Family patterns of development dyslexia, Part II: Behavioral phenotypes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, P.H.; Melngailis, I.; Bedrosian, M.
1995-12-18
The motor control of bimanual coordination and motor speech was compared between first degree relatives from families with at least 2 dyslexic family members, and families where probands were the only affected family members. Half of affected relatives had motor coordination deficits; and they came from families in which probands also showed impaired motor coordination. By contrast, affected relatives without motor deficits came from dyslexia families where probands did not have motor deficits. Motor coordination deficits were more common and more severe among affected offspring in families where both parents were affected than among affected offspring in families where onlymore » one parent was affected. However, motor coordination deficits were also more common and more severe in affected parents when both parents were affected than among affected parents in families where only one parent was affected. We conclude that impaired temporal resolution in motor action identifies a behavioral phenotype in some subtypes of developmental dyslexia. The observed pattern of transmission for motor deficits and reading impairment in about half of dyslexia families was most congruent with a genetic model of dyslexia in which 2 codominant major genes cosegregate in dyslexia pedigrees where the proband is also motorically impaired. 54 refs., 5 figs., 5 tabs.« less
Aungudornpukdee, P; Vichit-Vadakan, N
2009-12-01
Thailand has been changed to rapid urbanization and industrialization since 1980s. During 1992 through 1996, the number of industrial factories in Rayong province increased very sharply. The major types of industries are petrol-chemical and plastic production. However, after the petrochemical industry boomed, the higher demand led to an industrial area expansion. The establishment of factories in this area leads to serious environmental and health impacts. The study aims to investigate the factors that affect visual-motor coordination deficit among children, 6-13 years of age, residing near the Petrochemical Industrial Estate, Map Ta Phut, Rayong province. A population-based cross-sectional study was employed for collecting data on neurobehavioral effects using the Digit Symbol Test. The study found one-third of 2,956 children presented with visual-motor coordination deficits. Three factors were identified that caused children to have a higher risk of visual-motor coordination deficits: gender (adjusted OR 1.934), monthly parental income (range of adjusted OR 1.977 - 2.612), and household environmental tobacco smoke (adjusted OR 1.284), while age (adjusted OR 0.874) and living period (adjusted OR 0.954) in study areas were reversed effects on visual-motor coordination deficit among children. The finding indicated that children with visual-motor coordination deficit were affected by gender, monthly parental income, age of children, length of living period, and household environmental tobacco smoke.
Do, Ji-Hye; Yoo, Eun-Young; Jung, Min-Ye; Park, Hae Yean
2016-01-01
Hemiplegic cerebral palsy is a neurological symptom appearing on the unilateral arm and leg of the body that causes affected upper/lower limb muscle weakening and dysesthesia and accompanies tetany and difficulties in postural control due to abnormal muscle tone, and difficulties in body coordination. The purpose of this study was to examine the impact of virtual reality-based bilateral arm training on the motor skills of children with hemiplegic cerebral palsy, in terms of their upper limb motor skills on the affected side, as well as their bilateral coordination ability. The research subjects were three children who were diagnosed with hemiplegic cerebral palsy. The research followed an ABA design, which was a single-subject experimental design. The procedure consisted of a total of 20 sessions, including four during the baseline period (A1), 12 during the intervention period (B), and four during the baseline regression period (A2), For the independent variable bilateral arm training based on virtual reality, Nintendo Wii game was played for 30 minutes in each of the 12 sessions. For the dependent variables of upper limb motor skills on the affected side and bilateral coordination ability, a Wolf Motor Function Test (WMFT) was carried out for each session and the Pediatric Motor Activity Log (PMAL) was measured before and after the intervention, as well as after the baseline regression period. To test bilateral coordination ability, shooting baskets in basketball with both hands and moving large light boxes were carried out under operational definitions, with the number of shots and time needed to move boxes measured. The results were presented using visual graphs and bar graphs. The study's results indicated that after virtual reality-based bilateral arm training, improvement occurred in upper limb motor skills on the affected sides, and in bilateral coordination ability, for all of the research subjects. Measurements of the effects of sustained therapy after completion of the intervention, during the baseline regression period, revealed that upper limb motor skills on the affected side and bilateral coordination ability were better than in the baseline period for all subjects. This study confirmed that for children with hemiplegic with cerebral palsy, bilateral arm training based on virtual reality can be an effective intervention method for enhancing the upper limb motor skills on the affected side, as well as bilateral coordination ability.
Wiggin, Timothy D.; Peck, Jack H.; Masino, Mark A.
2014-01-01
The cellular and network basis for most vertebrate locomotor central pattern generators (CPGs) is incompletely characterized, but organizational models based on known CPG architectures have been proposed. Segmental models propose that each spinal segment contains a circuit that controls local coordination and sends longer projections to coordinate activity between segments. Unsegmented/continuous models propose that patterned motor output is driven by gradients of neurons and synapses that do not have segmental boundaries. We tested these ideas in the larval zebrafish, an animal that swims in discrete episodes, each of which is composed of coordinated motor bursts that progress rostrocaudally and alternate from side to side. We perturbed the spinal cord using spinal transections or strychnine application and measured the effect on fictive motor output. Spinal transections eliminated episode structure, and reduced both rostrocaudal and side-to-side coordination. Preparations with fewer intact segments were more severely affected, and preparations consisting of midbody and caudal segments were more severely affected than those consisting of rostral segments. In reduced preparations with the same number of intact spinal segments, side-to-side coordination was more severely disrupted than rostrocaudal coordination. Reducing glycine receptor signaling with strychnine reversibly disrupted both rostrocaudal and side-to-side coordination in spinalized larvae without disrupting episodic structure. Both spinal transection and strychnine decreased the stability of the motor rhythm, but this effect was not causal in reducing coordination. These results are inconsistent with a segmented model of the spinal cord and are better explained by a continuous model in which motor neuron coordination is controlled by segment-spanning microcircuits. PMID:25275377
Planning and Coordination of a Reach-Grasp-Eat Task in Children with Hemiplegia
ERIC Educational Resources Information Center
Hung, Ya-Ching; Henderson, Eugene R.; Akbasheva, Frida; Valte, Leslie; Ke, Wei Shan; Gordon, Andrew M.
2012-01-01
Children with hemiplegia have deficits in motor planning in addition to their impairments in movement of their more-affected upper extremity (UE). However, little is known about the relationship between motor planning and multi-segment coordination during functional activities in this population. In the present study, motor planning strategies and…
Impairments of Social Motor Coordination in Schizophrenia
Varlet, Manuel; Marin, Ludovic; Raffard, Stéphane; Schmidt, R. C.; Capdevielle, Delphine; Boulenger, Jean-Philippe; Del-Monte, Jonathan; Bardy, Benoît G.
2012-01-01
It has been demonstrated that motor coordination of interacting people plays a crucial role in the success of social exchanges. Abnormal movements have been reported during interpersonal interactions of patients suffering from schizophrenia and a motor coordination breakdown could explain this social interaction deficit, which is one of the main and earliest features of the illness. Using the dynamical systems framework, the goal of the current study was (i) to investigate whether social motor coordination is impaired in schizophrenia and (ii) to determine the underlying perceptual or cognitive processes that may be affected. We examined intentional and unintentional social motor coordination in participants oscillating hand-held pendulums from the wrist. The control group consisted of twenty healthy participant pairs while the experimental group consisted of twenty participant pairs that included one participant suffering from schizophrenia. The results showed that unintentional social motor coordination was preserved while intentional social motor coordination was impaired. In intentional coordination, the schizophrenia group displayed coordination patterns that had lower stability and in which the patient never led the coordination. A coupled oscillator model suggests that the schizophrenia group coordination pattern was due to a decrease in the amount of available information together with a delay in information transmission. Our study thus identified relational motor signatures of schizophrenia and opens new perspectives for detecting the illness and improving social interactions of patients. PMID:22272247
Moving attractive virtual agent improves interpersonal coordination stability.
Zhao, Zhong; Salesse, Robin N; Gueugnon, Mathieu; Schmidt, Richard C; Marin, Ludovic; Bardy, Benoît G
2015-06-01
Interpersonal motor coordination is influenced not only by biomechanical factors such as coordination pattern, oscillating frequency, and individual differences, but also by psychosocial factor such as likability and social competences. Based on the social stereotype of "what is beautiful is good", the present study aimed at investigating whether people coordinate differently with physically attractive people compared to less attractive people. 34 participants were engaged in an interpersonal coordination task with different looking (virtual) agents while performing at the same time a reaction time task. Results showed that participants had more stable motor coordination with the moving attractive than with the less attractive agent, and that the difference in motor coordination could not be interpreted by a specific attention allocation strategy. Our findings provide the evidence that physical attractiveness genuinely affects how people interact with another person, and that the temporal-spatial coordinated movement varies with the partner's psychosocial characteristics. The study broadens the perspective of exploring the effect of additional psychosocial factors on social motor coordination. Copyright © 2015 Elsevier B.V. All rights reserved.
David, Fabian J.; Baranek, Grace T.; Wiesen, Chris; Miao, Adrienne F.; Thorpe, Deborah E.
2012-01-01
Impaired motor coordination is prevalent in children with Autism Spectrum Disorders (ASD) and affects adaptive skills. Little is known about the development of motor patterns in young children with ASD between 2 and 6 years of age. The purpose of the current study was threefold: (1) to describe developmental correlates of motor coordination in children with ASD, (2) to identify the extent to which motor coordination deficits are unique to ASD by using a control group of children with other developmental disabilities (DD), and (3) to determine the association between motor coordination variables and functional fine motor skills. Twenty-four children with ASD were compared to 30 children with typical development (TD) and 11 children with DD. A precision grip task was used to quantify and analyze motor coordination. The motor coordination variables were two temporal variables (grip to load force onset latency and time to peak grip force) and two force variables (grip force at onset of load force and peak grip force). Functional motor skills were assessed using the Fine Motor Age Equivalents of the Vineland Adaptive Behavior Scale and the Mullen Scales of Early Learning. Mixed regression models were used for all analyses. Children with ASD presented with significant motor coordination deficits only on the two temporal variables, and these variables differentiated children with ASD from the children with TD, but not from children with DD. Fine motor functional skills had no statistically significant associations with any of the motor coordination variables. These findings suggest that subtle problems in the timing of motor actions, possibly related to maturational delays in anticipatory feed-forward mechanisms, may underlie some motor deficits reported in children with ASD, but that these issues are not unique to this population. Further research is needed to investigate how children with ASD or DD compensate for motor control deficits to establish functional skills. PMID:23293589
Li, Yao-Chuen; Kwan, Matthew Y W; Cairney, John
2018-06-04
The Environmental Stress Hypothesis (ESH) has been used to examine how the relationship between poor motor coordination and psychological distress is affected by physical health and psychosocial factors. However, work applying the ESH is still limited, and no studies have used this framework with adults. The current investigation aims to examine the association between motor coordination and psychological distress among emerging adults, and examine potential mediators to this relationship based on the ESH. 225 young adults aged 17-23 years completed a survey of motor coordination, physical activity, secondary stressors (i.e., general stress and global relationships), perceived social support, self-concept, and psychological distress. Structural equation modeling was conducted to examine mediating pathways and overall model fit. The final model of the ESH showed good model fit (x 2 = 83.24, p < .01; RMSEA=0.056; NNFI = 0.927; CFI = 0.954; GFI = 0.947), and indicated that the relationship between poor motor coordination and psychological distress was mediated by secondary stressors, perceived social support, and self-concept. This study highlights the effect of poor motor coordination on psychological distress in young adults, and suggests that interventions should target psychosocial well-being, in addition to motor coordination, to prevent psychological distress. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Amador-Ruiz, Santiago; Gutierrez, David; Martínez-Vizcaíno, Vicente; Gulías-González, Roberto; Pardo-Guijarro, María J.; Sánchez-López, Mairena
2018-01-01
Background: Motor competence (MC) affects numerous aspects of children's daily life. The aims of this study were to: evaluate MC, provide population-based percentile values for MC; and determine the prevalence of developmental coordination disorder (DCD) in Spanish schoolchildren. Methods: This cross-sectional study included 1562 children aged 4…
Developmental coordination disorders: state of art.
Vaivre-Douret, L
2014-01-01
In the literature, descriptions of children with motor coordination difficulties and clumsy movements have been discussed since the early 1900s. According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), it is a marked impairment in the development of fine or global motor coordination, affecting 6% of school-age children. All these children are characterized for developmental coordination disorder (DCD) in motor learning and new motor skill acquisition, in contrast to adult apraxia which is a disorder in the execution of already learned movements. No consensus has been established about etiology of DCD. Intragroup approach through factor and cluster analysis highlights that motor impairment in DCD children varies both in severity and nature. Indeed, most studies have used screening measures of performance on some developmental milestones derived from global motor tests. A few studies have investigated different functions together with standardized assessments, such as neuromuscular tone and soft signs, qualitative and quantitative measures related to gross and fine motor coordination and the specific difficulties -academic, language, gnosic, visual motor/visual-perceptual, and attentional/executive- n order to allow a better identification of DCD subtypes with diagnostic criteria and to provide an understanding of the mechanisms and of the cerebral involvement. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice
Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Hee Jin; Choung, Se Young
2015-01-01
γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice. PMID:25995826
Two Processes in Early Bimanual Motor Skill Learning
Yeganeh Doost, Maral; Orban de Xivry, Jean-Jacques; Bihin, Benoît; Vandermeeren, Yves
2017-01-01
Most daily activities are bimanual and their efficient performance requires learning and retention of bimanual coordination. Despite in-depth knowledge of the various stages of motor skill learning in general, how new bimanual coordination control policies are established is still unclear. We designed a new cooperative bimanual task in which subjects had to move a cursor across a complex path (a circuit) as fast and as accurately as possible through coordinated bimanual movements. By looking at the transfer of the skill between different circuits and by looking at training with varying circuits, we identified two processes in early bimanual motor learning. Loss of performance due to the switch in circuit after 15 min of training amounted to 20%, which suggests that a significant portion of improvements in bimanual performance is specific to the used circuit (circuit-specific skill). In contrast, the loss of performance due to the switch in circuit was 5% after 4 min of training. This suggests that learning the new bimanual coordination control policy dominates early in the training and is independent of the used circuit. Finally, switching between two circuits throughout training did not affect the early stage of learning (i.e., the first few minutes), but did affect the later stage. Together, these results suggest that early bimanual motor skill learning includes two different processes. Learning the new bimanual coordination control policy predominates in the first minutes whereas circuit-specific skill improvements unfold later in parallel with further improvements in the bimanual coordination control policy. PMID:29326573
Bart, Orit; Daniel, Liron; Dan, Orrie; Bar-Haim, Yair
2013-06-01
Individuals with attention deficit hyperactive disorder (ADHD) often have coexisting developmental coordination disorder (DCD). The positive therapeutic effect of methylphenidate on ADHD symptoms is well documented, but its effects on motor coordination are less studied. We assessed the influence of methylphenidate on motor performance in children with comorbid DCD and ADHD. Participants were 30 children (24 boys) aged 5.10-12.7 years diagnosed with both DCD and ADHD. Conners' Parent Rating Scale was used to reaffirm ADHD diagnosis and the Developmental Coordination Disorder Questionnaire was used to diagnose DCD. The Movement Assessment Battery for Children-2 and the online continuous performance test were administrated to all participants twice, with and without methylphenidate. The tests were administered on two separate days in a blind design. Motor performance and attention scores were significantly better with methylphenidate than without it (p<0.001 for improvement in the Movement Assessment Battery for Children-2 and p<0.006 for the online continuous performance test scores). The findings suggest that methylphenidate improves both attention and motor coordination in children with coexisting DCD and ADHD. More research is needed to disentangle the causality of the improvement effect and whether improvement in motor coordination is directly affected by methylphenidate or mediated by improvement in attention. Copyright © 2013 Elsevier Ltd. All rights reserved.
Two-phase strategy of controlling motor coordination determined by task performance optimality.
Shimansky, Yury P; Rand, Miya K
2013-02-01
A quantitative model of optimal coordination between hand transport and grip aperture has been derived in our previous studies of reach-to-grasp movements without utilizing explicit knowledge of the optimality criterion or motor plant dynamics. The model's utility for experimental data analysis has been demonstrated. Here we show how to generalize this model for a broad class of reaching-type, goal-directed movements. The model allows for measuring the variability of motor coordination and studying its dependence on movement phase. The experimentally found characteristics of that dependence imply that execution noise is low and does not affect motor coordination significantly. From those characteristics it is inferred that the cost of neural computations required for information acquisition and processing is included in the criterion of task performance optimality as a function of precision demand for state estimation and decision making. The precision demand is an additional optimized control variable that regulates the amount of neurocomputational resources activated dynamically. It is shown that an optimal control strategy in this case comprises two different phases. During the initial phase, the cost of neural computations is significantly reduced at the expense of reducing the demand for their precision, which results in speed-accuracy tradeoff violation and significant inter-trial variability of motor coordination. During the final phase, neural computations and thus motor coordination are considerably more precise to reduce the cost of errors in making a contact with the target object. The generality of the optimal coordination model and the two-phase control strategy is illustrated on several diverse examples.
Willford, Jennifer A.; Chandler, Lynette S.; Goldschmidt, Lidush; Day, Nancy L.
2010-01-01
Deficits in motor control are often reported in children with prenatal alcohol exposure (PAE). Less is known about the effects of prenatal tobacco exposure (PTE) and prenatal marijuana exposure (PME) on motor coordination, and previous studies have not considered whether PTE, PAE, and PME interact to affect motor control. This study investigated the effects of PTE, PAE, and PME as well as current drug use on speed of processing, visual-motor coordination, and interhemispheric transfer in 16-year-old adolescents. Data were collected as part of the Maternal Health Practices and Child Development Project. Adolescents (age 16, n=320) participating in a longitudinal study of the effects of prenatal substance exposure on developmental outcomes were evaluated in this study. The computerized Bimanual Coordination Test (BCT) was used to assess each domain of function. Other important variables, such as demographics, home environment, and psychological characteristics of the mother and adolescent were also considered in the analyses. There were significant and independent effects of PTE, PAE, and PME on processing speed and interhemispheric transfer of information. PTEand PME were associated with deficits in visual motor coordination. There were no interactions between PAE, PTE, and PME. Current tobacco use predicted deficits in speed of processing. Current alcohol and marijuana use by the offspring were not associated with any measures of performance on the BCT. PMID:20600845
Smith, Anne; Weber, Christine
2017-01-01
Purpose The purpose of this study was to determine if indices of speech motor coordination during the production of sentences varying in sentence length and syntactic complexity were associated with stuttering persistence versus recovery in 5- to 7-year-old children. Methods We compared children with persistent stuttering (CWS-Per) with children who had recovered (CWS-Rec), and children who do not stutter (CWNS). A kinematic measure of articulatory coordination, lip aperture variability (LAVar), and overall movement duration were computed for perceptually fluent sentence productions varying in length and syntactic complexity. Results CWS-Per exhibited higher LAVar across sentence types compared to CWS-Rec and CWNS. For the participants who successfully completed the experimental paradigm, the demands of increasing sentence length and syntactic complexity did not appear to disproportionately affect the speech motor coordination of CWS-Per compared to their recovered and fluent peers. However, a subset of CWS-Per failed to produce the required number of accurate utterances. Conclusions These findings support our hypothesis that the speech motor coordination of school-age CWS-Per, on average, is less refined and less mature compared to CWS-Rec and CWNS. Childhood recovery from stuttering is characterized, in part, by overcoming an earlier occurring maturational lag in speech motor development. PMID:28056137
Impaired Visual Motor Coordination in Obese Adults.
Gaul, David; Mat, Arimin; O'Shea, Donal; Issartel, Johann
2016-01-01
Objective. To investigate whether obesity alters the sensory motor integration process and movement outcome during a visual rhythmic coordination task. Methods. 88 participants (44 obese and 44 matched control) sat on a chair equipped with a wrist pendulum oscillating in the sagittal plane. The task was to swing the pendulum in synchrony with a moving visual stimulus displayed on a screen. Results. Obese participants demonstrated significantly ( p < 0.01) higher values for continuous relative phase (CRP) indicating poorer level of coordination, increased movement variability ( p < 0.05), and a larger amplitude ( p < 0.05) than their healthy weight counterparts. Conclusion. These results highlight the existence of visual sensory integration deficiencies for obese participants. The obese group have greater difficulty in synchronizing their movement with a visual stimulus. Considering that visual motor coordination is an essential component of many activities of daily living, any impairment could significantly affect quality of life.
ERIC Educational Resources Information Center
Kirby, Amanda; Sugden, David; Beveridge, Sally; Edwards, Lisa; Edwards, Rachel
2008-01-01
Developmental co-ordination disorder (DCD) is a developmental disorder affecting motor co-ordination. The "Diagnostics Statistics Manual"--IV classification for DCD describes difficulties across a range of activities of daily living, impacting on everyday skills and academic performance in school. Recent evidence has shown that…
ERIC Educational Resources Information Center
Kirby, Amanda; Edwards, Lisa; Sugden, David; Rosenblum, Sara
2010-01-01
Developmental Co-ordination Disorder (DCD), also known as Dyspraxia in the United Kingdom (U.K.), is a developmental disorder affecting motor co-ordination. In the past this was regarded as a childhood disorder, however there is increasing evidence that a significant number of children will continue to have persistent difficulties into adulthood.…
Doney, Robyn; Lucas, Barbara R; Watkins, Rochelle E; Tsang, Tracey W; Sauer, Kay; Howat, Peter; Latimer, Jane; Fitzpatrick, James P; Oscar, June; Carter, Maureen; Elliott, Elizabeth J
2016-08-01
Visual-motor integration (VMI) skills are essential for successful academic performance, but to date no studies have assessed these skills in a population-based cohort of Australian Aboriginal children who, like many children in other remote, disadvantaged communities, consistently underperform academically. Furthermore, many children in remote areas of Australia have prenatal alcohol exposure (PAE) and Fetal Alcohol Spectrum Disorder (FASD), which are often associated with VMI deficits. VMI, visual perception, and fine motor coordination were assessed using The Beery-Buktenica Developmental Test of Visual-Motor Integration, including its associated subtests of Visual Perception and Fine Motor Coordination, in a cohort of predominantly Australian Aboriginal children (7.5-9.6 years, n=108) in remote Western Australia to explore whether PAE adversely affected test performance. Cohort results were reported, and comparisons made between children i) without PAE; ii) with PAE (no FASD); and iii) FASD. The prevalence of moderate (≤16th percentile) and severe (≤2nd percentile) impairment was established. Mean VMI scores were 'below average' (M=87.8±9.6), and visual perception scores were 'average' (M=97.6±12.5), with no differences between groups. Few children had severe VMI impairment (1.9%), but moderate impairment rates were high (47.2%). Children with FASD had significantly lower fine motor coordination scores and higher moderate impairment rates (M=87.9±12.5; 66.7%) than children without PAE (M=95.1±10.7; 23.3%) and PAE (no FASD) (M=96.1±10.9; 15.4%). Aboriginal children living in remote Western Australia have poor VMI skills regardless of PAE or FASD. Children with FASD additionally had fine motor coordination problems. VMI and fine motor coordination should be assessed in children with PAE, and included in FASD diagnostic assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Varlet, Manuel; Marin, Ludovic; Capdevielle, Delphine; Del-Monte, Jonathan; Schmidt, R. C.; Salesse, Robin N.; Boulenger, Jean-Philippe; Bardy, Benoît G.; Raffard, Stéphane
2014-01-01
Defined by a persistent fear of embarrassment or negative evaluation while engaged in social interaction or public performance, social anxiety disorder (SAD) is one of the most common psychiatric syndromes. Previous research has made a considerable effort to better understand and assess this mental disorder. However, little attention has been paid to social motor behavior of patients with SAD despite its crucial importance in daily social interactions. Previous research has shown that the coordination of arm, head or postural movements of interacting people can reflect their mental states or feelings such as social connectedness and social motives, suggesting that interpersonal movement coordination may be impaired in patients suffering from SAD. The current study was specifically aimed at determining whether SAD affects the dynamics of social motor coordination. We compared the unintentional and intentional rhythmic coordination of a SAD group (19 patients paired with control participants) with the rhythmic coordination of a control group (19 control pairs) in an interpersonal pendulum coordination task. The results demonstrated that unintentional social motor coordination was preserved with SAD while intentional coordination was impaired. More specifically, intentional coordination became impaired when patients with SAD had to lead the coordination as indicated by poorer (i.e., more variable) coordination. These differences between intentional and unintentional coordination as well as between follower and leader roles reveal an impaired coordination dynamics that is specific to SAD, and thus, opens promising research directions to better understand, assess and treat this mental disorder. PMID:24567707
ERIC Educational Resources Information Center
Camos, Valerie; Barrouillet, Pierre; Fayol, Michel
2001-01-01
Tested in three experiments hypothesis that coordinating saying number-words and pointing to each object to count requires use of the central executive and that cost of coordination decreases with age. Found that for 5- and 9-year-olds and adults, manipulating difficulty of each component affected counting performance but did not make coordination…
Haijima, Asahi; Lesmana, Ronny; Shimokawa, Noriaki; Amano, Izuki; Takatsuru, Yusuke; Koibuchi, Noriyuki
2017-01-01
We investigated whether in utero or lactational exposure to 4-hydroxy-2',3,3',4',5'-pentachlorobiphenyl (OH-PCB 106) affects spontaneous locomotor activity and motor coordination in young adult male mice. For in utero exposure, pregnant C57BL/6J mice received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from gestational day 10 to 18. For lactational exposure, the different groups of dams received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from postpartum day 3 to 13. At 6-7 weeks of age, the spontaneous locomotor activities of male offspring were evaluated for a 24-hr continuous session in a home cage and in an open field for 30-min. Motor coordination function on an accelerating rotarod was also measured. Mice exposed prenatally to OH-PCB 106 showed increased spontaneous locomotor activities during the dark phase in the home cage and during the first 10-min in the open field compared with control mice. Mice exposed lactationally to OH-PCB 106, however, did not show a time-dependent decrease in locomotor activity in the open field. Instead, their locomotor activity increased significantly during the second 10-min block. In addition, mice exposed lactationally to OH-PCB 106 displayed impairments in motor coordination in the rotarod test. These results suggest that perinatal exposure to OH-PCB 106 affects motor behaviors in young adult male mice. Depending on the period of exposure, OH-PCB 106 may have different effects on neurobehavioral development.
Effect of the Level of Coordinated Motor Abilities on Performance in Junior Judokas
Lech, Grzegorz; Jaworski, Janusz; Lyakh, Vladimir; Krawczyk, Robert
2011-01-01
The main focus of this study was to identify coordinated motor abilities that affect fighting methods and performance in junior judokas. Subjects were selected for the study in consideration of their age, competition experience, body mass and prior sports level. Subjects’ competition history was taken into consideration when analysing the effectiveness of current fight actions, and individual sports level was determined with consideration to rank in the analysed competitions. The study sought to determine the level of coordinated motor abilities of competitors. The scope of this analysis covered the following aspects: kinaesthetic differentiation, movement frequency, simple and selective reaction time (evoked by a visual or auditory stimulus), spatial orientation, visual-motor coordination, rhythmization, speed, accuracy and precision of movements and the ability to adapt movements and balance. A set of computer tests was employed for the analysis of all of the coordination abilities, while balance examinations were based on the Flamingo Balance Test. Finally, all relationships were determined based on the Spearman’s rank correlation coefficient. It was observed that the activity of the contestants during the fight correlated with the ability to differentiate movements and speed, accuracy and precision of movement, whereas the achievement level during competition was connected with reaction time. PMID:23486723
Potential interactions among linguistic, autonomic, and motor factors in speech.
Kleinow, Jennifer; Smith, Anne
2006-05-01
Though anecdotal reports link certain speech disorders to increases in autonomic arousal, few studies have described the relationship between arousal and speech processes. Additionally, it is unclear how increases in arousal may interact with other cognitive-linguistic processes to affect speech motor control. In this experiment we examine potential interactions between autonomic arousal, linguistic processing, and speech motor coordination in adults and children. Autonomic responses (heart rate, finger pulse volume, tonic skin conductance, and phasic skin conductance) were recorded simultaneously with upper and lower lip movements during speech. The lip aperture variability (LA variability index) across multiple repetitions of sentences that varied in length and syntactic complexity was calculated under low- and high-arousal conditions. High arousal conditions were elicited by performance of the Stroop color word task. Children had significantly higher lip aperture variability index values across all speaking tasks, indicating more variable speech motor coordination. Increases in syntactic complexity and utterance length were associated with increases in speech motor coordination variability in both speaker groups. There was a significant effect of Stroop task, which produced increases in autonomic arousal and increased speech motor variability in both adults and children. These results provide novel evidence that high arousal levels can influence speech motor control in both adults and children. (c) 2006 Wiley Periodicals, Inc.
Stein, Marion; Auerswald, Max; Ebersbach, Mirjam
2017-01-01
There is growing evidence indicating positive, causal effects of acute physical activity on cognitive performance of school children, adolescents, and adults. However, only a few studies examined these effects in kindergartners, even though correlational studies suggest moderate relationships between motor and cognitive functions in this age group. One aim of the present study was to examine the correlational relationships between motor and executive functions among 5- to 6-year-olds. Another aim was to test whether an acute coordinative intervention, which was adapted to the individual motor functions of the children, causally affected different executive functions (i.e., motor inhibition, cognitive inhibition, and shifting). Kindergartners (N = 102) were randomly assigned either to a coordinative intervention (20 min) or to a control condition (20 min). The coordination group performed five bimanual exercises (e.g., throwing/kicking balls onto targets with the right and left hand/foot), whereas the control group took part in five simple activities that hardly involved coordination skills (e.g., stamping). Children’s motor functions were assessed with the Movement Assessment Battery for Children 2 (Petermann, 2009) in a pre-test (T1), 1 week before the intervention took place. Motor inhibition was assessed with the Simon says task (Carlson and Wang, 2007), inhibition and shifting were assessed with the Hearts and Flowers task (Davidson et al., 2006) in the pre-test and again in a post-test (T2) immediately after the interventions. Results revealed significant correlations between motor functions and executive functions (especially shifting) at T1. There was no overall effect of the intervention. However, explorative analyses indicated a three-way interaction, with the intervention leading to accuracy gains only in the motor inhibition task and only if it was tested directly after the intervention. As an unexpected effect, this result needs to be treated with caution but may indicate that the effect of acute coordinative exercise is temporally limited and emerges only for motor inhibition, but not for cognitive inhibition or shifting. More generally, in contrast to other studies including older participants and endurance exercises, no general effect of an acute coordinative intervention on executive functions was revealed for kindergartners. PMID:28611709
Fong, Ted C T; Ho, Rainbow T H; Wan, Adrian H Y; Au-Yeung, Friendly S W
2017-03-01
Neurological soft signs (NSS) in motor coordination and sequencing occur in schizophrenia patients and are an intrinsic sign of the underlying neural dysfunctions. The present longitudinal study explored the relationships among NSS, psychiatric symptoms, and functional outcomes in 151 Chinese patients with chronic schizophrenia across a 6-month period. The participants completed neurological assessments at baseline (Time 1), psychiatric interviews at Time 1 and 3-month follow-up (Time 2), and self-report measures on daily functioning at 6-month follow-up (Time 3). Two possible (combined and cascading) path models were examined on predicting the functional outcomes. Direct and indirect effects of Time 1 NSS on Time 3 functional outcomes via Time 2 psychiatric symptoms were evaluated using path analysis under bootstrapping. Motor coordination and sequencing NSS did not have significant direct effects on functional outcomes. Motor coordination NSS exerted significant and negative indirect effects on functional outcomes via psychiatric symptoms. These results contribute to a better understanding of the determinants of functional outcomes by showing significant indirect pathways from motor coordination NSS to functional outcomes via psychiatric symptoms. That motor sequencing NSS did not affect functional outcomes either directly or indirectly may be explained by their trait marking features. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Lee, I-Ching; Chen, Yung-Jung; Tsai, Chin-Liang
2013-02-01
The aims of this study were: (i) to determine whether differences exist in the fine motor fluency and flexibility of three groups (children with attention-deficit/hyperactivity disorder [ADHD], children in whom ADHD is comorbid with developmental coordination disorder [DCD] [denoted as ADHD+DCD], and a typically developing control group); and (ii) to clarify whether the degree of severity of core symptoms affects performance. The Peabody Picture Vocabulary Test-Revised, the Beery-Buktenica Development Test of Visual-Motor Integration and the Movement Assessment Battery for Children were used as prescreening tests. The Integrated Visual and Auditory+Plus test was utilized to assess subjects' attention. The redesigned fine motor tracking and pursuit tasks were administered to evaluate subjects' fine motor performance. No significant difference was found when comparing the performance of the Children with ADHD and the typically developing group. Significant differences existed between children in whom ADHD is comorbid with DCD and typically developing children. Children with ADHD demonstrated proper fine motor fluency and flexibility, and deficient performance occurred when ADHD was comorbid with developmental coordination disorder. Children with ADHD had more difficulty implementing closed-loop movements that required higher levels of cognitive processing than those of their typically developing peers. Also, deficits in fine motor control were more pronounced when ADHD was combined with movement coordination problems. The severity of core symptoms had a greater effect on children with ADHD's fine motor flexibility than did fluency performance. In children with pure ADHD, unsmooth movement performance was highly related to the severity of core symptoms. © 2012 The Authors. Pediatrics International © 2012 Japan Pediatric Society.
Normalized Index of Synergy for Evaluating the Coordination of Motor Commands
Togo, Shunta; Imamizu, Hiroshi
2015-01-01
Humans perform various motor tasks by coordinating the redundant motor elements in their bodies. The coordination of motor outputs is produced by motor commands, as well properties of the musculoskeletal system. The aim of this study was to dissociate the coordination of motor commands from motor outputs. First, we conducted simulation experiments where the total elbow torque was generated by a model of a simple human right and left elbow with redundant muscles. The results demonstrated that muscle tension with signal-dependent noise formed a coordinated structure of trial-to-trial variability of muscle tension. Therefore, the removal of signal-dependent noise effects was required to evaluate the coordination of motor commands. We proposed a method to evaluate the coordination of motor commands, which removed signal-dependent noise from the measured variability of muscle tension. We used uncontrolled manifold analysis to calculate a normalized index of synergy. Simulation experiments confirmed that the proposed method could appropriately represent the coordinated structure of the variability of motor commands. We also conducted experiments in which subjects performed the same task as in the simulation experiments. The normalized index of synergy revealed that the subjects coordinated their motor commands to achieve the task. Finally, the normalized index of synergy was applied to a motor learning task to determine the utility of the proposed method. We hypothesized that a large part of the change in the coordination of motor outputs through learning was because of changes in motor commands. In a motor learning task, subjects tracked a target trajectory of the total torque. The change in the coordination of muscle tension through learning was dominated by that of motor commands, which supported the hypothesis. We conclude that the normalized index of synergy can be used to evaluate the coordination of motor commands independently from the properties of the musculoskeletal system. PMID:26474043
ERIC Educational Resources Information Center
Caçola, Priscila
2014-01-01
The study of children with Developmental Coordination Disorder (DCD) has emerged as a vibrant line of inquiry over the last three decades. DCD is defined as a neurodevelopmental condition characterized by poor motor proficiency that interferes with a child's activities of daily living (sometimes also known as dyspraxia). Common symptoms include…
Self-Reported Mood, General Health, Wellbeing and Employment Status in Adults with Suspected DCD
ERIC Educational Resources Information Center
Kirby, Amanda; Williams, Natalie; Thomas, Marie; Hill, Elisabeth L.
2013-01-01
Developmental Coordination Disorder (DCD) affects around 2-6% of the population and is diagnosed on the basis of poor motor coordination in the absence of other neurological disorders. Its psychosocial impact has been delineated in childhood but until recently there has been little understanding of the implications of the disorder beyond this.…
Task-based mirror therapy enhances ipsilesional motor functions in stroke: A pilot study.
Arya, Kamal Narayan; Pandian, Shanta; Kumar, Dharmendra
2017-04-01
To examine the effect of Mirror therapy (MT) on dexterity, coordination, and muscle strength of the less-affected upper limb in stroke. Pre-test post-test, single group, experimental design. Rehabilitation institute. Post-stroke hemiparetic chronic subjects (N = 21). Forty sessions of MT using various tasks in addition to the conventional rehabilitation. Tasks such as lifting a glass, ball-squeezing, and picking-up objects were performed by the less-affected side in front of the mirror-box creating an illusion for the affected side. Minnesota Manual Dexterity Test (MMDT), Purdue Peg Board Test (PPBT), and Manual Muscle Testing (MMT) were used to measure the deficits of the less-affected side. Post-intervention, the less-affected side of the participants exhibited significant improvement on MMDT (p < 0.001), PPBT (p < 0.001), and MMT (shoulder flexors, wrist extensors and deviators, and finger flexors-extensors; p = 0.005-0.046). In post-stroke hemiparesis, MT also led to the improvement in dexterity, coordination, and strength of the less-affected side. In addition to the affected side, the technique may augment the subtle motor deficits of the less-affected side. Copyright © 2016 Elsevier Ltd. All rights reserved.
Addae, Jonas I; Pingal, Ramish; Walkins, Kheston; Cruickshank, Renee; Youssef, Farid F; Nayak, Shivananda B
2017-03-01
Jasmine flowers and leaves are used extensively in folk medicine in different parts of the world to treat a variety of diseases. However, there are very few published reports on the neuropsychiatric effects of Jasmine extracts. Hence, the objectives of the present study were to examine the effects of an alcohol extract of Jasminum multiflorum leaves on topically-applied bicuculline (a model of acute simple partial epilepsy) and maximal electroshock (MES, a model of generalized tonic-clonic seizure) in male Sprague-Dawley rats. The objectives also included an examination of the anxiolytic properties of the extract using an elevated plus maze and the effect of the extract on motor coordination using a rotarod treadmill. Phytochemical analysis of the extract showed the presence of three flavonoids and four additional compounds belonging to the steroid, terpenoid, phenol or sugar classes of compounds. The Jasmine alcohol extract, diluted with water and given orally or intraperitoneally, reduced the number of bicuculline-induced epileptiform discharges in a dose-dependent manner. The extract did not cause a significant increase in the current needed to induce hind limb extension in MES experiments. The extract significantly affected motor coordination when injected at 500mg/kg but not at 200mg/kg. At the latter dose, the extract increased open-arm entries and duration in the elevated plus maze to a level comparable to that of diazepam at 2mg/kg. We conclude that Jasmine leaf extract has a beneficial effect against an animal model of acute partial complex epilepsy, and significant anxiolytic effect at a dose that does not affect motor co-ordination. Copyright © 2017 Elsevier B.V. All rights reserved.
Skeletal maturation, fundamental motor skills and motor coordination in children 7-10 years.
Freitas, Duarte L; Lausen, Berthold; Maia, José António; Lefevre, Johan; Gouveia, Élvio Rúbio; Thomis, Martine; Antunes, António Manuel; Claessens, Albrecht L; Beunen, Gaston; Malina, Robert M
2015-01-01
Relationships between skeletal maturation and fundamental motor skills and gross motor coordination were evaluated in 429 children (213 boys and 216 girls) 7-10 years. Skeletal age was assessed (Tanner-Whitehouse 2 method), and stature, body mass, motor coordination (Körperkoordinations Test für Kinder, KTK) and fundamental motor skills (Test of Gross Motor Development, TGMD-2) were measured. Relationships among chronological age, skeletal age (expressed as the standardised residual of skeletal age on chronological age) and body size and fundamental motor skills and motor coordination were analysed with hierarchical multiple regression. Standardised residual of skeletal age on chronological age interacting with stature and body mass explained a maximum of 7.0% of the variance in fundamental motor skills and motor coordination over that attributed to body size per se. Standardised residual of skeletal age on chronological age alone accounted for a maximum of 9.0% of variance in fundamental motor skills, and motor coordination over that attributed to body size per se and interactions between standardised residual of skeletal age on chronological age and body size. In conclusion, skeletal age alone or interacting with body size has a negligible influence on fundamental motor skills and motor coordination in children 7-10 years.
Motor functions of the basal ganglia.
Phillips, J G; Bradshaw, J L; Iansek, R; Chiu, E
1993-01-01
A study of movement disorders such as Parkinson's disease and Huntington's disease can provide an indication of the motor functions of the basal ganglia. Basal-ganglia diseases affect voluntary movement and can cause involuntary movement. Deficits are often manifested during the coordination of fine multi-joint movements (e.g., handwriting). The disturbances of motor control (e.g. akinesia, bradykinesia) caused by basal-ganglia disorders are illustrated. Data suggest that the basal ganglia play an important role in the automatic execution of serially ordered complex movements.
Tsai, Li-Chun Lisa; Chan, Guy Chiu-Kai; Nangle, Shannon N.; Shimizu-Albergine, Masami; Jones, Graham; Storm, Daniel R.; Beavo, Joseph A.; Zweifel, Larry S.
2012-01-01
Phosphodiesterases (PDEs) are critical regulatory enzymes in cyclic nucleotide signaling. PDEs have diverse expression patterns within the central nervous system (CNS), show differing affinities for cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), and regulate a vast array of behaviors. Here, we investigated the expression profile of the PDE8 gene family members Pde8a and Pde8b in the mouse brain. We find that Pde8a expression is largely absent in the CNS; by contrast, Pde8b is expressed in select regions of the hippocampus, ventral striatum, and cerebellum. Behavioral analysis of mice with Pde8b gene inactivation (PDE8B KO) demonstrate an enhancement in contextual fear, spatial memory, performance in an appetitive instrumental conditioning task, motor-coordination, and have an attenuation of age-induced motor coordination decline. In addition to improvements observed in select behaviors, we find basal anxiety levels to be increased in PDE8B KO mice. These findings indicate that selective antagonism of PDE8B may be an attractive target for enhancement of cognitive and motor functions; however, possible alterations in affective state will need to be weighed against potential therapeutic value. PMID:22925203
Straker, L; Howie, E; Smith, A; Jensen, L; Piek, J; Campbell, A
2015-08-01
Impaired motor development can significantly affect a child's life and may result in an increased risk of a range of physical and psychological disorders. Active video game (AVG) interventions have been demonstrated to enhance motor skills in children with Developmental Coordination Disorder (DCD); however a home-based intervention has not been assessed. The primary aim of this study was to compare the changes in motor coordination between a 16 week period of AVG use, with 16 weeks of normal activities (NAG). The secondary aim was to compare the child and parent perceptions of their physical performance between the AVG and NAG conditions. Twenty-one 9-12 year olds (10 males) were confirmed to be at risk of DCD (⩽ 16th percentile Movement Assessment Battery for Children-2nd edition (MABC-2) and ⩽ 15th percentile Developmental Coordination Disorder Questionnaire (DCDQ)) and participated in this crossover randomised and controlled trial. Data was collected at study entry, after the first 16 week condition and following the final 16 week condition, including; (1) the MABC-2, (2) three-dimensional motion analysis of single leg balance and finger-nose tasks, and (3) parent perception of physical skills. Participant perception of physical skills was collected only after the first and second conditions. There was no significant difference between AVG and NAG for any of the primary variables including the MABC-2, balance centre-of-mass path distance and finger-nose path distance. There was no significant intervention effect for secondary measures of motor coordination; however the children perceived their motor skills to be significantly enhanced as a result of the AVG intervention in comparison to the period of no intervention. A 16 week home based AVG intervention did not enhance motor skills in children with DCD, although they perceived their physical skills to be significantly improved. Australia and New Zealand Clinical trials Registry (ACTRN 12611000400965). Copyright © 2015 Elsevier B.V. All rights reserved.
Hormone therapy in postmenopausal women affects hemispheric asymmetries in fine motor coordination.
Bayer, Ulrike; Hausmann, Markus
2010-08-01
Evidence exists that the functional differences between the left and right cerebral hemispheres are affected by age. One prominent hypothesis proposes that frontal activity during cognitive task performance tends to be less lateralized in older than in younger adults, a pattern that has also been reported for motor functioning. Moreover, functional cerebral asymmetries (FCAs) have been shown to be affected by sex hormonal manipulations via hormone therapy (HT) in older women. Here, we investigate whether FCAs in fine motor coordination, as reflected by manual asymmetries (MAs), are susceptible to HT in older women. Therefore, sixty-two postmenopausal women who received hormone therapy either with estrogen (E) alone (n=15), an E-gestagen combination (n=21) or without HT (control group, n=26) were tested. Saliva levels of free estradiol and progesterone (P) were analyzed using chemiluminescence assays. MAs were measured with a finger tapping paradigm consisting of two different tapping conditions. As expected, postmenopausal controls without HT showed reduced MAs in simple (repetitive) finger tapping. In a more demanding sequential condition involving four fingers, however, they revealed enhanced MAs in favour of the dominant hand. This finding suggests an insufficient recruitment of critical motor brain areas (especially when the nondominant hand is used), probably as a result of age-related changes in corticocortical connectivity between motor areas. In contrast, both HT groups revealed reduced MAs in sequential finger tapping but an asymmetrical tapping performance related to estradiol levels in simple finger tapping. A similar pattern has previously been found in younger participants. The results suggest that, HT, and E exposure in particular, exerts positive effects on the motor system thereby counteracting an age-related reorganization. Copyright 2010 Elsevier Inc. All rights reserved.
Bannerman, D M; Deacon, R M J; Brady, S; Bruce, A; Sprengel, R; Seeburg, P H; Rawlins, J N P
2004-06-01
Previous studies have demonstrated a spatial working memory deficit in glutamate receptor (GluR)-A (GluR1) AMPA receptor subunit knockout mice. The present study evaluated male and female wild-type and GluR-A-/- mice on a test battery that assessed sensorimotor, affective, and cognitive behaviors. Results revealed a behavioral phenotype more extensive than previously described. GluR-A-/- mice were hyperactive, displayed a subtle lack of motor coordination, and were generally more anxious than wild-type controls. In addition, they showed a deficit in spontaneous alternation, consistent with previous reports of a role for GluR-A-dependent plasticity in hippocampus-dependent, spatial working memory. Although changes in motor coordination or anxiety cannot explain the dissociations already reported within the spatial memory domain, it is clear that they could significantly affect interpretation of results obtained in other kinds of behavioral tasks. ((c) 2004 APA, all rights reserved)
NASA Astrophysics Data System (ADS)
Wei, J.; Dong, C.; Chen, B.
