with 13 uniaxial accelerometers, located both along and transverse to the fiber direction. Intramuscular electromyographic signals served to identify individual motor units whose action potentials were used to trigger the averaging of the MMG signals. The spike-triggered averaged MMG had similar characteristics in locations along the longitudinal direction; however, its amplitude decreased along the transverse direction. Moreover, the time-to-positive peak increased along the transverse direction, indicating a transverse wave propagation with a velocity of 2.4 +/- 1.1 m/s in the linear direction. The results support the hypothesis that the MMG signal mainly originates from muscle fiber displacement underlining a bending mode due to contraction and provide the basis for interpreting the interference MMG in relation to motor unit activity.

  8. Differential Neural Processing during Motor Imagery of Daily Activities in Chronic Low Back Pain Patients

    PubMed Central

    Vrana, Andrea; Hotz-Boendermaker, Sabina; Stämpfli, Philipp; Hänggi, Jürgen; Seifritz, Erich; Humphreys, B. Kim; Meier, Michael L.

    2015-01-01

    Chronic low back pain (chronic LBP) is both debilitating for patients but also a major burden on the health care system. Previous studies reported various maladaptive structural and functional changes among chronic LBP patients on spine- and supraspinal levels including behavioral alterations. However, evidence for cortical reorganization in the sensorimotor system of chronic LBP patients is scarce. Motor Imagery (MI) is suitable for investigating the cortical sensorimotor network as it serves as a proxy for motor execution. Our aim was to investigate differential MI-driven cortical processing in chronic LBP compared to healthy controls (HC) by means of functional magnetic resonance imaging (fMRI). Twenty-nine subjects (15 chronic LBP patients, 14 HC) were included in the current study. MI stimuli consisted of randomly presented video clips showing every-day activities involving different whole-body movements as well as walking on even ground and walking downstairs and upstairs. Guided by the video clips, subjects had to perform MI of these activities, subsequently rating the vividness of their MI performance. Brain activity analysis revealed that chronic LBP patients exhibited significantly reduced activity compared to HC subjects in MI-related brain regions, namely the left supplementary motor area and right superior temporal sulcus. Furthermore, psycho-physiological-interaction analysis yielded significantly enhanced functional connectivity (FC) between various MI-associated brain regions in chronic LBP patients indicating diffuse and non-specific changes in FC. Current results demonstrate initial findings about differences in MI-driven cortical processing in chronic LBP pointing towards reorganization processes in the sensorimotor network. PMID:26569602

  9. Active, passive, and motor imagery paradigms: component analysis to assess neurovascular coupling.

    PubMed

    Salinet, Angela S M; Robinson, Thompson G; Panerai, Ronney B

    2013-05-15

    The association between neural activity and cerebral blood flow (CBF) has been used to assess neurovascular coupling (NVC) in health and diseases states, but little attention has been given to the contribution of simultaneous changes in peripheral covariates. We used an innovative approach to assess the contributions of arterial blood pressure (BP), PaCO2, and the stimulus itself to changes in CBF velocities (CBFv) during active (MA), passive (MP), and motor imagery (MI) paradigms. Continuous recordings of CBFv, beat-to-beat BP, heart rate, and breath-by-breath end-tidal CO2 (EtCO2) were performed in 17 right-handed subjects before, during, and after motor-cognitive paradigms performed with the right arm. A multivariate autoregressive-moving average model was used to calculate the separate contributions of BP, EtCO2, and the neural activation stimulus (represented by a metronome on-off signal) to the CBFv response during paradigms. Differences were found in the bilateral CBFv responses to MI compared with MA and MP, due to the contributions of stimulation (P < 0.05). BP was the dominant contributor to the initial peaked CBFv response in all paradigms with no significant differences between paradigms, while the contribution of the stimulus explained the plateau phase and extended duration of the CBFv responses. Separating the neural activation contribution from the influences of other covariates, it was possible to detect differences between three paradigms often used to assess disease-related NVC. Apparently similar CBFv responses to different motor-cognitive paradigms can be misleading due to the contributions from peripheral covariates and could lead to inaccurate assessment of NVC, particularly during MI.

  10. Longitudinal Changes in the Motor Learning-Related Brain Activation Response in Presymptomatic Huntington's Disease

    PubMed Central

    Holtbernd, Florian; Tang, Chris C.; Feigin, Andrew; Dhawan, Vijay; Ghilardi, Maria Felice; Paulsen, Jane S.; Guttman, Mark; Eidelberg, David