2017-04-01
We employ a mechanical model of sarcomere to quantitatively investigate how adenosine triphosphate (ATP) concentration affects motor force regulation during skeletal muscle contraction. Our simulation indicates that there can be negative cross-bridges resisting contraction within the sarcomere and higher ATP concentration would decrease the resistance force from negative cross-bridges by promoting their timely detachment. It is revealed that the motor force is well regulated only when ATP concentration is above a certain level. These predictions may provide insights into the role of ATP in regulating coordination among multiple motors.
de Chaves, Raquel Nichele; Bustamante Valdívia, Alcibíades; Nevill, Alan; Freitas, Duarte; Tani, Go; Katzmarzyk, Peter T; Maia, José António Ribeiro
2016-01-01
The aims of this cross-sectional study were to examine the developmental characteristics (biological maturation and body size) associated with gross motor coordination problems in 5193 Peruvian children (2787 girls) aged 6-14 years from different geographical locations, and to investigate how the probability that children suffer with gross motor coordination problems varies with physical fitness. Children with gross motor coordination problems were more likely to have lower flexibility and explosive strength levels, having adjusted for age, sex, maturation and study site. Older children were more likely to suffer from gross motor coordination problems, as were those with greater body mass index. However, more mature children were less likely to have gross motor coordination problems, although children who live at sea level or at high altitude were more likely to suffer from gross motor coordination problems than children living in the jungle. Our results provide evidence that children and adolescents with lower physical fitness are more likely to have gross motor coordination difficulties. The identification of youths with gross motor coordination problems and providing them with effective intervention programs is an important priority in order to overcome such developmental problems, and help to improve their general health status. Copyright © 2016 Elsevier Ltd. All rights reserved.
Altink, Marieke E.; Oosterlaan, Jaap; Beem, Leo; Buschgens, Cathelijne J. M.; Buitelaar, Jan; Sergeant, Joseph A.
2007-01-01
Attention-Deficit/Hyperactivity Disorder (ADHD) shares a genetic basis with motor coordination problems and probably motor timing problems. In line with this, comparable problems in motor timing should be observed in first degree relatives and might, therefore, form a suitable endophenotypic candidate. This hypothesis was investigated in 238 ADHD-families (545 children) and 147 control-families (271 children). A motor timing task was administered, in which children had to produce a 1,000 ms interval. In addition to this task, two basic motor tasks were administered to examine speed and variability of motor output, when no timing component was required. Results indicated that variability in motor timing is a useful endophenotypic candidate: It was clearly associated with ADHD, it was also present in non-affected siblings, and it correlated within families. Accuracy (under- versus over-production) in motor timing appeared less useful: Even though accuracy was associated with ADHD (probands and affected siblings had a tendency to under-produce the 1,000 ms interval compared to controls), non-affected siblings did not differ from controls and sibling correlations were only marginally significant. Slow and variable motor output without timing component also appears present in ADHD, but not in non-affected siblings, suggesting these deficits not to be related to a familial vulnerability for ADHD. Deficits in motor timing could not be explained by deficits already present in basic motor output without a timing component. This suggests abnormalities in motor timing were predominantly related to deficient motor timing processes and not to general deficient motor functioning. The finding that deficits in motor timing run in ADHD-families suggests this to be a fruitful domain for further exploration in relation to the genetic underpinnings of ADHD. PMID:18071893
The role of general dynamic coordination in the handwriting skills of children
Scordella, Andrea; Di Sano, Sergio; Aureli, Tiziana; Cerratti, Paola; Verratti, Vittore; Fanò-Illic, Giorgio; Pietrangelo, Tiziana
2015-01-01
Difficulties in handwriting are often reported in children with developmental coordination disorder, and they represent an important element in the diagnosis. The present study was aimed at investigating the relation between motor coordination and handwriting skills, and to identify differences in handwriting between children without and with coordination difficulties. In particular, we asked whether visual–spatial skills have a role as mediating variables between motor coordination and handwriting. We assessed motor coordination as well as graphic abilities in children aged 7–10 years. Moreover, we evaluated their visual–motor integration, visual–spatial skills, and other cognitive abilities (memory and planning). We found no relation between motor coordination and handwriting skills, while visual–spatial skills (measured by a visual-constructive task) were related with both. Our conclusion is that visual–spatial skills are involved both in general motor coordination and in handwriting, but the relationship involves different aspects in the two cases. PMID:25999893
Arm coordination in octopus crawling involves unique motor control strategies.
Levy, Guy; Flash, Tamar; Hochner, Binyamin
2015-05-04
To cope with the exceptional computational complexity that is involved in the control of its hyper-redundant arms [1], the octopus has adopted unique motor control strategies in which the central brain activates rather autonomous motor programs in the elaborated peripheral nervous system of the arms [2, 3]. How octopuses coordinate their eight long and flexible arms in locomotion is still unknown. Here, we present the first detailed kinematic analysis of octopus arm coordination in crawling. The results are surprising in several respects: (1) despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation; (2) body and crawling orientation are monotonically and independently controlled; and (3) contrasting known animal locomotion, octopus crawling lacks any apparent rhythmical patterns in limb coordination, suggesting a unique non-rhythmical output of the octopus central controller. We show that this uncommon maneuverability is derived from the radial symmetry of the arms around the body and the simple pushing-by-elongation mechanism by which the arms create the crawling thrust. These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction. Our findings suggest that the soft molluscan body has affected in an embodied way [4, 5] the emergence of the adaptive motor behavior of the octopus. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Critical Period for Postnatal Adaptive Plasticity in a Model of Motor Axon Miswiring
Castiblanco-Urbina, Maria A.; Winzeck, Stefan; Sundermeier, Julia; Theis, Fabian J.; Fouad, Karim; Huber, Andrea B.
2015-01-01
The correct wiring of neuronal circuits is of crucial importance for precise neuromuscular functionality. Therefore, guidance cues provide tight spatiotemporal control of axon growth and guidance. Mice lacking the guidance cue Semaphorin 3F (Sema3F) display very specific axon wiring deficits of motor neurons in the medial aspect of the lateral motor column (LMCm). While these deficits have been investigated extensively during embryonic development, it remained unclear how Sema3F mutant mice cope with these errors postnatally. We therefore investigated whether these animals provide a suitable model for the exploration of adaptive plasticity in a system of miswired neuronal circuitry. We show that the embryonically developed wiring deficits in Sema3F mutants persist until adulthood. As a consequence, these mutants display impairments in motor coordination that improve during normal postnatal development, but never reach wildtype levels. These improvements in motor coordination were boosted to wildtype levels by housing the animals in an enriched environment starting at birth. In contrast, a delayed start of enriched environment housing, at 4 weeks after birth, did not similarly affect motor performance of Sema3F mutants. These results, which are corroborated by neuroanatomical analyses, suggest a critical period for adaptive plasticity in neuromuscular circuitry. Interestingly, the formation of perineuronal nets, which are known to close the critical period for plastic changes in other systems, was not altered between the different housing groups. However, we found significant changes in the number of excitatory synapses on limb innervating motor neurons. Thus, we propose that during the early postnatal phase, when perineuronal nets have not yet been formed around spinal motor neurons, housing in enriched environment conditions induces adaptive plasticity in the motor system by the formation of additional synaptic contacts, in order to compensate for coordination deficits. PMID:25874621
Long-term training modifies the modular structure and organization of walking balance control
Allen, Jessica L.
2015-01-01
How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. PMID:26467521
Long-term training modifies the modular structure and organization of walking balance control.
Sawers, Andrew; Allen, Jessica L; Ting, Lena H
2015-12-01
How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. Copyright © 2015 the American Physiological Society.
Interlimb coordination and academic performance in elementary school children.
da Silva Pacheco, Sheila Cristina; Gabbard, Carl; Ries, Lilian Gerdi Kittel; Bobbio, Tatiana Godoy
2016-10-01
The specific mechanisms linking motor ability and cognitive performance, especially academic achievement, are still unclear. Whereas the literature provides an abundance of information on fine and visual-motor skill and cognitive attributes, much less has been reported on gross motor ability. This study examined interlimb coordination and its relationship to academic performance in children aged 8-11 years. Motor and academic skills were examined in 100 Brazilian children using the Bruininks-Oseretsky Test of Motor Proficiency and the Academic Performance Test. Participants were grouped into low (<25%) and high (>75%) academic achievers. There was a significant difference between groups for Total Motor Composite (P < 0.001) favoring the high group. On regression analysis there was a significant association between academic performance and Body Coordination. Of the subtests of Body Coordination (Bilateral Coordination and Balance), Bilateral Coordination accounted for the highest impact on academic performance. Of interest here, that subtest consists primarily of gross motor tasks involving interlimb coordination. Overall, there was a positive relationship between motor behavior, in particular activities involving interlimb coordination, and academic performance. Application of these findings in the area of early assessment may be useful in the identification of later academic problems. © 2016 Japan Pediatric Society.
Menstrual cycle-related changes of functional cerebral asymmetries in fine motor coordination.
Bayer, Ulrike; Hausmann, Markus
2012-06-01
Fluctuating sex hormone levels during the menstrual cycle have been shown to affect functional cerebral asymmetries in cognitive domains. These effects seem to result from the neuromodulatory properties of sex hormones and their metabolites on interhemispheric processing. The present study was carried out to investigate whether functional cerebral asymmetries in fine motor coordination as reflected by manual asymmetries are also susceptible to natural sex hormonal variations during the menstrual cycle. Sixteen right-handed women with a regular menstrual cycle performed a finger tapping paradigm consisting of two conditions (simple, sequential) during the low hormone menstrual phase and the high estrogen and progesterone luteal phase. To validate the luteal phase, saliva levels of free progesterone (P) were analysed using chemiluminescence assays. As expected, normally cycling women showed a substantial decrease in manual asymmetries in a more demanding sequential tapping condition involving four fingers compared with simple (repetitive) finger tapping. This reduction in the degree of dominant (right) hand manual asymmetries was evident during the luteal phase. During the menstrual phase, however, manual asymmetries were even reversed in direction, indicating a slight advantage in favour of the non-dominant (left) hand. These findings suggest that functional cerebral asymmetries in fine motor coordination are affected by sex hormonal changes during the menstrual cycle, probably via hormonal modulations of interhemispheric interaction. © 2012 Elsevier Inc. All rights reserved.
Coordination Motor Skills of Military Pilots Subjected to Survival Training.
Tomczak, Andrzej
2015-09-01
Survival training of military pilots in the Polish Army gains significance because polish pilots have taken part in more and more military missions. Prolonged exercise of moderate intensity with restricted sleep or sleep deprivation is known to deteriorate performance. The aim of the study was thus to determine the effects of a strenuous 36-hour exercise with restricted sleep on selected motor coordination and psychomotor indices. Thirteen military pilots aged 30-56 years were examined twice: pretraining and posttraining. The following tests were applied: running motor adjustment (15-m sprint, 3 × 5-m shuttle run, 15-m slalom, and 15-m squat), divided attention, dynamic body balance, handgrip strength differentiation. Survival training resulted in significant decreases in maximum handgrip strength (from 672 to 630 N), corrected 50% max handgrip (from 427 to 367 N), error 50% max (from 26 to 17%), 15-m sprint (from 5.01 to 4.64 m·s), and 15-m squat (2.20 to 1.98 m·s). The training improvements took place in divided attention test (from 48.2 to 57.2%). The survival training applied to pilots only moderately affected some of their motor adjustment skills, the divided attention, and dynamic body balance remaining unaffected or even improved. Further studies aimed at designing a set of tests for coordination motor skills and of soldiers' capacity to fight for survival under conditions of isolation are needed.
Statland, Jeffrey M.; Barohn, Richard J.; Dimachkie, Mazen M.; Floeter, Mary Kay; Mitsumoto, Hiroshi
2015-01-01
Synopsis Primary lateral sclerosis (PLS) is characterized by insidious onset of progressive upper motor neuron dysfunction in the absence of clinical signs of lower motor neuron involvement. Patients experience stiffness, decreased balance and coordination, and mild weakness, and if the bulbar region is affected, difficulty speaking and swallowing, and emotional lability. The diagnosis is made based on clinical history, typical exam findings, and diagnostic testing negative for other causes of upper motor neuron dysfunction. EMG is normal, or only shows mild neurogenic findings in a few muscles, not meeting El Escorial criteria. Although no test is specific for PLS, some neurodiagnostic tests are supportive: including absent or delayed central motor conduction times; and changes in the precentral gyrus or corticospinal tracts on MRI, DTI or MR Spectroscopy. Treatment is largely supportive, and includes medications for spasticity, baclofen pump, and treatment for pseudobulbar affect. The prognosis in PLS is more benign than ALS, making this a useful diagnostic category. PMID:26515619
Shaw, P; Weingart, D; Bonner, T; Watson, B; Park, M T M; Sharp, W; Lerch, J P; Chakravarty, M M
2016-08-01
When children have marked problems with motor coordination, they often have problems with attention and impulse control. Here, we map the neuroanatomic substrate of motor coordination in childhood and ask whether this substrate differs in the presence of concurrent symptoms of attention-deficit/hyperactivity disorder (ADHD). Participants were 226 children. All completed Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5)-based assessment of ADHD symptoms and standardized tests of motor coordination skills assessing aiming/catching, manual dexterity and balance. Symptoms of developmental coordination disorder (DCD) were determined using parental questionnaires. Using 3 Tesla magnetic resonance data, four latent neuroanatomic variables (for the cerebral cortex, cerebellum, basal ganglia and thalamus) were extracted and mapped onto each motor coordination skill using partial least squares pathway modeling. The motor coordination skill of aiming/catching was significantly linked to latent variables for both the cerebral cortex (t = 4.31, p < 0.0001) and the cerebellum (t = 2.31, p = 0.02). This effect was driven by the premotor/motor cortical regions and the superior cerebellar lobules. These links were not moderated by the severity of symptoms of inattention, hyperactivity and impulsivity. In categorical analyses, the DCD group showed atypical reduction in the volumes of these regions. However, the group with DCD alone did not differ significantly from those with DCD and co-morbid ADHD. The superior cerebellar lobules and the premotor/motor cortex emerged as pivotal neural substrates of motor coordination in children. The dimensions of these motor coordination regions did not differ significantly between those who had DCD, with or without co-morbid ADHD.
Straker, Leon M; Campbell, Amity C; Jensen, Lyn M; Metcalf, Deborah R; Smith, Anne J; Abbott, Rebecca A; Pollock, Clare M; Piek, Jan P
2011-08-18
A healthy start to life requires adequate motor development and physical activity participation. Currently 5-15% of children have impaired motor development without any obvious disorder. These children are at greater risk of obesity, musculoskeletal disorders, low social confidence and poor mental health. Traditional electronic game use may impact on motor development and physical activity creating a vicious cycle. However new virtual reality (VR) game interfaces may provide motor experiences that enhance motor development and lead to an increase in motor coordination and better physical activity and mental health outcomes. VR games are beginning to be used for rehabilitation, however there is no reported trial of the impact of these games on motor coordination in children with developmental coordination disorder. This cross-over randomised and controlled trial will examine whether motor coordination is enhanced by access to active electronic games and whether daily activity, attitudes to physical activity and mental health are also enhanced. Thirty children aged 10-12 years with poor motor coordination (≤ 15th percentile) will be recruited and randomised to a balanced ordering of 'no active electronic games' and 'active electronic games'. Each child will participate in both conditions for 16 weeks, and be assessed prior to participation and at the end of each condition. The primary outcome is motor coordination, assessed by kinematic and kinetic motion analysis laboratory measures. Physical activity and sedentary behaviour will be assessed by accelerometry, coordination in daily life by parent report questionnaire and attitudes to physical activity, self-confidence, anxiety and depressed mood will be assessed by self report questionnaire. A sample of 30 will provide a power of > 0.9 for detecting a 5 point difference in motor coordination on the MABC-2 TIS scale (mean 17, sd = 5). This is the first trial to examine the impact of new virtual reality games on motor coordination in children with developmental coordination disorder. The findings will provide critical information to understand whether these electronic games can be used to have a positive impact on the physical and mental health of these children. Given the importance of adequate motor coordination, physical activity and mental health in childhood, this project can inform interventions which could have a profound impact on the long term health of this group of children. Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12611000400965.
2011-01-01
Background A healthy start to life requires adequate motor development and physical activity participation. Currently 5-15% of children have impaired motor development without any obvious disorder. These children are at greater risk of obesity, musculoskeletal disorders, low social confidence and poor mental health. Traditional electronic game use may impact on motor development and physical activity creating a vicious cycle. However new virtual reality (VR) game interfaces may provide motor experiences that enhance motor development and lead to an increase in motor coordination and better physical activity and mental health outcomes. VR games are beginning to be used for rehabilitation, however there is no reported trial of the impact of these games on motor coordination in children with developmental coordination disorder. Methods This cross-over randomised and controlled trial will examine whether motor coordination is enhanced by access to active electronic games and whether daily activity, attitudes to physical activity and mental health are also enhanced. Thirty children aged 10-12 years with poor motor coordination (≤ 15th percentile) will be recruited and randomised to a balanced ordering of 'no active electronic games' and 'active electronic games'. Each child will participate in both conditions for 16 weeks, and be assessed prior to participation and at the end of each condition. The primary outcome is motor coordination, assessed by kinematic and kinetic motion analysis laboratory measures. Physical activity and sedentary behaviour will be assessed by accelerometry, coordination in daily life by parent report questionnaire and attitudes to physical activity, self-confidence, anxiety and depressed mood will be assessed by self report questionnaire. A sample of 30 will provide a power of > 0.9 for detecting a 5 point difference in motor coordination on the MABC-2 TIS scale (mean 17, sd = 5). Discussion This is the first trial to examine the impact of new virtual reality games on motor coordination in children with developmental coordination disorder. The findings will provide critical information to understand whether these electronic games can be used to have a positive impact on the physical and mental health of these children. Given the importance of adequate motor coordination, physical activity and mental health in childhood, this project can inform interventions which could have a profound impact on the long term health of this group of children. Trial registration Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12611000400965 PMID:21851587
Dopamine D1 receptor activation maintains motor coordination and balance in rats.
Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Durand-Rivera, Alfredo; Ramos-Languren, Laura-Elisa; Ríos, Camilo; Arias-Montaño, José-Antonio; Bueno-Nava, Antonio
2018-02-01
Dopamine (DA) modulates motor coordination, and its depletion, as in Parkinson's disease, produces motor impairment. The basal ganglia, cerebellum and cerebral cortex are interconnected, have functional roles in motor coordination, and possess dopamine D 1 receptors (D 1 Rs), which are expressed at a particularly high density in the basal ganglia. In this study, we examined whether the activation of D 1 Rs modulates motor coordination and balance in the rat using a beam-walking test that has previously been used to detect motor coordination deficits. The systemic administration of the D 1 R agonist SKF-38393 at 2, 3, or 4 mg/kg did not alter the beam-walking scores, but the subsequent administration of the D 1 R antagonist SCH-23390 at 1 mg/kg did produce deficits in motor coordination, which were reversed by the full agonist SKF-82958. The co-administration of SKF-38393 and SCH-23390 did not alter the beam-walking scores compared with the control group, but significantly prevented the increase in beam-walking scores induced by SCH-23390. The effect of the D 1 R agonist to prevent and reverse the effect of the D 1 R antagonist in beam-walking scores is an indicator that the function of D 1 Rs is necessary to maintain motor coordination and balance in rats. Our results support that D 1 Rs mediate the SCH-23390-induced deficit in motor coordination.
Multivariate Relationships among Morphology, Fitness and Motor Coordination in Prepubertal Girls
Luz, Leonardo G. O.; Coelho-e-Silva, Manuel J.; Duarte, João P.; Valente-dos-Santos, João; Machado-Rodrigues, Aristides; Seabra, André; Carmo, Bruno C. M.; Vaeyens, Roel; Philippaerts, Renaat M.; Cumming, Sean P.; Malina, Robert M.
2018-01-01
Motor coordination and physical fitness are multidimensional concepts which cannot be reduced to a single variable. This study evaluated multivariate relationships among morphology, physical fitness and motor coordination in 74 pre-pubertal girls 8.0-8.9 years of age. Data included body dimensions, eight fitness items and four motor coordination tasks (KTK battery). Maturity status was estimated as percentage of predicted mature stature attained at the time of observation. Canonical correlation analysis was used to examine the relationships between multivariate domains. Significant pairs of linear functions between indicators of morphology and fitness (rc = 0.778, Wilks’ Lambda = 0.175), and between fitness and motor coordination (rc = 0.765, Wilks’ Lambda = 0.289) were identified. Girls who were lighter and had a lower waist-to-stature ratio and % fat mass attained better scores in the endurance run, sit-ups and standing long jump tests, but poorer performances in hand grip strength and 2-kg ball throw. Better fitness test scores were also associated with better motor coordination scores. Relationships between body size and estimated fatness with motor fitness suggested an inverse relationship that was particularly evident in performance items that required the displacement of the body through space, while motor coordination was more closely related with fitness than with somatic variables. Key points Morphology and motor coordination were not substantially related in this sample of 8-year-old girls suggesting that motor coordination was independent of variation in morphology. Sit-ups (abdominal strength and endurance), the 10x5-m shuttle run (agility) and the 20-m aerobic endurance tests were the main contributors to the significant canonical correlation between fitness and motor coordination. By inference, development of these components of fitness is important during the primary school years. Relationships between estimated maturity status based on percentage of predicted mature height and fitness and coordination were negligible, with the exception of a moderate and inverse association with aerobic endurance. Nevertheless, within the single chronological age group, girls who were advanced in maturity status tended to taller and heavier and performed better in tests which did not require displacement of the body through space. PMID:29769820
Rafique, Sara A; Northway, Nadia
2015-08-01
Ocular accommodation provides a well-focussed image, feedback for accurate eye movement control, and cues for depth perception. To accurately perform visually guided motor tasks, integration of ocular motor systems is essential. Children with motor coordination impairment are established to be at higher risk of accommodation anomalies. The aim of the present study was to examine the relationship between ocular accommodation and motor tasks, which are often overlooked, in order to better understand the problems experienced by children with motor coordination impairment. Visual function, gross and fine motor skills were assessed in children with developmental coordination disorder (DCD) and typically developing control children. Children with DCD had significantly poorer accommodation facility and amplitude dynamics compared to controls. Results indicate a relationship between impaired accommodation and motor skills. Specifically, accommodation anomalies correlated with visual motor, upper limb and fine dexterity task performance. Consequently, we argue accommodation anomalies influence the ineffective coordination of action and perception in DCD. Furthermore, reading disabilities were related to poorer motor performance. We postulate the role of the fastigial nucleus as a common pathway for accommodation and motor deficits. Implications of the findings and recommended visual screening protocols are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Statland, Jeffrey M; Barohn, Richard J; Dimachkie, Mazen M; Floeter, Mary Kay; Mitsumoto, Hiroshi
2015-11-01
Primary lateral sclerosis is characterized by insidious onset of progressive upper motor neuron dysfunction in the absence of clinical signs of lower motor neuron involvement. Patients experience stiffness; decreased balance and coordination; mild weakness; and, if the bulbar region is affected, difficulty speaking and swallowing, and emotional lability. The diagnosis is made based on clinical history, typical examination findings, and diagnostic testing negative for other causes of upper motor neuron dysfunction. Electromyogram is normal, or only shows mild neurogenic findings in a few muscles, not meeting El Escorial criteria. Treatment is largely supportive. Copyright © 2015 Elsevier Inc. All rights reserved.
Keller, Peter E.; Novembre, Giacomo; Hove, Michael J.
2014-01-01
Human interaction often requires simultaneous precision and flexibility in the coordination of rhythmic behaviour between individuals engaged in joint activity, for example, playing a musical duet or dancing with a partner. This review article addresses the psychological processes and brain mechanisms that enable such rhythmic interpersonal coordination. First, an overview is given of research on the cognitive-motor processes that enable individuals to represent joint action goals and to anticipate, attend and adapt to other's actions in real time. Second, the neurophysiological mechanisms that underpin rhythmic interpersonal coordination are sought in studies of sensorimotor and cognitive processes that play a role in the representation and integration of self- and other-related actions within and between individuals' brains. Finally, relationships between social–psychological factors and rhythmic interpersonal coordination are considered from two perspectives, one concerning how social-cognitive tendencies (e.g. empathy) affect coordination, and the other concerning how coordination affects interpersonal affiliation, trust and prosocial behaviour. Our review highlights musical ensemble performance as an ecologically valid yet readily controlled domain for investigating rhythm in joint action. PMID:25385772
Proximal arm kinematics affect grip force-load force coordination
Vermillion, Billy C.; Lum, Peter S.
2015-01-01
During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P < 0.001). Biomechanical coupling between extrinsic hand muscles and the elbow joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio). PMID:26289460
Interlimb Coordination: An Important Facet of Gross-Motor Ability
ERIC Educational Resources Information Center
Bobbio, Tatiana; Gabbard, Carl; Cacola, Priscila
2009-01-01
Motor development attains landmark significance during early childhood. Although early childhood educators may be familiar with the gross-motor skill category, the subcategory of interlimb coordination needs greater attention than it typically receives from teachers of young children. Interlimb coordination primarily involves movements requiring…
Belnap, Starlie C; Lickliter, Robert
2017-06-01
Sensory-motor development begins early during embryogenesis and is influenced by sensory experience. Little is known about the prenatal factors that influence the development of motor coordination. Here we investigated whether and to what extent prenatal light experience can influence the development of motor coordination in bobwhite quail hatchlings. Quail embryos were incubated under four light conditions: no light (dark), 2h of total light (2HR), 6h of total light (6HR), and diffused sunlight (controls). Hatchlings were video recording walking down a runway at three developmental ages (12, 24, and 48h). Videos were assessed for forward locomotion, a measurement of motor coordination, falls, a measurement of motor instability, and motivation to complete the task. We anticipated a linear decline of coordination with a reduction in prenatal light experience and improved coordination with age. Furthermore, as motor coordination becomes more laborious we anticipated motivation to complete the task would decline. However, our findings revealed hatchlings did not uniformly improve with age as expected, nor did the reduction of light result in a linear reduction in motor coordination. Instead, we found a more complex relationship with 6HR and 2HR hatchlings showing distinct patterns of stability and instability. Similarly, we found a reduction in motivation within the 6HR light condition. It appears that prenatal light exposure influences the development of postnatal motor coordination and we discuss these finding in light of neurodevelopmental processes influenced by light experience. Copyright © 2017 Elsevier B.V. All rights reserved.
Aprigliano, Federica; Martelli, Dario; Tropea, Peppino; Pasquini, Guido; Micera, Silvestro; Monaco, Vito
2017-09-01
This study was aimed at verifying whether aging modifies intralimb coordination strategy during corrective responses elicited by unexpected slip-like perturbations delivered during steady walking on a treadmill. To this end, 10 young and 10 elderly subjects were asked to manage unexpected slippages of different intensities. We analyzed the planar covariation law of the lower limb segments, using the principal component analysis, to verify whether elevation angles of older subjects covaried along a plan before and after the perturbation. Results showed that segments related to the perturbed limbs of both younger and older people do not covary after all perturbations. Conversely, the planar covariation law of the unperturbed limb was systematically held for younger and older subjects. These results occurred despite differences in spatio-temporal and kinematic parameters being observed among groups and perturbation intensities. Overall, our analysis revealed that aging does not affect intralimb coordination during corrective responses induced by slip-like perturbation, suggesting that both younger and older subjects adopt this control strategy while managing sudden and unexpected postural transitions of increasing intensities. Accordingly, results corroborate the hypothesis that balance control emerges from a governing set of biomechanical invariants, that is, suitable control schemes (e.g., planar covariation law) shared across voluntary and corrective motor behaviors, and across different sensory contexts due to different perturbation intensities, in both younger and older subjects. In this respect, our findings provide further support to investigate the effects of specific task training programs to counteract the risk of fall. NEW & NOTEWORTHY This study was aimed at investigating how aging affects the intralimb coordination of lower limb segments, described by the planar covariation law, during unexpected slip-like perturbations of increasing intensity. Results revealed that neither the aging nor the perturbation intensity affects this coordination strategy. Accordingly, we proposed that the balance control emerges from an invariant set of control schemes shared across different sensory motor contexts and despite age-related neuromuscular adaptations. Copyright © 2017 the American Physiological Society.
Losing dexterity: patterns of impaired coordination of finger movements in musician’s dystonia
Furuya, Shinichi; Tominaga, Kenta; Miyazaki, Fumio; Altenmüller, Eckart
2015-01-01
Extensive training can bring about highly-skilled action, but may also impair motor dexterity by producing involuntary movements and muscular cramping, as seen in focal dystonia (FD) and tremor. To elucidate the underlying neuroplastic mechanisms of FD, the present study addressed the organization of finger movements during piano performance in pianists suffering from the condition. Principal component (PC) analysis identified three patterns of fundamental joint coordination constituting finger movements in both patients and controls. The first two coordination patterns described less individuated movements between the “dystonic” finger and key-striking fingers for patients compared to controls. The third coordination pattern, representing the individuation of movements between the middle and ring fingers, was evident during a sequence of strikes with these fingers in controls, which was absent in the patients. Consequently, rhythmic variability of keystrokes was more pronounced during this sequence of strikes for the patients. A stepwise multiple-regression analysis further identified greater variability of keystrokes for individuals displaying less individuated movements between the affected and striking fingers. The findings suggest that FD alters dexterous joint coordination so as to lower independent control of finger movements, and thereby degrades fine motor control. PMID:26289433
An Examination of the Relationship between Motor Coordination and Executive Functions in Adolescents
ERIC Educational Resources Information Center
Rigoli, Daniela; Piek, Jan P.; Kane, Robert; Oosterlaan, Jaap
2012-01-01
Aim: Research suggests important links between motor coordination and executive functions. The current study examined whether motor coordination predicts working memory, inhibition, and switching performance, extending previous research by accounting for attention-deficit-hyperactivity disorder (ADHD) symptomatology and other confounding factors,…
Toll-Like Receptor 4 Deficiency Impairs Motor Coordination
Zhu, Jian-Wei; Li, Yi-Fei; Wang, Zhao-Tao; Jia, Wei-Qiang; Xu, Ru-Xiang
2016-01-01
The cerebellum plays an essential role in balance and motor coordination. Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex and are critical for the execution of its functions, including motor coordination. Toll-like receptor (TLR) 4 is involved in the innate immune response and is abundantly expressed in the central nervous system; however, little is known about its role in cerebellum-related motor functions. To address this question, we evaluated motor behavior in TLR4 deficient mice. We found that TLR4−∕− mice showed impaired motor coordination. Morphological analyses revealed that TLR4 deficiency was associated with a reduction in the thickness of the molecular layer of the cerebellum. TLR4 was highly expressed in PCs but not in Bergmann glia or cerebellar granule cells; however, loss of TLR4 decreased the number of PCs. These findings suggest a novel role for TLR4 in cerebellum-related motor coordination through maintenance of the PC population. PMID:26909014
Research and simulation of the decoupling transformation in AC motor vector control
NASA Astrophysics Data System (ADS)
He, Jiaojiao; Zhao, Zhongjie; Liu, Ken; Zhang, Yongping; Yao, Tuozhong
2018-04-01
Permanent magnet synchronous motor (PMSM) is a nonlinear, strong coupling, multivariable complex object, and transformation decoupling can solve the coupling problem of permanent magnet synchronous motor. This paper gives a permanent magnet synchronous motor (PMSM) mathematical model, introduces the permanent magnet synchronous motor vector control coordinate transformation in the process of modal matrix inductance matrix transform through the matrix related knowledge of different coordinates of diagonalization, which makes the coupling between the independent, realize the control of motor current and excitation the torque current coupling separation, and derived the coordinate transformation matrix, the thought to solve the coupling problem of AC motor. Finally, in the Matlab/Simulink environment, through the establishment and combination between the PMSM ontology, coordinate conversion module, built the simulation model of permanent magnet synchronous motor vector control, introduces the model of each part, and analyzed the simulation results.
Łukawski, Krzysztof; Janowska, Agnieszka; Czuczwar, Stanisław J
2015-01-01
Losartan and telmisartan, angiotensin AT1 receptor antagonists, are widely used antihypertensive drugs in patients. It is also known that arterial hypertension is often present in people with epilepsy, therefore, drug interactions between AT1 receptor antagonists and antiepileptic drugs can occur in clinical practice. The aim of the current study was to assess the effect of losartan and telmisartan on the anticonvulsant activity of tiagabine, a second-generation antiepileptic drug, in mice. Additionally, the effect of the combined treatment with AT1 receptor antagonists and TGB on long-term memory and motor coordination has been assessed in animals. The study was performed on male Swiss mice. Convulsions were examined in the maximal electroshock seizure threshold test. Long-term memory was measured in the passive-avoidance task and motor coordination was evaluated in the chimney test. AT1 receptor antagonists and TGB were administered intraperitoneally. Losartan (50 mg/kg) or telmisartan (30 mg/kg) did not influence the anticonvulsant activity of TGB applied at doses of 2, 4 and 6 mg/kg. However, both AT1 receptor antagonists in combinations with TGB (6 mg/kg) impaired motor coordination in the chimney test. The concomitant treatment of the drugs did not decrease retention in the passive avoidance task. It is suggested that losartan and telmisartan should not affect the anticonvulsant action of TGB in people with epilepsy. Because the combined treatment with AT1 receptor antagonists and TGB led to neurotoxic effects in animals, caution is advised during concomitant use of these drugs in patients.
Motor Coordination in Autism Spectrum Disorders: A Synthesis and Meta-Analysis
ERIC Educational Resources Information Center
Fournier, Kimberly A.; Hass, Chris J.; Naik, Sagar K.; Lodha, Neha; Cauraugh, James H.
2010-01-01
Are motor coordination deficits an underlying cardinal feature of Autism Spectrum Disorders (ASD)? Database searches identified 83 ASD studies focused on motor coordination, arm movements, gait, or postural stability deficits. Data extraction involved between-group comparisons for ASD and typically developing controls (N = 51). Rigorous…
Fine and gross motor skills differ between healthy-weight and obese children.
Gentier, Ilse; D'Hondt, Eva; Shultz, Sarah; Deforche, Benedicte; Augustijn, Mireille; Hoorne, Sofie; Verlaecke, Katja; De Bourdeaudhuij, Ilse; Lenoir, Matthieu
2013-11-01
Within the obesity literature, focus is put on the link between weight status and gross motor skills. However, research on fine motor skills in the obese (OB) childhood population is limited. Therefore, the present study focused on possible weight related differences in gross as well as fine motor skill tasks. Thirty-four OB children (12 ♀ and 22 ♂, aged 7-13 years) were recruited prior to participating in a multidisciplinary treatment program at the Zeepreventorium (De Haan, Belgium). Additionally, a control group of 34 age and gender-matched healthy-weight (HW) children was included in the study. Anthropometric measures were recorded and gross and fine motor skills were assessed using the Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2). Results were analyzed by independent samples t-tests, multivariate analysis of variance, and a chi-squared test. Being OB was detrimental for all subtests evaluating gross motor skill performance (i.e., upper-limb coordination, bilateral coordination, balance, running speed and agility, and strength). Furthermore, OB children performed worse in fine motor precision and a manual dexterity task, when compared to their HW peers. No group differences existed for the fine motor integration task. Our study provides evidence that lower motor competence in OB children is not limited to gross motor skills alone; OB children are also affected by fine motor skill problems. Further investigation is warranted to provide possible explanations for these differences. It is tentatively suggested that OB children experience difficulties with the integration and processing of sensory information. Future research is needed to explore whether this assumption is correct and what the underlying mechanism(s) could be. Copyright © 2013 Elsevier Ltd. All rights reserved.
Moreira, N; Sandini, T M; Reis-Silva, T M; Navas-Suáresz, P; Auada, A V V; Lebrun, I; Flório, J C; Bernardi, M M; Spinosa, H S
2017-12-01
Ivermectin (IVM) is a macrocyclic lactone used for the treatment of parasitic infections and widely used in veterinary medicine as endectocide. In mammals, evidence indicates that IVM interacts with γ-aminobutyric acid (GABA)-mediated chloride channels. GABAergic system is involved in the manifestation of sexual behavior. We previously found that IVM at therapeutic doses did not alter sexual behavior in male rats, but at a higher dose, the appetitive phase of sexual behavior was impaired. Thus, we investigated whether the reduction of sexual behavior that was previously observed was a consequence of motor or motivational deficits that are induced by IVM. Data showed significant decrease in striatal dopaminergic system activity and lower testosterone levels but no effects on sexual motivation or penile erection. These findings suggest IVM may activate the GABAergic system and reduce testosterone levels, resulting in a reduction of motor coordination as consequence of the inhibition of striatal dopamine release. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nguon, K.; Ladd, B.; Sajdel-Sulkowska, E. M.
2006-01-01
We previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that neonatal cerebellar structure and motor coordination may be particularly vulnerable to the effects of hypergravity during specific developmental stages. To test this hypothesis, we compared neurodevelopment, motor behavior and cerebellar structure in rat neonates exposed to 1.65 G on a 24-ft centrifuge during discrete periods of time: the 2nd week of pregnancy [gestational day (G) 8 through G15; group A], the 3rd week of pregnancy (G15 through birth on G22/G23; group B), the 1st week of nursing [birth through postnatal day (P) 6; group C], the 2nd and 3rd weeks of nursing (P6 through P21; group D), the combined 2nd and 3rd weeks of pregnancy and nursing (G8 through P21; group E) and stationary control (SC) neonates (group F). Prenatal exposure to hypergravity resulted in intrauterine growth retardation as reflected by a decrease in the number of pups in a litter and lower average mass at birth. Exposure to hypergravity immediately after birth impaired the righting response on P3, while the startle response in both males and females was most affected by exposure during the 2nd and 3rd weeks after birth. Hypergravity exposure also impaired motor functions, as evidenced by poorer performance on a rotarod; while both males and females exposed to hypergravity during the 2nd and 3rd weeks after birth performed poorly on P21, male neonates were most dramatically affected by exposure to hypergravity during the second week of gestation, when the duration of their recorded stay on the rotarod was one half that of SC males. Cerebellar mass was most reduced by later postnatal exposure. Thus, for the developing rat cerebellum, the postnatal period that overlaps the brain growth spurt is the most vulnerable to hypergravity. However, male motor behavior is also affected by midpregnancy exposure to hypergravity, suggesting discrete and sexually dimorphic windows of vulnerability of the developing central nervous system to environmental perturbations.
Smith, Lee; Fisher, Abigail; Hamer, Mark
2015-06-10
Higher levels of gross motor coordination are positively associated with physical activity in childhood, but little is known about how they relate to sedentary behaviour. The aim of this study was to investigate the longitudinal association between gross motor coordination at childhood and sedentary behaviour in adolescence and adulthood. Data were from the 1970 British Cohort Study (the age 10, 16, and 42-year surveys). At age 10 the participant's mother provided information on how often participants watched TV and played sports and a health visitor administered several tests to assess gross motor coordination. At aged 16 and 42-years participants reported their daily screen and TV time, respectively, and physical activity status. We examined associations between gross motor coordination at age 10 with sedentary behaviour and physical activity at age 16 and 42, using logistic regression. In multivariable models, higher levels of gross motor coordination were associated with lower odds of high screen time (n = 3073; OR 0.79, 95% CI 0.64, 0.98) at 16-years although no associations with physical activity were observed (OR 1.16, 95% CI 0.93, 1.44). Similar associations were observed with TV time in adulthood when participants were aged 42, and in addition high gross motor coordination was also associated with physical activity participation (n = 4879; OR 1.18, 95 % CI 1.02, 1.36). Intervention efforts to increase physical activity participation and reduce sedentary behaviour over the life course may be best targeted towards children with low gross motor coordination.
ERIC Educational Resources Information Center
Robertson, Scott Michael
2013-01-01
This dissertation investigated cyber- and face-to-face bullying of autistic youth (aged 13-18). Autism represents a neurological-developmental disability that affects language and communication, socialization, sensory processing, motor coordination, and thinking around planning, self-regulation, and self-reflection. Prior studies indicate that…
ERIC Educational Resources Information Center
Nicholi, Armand M., Jr.
1983-01-01
This paper focuses on current knowledge about adverse biological and psychological affects of marijuana use, with special reference to risks for college students. Short-term effects on intellectual functioning and perceptual-motor coordination and long-term effects on reproduction and motivation are highlighted. (PP)
Disruption of reciprocal coordination by a medial frontal stroke sparing the corpus callosum.
Kluger, Benzi M; Heilman, Kenneth M
2007-12-01
Aleksandr Luria described several tests of higher motor function, including the "reciprocal coordination" test of bimanual coordination. Although these tests are commonly used to assess frontal lobe function, their specific neuroanatomic underpinnings are not completely understood. We describe a man with a medial frontal stroke sparing the corpus callosum with a defect in Luria's reciprocal coordination test but otherwise intact motor abilities, including other tests of higher motor function.
The physiotherapeutic context of loss of dominant arm function due to occupational accidents.
Kostiukow, Anna; Kaluga, Elżbieta; Samborski, Włodzimierz; Rostkowska, Elżbieta
2016-12-23
The study examines the problem of dominant arm function loss in rural adult patients due to work-related accidents. The types of risks involved in farmyard work include falling from a height, manually moving loads, overturning/accident whilst driving an agricultural tractor, noise and vibration, use of pesticides, and the risk of being cut or injured. The study focuses on adaptation of the non-dominant arm. The main aim of the study was evaluation of visual-motor coordination on the basis of performance of the non-dominant hand in patients after the loss of function of the dominant arm. The research sample consisted of 52 patients with a permanent or temporary loss of function or severely limited function of the dominant arm. The subjects were patients with arm amputations due to various occupational injuries sustained while operating agricultural and construction machinery and forestry equipment, following traumas or complicated medical surgeries of the arm, or due to car accidents. The following tests were applied in the analysis: I) Dufour cross-shaped apparatus test for assessing visual motor-coordination; II) paper-and-pencil tests and the Relay Baton motor fitness test; III) anthropometric measurements; IV) Edinburgh Handedness Inventory; and V) a questionnaire survey. The results of the apparatus and motor tests indicate the same tendency: reaction to stimuli measured on the basis of performance of the non-dominant arm is longer in shorter and older patients. Visual-motor coordination, as measured by the performance of the non-dominant arm, is significantly affected by the subject's body height and arm length.
Tomas-Roig, J; Piscitelli, F; Gil, V; Del Río, J A; Moore, T P; Agbemenyah, H; Salinas-Riester, G; Pommerenke, C; Lorenzen, S; Beißbarth, T; Hoyer-Fender, S; Di Marzo, V; Havemann-Reinecke, U
2016-04-15
Prolonged and sustained stimulation of the hypothalamo-pituitary-adrenal axis have adverse effects on numerous brain regions, including the cerebellum. Motor coordination and motor learning are essential for animal and require the regulation of cerebellar neurons. The G-protein-coupled cannabinoid CB1 receptor coordinates synaptic transmission throughout the CNS and is of highest abundance in the cerebellum. Accordingly, the aim of this study was to investigate the long-lasting effects of chronic psychosocial stress on motor coordination and motor learning, CB1 receptor expression, endogenous cannabinoid ligands and gene expression in the cerebellum. After chronic psychosocial stress, motor coordination and motor learning were impaired as indicated the righting reflex and the rota-rod. The amount of the endocannabinoid 2-AG increased while CB1 mRNA and protein expression were downregulated after chronic stress. Transcriptome analysis revealed 319 genes differentially expressed by chronic psychosocial stress in the cerebellum; mainly involved in synaptic transmission, transmission of nerve impulse, and cell-cell signaling. Calreticulin was validated as a stress candidate gene. The present study provides evidence that chronic stress activates calreticulin and might be one of the pathological mechanisms underlying the motor coordination and motor learning dysfunctions seen in social defeat mice. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bart, Orit; Daniel, Liron; Dan, Orrie; Bar-Haim, Yair
2013-01-01
Individuals with attention deficit hyperactive disorder (ADHD) often have coexisting developmental coordination disorder (DCD). The positive therapeutic effect of methylphenidate on ADHD symptoms is well documented, but its effects on motor coordination are less studied. We assessed the influence of methylphenidate on motor performance in children…
ERIC Educational Resources Information Center
Kostrubiec, Viviane; Huys, Raoul; Jas, Brunhilde; Kruck, Jeanne
2018-01-01
Abnormal perceptual-motor coordination is hypothesized here to be involved in social deficits of autism spectrum disorder (ASD). To test this hypothesis, high functioning children with ASD and typical controls, similar in age as well as verbal and perceptive performance, performed perceptual-motor coordination tasks and several social competence…
Ho, S M
1997-01-01
1. The forelimb motor behaviour of developing wallaby was studied. A clock-like alternating movement was reactivated whenever the animal was removed from the pouch. 2. Forelimb stepping frequency increased during the first 3 weeks of development, while the phase relationship remained constant. Forelimb activity could be affected by altering the afferent feedback from the contralateral limb, or an increase in ambient temperature. 3. In vitro experiments were performed using an isolated brainstem-spinal cord preparation from animals up to 6 weeks postnatal. Fictive locomotor activity could be evoked by electrical stimulation or bath-applied NMDA (< 10 microM). 4. Bath-applied strychnine (10-25 microM) and bicuculline (10-50 microM) disrupted the phase relationship between motor pools, while rhythmic motor discharge remained in the absence of these inhibitory pathways. 5. The present findings indicate that the pattern generator that underlies the robust forelimb movement during the first journey to the pouch is retained for different motor functions during in-pouch development. The neural network that underlies such behaviour can be divided into two major components, a rhythm generator within each hemicord, and a pattern co-ordinating pathway which involve both glycinergic and GABAergic interneurones. PMID:9218221
Cignetti, Fabien; Vaugoyeau, Marianne; Fontan, Aurelie; Jover, Marianne; Livet, Marie-Odile; Hugonenq, Catherine; Audic, Frédérique; Chabrol, Brigitte; Assaiante, Christine
2018-05-01
Feedforward and online controls are two facets of predictive motor control from internal models, which is suspected to be impaired in learning disorders. We examined whether the feedforward component is affected in children (8-12 years) with developmental dyslexia (DD) and/or with developmental coordination disorder (DCD) compared to typically developing (TD) children. Children underwent a bimanual unloading paradigm during which a load supported to one arm, the postural arm, was either unexpectedly unloaded by a computer or voluntary unloaded by the subject with the other arm. All children showed a better stabilization (lower flexion) of the postural arm and an earlier inhibition of the arm flexors during voluntary unloading, indicating anticipation of unloading. Between-group comparisons of kinematics and electromyographic activity of the postural arm revealed that the difference during voluntary unloading was between DD-DCD children and the other groups, with the former showing a delayed inhibition of the flexor muscles. Deficit of the feedforward component of motor control may particularly apply to comorbid subtypes, here the DD-DCD subtype. The development of a comprehensive framework for motor performance deficits in children with learning disorders will be achieved only by dissociating key components of motor prediction and focusing on subtypes and comorbidities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Keller, Peter E; Novembre, Giacomo; Hove, Michael J
2014-12-19
Human interaction often requires simultaneous precision and flexibility in the coordination of rhythmic behaviour between individuals engaged in joint activity, for example, playing a musical duet or dancing with a partner. This review article addresses the psychological processes and brain mechanisms that enable such rhythmic interpersonal coordination. First, an overview is given of research on the cognitive-motor processes that enable individuals to represent joint action goals and to anticipate, attend and adapt to other's actions in real time. Second, the neurophysiological mechanisms that underpin rhythmic interpersonal coordination are sought in studies of sensorimotor and cognitive processes that play a role in the representation and integration of self- and other-related actions within and between individuals' brains. Finally, relationships between social-psychological factors and rhythmic interpersonal coordination are considered from two perspectives, one concerning how social-cognitive tendencies (e.g. empathy) affect coordination, and the other concerning how coordination affects interpersonal affiliation, trust and prosocial behaviour. Our review highlights musical ensemble performance as an ecologically valid yet readily controlled domain for investigating rhythm in joint action. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Chivers, Paola; Larkin, Dawne; Rose, Elizabeth; Beilin, Lawrence; Hands, Beth
2013-10-01
This study examined whether lower motor performance scores can be full attributed to poor coordination, or whether weight related morphological constraints may also affect motor performance. Data for 666 children and adolescents from the longitudinal Western Australian Pregnancy Cohort (Raine) Study were grouped into normal weight, overweight and obese categories based on the International Obesity Task Force cut points. Participants completed the 10-item McCarron Assessment of Neuromuscular Development (MAND) at the 10 and 14 year follow-up. The prevalence of overweight and obese participants classified with mild or moderate motor difficulties was not different from the normal weight group at 10 years (χ2 = 5.8 p = .215), but higher at 14 years (χ2 = 11.3 p = .023). There were no significant differences in overall motor performance scores between weight status groups at 10 years, but at 14 years, the normal weight group achieved better scores than the obese group (p<.05). For specific items, the normal weight group consistently scored higher than the overweight and obese groups on the jump task at 10 (p<.001) and 14 (p<.01)years but lower on the hand strength task at both ages (p<.01). Our findings raise the question as to whether some test items commonly used for assessing motor competence are appropriate for an increasingly overweight and obese population. Copyright © 2013 Elsevier B.V. All rights reserved.
Is auditory perceptual timing a core deficit of developmental coordination disorder?
Trainor, Laurel J; Chang, Andrew; Cairney, John; Li, Yao-Chuen
2018-05-09
Time is an essential dimension for perceiving and processing auditory events, and for planning and producing motor behaviors. Developmental coordination disorder (DCD) is a neurodevelopmental disorder affecting 5-6% of children that is characterized by deficits in motor skills. Studies show that children with DCD have motor timing and sensorimotor timing deficits. We suggest that auditory perceptual timing deficits may also be core characteristics of DCD. This idea is consistent with evidence from several domains, (1) motor-related brain regions are often involved in auditory timing process; (2) DCD has high comorbidity with dyslexia and attention deficit hyperactivity, which are known to be associated with auditory timing deficits; (3) a few studies report deficits in auditory-motor timing among children with DCD; and (4) our preliminary behavioral and neuroimaging results show that children with DCD at age 6 and 7 have deficits in auditory time discrimination compared to typically developing children. We propose directions for investigating auditory perceptual timing processing in DCD that use various behavioral and neuroimaging approaches. From a clinical perspective, research findings can potentially benefit our understanding of the etiology of DCD, identify early biomarkers of DCD, and can be used to develop evidence-based interventions for DCD involving auditory-motor training. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of The New York Academy of Sciences.
Elaboration of the Environmental Stress Hypothesis–Results from a Population-Based 6-Year Follow-Up
Wagner, Matthias; Jekauc, Darko; Worth, Annette; Woll, Alexander
2016-01-01
The aim of this paper was to contribute to the elaboration of the Environmental Stress Hypothesis framework by testing eight hypotheses addressing the direct impact of gross motor coordination problems in elementary-school on selected physical, behavioral and psychosocial outcomes in adolescence. Results are based on a longitudinal sample of 940 participants who were (i) recruited as part of a population-based representative survey on health, physical fitness and physical activity in childhood and adolescence, (ii) assessed twice within 6 years, between the ages of 6 and 10 years old as well as between the ages of 12 and 16 years old (Response Rate: 55.9%) and (iii) classified as having gross motor coordination problems (N = 115) or having no gross motor coordination problems (N = 825) at baseline. Motor tests from the Körperkoordinationstest, measures of weight and height, a validated physical activity questionnaire as well as the Strength and Difficulties Questionnaire were conducted. Data were analyzed by use of binary logistic regressions. Results indicated that elementary-school children with gross motor coordination problems show a higher risk of persistent gross motor coordination problems (OR = 7.99, p < 0.001), avoiding organized physical activities (OR = 1.53, p < 0.05), an elevated body mass (OR = 1.78, p < 0.05), bonding with sedentary peers (OR = 1.84, p < 0.01) as well as emotional (OR = 1.73, p < 0.05) and conduct (OR = 1.79, p < 0.05) problems in adolescence in comparison to elementary-school children without gross motor coordination problems. However, elementary-school children with gross motor coordination problems did not show a significantly higher risk of peer problems (OR = 1.35, p = 0.164) or diminished prosocial behavior (OR = 1.90, p = 0.168) in adolescence, respectively in comparison to elementary-school children without gross motor coordination problems. This study is the first to provide population-based longitudinal data ranging from childhood to adolescence in the context of the Environmental Stress Hypothesis which can be considered a substantial methodological progress. In summary, gross motor coordination problems represent a serious issue for a healthy transition from childhood to adolescence which substantiates respective early movement interventions. PMID:28018254
The Influence of Motor Skills on Measurement Accuracy
NASA Astrophysics Data System (ADS)
Brychta, Petr; Sadílek, Marek; Brychta, Josef
2016-10-01
This innovative study trying to do interdisciplinary interface at first view different ways fields: kinantropology and mechanical engineering. A motor skill is described as an action which involves the movement of muscles in a body. Gross motor skills permit functions as a running, jumping, walking, punching, lifting and throwing a ball, maintaining a body balance, coordinating etc. Fine motor skills captures smaller neuromuscular actions, such as holding an object between the thumb and a finger. In mechanical inspection, the accuracy of measurement is most important aspect. The accuracy of measurement to some extent is also dependent upon the sense of sight or sense of touch associated with fine motor skills. It is therefore clear that the level of motor skills will affect the precision and accuracy of measurement in metrology. Aim of this study is literature review to find out fine motor skills level of individuals and determine the potential effect of different fine motor skill performance on precision and accuracy of mechanical engineering measuring.
Reaching while standing in microgravity: a new postural solution to oversimplify movement control.
Casellato, Claudia; Tagliabue, Michele; Pedrocchi, Alessandra; Papaxanthis, Charalambos; Ferrigno, Giancarlo; Pozzo, Thierry
2012-01-01
Many studies showed that both arm movements and postural control are characterized by strong invariants. Besides, when a movement requires simultaneous control of the hand trajectory and balance maintenance, these two movement components are highly coordinated. It is well known that the focal and postural invariants are individually tightly linked to gravity, much less is known about the role of gravity in their coordination. It is not clear whether the effect of gravity on different movement components is such as to keep a strong movement-posture coordination even in different gravitational conditions or whether gravitational information is necessary for maintaining motor synergism. We thus set out to analyze the movements of eleven standing subjects reaching for a target in front of them beyond arm's length in normal conditions and in microgravity. The results showed that subjects quickly adapted to microgravity and were able to successfully accomplish the task. In contrast to the hand trajectory, the postural strategy was strongly affected by microgravity, so to become incompatible with normo-gravity balance constraints. The distinct effects of gravity on the focal and postural components determined a significant decrease in their reciprocal coordination. This finding suggests that movement-posture coupling is affected by gravity, and thus, it does not represent a unique hardwired and invariant mode of control. Additional kinematic and dynamic analyses suggest that the new motor strategy corresponds to a global oversimplification of movement control, fulfilling the mechanical and sensory constraints of the microgravity environment.
Amador-Ruiz, Santiago; Gutierrez, David; Martínez-Vizcaíno, Vicente; Gulías-González, Roberto; Pardo-Guijarro, María J; Sánchez-López, Mairena
2018-07-01
Motor competence (MC) affects numerous aspects of children's daily life. The aims of this study were to: evaluate MC, provide population-based percentile values for MC; and determine the prevalence of developmental coordination disorder (DCD) in Spanish schoolchildren. This cross-sectional study included 1562 children aged 4 to 6 years from Castilla-La Mancha, Spain. MC was assessed using the Movement Assessment Battery for Children-Second Edition. Values were analyzed according to age, sex, socioeconomic status (SES), environment (rural/urban), and type of school. Boys scored higher than girls in aiming and catching, whereas girls aged 6 scored higher than boys in balance. Children living in rural areas and those attending to public schools obtained better scores in aiming and catching than those from urban areas and private schools. The prevalence of DCD was 9.9%, and 7.5% of children were at risk of having movement problems. Motor test scores can represent a valuable reference to evaluate and compare the MC in schoolchildren. Schools should identify motor problems at early ages and design initiatives which prevent or mitigate them. © 2018, American School Health Association.
Simulated visual field loss does not alter turning coordination in healthy young adults.
Murray, Nicholas G; Ponce de Leon, Marlina; Ambati, V N Pradeep; Saucedo, Fabricio; Kennedy, Evan; Reed-Jones, Rebecca J
2014-01-01
Turning, while walking, is an important component of adaptive locomotion. Current hypotheses regarding the motor control of body segment coordination during turning suggest heavy influence of visual information. The authors aimed to examine whether visual field impairment (central loss or peripheral loss) affects body segment coordination during walking turns in healthy young adults. No significant differences in the onset time of segments or intersegment coordination were observed because of visual field occlusion. These results suggest that healthy young adults can use visual information obtained from central and peripheral visual fields interchangeably, pointing to flexibility of visuomotor control in healthy young adults. Further study in populations with chronic visual impairment and those with turning difficulties are warranted.
Motor Coordination Difficulties and Physical Fitness of Extremely-Low-Birthweight Children
ERIC Educational Resources Information Center
Burns, Yvonne R.; Danks, Marcella; O'Callaghan, Michael J.; Gray, Peter H.; Cooper, David; Poulsen, Leith; Watter, Pauline
2009-01-01
Motor coordination difficulties and poor fitness exist in the extremely low birthweight (ELBW) population. This study investigated the relative impact of motor coordination on the fitness of ELBW children aged 11 to 13 years. One hundred and nine children were recruited to the study: 54 ELBW participants (mean age at assessment 12y 6mo; 31 male,…
Diwadkar, Vaibhav A.; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L.
2017-01-01
The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition. PMID:28278267
Del-Monte, Jonathan; Capdevielle, Delphine; Varlet, Manuel; Marin, Ludovic; Schmidt, Richard C.; Salesse, Robin N.; Bardy, Benoît G.; Boulenger, Jean Philippe; Gély-Nargeot, Marie Christine; Attal, Jérôme; Raffard, Stéphane
2013-01-01
Intermediate endophenotypes emerge as an important concept in the study of schizophrenia. Although research on phenotypes mainly investigated cognitive, metabolic or neurophysiological markers so far, some authors also examined the motor behavior anomalies as a potential trait-marker of the disease. However, no research has investigated social motor coordination despite the possible importance of its anomalies in schizophrenia. The aim of this study was thus to determine whether coordination modifications previously demonstrated in schizophrenia are trait-markers that might be associated with the risk for this pathology. Interpersonal motor coordination in 27 unaffected first-degree relatives of schizophrenia patients and 27 healthy controls was assessed using a hand-held pendulum task to examine the presence of interpersonal coordination impairments in individuals at risk for the disorder. Measures of neurologic soft signs, clinical variables and neurocognitive functions were collected to assess the cognitive and clinical correlates of social coordination impairments in at-risk relatives. After controlling for potential confounding variables, unaffected relatives of schizophrenia patients had impaired intentional interpersonal coordination compared to healthy controls while unintentional interpersonal coordination was preserved. More specifically, in intentional coordination, the unaffected relatives of schizophrenia patients exhibited coordination patterns that had greater variability and in which relatives did not lead the coordination. These results show that unaffected relatives of schizophrenia patients, like the patients themselves, also present deficits in intentional interpersonal coordination. For the first time, these results suggest that intentional interpersonal coordination impairments might be a potential motor intermediate endophenotype of schizophrenia opening new perspectives for early diagnosis. PMID:24106467
Output variability across animals and levels in a motor system
Norris, Brian J; Günay, Cengiz; Kueh, Daniel
2018-01-01
Rhythmic behaviors vary across individuals. We investigated the sources of this output variability across a motor system, from the central pattern generator (CPG) to the motor plant. In the bilaterally symmetric leech heartbeat system, the CPG orchestrates two coordinations in the bilateral hearts with different intersegmental phase relations (Δϕ) and periodic side-to-side switches. Population variability is large. We show that the system is precise within a coordination, that differences in repetitions of a coordination contribute little to population output variability, but that differences between bilaterally homologous cells may contribute to some of this variability. Nevertheless, much output variability is likely associated with genetic and life history differences among individuals. Variability of Δϕ were coordination-specific: similar at all levels in one, but significantly lower for the motor pattern than the CPG pattern in the other. Mechanisms that transform CPG output to motor neurons may limit output variability in the motor pattern. PMID:29345614
Self-Concept of Boys with Developmental Coordination Disorder
ERIC Educational Resources Information Center
Cocks, Neralie; Barton, Belinda; Donelly, Michelle
2009-01-01
Children with Developmental Coordination Disorder (DCD) experience difficulties in motor coordination. During the last decade there has been increasing interest in the psychosocial aspects of children with motor coordination difficulties. To date, the majority of studies have focused on the perceived competence and global self-worth of children…
Fitzpatrick, Paula; Roulier, Stephanie; Duncan, Amie; Richardson, Michael J.; Schmidt, R. C.
2018-01-01
Even high functioning children with Autism Spectrum Disorder (ASD) exhibit impairments that affect their ability to carry out and maintain effective social interactions in multiple contexts. One aspect of subtle nonverbal communication that might play a role in this impairment is the whole-body motor coordination that naturally arises between people during conversation. The current study aimed to measure the time-dependent, coordinated whole-body movements between children with ASD and a clinician during a conversational exchange using tools of nonlinear dynamics. Given the influence that subtle interpersonal coordination has on social interaction feelings, we expected there to be important associations between the dynamic motor movement measures introduced in the current study and the measures used traditionally to categorize ASD impairment (ADOS-2, joint attention and theory of mind). The study found that children with ASD coordinated their bodily movements with a clinician, that these movements were complex and that the complexity of the children’s movements matched that of the clinician’s movements. Importantly, the degree of this bodily coordination was related to higher social cognitive ability. This suggests children with ASD are embodying some degree of social competence during conversations. This study demonstrates the importance of further investigating the subtle but important bodily movement coordination that occurs during social interaction in children with ASD. PMID:29505608
Tafoya, Sara; Aathavan, K.; Schnitzbauer, Joerg; Grimes, Shelley; Jardine, Paul J.; Bustamante, Carlos
2014-01-01
SUMMARY Multimeric, ring-shaped molecular motors rely on the coordinated action of their subunits to perform crucial biological functions. During these tasks, motors often change their operation in response to regulatory signals. Here, we investigate a viral packaging machine as it fills the capsid with DNA and encounters increasing internal pressure. We find that the motor rotates the DNA during packaging and that the rotation per basepair increases with filling. This change accompanies a reduction in the motor’s step size. We propose that these adjustments preserve motor coordination by allowing one subunit to make periodic, specific, and regulatory contacts with the DNA. At high filling, we also observe the down-regulation of the ATP-binding rate and the emergence of long-lived pauses, suggesting a throttling-down mechanism employed by the motor near the completion of packaging. This study illustrates how a biological motor adjusts its operation in response to changing conditions, while remaining highly coordinated. PMID:24766813
Menstrual Cycle-Related Changes of Functional Cerebral Asymmetries in Fine Motor Coordination
ERIC Educational Resources Information Center
Bayer, Ulrike; Hausmann, Markus
2012-01-01
Fluctuating sex hormone levels during the menstrual cycle have been shown to affect functional cerebral asymmetries in cognitive domains. These effects seem to result from the neuromodulatory properties of sex hormones and their metabolites on interhemispheric processing. The present study was carried out to investigate whether functional cerebral…
Thomas, Jennifer D; O'Neill, Teresa M; Dominguez, Hector D
2004-01-01
Prenatal alcohol exposure can disrupt brain development, leading to a variety of behavioral alterations including learning deficits, hyperactivity, and motor dysfunction. We have been investigating the possibility that perinatal choline supplementation may effectively reduce the severity of alcohol's adverse effects on behavioral development. We previously reported that perinatal choline supplementation can ameliorate alcohol-induced learning deficits and hyperactivity in rats exposed to alcohol during development. The present study examined whether perinatal choline supplementation could also reduce the severity of motor deficits induced by alcohol exposure during the third trimester equivalent brain growth spurt. Male neonatal rats were assigned to one of three treatment groups. One group was exposed to alcohol (6.6 g/kg/day) from postnatal days (PD) 4 to 9 via an artificial rearing procedure. Artificially and normally reared control groups were included. One half of subjects from each treatment received daily subcutaneous injections of a choline chloride solution from PD 4 to 30, whereas the other half received saline vehicle injections. On PD 35-37, subjects were tested on a parallel bar motor task, which requires both balance and fine motor coordination. Ethanol-exposed subjects exhibited significant motor impairments compared to both control groups whose performance did not differ significantly from one another. Perinatal choline treatment did not affect motor performance in either ethanol or control subjects. These data indicate that the beneficial effects of perinatal choline supplementation in ethanol-treated subjects are task specific and suggest that choline is more effective in mitigating cognitive deficits compared to motor deficits associated with developmental alcohol exposure.
Breastfeeding and developmental delay: findings from the millennium cohort study.
Sacker, Amanda; Quigley, Maria A; Kelly, Yvonne J
2006-09-01
We investigated whether the duration and exclusivity of breastfeeding affects the likelihood of gross and fine motor delay in infants and examined the effect of factors that might explain any observed differences. The study sample included all term singleton infants who weighed > 2500 g at birth and were not placed in a special care infant unit and whose mothers participated in the first survey of the Millennium Cohort Study. Missing data reduced the sample to 14660 (94%) with complete data. Almost half (47%) of the infants initially were exclusively breastfed, but only 3.5% of these infants were still being fed exclusively on breast milk after 4 months of age, and 34% of infants were not breastfed at all; 9% of the infants were identified with delays in gross motor coordination and 6% with fine motor coordination delays at age 9 months. The proportion of infants who mastered the developmental milestones increased with duration and exclusivity of breastfeeding. Infants who had never been breastfed were 50% more likely to have gross motor coordination delays than infants who had been breastfed exclusively for at least 4 months (10.7% vs 7.3%). Any breast milk also was positively related to development: infants who had never been breastfed were 30% more likely to have gross motor delays than infants who were given some breast milk for up to 2 months (10.7% vs 8.4%). The odds ratios for gross motor delay were not attenuated after adjustment for biological, socioeconomic, or psychosocial factors. Infants who were never breastfed had at least a 40% greater likelihood of fine motor delay than infants who were given breast milk for a prolonged period. Our results suggest that the protective effect of breastfeeding on the attainment of gross motor milestones is attributable to some component(s) of breast milk or feature of breastfeeding and is not simply a product of advantaged social position, education, or parenting style, because control for these factors did not explain any of the observed association. In contrast, the association between breastfeeding and fine motor delay was explained by biological, socioeconomic, and psychosocial factors.
Autism as a developmental disorder in intentional movement and affective engagement
Trevarthen, Colwyn; Delafield-Butt, Jonathan T.
2013-01-01
We review evidence that autistic spectrum disorders have their origin in early prenatal failure of development in systems that program timing, serial coordination and prospective control of movements, and that regulate affective evaluations of experiences. There are effects in early infancy, before medical diagnosis, especially in motor sequencing, selective or exploratory attention, affective expression and intersubjective engagement with parents. These are followed by retardation of cognitive development and language learning in the second or third year, which lead to a diagnosis of ASD. The early signs relate to abnormalities that have been found in brain stem systems and cerebellum in the embryo or early fetal stage, before the cerebral neocortex is functional, and they have clear consequences in infancy when neocortical systems are intensively elaborated. We propose, with evidence of the disturbances of posture, locomotion and prospective motor control in children with autism, as well as of their facial expression of interest and affect, and attention to other persons' expressions, that examination of the psychobiology of motor affective disorders, rather than later developing cognitive or linguistic ones, may facilitate early diagnosis. Research in this area may also explain how intense interaction, imitation or “expressive art” therapies, which respond intimately with motor activities, are effective at later stages. Exceptional talents of some autistic people may be acquired compensations for basic problems with expectant self-regulations of movement, attention and emotion. PMID:23882192
Carlson, Abby G; Rowe, Ellen; Curby, Timothy W
2013-01-01
Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.
NASA Astrophysics Data System (ADS)
Nguon, K.; Ladd, B.; Baxter, M. G.; Sajdel-Sulkowska, E. M.
2006-01-01
We previously reported that the developing rat cerebellum is affected by exposure to hypergravity. In the present study, we explored the hypothesis that the changes in cerebellar structure in hypergravity-exposed rat neonates may affect their motor coordination. Furthermore, we hypothesized that the changes observed at 1.5G will be magnified at higher gravitational loading. To test this hypothesis, we compared motor behavior, cerebellar structure, and protein expression in rat neonates exposed to 1.5 1.75G on a 24-ft centrifuge daily for 22.5 h starting on gestational day (G) 10, through birth on G22/G23 and through postnatal day (P) 21. Exposure to hypergravity impacted the neurodevelopmental process as indicated by: (1) impaired righting response on P3, more than doubling the righting time at 1.75G, and (2) delayed onset of the startle response by one day, from P9 in controls to P10 in hypergravity-exposed pups. Hypergravity exposure resulted in impaired motor functions as evidenced by performance on a rotarod on P21; the duration of the stay on the rotarod recorded for 1.75G pups of both sexes was one tenth that of the stationary control (SC) pups. These changes in motor behavior were associated with cerebellar changes: (1) cerebellar mass on P6 was decreased by 7.5% in 1.5G-exposed male pups, 27.5% in 1.75G-exposed male pups, 17.5% in 1.5G-exposed female pups, and 22.5% in 1.75G female pups and (2) changes in the expression of glial and neuronal proteins. The results of this study suggest that perinatal exposure to hypergravity affects cerebellar development as evidenced by decreased cerebellar mass and altered cerebellar protein expression; cerebellar changes observed in hypergravity-exposed rat neonates are associated with impaired motor behavior. Furthermore, the response to hypergravity appears to be different in male and female neonates. If one accepts that the hypergravity paradigm is a useful animal model with which to predict those biological processes in the CNS affected by microgravity, and because males and females were shown to respond differently to hypergravity, it can be surmised that males and females may respond differently to the microgravity encountered in space.
Dual motor drive vehicle speed synchronization and coordination control strategy
NASA Astrophysics Data System (ADS)
Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing
2018-04-01
Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.
Vandendriessche, Joric B; Vandorpe, Barbara F R; Vaeyens, Roel; Malina, Robert M; Lefevre, Johan; Lenoir, Matthieu; Philippaerts, Renaat M
2012-02-01
Socioeconomic status (SES) is often indicated as a factor that influences physical activity and associated health outcomes. This study examined the relationship between SES and sport participation, morphology, fitness and motor coordination in a sample of 1955 Flemish children 6-11 years of age. Gender, age and SES-specific values for morphologic dimensions, amount and type of sport participation and fitness and motor coordination tests were compared. SES was positively and significantly associated with sport participation and sports club membership in both sexes. Although differences were not consistently significant, morphologic dimensions and tests of fitness and motor coordination showed a trend in favor of children from higher SES. The results suggest that public and local authorities should consider providing equal opportunities for children in all social strata and especially those in the lower SES to experience the beneficial effects of sport participation through which they can enhance levels of physical fitness and motor coordination.
When music tempo affects the temporal congruence between physical practice and motor imagery.
Debarnot, Ursula; Guillot, Aymeric
2014-06-01
When people listen to music, they hear beat and a metrical structure in the rhythm; these perceived patterns enable coordination with the music. A clear correspondence between the tempo of actual movement (e.g., walking) and that of music has been demonstrated, but whether similar coordination occurs during motor imagery is unknown. Twenty participants walked naturally for 8m, either physically or mentally, while listening to slow and fast music, or not listening to anything at all (control condition). Executed and imagined walking times were recorded to assess the temporal congruence between physical practice (PP) and motor imagery (MI). Results showed a difference when comparing slow and fast time conditions, but each of these durations did not differ from soundless condition times, hence showing that body movement may not necessarily change in order to synchronize with music. However, the main finding revealed that the ability to achieve temporal congruence between PP and MI times was altered when listening to either slow or fast music. These data suggest that when physical movement is modulated with respect to the musical tempo, the MI efficacy of the corresponding movement may be affected by the rhythm of the music. Practical applications in sport are discussed as athletes frequently listen to music before competing while they mentally practice their movements to be performed. Copyright © 2014 Elsevier B.V. All rights reserved.
The effect of oral motor activity on the athletic performance of professional golfers
Ringhof, Steffen; Hellmann, Daniel; Meier, Florian; Etz, Eike; Schindler, Hans J.; Stein, Thorsten
2015-01-01
Human motor control is based on complex sensorimotor processes. Recent research has shown that neuromuscular activity of the craniomandibular system (CMS) might affect human motor control. In particular, improvements in postural stability and muscle strength have been observed as a result of voluntary jaw clenching. Potential benefits of jaw aligning appliances on muscle strength and golf performance have also been described. These reports are highly contradictory, however, and the oral motor task performed is often unclear. The purpose of our study was, therefore, to investigate the effect of submaximum biting on golf performance via shot precision and shot length over three different distances. Participants were 14 male professional golfers – seven with sleep bruxism and seven without – randomly performing golf shots over 60m, 160m, or driving distance while either biting on an oral splint or biting on their teeth; habitual jaw position served as the control condition. Statistical analysis revealed that oral motor activity did not systematically affect golf performance in respect of shot precision or shot length for 60m, 160 m, or driving distance. These findings were reinforced by impact variables such as club head speed and ball speed, which were also not indicative of significant effects. The results thus showed that the strength improvements and stabilizing effects described previously are, apparently, not transferable to such coordination-demanding sports as golf. This could be due to the divergent motor demands associated with postural control and muscle strength on the one hand and the complex coordination of a golf swing on the other. Interestingly, subjects without sleep bruxism performed significantly better at the short distance (60 m) than those with bruxism. Because of the multifactorial etiology of parafunctional CMS activity, conclusions about the need for dental treatment to improve sports performance are, however, completely unwarranted. PMID:26082747
ERIC Educational Resources Information Center
Cairney, John; Hay, John; Veldhuizen, Scott; Faught, Brent
2011-01-01
Developmental coordination disorder (DCD) is a neuro-developmental disorder characterized by poor fine and/or gross motor coordination. Children with DCD are hypothesized to be at increased risk for overweight and obesity from inactivity due to their motor coordination problems. Although previous studies have found evidence to support this…
ERIC Educational Resources Information Center
Zhu, Yi-Ching; Wu, Sheng K.; Cairney, John
2011-01-01
The purpose of this study was to investigate the associations between obesity and motor coordination ability in Taiwanese children with and without developmental coordination disorder (DCD). 2029 children (1078 boys, 951 girls) aged nine to ten years were chosen randomly from 14 elementary schools across Taiwan. We used bioelectrical impedance…
Gorniak, Stacey L.; McIntyre, Cameron C.; Alberts, Jay L.
2013-01-01
Objective Studies of bimanual actions similar to activities of daily living (ADLs) are currently lacking in evaluating fine motor control in Parkinson’s disease patients implanted with bilateral subthalamic deep brain stimulators. We investigated basic time and force characteristics of a bimanual task that resembles performance of ADLs in a group of bilateral subthalamic deep brain stimulation (DBS) patients. Methods Patients were evaluated in three different DBS parameter conditions off stimulation, on clinically derived stimulation parameters, and on settings derived from a patient-specific computational model. Model-based parameters were computed as a means to minimize spread of current to non-motor regions of the subthalamic nucleus via Cicerone Deep Brain Stimulation software. Patients were evaluated off parkinsonian medications in each stimulation condition. Results The data indicate that DBS parameter state does not affect most aspects of fine motor control in ADL-like tasks; however, features such as increased grip force and grip symmetry varied with the stimulation state. In the absence of DBS parameters, patients exhibited significant grip force asymmetry. Overall UPDRS-III and UPDRS-III scores associated with hand function were lower while patients were experiencing clinically-derived or model-based parameters, as compared to the off-stimulation condition. Conclusion While bilateral subthalamic DBS has been shown to alleviate gross motor dysfunction, our results indicate that DBS may not provide the same magnitude of benefit to fine motor coordination. PMID:24244388
Strength training for a child with suspected developmental coordination disorder.
Menz, Stacy M; Hatten, Kristin; Grant-Beuttler, Marybeth
2013-01-01
Children with developmental coordination disorder (DCD) demonstrate difficulty with feedforward motor control and use varied compensatory strategies. To examine gross motor function changes following strength training in a child with motor control difficulties. A girl aged 6 years 11 months, with apraxia and hypotonia, and demonstrating motor delays consistent with DCD. Twenty-four strength training sessions were completed using a universal exercise unit. Postintervention scores significantly improved on the Bruininks-Oseretsky test of motor proficiency, second edition, and the Canadian occupational performance measure scores and raised the developmental coordination disorder questionnaire, revised 2007, scores above the range where DCD is suspected. Nonsignificant changes in strength were observed. Improved function and significant gains in manual coordination were observed following blocked practice of isolated, simple joint movements during strength training. Improved motor skills may be because of effective use of feedforward control and improved stabilization. Strength training does not rehearse skills using momentum, explaining nonsignificant changes in locomotor or locomotion areas.
ERIC Educational Resources Information Center
Nyden, Agneta; Niklasson, Lena; Stahlberg, Ola; Anckarsater, Henrik; Dahlgren-Sandberg, Annika; Wentz, Elisabet; Rastam, Maria
2010-01-01
Asperger syndrome (AS) and non-verbal learning disability (NLD) are both characterized by impairments in motor coordination, visuo-perceptual abilities, pragmatics and comprehension of language and social understanding. NLD is also defined as a learning disorder affecting functions in the right cerebral hemisphere. The present study investigates…
Supporting Pupils with DCD and ASD with the Transition to Secondary School
ERIC Educational Resources Information Center
Foulder-Hughes, Lynda; Prior, Clare
2014-01-01
Children with autistic spectrum disorders (ASDs) and developmental coordination disorder (DCD) are at an increased risk for a range of motor, sensory and social challenges which affect their ability to function at school. The current small scale, qualitative study sought to investigate how children with ASD and/or DCD felt about the transition to…
Solianik, Rima; Sujeta, Artūras
2018-02-15
The physiological, cognitive state, and motor behavior changes that occur during acute fasting are not completely understood. Thus, the aim of this study was to estimate the effect of 2-day total fasting on evoked stress, mood, brain activity, and cognitive, psychomotor, and motor function in overweight women. Eleven overweight women (body mass index above 25kg/m 2 ) aged 20-30 years were tested under two conditions allocated randomly: 2-day zero-calorie diet with water provided ad libitum and 2-day usual diet. One week before the experiment, aerobic fitness was evaluated. Subjective stress ratings in relation to the diet, autonomic function, prefrontal cortex activity, cognitive performance, psychomotor coordination, and grip strength were evaluated before and after each diet. The study demonstrated that fasting decreased log-transformed high-frequency (HF) power, without affecting heart rate. The relative maximum oxygen uptake was negatively correlated with subjective stress rating and changes in log-transformed HF. Fasting did not affect mood, brain activity, and cognitive, motor, and psychomotor performance. Thus, 2-day total fasting evoked moderate stress with a shift of the autonomic nervous system balance toward sympathetic activity in overweight women. Better aerobic endurance is likely to facilitate the capacity for dealing with acute fasting. Regardless of the evoked stress, cognitive state and motor behavior remained intact. Copyright © 2017 Elsevier B.V. All rights reserved.
Young, Sonia N; VanWye, William R; Wallmann, Harvey W
2018-06-25
To describe the use of sport simulation activities as a form of implicit motor learning training with a geriatric former athlete following a stroke. An active 76-year-old former professional male softball player presented to outpatient physical therapy with medical history of right stroke with left hemiparesis 2 weeks following onset of symptoms of impaired balance, coordination, gait, and motor planning. Initial physical therapy included gait, balance, and coordination training. Additional sport-related balance and coordination activities were later added to the treatment plan. After approximately 3 weeks of treatment, the patient was able to return to work and had dramatically improved balance, coordination, and gait with sport simulation activities. Implicit motor learning techniques were incorporated through sport and job task simulation activities along with task-oriented neuromuscular reeducation. The patient demonstrated improvements with gait, balance, gross motor function, and decreased fall risk.
Does trampolining and anaerobic physical fitness affect sleep?
Buchegger, J; Fritsch, R; Meier-Koll, A; Riehle, H
1991-08-01
The structure of nocturnal sleep of 16 volunteers, participating in the anaerobic sports of trampolining, dancing, and soccer, was monitored by means of polygraphic recordings. Since trampolining requires the acquisition of unfamiliar patterns of motor coordination, it can be considered as a special form of motor learning, whereas the acquisition of motor skills specific for dancing and soccer can be linked with motor patterns of normal biped locomotion. According to this view, an experimental group of 8 volunteers was formed; they participated in a training course of trampolining. In addition, a control group of 8 subjects was recruited, who engaged in one of the other two anaerobic sports. Subjects who had acquired new motor skills during a 13-wk. program in trampolining showed a statistically significant increase in REM-sleep. By contrast, the 8 subjects of the control group showed no considerable changes in REM-sleep. This suggests that efforts in acquiring new and complex motor patterns activate processes specifically involved in the generation of REM stage during nocturnal sleep.
Fransen, Job; Pion, Johan; Vandendriessche, Joric; Vandorpe, Barbara; Vaeyens, Roel; Lenoir, Matthieu; Philippaerts, Renaat M
2012-01-01
The Developmental Model of Sports Participation proposes two pathways towards expertise in sports between 6 and 12 years of age: early specialization and early diversification. This study investigated the effect of sampling various sports and of spending many or few hours in sports on fitness and gross motor coordination. Altogether, 735 boys in three age groups (6-8, 8-10, and 10-12 years) were profiled using a fitness test battery. A computerized physical activity questionnaire was used to obtain data on sports participation. In the eldest group, (M)ANCOVA showed a positive effect of sampling various sports on strength, speed, endurance, and gross motor coordination (P < 0.05). A positive effect of many hours per week spent in sports was apparent in every age group. These data suggest an acute positive effect of many hours in sports and a latent positive effect of early sampling on fitness and gross motor coordination. Multiple comparisons revealed that boys aged 10-12 years, who spent many hours in various sports, performed better on standing broad jump (P < 0.05) and gross motor coordination (P < 0.05) than boys specializing in a single sport. Therefore, our results highlight the importance of spending many hours in sports and sampling various sports in the development of fitness and gross motor coordination.
Inter-cortical Modulation from Premotor to Motor Plasticity.
Huang, Ying-Zu; Chen, Rou-Shayn; Fong, Po-Yu; Rothwell, John C; Chuang, Wen-Li; Weng, Yi-Hsin; Lin, Wey-Yil; Lu, Chin-Song
2018-06-11
Plasticity is involved in daily activities but abnormal plasticity may be deleterious. In this study, we found that motor plasticity could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Such changes in motor plasticity were associated with reduced learning of a simple motor task. We postulate that the premotor cortex adjusts the amount of motor plasticity to modulate motor learning through heterosynaptic metaplasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. This concept could be employed to intervene in diseases with abnormal plasticity. Primary motor cortex (M1) plasticity is known to be influenced by the excitability and prior activation history of M1 itself. However, little is known about how its plasticity is influenced by other areas of the brain. In the present study on humans of either sex who were known to respond to theta burst stimulation from previous studies, we found plasticity of M1 could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Motor plasticity was distorted and disappeared 30 min and 120 min respectively after premotor excitability was suppressed. Further evaluation revealed that such changes in motor plasticity were associated with impaired learning of a simple motor task. We postulate that the premotor cortex modulates the amount of plasticity within M1 through heterosynaptic metaplasticity, and that this may impact on learning of a simple motor task previously shown to be directly affected by M1 plasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. Furthermore, such concepts could be translated into therapeutic approaches for diseases with aberrant plasticity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
A Hopping Mechanism for Cargo Transport by Molecular Motors on Crowded Microtubules
NASA Astrophysics Data System (ADS)
Goldman, Carla
2010-05-01
Most models designed to study the bidirectional movement of cargos as they are driven by molecular motors rely on the idea that motors of different polarities can be coordinated by external agents if arranged into a motor-cargo complex to perform the necessary work Gross, Hither and yon: a review of bidirectional microtubule-based transport (Gross in Phys. Biol. 1:R1-R11, 2004). Although these models have provided us with important insights into these phenomena, there are still many unanswered questions regarding the mechanisms through which the movement of the complex takes place on crowded microtubules. For example (i) how does cargo-binding affect motor motility? and in connection with that - (ii) how does the presence of other motors (and also other cargos) on the microtubule affect the motility of the motor-cargo complex? We discuss these questions from a different perspective. The movement of a cargo is conceived here as a hopping process resulting from the transference of cargo between neighboring motors. In the light of this, we examine the conditions under which cargo might display bidirectional movement even if directed by motors of a single polarity. The global properties of the model in the long-time regime are obtained by mapping the dynamics of the collection of interacting motors and cargos into an asymmetric simple exclusion process (ASEP) which can be resolved using the matrix ansatz introduced by Derrida (Derrida and Evans in Nonequilibrium Statistical Mechanics in One Dimension, pp. 277-304, 1997; Derrida et al. in J. Phys. A 26:1493-1517, 1993).
Trunk lean gait decreases multi-segmental coordination in the vertical direction.
Tokuda, Kazuki; Anan, Masaya; Sawada, Tomonori; Tanimoto, Kenji; Takeda, Takuya; Ogata, Yuta; Takahashi, Makoto; Kito, Nobuhiro; Shinkoda, Koichi
2017-11-01
[Purpose] The strategy of trunk lean gait to reduce external knee adduction moment (KAM) may affect multi-segmental synergy control of center of mass (COM) displacement. Uncontrolled manifold (UCM) analysis is an evaluation index to understand motor variability. The purpose of this study was to investigate how motor variability is affected by using UCM analysis on adjustment of the trunk lean angle. [Subjects and Methods] Fifteen healthy young adults walked at their preferred speed under two conditions: normal and trunk lean gait. UCM analysis was performed with respect to the COM displacement during the stance phase. The KAM data were analyzed at the points of the first KAM peak during the stance phase. [Results] The KAM during trunk lean gait was smaller than during normal gait. Despite a greater segmental configuration variance with respect to mediolateral COM displacement during trunk lean gait, the synergy index was not significantly different between the two conditions. The synergy index with respect to vertical COM displacement during trunk lean gait was smaller than that during normal gait. [Conclusion] These results suggest that trunk lean gait is effective in reducing KAM; however, it may decrease multi-segmental movement coordination of COM control in the vertical direction.
A Test of Motor (Not Executive) Planning in Developmental Coordination Disorder and Autism
ERIC Educational Resources Information Center
van Swieten, Lisa M.; van Bergen, Elsje; Williams, Justin H. G.; Wilson, Andrew D.; Plumb, Mandy S.; Kent, Samuel W.; Mon-Williams, Mark A.
2010-01-01
Grip selection tasks have been used to test "planning" in both autism and developmental coordination disorder (DCD). We differentiate between "motor" and "executive" planning and present a modified motor planning task. Participants grasped a cylinder in 1 of 2 orientations before turning it clockwise or anticlockwise.…
Dewey, Deborah; Cantell, Marja; Crawford, Susan G
2007-03-01
Motor and gestural skills of children with autism spectrum disorders (ASD), developmental coordination disorder (DCD), and/or attention deficit hyperactivity disorder (ADHD) were investigated. A total of 49 children with ASD, 46 children with DCD, 38 children with DCD+ADHD, 27 children with ADHD, and 78 typically developing control children participated. Motor skills were assessed with the Bruininks-Oseretsky Test of Motor Proficiency Short Form, and gestural skills were assessed using a test that required children to produce meaningful gestures to command and imitation. Children with ASD, DCD, and DCD+ADHD were significantly impaired on motor coordination skills; however, only children with ASD showed a generalized impairment in gestural performance. Examination of types of gestural errors revealed that children with ASD made significantly more incorrect action and orientation errors to command, and significantly more orientation and distortion errors to imitation than children with DCD, DCD+ADHD, ADHD, and typically developing control children. These findings suggest that gestural impairments displayed by the children with ASD were not solely attributable to deficits in motor coordination skills.
Bidirectional transport of organelles: unity and struggle of opposing motors.
Bryantseva, Sofiya A; Zhapparova, Olga N
2012-01-01
Bidirectional transport along microtubules is ensured by opposing motor proteins: cytoplasmic dynein that drives cargo to the minus-ends and various kinesins that generally move to the plus-ends of microtubules. Regulation of motor proteins that are simultaneously bound to the same organelle is required to maintain directional transport and prevent pausing of cargo pulled away by motors of opposite polarity. Debates of the recent decade have been focused on two possible mechanisms of such regulation: (i) coordination, which implies that only one type of motors is active at a given time, and (ii) tug-of-war, which assumes that both motors are active at the same time and that direction of transport depends on the outcome of motor's confrontation. The initial idea of coordination has been challenged by observations of simultaneous activity of plus- and minus-end-directed motors applied to the same cargo. Analysis of the available data indicates that coordination and tug-of-war theories rather complement than contradict each other: cargo interacts with two teams of active motors, the resulting direction and the winner team are determined by coordination complexes, but the activity of the loser team is never completely inhibited and remains at some background level. Such persisting activity might enhance the overall efficiency of transport by increasing processivity or helping to overcome the obstacles on microtubule track. © The Author(s) Journal compilation © 2012 Portland Press Limited
Multi-finger synergies and the muscular apparatus of the hand.
Cuadra, Cristian; Bartsch, Angelo; Tiemann, Paula; Reschechtko, Sasha; Latash, Mark L
2018-05-01
We explored whether the synergic control of the hand during multi-finger force production tasks depends on the hand muscles involved. Healthy subjects performed accurate force production tasks and targeted force pulses while pressing against loops positioned at the level of fingertips, middle phalanges, and proximal phalanges. This varied the involvement of the extrinsic and intrinsic finger flexors. The framework of the uncontrolled manifold (UCM) hypothesis was used to analyze the structure of inter-trial variance, motor equivalence, and anticipatory synergy adjustments prior to the force pulse in the spaces of finger forces and finger modes (hypothetical finger-specific control signals). Subjects showed larger maximal force magnitudes at the proximal site of force production. There were synergies stabilizing total force during steady-state phases across all three sites of force production; no differences were seen across the sites in indices of structure of variance, motor equivalence, or anticipatory synergy adjustments. Indices of variance, which did not affect the task (within the UCM), correlated with motor equivalent motion between the steady states prior to and after the force pulse; in contrast, variance affecting task performance did not correlate with non-motor equivalent motion. The observations are discussed within the framework of hierarchical control with referent coordinates for salient effectors at each level. The findings suggest that multi-finger synergies are defined at the level of abundant transformation between the low-dimensional hand level and higher dimensional finger level while being relatively immune to transformations between the finger level and muscle level. The results also support the scheme of control with two classes of neural variables that define referent coordinates and gains in back-coupling loops between hierarchical control levels.
Ecological validity of the German Bruininks-Oseretsky Test of Motor Proficiency - 2nd Edition.
Vinçon, Sabine; Green, Dido; Blank, Rainer; Jenetzky, Ekkehart
2017-06-01
The diagnosis of Developmental Coordination Disorder (DCD) is based on poor motor coordination in the absence of other neurological disorders. In order to identify the presence of movement difficulties, a standardised motor assessment is recommended to determine the extent of movement problems which may contribute to deficits in daily task performance. A German version of the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition (German BOT-2) was recently published. This study aimed to determine the ecological validity of the German BOT-2 by considering the relationship between assessment of fundamental motor skills with the BOT-2 and performance of everyday motor activities as evaluated by parents. This study used data obtained from the German BOT-2 standardisation study (n=1.177). Subtests were compared with theoretically corresponding tasks via parental ratings of overall fine and gross motor abilities and performance in six typical motor activities. Non-parametric Jonckheere Terpstra test was used to identify differences in ordered contrasts. Subtests reflecting 'Strength', 'Running Speed and Agility', 'Upper-Limb Coordination', 'Balance', and 'Fine Motor Precision' were associated with parental evaluation of gross motor skills (p<0.001). The subtest 'Fine Motor Integration' significantly correlated with parental ratings of females' fine motor skills. Parental ratings of males' fine motor skills were associated with three further subtests. Regarding everyday motor activities, the first three fine motor BOT-2 subtests were associated with parent evaluations of drawing, writing and arts and crafts (p<0.001). Gross motor subtests of 'Bilateral Coordination' and 'Balance' showed no relationship to bike riding or performance in sports. Subtests of 'Upper-Limb Coordination' and 'Strength' showed significant correlations with sports, ball games and cycling. The results of this study suggest that the closer the proximity in the nature of the motor skills assessed in the German BOT-2 to daily motor tasks, the stronger the relationship between the clinical test and parental report of everyday performance of their child. The body functions tested in the German BOT-2, and hypothesized to underpin certain skills, were not automatically relevant for specific activities undertaken by German children. Future research should investigate the relationships of the various BOT-2 constructs for diagnosis of DCD. Copyright © 2016 Elsevier B.V. All rights reserved.
A bipedal DNA Brownian motor with coordinated legs.
Omabegho, Tosan; Sha, Ruojie; Seeman, Nadrian C
2009-04-03
A substantial challenge in engineering molecular motors is designing mechanisms to coordinate the motion between multiple domains of the motor so as to bias random thermal motion. For bipedal motors, this challenge takes the form of coordinating the movement of the biped's legs so that they can move in a synchronized fashion. To address this problem, we have constructed an autonomous DNA bipedal walker that coordinates the action of its two legs by cyclically catalyzing the hybridization of metastable DNA fuel strands. This process leads to a chemically ratcheted walk along a directionally polar DNA track. By covalently cross-linking aliquots of the walker to its track in successive walking states, we demonstrate that this Brownian motor can complete a full walking cycle on a track whose length could be extended for longer walks. We believe that this study helps to uncover principles behind the design of unidirectional devices that can function without intervention. This device should be able to fulfill roles that entail the performance of useful mechanical work on the nanometer scale.
Agenesis of the Corpus Callosum
... such as walking, talking, or reading; challenges with social interactions; clumsiness and poor motor coordination, particularly on skills ... such as walking, talking, or reading; challenges with social interactions; clumsiness and poor motor coordination, particularly on skills ...