    2016-01-01

    Neurocognitive decline, including deficits in motor learning, occurs in the presymptomatic phase of Huntington’s disease (HD) and precedes the onset of motor symptoms. Findings from recent neuroimaging studies have linked these deficits to alterations in fronto-striatal and fronto-parietal brain networks. However, little is known about the temporal dynamics of these networks when subjects approach phenoconversion. Here, 10 subjects with presymptomatic HD were scanned with 15O-labeled water at baseline and again 1.5 years later while performing a motor sequence learning task and a kinematically matched control task. Spatial covariance analysis was utilized to characterize patterns of change in learning-related neural activation occurring over time in these individuals. Pattern expression was compared to corresponding values in 10 age-matched healthy control subjects. Spatial covariance analysis revealed significant longitudinal changes in the expression of a specific learning-related activation pattern characterized by increasing activity in the right orbitofrontal cortex, with concurrent reductions in the right medial prefrontal and posterior cingulate regions, the left insula, left precuneus, and left cerebellum. Changes in the expression of this pattern over time correlated with baseline measurements of disease burden and learning performance. The network changes were accompanied by modest improvement in learning performance that took place concurrently in the gene carriers. The presence of increased network activity in the setting of stable task performance is consistent with a discrete compensatory mechanism. The findings suggest that this effect is most pronounced in the late presymptomatic phase of HD, as subjects approach clinical onset. PMID:27192167

  11. Human motor cortical activity is selectively phase-entrained on underlying rhythms.

    PubMed

    Miller, Kai J; Hermes, Dora; Honey, Christopher J; Hebb, Adam O; Ramsey, Nick F; Knight, Robert T; Ojemann, Jeffrey G; Fetz, Eberhard E

    2012-01-01

    The functional significance of electrical rhythms in the mammalian brain remains uncertain. In the motor cortex, the 12-20 Hz beta rhythm is known to transiently decrease in amplitude during movement, and to be altered in many motor diseases. Here we show that the activity of neuronal populations is phase-coupled with the beta rhythm on rapid timescales, and describe how the strength of this relation changes with movement. To investigate the relationship of the beta rhythm to neuronal dynamics, we measured local cortical activity using arrays of subdural electrocorticographic (ECoG) electrodes in human patients performing simple movement tasks. In addition to rhythmic brain processes, ECoG potentials also reveal a spectrally broadband motif that reflects the aggregate neural population activity beneath each electrode. During movement, the amplitude of this broadband motif follows the dynamics of individual fingers, with somatotopically specific responses for different fingers at different sites on the pre-central gyrus. The 12-20 Hz beta rhythm, in contrast, is widespread as well as spatially coherent within sulcal boundaries and decreases in amplitude across the pre- and post-central gyri in a diffuse manner that is not finger-specific. We find that the amplitude of this broadband motif is entrained on the phase of the beta rhythm, as well as rhythms at other frequencies, in peri-central cortex during fixation. During finger movement, the beta phase-entrainment is diminished or eliminated. We suggest that the beta rhythm may be more than a resting rhythm, and that this entrainment may reflect a suppressive mechanism for actively gating motor function. PMID:22969416

  12. Differential Neural Processing during Motor Imagery of Daily Activities in Chronic Low Back Pain Patients.

    PubMed

    Vrana, Andrea; Hotz-Boendermaker, Sabina; Stämpfli, Philipp; Hänggi, Jürgen; Seifritz, Erich; Humphreys, B Kim; Meier, Michael L

    2015-01-01

    Chronic low back pain (chronic LBP) is both debilitating for patients but also a major burden on the health care system. Previous studies reported various maladaptive structural and functional changes among chronic LBP patients on spine- and supraspinal levels including behavioral alterations. However, evidence for cortical reorganization in the sensorimotor system of chronic LBP patients is scarce. Motor Imagery (MI) is suitable for investigating the cortical sensorimotor network as it serves as a proxy for motor execution. Our aim was to investigate differential MI-driven cortical processing in chronic LBP compared to healthy controls (HC) by means of functional magnetic resonance imaging (fMRI). Twenty-nine subjects (15 chronic LBP patients, 14 HC) were included in the current study. MI stimuli consisted of randomly presented video clips showing every-day activities involving different whole-body movements as well as walking on even ground and walking downstairs and upstairs. Guided by the video clips, subjects had to perform MI of these activities, subsequently rating the vividness of their MI performance. Brain activity analysis revealed that chronic LBP patients exhibited significantly reduced activity compared to HC subjects in MI-related brain regions, namely the left supplementary motor area and right superior temporal sulcus. Furthermore, psycho-physiological-interaction analysis yielded significantly enhanced functional connectivity (FC) between various MI-associated brain regions in chronic LBP patients indicating diffuse and non-specific changes in FC. Current results demonstrate initial findings about differences in MI-driven cortical processing in chronic LBP pointing towards reorganization processes in the sensorimotor network. PMID:26569602

  13. Environmental layout complexity affects neural activity during navigation in humans.

    PubMed

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation.

  14. Environmental layout complexity affects neural activity during navigation in humans.

    PubMed

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. PMID:26990572

  15. Spontaneous activity in electromyography may differentiate certain benign lower motor neuron disease forms from amyotrophic lateral sclerosis.