Luz, Leonardo G O; Seabra, André; Padez, Cristina; Duarte, João P; Rebelo-Gonçalves, Ricardo; Valente-Dos-Santos, João; Luz, Tatiana D D; Carmo, Bruno C M; Coelho-E-Silva, Manuel
2016-09-01
The present study aimed to: 1) examine the association of biological maturation effect on children's performance at a motor coordination battery and 2) to assess whether the association between biological maturation and scores obtained in motor coordination tests is mediated by some anthropometric measurement. The convenience sample consisted of 73 male children aged 8 years old. Anthropometric data considered the height, body mass, sitting height, waist circumference, body mass index, fat mass and fat-free mass estimates. Biological maturation was assessed by the percentage of the predicted mature stature. Motor coordination was tested by the Körperkoordinationstest für Kinder. A partial correlation between anthropometric measurements, z-score of maturation and the motor coordination tests were performed, controlling for chronological age. Finally, causal mediation analysis was performed. Height, body mass, waist circumference and fat mass showed a slight to moderate inverse correlation with motor coordination. Biological maturation was significantly associated with the balance test with backward walking (r=-0.34). Total mediation of the waist circumference was identified in the association between biological maturation and balance test with backward walking (77%). We identified an association between biological maturation and KTK test performance in male children and also verified that there is mediation of waist circumference. It is recommended that studies be carried out with female individuals and at other age ranges. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Drawing from Memory: Hand-Eye Coordination at Multiple Scales
Spivey, Michael J.
2013-01-01
Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that preserve coarse-grained spatial information over relatively long timescales as well. PMID:23554894
ERIC Educational Resources Information Center
Chen, Yu-Wei; Tseng, Mei-Hui; Hu, Fu-Chang; Cermak, Sharon A.
2009-01-01
This study examined the consistency between the findings of developmental coordination disorder (DCD) as identified by the Bruininks-Oseretsky Test of Motor Proficiency (BOTMP) and the Movement Assessment Battery for Children (MABC), and explored the psychosocial and attention characteristics of children with DCD identified by the two motor tests,…
ERIC Educational Resources Information Center
Kartasidou, Lefkothea; Varsamis, Panagiotis; Sampsonidou, Anna
2012-01-01
Professionals who work with children presenting intellectual and developmental disability (IDD) and developmental coordination disorder (DCD) are concerned with their motor development and their rhythmic perception. The aim of this study is to investigate the correlation between a motor performance test and a music rhythmic test that measures…
ERIC Educational Resources Information Center
Bart, Orit; Podoly, Tamar; Bar-Haim, Yair
2010-01-01
Attention Deficit Hyperactive Disorder (ADHD) and Developmental Coordination Disorder (DCD) are two developmental disorders with considerable comorbidity. The impact of Methylphenidate (MPH) on ADHD symptoms is well documented. However, the effects of MPH on motor coordination are less studied. We assessed the influence of MPH on motor performance…
Mariën, Peter; van Dun, Kim; Verhoeven, Jo
2015-02-01
As early as the beginning of the nineteenth century, a variety of nonmotor cognitive and affective impairments associated with cerebellar pathology were occasionally documented. A causal link between cerebellar disease and nonmotor cognitive and affective disorders has, however, been dismissed for almost two centuries. During the past decades, the prevailing view of the cerebellum as a mere coordinator of autonomic and somatic motor function has changed fundamentally. Substantial progress has been made in elucidating the neuroanatomical connections of the cerebellum with the supratentorial association cortices that subserve nonmotor cognition and affect. Furthermore, functional neuroimaging studies and neurophysiological and neuropsychological research have shown that the cerebellum is crucially involved in modulating cognitive and affective processes. This paper presents an overview of the clinical and neuroradiological evidence supporting the view that the cerebellum plays an intrinsic part in purposeful, skilled motor actions. Despite the increasing number of studies devoted to a further refinement of the typology and anatomoclinical configurations of apraxia related to cerebellar pathology, the exact underlying pathophysiological mechanisms of cerebellar involvement remain to be elucidated. As genuine planning, organization, and execution disorders of skilled motor actions not due to motor, sensory, or general intellectual failure, the apraxias following disruption of the cerebrocerebellar network may be hypothetically considered to form part of the executive cluster of the cerebellar cognitive affective syndrome (CCAS), a highly influential concept defined by Schmahmann and Sherman (Brain 121:561-579, 1998) on the basis of four symptom clusters grouping related neurocognitive and affective deficits (executive, visuospatial, affective, and linguistic impairments). However, since only a handful of studies have explored the possible role of the cerebellum in apraxic disorders, the pathophysiological mechanisms subserving cerebellar-induced apraxia remain to be elucidated.
Weinstein, A; Brickner, O; Lerman, H; Greemland, M; Bloch, M; Lester, H; Chisin, R; Sarne, Y; Mechoulam, R; Bar-Hamburger, R; Freedman, N; Even-Sapir, E
2008-06-01
Heavy use of marijuana is claimed to damage critical skills related to short-term memory, visual scanning and attention. Motor skills and driving safety may be compromised by the acute effects of marijuana. The aim of this study was to investigate the acute effects of 13 mg and 17 mg Delta 9-tetrahydrocannabinol (THC) on skills important for coordinated movement and driving and on subjective and autonomic measures in regular users of marijuana. Fourteen regular users of marijuana were enrolled. Each subject was tested on two separate days. On each test day, subjects smoked two low-nicotine cigarettes, one with and the other without THC. Seventeen mg THC was included in the cigarette on one test day and 13 mg on the other day. The sequence of cigarette types was unknown to the subject. During smoking, heart rate and blood pressure were monitored, and the subjects performed a virtual reality maze task requiring attention and motor coordination, followed by 3 other cognitive tasks (Wisconsin Card Sorting Test (WCST), a "gambling" task and estimation of time and distance from an approaching car). After smoking a cigarette with 17 mg THC, regular marijuana users hit the walls more often on the virtual maze task than after smoking cigarettes without THC; this effect was not seen in patients after they smoked cigarettes with 13 mg THC. Performance in the WCST was affected with 17 mg THC and to a lesser extent with the use of 13 mg THC. Decision making in the gambling task was affected after smoking cigarettes with 17 mg THC, but not with 13 m THC. Smoking cigarettes with 13 and 17 mg THC increased subjective ratings of pleasure and satisfaction, drug "effect" and drug "high". These findings imply that smoking of 17 mg THC results in impairment of cognitive-motor skills that could be important for coordinated movement and driving, whereas the lower dose of 13 mg THC appears to cause less impairment of such skills in regular users of marijuana.
Esposito, Maria; Ruberto, Maria; Gimigliano, Francesca; Marotta, Rosa; Gallai, Beatrice; Parisi, Lucia; Lavano, Serena Marianna; Roccella, Michele; Carotenuto, Marco
2013-01-01
Background Migraine without aura (MoA) is a painful syndrome, particularly in childhood; it is often accompanied by severe impairments, including emotional dysfunction, absenteeism from school, and poor academic performance, as well as issues relating to poor cognitive function, sleep habits, and motor coordination. Materials and methods The study population consisted of 71 patients affected by MoA (32 females, 39 males) (mean age: 9.13±1.94 years); the control group consisted of 93 normally developing children (44 females, 49 males) (mean age: 8.97±2.03 years) recruited in the Campania school region. The entire population underwent a clinical evaluation to assess total intelligence quotient level, visual-motor integration (VMI) skills, and motor coordination performance, the later using the Movement Assessment Battery for Children (M-ABC). Children underwent training using the Wii-balance board and Nintendo Wii Fit Plus™ software (Nintendo Co, Ltd, Kyoto, Japan); training lasted for 12 weeks and consisted of three 30-minute sessions per week at their home. Results The two starting populations (MoA and controls) were not significantly different for age (P=0.899) and sex (P=0.611). M-ABC and VMI performances at baseline (T0) were significantly different in dexterity, balance, and total score for M-ABC (P<0.001) and visual (P=0.003) and motor (P<0.001) tasks for VMI. After 3 months of Wii training (T1), MoA children showed a significant improvement in M-ABC global performance (P<0.001), M-ABC dexterity (P<0.001), M-ABC balance (P<0.001), and VMI motor task (P<0.001). Conclusion Our study reported the positive effects of the Nintendo Wii Fit Plus™ system as a rehabilitative device for the visuomotor and balance skills impairments among children affected by MoA, even if further research and longer follow-up are needed. PMID:24453490
Esposito, Maria; Ruberto, Maria; Gimigliano, Francesca; Marotta, Rosa; Gallai, Beatrice; Parisi, Lucia; Lavano, Serena Marianna; Roccella, Michele; Carotenuto, Marco
2013-01-01
Migraine without aura (MoA) is a painful syndrome, particularly in childhood; it is often accompanied by severe impairments, including emotional dysfunction, absenteeism from school, and poor academic performance, as well as issues relating to poor cognitive function, sleep habits, and motor coordination. The study population consisted of 71 patients affected by MoA (32 females, 39 males) (mean age: 9.13±1.94 years); the control group consisted of 93 normally developing children (44 females, 49 males) (mean age: 8.97±2.03 years) recruited in the Campania school region. The entire population underwent a clinical evaluation to assess total intelligence quotient level, visual-motor integration (VMI) skills, and motor coordination performance, the later using the Movement Assessment Battery for Children (M-ABC). Children underwent training using the Wii-balance board and Nintendo Wii Fit Plus™ software (Nintendo Co, Ltd, Kyoto, Japan); training lasted for 12 weeks and consisted of three 30-minute sessions per week at their home. The two starting populations (MoA and controls) were not significantly different for age (P=0.899) and sex (P=0.611). M-ABC and VMI performances at baseline (T0) were significantly different in dexterity, balance, and total score for M-ABC (P<0.001) and visual (P=0.003) and motor (P<0.001) tasks for VMI. After 3 months of Wii training (T1), MoA children showed a significant improvement in M-ABC global performance (P<0.001), M-ABC dexterity (P<0.001), M-ABC balance (P<0.001), and VMI motor task (P<0.001). Our study reported the positive effects of the Nintendo Wii Fit Plus™ system as a rehabilitative device for the visuomotor and balance skills impairments among children affected by MoA, even if further research and longer follow-up are needed.
Motor Learning as Young Gymnast's Talent Indicator.
di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio
2014-12-01
Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz's battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01) and ranking (p < 0.05) of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R(2) = 0.26, p < 0.01). Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time. Key pointsIn talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability.Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete's current performance.In this manner talent identification processes should be focused on the future performance capabilities of athletes.
Motor Learning as Young Gymnast’s Talent Indicator
di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio
2014-01-01
Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz’s battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01) and ranking (p < 0.05) of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R2 = 0.26, p < 0.01). Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time. Key points In talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability. Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete’s current performance. In this manner talent identification processes should be focused on the future performance capabilities of athletes. PMID:25435768
Han, Ahreum; Fu, Allan; Cobley, Stephen; Sanders, Ross H
2018-01-01
Childhood obesity is negatively associated with fundamental movement skill and motor coordination, which in turn constrains physical activity participation and adherence thereby forming a 'vicious cycle'. However, developing motor skill and coordination in childhood could help to break the vicious cycle to reduce childhood obesity. The objective of this systematic review was to determine the effectiveness of exercise and physical activity interventions on improving fundamental movement skill and motor coordination in overweight/obese children and adolescents. A systematic review with quality assessment. A comprehensive systematic search was conducted from MEDLINE, SPORTDiscus, CINAHL, Scopus, Web of Science, EMBASE without date restriction for randomized control trials, interventions or longitudinal studies of movement skill/motor skill/motor coordination in overweight/obese participants between 0-18 years of age. A total of 3944 publications were screened, and 17 published studies were included. Altogether 38 tests for locomotor, object-control, balance and complex task tests were examined in selected studies, with 33 reporting increases after interventions, while only five tests indicated no change. The evidence strongly suggests that exercise/physical activity interventions were effective in improving locomotor skill, object-control skill and complex tasks in overweight/obese peers. However, the results for balance were equivocal. Results from existing studies suggest overweight/obese peers have lower levels of fundamental movement skill than their healthy weight peers. However, exercise/physical activity interventions are effective in improving their skills. To maximize skill improvement, we recommend focused fundamental movement skill and motor coordination activities for skill development. These progressions in interventions may help break the vicious cycle of childhood obesity. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Motor Coordination Dynamics Underlying Graphic Motion in 7- to 11-Year-Old Children
ERIC Educational Resources Information Center
Danna, Jeremy; Enderli, Fabienne; Athenes, Sylvie; Zanone, Pier-Giorgio
2012-01-01
Using concepts and tools of a dynamical system approach in order to understand motor coordination underlying graphomotor skills, the aim of the current study was to establish whether the basic coordination dynamics found in adults is already established in children at elementary school, when handwriting is trained and eventually acquired. In the…
Yu, Tzu-Ying; Chou, Willy; Chow, Julie Chi; Lin, Chien-Ho; Tung, Li-Chen; Chen, Kuan-Lin
2018-01-01
Purpose We investigated 1) the impact of differences in intelligence quotient discrepancy (IQD) on motor skills of preschool-aged children with autism spectrum disorders (ASD); 2) the relationships between IQD and motor skills in preschool-aged children with ASD. Methods A total of 127 ASD preschool-aged children were divided into three groups according to the size of the IQD: IQD within 1 standard deviation (1SD; EVENIQ; n=81), discrepantly higher verbal intelligence quotient (VIQ; n=22; VIQ>performance intelligence quotient [PIQ] above 1SD [≥15 points]), and discrepantly higher PIQ (n=24; PIQ>VIQ above 1SD [≥15 points]). Children’s IQD and motor skills were determined with the Wechsler Preschool and Primary Scale of Intelligence™ – Fourth Edition and the motor subtests of the Comprehensive Developmental Inventory for Infants and Toddlers (CDIIT), respectively. Results One-way analysis of variance revealed significant group differences for the fine motor domain of the CDIIT and the visual–motor coordination subtest (F=3.37–4.38, p<0.05). Children with discrepantly higher PIQ were associated with better fine motor skills than were children with even IQD and those with discrepantly higher VIQ, and vice versa. IQD (PIQ – VIQ) had significant positive correlations with the fine motor domain and fine motor subtests of the CDIIT (r=0.18–0.29, p<0.05). Conclusion The IQD can identify different levels of fine motor skills in preschool-aged children with ASD. This study suggests important implications for clinicians, therapists, and researchers: discrepantly higher PIQ could be related to better visual–motor coordination, and discrepantly higher VIQ could be related to poor visual–motor coordination. Furthermore, the results support that when therapists are working with preschool-aged children with ASD who are developing fine motor skills or undertaking fine motor tasks related to visual–motor coordination, they may need to pay attention to the children’s IQD. PMID:29503543
Yu, Tzu-Ying; Chou, Willy; Chow, Julie Chi; Lin, Chien-Ho; Tung, Li-Chen; Chen, Kuan-Lin
2018-01-01
We investigated 1) the impact of differences in intelligence quotient discrepancy (IQD) on motor skills of preschool-aged children with autism spectrum disorders (ASD); 2) the relationships between IQD and motor skills in preschool-aged children with ASD. A total of 127 ASD preschool-aged children were divided into three groups according to the size of the IQD: IQD within 1 standard deviation (1SD; EVENIQ; n=81), discrepantly higher verbal intelligence quotient (VIQ; n=22; VIQ>performance intelligence quotient [PIQ] above 1SD [≥15 points]), and discrepantly higher PIQ (n=24; PIQ>VIQ above 1SD [≥15 points]). Children's IQD and motor skills were determined with the Wechsler Preschool and Primary Scale of Intelligence™ - Fourth Edition and the motor subtests of the Comprehensive Developmental Inventory for Infants and Toddlers (CDIIT), respectively. One-way analysis of variance revealed significant group differences for the fine motor domain of the CDIIT and the visual-motor coordination subtest ( F =3.37-4.38, p <0.05). Children with discrepantly higher PIQ were associated with better fine motor skills than were children with even IQD and those with discrepantly higher VIQ, and vice versa. IQD (PIQ - VIQ) had significant positive correlations with the fine motor domain and fine motor subtests of the CDIIT ( r =0.18-0.29, p <0.05). The IQD can identify different levels of fine motor skills in preschool-aged children with ASD. This study suggests important implications for clinicians, therapists, and researchers: discrepantly higher PIQ could be related to better visual-motor coordination, and discrepantly higher VIQ could be related to poor visual-motor coordination. Furthermore, the results support that when therapists are working with preschool-aged children with ASD who are developing fine motor skills or undertaking fine motor tasks related to visual-motor coordination, they may need to pay attention to the children's IQD.
Neuro-mechanics of muscle coordination during recumbent pedaling in post-acute stroke patients.
De Marchis, C; Ambrosini, E; Schmid, M; Monticone, M; Pedrocchi, A; Ferrigno, G; D'Alessio, T; Conforto, S; Ferrante, S
2015-01-01
Motor impairment after stroke has been hypothesized to be related, among others, to impairments in the modular control of movement. In this study we analyzed muscle coordination and pedal forces during a recumbent pedaling exercise from a sample of post-acute stroke patients (n=5) and a population of age-matched healthy individuals (n=4). Healthy subjects and the less impaired patients showed a shared modular organization of pedaling based on 4 similar muscle synergies. The most impaired patient, characterized by a Motricity Index of 52/100, showed a reduced complexity (only 2 muscle synergies for the affected side). Differences between healthy subjects and post-stroke patients in the execution of the task were identified in terms of unbalance in mechanical work production, which well corresponded to the level of impairment. This pedaling unbalance could be traced back to different activation strategies of the 4 identified modules. Investigation on a more representative sample will provide a full characterization of the neuro-mechanics of pedaling after stroke, helping our understandings of the disruption of motor coordination at central level after stroke and of the most effective solutions for functional recovery.
Cooperative mechanism of RNA packaging motor.
Lísal, Jirí; Tuma, Roman
2005-06-17
P4 is a hexameric ATPase that serves as the RNA packaging motor in double-stranded RNA bacteriophages from the Cystoviridae family. P4 shares sequence and structural similarities with hexameric helicases. A structure-based mechanism for mechano-chemical coupling has recently been proposed for P4 from bacteriophage phi12. However, coordination of ATP hydrolysis among the subunits and coupling with RNA translocation remains elusive. Here we present detailed kinetic study of nucleotide binding, hydrolysis, and product release by phi12 P4 in the presence of different RNA and DNA substrates. Whereas binding affinities for ATP and ADP are not affected by RNA binding, the hydrolysis step is accelerated and the apparent cooperativity is increased. No nucleotide binding cooperativity is observed. We propose a stochastic-sequential cooperativity model to describe the coordination of ATP hydrolysis within the hexamer. In this model the apparent cooperativity is a result of hydrolysis stimulation by ATP and RNA binding to neighboring subunits rather than cooperative nucleotide binding. The translocation step appears coupled to hydrolysis, which is coordinated among three neighboring subunits. Simultaneous interaction of neighboring subunits with RNA makes the otherwise random hydrolysis sequential and processive.
Anderson, Leanne; Wilson, Jessie; Williams, Gary
2017-04-01
Children with Developmental Coordination Disorder (DCD) demonstrate limited participation in daily occupations which negatively impacts their physical and psycho-social wellbeing. The CO-OP approach is strongly supported within the literature as an effective treatment for DCD when delivered as a one-on-one therapy. Group interventions have proven to be effective in increasing self-esteem, decreasing feelings of isolation and are a cost effective way of delivering therapy. The purpose of this review was to explore the evidence for the use of the CO-OP approach in a group format for children with motor coordination difficulties. Searches of CINAHL, MEDLINE, Scopus, Proquest, PsycINFO, ERIC and OTDBase, were conducted from 2000 through until September 30, 2015. Articles included were in English, peer reviewed articles, followed principals of CO-OP and were delivered through a group therapy approach. All articles were critically reviewed and thematically analysed. 192 studies were retrieved with a final number of six articles included in the review. Six themes were highlighted: achieving a new level of perceived competence; feeling a sense of belonging; children learning how the condition affected them and strategies to overcome these challenges; careful formation of intervention groups; the value of following the CO-OP protocols; and the significance of parental involvement. The findings of this review suggest that the CO-OP approach, when administered in a group format, has the potential to benefit children living with motor coordination difficulties in both physical and psycho-social domains. More research is required to confirm these findings and contribute to evidence-based practice. © 2016 Occupational Therapy Australia.
Evidence that a Motor Timing Deficit Is a Factor in the Development of Stuttering
ERIC Educational Resources Information Center
Olander, Lindsey; Smith, Anne; Zelaznik, Howard N.
2010-01-01
Purpose: To determine whether young children who stutter have a basic motor timing and/or a coordination deficit. Method: Between-hands coordination and variability of rhythmic motor timing were assessed in 17 children who stutter (4-6 years of age) and 13 age-matched controls. Children clapped in rhythm with a metronome with a 600-ms interbeat…
Lee, Yangchool; Jeoung, Bogja
2016-12-01
The purpose of this study was to determine the relationship between the motor skills and the behavior problems of students with intellectual disabilities. The study participants were 117 students with intellectual disabilities who were between 7 and 25 years old (male, n=79; female, n=38) and attending special education schools in South Korea. Motor skill abilities were assessed by using the second version of the Bruininks-Oseretsky test of motor proficiency, which includes subtests in fine motor control, manual coordination, body coordination, strength, and agility. Data were analyzed with SPSS IBM 21 by using correlation and regression analyses, and the significance level was set at P <0.05. The results showed that fine motor precision and integration had a statistically significant influence on aggressive behavior. Manual dexterity showed a statistically significant influence on somatic complaint and anxiety/depression, and bilateral coordination had a statistically significant influence on social problems, attention problem, and aggressive behavior. Our results showed that balance had a statistically significant influence on social problems and aggressive behavior, and speed and agility had a statistically significant influence on social problems and aggressive behavior. Upper limb coordination and strength had a statistically significant influence on social problems.
Kaur, Maninderjit; M Srinivasan, Sudha; N Bhat, Anjana
2018-01-01
Children with Autism Spectrum Disorder (ASD) have basic motor impairments in balance, gait, and coordination as well as autism-specific impairments in praxis/motor planning and interpersonal synchrony. Majority of the current literature focuses on isolated motor behaviors or domains. Additionally, the relationship between cognition, symptom severity, and motor performance in ASD is unclear. We used a comprehensive set of measures to compare gross and fine motor, praxis/imitation, motor coordination, and interpersonal synchrony skills across three groups of children between 5 and 12 years of age: children with ASD with high IQ (HASD), children with ASD with low IQ (LASD), and typically developing (TD) children. We used the Bruininks-Oseretsky Test of Motor Proficiency and the Bilateral Motor Coordination subtest of the Sensory Integration and Praxis Tests to assess motor performance and praxis skills respectively. Children were also examined while performing simple and complex rhythmic upper and lower limb actions on their own (solo context) and with a social partner (social context). Both ASD groups had lower gross and fine motor scores, greater praxis errors in total and within various error types, lower movement rates, greater movement variability, and weaker interpersonal synchrony compared to the TD group. In addition, the LASD group had lower gross motor scores and greater mirroring errors compared to the HASD group. Overall, a variety of motor impairments are present across the entire spectrum of children with ASD, regardless of their IQ scores. Both, fine and gross motor performance significantly correlated with IQ but not with autism severity; however, praxis errors (mainly, total, overflow, and rhythmicity) strongly correlated with autism severity and not IQ. Our study findings highlight the need for clinicians and therapists to include motor evaluations and interventions in the standard-of-care of children with ASD and for the broader autism community to recognize dyspraxia as an integral part of the definition of ASD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Study of adaptation to altered gravity through systems analysis of motor control.
Fox, R A; Daunton, N G; Corcoran, M L
1998-01-01
Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.
Study of adaptation to altered gravity through systems analysis of motor control
NASA Astrophysics Data System (ADS)
Fox, R. A.; Daunton, N. G.; Corcoran, M. L.
Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.
Blais, Mélody; Amarantini, David; Albaret, Jean-Michel; Chaix, Yves; Tallet, Jessica
2018-05-01
Impairment of motor learning skills in developmental coordination disorder (DCD) has been reported in several studies. Some hypotheses on neural mechanisms of motor learning deficits in DCD have emerged but, to date, brain-imaging investigations are scarce. The aim of the present study is to assess possible changes in communication between brain areas during practice of a new bimanual coordination task in teenagers with DCD (n = 10) compared to matched controls (n = 10). Accuracy, stability and number of mirror movements were computed as behavioural variables. Neural variables were assessed by electroencephalographic coherence analyses of intra-hemispheric and inter-hemispheric fronto-central electrodes. In both groups, accuracy of the new coordination increased concomitantly with right intra-hemispheric fronto-central coherence. Compared to typically developing teenagers, DCD teenagers presented learning difficulties expressed by less stability, no stabilization of the new coordination and a greater number of mirror movements despite practice. These measures correlated with reduced inter-hemispheric communication, even after practice of the new coordination. For the first time, these findings provide neuro-imaging evidence of a kind of inter-hemispheric 'disconnection' related to altered inhibition of mirror movements during motor learning in DCD. © 2017 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Blank, Rainer
2012-01-01
Developmental coordination disorder (DCD) is a condition characterized by difficulty in the development of motor coordination and learning new motor skills. It impacts on a child's ability to carry out everyday tasks such as getting dressed, using cutlery, writing or drawing, running, and playing sport. It is not due to any intellectual difficulty…
Coupling dynamics in speech gestures: amplitude and rate influences.
van Lieshout, Pascal H H M
2017-08-01
Speech is a complex oral motor function that involves multiple articulators that need to be coordinated in space and time at relatively high movement speeds. How this is accomplished remains an important and largely unresolved empirical question. From a coordination dynamics perspective, coordination involves the assembly of coordinative units that are characterized by inherently stable coupling patterns that act as attractor states for task-specific actions. In the motor control literature, one particular model formulated by Haken et al. (Biol Cybern 51(5):347-356, 1985) or HKB has received considerable attention in the way it can account for changes in the nature and stability of specific coordination patterns between limbs or between limbs and external stimuli. In this model (and related versions), movement amplitude is considered a critical factor in the formation of these patterns. Several studies have demonstrated its role for bimanual coordination and similar types of tasks, but for speech motor control such studies are lacking. The current study describes a systematic approach to evaluate the impact of movement amplitude and movement duration on coordination stability in the production of bilabial and tongue body gestures for specific vowel-consonant-vowel strings. The vowel combinations that were used induced a natural contrast in movement amplitude at three speaking rate conditions (slow, habitual, fast). Data were collected on ten young adults using electromagnetic articulography, recording movement data from lips and tongue with high temporal and spatial precision. The results showed that with small movement amplitudes there is a decrease in coordination stability, independent from movement duration. These findings were found to be robust across all individuals and are interpreted as further evidence that principles of coupling dynamics operate in the oral motor control system similar to other motor systems and can be explained in terms of coupling mechanisms between neural oscillators (organized in networks) and effector systems. The relevance of these findings for understanding motor control issues in people with speech disorders is discussed as well.
Balance Training Enhances Motor Coordination During a Perturbed Sidestep Cutting Task.
Oliveira, Anderson Souza; Silva, Priscila Brito; Lund, Morten Enemark; Farina, Dario; Kersting, Uwe Gustav
2017-11-01
Study Design Controlled laboratory study. Background Balance training may improve motor coordination. However, little is known about the changes in motor coordination during unexpected perturbations to postural control following balance training. Objectives To study the effects of balance training on motor coordination and knee mechanics during perturbed sidestep cutting maneuvers in healthy adults. Methods Twenty-six healthy men were randomly assigned to a training group or a control group. Before balance training, subjects performed unperturbed, 90° sidestep cutting maneuvers and 1 unexpected perturbed cut (10-cm translation of a movable platform). Participants in the training group participated in a 6-week balance training program, while those in the control group followed their regular activity schedule. Both groups were retested after a 6-week period. Surface electromyography was recorded from 16 muscles of the supporting limb and trunk, as well as kinematics and ground reaction forces. Motor modules were extracted from electromyography by nonnegative matrix factorization. External knee abduction moments were calculated using inverse dynamics equations. Results Balance training reduced the external knee abduction moment (33% ± 25%, P<.03, η p 2 = 0.725) and increased the activation of trunk and proximal hip muscles in specific motor modules during perturbed cutting. Balance training also increased burst duration for the motor module related to landing early in the perturbation phase (23% ± 11%, P<.01, η p 2 = 0.532). Conclusion Balance training resulted in altered motor coordination and a reduction in knee abduction moment during an unexpected perturbation. The previously reported reduction in injury incidence following balance training may be linked to changes in dynamic postural stability and modular neuromuscular control. J Orthop Sports Phys Ther 2017;47(11):853-862. Epub 23 Sep 2017. doi:10.2519/jospt.2017.6980.
Clinical expression of developmental coordination disorder in a large Canadian family
Gaines, Robin; Collins, David; Boycott, Kym; Missiuna, Cheryl; DeLaat, Denise; Soucie, Helen
2008-01-01
Previous studies of the phenotype of developmental coordination disorder (DCD) have largely concentrated on population-based samples. The present study reports on an in-depth examination of a large Canadian family with eight children, after three children who were suspected to have DCD were referred for evaluation. Subsequently, five of the six children whose motor impairments could be measured, and the mother, met the diagnostic criteria for DCD as per the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders – fourth edition. The family members diagnosed with DCD showed remarkably similar profiles of motor difficulties. Additionally, the five children diagnosed with DCD had current speech articulation difficulties, with four of them having visited speech/language pathologists; the mother had a lateral lisp. More in-depth testing for three children revealed intact intellectual, academic and language comprehension skills. Three of the children diagnosed with DCD were obese. The present report highlights familial clustering of DCD and the presence of comorbid conditions in the affected children. PMID:19436536
Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling.
Ting, L H; Raasch, C C; Brown, D A; Kautz, S A; Zajac, F E
1998-09-01
The objective of this study was to determine if independent central pattern generating elements controlling the legs in bipedal and unipedal locomotion is a viable theory for locomotor propulsion in humans. Coordinative coupling of the limbs could then be accomplished through mechanical interactions and ipsilateral feedback control rather than through central interlimb neural pathways. Pedaling was chosen as the locomotor task to study because interlimb mechanics can be significantly altered, as pedaling can be executed with the use of either one leg or two legs (cf. walking) and because the load on the limb can be well-controlled. Subjects pedaled a modified bicycle ergometer in a two-legged (bilateral) and a one-legged (unilateral) pedaling condition. The loading on the leg during unilateral pedaling was designed to be identical to the loading experienced by the leg during bilateral pedaling. This loading was achieved by having a trained human "motor" pedal along with the subject and exert on the opposite crank the torque that the subject's contralateral leg generated in bilateral pedaling. The human "motor" was successful at reproducing each subject's one-leg crank torque. The shape of the motor's torque trajectory was similar to that of subjects, and the amount of work done during extension and flexion was not significantly different. Thus the same muscle coordination pattern would allow subjects to pedal successfully in both the bilateral and unilateral conditions, and the afferent signals from the pedaling leg could be the same for both conditions. Although the overall work done by each leg did not change, an 86% decrease in retarding (negative) crank torque during limb flexion was measured in all 11 subjects during the unilateral condition. This corresponded to an increase in integrated electromyography of tibialis anterior (70%), rectus femoris (43%), and biceps femoris (59%) during flexion. Even given visual torque feedback in the unilateral condition, subjects still showed a 33% decrease in negative torque during flexion. These results are consistent with the existence of an inhibitory pathway from elements controlling extension onto contralateral flexion elements, with the pathway operating during two-legged pedaling but not during one-legged pedaling, in which case flexor activity increases. However, this centrally mediated coupling can be overcome with practice, as the human "motor" was able to effectively match the bilateral crank torque after a longer practice regimen. We conclude that the sensorimotor control of a unipedal task is affected by interlimb neural pathways. Thus a task performed unilaterally is not performed with the same muscle coordination utilized in a bipedal condition, even if such coordination would be equally effective in the execution of the unilateral task.
Cosper, Sharon M; Lee, Gregory P; Peters, Susan Beth; Bishop, Elizabeth
2009-12-01
The objective of this study was to examine the efficacy of Interactive Metronome (Interactive Metronome, Sunrise, Florida, USA) training in a group of children with mixed attentional and motor coordination disorders to further explore which subcomponents of attentional control and motor functioning the training influences. Twelve children who had been diagnosed with attention deficit hyperactivity disorder, in conjunction with either developmental coordination disorder (n=10) or pervasive developmental disorder (n=2), underwent 15 1-h sessions of Interactive Metronome training over a 15-week period. Each child was assessed before and after the treatment using measures of attention, coordination, and motor control to determine the efficacy of training on these cognitive and behavioral realms. As a group, the children made significant improvements in complex visual choice reaction time and visuomotor control after the training. There were, however, no significant changes in sustained attention or inhibitory control over inappropriate motor responses after treatment. These results suggest Interactive Metronome training may address deficits in visuomotor control and speed, but appears to have little effect on sustained attention or motor inhibition.
Motor coordination and balance in rodents.
Carter, R J; Morton, J; Dunnett, S B
2001-08-01
Measurement of motor coordination and balance can be used not only to assess the effect of drugs or other experimental manipulations on mice and rats, but also to characterize the motor phenotype of transgenic or knock-out animals. Three well established and widely used protocols for measuring motor coordination and balance in mice and rats (rotarod, beam walking and footprint analysis) are described in this unit. The tests can be used equally well for rats and mice, and have been used both for the phenotypic characterization of transgenic mice and for evaluating the effects of lesions and aging in rats. The protocols are described in the primary context of testing mice, but modifications of the test apparatus or variations in the test parameters for assessment of rats are noted.
The Sensorimotor System Can Sculpt Behaviorally Relevant Representations for Motor Learning
2016-01-01
Abstract The coordinate system in which humans learn novel motor skills is controversial. The representation of sensorimotor skills has been extensively studied by examining generalization after learning perturbations specifically designed to be ambiguous as to their coordinate system. Recent studies have found that learning is not represented in any simple coordinate system and can potentially be accounted for by a mixed representation. Here, instead of probing generalization, which has led to conflicting results, we examine whether novel dynamics can be learned when explicitly and unambiguously presented in particular coordinate systems. Subjects performed center–out reaches to targets in the presence of a force field, while varying the orientation of their hand (i.e., the wrist angle) across trials. Different groups of subjects experienced force fields that were explicitly presented either in Cartesian coordinates (field independent of hand orientation), in object coordinates (field rotated with hand orientation), or in anti-object coordinates (field rotated counter to hand orientation). Subjects learned to represent the dynamics when presented in either Cartesian or object coordinates, learning these as well as an ambiguous force field. However, learning was slower for the object-based dynamics and substantially impaired for the anti-object presentation. Our results show that the motor system is able to tune its representation to at least two natural coordinate systems but is impaired when the representation of the task does not correspond to a behaviorally relevant coordinate system. Our results show that the motor system can sculpt its representation through experience to match those of natural tasks. PMID:27588304
A Pilot Study on the Gross Motor Proficiency of Hong Kong Preschoolers Aged 5 to 6 Years.
ERIC Educational Resources Information Center
Lam, Hazel Mei Yung; Schiller, Wendy
2001-01-01
Used the Bruininks-Oseretsky Test of Motor Proficiency to examine the gross motor proficiency of Hong Kong 5- to 6-year-old preschoolers. Found that both age groups scored well below norms in running speed and agility and well above norms on balance, bilateral coordination, strength, and upper-limb coordination. Boys were superior to girls on…
ERIC Educational Resources Information Center
Bardaglio, Giulia; Marasso, Danilo; Magno, Francesca; Rabaglietti, Emanuela; Ciairano, Silvia
2015-01-01
Background: Standard physical education (PE) programs and the team-teaching methodology have rarely been evaluated to investigate their real efficacy in changing children's motor skills. Aims: The aims of this study are two-fold: The first aim is to evaluate the effectiveness of a PE program for improving coordinative motor skills in the team…
Pesce, Caterina; Masci, Ilaria; Marchetti, Rosalba; Vazou, Spyridoula; Sääkslahti, Arja; Tomporowski, Phillip D.
2016-01-01
In light of the interrelation between motor and cognitive development and the predictive value of the former for the latter, the secular decline observed in motor coordination ability as early as preschool urges identification of interventions that may jointly impact motor and cognitive efficiency. The aim of this study was twofold. It (1) explored the outcomes of enriched physical education (PE), centered on deliberate play and cognitively challenging variability of practice, on motor coordination and cognitive processing; (2) examined whether motor coordination outcomes mediate intervention effects on children’s cognition, while controlling for moderation by lifestyle factors as outdoor play habits and weight status. Four hundred and sixty children aged 5–10 years participated in a 6-month group randomized intervention in PE, with or without playful coordinative and cognitive enrichment. The weight status and spontaneous outdoor play habits of children (parental report of outdoor play) were evaluated at baseline. Before and after the intervention, motor developmental level (Movement Assessment Battery for Children) was evaluated in all children, who were then assessed either with a test of working memory (Random Number Generation task), or with a test of attention (from the Cognitive Assessment System). Children assigned to the ‘enriched’ intervention showed more pronounced improvements in all motor coordination assessments (manual dexterity, ball skills, static/dynamic balance). The beneficial effect on ball skills was amplified by the level of spontaneous outdoor play and weight status. Among indices of executive function and attention, only that of inhibition showed a differential effect of intervention type. Moderated mediation showed that the better outcome of the enriched PE on ball skills mediated the better inhibition outcome, but only when the enrichment intervention was paralleled by a medium-to-high level of outdoor play. Results suggest that specifically tailored physical activity (PA) games provide a unique form of enrichment that impacts children’s cognitive development through motor coordination improvement, particularly object control skills, which are linked to children’s PA habits later in life. Outdoor play appears to offer the natural ground for the stimulation by designed PA games to take root in children’s mind. PMID:27014155
Doney, Robyn; Lucas, Barbara R; Watkins, Rochelle E; Tsang, Tracey W; Sauer, Kay; Howat, Peter; Latimer, Jane; Fitzpatrick, James P; Oscar, June; Carter, Maureen; Elliott, Elizabeth J
2017-11-21
Many children in the remote Fitzroy Valley region of Western Australia have prenatal alcohol exposure (PAE). Individuals with PAE can have neurodevelopmental impairments and be diagnosed with one of several types of Fetal Alcohol Spectrum Disorder (FASD). Fine motor skills can be impaired by PAE, but no studies have developed a comprehensive profile of fine motor skills in a population-based cohort of children with FASD. We aimed to develop a comprehensive profile of fine motor skills in a cohort of Western Australian children; determine whether these differed in children with PAE or FASD; and establish the prevalence of impairment. Children (n = 108, 7 to 9 years) were participants in a population-prevalence study of FASD in Western Australia. Fine motor skills were assessed using the Bruininks-Oseretsky Test of Motor Proficiency, which provided a Fine Motor Composite score, and evaluated Fine Manual Control (Fine Motor Precision; Fine Motor Integration) and Manual Coordination (Manual Dexterity; Upper-Limb Coordination). Descriptive statistics were reported for the overall cohort; and comparisons made between children with and without PAE and/or FASD. The prevalence of severe (≤ 2nd percentile) and moderate (≤16th percentile) impairments was determined. Overall, Fine Motor Composite scores were 'average' (M = 48.6 ± 7.4), as were Manual Coordination (M = 55.7 ± 7.9) and Fine Manual Control scores (M = 42.5 ± 6.2). Children with FASD had significantly lower Fine Motor Composite (M = 45.2 ± 7.7 p = 0.046) and Manual Coordination scores (M = 51.8 ± 7.3, p = 0.027) than children without PAE (Fine Motor Composite M = 49.8 ± 7.2; Manual Coordination M = 57.0 ± 7.7). Few children had severe impairment, but rates of moderate impairment were very high. Different types of fine motor skills should be evaluated in children with PAE or FASD. The high prevalence of fine motor impairment in our cohort, even in children without PAE, highlights the need for therapeutic intervention for many children in remote communities.
Yu, Vickie Y.; Kadis, Darren S.; Oh, Anna; Goshulak, Debra; Namasivayam, Aravind; Pukonen, Margit; Kroll, Robert; De Nil, Luc F.; Pang, Elizabeth W.
2016-01-01
This study evaluated changes in motor speech control and inter-gestural coordination for children with speech sound disorders (SSD) subsequent to PROMPT (Prompts for Restructuring Oral Muscular Phonetic Targets) intervention. We measured the distribution patterns of voice onset time (VOT) for a voiceless stop (/p/) to examine the changes in inter-gestural coordination. Two standardized tests were used (VMPAC, GFTA-2) to assess the changes in motor speech skills and articulation. Data showed positive changes in patterns of VOT with a lower pattern of variability. All children showed significantly higher scores for VMPAC, but only some children showed higher scores for GFTA-2. Results suggest that the proprioceptive feedback provided through PROMPT had a positive influence on motor speech control and inter-gestural coordination in voicing behavior. This set of VOT data for children with SSD adds to our understanding of the speech characteristics underlying motor speech control. Directions for future studies are discussed. PMID:24446799
Kinesins and Myosins: Molecular Motors that Coordinate Cellular Functions in Plants.
Nebenführ, Andreas; Dixit, Ram
2018-04-29
Kinesins and myosins are motor proteins that can move actively along microtubules and actin filaments, respectively. Plants have evolved a unique set of motors that function as regulators and organizers of the cytoskeleton and as drivers of long-distance transport of various cellular components. Recent progress has established the full complement of motors encoded in plant genomes and has revealed valuable insights into the cellular functions of many kinesin and myosin isoforms. Interestingly, several of the motors were found to functionally connect the two cytoskeletal systems and thereby to coordinate their activities. In this review, we discuss the available genetic, cell biological, and biochemical data for each of the plant kinesin and myosin families from the context of their subcellular mechanism of action as well as their physiological function in the whole plant. We particularly emphasize work that illustrates mechanisms by which kinesins and myosins coordinate the activities of the cytoskeletal system.
Video image position determination
Christensen, Wynn; Anderson, Forrest L.; Kortegaard, Birchard L.
1991-01-01
An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.
Chung, Jae W; Ofori, Edward; Misra, Gaurav; Hess, Christopher W; Vaillancourt, David E
2017-01-01
Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine whether similar source space EEG dynamics exhibit different time-frequency changes in individuals with neurological disorders that cause movement errors. Copyright © 2016 Elsevier Inc. All rights reserved.
Similarities between GCS and human motor cortex: complex movement coordination
NASA Astrophysics Data System (ADS)
Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos
2014-07-01
The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.
How molecular motors shape the flagellar beat
Riedel-Kruse, Ingmar H.; Hilfinger, Andreas; Howard, Jonathon; Jülicher, Frank
2007-01-01
Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such “sliding control” is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors. PMID:19404446
Patterns of Spinal Sensory-Motor Connectivity Prescribed by a Dorsoventral Positional Template
Sürmeli, Gülşen; Akay, Turgay; Ippolito, Gregory; Tucker, Philip W; Jessell, Thomas M
2011-01-01
Summary Sensory-motor circuits in the spinal cord are constructed with a fine specificity that coordinates motor behavior, but the mechanisms that direct sensory connections with their motor neuron partners remain unclear. The dorsoventral settling position of motor pools in the spinal cord is known to match the distal-to-proximal position of their muscle targets in the limb, but the significance of invariant motor neuron positioning is unknown. An analysis of sensory-motor connectivity patterns in FoxP1 mutant mice, where motor neuron position has been scrambled, shows that the final pattern of sensory-motor connections is initiated by the projection of sensory axons to discrete dorsoventral domains of the spinal cord without regard for motor neuron subtype, or indeed, the presence of motor neurons. By implication, the clustering and dorsoventral settling position of motor neuron pools serves as a determinant of the pattern of sensory input specificity, and thus motor coordination. PMID:22036571
Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Alfaro-Rodríguez, Alfonso; Reyes-Legorreta, Celia; Garza-Montaño, Paloma; González-Piña, Rigoberto; Bueno-Nava, Antonio
2018-01-15
The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function that is associated with skilled movements and motor learning, which are functions that may be modulated by dopamine (DA). In this study, we explored motor coordination and balance in order to investigate whether the activation of D 1 receptors (D 1 Rs) modulates functional recovery after cortical injury. The results of the beam-walking test showed motor deficit in the injured group at 24, 48 and 96h post-injury, and the recovery time was observed at 192h after cortical injury. In the sham and injured rats, systemic administration of the D 1 R antagonist SCH-23390 (1mg/kg) alone at 24, 48, 96 and 192h significantly (P<0.01) increased the motor deficit, while administration of the D 1 R agonist SKF-38393 alone (2, 3 and 4mg/kg) at 24, 48, 96 and 192h post-injury did not produce a significant difference; however, the co-administration of SKF-38393 and SCH-23390 prevented the antagonist-induced increase in the motor deficit. The cortical+striatal injury showed significantly increased the motor deficit at 24, 48, 96 and 192h post-injury (P<0.01) but did not show recovery at 192h. In conclusion, the administration of the D 1 R agonist did not accelerate the motor recovery, but the activation of D 1 Rs maintained motor coordination, confirming that an intact striatum may be necessary for achieving recovery. Copyright © 2017 Elsevier B.V. All rights reserved.
D'Hondt, Eva; Gentier, Ilse; Deforche, Benedicte; Tanghe, Ann; De Bourdeaudhuij, Ilse; Lenoir, Matthieu
2011-10-01
This study evaluated the short-term effectiveness of a multidisciplinary residential obesity treatment program by describing changes in body weight, related measures, and gross motor co-ordination. Secondarily, it was examined to what extent the amount of relative weight loss achieved by overweight and obese (OW/OB) participants explained the projected improvement in gross motor co-ordination. Thirty-six OW/OB children (aged 10.5 ± 1.4 years, 12 girls and 24 boys) were recruited at the Zeepreventorium VZW (De Haan, Belgium), where they followed a specific program consisting of moderate dietary restriction, psychological support, and physical activity. For reference purposes, an additional group of 36 age- and gender-matched healthy-weight (HW) children was included in the study. Anthropometric measures were recorded and gross motor co-ordination was assessed using the Körperkoordinationstest für Kinder (KTK) on two occasions with an interval of 4 months. Regardless of the test moment, OW/OB participants displayed significantly poorer KTK performances (P < 0.001). However, treatment was found to be efficacious in decreasing body weight (Δ 17.9 ± 3.1%, P < 0.001) and generating a significant progress in gross motor co-ordination performance, with a greater increase in KTK score(s) from baseline to re-test as compared to HW peers (P < 0.01). Within the OW/OB group, the amount of relative weight loss explained 26.9% of the variance in improvement in overall KTK performance. Therefore, multidisciplinary residential treatment and concomitant weight loss can be considered an important means to upgrade OW/OB children's level of gross motor co-ordination, which in turn may promote physical activity participation.
Physical Therapy for Neurological Conditions in Geriatric Populations.
Carmeli, Eli
2017-01-01
With more of the world's population surviving longer, individuals often face age-related neurology disorders and decline of function that can affect lifestyle and well-being. Despite neurophysiological changes affecting the brain function and structure, the aged brain, in some degree, can learn and relearn due to neuroplasticity. Recent advances in rehabilitation techniques have produced better functional outcomes in age-related neurological conditions. Physical therapy (PT) of the elderly individual focuses in particular on sensory-motor impairments, postural control coordination, and prevention of sarcopenia. Geriatric PT has a significant influence on quality of life, independent living, and life expectancy. However, in many developed and developing countries, the profession of PT is underfunded and understaffed. This article provides a brief overview on (a) age-related disease of central nervous system and (b) the principles, approaches, and doctrines of motor skill learning and point out the most common treatment models that PTs use for neurological patients.
Physical Therapy for Neurological Conditions in Geriatric Populations
Carmeli, Eli
2017-01-01
With more of the world’s population surviving longer, individuals often face age-related neurology disorders and decline of function that can affect lifestyle and well-being. Despite neurophysiological changes affecting the brain function and structure, the aged brain, in some degree, can learn and relearn due to neuroplasticity. Recent advances in rehabilitation techniques have produced better functional outcomes in age-related neurological conditions. Physical therapy (PT) of the elderly individual focuses in particular on sensory–motor impairments, postural control coordination, and prevention of sarcopenia. Geriatric PT has a significant influence on quality of life, independent living, and life expectancy. However, in many developed and developing countries, the profession of PT is underfunded and understaffed. This article provides a brief overview on (a) age-related disease of central nervous system and (b) the principles, approaches, and doctrines of motor skill learning and point out the most common treatment models that PTs use for neurological patients. PMID:29270402
Computing Arm Movements with a Monkey Brainet.
Ramakrishnan, Arjun; Ifft, Peter J; Pais-Vieira, Miguel; Byun, Yoon Woo; Zhuang, Katie Z; Lebedev, Mikhail A; Nicolelis, Miguel A L
2015-07-09
Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal.
Computing Arm Movements with a Monkey Brainet
Ramakrishnan, Arjun; Ifft, Peter J.; Pais-Vieira, Miguel; Woo Byun, Yoon; Zhuang, Katie Z.; Lebedev, Mikhail A.; Nicolelis, Miguel A.L.
2015-01-01
Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal. PMID:26158523
Perceptuo-motor compatibility governs multisensory integration in bimanual coordination dynamics.
Zelic, Gregory; Mottet, Denis; Lagarde, Julien
2016-02-01
The brain has the remarkable ability to bind together inputs from different sensory origin into a coherent percept. Behavioral benefits can result from such ability, e.g., a person typically responds faster and more accurately to cross-modal stimuli than to unimodal stimuli. To date, it is, however, largely unknown whether such multisensory benefits, shown for discrete reactive behaviors, generalize to the continuous coordination of movements. The present study addressed multisensory integration from the perspective of bimanual coordination dynamics, where the perceptual activity no longer triggers a single response but continuously guides the motor action. The task consisted in coordinating anti-symmetrically the continuous flexion-extension of the index fingers, while synchronizing with an external pacer. Three different configurations of metronome were tested, for which we examined whether a cross-modal pacing (audio-tactile beats) improved the stability of the coordination in comparison with unimodal pacing condition (auditory or tactile beats). We found a more stable bimanual coordination for cross-modal pacing, but only when the metronome configuration directly matched the anti-symmetric coordination pattern. We conclude that multisensory integration can benefit the continuous coordination of movements; however, this is constrained by whether the perceptual and motor activities match in space and time.
Lateralization of brain activity pattern during unilateral movement in Parkinson's disease.
Wu, Tao; Hou, Yanan; Hallett, Mark; Zhang, Jiarong; Chan, Piu
2015-05-01
We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination. © 2015 Wiley Periodicals, Inc.
Sumner, Emma; Leonard, Hayley C; Hill, Elisabeth L
2016-08-01
Motor and social difficulties are often found in children with an autism spectrum disorder (ASD) and with developmental coordination disorder (DCD), to varying degrees. This study investigated the extent of overlap of these problems in children aged 7-10 years who had a diagnosis of either ASD or DCD, compared to typically-developing controls. Children completed motor and face processing assessments. Parents completed questionnaires concerning their child's early motor and current motor and social skills. There was considerable overlap between the ASD and DCD groups on the motor and social assessments, with both groups more impaired than controls. Furthermore, motor skill predicted social functioning for both groups. Future research should consider the relationships between core symptoms and their consequences in other domains.
NASA Technical Reports Server (NTRS)
Paloski, William H.
2004-01-01
Data from six-month low Earth orbit space flight missions suggest that that substantial neuro-vestibular/sensory-motor adaptation will take place during six-month transit missions to and from Mars. Could intermittent or continuous artificial gravity be used to offset these effects? To what degree would the effects of adaptation to this rotational cure affect its potential benefits? Also, little information exists regarding the gravity thresholds for maintaining functional performance of complex sensory-motor tasks such as balance control and locomotion. Will sensory-motor coordination systems adapt to 30- 90 days of 1/6 g on the lunar surface or 18 months of 3/8 g on the Martian surface? Would some form of gravity replacement therapy be required on the surface? And, will transitions between 0 g and 1/6 g or 1/3 g present as great a challenge to the vestibular system as transitions between 0 g and 1 g? Concerted research and development efforts will be required to obtain the answers.
Fente, B G; Nwagwu, C C; Ogulu, B N; Orukari, G I B; Okere, E O; Miss Ouserigha, O E
2012-01-01
Report of our experience and outcome of a case of severe thoracoabdominal injuries by motorized sawing machine (a rare cause) in a Semi-Urban temporary University Teaching Hospital. Literature review on the topic was done using Pubmed. Relevant journals and topics were also reviewed. Textbooks on relevant topics were also searched. A 25 year old male timber-cutter was traumatized by motorized sawing machine injuring the left half of the chest, upper abdomen, the left shoulder and left hand. It is an unusual presentation of penetrating thoracoabdominal injury. There was open pneumotharax, 3th-8th ribs fractures, diaphragmatic laceration, and eviscerations of abdominal contents without affecting other thoraco-abdominal organs. Urgent surgical intervention done was the only option. The challenges posed by severe motorized sawing machine thoraco-abdominal injuries in a Semi-Urban temporary University Teaching Hospital were successfully managed due to rapid pre-hospital transfer and co-ordinated team effort.
Taking the brakes off the learning curve.
Gheysen, Freja; Lasne, Gabriel; Pélégrini-Issac, Mélanie; Albouy, Genevieve; Meunier, Sabine; Benali, Habib; Doyon, Julien; Popa, Traian
2017-03-01
Motor learning is characterized by patterns of cerebello-striato-cortical activations shifting in time, yet the early dynamic and function of these activations remains unclear. Five groups of subjects underwent either continuous or intermittent theta-burst stimulation of one cerebellar hemisphere, or no stimulation just before learning a new motor sequence during fMRI scanning. We identified three phases during initial learning: one rapid, one slow, and one quasi-asymptotic performance phase. These phases were not changed by left cerebellar stimulation. Right cerebellar inhibition, however, accelerated learning and enhanced brain activation in critical motor learning-related areas during the first phase, continuing with reduced brain activation but high-performance in late phase. Right cerebellar excitation did not affect the early learning process, but slowed learning significantly in late phase, along with increased brain activation. We conclude that the right cerebellum is a key factor coordinating other neuronal loops in the early acquisition of an explicit motor sequential skill. Hum Brain Mapp 38:1676-1691, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Paloski, William H.
2004-01-01
Data from six-month low Earth orbit space flight missions suggest that that substantial neuro-vestibuladsensory-motor adaptation will take place during six-month transit missions to and from Mars. Could intermittent or continuous artificial gravity be used to offset these effects? To what degree would the effects of adaptation to this rotational cure affect its potential benefits? Also, little information exists regarding the gravity thresholds for maintaining functional performance of complex sensory-motor tasks such as balance control and locomotion. Will sensory-motor coordination systems adapt to 30-90 days of 1/6 g on the lunar surface or 18 months of 3/8 g on the Martian surface? Would some form of gravity replacement therapy be required on the surface? And, will transitions between 0 g and 1/6 g or 1/3 g present as great a challenge to the vestibular system as transitions between 0 g and 1 g? Concerted research and development efforts will be required to obtain the answers.
Attentional Demands on Motor-Respiratory Coordination
ERIC Educational Resources Information Center
Hessler, Eric E.; Amazeen, Polemnia G.
2009-01-01
Athletic performance requires the pacing of breathing with exercise, known as motor-respiratory coordination (MRC). In this study, we added cognitive and physical constraints while participants intentionally controlled their breathing locations during rhythmic arm movement. This is the first study to examine a cognitive constraint on MRC.…
Motor Skill Learning in Children with Developmental Coordination Disorder
ERIC Educational Resources Information Center
Bo, Jin; Lee, Chi-Mei
2013-01-01
Children with Developmental Coordination Disorder (DCD) are characterized as having motor difficulties and learning impairment that may last well into adolescence and adulthood. Although behavioral deficits have been identified in many domains such as visuo-spatial processing, kinesthetic perception, and cross-modal sensory integration, recent…
Influence of facial feedback during a cooperative human-robot task in schizophrenia.
Cohen, Laura; Khoramshahi, Mahdi; Salesse, Robin N; Bortolon, Catherine; Słowiński, Piotr; Zhai, Chao; Tsaneva-Atanasova, Krasimira; Di Bernardo, Mario; Capdevielle, Delphine; Marin, Ludovic; Schmidt, Richard C; Bardy, Benoit G; Billard, Aude; Raffard, Stéphane
2017-11-03
Rapid progress in the area of humanoid robots offers tremendous possibilities for investigating and improving social competences in people with social deficits, but remains yet unexplored in schizophrenia. In this study, we examined the influence of social feedbacks elicited by a humanoid robot on motor coordination during a human-robot interaction. Twenty-two schizophrenia patients and twenty-two matched healthy controls underwent a collaborative motor synchrony task with the iCub humanoid robot. Results revealed that positive social feedback had a facilitatory effect on motor coordination in the control participants compared to non-social positive feedback. This facilitatory effect was not present in schizophrenia patients, whose social-motor coordination was similarly impaired in social and non-social feedback conditions. Furthermore, patients' cognitive flexibility impairment and antipsychotic dosing were negatively correlated with patients' ability to synchronize hand movements with iCub. Overall, our findings reveal that patients have marked difficulties to exploit facial social cues elicited by a humanoid robot to modulate their motor coordination during human-robot interaction, partly accounted for by cognitive deficits and medication. This study opens new perspectives for comprehension of social deficits in this mental disorder.
Prastiwi, D; Djunaidi, A; Partadiredja, G
2015-11-01
Monosodium glutamate (MSG) has been widely used throughout the world as a flavoring agent of food. However, MSG at certain dosages is also thought to cause damage to many organs, including cerebellum. This study aimed at investigating the effects of different doses of MSG on the motor coordination and the number of Purkinje cells of the cerebellum of Wistar rats. A total of 24 male rats aged 4 to 5 weeks were divided into four groups, namely, control (C), T2.5, T3, and T3.5 groups, which received intraperitoneal injection of 0.9% sodium chloride solution, 2.5 mg/g body weight (bw) of MSG, 3.0 mg/g bw of MSG, and 3.5 mg/g bw of MSG, respectively, for 10 consecutive days. The motor coordination of the rats was examined prior and subsequent to the treatment. The number of cerebellar Purkinje cells was estimated using physical fractionator method. It has been found that the administration of MSG at a dosage of 3.5 mg/g bw, but not at lower dosages, caused a significant decrease of motor coordination and the estimated total number of Purkinje cells of rats. There was also a significant correlation between motor coordination and the total number of Purkinje cells. © The Author(s) 2015.
Stanley, Joanna L; Lincoln, Rachael J; Brown, Terry A; McDonald, Louise M; Dawson, Gerard R; Reynolds, David S
2005-05-01
The mouse rotarod test of motor coordination/sedation is commonly used to predict clinical sedation caused by novel drugs. However, past experience suggests that it lacks the desired degree of sensitivity to be predictive of effects in humans. For example, the benzodiazepine, bretazenil, showed little impairment of mouse rotarod performance, but marked sedation in humans. The aim of the present study was to assess whether the mouse beam walking assay demonstrates: (i) an increased sensitivity over the rotarod and (ii) an increased ability to predict clinically sedative doses of benzodiazepines. The study compared the effects of the full benzodiazepine agonists, diazepam and lorazepam, and the partial agonist, bretazenil, on the mouse rotarod and beam walking assays. Diazepam and lorazepam significantly impaired rotarod performance, although relatively high GABA-A receptor occupancy was required (72% and 93%, respectively), whereas beam walking performance was significantly affected at approximately 30% receptor occupancy. Bretazenil produced significant deficits at 90% and 53% receptor occupancy on the rotarod and beam walking assays, respectively. The results suggest that the mouse beam walking assay is a more sensitive tool for determining benzodiazepine-induced motor coordination deficits than the rotarod. Furthermore, the GABA-A receptor occupancy values at which significant deficits were determined in the beam walking assay are comparable with those observed in clinical positron emission tomography studies using sedative doses of benzodiazepines. These data suggest that the beam walking assay may be able to more accurately predict the clinically sedative doses of novel benzodiazepine-like drugs.
Supplementation of Korean Red Ginseng improves behavior deviations in animal models of autism
Gonzales, Edson Luck T.; Jang, Jong-Hwa; Mabunga, Darine Froy N.; Kim, Ji-Woon; Ko, Mee Jung; Cho, Kyu Suk; Bahn, Geon Ho; Hong, Minha; Ryu, Jong Hoon; Kim, Hee Jin; Cheong, Jae Hoon; Shin, Chan Young
2016-01-01
Background Autism spectrum disorder (ASD) is heterogeneous neurodevelopmental disorders that primarily display social and communication impairments and restricted/repetitive behaviors. ASD prevalence has increased in recent years, yet very limited therapeutic targets and treatments are available to counteract the incapacitating disorder. Korean Red Ginseng (KRG) is a popular herbal plant in South Korea known for its wide range of therapeutic effects and nutritional benefits and has recently been gaining great scientific attention, particularly for its positive effects in the central nervous system. Objectives Thus, in this study, we investigated the therapeutic potential of KRG in alleviating the neurobehavioral deficits found in the valproic acid (VPA)-exposed mice models of ASD. Design Starting at 21 days old (P21), VPA-exposed mice were given daily oral administrations of KRG solution (100 or 200 mg/kg) until the termination of all experiments. From P28, mice behaviors were assessed in terms of social interaction capacity (P28–29), locomotor activity (P30), repetitive behaviors (P32), short-term spatial working memory (P34), motor coordination (P36), and seizure susceptibility (P38). Results VPA-exposed mice showed sociability and social novelty preference deficits, hyperactivity, increased repetitive behavior, impaired spatial working memory, slightly affected motor coordination, and high seizure susceptibility. Remarkably, long-term KRG treatment in both dosages normalized all the ASD-related behaviors in VPA-exposed mice, except motor coordination ability. Conclusion As a food and herbal supplement with various known benefits, KRG demonstrated its therapeutic potential in rescuing abnormal behaviors related to autism caused by prenatal environmental exposure to VPA. PMID:26837496
... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...
Schoemaker, Marina M; Lingam, Raghu; Jongmans, Marian J; van Heuvelen, Marieke J G; Emond, Alan
2013-10-01
Aim of the study was to investigate whether 7-9 year old children with severe motor difficulties are more at risk of additional difficulties in activities in daily living, academic skills, attention and social skills than children with moderate motor difficulties. Children (N=6959) from a population based cohort, the Avon Longitudinal Study of Parents and Children (ALSPAC), were divided into three groups based on their scores on the ALSPAC Coordination Test at age 7: control children (scores above 15th centile; N=5719 [82.1%]); children with moderate (between 5th and 15th centile; N=951 [13.7%]); and children with severe motor difficulties (below 5th centile N=289 [4.2%]). Children with neurological disorders or an IQ<70 were excluded. Logistic regression was used to compare children with moderate and severe motor coordination difficulties with each other and with control children regarding their risk of co-morbidity defined as significant (<10th centile) difficulties with activities of daily living (ADL); academic skills (reading, spelling and handwriting); attention; social skills (social cognition and nonverbal skills). Children with severe motor difficulties demonstrated a higher risk of difficulties in ADL, handwriting, attention, reading, and social cognition than children with moderate motor difficulties, who in turn had a higher risk of difficulties than control children in five out of seven domains. Screening and intervention of co-morbid problems is recommended for children with both moderate and severe motor difficulties. Copyright © 2013. Published by Elsevier Ltd.
Liu, Li-Fei; Lu, Lan; Yue, Hong-Ni; Huan, Bei; Gu, Gui-Xiong; Jin, Hua; Wang, Yu-Mei
2017-09-01
To investigate the influence of family environment on developmental coordination disorder (DCD) in preschool children. Stratified random cluster sampling was used to select 1 727 children (4-6 years old). The Movement Assessment Battery for Children was used to screen out the children with DCD. The Family Environment Scale on Motor Development for Preschool Urban Children and a self-designed questionnaire were used to assess family environment. A total of 117 children were confirmed with DCD. There were significant differences in mother's education level and family structure between the DCD and normal control groups. There were also significant differences in the scores of "Let children manage their daily items" and "Arrange all affairs" between the DCD and normal control groups. The multivariate logistic regression analysis indicated that when children's age and gender were controlled, mother's education level, family structure, "Let children manage their daily items", and "Arrange all affairs" were main factors influencing the development of DCD in children (P<0.05). Family environment may affect the development of DCD in preschool children. Therefore, parents should not arrange all affairs for children and should provide more opportunities for children to manage their daily life, in order to promote the development of early motor coordination and prevent the development of DCD.
Rompolas, Panteleimon; Patel-King, Ramila S.
2010-01-01
Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony. PMID:20844081
Sequence for the Training of Eye-Hand Coordination Needed for the Organization of Handwriting Tasks
ERIC Educational Resources Information Center
Trester, Mary Fran
1971-01-01
Suggested is a sequence of 11 class activities, progressing from gross to fine motor skills, to assist the development of skills required to perform handwriting tasks successfully, for use particularly with children who lack fine motor control and eye-hand coordination. (KW)
Multiple Sensory-Motor Pathways Lead to Coordinated Visual Attention
ERIC Educational Resources Information Center
Yu, Chen; Smith, Linda B.
2017-01-01
Joint attention has been extensively studied in the developmental literature because of overwhelming evidence that the ability to socially coordinate visual attention to an object is essential to healthy developmental outcomes, including language learning. The goal of this study was to understand the complex system of sensory-motor behaviors that…
Convergent-Discriminant Validity of the Jewish Employment Vocational System (JEVS).
ERIC Educational Resources Information Center
Tryjankowski, Elaine M.
This study investigated the construct validity of five perceptual traits (auditory discrimination, visual discrimination, visual memory, visual-motor coordination, and auditory to visual-motor coordination) with five simulated work samples (union assembly, resistor reading, budgette assembly, lock assembly, and nail and screw sort) from the Jewish…
2016-11-01
Introduction Fragile X syndrome is the leading cause of intellectual disability resulting from a single gene mutation...performance, which measures motor learning and coordination. Treatment with metformin did not significantly affect performance in the rotarod task (Fig 5...marble burying, novel object recognition, object place memory, and reversal learning in the water Y maze (data not shown). It has been previously
Neural and behavioural changes in male periadolescent mice after prolonged nicotine-MDMA treatment.
Adeniyi, Philip A; Ishola, Azeez O; Laoye, Babafemi J; Olatunji, Babawale P; Bankole, Oluwamolakun O; Shallie, Philemon D; Ogundele, Olalekan M
2016-02-01
The interaction between MDMA and Nicotine affects multiple brain centres and neurotransmitter systems (serotonin, dopamine and glutamate) involved in motor coordination and cognition. In this study, we have elucidated the effect of prolonged (10 days) MDMA, Nicotine and a combined Nicotine-MDMA treatment on motor-cognitive neural functions. In addition, we have shown the correlation between the observed behavioural change and neural structural changes induced by these treatments in BALB/c mice. We observed that MDMA (2 mg/Kg body weight; subcutaneous) induced a decline in motor function, while Nicotine (2 mg/Kg body weight; subcutaneous) improved motor function in male periadolescent mice. In combined treatment, Nicotine reduced the motor function decline observed in MDMA treatment, thus no significant change in motor function for the combined treatment versus the control. Nicotine or MDMA treatment reduced memory function and altered hippocampal structure. Similarly, a combined Nicotine-MDMA treatment reduced memory function when compared with the control. Ultimately, the metabolic and structural changes in these neural systems were seen to vary for the various forms of treatment. It is noteworthy to mention that a combined treatment increased the rate of lipid peroxidation in brain tissue.
Romero, Veronica; Amaral, Joseph; Fitzpatrick, Paula; Schmidt, R C; Duncan, Amie W; Richardson, Michael J
2017-04-01
Functionally stable and robust interpersonal motor coordination has been found to play an integral role in the effectiveness of social interactions. However, the motion-tracking equipment required to record and objectively measure the dynamic limb and body movements during social interaction has been very costly, cumbersome, and impractical within a non-clinical or non-laboratory setting. Here we examined whether three low-cost motion-tracking options (Microsoft Kinect skeletal tracking of either one limb or whole body and a video-based pixel change method) can be employed to investigate social motor coordination. Of particular interest was the degree to which these low-cost methods of motion tracking could be used to capture and index the coordination dynamics that occurred between a child and an experimenter for three simple social motor coordination tasks in comparison to a more expensive, laboratory-grade motion-tracking system (i.e., a Polhemus Latus system). Overall, the results demonstrated that these low-cost systems cannot substitute the Polhemus system in some tasks. However, the lower-cost Microsoft Kinect skeletal tracking and video pixel change methods were successfully able to index differences in social motor coordination in tasks that involved larger-scale, naturalistic whole body movements, which can be cumbersome and expensive to record with a Polhemus. However, we found the Kinect to be particularly vulnerable to occlusion and the pixel change method to movements that cross the video frame midline. Therefore, particular care needs to be taken in choosing the motion-tracking system that is best suited for the particular research.
Fenollar-Cortés, Javier; Gallego-Martínez, Ana; Fuentes, Luis J
2017-10-01
Deficits in fine motor coordination have been suggested to be associated with Attention-Deficit/Hyperactivity Disorder (ADHD). However, despite the negative impact of poor fine motor skills on academic achievement, researchers have paid little attention to this problem. The aim of this study was to explore the relationship between ADHD dimensions and fine motor performance. Participants were 43 children with a diagnosis of ADHD aged between 7 and 14 years (M=9.61; 81% male) and 42 typically developing (TP) children in the same age range (M=10.76; 75.2% male). Children with ADHD performed worse than TP on all tasks (δ Fine_motor_tasks, -0.19 to -0.44). After controlling for age and ADHD-HY (hyperactivity/impulsivity), higher scores on ADHD-IN (inattentiveness) predicted a larger number of mistakes among all psychomotricity tasks and conditions (β 0.39-0.58, ps<0.05). The ADHD group showed poorer fine motor performance than controls across all fine motor coordination tasks. However, lower performance (more mistakes), was related to the inattention dimension but not to the hyperactivity/impulsivity dimensions. Authors recommend including training and enhancement of the fine motor skills for more comprehensive ADHD treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sakurada, Takeshi; Ito, Koji; Gomi, Hiroaki
2016-01-01
Although strong motor coordination in intrinsic muscle coordinates has frequently been reported for bimanual movements, coordination in extrinsic visual coordinates is also crucial in various bimanual tasks. To explore the bimanual coordination mechanisms in terms of the frame of reference, here we characterized implicit bilateral interactions in visuomotor tasks. Visual perturbations (finger-cursor gain change) were applied while participants performed a rhythmic tracking task with both index fingers under an in-phase or anti-phase relationship in extrinsic coordinates. When they corrected the right finger's amplitude, the left finger's amplitude unintentionally also changed [motor interference (MI)], despite the instruction to keep its amplitude constant. Notably, we observed two specificities: one was large MI and low relative-phase variability (PV) under the intrinsic in-phase condition, and the other was large MI and high PV under the extrinsic in-phase condition. Additionally, using a multiple-interaction model, we successfully decomposed MI into intrinsic components caused by motor correction and extrinsic components caused by visual-cursor mismatch of the right finger's movements. This analysis revealed that the central nervous system facilitates MI by combining intrinsic and extrinsic components in the condition with in-phases in both intrinsic and extrinsic coordinates, and that under-additivity of the effects is explained by the brain's preference for the intrinsic interaction over extrinsic interaction. In contrast, the PV was significantly correlated with the intrinsic component, suggesting that the intrinsic interaction dominantly contributed to bimanual movement stabilization. The inconsistent features of MI and PV suggest that the central nervous system regulates multiple levels of bilateral interactions for various bimanual tasks. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Brossard-Racine, Marie; Shevell, Michael; Snider, Laurie; Bélanger, Stacey Ageranioti; Majnemer, Annette
2012-01-01
Motor difficulties are common in children with Attention Deficit Hyperactivity Disorder (ADHD). Although preliminary evidence has suggested that methylphenidate can improve the motor skills in children with ADHD and Developmental Coordination Disorder (DCD), the effect of stimulant medication on motor performance in children newly diagnosed with ADHD with or without motor impairment remains unclear. A cohort study of 49 medication-naïve children (39 male; mean age 8.4±1.3 years) with ADHD was conducted. Children were evaluated using the Movement Assessment Battery for Children and the developmental test of visual motor integration at diagnosis and again three months following daily treatment with a stimulant medication. Motor difficulties were highly present at baseline (73.5%) but resolved in a subset after treatment with stimulant medication, suggesting that their motor difficulties may be attributed in part to their attentional problems. Nevertheless, motor impairment persisted in 55.1% of the sample. The severity of the behavioural symptoms was significantly associated with balance skills in children without motor impairments (r(2)=0.30, p<0.01) and with visual motor integration skills in children with persisting motor difficulties (r(2)=0.27, p<0.01). Attentional difficulties negatively affect the motor skills of children with ADHD. Following the use of stimulant medication, an important subset continued to demonstrate motor difficulties. The improvement in behaviour was insufficient to resolve motor problems and these children should therefore be targeted for rehabilitation services. Copyright © 2012 Elsevier Ltd. All rights reserved.
Allen, Jessica L; McKay, J Lucas; Sawers, Andrew; Hackney, Madeleine E; Ting, Lena H
2017-07-01
Here we examined changes in muscle coordination associated with improved motor performance after partnered, dance-based rehabilitation in individuals with mild to moderate idiopathic Parkinson's disease. Using motor module (a.k.a. muscle synergy) analysis, we identified changes in the modular control of overground walking and standing reactive balance that accompanied clinically meaningful improvements in behavioral measures of balance, gait, and disease symptoms after 3 wk of daily Adapted Tango classes. In contrast to previous studies that revealed a positive association between motor module number and motor performance, none of the six participants in this pilot study increased motor module number despite improvements in behavioral measures of balance and gait performance. Instead, motor modules were more consistently recruited and distinctly organized immediately after rehabilitation, suggesting more reliable motor output. Furthermore, the pool of motor modules shared between walking and reactive balance increased after rehabilitation, suggesting greater generalizability of motor module function across tasks. Our work is the first to show that motor module distinctness, consistency, and generalizability are more sensitive to improvements in gait and balance function after short-term rehabilitation than motor module number. Moreover, as similar differences in motor module distinctness, consistency, and generalizability have been demonstrated previously in healthy young adults with and without long-term motor training, our work suggests commonalities in the structure of muscle coordination associated with differences in motor performance across the spectrum from motor impairment to expertise. NEW & NOTEWORTHY We demonstrate changes in neuromuscular control of gait and balance in individuals with Parkinson's disease after short-term, dance-based rehabilitation. Our work is the first to show that motor module distinctness, consistency, and generalizability across gait and balance are more sensitive than motor module number to improvements in motor performance following short-term rehabilitation. Our results indicate commonalities in muscle coordination improvements associated with motor skill reacquisition due to rehabilitation and motor skill acquisition in healthy individuals. Copyright © 2017 the American Physiological Society.
Multiple Sensory-Motor Pathways Lead to Coordinated Visual Attention
Yu, Chen; Smith, Linda B.
2016-01-01
Joint attention has been extensively studied in the developmental literature because of overwhelming evidence that the ability to socially coordinate visual attention to an object is essential to healthy developmental outcomes, including language learning. The goal of the present study is to understand the complex system of sensory-motor behaviors that may underlie the establishment of joint attention between parents and toddlers. In an experimental task, parents and toddlers played together with multiple toys. We objectively measured joint attention – and the sensory-motor behaviors that underlie it – using a dual head-mounted eye-tracking system and frame-by-frame coding of manual actions. By tracking the momentary visual fixations and hand actions of each participant, we precisely determined just how often they fixated on the same object at the same time, the visual behaviors that preceded joint attention, and manual behaviors that preceded and co-occurred with joint attention. We found that multiple sequential sensory-motor patterns lead to joint attention. In addition, there are developmental changes in this multi-pathway system evidenced as variations in strength among multiple routes. We propose that coordinated visual attention between parents and toddlers is primarily a sensory-motor behavior. Skill in achieving coordinated visual attention in social settings – like skills in other sensory-motor domains – emerges from multiple pathways to the same functional end. PMID:27016038
Multiple Sensory-Motor Pathways Lead to Coordinated Visual Attention.
Yu, Chen; Smith, Linda B
2017-02-01
Joint attention has been extensively studied in the developmental literature because of overwhelming evidence that the ability to socially coordinate visual attention to an object is essential to healthy developmental outcomes, including language learning. The goal of this study was to understand the complex system of sensory-motor behaviors that may underlie the establishment of joint attention between parents and toddlers. In an experimental task, parents and toddlers played together with multiple toys. We objectively measured joint attention-and the sensory-motor behaviors that underlie it-using a dual head-mounted eye-tracking system and frame-by-frame coding of manual actions. By tracking the momentary visual fixations and hand actions of each participant, we precisely determined just how often they fixated on the same object at the same time, the visual behaviors that preceded joint attention and manual behaviors that preceded and co-occurred with joint attention. We found that multiple sequential sensory-motor patterns lead to joint attention. In addition, there are developmental changes in this multi-pathway system evidenced as variations in strength among multiple routes. We propose that coordinated visual attention between parents and toddlers is primarily a sensory-motor behavior. Skill in achieving coordinated visual attention in social settings-like skills in other sensory-motor domains-emerges from multiple pathways to the same functional end. Copyright © 2016 Cognitive Science Society, Inc.
Bashwiner, David M.; Wertz, Christopher J.; Flores, Ranee A.; Jung, Rex E.
2016-01-01
Creative behaviors are among the most complex that humans engage in, involving not only highly intricate, domain-specific knowledge and skill, but also domain-general processing styles and the affective drive to create. This study presents structural imaging data indicating that musically creative people (as indicated by self-report) have greater cortical surface area or volume in a) regions associated with domain-specific higher-cognitive motor activity and sound processing (dorsal premotor cortex, supplementary and pre-supplementary motor areas, and planum temporale), b) domain-general creative-ideation regions associated with the default mode network (dorsomedial prefrontal cortex, middle temporal gyrus, and temporal pole), and c) emotion-related regions (orbitofrontal cortex, temporal pole, and amygdala). These findings suggest that domain-specific musical expertise, default-mode cognitive processing style, and intensity of emotional experience might all coordinate to motivate and facilitate the drive to create music. PMID:26888383
Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio
2018-01-01
The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and ASD. Multiple regression analysis revealed that the DDT, which indicated visuo-motor temporal integration, was the greatest predictor of poor manual dexterity. The current results supported and provided further evidence for the internal model deficit hypothesis. Further, they suggested a neurorehabilitation technique that improved visuo-motor temporal integration could be therapeutically effective for children with DCD.
Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio
2018-01-01
The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and ASD. Multiple regression analysis revealed that the DDT, which indicated visuo-motor temporal integration, was the greatest predictor of poor manual dexterity. The current results supported and provided further evidence for the internal model deficit hypothesis. Further, they suggested a neurorehabilitation technique that improved visuo-motor temporal integration could be therapeutically effective for children with DCD. PMID:29556211
Effect of Cassava on motor co-ordination and neurotransmitter level in the albino rat.
Mathangi, D C; Mohan, V; Namasivayam, A
1999-01-01
The root of Cassava, a tropical plant, is consumed in the tropics and has been attributed as the cause for various tropical neuropathies. This study aims to discover the neurotoxic effects of chronic cassava consumption of Indian origin and the effect of malnutrition. The assessment is based on the motor co-ordination and brain neurotransmitters in rats. Cassava consumption reduced the motor co-ordination, but the changes in neurotransmitter levels due to cassava consumption (except for 5HT in corpus striatum) was identical with malnutrition-induced changes, indicating that the toxicity of chronic cassava consumption (of Indian origin) is mainly due to the associated protein calorie malnutrition (PCM).
Zhu, Yi-Ching; Wu, Sheng K; Cairney, John
2011-01-01
The purpose of this study was to investigate the associations between obesity and motor coordination ability in Taiwanese children with and without developmental coordination disorder (DCD). 2029 children (1078 boys, 951 girls) aged nine to ten years were chosen randomly from 14 elementary schools across Taiwan. We used bioelectrical impedance analysis to measure percentage of body fat (PBF) and the Movement Assessment Battery for Children test (MABC test) to evaluate the motor coordination ability. Using cut-off points based on PBF from past studies, boys and girls were divided into obese, overweight and normal-weight groups, respectively. In boys, total impairment scores and scores on balance subtest in the MABC were significantly higher in the obese and overweight groups when compared against the normal-weight group. Girls in the obese and the overweight groups had higher balance impairment scores than those of the normal-weight group. Among boys, the prevalence of obesity was highest in the DCD group, when compared to the borderline DCD and TD boys. A higher percentage of DCD girls were overweight and obese than TD girls. Obesity may be associated with poor motor coordination ability among boys and girls, and particularly in relation to balance ability. Children with DCD may have a higher risk to be overweight or obese in Taiwan. Copyright © 2010 Elsevier Ltd. All rights reserved.
Review of Motor Development, Perceptual-Motor and Physical Fitness Testing.
ERIC Educational Resources Information Center
Bundschuh, Ernest; And Others
Tests of motor development, perceptual-motor coordination, and physical fitness, for the retarded and non-retarded, are reviewed regarding their usage and administration. The tests reviewed are the: Denver Developmental Screening Test, Bayley Scales of Infant Development, Dayton Sensory Motor Awareness Survey, Minnetonka Physical Performance…
Barnett, Lisa M; Lai, Samuel K; Veldman, Sanne L C; Hardy, Louise L; Cliff, Dylan P; Morgan, Philip J; Zask, Avigdor; Lubans, David R; Shultz, Sarah P; Ridgers, Nicola D; Rush, Elaine; Brown, Helen L; Okely, Anthony D
2016-11-01
Gross motor competence confers health benefits, but levels in children and adolescents are low. While interventions can improve gross motor competence, it remains unclear which correlates should be targeted to ensure interventions are most effective, and for whom targeted and tailored interventions should be developed. The aim of this systematic review was to identify the potential correlates of gross motor competence in typically developing children and adolescents (aged 3-18 years) using an ecological approach. Motor competence was defined as gross motor skill competency, encompassing fundamental movement skills and motor coordination, but excluding motor fitness. Studies needed to assess a summary score of at least one aspect of motor competence (i.e., object control, locomotor, stability, or motor coordination). A structured electronic literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Six electronic databases (CINAHL Complete, ERIC, MEDLINE Complete, PsycINFO ® , Scopus and SPORTDiscus with Full Text) were searched from 1994 to 5 August 2014. Meta-analyses were conducted to determine the relationship between potential correlates and motor competency if at least three individual studies investigated the same correlate and also reported standardized regression coefficients. A total of 59 studies were identified from 22 different countries, published between 1995 and 2014. Studies reflected the full range of age groups. The most examined correlates were biological and demographic factors. Age (increasing) was a correlate of children's motor competence. Weight status (healthy), sex (male) and socioeconomic background (higher) were consistent correlates for certain aspects of motor competence only. Physical activity and sport participation constituted the majority of investigations in the behavioral attributes and skills category. Whilst we found physical activity to be a positive correlate of skill composite and motor coordination, we also found indeterminate evidence for physical activity being a correlate of object control or locomotor skill competence. Few studies investigated cognitive, emotional and psychological factors, cultural and social factors or physical environment factors as correlates of motor competence. This systematic review is the first that has investigated correlates of gross motor competence in children and adolescents. A strength is that we categorized correlates according to the specific ways motor competence has been defined and operationalized (object control, motor coordination, etc.), which enables us to have an understanding of what correlates assist what types of motor competence. Indeed our findings do suggest that evidence for some correlates differs according to how motor competence is operationalized.
Motor Assessment in Developmental Coordination Disorder: From Identification to Intervention
ERIC Educational Resources Information Center
Barnett, Anna L.
2008-01-01
A description of Developmental Coordination Disorder (DCD) is included in the "Diagnostic Manual of the American Psychiatric Association" fourth edition ("DSM-IV-TR"). The major feature of this condition is impairment in motor skill, which has a negative impact on the performance of everyday life tasks. The present review outlines major issues…
Reversal of Handedness Effects on Bimanual Coordination in Adults with Down Syndrome
ERIC Educational Resources Information Center
Mulvey, G. M.; Ringenbach, S. D. R.; Jung, M. L.
2011-01-01
Background: Research on unimanual tasks suggested that motor asymmetries between hands may be reduced in people with Down syndrome. Our study examined handedness (as assessed by hand performance) and perceptual-motor integration effects on bimanual coordination. Methods: Adults with Down syndrome (13 non-right-handed, 22 right-handed), along with…
ERIC Educational Resources Information Center
Pietsch, Stefanie; Böttcher, Caroline; Jansen, Petra
2017-01-01
The long-term physical activity in specific sport activities can change the quality of mental rotation performance. This study investigates the influence of "Life Kinetik"--a motion program with tasks of cognition and motor coordination--on mental rotation performance of 44 primary school-aged children. While the experimental group…
ERIC Educational Resources Information Center
Cosper, Sharon M.; Lee, Gregory P.; Peters, Susan Beth; Bishop, Elizabeth
2009-01-01
The objective of this study was to examine the efficacy of Interactive Metronome (Interactive Metronome, Sunrise, Florida, USA) training in a group of children with mixed attentional and motor coordination disorders to further explore which subcomponents of attentional control and motor functioning the training influences. Twelve children who had…
Does Speech Emerge from Earlier Appearing Oral Motor Behaviors?.
ERIC Educational Resources Information Center
Moore, Christopher A.; Ruark, Jacki L.
1996-01-01
This study of the oral motor behaviors of seven toddlers (age 15 months) may be interpreted to indicate that: (1) mandibular coordination follows a developmental continuum from earlier emerging behaviors, such as chewing and sucking, through babbling, to speech, or (2) unique task demands give rise to distinct mandibular coordinative constraints…
Leone, Mario; Viret, Pierre; Bui, Hung Tien; Laverdière, Caroline; Kalinova, Émilia; Comtois, Alain-Steve
2014-01-01
The purpose of this study was to evaluate the usefulness of a new gross motor skill test battery in acute lymphoblastic leukemia (ALL) children who have been off therapy for at least 1 year and to assess its discriminatory power (discriminant analysis) from healthy children. Twenty children (10 males and 10 females) 9-11 years of age (median age = 10.6 years) were assessed by the UQAC-UQAM test battery and then compared to recent provincial norms. This pilot study was also an opportunity to validate this test battery as a reliable tool for clinical or research purposes in the area of chronic or disabling diseases in children. Eleven motor skill variables grouped into five factors have been measured (speed, agility, balance, coordination, and reaction time). Scores from 10 of the 11 motor skill tests showed significant differences when compared to the control group (P ≤ 0.05). Nearly 50% of patients obtained an average score below the 15th percentile. Furthermore, stepwise discriminant analysis allowed classifying successfully 88.4% of children in the correct group (ALL or Control). The normal development of GMS among children affected by ALL appears to have been compromised. The UQAC-UQAM test battery seems to be sensitive enough to quantify with precision the extent of the motor impairment in these children. The UQAC-UQAM test battery appears to be a useful tool to evaluate the extent to which ALL survivors are affected. Early motor intervention should be considered for those patients even during the treatment periods. © 2013 Wiley Periodicals, Inc.
Biocultural Predictors of Motor Coordination Among Prepubertal Boys and Girls.
Luz, Leonardo G O; Valente-Dos-Santos, João; Luz, Tatiana D D; Sousa-E-Silva, Paulo; Duarte, João P; Machado-Rodrigues, Aristides; Seabra, André; Santos, Rute; Cumming, Sean P; Coelho-E-Silva, Manuel J
2018-02-01
This study aimed to predict motor coordination from a matrix of biocultural factors for 173 children (89 boys, 84 girls) aged 7-9 years who were assessed with the Körperkoordinationtest für Kinder test battery. Socioeconomic variables included built environment, area of residence, mother's educational level, and mother's physical activity level (using the International Physical Activity Questionnaire [short version]). The behavioral domain was marked by participation in organized sports and habitual physical activity measured by accelerometers ( ActiGraph GT1M). Indicators of biological development included somatic maturation and body mass index. Among males, the best logistic regression model to explain motor coordination (Nagelkerke R 2 = 50.8; χ 2 = 41.166; p < .001) emerged from age-group (odds ratio [OR]: 0.007-0.065), late maturation (OR = 0.174), normal body weight status (OR = 0.116), mother's educational level (OR = 0.129), and urban area of residence (OR = 0.236). Among girls, the best logistic regression to explain motor coordination (Nagelkerke R 2 = 40.8; χ 2 = 29.933; p < .01) derived from age (OR: 0.091-0.384), normal body mass index (OR = 0.142), participation in organized sport (OR = 0.121), and mother's physical activity level (OR = 0.183). This sex-specific, ecological approach to motor coordination proficiency may help promote physical activity during prepubertal years through familiar determinants.
Bartscherer, Melinda L; Dole, Robin L
2005-01-01
The purpose of this case report is to describe a new intervention, the Interactive Metronome, for improving timing and coordination. A nine-year-old boy, with difficulties in attention and developmental delay of unspecified origin underwent a seven-week training program with the Interactive Metronome. Before, during, and after training timing, accuracy was assessed with testing procedures consistent with the Interactive Metronome training protocol. Before and after training, his gross and fine motor skills were examined with the Bruininiks-Oseretsky Test of Motor Proficiency (BOTMP). The child exhibited marked change in scores on both timing accuracy and several BOTMP subtests. Additionally his mother relayed anecdotal reports of changes in behavior at home. This child's participation in a new intervention for improving timing and coordination was associated with changes in timing accuracy, gross and fine motor abilities, and parent reported behaviors. These findings warrant further study.
Motor coordination defects in mice deficient for the Sam68 RNA-binding protein.
Lukong, Kiven E; Richard, Stéphane
2008-06-03
The role of RNA-binding proteins in the central nervous system and more specifically their role in motor coordination and learning are poorly understood. We previously reported that ablation of RNA-binding protein Sam68 in mice results in male sterility and delayed mammary gland development and protection against osteoporosis in females. Sam68 however is highly expressed in most regions of the brain especially the cerebellum and thus we investigated the cerebellar-related manifestations in Sam68-null mice. We analyzed the mice for motor function, sensory function, and learning and memory abilities. Herein, we report that Sam68-null mice have motor coordination defects as assessed by beam walking and rotorod performance. Forty-week-old Sam68-null mice (n=12) were compared to their wild-type littermates (n=12). The Sam68-null mice exhibited more hindpaw faults in beam walking tests and fell from the rotating drum at lower speeds and prematurely compared to the wild-type controls. The Sam68-null mice were, however, normal for forelimb strength, tail-hang reflex, balance test, grid walking, the Morris water task, recognition memory, visual discrimination, auditory stimulation and conditional taste aversion. Our findings support a role for Sam68 in the central nervous system in the regulation of motor coordination.
Young, Cole; Reinkensmeyer, David J
2014-08-01
Athletes rely on subjective assessment of complex movements from coaches and judges to improve their motor skills. In some sports, such as diving, snowboard half pipe, gymnastics, and figure skating, subjective scoring forms the basis for competition. It is currently unclear whether this scoring process can be mathematically modeled; doing so could provide insight into what motor skill is. Principal components analysis has been proposed as a motion analysis method for identifying fundamental units of coordination. We used PCA to analyze movement quality of dives taken from USA Diving's 2009 World Team Selection Camp, first identifying eigenpostures associated with dives, and then using the eigenpostures and their temporal weighting coefficients, as well as elements commonly assumed to affect scoring - gross body path, splash area, and board tip motion - to identify eigendives. Within this eigendive space we predicted actual judges' scores using linear regression. This technique rated dives with accuracy comparable to the human judges. The temporal weighting of the eigenpostures, body center path, splash area, and board tip motion affected the score, but not the eigenpostures themselves. These results illustrate that (1) subjective scoring in a competitive diving event can be mathematically modeled; (2) the elements commonly assumed to affect dive scoring actually do affect scoring (3) skill in elite diving is more associated with the gross body path and the effect of the movement on the board and water than the units of coordination that PCA extracts, which might reflect the high level of technique these divers had achieved. We also illustrate how eigendives can be used to produce dive animations that an observer can distort continuously from poor to excellent, which is a novel approach to performance visualization. Copyright © 2014 Elsevier B.V. All rights reserved.
Bobbio, Tatiana Godoy; Morcillo, André Moreno; Barros Filho, Antonio de Azevedo; Concalves, Vanda Maria Gimenes
2007-12-01
The objective of this study was to evaluate and compare the motor coordination of Brazilian schoolchildren of different socioeconomic status in their first year of primary education. Factors associated with inadequate fine motor skills were identified. A total of 238 schoolchildren, 118 from a public school and 120 from a private school, were evaluated on fine motor skills using the Evolutional Neurological Examination. Statistical analysis was performed using univariate logistic regression followed by multivariate analysis. Children attending public school had a 5.5-fold greater risk of having inadequate fine motor skills for their age compared to children attending private school, while children who started school after four years of age had a 2.8-fold greater risk of having inadequate motor coordination compared to children who began school earlier. Data for this sample suggest socioeconomic factors and later entry of children to school may be associated with their fine motor skills.
Aerts, Peter; Prims, Sara; Ayuso, Miriam; Van Cruchten, Steven; Van Ginneken, Chris
2018-01-01
In polytocous species, such as pigs, the growth of an individual fetus is affected by competition from its littermates and the sow. This intrauterine competition greatly influences postnatal traits such as birth weight and vitality (physical strength). A lowered vitality is most often observed among low birth weight piglets. Since it has been argued that locomotion might be key to unraveling vitality-related differences, we compared gait development in piglets with a low birth weight and low vitality (L piglets) with piglets with a normal birth weight and normal vitality (N piglets) by means of spatio-temporal gait analysis during locomotion at self-selected speed. Video recordings of L and N piglets walking along a corridor at ten time points (between birth and 96 h after birth) were made and the footfalls were digitized. Hence, self-selected speed, spatio-temporal characteristics and gait symmetry were analyzed to compare motor performance, neuromotor maturation (motor task, interlimb and intralimb coordination) and gait variability for L and N piglets. The analysis included both absolute and normalized data (according to the dynamic similarity concept), to distinguish neuromotor maturation from effects caused by growth. Results indicate that intrauterine crowding affects locomotion, mainly by impairing growth in utero, with a lowered motor performance during the first 96 h of age as a consequence. A difference in neuromotor skills was also visible, though only for swing and stance duration, implying a difference in neuromotor development in utero. However, further maturation during the first days after birth does not seem to be affected by intrauterine crowding. We can therefore conclude that L piglets might be considered a smaller and fictitious younger version of N piglets. PMID:29689084
Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations.