    PubMed

    Jokela, Manu E; Jääskeläinen, Satu K; Sandell, Satu; Palmio, Johanna; Penttilä, Sini; Saukkonen, Annamaija; Soikkeli, Raija; Udd, Bjarne

    2015-08-15

    There is limited data on electromyography (EMG) findings in other motor neuron disorders than amyotrophic lateral sclerosis (ALS). We assessed whether the distribution of active denervation detected by EMG, i.e. fibrillations and fasciculations, differs between ALS and slowly progressive motor neuron disorders. We compared the initial EMG findings of 43 clinically confirmed, consecutive ALS patients with those of 41 genetically confirmed Late-onset Spinal Motor Neuronopathy and 14 Spinal and Bulbar Muscular Atrophy patients. Spontaneous activity was more frequently detected in the first dorsal interosseus and deltoid muscles of ALS patients than in patients with the slowly progressive motor neuron diseases. The most important observation was that absent fibrillations in the first dorsal interosseus muscle identified the benign forms with sensitivities of 66%-77% and a specificity of 93%. The distribution of active denervation may help to separate ALS from mimicking disorders at an early stage.

  16. Short report: effect of two prokinetic drugs on the electrical and motor activity of the small bowel in dogs.

    PubMed

    Defilippi, C; Gomez, E

    1993-06-01

    The effects of trimebutine and domperidone, on the electrical and motor activity of the upper small bowel in dogs, were studied simultaneously by means of a suction electrode and a manometric catheter. Trimebutine, given during phases I and II of the migratory motor complex, was followed by a period of regular spike potentials and contractions; the increased motor activity was significantly greater when the drug was given during phase II. Domperidone, when injected in phase I, was followed by an irregular pattern of spike potentials and contractions of low amplitude. By contrast, activity was not augmented when the drug was given during phase II. We conclude that the effects of drugs, such as trimebutine and domperidone, on the canine small bowel are influenced by the phase of the migratory motor complex. PMID:8364138

  17. Genetic and functional modularity of Hox activities in the specification of limb-innervating motor neurons.

    PubMed

    Lacombe, Julie; Hanley, Olivia; Jung, Heekyung; Philippidou, Polyxeni; Surmeli, Gulsen; Grinstein, Jonathan; Dasen, Jeremy S

    2013-01-01

    A critical step in the assembly of the neural circuits that control tetrapod locomotion is the specification of the lateral motor column (LMC), a diverse motor neuron population targeting limb musculature. Hox6 paralog group genes have been implicated as key determinants of LMC fate at forelimb levels of the spinal cord, through their ability to promote expression of the LMC-restricted genes Foxp1 and Raldh2 and to suppress thoracic fates through exclusion of Hoxc9. The specific roles and mechanisms of Hox6 gene function in LMC neurons, however, are not known. We show that Hox6 genes are critical for diverse facets of LMC identity and define motifs required for their in vivo specificities. Although Hox6 genes are necessary for generating the appropriate number of LMC neurons, they are not absolutely required for the induction of forelimb LMC molecular determinants. In the absence of Hox6 activity, LMC identity appears to be preserved through a diverse array of Hox5-Hox8 paralogs, which are sufficient to reprogram thoracic motor neurons to an LMC fate. In contrast to the apparently permissive Hox inputs to early LMC gene programs, individual Hox genes, such as Hoxc6, have specific roles in promoting motor neuron pool diversity within the LMC. Dissection of motifs required for Hox in vivo specificities reveals that either cross-repressive interactions or cooperativity with Pbx cofactors are sufficient to induce LMC identity, with the N-terminus capable of promoting columnar, but not pool, identity when transferred to a heterologous homeodomain. These results indicate that Hox proteins orchestrate diverse aspects of cell fate specification through both the convergent regulation of gene programs regulated by many paralogs and also more restricted actions encoded through specificity determinants in the N-terminus.

  18. A comparison of sensory-motor activity during speech in first and second languages.

    PubMed

    Simmonds, Anna J; Wise, Richard J S; Dhanjal, Novraj S; Leech, Robert

    2011-07-01

    A foreign language (L2) learned after childhood results in an accent. This functional neuroimaging study investigated speech in L2 as a sensory-motor skill. The hypothesis was that there would be an altered response in auditory and somatosensory association cortex, specifically the planum temporale and parietal operculum, respectively, when speaking in L2 relative to L1, independent of rate of speaking. These regions were selected for three reasons. First, an influential computational model proposes that these cortices integrate predictive feedforward and postarticulatory sensory feedback signals during articulation. Second, these adjacent regions (known as Spt) have been identified as a "sensory-motor interface" for speech production. Third, probabilistic anatomical atlases exist for these regions, to ensure the analyses are confined to sensory-motor differences between L2 and L1. The study used functional magnetic resonance imaging (fMRI), and participants produced connected overt speech. The first hypothesis was that there would be greater activity in the planum temporale and the parietal operculum when subjects spoke in L2 compared with L1, one interpretation being that there is less efficient postarticulatory sensory monitoring when speaking in the less familiar L2. The second hypothesis was that this effect would be observed in both cerebral hemispheres. Although Spt is considered to be left-lateralized, this is based on studies of covert speech, whereas overt speech is accompani