Stark, David E; Margulies, Daniel S; Shehzad, Zarrar E; Reiss, Philip; Kelly, A M Clare; Uddin, Lucina Q; Gee, Dylan G; Roy, Amy K; Banich, Marie T; Castellanos, F Xavier; Milham, Michael P
2008-12-17
Electrophysiological studies have long demonstrated a high degree of correlated activity between the left and right hemispheres, however little is known about regional variation in this interhemispheric coordination. Whereas cognitive models and neuroanatomical evidence suggest differences in coordination across primary sensory-motor cortices versus higher-order association areas, these have not been characterized. Here, we used resting-state functional magnetic resonance imaging data acquired from 62 healthy volunteers to examine interregional correlation in spontaneous low-frequency hemodynamic fluctuations. Using a probabilistic atlas, we correlated probability-weighted time series from 112 regions comprising the entire cerebrum. We then examined regional variation in correlated activity between homotopic regions, contrasting primary sensory-motor cortices, unimodal association areas, and heteromodal association areas. Consistent with previous studies, robustly correlated spontaneous activity was noted between all homotopic regions, which was significantly higher than that between nonhomotopic (heterotopic and intrahemispheric) regions. We further demonstrated substantial regional variation in homotopic interhemispheric correlations that was highly consistent across subjects. Specifically, there was a gradient of interhemispheric correlation, with highest correlations across primary sensory-motor cortices (0.758, SD=0.152), significantly lower correlations across unimodal association areas (0.597, SD=0.230) and still lower correlations across heteromodal association areas (0.517, SD=0.226). These results demonstrate functional differences in interhemispheric coordination related to the brain's hierarchical subdivisions. Synchrony across primary cortices may reflect networks engaged in bilateral sensory integration and motor coordination, whereas lower coordination across heteromodal association areas is consistent with functional lateralization of these regions. This novel method of examining interhemispheric coordination may yield insights regarding diverse disease processes as well as healthy development.
Peer Victimization and Depression in Children with and without Motor Coordination Difficulties
ERIC Educational Resources Information Center
Campbell, Wenonah N.; Missiuna, Cheryl; Vaillancourt, Tracy
2012-01-01
Developmental coordination disorder (DCD) is a chronic disability that impacts children's performance of everyday motor-based activities and is associated with the development of secondary social and mental health problems. The purpose of this study was to investigate peer victimization and depression in children who were and were not at risk for…
Infant Vocal-Motor Coordination: Precursor to the Gesture-Speech System?
ERIC Educational Resources Information Center
Iverson, Jana M.; Fagan, Mary K.
2004-01-01
This study was designed to provide a general picture of infant vocal-motor coordination and test predictions generated by Iverson and Thelen's (1999) model of the development of the gesture-speech system. Forty-seven 6- to 9-month-old infants were videotaped with a primary caregiver during rattle and toy play. Results indicated an age-related…
ERIC Educational Resources Information Center
Asonitou, Katerina; Koutsouki, Dimitra; Kourtessis, Thomas; Charitou, Sofia
2012-01-01
The current study adopts the PASS theory of information processing to investigate the probable differences in specific motor and cognitive abilities between children with and without developmental coordination disorder (DCD). Participants were 108 5- and 6-year-old preschoolers (54 children with DCD and 54 children without DCD). The Movement…
Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.
Lemieux, Maxime; Laflamme, Olivier D; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric
2016-03-01
Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. Copyright © 2016 the American Physiological Society.
Caravale, Barbara; Baldi, Silvia; Gasparini, Corinna; Wilson, Brenda N
2014-05-01
Developmental coordination disorder (DCD) is a motor disorder of unclear etiology that severely interferes with a child's ability to perform daily motor tasks. As a useful alternative to a time-consuming motor test and specialist evaluation, parents or teachers can complete motor questionnaires. A tool used worldwide to screen motor performance in 4- to 14-year-old children is the Developmental Coordination Disorder Questionnaire 2007 (DCDQ'07). To describe how we translated the Developmental Coordination Disorder Questionnaire 2007 (DCDQ'07) and adapted it to the Italian population and to test its preliminary psychometric properties in Italian children. Parents of a clinical group of 26 children (5-11 years old) with a diagnosis of DCD and 52 matched controls completed the DCDQ translated into Italian and adapted for cross-cultural purposes according to current guidelines. Twenty-four parents of typically developing children randomly selected completed the questionnaire twice to examine test-retest reliability. The internal consistency value (Cronbach alpha) for the Italian DCDQ was 0.94. The Italian DCDQ achieved moderate-to-high test-retest reliability (ICC) for 14/15 items and a good diagnostic performance for identifying children with DCD (sensitivity 88% and specificity 96%). The Italian DCDQ is a valid screening tool for assessing motor performance in 5- to 11-year-old children that merits research in a larger sample. Copyright © 2013 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Motor Components in the Choice Reaction Time of Mildly Retarded Adults
ERIC Educational Resources Information Center
Brewer, N.
1978-01-01
The contributions of specific motor-coordination disabilities and general slowness of motor function to the choice reaction times (RTs) of 22 mildly retarded adults were examined in two experiments. (Author)
Proprioceptive coupling within motor neurons drives C. elegans forward locomotion
Wen, Quan; Po, Michelle; Hulme, Elizabeth; Chen, Sway; Liu, Xinyu; Kwok, Sen Wai; Gershow, Marc; Leifer, Andrew M; Butler, Victoria; Fang-Yen, Christopher; Kawano, Taizo; Schafer, William R; Whitesides, George
2012-01-01
Summary Locomotion requires coordinated motor activity throughout an animal’s body. In both vertebrates and invertebrates, chains of coupled Central Pattern Generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement. PMID:23177960
Prenatal Development of Interlimb Motor Learning in the Rat Fetus
Robinson, Scott R.; Kleven, Gale A.; Brumley, Michele R.
2010-01-01
The role of sensory feedback in the early ontogeny of motor coordination remains a topic of speculation and debate. On E20 of gestation (the 20th day after conception, 2 days before birth), rat fetuses can alter interlimb coordination after a period of training with an interlimb yoke, which constrains limb movement and promotes synchronized, conjugate movement of the yoked limbs. The aim of this study was to determine how the ability to express this form of motor learning may change during prenatal development. Fetal rats were prepared for in vivo study at 4 ages (E18–21) and tested in a 65-min training-and-testing session examining hind limb motor learning. A significant increase in conjugate hind limb activity was expressed by E19, but not E18 fetuses, with further increases in conjugate hind limb activity on E20 and E21. These findings suggest substantial development of the ability of fetal rats to modify patterns of interlimb coordination in response to kinesthetic feedback during motor training before birth. PMID:20198121
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Kevin D., E-mail: kevin.welch@ars.usda.gov; Pfister, James A.; Lima, Flavia G.
2013-02-01
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscularmore » paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.« less
The role of visual context in manual target localization
NASA Technical Reports Server (NTRS)
Barry, Susan R.
1993-01-01
During space flight and immediately after return to the 1-g environment of earth, astronauts experience perceptual and sensory-motor disturbances. These changes result from adaptation of the astronaut to the microgravity environment of space. During space flight, sensory information from the eyes, limbs, and vestibular organs is reinterpreted by the central nervous system in order to produce appropriate body movements in the microgravity. This adaptation takes several days to develop. Upon return to earth, the changes in the sensory-motor system are no longer appropriate to a 1-g environment. Over several days, the astronaut must re-adapt to the terrestrial environment. Alterations in sensory-motor function may affect eye-head-hand coordination and, thus, the crewmember's ability to manually locate objects in extrapersonal space. Previous reports have demonstrated that crewmembers have difficulty in estimating joint and limb position and in pointing to memorized target positions on orbit and immediately postflight. The ability to point at or reach toward an object or perform other manual tasks is essential for safe Shuttle operation and may be compromised particularly during re-entry and landing sequences and during possible emergency egress from the Shuttle. An understanding of eye-head-hand coordination and the changes produced during space flight is necessary to develop effective countermeasures. This summer's project formed part of the study of the sensory cues use in the manual localization of objects.
The cerebellum: its role in language and related cognitive and affective functions.
De Smet, Hyo Jung; Paquier, Philippe; Verhoeven, Jo; Mariën, Peter
2013-12-01
The traditional view on the cerebellum as the sole coordinator of motor function has been substantially redefined during the past decades. Neuroanatomical, neuroimaging and clinical studies have extended the role of the cerebellum to the modulation of cognitive and affective processing. Neuroanatomical studies have demonstrated cerebellar connectivity with the supratentorial association areas involved in higher cognitive and affective functioning, while functional neuroimaging and clinical studies have provided evidence of cerebellar involvement in a variety of cognitive and affective tasks. This paper reviews the recently acknowledged role of the cerebellum in linguistic and related cognitive and behavioral-affective functions. In addition, typical cerebellar syndromes such as the cerebellar cognitive affective syndrome (CCAS) and the posterior fossa syndrome (PFS) will be briefly discussed and the current hypotheses dealing with the presumed neurobiological mechanisms underlying the linguistic, cognitive and affective modulatory role of the cerebellum will be reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.
Rittig-Rasmussen, Bjarne; Kasch, Helge; Fuglsang-Frederiksen, Anders; Jensen, Troels S; Svensson, Peter
2013-07-15
Experimental investigation of short-term and long-term corticomotor effects of specific neck training, coordination training, and no training. To determine the effects of different training programs on the motor neurons controlling the neck muscles as well as the effects of training on muscle strength and muscle fatigue, and the correlations between corticomotor control and motor learning. Training is usually recommended for unspecific neck pain and consists of neck and upper body coordination, strengthening, and endurance exercises. However, it is unclear which type of training is the most effective. No studies have previously investigated the neural effect of neck training and the possible differential effect of specific versus coordination training on corticomotor control. Transcranial magnetic stimulation and electromyography were used to elicit and monitor motor evoked potentials (MEPs) from the trapezius and thumb muscles before and 30 minutes, 1 hour, and 7 days after training. Parameters measured were MEP amplitude, MEP latency, strength, learning effects, and muscle fatigue. Only specific neck training yielded a 67% increase in MEP amplitudes for up to 7 days after training compared with baseline (P < 0.001). No significant changes were seen after coordination training, no training, and in the within-subject control muscle. The mean muscle strength increased immediately after specific neck training from 56.6 to 61 kg (P < 0.001). No subjective or objective measures of fatigue were observed. Specific neck training induced a sustained hyperexcitability of motor neurons controlling the neck muscles compared with coordination training and controls. These findings may prove valuable in the process of developing more effective clinical training programs for unspecific neck pain.
Deprez, Dieter N; Fransen, Job; Lenoir, Matthieu; Philippaerts, Renaat M; Vaeyens, Roel
2015-06-01
The goal of this article was twofold, and a 2-study approach was conducted. The first study aimed to expose the anthropometrical, physical performance, and motor coordination characteristics that influence dropout from a high-level soccer training program in players aged 8-16 years. The mixed-longitudinal sample included 388 Belgian youth soccer players who were assigned to either a "club group" or a "dropout group." In the second study, cross-sectional data of anthropometry, physical performance, and motor coordination were retrospectively explored to investigate which characteristics influence future contract status (contract vs. no contract group) and first-team playing time for 72 high-level youth soccer players (mean age = 16.2 years). Generally, club players outperformed their dropout peers for motor coordination, soccer-specific aerobic endurance, and speed. Anthropometry and estimated maturity status did not discriminate between club and dropout players. Contract players jumped further (p = 0.011) and had faster times for a 5-m sprint (p = 0.041) than no contract players. The following prediction equation explains 16.7% of the variance in future playing minutes in adolescent youth male soccer players: -2,869.3 + 14.6 × standing broad jump. Practitioners should include the evaluation of motor coordination, aerobic endurance, and speed performances to distinguish high-level soccer players further succeeding a talent development program and future dropout players, between 8 and 16 years. From the age of 16 years, measures of explosivity are supportive when selecting players into a future professional soccer career.
Hart, Ariel; Andrade, Isaac; Hackney, Madeleine E.
2018-01-01
People with Parkinson's disease (PD) experience kinesthetic deficits, which affect motor and nonmotor functions, including mental imagery. Imagery training is a recommended, yet underresearched, approach in PD rehabilitation. Dynamic Neuro-Cognitive Imagery (DNI™) is a codified method for imagery training. Twenty subjects with idiopathic PD (Hoehn and Yahr stages I–III) were randomly allocated into DNI training (experimental; n = 10) or in-home learning and exercise program (control; n = 10). Both groups completed at least 16 hours of training within two weeks. DNI training focused on anatomical embodiment and kinesthetic awareness. Imagery abilities, disease severity, and motor and nonmotor functions were assessed pre- and postintervention. The DNI participants improved (p < .05) in mental imagery abilities, disease severity, and motor and spatial cognitive functions. Participants also reported improvements in balance, walking, mood, and coordination, and they were more physically active. Both groups strongly agreed they enjoyed their program and were more mentally active. DNI training is a promising rehabilitation method for improving imagery ability, disease severity, and motor and nonmotor functions in people with PD. This training might serve as a complementary PD therapeutic approach. Future studies should explore the effect of DNI on motor learning and control strategies. PMID:29725348
Health-Related Quality of Life for Pediatric NF-1 Patients
2007-08-01
Developmental Disorders, Mood Disorders, Anxiety Disorders Specific learning/cognitive problems and/or classroom difficulties √ √ √ √ Reading...preferring solitary activities; teasing Fine and/or gross motor coordination √ √ √ √ Handwriting , running, walking, clumsiness Concerns about...as poor fine and gross motor coordination; these were evidenced by clumsiness and handwriting problems, for example. A number of children and
The Effect of Coordinated Teaching Method Practices on Some Motor Skills of 6-Year-Old Children
ERIC Educational Resources Information Center
Altinkok, Mustafa
2017-01-01
Purpose: This study was designed to examine the effects of Coordinated Teaching Method activities applied for 10 weeks on 6-year-old children, and to examine the effects of these activities on the development of some motor skills in children. Research Methods: The "Experimental Research Model with Pre-test and Post-test Control Group"…
ERIC Educational Resources Information Center
Venetsanou, Fotini; Kambas, Antonis; Ellinoudis, Theodoros; Fatouros, Ioannis; Giannakidou, Dimitra; Kourtessis, Thomas
2011-01-01
Developmental Coordination Disorder (DCD) is an important risk factor in the development of children that can have a significant academic and social impact. This reinforces the need for its timely identification using appropriate assessment methods and accurate screening tests. The commonly used standardized motor test for the DCD identification…
ERIC Educational Resources Information Center
Behrmann, Polly; Millman, Joan
The activities collected in this handbook are planned for parents to use with their children in a learning experience. They can also be used in the classroom. Sections contain games designed to develop visual discrimination, auditory discrimination, motor coordination and oral expression. An objective is given for each game, and directions for…
ERIC Educational Resources Information Center
Usler, Evan; Smith, Anne; Weber, Christine
2017-01-01
Purpose: The purpose of this study was to determine if indices of speech motor coordination during the production of sentences varying in sentence length and syntactic complexity were associated with stuttering persistence versus recovery in 5- to 7-year-old children. Methods: We compared children with persistent stuttering (CWS-Per) with children…
Oliveira, Aline Nascimento; Pinheiro, Alana Miranda; Belém-Filho, Ivaldo Jesus Almeida; Fernandes, Luanna Melo Pereira; Cartágenes, Sabrina Carvalho; Ribera, Paula Cardoso; Fontes-Júnior, Enéas Andrade; Crespo-Lopez, Maria Elena; Monteiro, Marta Chagas; Lima, Marcelo Oliveira; Maia, Cristiane Socorro Ferraz
2018-05-24
Methylmercury (MeHg) is a hazardous environmental pollutant, affecting Amazon basin communities by anthropogenic activities. The exact safe level of MeHg exposure is unclear, despite the efforts of health international societies to avoid mercury (Hg) poisoning. Central nervous system is severely impacted by Hg intoxication, reflecting on motor impairment. In addition, alcohol has been associated to an overall brain damage. According to lifestyle of Amazon riverside communities, alcohol intake occurs frequently. Thus, we investigated if continuous MeHg exposure at low doses during adolescence displays motor deficits (experiment 1). In the experiment 2, we examine if the co-intoxication (i.e. MeHg plus ethanol exposure) during adolescence intensify motor damage. In the experiment 1, Wistar adolescent rats (31 days old) received chronic exposure to low dose (CELD) of MeHg (40 μg/kg/day) for 35 days. For the experiment 2, five sessions of alcohol binge drinking paradigm (3ON-4OFF; 3.0 g/kg/day) were employed associated to MeHg intoxication. Motor behaviour was evaluated by the open field, pole test, beam walking and rotarod paradigms. CELDS of MeHg display motor function damage, related to hypoactivity, bradykinesia-like behaviour, coordination deficits and motor learning impairment. Co-intoxication of MeHg plus ethanol reduced cerebellar Hg content, however also resulted in motor behavioural impairment, as well as additive effects on bradykinesia and fine motor evaluation.
Stoichiometric and Catalytic Scavengers as Protection Against Nerve Agent Toxicity: A Mini Review
2007-01-01
signs of nerve agent toxicity following exposure . Assessments of motor activity , coordination, and acquisition of spatial memory were performed for 2...serious side occur before endogenous AChE is affected (approxi- effects if administered in the absence of cholinesterase mately 2 min after exposure to an...after guinea pigs of cholinesterase in the blood and the level of protec- were administered 60mg/kg of HuBuChE (--fold tion against OP poisoning
Depletion force induced collective motion of microtubules driven by kinesin
NASA Astrophysics Data System (ADS)
Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md. Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira
2015-10-01
Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02213d
Acquisition and reacquisition of motor coordination in musicians.
Furuya, Shinichi; Altenmüller, Eckart
2015-03-01
Precise control of movement timing plays a key role in musical performance. This motor skill requires coordination across multiple joints and muscles, which is acquired through extensive musical training from childhood. However, extensive training has a potential risk of causing neurological disorders that impair fine motor control, such as task-specific tremor and focal dystonia. Recent technological advances in measurement and analysis of biological data, as well as noninvasive manipulation of neuronal activities, have promoted the understanding of computational and neurophysiological mechanisms underlying acquisition, loss, and reacquisition of dexterous movements through musical practice and rehabilitation. This paper aims to provide an overview of the behavioral and neurophysiological basis of motor virtuosity and disorder in musicians, representative extremes of human motor skill. We also report novel evidence of effects of noninvasive neurorehabilitation that combined transcranial direct-current stimulation and motor rehabilitation over multiple days on musician's dystonia, which offers a promising therapeutic means. © 2015 New York Academy of Sciences.
Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Taoro-Gonzalez, Lucas; Gonzalez-Usano, Alba; Agusti, Ana; Balzano, Tiziano; Llansola, Marta; Felipo, Vicente
2016-04-18
Hyperammonemia induces neuroinflammation and increases GABAergic tone in the cerebellum which contributes to cognitive and motor impairment in hepatic encephalopathy (HE). The link between neuroinflammation and GABAergic tone remains unknown. New treatments reducing neuroinflammation and GABAergic tone could improve neurological impairment. The aims were, in hyperammonemic rats, to assess whether: (a) Enhancing endogenous anti-inflammatory mechanisms by sulforaphane treatment reduces neuroinflammation and restores learning and motor coordination. (b) Reduction of neuroinflammation by sulforaphane normalizes extracellular GABA and glutamate-NO-cGMP pathway and identify underlying mechanisms. (c) Identify steps by which hyperammonemia-induced microglial activation impairs cognitive and motor function and how sulforaphane restores them. We analyzed in control and hyperammonemic rats, treated or not with sulforaphane, (a) learning in the Y maze; (b) motor coordination in the beam walking; (c) glutamate-NO-cGMP pathway and extracellular GABA by microdialysis; (d) microglial activation, by analyzing by immunohistochemistry or Western blot markers of pro-inflammatory (M1) (IL-1b, Iba-1) and anti-inflammatory (M2) microglia (Iba1, IL-4, IL-10, Arg1, YM-1); and (e) membrane expression of the GABA transporter GAT-3. Hyperammonemia induces activation of astrocytes and microglia in the cerebellum as assessed by immunohistochemistry. Hyperammonemia-induced neuroinflammation is associated with increased membrane expression of the GABA transporter GAT-3, mainly in activated astrocytes. This is also associated with increased extracellular GABA in the cerebellum and with motor in-coordination and impaired learning ability in the Y maze. Sulforaphane promotes polarization of microglia from the M1 to the M2 phenotype, reducing IL-1b and increasing IL-4, IL-10, Arg1, and YM-1 in the cerebellum. This is associated with astrocytes deactivation and normalization of GAT-3 membrane expression, extracellular GABA, glutamate-nitric oxide-cGMP pathway, and learning and motor coordination. Neuroinflammation increases GABAergic tone in the cerebellum by increasing GAT-3 membrane expression. This impairs motor coordination and learning in the Y maze. Sulforaphane could be a new therapeutic approach to improve cognitive and motor function in hyperammonemia, hepatic encephalopathy, and other pathologies associated with neuroinflammation by promoting microglia differentiation from M1 to M2.
Disrupting vagal feedback affects birdsong motor control.
Méndez, Jorge M; Dall'asén, Analía G; Goller, Franz
2010-12-15
Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback.
Disrupting vagal feedback affects birdsong motor control
Méndez, Jorge M.; Dall'Asén, Analía G.; Goller, Franz
2010-01-01
Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback. PMID:21113000
Ljungberg, Lovisa; Cormier, Alexander; Quilez, Sabrina
2015-01-01
Abstract Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant cerebellar ataxia that has been associated with loss of cerebellar Purkinje cells. Disease onset is typically at midlife, although it can vary widely from late teens to old age in SCA6 patients. Our study focused on an SCA6 knock-in mouse model with a hyper-expanded (84X) CAG repeat expansion that displays midlife-onset motor deficits at ∼7 months old, reminiscent of midlife-onset symptoms in SCA6 patients, although a detailed phenotypic analysis of these mice has not yet been reported. Here, we characterize the onset of motor deficits in SCA684Q mice using a battery of behavioral assays to test for impairments in motor coordination, balance, and gait. We found that these mice performed normally on these assays up to and including at 6 months, but motor impairment was detected at 7 months with all motor coordination assays used, suggesting that motor deficits emerge rapidly during a narrow age window in SCA684Q mice. In contrast to what is seen in SCA6 patients, the decrease in motor coordination was observed without alterations in gait. No loss of cerebellar Purkinje cells or striatal neurons were observed at 7 months, the age at which motor deficits were first detected, but significant Purkinje cell loss was observed in 2-year-old SCA684Q mice, arguing that Purkinje cell death does not significantly contribute to the early stages of SCA6. PMID:26730403
Albouy, Geneviève; Fogel, Stuart; Pottiez, Hugo; Nguyen, Vo An; Ray, Laura; Lungu, Ovidiu; Carrier, Julie; Robertson, Edwin; Doyon, Julien
2013-01-01
Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap) on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial) and egocentric (motor) representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM) sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle) or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates. PMID:23300993
Giagazoglou, Paraskevi; Kabitsis, Nikolaos; Kokaridas, Dimitrios; Zaragas, Charilaos; Katartzi, Ermioni; Kabitsis, Chris
2011-01-01
Early identification of possible risk factors that could impair the motor development is crucial, since poor motor performance may have long-term negative consequences for a child's overall development. The aim of the current study was the examination of disorders in motor coordination in Greek pre-school aged children and the detection of differences in motor performance with regards to age, gender, participation in sports and order of birth in the family. Performance profiles on the movement ABC were used to classify 412 Greek children aged 4-6 years old. It appears from the results that the occurrence rate of probable developmental coordination disorders (DCD) was 5.4%. Significant differences were observed in all independent variables except the order of birth in the family. The findings reinforce the need for the evaluation of motor performance in preschool-aged children, in order specific individual motor profiles to be established for optimizing and adapting early intervention programs. Copyright © 2011 Elsevier Ltd. All rights reserved.
A new model of selection in women's handball.
Srhoj, Vatromir; Rogulj, Nenad; Zagorac, Nebojsa; Katić, Ratko
2006-09-01
The aim of the study was to assess the basic motor abilities that determine top performance in women's handball, and to identify test panel for primary selection at handball school. The study included 155 female attendants of the Split Handball School, mean age 12.5 years. Differences in the basic motor abilities between the subjects that developed into elite handball players after 7-year training process and those that abandoned handball for being unable to meet the competition criteria were evaluated by use of discriminative analysis. The former were found to have also been superior initially in all variables analyzed, and in arm coordination, overall body coordination, throw and jump explosive strength, arm movement frequency and repetitive trunk strength in particular. Motor superiority based on the abilities of coordination, explosive strength and speed determines performance in women's handball, qualifying these abilities as reliable selection criteria. Based on this study results, a new model of selection in women's handball, with fine arm coordination as the major limiting factor of performance, has been proposed.
Jekauc, Darko; Wagner, Matthias Oliver; Herrmann, Christian; Hegazy, Khaled; Woll, Alexander
2017-01-01
The purpose of this study is to examine the reciprocal relationship between motor abilities and physical activity and the mediation effects of physical self-concept in this relationship using longitudinal data. We expect that the effects of motor abilities on physical activity are rather indirect via physical self-concept and that the effects of physical activity on motor abilities are rather direct without involvement of the motor ability self-concept. Data was obtained from the Motorik-Modul (MoMo) Longitudinal Study in which 335 boys and 363 girls aged 11–17 years old at Baseline were examined twice in a period of six years. Physical activity was assessed by the MoMo Physical Activity Questionnaire for adolescents, physical self-concept by Physical Self-Description Questionnaire and motor abilities by MoMo Motor Test which comprised of the dimensions strength, endurance, coordination and flexibility. Multiple regression analyses were used to analyse the direct and indirect effects. The results of the multiple regression analyses show that the effects of motor abilities on physical activity were only indirect for the dimensions strength, coordination, and flexibility. For the dimension endurance, neither direct nor indirect effects were significant. In the opposite direction, the effects of physical activity on motor abilities were partially mediated by the self-concept of strength. For the dimensions endurance, coordination and flexibility, only indirect were significant. The results of this study support the assumption that the relationship between motor abilities and physical activity is mediated by physical self-concept in both directions. Physical self-concept seems to be an important determinant of adolescents´ physical activity. PMID:28045914
Jekauc, Darko; Wagner, Matthias Oliver; Herrmann, Christian; Hegazy, Khaled; Woll, Alexander
2017-01-01
The purpose of this study is to examine the reciprocal relationship between motor abilities and physical activity and the mediation effects of physical self-concept in this relationship using longitudinal data. We expect that the effects of motor abilities on physical activity are rather indirect via physical self-concept and that the effects of physical activity on motor abilities are rather direct without involvement of the motor ability self-concept. Data was obtained from the Motorik-Modul (MoMo) Longitudinal Study in which 335 boys and 363 girls aged 11-17 years old at Baseline were examined twice in a period of six years. Physical activity was assessed by the MoMo Physical Activity Questionnaire for adolescents, physical self-concept by Physical Self-Description Questionnaire and motor abilities by MoMo Motor Test which comprised of the dimensions strength, endurance, coordination and flexibility. Multiple regression analyses were used to analyse the direct and indirect effects. The results of the multiple regression analyses show that the effects of motor abilities on physical activity were only indirect for the dimensions strength, coordination, and flexibility. For the dimension endurance, neither direct nor indirect effects were significant. In the opposite direction, the effects of physical activity on motor abilities were partially mediated by the self-concept of strength. For the dimensions endurance, coordination and flexibility, only indirect were significant. The results of this study support the assumption that the relationship between motor abilities and physical activity is mediated by physical self-concept in both directions. Physical self-concept seems to be an important determinant of adolescents´ physical activity.
Lalor, Aislinn; Brown, Ted; Murdolo, Yuki
2016-04-01
Occupational therapists often assess the motor skill performance of children referred to them as part of the assessment process. This study investigated whether children's, parents' and teachers' perceptions of children's motor skills using valid and reliable self/informant-report questionnaires were associated with and predictive of children's actual motor performance, as measured by a standardised performance-based motor skill assessment. Fifty-five typically developing children (8-12 years of age), their parents and classroom teachers were recruited to participate in the study. The children completed the Physical Self-Description Questionnaire (PSDQ) and the Self-Perception Profile for Children. The parents completed the Developmental Profile III (DP-III) and the Developmental Coordination Disorder Questionnaire, whereas the teachers completed the Developmental Coordination Disorder Questionnaire and the Teacher's Rating Scale of Child's Actual Behavior. Children's motor performance composite scores were determined using the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition (BOT-2). Spearman's rho correlation coefficients were calculated to identify if significant correlations existed and multiple linear regression was used to identify whether self/informant report data were significant predictors of children's motor skill performance. The child self-report scores had the largest number of significant correlations with the BOT-2 composites. Regression analysis found that the parent report DP-III Physical subscale was a significant predictor of the BOT-2 Manual Coordination composite and the child-report questionnaire PSDQ. Endurance subscale was a significant predictor of the BOT-2 Strength and Agility composite. The findings support the use of top-down assessment methods from a variety of sources when evaluating children's motor abilities. © 2016 Occupational Therapy Australia.
ERIC Educational Resources Information Center
Altinkök, Mustafa
2016-01-01
This research was conducted for the purpose of analyzing the effect of the movement education program through a 12-week-coordination on the development of basic motor movements of pre-school children. A total of 78 students of pre-school period, 38 of whom were in the experimental group and 40 of whom were in the control group, were incorporated…
2017-10-01
networks of the brain responsible for visual processing, mood regulation, motor coordination, sensory processing, and language command, but increased...4 For each subject, the rsFMRI voxel time-series were temporally shifted to account for differences in slice acquisition times...responsible for visual processing, mood regulation, motor coordination, sensory processing, and language command, but increased connectivity in
ERIC Educational Resources Information Center
Jokic, Claire Sangster; Whitebread, David
2011-01-01
Children with developmental coordination disorder (DCD) experience difficulty coping with everyday demands due to difficulties in performing motor tasks. Recently, a cognitive learning paradigm has been applied to studying the nature of the problems experienced by children with DCD, which assumes that these children have fewer cognitive and…
ERIC Educational Resources Information Center
van Waelvelde, Hilde; Oostra, Ann; DeWitte, Griet; van den Broeck, Christine; Jongmans, Marian J.
2010-01-01
Aim: The aim of this study was to investigate the stability of motor problems in a clinically referred sample of children with, or at risk of, autism spectrum disorders (ASDs), attention-deficit-hyperactivity disorder (ADHD), and/or developmental coordination disorder (DCD). Method: Participants were 49 children (39 males, 10 females; mean age 5y…
ERIC Educational Resources Information Center
Sumner, Emma; Leonard, Hayley C.; Hill, Elisabeth L.
2016-01-01
Motor and social difficulties are often found in children with an autism spectrum disorder (ASD) and with developmental coordination disorder (DCD), to varying degrees. This study investigated the extent of overlap of these problems in children aged 7-10 years who had a diagnosis of either ASD or DCD, compared to typically-developing controls.…
Faught, Brent E; Demetriades, Stephen; Hay, John; Cairney, John
2013-12-01
Developmental coordination disorder (DCD) is a condition that results in an impairment of gross and/or fine motor coordination. Compromised motor coordination contributes to lower levels of physical activity, which is associated with elevated body fat. The impact of elevated body fat on motor coordination diagnostic assessments in children with DCD has not been established. The purpose of this study was to determine if relative body fat influences performance on the Movement Assessment Battery for Children, 2nd Edition (MABC-2) test items in children with and without DCD. A nested case-control, design was conducted within the Physical Health Activity Study Team longitudinal cohort study. The MABC-2 was used to assess motor coordination to categorize cases and matched controls. Relative body fat was assessed using whole body air displacement plethysmography. Relative body fat was negatively associated with the MABC-2 "balance" subcategory after adjusting for physical activity and DCD status. Relative body fat did not influence the subcategories of "manual dexterity" or "aiming and catching". Item analysis of the three balance tasks indicated that relative body fat significantly influences both "2-board balance" and "zig-zag hopping", but not "walking heel-toe backwards". Children with higher levels of relative body fat do not perform as well on the MABC-2, regardless of whether the have DCD or not. Dynamic balance test items are most negatively influenced by body fat. Health practitioners and researchers should be aware that body fat can influence results when interpreting MABC-2 test scores. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Acquisition of Internal Models of Motor Tasks in Children with Autism
ERIC Educational Resources Information Center
Gidley Larson, Jennifer C.; Bastian, Amy J.; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H.
2008-01-01
Children with autism exhibit a host of motor disorders including poor coordination, poor tool use and delayed learning of complex motor skills like riding a tricycle. Theory suggests that one of the crucial steps in motor learning is the ability to form internal models: to predict the sensory consequences of motor commands and learn from errors to…
Young, Katherine S; Parsons, Christine E; Jegindoe Elmholdt, Else-Marie; Woolrich, Mark W; van Hartevelt, Tim J; Stevner, Angus B A; Stein, Alan; Kringelbach, Morten L
2016-03-01
Crying is the most salient vocal signal of distress. The cries of a newborn infant alert adult listeners and often elicit caregiving behavior. For the parent, rapid responding to an infant in distress is an adaptive behavior, functioning to ensure offspring survival. The ability to react rapidly requires quick recognition and evaluation of stimuli followed by a co-ordinated motor response. Previous neuroimaging research has demonstrated early specialized activity in response to infant faces. Using magnetoencephalography, we found similarly early (100-200 ms) differences in neural responses to infant and adult cry vocalizations in auditory, emotional, and motor cortical brain regions. We propose that this early differential activity may help to rapidly identify infant cries and engage affective and motor neural circuitry to promote adaptive behavioral responding, before conscious awareness. These differences were observed in adults who were not parents, perhaps indicative of a universal brain-based "caregiving instinct." © The Author 2015. Published by Oxford University Press.
Baik, Jong Sam; Jang, Seong Ho; Park, Dong Sik
2009-01-01
To develop an objective and scientific method to evaluate the brain injured and brain diseased persons with motor dysfunction, American Medical Association's Guides to the Evaluation of Permanent Impairment was used as an exemplar. After the motor dysfunction due to brain injury or brain disease was confirmed, active range of motion and muscle strength of affected extremities were measured. Also, the total function of extremities was evaluated through the assessment of activities of daily living, fine coordination of hand, balance and gait. Then, the total score of manual muscle test and functional assessment of impaired upper and lower extremity were added, respectively. Spasticity of upper and lower extremity was used as minus factors. Patients with movement disorder such as Parkinson's disease were assessed based on the degree of dysfunction in response to medication. We develop a new rating system based on the concept of total score. PMID:19503680
Young, Katherine S.; Parsons, Christine E.; Jegindoe Elmholdt, Else-Marie; Woolrich, Mark W.; van Hartevelt, Tim J.; Stevner, Angus B. A.; Stein, Alan; Kringelbach, Morten L.
2016-01-01
Crying is the most salient vocal signal of distress. The cries of a newborn infant alert adult listeners and often elicit caregiving behavior. For the parent, rapid responding to an infant in distress is an adaptive behavior, functioning to ensure offspring survival. The ability to react rapidly requires quick recognition and evaluation of stimuli followed by a co-ordinated motor response. Previous neuroimaging research has demonstrated early specialized activity in response to infant faces. Using magnetoencephalography, we found similarly early (100–200 ms) differences in neural responses to infant and adult cry vocalizations in auditory, emotional, and motor cortical brain regions. We propose that this early differential activity may help to rapidly identify infant cries and engage affective and motor neural circuitry to promote adaptive behavioral responding, before conscious awareness. These differences were observed in adults who were not parents, perhaps indicative of a universal brain-based “caregiving instinct.” PMID:26656998
Endedijk, H M; Meyer, M; Bekkering, H; Cillessen, A H N; Hunnius, S
2017-04-01
Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other's actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children's interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power) were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Garbarini, Francesca; Pia, Lorenzo
2013-11-05
When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the "moving" (healthy) hand would be caused by the constraints imposed by the ongoing motor program of the 'impaired' hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia). They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person's arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.
Doeppner, Thorsten R.; Kaltwasser, Britta; Bähr, Mathias; Hermann, Dirk M.
2014-01-01
Systemic transplantation of neural progenitor cells (NPCs) in rodents reduces functional impairment after cerebral ischemia. In light of upcoming stroke trials regarding safety and feasibility of NPC transplantation, experimental studies have to successfully analyze the extent of NPC-induced neurorestoration on the functional level. However, appropriate behavioral tests for analysis of post-stroke motor coordination deficits and cognitive impairment after NPC grafting are not fully established. We therefore exposed male C57BL6 mice to either 45 min (mild) or 90 min (severe) of cerebral ischemia, using the thread occlusion model followed by intravenous injection of PBS or NPCs 6 h post-stroke with an observation period of three months. Post-stroke motor coordination was assessed by means of the rota rod, tight rope, corner turn, inclined plane, grip strength, foot fault, adhesive removal, pole test and balance beam test, whereas cognitive impairment was analyzed using the water maze, the open field and the passive avoidance test. Significant motor coordination differences after both mild and severe cerebral ischemia in favor of NPC-treated mice were observed for each motor coordination test except for the inclined plane and the grip strength test, which only showed significant differences after severe cerebral ischemia. Cognitive impairment after mild cerebral ischemia was successfully assessed using the water maze test, the open field and the passive avoidance test. On the contrary, the water maze test was not suitable in the severe cerebral ischemia paradigm, as it too much depends on motor coordination capabilities of test mice. In terms of both reliability and cost-effectiveness considerations, we thus recommend the corner turn, foot fault, balance beam, and open field test, which do not depend on durations of cerebral ischemia. PMID:25374509
Indicators of sailing performance in youth dinghy sailing.
Callewaert, Margot; Boone, Jan; Celie, Bert; De Clercq, Dirk; Bourgois, Jan G
2015-01-01
This study aimed to determine indicators of sailing performance in 2 (age) groups of youth sailors by investigating the anthropometric, physical and motor coordination differences and factors discriminating between elite and non-elite male optimist sailors and young dynamic hikers. Anthropometric measurements from 23 optimist sailors (mean ± SD age = 12.3 ± 1.4 years) and 24 dynamic youth hikers (i.e. Laser 4.7, Laser radial and Europe sailors <18 years who have to sail the boat in a very dynamic manner, due to a high sailor to yacht weight ratio) (mean ± SD age = 16.5 ± 1.6 years) were conducted. They performed a physical fitness test battery (EUROFIT), motor coordination test battery (Körperkoordinationstest für Kinder) and the Bucket test. Both groups of sailors were divided into two subgroups (i.e. elites and non-elites) based on sailing expertise. The significant differences, taking biological maturation into account and factors discriminating between elite and non-elite optimist sailors and dynamic hikers were explored by means of multivariate analysis of covariance and discriminant analysis, respectively. The main results indicated that 100.0% of elite optimist sailors and 88.9% of elite dynamic hikers could be correctly classified by means of two motor coordination tests (i.e. side step and side jump) and Bucket test, respectively. As such, strength- and speed-oriented motor coordination and isometric knee-extension strength endurance can be identified as indicators of sailing performance in young optimist and dynamic youth sailors, respectively. Therefore, we emphasise the importance of motor coordination skill training in optimist sailors (<15 years) and maximum strength training later on (>15 years) in order to increase their isometric knee-extension strength endurance.
ERIC Educational Resources Information Center
Debrabant, Julie; Gheysen, Freja; Caeyenberghs, Karen; Van Waelvelde, Hilde; Vingerhoets, Guy
2013-01-01
A dysfunction in predictive motor timing is put forward to underlie DCD-related motor problems. Predictive timing allows for the pre-selection of motor programmes (except "program" in computers) in order to decrease processing load and facilitate reactions. Using functional magnetic resonance imaging (fMRI), this study investigated the neural…
Rotary Stirling-Cycle Engine And Generator
NASA Technical Reports Server (NTRS)
Chandler, Joseph A.
1990-01-01
Proposed electric-power generator comprises three motor generators coordinated by microprocessor and driven by rotary Stirling-cycle heat engine. Combination offers thermodynamic efficiency of Stirling cycle, relatively low vibration, and automatic adjustment of operating parameters to suit changing load on generator. Rotary Stirling cycle engine converts heat to power via compression and expansion of working gas between three pairs of rotary pistons on three concentric shafts in phased motion. Three motor/generators each connected to one of concentric shafts, can alternately move and be moved by pistons. Microprocessor coordinates their operation, including switching between motor and generator modes at appropriate times during each cycle.
Anatomic motor point localization for partial quadriceps block in spasticity.
Albert, T; Yelnik, A; Colle, F; Bonan, I; Lassau, J P
2000-03-01
To identify the location of the vastus intermedius nerve and its motor point (point M) and to precisely identify its coordinates in relation to anatomic surface landmarks. Descriptive study. Anatomy institute of a university school of medicine. Twenty-nine adult cadaver limbs immobilized in anatomic position. Anatomic dissection to identify point M. Anatomic surface landmarks were point F, the issuing point of femoral nerve under the inguinal ligament; point R, the middle of superior edge of the patella; segment FR, which corresponds to thigh length; point M', point M orthogonal projection on segment FR. Absolute vertical coordinate, distance FM, relative vertical coordinate compared to the thigh length, FM'/FR ratio; absolute horizontal coordinate, distance MM'. The absolute vertical coordinate was 11.7+/-2 cm. The relative vertical coordinate was at .29+/-.04 of thigh length. The horizontal coordinate was at 2+/-.5 cm lateral to the FR line. Point M can be defined with relative precision by two coordinates. Application and clinical interest of nerve blocking using these coordinates in quadriceps spasticity should be studied.
Perceptual-motor coordination in persons with mild intellectual disability.
Carmeli, Eli; Bar-Yossef, Tamar; Ariav, Claudette; Levy, Ran; Liebermann, Dario G
2008-01-01
There is limited experimental evidence to support the view that individuals with intellectual disabilities (ID) have a deficit in motor control. This work is a first attempt to evaluate their motor coordination. The study assessed the relationship between cognitive ability and sensorimotor integration. The clinical hypothesis is that adults with ID fall below non-ID adults in motor skills that involve hand-eye coordination. A group of 42 adults with ID (ID group) was compared to 48 age-matched typical adults (TA) using a mixed experimental design ('Task' as the within-subjects factor and 'Group' as the between-subjects factor). Participants performed the following tests twice: Box-and-Blocks, 25-Grooved-Pegboard, Stick Catching and overhead Beanbag-Throw. Pearson correlations and ANOVAs were used to test the hypothesis (p < or = 0.05). As expected, TA outperformed the ID group in all tests regardless of the hand used during for the assessment. However, TA individuals scored significantly better with one hand (i.e., the preferred and dominant hand) as opposed to persons with ID, who exhibited no hand preference. Test-retest correlations among the first and second assessment scores yielded moderate-strong coefficients, depending on the type of test (Box-and-Blocks = 0.92 and 0.96, 25-Grooved-Pegboard = 0.69 and 0.83, Stick-Catching = 0.88 and 0.94, Beanbag-Throw = 0.58 and 0.91 for ID and TA, respectively). Difficulties in the integration of perceptual information into motor action may result in inadequate solutions to daily motor problems. As it stems from our results, intellectual disability relates to inability to integrate visual inputs and hand movements. In people with mild ID such inability is observed using both hands (i.e., they show no hand preferences). Poor perceptual-motor coordination might have a functional significance in that it may lead to exclusion from vocational and recreational activities, and a decreasing competence of ADL. Assessing coordination in adults with ID may contribute to understanding the nature of the ID condition and may encourage an early rehabilitation.
Anderson, Leanne; Wilson, Jessie; Carmichael, Kaity
2018-05-28
Children with developmental coordination disorder demonstrate limited participation in daily occupations which negatively impacts on their physical and psycho-social wellbeing. Literature is emerging supporting the use of the Cognitive Orientation to daily Occupational Performance (CO-OP) within a group format. The purpose of this study was to explore the feasibility of the CO-OP approach in a group format for children with motor coordination difficulties. A single group mixed-method approach was employed. Four children with motor coordination difficulties between seven-to-nine years of age and their mothers, participated in a CO-OP group intervention once a week over 10 weeks. The study examined performance (perceived and actual) and satisfaction of family-chosen goals, gross and fine motor functioning and parental experience of participating in the intervention. Improvements in performance (perceived) and satisfaction ratings of family-chosen goals bordered on achieving statistical significance. Fine and gross motor functioning and performance (actual) improved, however, the change in performance was variable between participants and among the overarching goals. Semi-structured interviews were thematically analysed. Themes included: formation of the group, moving from disenabling to enabling, belonging and the importance of small successes. CO-OP offers a feasible intervention approach when delivered in a group format. Parental perceptions are valuable in shaping the delivery of the CO-OP in future studies. More research is needed to support these findings and contribute to evidence-based practice. © 2018 Occupational Therapy Australia.
Castañer, Marta; Barreira, Daniel; Camerino, Oleguer; Anguera, M. Teresa; Fernandes, Tiago; Hileno, Raúl
2017-01-01
Research in soccer has traditionally given more weight to players' technical and tactical skills, but few studies have analyzed the motor skills that underpin specific motor actions. The objective of this study was to investigate the style of play of the world's top soccer players, Cristiano Ronaldo and Lionel Messi, and how they use their motor skills in attacking actions that result in a goal. We used and improved the easy-to-use observation instrument (OSMOS-soccer player) with 9 criteria, each one expanded to build 50 categories. Associations between these categories were investigated by T-pattern detection and polar coordinate analysis. T-pattern analysis detects temporal structures of complex behavioral sequences composed of simpler or directly distinguishable events within specified observation periods (time point series). Polar coordinate analysis involves the application of a complex procedure to provide a vector map of interrelated behaviors obtained from prospective and retrospective sequential analysis. The T-patterns showed that for both players the combined criteria were mainly between the different aspects of motor skills, namely the use of lower limbs, contact with the ball using the outside of the foot, locomotion, body orientation with respect to the opponent goal line, and the criteria of technical actions and the right midfield. Polar coordinate analysis detected significant associations between the same criteria included in the T-patterns as well as the criteria of turning the body, numerical equality with no pressure, and relative numerical superiority. PMID:28553245
Castañer, Marta; Barreira, Daniel; Camerino, Oleguer; Anguera, M Teresa; Fernandes, Tiago; Hileno, Raúl
2017-01-01
Research in soccer has traditionally given more weight to players' technical and tactical skills, but few studies have analyzed the motor skills that underpin specific motor actions. The objective of this study was to investigate the style of play of the world's top soccer players, Cristiano Ronaldo and Lionel Messi, and how they use their motor skills in attacking actions that result in a goal. We used and improved the easy-to-use observation instrument (OSMOS-soccer player) with 9 criteria, each one expanded to build 50 categories. Associations between these categories were investigated by T-pattern detection and polar coordinate analysis. T-pattern analysis detects temporal structures of complex behavioral sequences composed of simpler or directly distinguishable events within specified observation periods (time point series). Polar coordinate analysis involves the application of a complex procedure to provide a vector map of interrelated behaviors obtained from prospective and retrospective sequential analysis. The T-patterns showed that for both players the combined criteria were mainly between the different aspects of motor skills, namely the use of lower limbs, contact with the ball using the outside of the foot, locomotion, body orientation with respect to the opponent goal line, and the criteria of technical actions and the right midfield. Polar coordinate analysis detected significant associations between the same criteria included in the T-patterns as well as the criteria of turning the body, numerical equality with no pressure, and relative numerical superiority.
Creating A Coordinated Autos/UAW Reporting System (CARS) For Evaluating Health Plan Performance,
1999-09-01
open enrollment materials, information was made available to employees on internal Web sites. The Greater Detroit Area Health Council also reported...RAND Creating A Coordinated Autos/UAW Reporting System (CARS) For Evaluating Health Plan Performance Elizabeth A. McGlynn, John Adams, Jennifer...Hicks, David Klein DRU-2123-FMC September 1999 Prepared for DaimlerChrysler, Ford Motor Company, General Motors, and the United Auto Workers
D'Mello, G D; Duffy, E A; Miles, S S
1985-01-01
A conveyor belt task for assessing visuo-motor coordination in the marmoset is described. Animals are motivated by apple, a preferred food, under a state of minimal food deprivation. The apparatus used was designed to test animals within their home cages and not restrained in any way, thus avoiding possible confounding factors associated with restraint stress. Stable baseline levels of performance were reached by all animals in a median of 24 sessions. Performance was shown to be differentially sensitive to the effects of four psychoactive drugs. Moderate doses of diazepam, chlorpromazine and pentobarbital disrupted visuo-motor coordination in a dose-related manner. The possibility that disruption of performance observed at higher doses may have resulted from non-specific actions of these drugs such as decreases in feeding motivation were not supported by results from ancillary experiments. Changes in performance characteristic of high dose effects were similar in nature to changes observed when the degree of task difficulty was increased. Doses of d-amphetamine up to and including those reported to produce signs of stereotypy failed to influence performance. The potential of the conveyor belt task for measuring visuo-motor coordination in both primate and rodent species is discussed.
Linear magnetic spring and spring/motor combination
NASA Technical Reports Server (NTRS)
Patt, Paul J. (Inventor); Stolfi, Fred R. (Inventor)
1991-01-01
A magnetic spring, or a spring and motor combination, providing a linear spring force characteristic in each direction from a neutral position, in which the spring action may occur for any desired coordinate of a typical orthogonal coordinate system. A set of magnets are disposed, preferably symmetrically about a coordinate axis, poled orthogonally to the desired force direction. A second set of magnets, respectively poled opposite the first set, are arranged on the sprung article. The magnets of one of the sets are spaced a greater distance apart than those of the other, such that an end magnet from each set forms a pair having preferably planar faces parallel to the direction of spring force, the faces being offset so that in a neutral position the outer edge of the closer spaced magnet set is aligned with the inner edge of the greater spaced magnet set. For use as a motor, a coil can be arranged with conductors orthogonal to both the magnet pole directions and the direction of desired spring force, located across from the magnets of one set and fixed with respect to the magnets of the other set. In a cylindrical coordinate system having axial spring force, the magnets are radially poled and motor coils are concentric with the cylinder axis.
Golchin, Leila; Golchin, Lale; Vahidi, Ali Asghar; Shabani, Mohammad
2013-02-15
The B-Lactam antibiotics have been suggested to have some degree of neurotoxicity in experimental animals as well as in clinical situations. This study has been elucidated the alteration in hippocampal and cerebellum function following adolescent imipenem exposure in male and female rats. Hippocampus and cerebellum related behavioral dysfunction in imipenem -treated [intraperitoneally, 40 and 80 mg/kg/day for one week from 23-day-old] rats were analyzed using explorative, motor function, learning and memory tasks [grasping, rotarod, open field shuttle box and Morris water maze tests]. Exposure to imipenem especially in high dosage impaired the motor coordination in male and female rats. There weren't any differences in grasping time in male and female rats. When the rearing and grooming frequency of their recorded in open field test, both males and females were dramatically affected by exposure to imipenem. Compared to the saline, male and female rats trained one week after imipenem injection showed significant memory deficits in the shuttle box and Morris water maze tests. Results in this study suggested that animals treated with imipenem suffer from motor activity and cognitive impairment. However, hippocampal and cerebellum functions of male and female rats were profoundly affected by exposure to imipenem while no sex-differences in the most variable were evident.
Sangster Jokić, Claire A; Whitebread, David
2016-11-01
Children with developmental coordination disorder (DCD) experience difficulty learning and performing everyday motor tasks due to poor motor coordination. Recent research applying a cognitive learning paradigm has argued that children with DCD have less effective cognitive and metacognitive skills with which to effectively acquire motor skills. However, there is currently limited research examining individual differences in children's use of self-regulatory and metacognitive skill during motor learning. This exploratory study aimed to compare the self-regulatory performance of children with and without DCD. Using a mixed methods approach, this study observed and compared the self-regulatory behavior of 15 children with and without DCD, aged between 7 and 9 years, during socially mediated motor practice. Observation was conducted using a quantitative coding scheme and qualitative analysis of video-recorded sessions. This paper will focus on the results of quantitative analysis, while data arising from the qualitative analysis will be used to support quantitative findings. In general, findings indicate that children with DCD exhibit less independent and more ineffective self-regulatory skill during motor learning than their typically developing peers. In addition, children with DCD rely more heavily on external support for effective regulation and are more likely to exhibit negative patterns of motivational regulation. These findings provide further support for the notion that children with DCD experience difficulty effectively self-regulating motor learning. Implications for practice and directions for future research are discussed.
Dandy-Walker Variant with Schizophrenia: Comorbidity or Cerebellar Cognitive Affective Syndrome?
Sinha, Pallavi; Tarwani, Jatin; Kumar, Pankaj; Garg, Amit
2017-01-01
Dandy-Walker complex (DWC) is a series of neurodevelopmental anomalies involving the posterior cranial fossa. The cerebellum has long been considered to be involved in motor coordination and balance. However, it has now been noted to play an important role in higher order cognitive, emotional, and behavioral functions. The concept of cerebellar cognitive affective syndrome, describing a coherent spectrum of cognitive and behavioral disturbances in adults following cerebellar damage has long been proposed. There have been reported cases of co-occurring psychiatric symptoms and DWC in literature, but the conclusive evidence for an association between the same remains lacking. Herein, we report a case of schizophrenia presenting along with Dandy-Walker Variant.
Dandy–Walker Variant with Schizophrenia: Comorbidity or Cerebellar Cognitive Affective Syndrome?
Sinha, Pallavi; Tarwani, Jatin; Kumar, Pankaj; Garg, Amit
2017-01-01
Dandy–Walker complex (DWC) is a series of neurodevelopmental anomalies involving the posterior cranial fossa. The cerebellum has long been considered to be involved in motor coordination and balance. However, it has now been noted to play an important role in higher order cognitive, emotional, and behavioral functions. The concept of cerebellar cognitive affective syndrome, describing a coherent spectrum of cognitive and behavioral disturbances in adults following cerebellar damage has long been proposed. There have been reported cases of co-occurring psychiatric symptoms and DWC in literature, but the conclusive evidence for an association between the same remains lacking. Herein, we report a case of schizophrenia presenting along with Dandy–Walker Variant. PMID:28515557
Effect of α₇ nicotinic acetylcholine receptor agonists and antagonists on motor function in mice.
Welch, Kevin D; Pfister, James A; Lima, Flavia G; Green, Benedict T; Gardner, Dale R
2013-02-01
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. Published by Elsevier Inc.
Clumsiness in Children: Developmental Coordination Disorder.
ERIC Educational Resources Information Center
Fox, Mervyn A.
1998-01-01
Explores the diagnostic criteria of developmental coordination disorder, a condition that is characterized by motor awkwardness and has a strong association with psychiatric disorders and learning disabilities. Delineates the nature of developmental coordination disorder and discusses its treatment through occupational therapy and cognitive…
Mücke, Doris; Hermes, Anne; Roettger, Timo B; Becker, Johannes; Niemann, Henrik; Dembek, Till A; Timmermann, Lars; Visser-Vandewalle, Veerle; Fink, Gereon R; Grice, Martine; Barbe, Michael T
2018-01-01
Acoustic studies have revealed that patients with Essential Tremor treated with thalamic Deep Brain Stimulation (DBS) may suffer from speech deterioration in terms of imprecise oral articulation and reduced voicing control. Based on the acoustic signal one cannot infer, however, whether this deterioration is due to a general slowing down of the speech motor system (e.g., a target undershoot of a desired articulatory goal resulting from being too slow) or disturbed coordination (e.g., a target undershoot caused by problems with the relative phasing of articulatory movements). To elucidate this issue further, we here investigated both acoustics and articulatory patterns of the labial and lingual system using Electromagnetic Articulography (EMA) in twelve Essential Tremor patients treated with thalamic DBS and twelve age- and sex-matched controls. By comparing patients with activated (DBS-ON) and inactivated stimulation (DBS-OFF) with control speakers, we show that critical changes in speech dynamics occur on two levels: With inactivated stimulation (DBS-OFF), patients showed coordination problems of the labial and lingual system in terms of articulatory imprecision and slowness. These effects of articulatory discoordination worsened under activated stimulation, accompanied by an additional overall slowing down of the speech motor system. This leads to a poor performance of syllables on the acoustic surface, reflecting an aggravation either of pre-existing cerebellar deficits and/or the affection of the upper motor fibers of the internal capsule.
Effects of perinatal asphyxia on the neurobehavioral and retinal development of newborn rats.
Kiss, Peter; Szogyi, Donat; Reglodi, Dora; Horvath, Gabor; Farkas, Jozsef; Lubics, Andrea; Tamas, Andrea; Atlasz, Tamas; Szabadfi, Krisztina; Babai, Norbert; Gabriel, Robert; Koppan, Miklos
2009-02-19
Perinatal asphyxia during delivery produces long-term deficits and represents a major problem in both neonatal and pediatric care. Several morphological, biochemical and behavioral changes have been described in rats exposed to perinatal asphyxia. The aim of the present study was to evaluate how perinatal asphyxia affects the complex early neurobehavioral development and retinal structure of newborn rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by cesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily during the first 3 weeks, and motor coordination tests were performed on postnatal weeks 3-5. After completion of the testing procedure, retinas were removed for histological analysis. We found that in spite of the fast catch-up-growth of asphyctic pups, nearly all examined reflexes were delayed by 1-4 days: negative geotaxis, sensory reflexes, righting reflexes, development of fore- and hindlimb grasp and placing, gait and auditory startle reflexes. Time to perform negative geotaxis, surface righting and gait reflexes was significantly longer during the first few weeks in asphyctic pups. Among the motor coordination tests, a markedly weaker performance was observed in the grid walking and footfault test and in the walk initiation test. Retinal structure showed severe degeneration in the layer of the photoreceptor and bipolar cell bodies. In summary, our present study provided a detailed description of reflex and motor development following perinatal asphyxia, showing that asphyxia led to a marked delay in neurobehavioral development and a severe retinal degeneration.
ERIC Educational Resources Information Center
Brossard-Racine, Marie; Shevell, Michael; Snider, Laurie; Belanger, Stacey Ageranioti; Majnemer, Annette
2012-01-01
Motor difficulties are common in children with Attention Deficit Hyperactivity Disorder (ADHD). Although preliminary evidence has suggested that methylphenidate can improve the motor skills in children with ADHD and Developmental Coordination Disorder (DCD), the effect of stimulant medication on motor performance in children newly diagnosed with…
Advances in graphonomics: studies on fine motor control, its development and disorders.
Van Gemmert, Arend W A; Teulings, Hans-Leo
2006-10-01
During the past 20 years graphonomic research has become a major contributor to the understanding of human movement science. Graphonomic research investigates the relationship between the planning and generation of fine motor tasks, in particular, handwriting and drawing. Scientists in this field are at the forefront of using new paradigms to investigate human movement. The 16 articles in this special issue of Human Movement Science show that the field of graphonomics makes an important contribution to the understanding of fine motor control, motor development, and movement disorders. Topics discussed include writer's cramp, multiple sclerosis, Parkinson's disease, schizophrenia, drug-induced parkinsonism, dopamine depletion, dysgraphia, motor development, developmental coordination disorder, caffeine, alertness, arousal, sleep deprivation, visual feedback transformation and suppression, eye-hand coordination, pen grip, pen pressure, movement fluency, bimanual interference, dominant versus non-dominant hand, tracing, freehand drawing, spiral drawing, reading, typewriting, and automatic segmentation.
Assessment of motor balance and coordination in mice using the balance beam.
Luong, Tinh N; Carlisle, Holly J; Southwell, Amber; Patterson, Paul H
2011-03-10
Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod.
Assessment of Motor Balance and Coordination in Mice using the Balance Beam
Southwell, Amber; Patterson, Paul H.
2011-01-01
Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod. PMID:21445033
Rheological behaviour of a suspension of microswimmers varying in motor characteristics
NASA Astrophysics Data System (ADS)
Tirumkudulu, Mahesh; Karmakar, Richa; Gulvady, Ranjit; Venkatesh, K. V.
2013-11-01
A suspension of motile cells exhibits complex rheological properties due to their collective motion. We measure the shear viscosity of suspensions of Escherichia coli strains varying in motor characteristics such as duration of run and tumble. At low cell densities, all strains irrespective of their motor characteristics exhibiting a linear increase in viscosity with cell density suggesting that the cells behave as a suspension of rods with an effective aspect ratio set by the motor characteristics of the bacteria. As the cell density is increased beyond a critical value, the viscosity drops sharply signaling the presence of strongly coordinated motion among bacteria. The critical density depends not only on the magnitude of shear but also the motor characteristics of individual cells. High shear rate disrupts the coordinated motion reducing its behavior, once again, to a suspension of inactive particles. The authors acknowldege financial support from Department of Science and Technology, India.
Motor characteristics determine the rheological behavior of a suspension of microswimmers
NASA Astrophysics Data System (ADS)
Karmakar, Richa; Gulvady, Ranjit; Tirumkudulu, Mahesh S.; Venkatesh, K. V.
2014-07-01
A suspension of motile cells exhibits complex rheological properties due to their collective motion. We measure the shear viscosity of a suspension of Escherichia coli strains varying in motor characteristics such as duration of run and tumble. At low cell densities, all strains irrespective of their motor characteristics exhibit a linear increase in viscosity with cell density suggesting that the cells behave as a suspension of passive rods with an effective aspect ratio set by the motor characteristics of the bacteria. As the cell density is increased beyond a critical value, the viscosity drops sharply signaling the presence of strongly coordinated motion among bacteria. The critical density depends not only on the magnitude of shear but also the motor characteristics of individual cells. High shear rate disrupts the coordinated motion reducing its behavior, once again, to a suspension of inactive particles.
Rotation of endosomes demonstrates coordination of molecular motors during axonal transport.
Kaplan, Luke; Ierokomos, Athena; Chowdary, Praveen; Bryant, Zev; Cui, Bianxiao
2018-03-01
Long-distance axonal transport is critical to the maintenance and function of neurons. Robust transport is ensured by the coordinated activities of multiple molecular motors acting in a team. Conventional live-cell imaging techniques used in axonal transport studies detect this activity by visualizing the translational dynamics of a cargo. However, translational measurements are insensitive to torques induced by motor activities. By using gold nanorods and multichannel polarization microscopy, we simultaneously measure the rotational and translational dynamics for thousands of axonally transported endosomes. We find that the rotational dynamics of an endosome provide complementary information regarding molecular motor activities to the conventionally tracked translational dynamics. Rotational dynamics correlate with translational dynamics, particularly in cases of increased rotation after switches between kinesin- and dynein-mediated transport. Furthermore, unambiguous measurement of nanorod angle shows that endosome-contained nanorods align with the orientation of microtubules, suggesting a direct mechanical linkage between the ligand-receptor complex and the microtubule motors.
Variation in motor output and motor performance in a centrally generated motor pattern
Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.
2014-01-01
Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348
Kaiser, M-L; Schoemaker, M M; Albaret, J-M; Geuze, R H
2014-11-06
This article presents a review of the studies that have analysed the motor skills of ADHD children without medication and the influence of medication on their motor skills. The following two questions guided the study: What is the evidence of impairment of motor skills and aspects of motor control among children with ADHD aged between 6 and 16 years? What are the effects of ADHD medication on motor skills and motor control? The following keywords were introduced in the main databases: attention disorder and/or ADHD, motor skills and/or handwriting, children, medication. Of the 45 articles retrieved, 30 described motor skills of children with ADHD and 15 articles analysed the influence of ADHD medication on motor skills and motor control. More than half of the children with ADHD have difficulties with gross and fine motor skills. The children with ADHD inattentive subtype seem to present more impairment of fine motor skills, slow reaction time, and online motor control during complex tasks. The proportion of children with ADHD who improved their motor skills to the normal range by using medication varied from 28% to 67% between studies. The children who still show motor deficit while on medication might meet the diagnostic criteria of developmental coordination disorder (DCD). It is important to assess motor skills among children with ADHD because of the risk of reduced participation in activities of daily living that require motor coordination and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advanced dc-Traction-Motor Control System
NASA Technical Reports Server (NTRS)
Vittone, O.
1985-01-01
Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.
Impact of fluorescent protein fusions on the bacterial flagellar motor.
Heo, M; Nord, A L; Chamousset, D; van Rijn, E; Beaumont, H J E; Pedaci, F
2017-10-03
Fluorescent fusion proteins open a direct and unique window onto protein function. However, they also introduce the risk of perturbation of the function of the native protein. Successful applications of fluorescent fusions therefore rely on a careful assessment and minimization of the side effects, but such insight is still lacking for many applications. This is particularly relevant in the study of the internal dynamics of motor proteins, where both the chemical and mechanical reaction coordinates can be affected. Fluorescent proteins fused to the stator of the Bacterial Flagellar Motor (BFM) have previously been used to unveil the motor subunit dynamics. Here we report the effects on single motors of three fluorescent proteins fused to the stators, all of which altered BFM behavior. The torque generated by individual stators was reduced while their stoichiometry remained unaffected. MotB fusions decreased the switching frequency and induced a novel bias-dependent asymmetry in the speed in the two directions. These effects could be mitigated by inserting a linker at the fusion point. These findings provide a quantitative account of the effects of fluorescent fusions to the stator on BFM dynamics and their alleviation- new insights that advance the use of fluorescent fusions to probe the dynamics of protein complexes.
Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein.
Fleming, Sheila M; Salcedo, Jonathan; Fernagut, Pierre-Olivier; Rockenstein, Edward; Masliah, Eliezer; Levine, Michael S; Chesselet, Marie-Françoise
2004-10-20
Accumulation of alpha-synuclein in brain is a hallmark of synucleinopathies, neurodegenerative diseases that include Parkinson's disease. Mice overexpressing alpha-synuclein under the Thy-1 promoter (ASO) show abnormal accumulation of alpha-synuclein in cortical and subcortical regions of the brain, including the substantia nigra. We examined the motor deficits in ASO mice with a battery of sensorimotor tests that are sensitive to alterations in the nigrostriatal dopaminergic system. Male wild-type and ASO mice were tested every 2 months for 8 months for motor performance and coordination on a challenging beam, inverted grid, and pole, sensorimotor deficits in an adhesive removal test, spontaneous activity in a cylinder, and gait. Fine motor skills were assessed by the ability to grasp cotton from a bin. ASO mice displayed significant impairments in motor performance and coordination and a reduction in spontaneous activity as early as 2 months of age. Motor performance and coordination impairments became progressively worse with age and sensorimotor deficits appeared at 6 months. Fine motor skills were altered at 4 months and worsened at 8 months. These data indicate that overexpression of alpha-synuclein induced an early and progressive behavioral phenotype that can be detected in multiple tests of sensorimotor function. These behavioral deficits provide a useful way to assess novel drug therapy in genetic models of synucleinopathies.
Godde, Ben; Voelcker-Rehage, Claudia
2017-01-01
We examined if physical exercise interventions were effective to reduce cognitive brain resources recruited while performing motor control tasks in older adults. Forty-three older adults (63–79 years of age) participated in either a walking (n = 17) or a motor coordination (n = 15) intervention (1 year, 3 times per week) or were assigned to a control group (n = 11) doing relaxation and stretching exercises. Pre and post the intervention period, we applied functional MRI to assess brain activation during imagery of forward and backward walking and during counting backwards from 100 as control task. In both experimental groups, activation in the right dorsolateral prefrontal cortex (DLPFC) during imagery of forward walking decreased from pre- to post-test (Effect size: −1.55 and −1.16 for coordination and walking training, respectively; Cohen’s d). Regression analysis revealed a significant positive association between initial motor status and activation change in the right DLPFC (R2 = 0.243, F(3,39) = 4.18, p = 0.012). Participants with lowest motor status at pretest profited most from the interventions. Data suggest that physical training in older adults is effective to free up cognitive resources otherwise needed for the control of locomotion. Training benefits may become particularly apparent in so-called dual-task situations where subjects must perform motor and cognitive tasks concurrently. PMID:28443006
From Spontaneous Motor Activity to Coordinated Behaviour: A Developmental Model
Marques, Hugo Gravato; Bharadwaj, Arjun; Iida, Fumiya
2014-01-01
In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions. PMID:25057775
Diaz, Marvin R; Vollmer, Cyndel C; Zamudio-Bulcock, Paula A; Vollmer, William; Blomquist, Samantha L; Morton, Russell A; Everett, Julie C; Zurek, Agnieszka A; Yu, Jieying; Orser, Beverley A; Valenzuela, C Fernando
2014-04-01
Exposure to ethanol (EtOH) during fetal development can lead to long-lasting alterations, including deficits in fine motor skills and motor learning. Studies suggest that these are, in part, a consequence of cerebellar damage. Cerebellar granule neurons (CGNs) are the gateway of information into the cerebellar cortex. Functionally, CGNs are heavily regulated by phasic and tonic GABAergic inhibition from Golgi cell interneurons; however, the effect of EtOH exposure on the development of GABAergic transmission in immature CGNs has not been investigated. To model EtOH exposure during the 3rd trimester-equivalent of human pregnancy, neonatal pups were exposed intermittently to high levels of vaporized EtOH from postnatal day (P) 2 to P12. This exposure gradually increased pup serum EtOH concentrations (SECs) to ∼60 mM (∼0.28 g/dl) during the 4 h of exposure. EtOH levels gradually decreased to baseline 8 h after the end of exposure. Surprisingly, basal tonic and phasic GABAergic currents in CGNs were not significantly affected by postnatal alcohol exposure (PAE). However, PAE increased δ subunit expression at P28 as detected by immunohistochemical and western blot analyses. Also, electrophysiological studies with an agonist that is highly selective for δ-containing GABA(A) receptors, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP), showed an increase in THIP-induced tonic current. Behavioral studies of PAE rats did not reveal any deficits in motor coordination, except for a delay in the acquisition of the mid-air righting reflex that was apparent at P15 to P18. These findings demonstrate that repeated intermittent exposure to high levels of EtOH during the equivalent of the last trimester of human pregnancy has significant but relatively subtle effects on motor coordination and GABAergic transmission in CGNs in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.
Molina, Juan L.; González Alemán, Gabriela; Florenzano, Néstor; Padilla, Eduardo; Calvó, María; Guerrero, Gonzalo; Kamis, Danielle; Stratton, Lee; Toranzo, Juan; Molina Rangeon, Beatriz; Hernández Cuervo, Helena; Bourdieu, Mercedes; Sedó, Manuel; Strejilevich, Sergio; Cloninger, Claude Robert; Escobar, Javier I.; de Erausquin, Gabriel A.
2016-01-01
Background: Neurocognitive deficits are among the most debilitating and pervasive symptoms of schizophrenia, and are present also in unaffected first-degree relatives. Also, multiple reports reveal parkisonian motor deficits in untreated subjects with schizophrenia and in first-degree relatives of affected subjects. Yet, the relation between motor and cognitive impairment and its value as a classifier of endophenotypes has not been studied. Aims: To test the efficacy of midbrain hyperechogenicity (MHE) and parkinsonian motor impairment (PKM) as predictors of neurocognitive impairment in subjects with or at risk for schizophrenia, that could be used to segregate them from first-degree relatives and healthy controls. Method: Seventy-six subjects with chronic schizophrenia never exposed to antipsychotic medication, 106 unaffected first-degree relatives, and 62 healthy controls were blindly assessed for cognitive and motor function, and transcranial ultrasound. Results: Executive function, fluid intelligence, motor planning, and hand coordination showed group differences. PKM and MHE were significantly higher in untreated schizophrenia and unaffected relatives. Unaffected relatives showed milder impairment, but were different from controls. Conclusions: PKM and MHE predict cognitive impairment in neuroleptic-naive patients with schizophrenia and their unaffected first-degree relatives and may be used to segregate them from first-degree relatives and healthy controls. PMID:26994395
Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus
2015-01-01
Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.
Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus
2015-01-01
Purpose Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity–the synchronized discharge of individual motor units across muscles within time intervals of 5ms–for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Methods Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. Results For all tasks, except for singe-leg balance, coherence between 15–80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30–60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. Conclusion There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand. PMID:26529604
Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J
2017-02-01
There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.
Temporal learning in the cerebellum: The microcircuit model
NASA Technical Reports Server (NTRS)
Miles, Coe F.; Rogers, David
1990-01-01
The cerebellum is that part of the brain which coordinates motor reflex behavior. To perform effectively, it must learn to generate specific motor commands at the proper times. We propose a fundamental circuit, called the MicroCircuit, which is the minimal ensemble of neurons both necessary and sufficient to learn timing. We describe how learning takes place in the MicroCircuit, which then explains the global behavior of the cerebellum as coordinated MicroCircuit behavior.
The Development of Motor Coordination in Drosophila Embryos
Crisp, Sarah; Evers, Jan Felix; Fiala, André; Bate, Michael
2012-01-01
We use non-invasive muscle imaging to study onset of motor activity and emergence of coordinated movement in Drosophila embryos. Earliest movements are myogenic and neurally controlled muscle contractions first appear with the onset of bursting activity 17 hours after egg laying. Initial episodes of activity are poorly organised and coordinated crawling sequences only begin to appear after a further hour of bursting. Thus network performance improves during this first period of activity. The embryo continues to exhibit bursts of crawling like sequences until shortly before hatching, while other reflexes also mature. Bursting does not begin as a reflex response to sensory input but appears to reflect the onset of spontaneous activity in the motor network. It does not require GABA-ergic transmission, and using a light activated channel to excite the network we demonstrate activity dependent depression that may cause burst termination. PMID:18927150
Physical Activity Predicts Performance in an Unpracticed Bimanual Coordination Task.
Boisgontier, Matthieu P; Serbruyns, Leen; Swinnen, Stephan P
2017-01-01
Practice of a given physical activity is known to improve the motor skills related to this activity. However, whether unrelated skills are also improved is still unclear. To test the impact of physical activity on an unpracticed motor task, 26 young adults completed the international physical activity questionnaire and performed a bimanual coordination task they had never practiced before. Results showed that higher total physical activity predicted higher performance in the bimanual task, controlling for multiple factors such as age, physical inactivity, music practice, and computer games practice. Linear mixed models allowed this effect of physical activity to be generalized to a large population of bimanual coordination conditions. This finding runs counter to the notion that generalized motor abilities do not exist and supports the existence of a "learning to learn" skill that could be improved through physical activity and that impacts performance in tasks that are not necessarily related to the practiced activity.
SDRE control strategy applied to a nonlinear robotic including drive motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Jeferson J. de, E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Tusset, Angelo M., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Janzen, Frederic C., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br
A robotic control design considering all the inherent nonlinearities of the robot-engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State-Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case I: For control positioning, it is only used motor voltage; Case II: For control positioning, it is used both motor voltage and torque betweenmore » the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.« less
Motor Coordination and Executive Functions
ERIC Educational Resources Information Center
Michel, Eva
2012-01-01
Since Piaget, the view that motor and cognitive development are interrelated has gained wide acceptance. However, empirical research on this issue is still rare. Few studies show a correlation of performance in cognitive and motor tasks in typically developing children. More specifically, Diamond A. (2000) hypothesizes an involvement of executive…
INTEGRATED DEVELOPMENT, MOTOR APTITUDE AND INTELLECTUAL PERFORMANCE.
ERIC Educational Resources Information Center
GRUBER, J.J.; ISMAIL, A.H.
THE RELATIONSHIP OF MOVEMENT RESPONSES TO LEARNING ACHIEVEMENT WERE INVESTIGATED (1) TO IDENTIFY FACTORS CLAIMED TO MEASURE MOTOR APTITUDE AND INTELLECTUAL ACHIEVEMENT IN PRE-ADOLESCENTS, (2) TO DEVELOP MOTOR APTITUDE TEST BATTERIES FOR PREDICTING INTELLECTUAL ACHIEVEMENT, (3) TO STUDY RELATIONSHIPS OF COORDINATION AND BALANCE TEST ITEMS IN…
Yu, Tzu-Ying; Chen, Kuan-Lin; Chou, Willy; Yang, Shu-Han; Kung, Sheng-Chun; Lee, Ya-Chen; Tung, Li-Chen
2016-01-01
This study aimed to establish 1) whether a group difference exists in the motor competence of preschool children at risk for developmental delays with intelligence quotient discrepancy (IQD; refers to difference between verbal intelligence quotient [VIQ] and performance intelligence quotient [PIQ]) and 2) whether an association exists between IQD and motor competence. Children's motor competence and IQD were determined with the motor subtests of the Comprehensive Developmental Inventory for Infants and Toddlers and Wechsler Preschool and Primary Scale of Intelligence™ - Fourth Edition. A total of 291 children were included in three groups: NON-IQD (n=213; IQD within 1 standard deviation [SD]), VIQ>PIQ (n=39; VIQ>PIQ greater than 1 SD), and PIQ>VIQ (n=39; PIQ>VIQ greater than 1 SD). The results of one-way analysis of variance indicated significant differences among the subgroups for the "Gross and fine motor" subdomains of the Comprehensive Developmental Inventory for Infants and Toddlers, especially on the subtests of "body-movement coordination" (F=3.87, P<0.05) and "visual-motor coordination" (F=6.90, P<0.05). Motor competence was significantly worse in the VIQ>PIQ group than in the NON and PIQ>VIQ groups. Significant negative correlations between IQD and most of the motor subtests (r=0.31-0.46, P<0.01) were found only in the VIQ>PIQ group. This study demonstrates that 1) IQD indicates the level of motor competence in preschoolers at risk for developmental delays and 2) IQD is negatively associated with motor competence in preschoolers with significant VIQ>PIQ discrepancy. The first finding was that preschoolers with VIQ>PIQ discrepancy greater than 1 SD performed significantly worse on motor competence than did preschoolers without significant IQD and preschoolers with PIQ>VIQ discrepancy greater than 1 SD. However, preschoolers with significant PIQ>VIQ discrepancy performed better on motor competence than did preschoolers without significant IQD, though the difference was not statistically significant. The second finding was that preschoolers with larger VIQ>PIQ discrepancy had worse motor competence in visual-motor integration and body-movement coordination. Professionals should pay attention to the motor development of children with VIQ>PIQ discrepancy and evaluate children's IQD along with their motor competence.
ERIC Educational Resources Information Center
Carlson, Abby G.; Rowe, Ellen; Curby, Timothy W.
2013-01-01
Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout…
Kane, Kyra J; Staples, Kerri L
2016-01-01
Children with coordination difficulties are at risk of low levels of physical activity (PA) participation. This intervention examined the effects of a multidisciplinary program that emphasized parent participation on motor skill performance and PA. Ten boys (5-7 years) completed a group program consisting of conditioning exercises and activities designed to address child-selected goals. Motor proficiency and PA participation were assessed before and after the program using the Test of Gross Motor Development (TGMD-2) and triaxial accelerometers, respectively. Rating scales captured child and parent perceptions of performance for each child's goals. TGMD-2 subtest raw scores, age equivalent and percentile scores improved, along with parent ratings of their child's performance. Six children reported skill improvements. On average, moderate to vigorous PA improved by 10 min per day although these gains were not significant. Time spent in sedentary activities was unchanged. None of the children met the Canadian PA and sedentary behaviour guidelines. The results support effectiveness of a group program to improve gross motor performance and levels of PA in children with coordination difficulties. Gains in both of these domains also have the potential to impact quality of life and reduce health risks associated with inactivity.
Fang, Ying; Zhang, Ying
2017-01-01
Visual motor integration (VMI) is a vital ability in childhood development, which is associated with the performance of many functional skills. By using the Beery Developmental Test Package and Executive Function Tasks, the present study explored the VMI development and its factors (visual perception, motor coordination, and executive function) among 151 Chinese preschoolers from 4 to 6 years. Results indicated that the VMI skills of children increased quickly at 4 years and peaked at 5 years and decreased at around 5 to 6 years. Motor coordination and cognitive flexibility were related to the VMI development of children from 4 to 6 years. Visual perception was associated with the VMI development at early 4 years and inhibitory control was also associated with it among 4-year-old and the beginning of 5-year-old children. Working memory had no impact on the VMI. In conclusion, the development of VMI skills among children in preschool was not stable but changed dynamically in this study. Meanwhile the factors of the VMI worked in different age range for preschoolers. These findings may give some guidance to researchers or health professionals on improving children's VMI skills in their early childhood. PMID:29457030
Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players
Trecroci, Athos; Cavaggioni, Luca; Caccia, Riccardo; Alberti, Giampietro
2015-01-01
General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol including jumping rope (JR) exercises on motor abilities and body balance in young soccer players. Twenty-four preadolescent soccer players were recruited and placed in two different groups. In the Experimental group (EG), children performed JR training at the beginning of the training session. The control group (CG), executed soccer specific drills. Harre circuit test (HCT) and Lower Quarter Y balance test (YBT-LQ) were selected to evaluate participant’s motor ability (e.g. ability to perform rapidly a course with different physical tasks such as somersault and passages above/below obstacles ) and to assess unilateral dynamic lower limb balance after 8 weeks of training. Statistical analysis consisted of paired t-test and mixed analysis of variance scores to determine any significant interactions. Children who performed jumping rope exercises showed a significant decrease of 9% (p < 0.01, ES = 0.50-0.80) in the performance time of HCT. With regard to the CG, no differences were highlighted (p > 0.05, ES = 0.05-0.2) from pre- to post-training. A training-by-group interaction was found for the composite score in both legs (p < 0.05, Part η2 > 0.14). Our findings demonstrated that JR practice within regular soccer training enhanced general motor coordination and balance in preadolescent soccer players. Therefore, the inclusion of JR practice within regular soccer training session should encouraged to improve children’s motor skills. Key points Performing jumping rope exercises within a regular soccer program can be an additional method to improve balance and motor coordination. The performance improvement in the Harre Circuit Test associated with jump rope training can potentially be attributed to an enhancement of the inter-limb coordination and SSC ability. Results from the present study indicate that young soccer players should be encouraged to practice general physical activities together with sport-specific exercise during their training sessions. PMID:26664276
Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players.
Trecroci, Athos; Cavaggioni, Luca; Caccia, Riccardo; Alberti, Giampietro
2015-12-01
General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol including jumping rope (JR) exercises on motor abilities and body balance in young soccer players. Twenty-four preadolescent soccer players were recruited and placed in two different groups. In the Experimental group (EG), children performed JR training at the beginning of the training session. The control group (CG), executed soccer specific drills. Harre circuit test (HCT) and Lower Quarter Y balance test (YBT-LQ) were selected to evaluate participant's motor ability (e.g. ability to perform rapidly a course with different physical tasks such as somersault and passages above/below obstacles ) and to assess unilateral dynamic lower limb balance after 8 weeks of training. Statistical analysis consisted of paired t-test and mixed analysis of variance scores to determine any significant interactions. Children who performed jumping rope exercises showed a significant decrease of 9% (p < 0.01, ES = 0.50-0.80) in the performance time of HCT. With regard to the CG, no differences were highlighted (p > 0.05, ES = 0.05-0.2) from pre- to post-training. A training-by-group interaction was found for the composite score in both legs (p < 0.05, Part η(2) > 0.14). Our findings demonstrated that JR practice within regular soccer training enhanced general motor coordination and balance in preadolescent soccer players. Therefore, the inclusion of JR practice within regular soccer training session should encouraged to improve children's motor skills. Key pointsPerforming jumping rope exercises within a regular soccer program can be an additional method to improve balance and motor coordination.The performance improvement in the Harre Circuit Test associated with jump rope training can potentially be attributed to an enhancement of the inter-limb coordination and SSC ability.Results from the present study indicate that young soccer players should be encouraged to practice general physical activities together with sport-specific exercise during their training sessions.
Vaivre-Douret, Laurence; Lalanne, Christophe; Golse, Bernard
2016-01-01
Background: Developmental Coordination Disorder (DCD) defines a heterogeneous class of children exhibiting marked impairment in motor coordination as a general group of deficits in fine and gross motricity (subtype mixed group) common to all research studies, and with a variety of other motor disorders that have been little investigated. No consensus about symptoms and etiology has been established. Methods: Data from 58 children aged 6 to 13 years with DCD were collected on DSM-IV criteria, similar to DSM-5 criteria. They had no other medical condition and inclusion criteria were strict (born full-term, no medication, no occupational/physical therapy). Multivariate statistical methods were used to evidence relevant interactions between discriminant features in a general DCD subtype group and to highlight specific co-morbidities. The study examined age-calibrated standardized scores from completed assessments of psychological, neuropsychological, and neuropsychomotor functions, and more specifically the presence of minor neurological dysfunctions (MND) including neurological soft signs (NSS), without evidence of focal neurological brain involvement. These were not considered in most previous studies. Results: Findings show the salient DCD markers for the mixed subtype (imitation of gestures, digital perception, digital praxia, manual dexterity, upper, and lower limb coordination), vs. surprising co-morbidities, with 33% of MND with mild spasticity from phasic stretch reflex (PSR), not associated with the above impairments but rather with sitting tone (p = 0.004) and dysdiadochokinesia (p = 0.011). PSR was not specific to a DCD subtype but was related to increased impairment of coordination between upper and lower limbs and manual dexterity. Our results highlight the major contribution of an extensive neuro-developmental assessment (mental and physical). Discussion: The present study provides important new evidence in favor of a complete physical neuropsychomotor assessment, including neuromuscular tone examination, using appropriate standardized neurodevelopmental tools (common tasks across ages with age-related normative data) in order to distinguish motor impairments gathered under the umbrella term of developmental coordination disorders (subcortical vs. cortical). Mild spasticity in the gastrocnemius muscles, such as phasic stretch reflex (PSR), suggests disturbances of the motor pathway, increasing impairment of gross and fine motricity. These findings contribute to understanding the nature of motor disorders in DCD by taking account of possible co-morbidities (corticospinal tract disturbances) to improve diagnosis and adapt treatment programmes in clinical practice. PMID:27148114
Weafer, Jessica; Fillmore, Mark T
2012-04-01
Alcohol effects on behavioral and cognitive mechanisms influence impaired driving performance and decisions to drive after drinking (Barry 1973; Moskowitz and Robinson 1987). To date, research has focused on the ascending limb of the blood alcohol curve, and there is little understanding of how acute tolerance to impairment of these mechanisms might influence driving behavior on the descending limb. To provide an integrated examination of the degree to which alcohol impairment of motor coordination and inhibitory control contributes to driving impairment and decisions to drive on the ascending and descending limbs of the blood alcohol curve. Social-drinking adults (N = 20) performed a testing battery that measured simulated driving performance and willingness to drive, as well as mechanisms related to driving: motor coordination (grooved pegboard), inhibitory control (cued go/no-go task), and subjective intoxication. Performance was tested in response to placebo and a moderate dose of alcohol (0.65 g/kg) twice at comparable blood alcohol concentrations: once on the ascending limb and again on the descending limb. Impaired motor coordination and subjective intoxication showed acute tolerance, whereas driving performance and inhibitory control showed no recovery from impairment. Greater motor impairment was associated with poorer driving performance under alcohol, and poorer inhibitory control was associated with more willingness to drive. Findings suggest that acute tolerance to impairment of motor coordination is insufficient to promote recovery of driving performance and that the persistence of alcohol-induced disinhibition might contribute to risky decisions to drive on the descending limb.
Weafer, Jessica
2015-01-01
Rationale Alcohol effects on behavioral and cognitive mechanisms influence impaired driving performance and decisions to drive after drinking (Barry 1973; Moskowitz and Robinson 1987). To date, research has focused on the ascending limb of the blood alcohol curve, and there is little understanding of how acute tolerance to impairment of these mechanisms might influence driving behavior on the descending limb. Objectives To provide an integrated examination of the degree to which alcohol impairment of motor coordination and inhibitory control contributes to driving impairment and decisions to drive on the ascending and descending limbs of the blood alcohol curve. Methods Social-drinking adults (N=20) performed a testing battery that measured simulated driving performance and willingness to drive, as well as mechanisms related to driving: motor coordination (grooved pegboard), inhibitory control (cued go/no-go task), and subjective intoxication. Performance was tested in response to placebo and a moderate dose of alcohol (0.65 g/kg) twice at comparable blood alcohol concentrations: once on the ascending limb and again on the descending limb. Results Impaired motor coordination and subjective intoxication showed acute tolerance, whereas driving performance and inhibitory control showed no recovery from impairment. Greater motor impairment was associated with poorer driving performance under alcohol, and poorer inhibitory control was associated with more willingness to drive. Conclusions Findings suggest that acute tolerance to impairment of motor coordination is insufficient to promote recovery of driving performance and that the persistence of alcohol-induced disinhibition might contribute to risky decisions to drive on the descending limb. PMID:21960182
Motor and Coordination Difficulties in Children with Emotional and Behavioural Difficulties
ERIC Educational Resources Information Center
Hill, Elisabeth; Pratt, Michelle L; Kanji, Zara; Bartoli, Alice Jones
2017-01-01
To date, very few studies have explored the incidence of motor impairment amongst children with social, emotional and behavioural difficulties (social, emotional and mental health (SEMH); formerly SEBD in England). Following research that suggests an increase in motor difficulties in young children and adolescents with SEMH difficulties, this…
Social Motor Synchronization: Insights for Understanding Social Behavior in Autism
ERIC Educational Resources Information Center
Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L.; Duncan, Amie; Barnard, Holly; Richardson, Michael J.; Schmidt, R. C.
2017-01-01
Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and…
Heitger, Marcus H.; Goble, Daniel J.; Dhollander, Thijs; Dupont, Patrick; Caeyenberghs, Karen; Leemans, Alexander; Sunaert, Stefan; Swinnen, Stephan P.
2013-01-01
In bimanual coordination, older and younger adults activate a common cerebral network but the elderly also have additional activation in a secondary network of brain areas to master task performance. It remains unclear whether the functional connectivity within these primary and secondary motor networks differs between the old and the young and whether task difficulty modulates connectivity. We applied graph-theoretical network analysis (GTNA) to task-driven fMRI data in 16 elderly and 16 young participants using a bimanual coordination task including in-phase and anti-phase flexion/extension wrist movements. Network nodes for the GTNA comprised task-relevant brain areas as defined by fMRI activation foci. The elderly matched the motor performance of the young but showed an increased functional connectivity in both networks across a wide range of connectivity metrics, i.e., higher mean connectivity degree, connection strength, network density and efficiency, together with shorter mean communication path length between the network nodes and also a lower betweenness centrality. More difficult movements showed an increased connectivity in both groups. The network connectivity of both groups had “small world” character. The present findings indicate (a) that bimanual coordination in the aging brain is associated with a higher functional connectivity even between areas also activated in young adults, independently from task difficulty, and (b) that adequate motor coordination in the context of task-driven bimanual control in older adults may not be solely due to additional neural recruitment but also to aging-related changes of functional relationships between brain regions. PMID:23637982
Sequences show rapid motor transfer and spatial translation in the oculomotor system.
Stainer, Matthew J; Carpenter, R H S; Brotchie, Peter; Anderson, Andrew J
2016-07-01
Every day we perform learnt sequences of actions that seem to happen almost without awareness. It has been argued that for learning such sequences parallel learning networks exist - one using spatial coordinates and one using motor coordinates - with sequence acquisition involving a progressive shift from the former to the latter as a sequence is rehearsed. When sequences are interrupted by an out-of-sequence target, there is a delay in the response to the target, and so here we transiently interrupt oculomotor sequences to probe the influence of oculomotor rehearsal and spatial coordinates in sequence acquisition. For our main experiments, we used a repeating sequences of eight targets in length that was first learnt either using saccadic eye movements (left/right), manual responses (left/right or up/down) or as a sequence of colour (blue/red) requiring no motor response. The sequence was immediately repeated for saccadic eye movements, during which the influence of on out-of-sequence target (an interruption) was assessed. When a sequence is learnt beforehand in an abstract way (for example, as a sequence of colours or of orthogonally mapped manual responses), interruptions are immediately disruptive to latency, suggesting neither motor rehearsal nor specific spatial coordinates are essential for encoding sequences of actions and that sequences - no matter how they are encoded - can be rapidly translated into oculomotor coordinates. The magnitude of a disruption does, however, correspond to how well a sequence is learnt: introducing an interruption to an extended sequence before it was reliably learnt reduces the magnitude of the latency disruption. Copyright © 2016 Elsevier Ltd. All rights reserved.
Verrel, Julius; Lövdén, Martin; Lindenberger, Ulman
2012-01-01
Stable walking depends on the coordination of multiple biomechanical degrees of freedom to ensure the dynamic maintenance of whole-body equilibrium as well as continuous forward progression. We investigated adult age-related differences in whole-body coordination underlying stabilization of center of mass (CoM) position and step pattern during locomotion. Sixteen younger (20-30 years) and 16 healthy older men (65-80 years) walked on a motorized treadmill at 80%, 100% and 120% of their self-selected preferred speed. Preferred speeds did not differ between the age groups. Motor-equivalent stabilization of step parameters (step length and width) and CoM position relative to the support (back and front foot) was examined using a generalized covariation analysis. Across age groups, covariation indices were highest for CoM position relative to the front foot, the measure most directly related to body equilibrium. Compared to younger adults, older adults showed lower covariation indices with respect to step length, extending previous findings of age-related differences in motor-equivalent coordination. In contrast, no reliable age differences were found regarding stabilization of step width or any of the CoM parameters. The observed pattern of results may reflect robust prioritization of balance over step pattern regularity, which may be adaptive in the face of age-associated sensorimotor losses and decline of coordinative capacities.
Impaired Interlimb Coordination of Voluntary Leg Movements in Poststroke Hemiparesis
Tseng, Shih-Chiao
2010-01-01
Appropriate interlimb coordination of the lower extremities is particularly important for a variety of functional human motor behaviors such as jumping, kicking a ball, or simply walking. Specific interlimb coordination patterns may be especially impaired after a lesion to the motor system such as stroke, yet this has not been thoroughly examined to date. The purpose of this study was to investigate the motor deficits in individuals with chronic stroke and hemiparesis when performing unilateral versus bilateral inphase versus bilateral antiphase voluntary cyclic ankle movements. We recorded ankle angular trajectories and muscle activity from the dorsiflexors and plantarflexors and compared these between subjects with stroke and a group of healthy age-matched control subjects. Results showed clear abnormalities in both the kinematics and EMG of the stroke subjects, with significant movement degradation during the antiphase task compared with either the unilateral or the inphase task. The abnormalities included prolonged cycle durations, reduced ankle excursions, decreased agonist EMG bursts, and reduced EMG modulation across movement phases. By comparison, the control group showed nearly identical performance across all task conditions. These findings suggest that stroke involving the corticospinal system projection to the leg specifically impairs one or more components of the neural circuitry involved in lower extremity interlimb coordination. The express susceptibility of the antiphase pattern to exaggerated motor deficits could contribute to functional deficits in a number of antiphase leg movement tasks, including walking. PMID:20463199
ERIC Educational Resources Information Center
Giagazoglou, Paraskevi; Kabitsis, Nikolaos; Kokaridas, Dimitrios; Zaragas, Charilaos; Katartzi, Ermioni; Kabitsis, Chris
2011-01-01
Early identification of possible risk factors that could impair the motor development is crucial, since poor motor performance may have long-term negative consequences for a child's overall development. The aim of the current study was the examination of disorders in motor coordination in Greek pre-school aged children and the detection of…
ERIC Educational Resources Information Center
Tse, Linda F. L.; Siu, Andrew M. H.; Li-Tsang, Cecilia W. P.
2017-01-01
Visual-motor integration (VMI) is the ability to coordinate visual perception and motor skills. Although Chinese children have superior performance in VMI than U.S. norms, there is limited information regarding the performance of its basic composition of VMI in regard to visual and motor aspects. This study aimed to examine the differences in…
de Vries, Liesbeth; van Hartingsveldt, Margo J; Cup, Edith H C; Nijhuis-van der Sanden, Maria W G; de Groot, Imelda J M
2015-06-01
When children are not ready to write, assessment of fine motor coordination may be indicated. The purpose of this study was to evaluate which fine motor test, the Nine-Hole Peg Test (9-HPT) or the newly developed Timed Test of In-Hand Manipulation (Timed-TIHM), correlates best with handwriting readiness as measured by the Writing Readiness Inventory Tool In Context-Task Performance (WRITIC-TP). From the 119 participating children, 43 were poor performers. Convergent validity of the 9-HPT and Timed-TIHM with WRITIC-TP was determined, and test-retest reliability of the Timed-TIHM was examined in 59 children. The results showed that correlations of the 9-HPT and Timed-TIHM with the WRITIC-TP were similar (rs = -0.40). The 9-HPT and the complex rotation subtask of the Timed-TIHM had a low correlation with the WRITIC-TP in poor performers (rs = -0.30 and -0.32 respectively). Test-retest reliability of the Timed-TIHM was significant (Intraclass Correlation Coefficient = 0.71). Neither of these two fine motor tests is appeared superior. They both relate to different aspects of fine motor performance. One of the limitations of the methodology was unequal numbers of children in subgroups. It is recommended that further research is indicated to evaluate the relation between development of fine motor coordination and handwriting proficiency, on the Timed-TIHM in different age groups. Copyright © 2015 John Wiley & Sons, Ltd.
Bisong, Sunday Agba; Brown, Richard; Osim, Eme Effiom
2010-10-28
Since remedies for mental disorders have been sought through both orthodox and traditional medicine this study compared the effects of the antipsychotic, chlorpromazine (Cpz), the herb Rauwolfia vomitoria (RV) and its alkaloid reserpine (Res) in mice. Ninety male CD-1 strain of mice (75-80 days old; 30-34 g body weight) were divided into 3 major groups and each consisting 5 subgroups (n=6). Cpz (0.0, 0.25, 1.0, 2.0 and 4.0 mg/kg, i.p.), was administered 30 min before testing. RV (0.0, 0.25, 1.0, 2.0 and 4.0 mg/kg, i.p.) and Res (0.0, 0.1, 0.4, 0.8, 1.6 mg/kg, i.p.) were administered 24 h before testing. The open field test was used to assess locomotor and exploratory behaviour, acceleratory rotarod for motor coordination, light/dark box for anxiety. CPZ dose-dependently decreased locomotor and exploration behaviour and impaired motor coordination (p<0.01). RV also decreased locomotor behaviour at 4.0 mg/kg (p<0.5) but did not alter exploration and motor coordination. Res however, decreased locomotion and exploration and impaired motor coordination 0.8 and 1.6 mg/kg (p<0.05). In the light/dark box, CPZ increased anxiety related behaviour at 1.0, 2.0 mg/kg (p<0.05) whereas RV dose-dependently decreased anxiety from 1.0 to 4.0 mg/kg (p<0.01). Res, unlike RV, dose-dependently increased anxiety related behaviour from 0.4 to 1.6 mg/kg. Root bark extract from Rauwolfia vomitoria produced better behavioural effects with less distortion in motor coordination when compared to chlorpromazine and so has a great potential as an alternative antipsychotic agent compared to chlorpromazine. Since Res did not produce same effects as RV, the effect of RV may not be due solely to Res as claimed. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Alcohol hangover: type and time-extension of motor function impairments.
Karadayian, Analía G; Cutrera, Rodolfo A
2013-06-15
Alcohol hangover is defined as the unpleasant next-day state following an evening of excessive alcohol consumption. Hangover begins when ethanol is absent in plasma and is characterized by physical and psychological symptoms. During hangover cognitive functions and subjective capacities are affected along with inefficiency, reduced productivity, absenteeism, driving impairments, poor academic achievement and reductions in motor coordination. The aim of this work was to study the type and length of motor and exploratory functions from the beginning to the end of the alcohol hangover. Male Swiss mice were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Motor performance, walking deficiency, motor strength, locomotion and exploratory activity were evaluated at a basal point (ZT0) and every 2 h up to 20 h after blood alcohol levels were close to zero (hangover onset). Motor performance was 80% decreased at the onset of hangover (p<0.001). Hangover mice exhibited a reduced motor performance during the next 16 h (p<0.01). Motor function was recovered 20 h after hangover onset. Hangover mice displayed walking deficiencies from the beginning to 16 h after hangover onset (p<0.05). Moreover, mice suffering from a hangover, exhibited a significant decrease in neuromuscular strength during 16 h (p<0.001). Averaged speed and total distance traveled in the open field test and the exploratory activity on T-maze and hole board tests were reduced during 16 h after hangover onset (p<0.05). Our findings demonstrate a time-extension between 16 to 20 h for hangover motor and exploratory impairments. As a whole, this study shows the long lasting effects of alcohol hangover. Copyright © 2013 Elsevier B.V. All rights reserved.
Tosun, Aliye; Türe, Sabiha; Askin, Ayhan; Yardimci, Engin Ugur; Demirdal, Secil Umit; Kurt Incesu, Tülay; Tosun, Ozgur; Kocyigit, Hikmet; Akhan, Galip; Gelal, Fazıl Mustafa
2017-07-01
To assess the efficacy of inhibitory repetitive transcranial magnetic stimulation (rTMS) and neuromuscular electrical stimulation (NMES) on upper extremity motor function in patients with acute/subacute ischemic stroke. Twenty-five ischemic acute/subacute stroke subjects were enrolled in this randomized controlled trial. Experimental group 1 received low frequency (LF) rTMS to the primary motor cortex of the unaffected side + physical therapy (PT) including activities to improve strength, flexibility, transfers, posture, balance, coordination, and activities of daily living, mainly focusing on upper limb movements; experimental group 2 received the same protocol combined with NMES to hand extensor muscles; and the control group received only PT. Functional magnetic resonance imaging (fMRI) scan was used to evaluate the activation or inhibition of the affected and unaffected primary motor cortex. No adverse effect was reported. Most of the clinical outcome scores improved significantly in all groups, however no statistically significant difference was found between groups due to the small sample sizes. The highest percent improvement scores were observed in TMS + NMES group (varying between 48 and 99.3%) and the lowest scores in control group (varying between 13.1 and 28.1%). Hand motor recovery was significant in both experimental groups while it did not change in control group. Some motor cortex excitability changes were also observed in fMRI. LF-rTMS with or without NMES seems to facilitate the motor recovery in the paretic hand of patients with acute/subacute ischemic stroke. TMS or the combination of TMS + NMES may be a promising additional therapy in upper limb motor training. Further studies with larger numbers of patients are needed to establish their effectiveness in upper limb motor rehabilitation of stroke.
Developmental Coordination Disorder and Reported Enjoyment of Physical Education in Children
ERIC Educational Resources Information Center
Cairney, John; Hay, John; Mandigo, James; Wade, Terrance; Faught, Brent E.; Flouris, Andreas
2007-01-01
Children with developmental coordination disorder (DCD) are less likely to enjoy participating in physical education (PE) than children without motor coordination difficulties. However, no studies have attempted to quantify this relationship or examine potentially modifiable mediating variables. Using a large sample (N = 590) of children (aged 9…
Perceptual Learning Immediately Yields New Stable Motor Coordination
ERIC Educational Resources Information Center
Wilson, Andrew D.; Snapp-Childs, Winona; Bingham, Geoffrey P.
2010-01-01
Coordinated rhythmic movement is specifically structured in humans. Movement at 0[degrees] mean relative phase is maximally stable, 180[degrees] is less stable, and other coordinations can, but must, be learned. Variations in perceptual ability play a key role in determining the observed stabilities so we investigated whether stable movements can…
Language Acquisition and Categorical Perception with Particular Reference to /r/ and /1/.
ERIC Educational Resources Information Center
Perecman, Ellen; Kellar, Lucia A.
1983-01-01
Examines the relationship between the development of fine motor control for articulation and the development of fine motor control in other muscle systems. Discusses whether the late appearance of /r/ and /1/ is due to the fact that their articulation requires finer motor coordination than other classes of sounds. (EKN)
Detection and Prevalence of Motor Skill Disorders
ERIC Educational Resources Information Center
Nikolic, Snezana J.; Ilic-Stosovic, Danijela D.
2009-01-01
The main goal of this research was to establish the prevalence, form of manifestation, level and kind of motor skill disorders in three area of motor development functioning: neuromaturation, coordination and balance. The sample included 1165 children, between 6.5 and 11 years of age. The protocol was constructed and contained tests for the…
Changes in Motor Strategies across Age Performing a Longswing on the High Bar
ERIC Educational Resources Information Center
Busquets, Albert; Marina, Michel; Angulo-Barroso, Rosa
2013-01-01
Purpose: Improvements in motor performance and coordination may be impacted by the interaction of practice and organismic constraints. It has been proposed that these aspects of motor learning are achieved at a different time rate: first, during placement of the events (performance), and second, segmental spatiotemporal relationships…
Generation of novel motor sequences: the neural correlates of musical improvisation.
Berkowitz, Aaron L; Ansari, Daniel
2008-06-01
While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.
O'Loughlin, Thomas; Masters, Thomas A; Buss, Folma
2018-04-01
The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine-tune motor activity in time and space. These motor-adaptor-cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling-based proteomics strategy to map the interactome of the unique minus end-directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6-adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG-Induced F-actin for Tethering) complex that controls endosome positioning and motility through RHO-driven actin polymerisation; and the DISP (DOCK7-Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Exploring the general motor ability construct.
Ibrahim, Halijah; Heard, N Paul; Blanksby, Brian
2011-10-01
Malaysian students ages 12 to 15 years (N = 330; 165 girls, 165 boys) took the Australian Institute of Sport Talent Identification Test (AIST) and the Balance and Movement Coordination Test (BMC), developed specifically to identify sport talent in Malaysian adolescents. To investigate evidence for general aptitude ("g") in motor ability, a higher-order factor analysis was applied to the motor skills subtests from the AIST and BMC. First-order principal components analysis indicated that scores for the adolescent boys and girls could be described by similar sets of specific motor abilities. In particular, sets of skills identified as Movement Coordination and Postural Control were found, with Balancing Ability also emerging. For the girls, a factor labeled Static Balance was indicated. However, for the boys a more general balance ability labeled Kinesthetic Integration was found, along with an ability labeled Explosive Power. These first-order analyses accounted for 45% to 60% of the variance in the scores on the motor skills tests for the boys and girls, respectively. Separate second-order factor analyses for the boys and girls extracted a single higher-order factor, which was consistent with the existence of a motoric "g".
A θ-γ oscillation code for neuronal coordination during motor behavior.
Igarashi, Jun; Isomura, Yoshikazu; Arai, Kensuke; Harukuni, Rie; Fukai, Tomoki
2013-11-20
Sequential motor behavior requires a progression of discrete preparation and execution states. However, the organization of state-dependent activity in neuronal ensembles of motor cortex is poorly understood. Here, we recorded neuronal spiking and local field potential activity from rat motor cortex during reward-motivated movement and observed robust behavioral state-dependent coordination between neuronal spiking, γ oscillations, and θ oscillations. Slow and fast γ oscillations appeared during distinct movement states and entrained neuronal firing. γ oscillations, in turn, were coupled to θ oscillations, and neurons encoding different behavioral states fired at distinct phases of θ in a highly layer-dependent manner. These findings indicate that θ and nested dual band γ oscillations serve as the temporal structure for the selection of a conserved set of functional channels in motor cortical layer activity during animal movement. Furthermore, these results also suggest that cross-frequency couplings between oscillatory neuronal ensemble activities are part of the general coding mechanism in cortex.
Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle
NASA Astrophysics Data System (ADS)
Zhang, Han; Zhao, Wanzhong
2018-02-01
To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.
Rotation of endosomes demonstrates coordination of molecular motors during axonal transport
Kaplan, Luke; Ierokomos, Athena; Chowdary, Praveen; Bryant, Zev; Cui, Bianxiao
2018-01-01
Long-distance axonal transport is critical to the maintenance and function of neurons. Robust transport is ensured by the coordinated activities of multiple molecular motors acting in a team. Conventional live-cell imaging techniques used in axonal transport studies detect this activity by visualizing the translational dynamics of a cargo. However, translational measurements are insensitive to torques induced by motor activities. By using gold nanorods and multichannel polarization microscopy, we simultaneously measure the rotational and translational dynamics for thousands of axonally transported endosomes. We find that the rotational dynamics of an endosome provide complementary information regarding molecular motor activities to the conventionally tracked translational dynamics. Rotational dynamics correlate with translational dynamics, particularly in cases of increased rotation after switches between kinesin- and dynein-mediated transport. Furthermore, unambiguous measurement of nanorod angle shows that endosome-contained nanorods align with the orientation of microtubules, suggesting a direct mechanical linkage between the ligand-receptor complex and the microtubule motors. PMID:29536037
Direct interaction of microtubule- and actin-based transport motors
NASA Technical Reports Server (NTRS)
Huang, J. D.; Brady, S. T.; Richards, B. W.; Stenolen, D.; Resau, J. H.; Copeland, N. G.; Jenkins, N. A.
1999-01-01
The microtubule network is thought to be used for long-range transport of cellular components in animal cells whereas the actin network is proposed to be used for short-range transport, although the mechanism(s) by which this transport is coordinated is poorly understood. For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport. In neurons, microtubule-based kinesin motor proteins are used for long-range vesicular transport but microtubules do not extend into the neuronal termini, where actin filaments form the cytoskeletal framework, and kinesins are rapidly degraded upon their arrival in neuronal termini, indicating that vesicles may have to be transferred from microtubules to actin tracks to reach their final destination. Here we show that an actin-based vesicle-transport motor, MyoVA, can interact directly with a microtubule-based transport motor, KhcU. As would be expected if these complexes were functional, they also contain kinesin light chains and the localization of MyoVA and KhcU overlaps in the cell. These results indicate that cellular transport is, in part, coordinated through the direct interaction of different motor molecules.
Limb versus speech motor control: a conceptual review.
Grimme, Britta; Fuchs, Susanne; Perrier, Pascal; Schöner, Gregor
2011-01-01
This paper presents a comparative conceptual review of speech and limb motor control. Speech is essentially cognitive in nature and constrained by the rules of language, while limb movement is often oriented to physical objects. We discuss the issue of intrinsic vs. extrinsic variables underlying the representations of motor goals as well as whether motor goals specify terminal postures or entire trajectories. Timing and coordination is recognized as an area of strong interchange between the two domains. Although coordination among different motor acts within a sequence and coarticulation are central to speech motor control, they have received only limited attention in manipulatory movements. The biomechanics of speech production is characterized by the presence of soft tissue, a variable number of degrees of freedom, and the challenges of high rates of production, while limb movements deal more typically with inertial constraints from manipulated objects. This comparative review thus leads us to identify many strands of thinking that are shared across the two domains, but also points us to issues on which approaches in the two domains differ. We conclude that conceptual interchange between the fields of limb and speech motor control has been useful in the past and promises continued benefit.
A neural network-based exploratory learning and motor planning system for co-robots
Galbraith, Byron V.; Guenther, Frank H.; Versace, Massimiliano
2015-01-01
Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or “learning by doing,” an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object. PMID:26257640
A neural network-based exploratory learning and motor planning system for co-robots.
Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano
2015-01-01
Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.
Zhou, Liang; Yang, Dong; Wang, De-Juan; Xie, Ya-Jun; Zhou, Jia-Huan; Zhou, Lin; Huang, Hao; Han, Shuo; Shao, Chong-Yu; Li, Hua-Shun; Zhu, J Julius; Qiu, Meng-Sheng; De Zeeuw, Chris I; Shen, Ying
2015-12-15
Protein Numb, first identified as a cell-fate determinant in Drosophila, has been shown to promote the development of neurites in mammals and to be cotransported with endocytic receptors in clathrin-coated vesicles in vitro. Nevertheless, its function in mature neurons has not yet been elucidated. Here we show that cerebellar Purkinje cells (PCs) express high levels of Numb during adulthood and that conditional deletion of Numb in PCs is sufficient to impair motor coordination despite maintenance of a normal cerebellar cyto-architecture. Numb proved to be critical for internalization and recycling of metabotropic glutamate 1 receptor (mGlu1) in PCs. A significant decrease of mGlu1 and an inhibition of long-term depression at the parallel fiber-PC synapse were observed in conditional Numb knockout mice. Indeed, the trafficking of mGlu1 induced by agonists was inhibited significantly in these mutants, but the expression of ionotropic glutamate receptor subunits and of mGlu1-associated proteins was not affected by the loss of Numb. Moreover, transient and persistent forms of mGlu1 plasticity were robustly induced in mutant PCs, suggesting that they do not require mGlu1 trafficking. Together, our data demonstrate that Numb is a regulator for constitutive expression and dynamic transport of mGlu1.
Assessment of the Anticonvulsant Potency of Ursolic Acid in Seizure Threshold Tests in Mice.
Nieoczym, Dorota; Socała, Katarzyna; Wlaź, Piotr
2018-05-01
Ursolic acid (UA) is a plant derived compound which is also a component of the standard human diet. It possesses a wide range of pharmacological properties, i.e., antioxidant, anti-inflammatory, antimicrobial and antitumor, which have been used in folk medicine for centuries. Moreover, influence of UA on central nervous system-related processes, i.e., pain, anxiety and depression, was proved in experimental studies. UA also revealed anticonvulsant properties in animal models of epilepsy and seizures. The aim of the present study was to investigate the influence of UA on seizure thresholds in three acute seizure models in mice, i.e., the 6 Hz-induced psychomotor seizure threshold test, the maximal electroshock threshold (MEST) test and the timed intravenous pentylenetetrazole (iv PTZ) infusion test. We also examined its effect on the muscular strength (assessed in the grip strength test) and motor coordination (estimated in the chimney test) in mice. UA at doses of 50 and 100 mg/kg significantly increased the seizure thresholds in the 6 Hz and MEST tests. The studied compound did not influence the seizure thresholds in the iv PTZ test. Moreover, UA did not affect the motor coordination and muscular strength in mice. UA displays only a weak anticonvulsant potential which is dependent on the used seizure model.
Functional Assessment of Corticospinal System Excitability in Karate Athletes.
Moscatelli, Fiorenzo; Messina, Giovanni; Valenzano, Anna; Monda, Vincenzo; Viggiano, Andrea; Messina, Antonietta; Petito, Annamaria; Triggiani, Antonio Ivano; Ciliberti, Michela Anna Pia; Monda, Marcellino; Capranica, Laura; Cibelli, Giuseppe
2016-01-01
To investigate the involvement of the primary motor cortex (M1) in the coordination performance of karate athletes through transcranial magnetic stimulation (TMS). Thirteen right-handed male karate athletes (25.0±5.0 years) and 13 matched non-athlete controls (26.7±6.2 years) were enrolled. A single-pulse TMS was applied using a figure-eight coil stimulator. Resting motor threshold (rMT) was determined. Surface electromyography was recorded from the first dorsal interosseous muscle. Motor evoked potential (MEP) latencies and amplitudes at rMT, 110%, and 120% of rMT were considered. Functional assessment of the coordination performance was assessed by in-phase (IP) and anti-phase (AP) homolateral hand and foot coordination tasks performed at 80, 120, and 180 bpm. Compared to controls, athletes showed lower rMT (p<0.01), shorter MEP latency (p<0.01) and higher MEP amplitude (p<0.01), with a significant correlation (r = 0.50, p<0.01) between rMT and MEP latency. Coordination decreased with increasing velocity, and better IP performances emerged compared to AP ones (p<0.001). In general, a high correlation between rMT and coordination tasks was found for both IP and AP conditions. With respect to controls, karate athletes present a higher corticospinal excitability indicating the presence of an activity-dependent alteration in the balance and interactions between inhibitory and facilitatory circuits determining the final output from the M1. Furthermore, the high correlation between corticospinal excitability and coordination performance could support sport-specific neurophysiological arrangements.
Censolo, Roberto; Craighero, Laila; Ponti, Giovanni; Rizzo, Leonzio; Canto, Rosario; Fadiga, Luciano
2011-01-01
Background A vast body of social and cognitive psychology studies in humans reports evidence that external rewards, typically monetary ones, undermine intrinsic motivation. These findings challenge the standard selfish-rationality assumption at the core of economic reasoning. In the present work we aimed at investigating whether the different modulation of a given monetary reward automatically and unconsciously affects effort and performance of participants involved in a game devoid of visual and verbal interaction and without any perspective-taking activity. Methodology/Principal Findings Twelve pairs of participants were submitted to a simple motor coordination game while recording the electromyographic activity of First Dorsal Interosseus (FDI), the muscle mainly involved in the task. EMG data show a clear effect of alternative rewards strategies on subjects' motor behavior. Moreover, participants' stock of relevant past social experiences, measured by a specifically designed questionnaire, was significantly correlated with EMG activity, showing that only low social capital subjects responded to monetary incentives consistently with a standard rationality prediction. Conclusions/Significance Our findings show that the effect of extrinsic motivations on performance may arise outside social contexts involving complex cognitive processes due to conscious perspective-taking activity. More importantly, the peculiar performance of low social capital individuals, in agreement with standard economic reasoning, adds to the knowledge of the circumstances that makes the crowding out/in of intrinsic motivation likely to occur. This may help in improving the prediction and accuracy of economic models and reconcile this puzzling effect of external incentives with economic theory. PMID:21464986
Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults
Niemann, Claudia; Godde, Ben; Voelcker-Rehage, Claudia
2014-01-01
Cardiovascular activity has been shown to be positively associated with gray and white matter volume of, amongst others, frontal and temporal brain regions in older adults. This is particularly true for the hippocampus, a brain structure that plays an important role in learning and memory, and whose decline has been related to the development of Alzheimer’s disease. In the current study, we were interested in whether not only cardiovascular activity but also other types of physical activity, i.e., coordination training, were also positively associated with the volume of the hippocampus in older adults. For this purpose we first collected cross-sectional data on “metabolic fitness” (cardiovascular fitness and muscular strength) and “motor fitness” (e.g., balance, movement speed, fine coordination). Second, we performed a 12-month randomized controlled trial. Results revealed that motor fitness but not metabolic fitness was associated with hippocampal volume. After the 12-month intervention period, both, cardiovascular and coordination training led to increases in hippocampal volume. Our findings suggest that a high motor fitness level as well as different types of physical activity were beneficial to diminish age-related hippocampal volume shrinkage or even increase hippocampal volume. PMID:25165446
Molina, Juan L; González Alemán, Gabriela; Florenzano, Néstor; Padilla, Eduardo; Calvó, María; Guerrero, Gonzalo; Kamis, Danielle; Stratton, Lee; Toranzo, Juan; Molina Rangeon, Beatriz; Hernández Cuervo, Helena; Bourdieu, Mercedes; Sedó, Manuel; Strejilevich, Sergio; Cloninger, Claude Robert; Escobar, Javier I; de Erausquin, Gabriel A
2016-11-01
Neurocognitive deficits are among the most debilitating and pervasive symptoms of schizophrenia, and are present also in unaffected first-degree relatives. Also, multiple reports reveal parkisonian motor deficits in untreated subjects with schizophrenia and in first-degree relatives of affected subjects. Yet, the relation between motor and cognitive impairment and its value as a classifier of endophenotypes has not been studied. To test the efficacy of midbrain hyperechogenicity (MHE) and parkinsonian motor impairment (PKM) as predictors of neurocognitive impairment in subjects with or at risk for schizophrenia, that could be used to segregate them from first-degree relatives and healthy controls. Seventy-six subjects with chronic schizophrenia never exposed to antipsychotic medication, 106 unaffected first-degree relatives, and 62 healthy controls were blindly assessed for cognitive and motor function, and transcranial ultrasound. Executive function, fluid intelligence, motor planning, and hand coordination showed group differences. PKM and MHE were significantly higher in untreated schizophrenia and unaffected relatives. Unaffected relatives showed milder impairment, but were different from controls. PKM and MHE predict cognitive impairment in neuroleptic-naive patients with schizophrenia and their unaffected first-degree relatives and may be used to segregate them from first-degree relatives and healthy controls. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Evidence for multisensory spatial-to-motor transformations in aiming movements of children.
King, Bradley R; Kagerer, Florian A; Contreras-Vidal, Jose L; Clark, Jane E
2009-01-01
The extant developmental literature investigating age-related differences in the execution of aiming movements has predominantly focused on visuomotor coordination, despite the fact that additional sensory modalities, such as audition and somatosensation, may contribute to motor planning, execution, and learning. The current study investigated the execution of aiming movements toward both visual and acoustic stimuli. In addition, we examined the interaction between visuomotor and auditory-motor coordination as 5- to 10-yr-old participants executed aiming movements to visual and acoustic stimuli before and after exposure to a visuomotor rotation. Children in all age groups demonstrated significant improvement in performance under the visuomotor perturbation, as indicated by decreased initial directional and root mean squared errors. Moreover, children in all age groups demonstrated significant visual aftereffects during the postexposure phase, suggesting a successful update of their spatial-to-motor transformations. Interestingly, these updated spatial-to-motor transformations also influenced auditory-motor performance, as indicated by distorted movement trajectories during the auditory postexposure phase. The distorted trajectories were present during auditory postexposure even though the auditory-motor relationship was not manipulated. Results suggest that by the age of 5 yr, children have developed a multisensory spatial-to-motor transformation for the execution of aiming movements toward both visual and acoustic targets.
Weinstein, Aviv; Brickner, Orit; Lerman, Hedva; Greemland, Mazal; Bloch, Miki; Lester, Hava; Chisin, Roland; Mechoulam, Raphael; Bar-Hamburger, Rachel; Freedman, Nanette; Even-Sapir, Einat
2008-01-01
Twelve regular users of marijuana underwent two positron emission tomography (PET) scans using [18F] Fluorodeoxyglucose (FDG), one while subject to the effects of 17 mg THC, the other without THC. In both sessions, a virtual reality maze task was performed during the FDG uptake period. When subject to the effects of 17 mg THC, regular marijuana smokers hit the walls more often on the virtual maze task than without THC. Compared to results without THC, 17 mg THC increased brain metabolism during task performance in areas that are associated with motor coordination and attention in the middle and medial frontal cortices and anterior cingulate, and reduced metabolism in areas that are related to visual integration of motion in the occipital lobes. These findings suggest that in regular marijuana users, the immediate effects of marijuana may impact on cognitive-motor skills and brain mechanisms that modulate coordinated movement and driving.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solecki, Dr. David; Trivedi, Dr. Niraj; Govek, Eve-Ellen
2009-01-01
Lamination of cortical regions of the vertebrate brain depends on glial-guided neuronal migration. The conserved polarity protein Par6{alpha} localizes to the centrosome and coordinates forward movement of the centrosome and soma in migrating neurons. The cytoskeletal components that produce this unique form of cell polarity and their relationship to polarity signaling cascades are unknown. We show that F-actin and Myosin II motors are enriched in the neuronal leading process and that Myosin II activity is necessary for leading process actin dynamics. Inhibition of Myosin II decreased the speed of centrosome and somal movement, whereas Myosin II activation increased coordinated movement.more » Ectopic expression or silencing of Par6{alpha} inhibited Myosin II motors by decreasing Myosin light-chain phosphorylation. These findings suggest leading-process Myosin II may function to 'pull' the centrosome and soma forward during glial-guided migration by a mechanism involving the conserved polarity protein Par6{alpha}.« less
Correlation between BMI and motor coordination in children.
Lopes, Vítor P; Stodden, David F; Bianchi, Mafalda M; Maia, Jose A R; Rodrigues, Luis P
2012-01-01
To analyze the association between motor coordination (MC) and body mass index (BMI) across childhood and early adolescence. This study is cross-sectional. Data were collected in 7175 children (boys n=3616, girls n=3559), ages 6-14 years. BMI was calculated from measured height and weight [body mass (kg)/height (m(2))]. Motor coordination was evaluated using Kiphard-Schilling's body coordination test (KTK). Spearman's rank correlation was used to study the association between BMI and MC. A Kruskal-Wallis test was used to analyze the differences in MC between children of normal weight, overweight and obese children. Correlations between MC and BMI were negative and varied between 0.05 and 0.49. The highest negative correlations for both boys and girls was at 11 years of age. There was a general pattern of increasing negative correlations in both genders from 6 to 11 years of age and then a decrease in correlation strengths through 14 years of age. In both boys (χ(2)((2))=324.01; p<0.001) and girls (χ(2)((2))=291.20; p<0.001) there were significant differences in MC between the three groups' weight status. Normal weight children of both sexes demonstrated significantly higher MC scores than overweight. Obese children in both sexes had the lowest MC scores among all three groups. Motor coordination demonstrated an inverse relationship with BMI across childhood and into early adolescence. The strength of the inverse relation increased during childhood, but decreased through early adolescence. Overweight and obese children of both sexes demonstrated significantly lower MC than normal weight children. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Ueda, Yoshitomo; Misumi, Sachiyo; Suzuki, Mina; Ogawa, Shino; Nishigaki, Ruriko; Ishida, Akimasa; Jung, Cha-Gyun; Hida, Hideki
2018-01-01
We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.
Goldenberg, Georg
2013-09-01
The term apraxia refers to 'higher level' disorders of motor control. Apraxia differs from other motor symptoms of unilateral brain damage by the bilaterality of symptoms following unilateral lesions. Lesions causing apraxia are located predominantly in the left hemisphere and apraxia is frequently, although not invariably, associated with aphasia. Examination for apraxia traditionally assesses imitation of gestures, performance of communicative gestures on command, and use of tools and objects. It has, however, been amply demonstrated that these three domains can be affected more or less independently from each other. This review discusses current topics of research and controversy from each of these domains concentrating on questions that are relevant for determining the border between motor and cognitive mechanisms underlying apraxic errors. For imitation, the proposal of a direct link from perception to motor execution is confronted with the hypothesis that body part coding is interpolated between perception and motor replication of gestures. Discussion of communicative gestures concentrates on pantomime of tool use and argues that pantomime is not equivalent to reproduction of the motor programs of actual tool use but that pantomimes are created by selection and combination of distinctive features of the object and its use. For tool use the boundary between visuo-motor coordination and knowledge about tool use is addressed by discussion of the selection of grips for use or for transport of tools. WIREs Cogn Sci 2013, 4:453-462. doi: 10.1002/wcs.1241 For further resources related to this article, please visit the WIREs website. The author has declared no conflicts of interest for this article. © 2013 John Wiley & Sons, Ltd.
Rosenblum, Sara; Waissman, Pola; Diamond, Gary W
2017-06-01
Motor coordination deficits that characterize children with Developmental Coordination Disorder (DCD) affect their quality of participation. The aim of the current study was to identify play characteristics of young children with DCD, compared to those of children with typical development in three dimensions: activity and participation, environmental factors and children's impairments. Sixty-four children, aged four to six years, participated. Thirty were diagnosed as having DCD; the remaining 34 children were age, gender and socioeconomic level matched controls with typical development. The children were evaluated by the M-ABC. In addition, their parents completed a demographic questionnaire, the Children's Activity Scale for Parents (CHAS-P), the Children's Leisure Assessment Scale for preschoolers (CLASS-Pre), and My Child's Play Questionnaire (MCP). Children with DCD performed significantly poorer in each of the four play activity and participation domains: variety, frequency, sociability, and preference (CLASS-Pre). Furthermore, their environmental characteristics were significantly different (MCP). They displayed significantly inferior performance (impairments) in interpersonal interaction and executive functioning during play, in comparison to controls (MCP). Moreover, the children's motor and executive control as reflected in their daily function as well as their activities of daily living (ADL) performance level, contributed to the prediction of their global play participation. The results indicate that the use of both the CLASS-Pre and the MCP questionnaires enables the identification of unique play characteristics of pre-school children with DCD via parents' reports. A better insight into these characteristics may contribute to theoretical knowledge and clinical practice to improve the children's daily participation. Copyright © 2016 Elsevier B.V. All rights reserved.
Geometric Form Drawing: A Perceptual-Motor Approach to Preventive Remediation (The Steiner Approach)
ERIC Educational Resources Information Center
Ogletree, Earl J.
1975-01-01
Provided is a rationale for geometric form drawing developed by Rudolf Steiner as a tool to develop motor coordination, perceptual skills, and cognition for mentally retarded and perceptually handicapped children. (Author/CL)
Gabbard, Carl; Bobbio, Tatiana
2011-03-01
Several research studies indicate that children with developmental coordination disorder (DCD) show delays with an array of perceptual-motor skills. One of the explanations, based on limited research, is that these children have problems generating and/or monitoring a mental (action) representation of intended actions, termed the "internal modeling deficit" (IMD) hypothesis. According to the hypothesis, children with DCD have significant limitations in their ability to accurately generate and utilize internal models of motor planning and control. The focus of this review is on one of the methods used to examine action representation-motor imagery, which theorists argue provides a window into the process of action representation (e.g., Jeannerod, 2001 . Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage, 14, 103-109.). Included in the review are performance studies of typically developing and DCD children, and possible brain structures involved.
The bipolar assembly domain of the mitotic motor kinesin-5
Acar, Seyda; Carlson, David B.; Budamagunta, Madhu S.; Yarov-Yarovoy, Vladimir; Correia, John J.; Niñonuevo, Milady R.; Jia, Weitao; Tao, Li; Leary, Julie A.; Voss, John C.; Evans, James E.; Scholey, Jonathan M.
2013-01-01
An outstanding unresolved question is how does the mitotic spindle utilize microtubules and mitotic motors to coordinate accurate chromosome segregation during mitosis? This process depends upon the mitotic motor, kinesin-5, whose unique bipolar architecture, with pairs of motor domains lying at opposite ends of a central rod, allows it to crosslink microtubules within the mitotic spindle and to coordinate their relative sliding during spindle assembly, maintenance and elongation. The structural basis of kinesin-5’s bipolarity is, however, unknown, as protein asymmetry has so far precluded its crystallization. Here we use electron microscopy of single molecules of kinesin-5 and its subfragments, combined with hydrodynamic analysis plus mass spectrometry, circular dichroism and site-directed spin label electron paramagnetic resonance spectroscopy, to show how a staggered antiparallel coiled-coil ‘BASS’ (bipolar assembly) domain directs the assembly of four kinesin-5 polypeptides into bipolar minifilaments. PMID:23299893
Motor plan differs for young and older adults during similar movements.
Casamento-Moran, Agostina; Chen, Yen-Ting; Lodha, Neha; Yacoubi, Basma; Christou, Evangelos A
2017-04-01
Older adults exhibit altered activation of the agonist and antagonist muscles during goal-directed movements compared with young adults. However, it remains unclear whether the differential activation of the antagonistic muscles in older adults results from an impaired motor plan or an altered ability of the muscle to contract. The purpose of this study, therefore, was to determine whether the motor plan differs for young and older adults. Ten young (26.1 ± 4.3 yr, 4 women) and 16 older adults (71.9 ± 6.9 yr, 9 women) participated in the study. Participants performed 100 trials of fast goal directed movements with ankle dorsiflexion while we recorded the electromyographic activity of the primary agonist (tibialis anterior; TA) and antagonist (soleus; SOL) muscles. From those 100 trials we selected 5 trials in each of 3 movement end-point categories (fast, accurate, and slow). We investigated age-associated differences in the motor plan by quantifying the individual activity and coordination of the agonist and antagonist muscles. During similar movement end points, older adults exhibited similar activation of the agonist (TA) and antagonist (SOL) muscles compared with young adults. In addition, the coordination of the agonist and antagonist muscles (TA and SOL) was different between the two age groups. Specifically, older adults exhibited lower TA-SOL overlap ( F 1,23 = 41.2, P < 0.001) and greater TA-SOL peak EMG delay ( F 1,25 = 35.5, P < 0.001). This finding suggests that although subjects in both age groups displayed similar movement end points, they exhibited a different motor plan, as demonstrated by altered coordination between the agonist and antagonist muscles. NEW & NOTEWORTHY We aimed to determine whether the altered activation of muscles in older adults compared with young adults during fast goal-directed movements is related to an altered motor plan. For matched movements, there were differences in the coordination of antagonistic muscles but no differences in the individual activation of muscles. We provide novel evidence that the differential activation of muscles in older adults is related to an altered motor plan. Copyright © 2017 the American Physiological Society.
The Physiologic Development of Speech Motor Control: Lip and Jaw Coordination
Green, Jordan R.; Moore, Christopher A.; Higashikawa, Masahiko; Steeve, Roger W.
2010-01-01
This investigation was designed to describe the development of lip and jaw coordination during speech and to evaluate the potential influence of speech motor development on phonologic development. Productions of syllables containing bilabial consonants were observed from speakers in four age groups (i.e., 1-year-olds, 2-year-olds, 6-year-olds, and young adults). A video-based movement tracking system was used to transduce movement of the upper lip, lower lip, and jaw. The coordinative organization of these articulatory gestures was shown to change dramatically during the first several years of life and to continue to undergo refinement past age 6. The present results are consistent with three primary phases in the development of lip and jaw coordination for speech: integration, differentiation, and refinement. Each of these developmental processes entails the existence of distinct coordinative constraints on early articulatory movement. It is suggested that these constraints will have predictable consequences for the sequence of phonologic development. PMID:10668666
Duiser, Ivonne H F; van der Kamp, John; Ledebt, Annick; Savelsbergh, Geert J P
2014-04-01
We examined whether the three subtests of the Beery Buktenica developmental test of visuomotor integration predicted quality of handwriting across and within groups of boys and girls classified as proficient, at risk or non-proficient writers according to the Concise Assessment Scale for Children's Handwriting. The Beery Buktenica developmental test of visuomotor integration and the Concise Assessment Scale for Children's Handwriting tests were administered to 240 grade 2 children. Proficient writers scored better on the visuomotor integration subtest than non-proficient writers, while proficient and at risk writers scored better than non-proficient writers on the motor coordination subtest. No differences were found on the visual perception subtest. Girls were more often classified as proficient writers than boys, and they scored better on the motor coordination subtest. Across groups, regression indicated that gender and both the visuomotor integration subtest and the motor coordination subtest were significant predictors for the quality of handwriting (i.e., accounted for 17% of the variance). After one year of writing tuition, the visuomotor integration subtest (and to a lesser extent the motor coordination subtest) but not the visual perception subtest significant relates to quality of children's handwriting as measured with the Concise Assessment Scale for Children's Handwriting. However, the relatively little variance explained also points to other abilities and/or task constraints that underlie quality of handwriting. © 2013 Occupational Therapy Australia.
Jana, Biman; Onuchic, José N
2016-08-01
A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities.
Jana, Biman; Onuchic, José N.
2016-01-01
A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. PMID:27494025
ERIC Educational Resources Information Center
Danion, Frederic; Jirsa, Viktor K.
2010-01-01
Predicting the consequences of actions is fundamental for skilled motor behavior. We investigated whether motor prediction is influenced by the fact that some movements are easier to perform and stabilize than others. Twelve subjects performed a bimanual rhythmical task either symmetrically or asymmetrically (the latter being more difficult and…
Trevarthen, C
2000-01-01
Colwyn Trevarthen, working on autism, discussed the importance of time, rhythm and temporal processing in brain function. The brains of new born infants show highly coherent and coordinated patterns of activity over time, and their rhythms are remarkably similar to those of adults. Since the cortex has not yet developed, this coordination must be subcortical in origin. The likely source is the emotional motor system. He noted that the cerebellum might regulate the intricate timing of the development and expression of emotional communication. He also pointed out that emotional and motivational factors have often been seriously neglected in psychology (largely owing to a misplaced focus on 'cognition' as some isolated entity) and emphasized the potential importance of empathetic support and music therapy in helping autistic children. Copyright 2000 Harcourt Publishers Ltd.
Understanding the mechanisms of cognitive impairments in developmental coordination disorder.
Deng, Shining; Li, Wei-Guang; Ding, Jing; Wu, Jinlin; Zhang, Yuanyuan; Li, Fei; Shen, Xiaoming
2014-01-01
Developmental coordination disorder (DCD), a neurodevelopmental disability in which a child's motor coordination difficulties significantly interfere with activities of daily life or academic achievement, together with additional symptoms of diseases with childhood sensorimotor impairments, increases the risk of many cognitive problems. This exhibits the dynamic interplay between sensorimotor and cognition systems. However, the brain structures and pathways involved have remained unknown over the past decades. Here, we review developments in recent years that elucidate the neural mechanisms involved in the sensorimotor-cognitive difficulties. First, we briefly address the clinical and epidemiological discoveries in DCD as well as its comorbidities. Subsequently, we group the growing evidence including our findings that support the notion that sensorimotor manipulation indeed affects the cognition development at systematic, circuitry, cellular, and molecular levels. This corresponds to changes in diverse brain regions, synaptic plasticity, and neurotransmitter and receptor activity during development under these effects. Finally, we address the treatment potentials of task-oriented sensorimotor enhancement, as a new therapeutic strategy for cognitive rehabilitation, based on our current understanding of the neurobiology of cognitive-sensorimotor interaction.
Functional aging impairs the role of feedback in motor learning.
Liu, Yu; Cao, Chunmei; Yan, Jin H
2013-10-01
Optimal motor skill acquisition frequently requires augmented feedback or knowledge of results (KR). However, the effect of functional declines on the benefits of KR remains to be determined. The objective of this research was to examine how cognitive and motor deficits of older adults influence the use of KR for motor skill learning. A total of 57 older adults (mean 73.1 years; SD 4.2) received both cognitive and eye-hand coordination assessments, whereas 55 young controls (mean 25.8 years; SD 3.8) took only the eye-hand coordination test. All young and older participants learned a time-constrained arm movement through KR in three pre-KR and post-KR intervals. In the subsequent no-KR skill retests, absolute and variable time errors were not significantly reduced for the older learners who had KR during skill practice, especially for those with cognitive and motor dysfunctions. The finding suggests that KR results in no measureable improvement for older adults with cognitive and motor functional deficiencies. More importantly, for the older adults, longer post-KR intervals showed greater detrimental effects on feedback-based motor learning than shorter pauses after KR delivery. The findings support the hypothesis about the effects of cognitive and motor deficits on KR in motor skill learning of older adults. The dynamics of cognitive and motor aging, external feedback and internal control mechanisms collectively explain the deterioration in the sensory-motor learning of older adults. The theoretical implications and practical relevance of functional aging for motor skill learning are discussed. © 2013 Japan Geriatrics Society.
Cerebellar Modulation of Cortically Evoked Complex Movements in Rats.
Viaro, Riccardo; Bonazzi, Laura; Maggiolini, Emma; Franchi, Gianfranco
2017-07-01
Intracortical microstimulation (ICMS) delivered to the motor cortex (M1) via long- or short-train duration (long- or short-duration ICMS) can evoke coordinated complex movements or muscle twitches, respectively. The role of subcortical cerebellar input in M1 output, in terms of long- and short-duration ICMS-evoked movement and motor skill performance, was evaluated in rats with bilateral lesion of the deep cerebellar nuclei. After the lesion, distal forelimb movements were seldom observed, and almost 30% of proximal forelimb movements failed to match criteria defining the movement class observed under control conditions. The classifiable movements could be evoked in different cortical regions with respect to control and many kinematic variables were strongly affected. Furthermore, movement endpoints within the rat's workspace shrunk closer to the body, while performance in the reaching/grasping task worsened. Surprisingly, neither the threshold current values for evoking movements nor the overall size of forelimb movement representation changed with respect to controls in either long- or short-duration ICMS. We therefore conclude that cerebellar input via the motor thalamus is crucial for expressing the basic functional features of the motor cortex. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
[Detection and specific studies in procedural learning difficulties].
Magallón, S; Narbona, J
2009-02-27
The main disabilities in non-verbal learning disorder (NLD) are: the acquisition and automating of motor and cognitive processes, visual spatial integration, motor coordination, executive functions, difficulty in comprehension of the context, and social skills. AIMS. To review the research to date on NLD, and to discuss whether the term 'procedural learning disorder' (PLD) would be more suitable to refer to NLD. A considerable amount of research suggests a neurological correlate of PLD with dysfunctions in the 'posterior' attention system, or the right hemisphere, or the cerebellum. Even if it is said to be difficult the delimitation between NLD and other disorders or syndromes like Asperger syndrome, certain characteristics contribute to differential diagnosis. Intervention strategies for the PLD must lead to the development of motor automatisms and problem solving strategies, including social skills. The basic dysfunction in NLD affects to implicit learning of routines, automating of motor skills and cognitive strategies that spare conscious resources in daily behaviours. These limitations are partly due to a dysfunction in non-declarative procedural memory. Various dimensions of language are also involved: context comprehension, processing of the spatial and emotional indicators of verbal language, language inferences, prosody, organization of the inner speech, use of language and non-verbal communication; this is why the diagnostic label 'PLD' would be more appropriate, avoiding the euphemistic adjective 'non-verbal'.
eCDL integration with commercial skills test information system (CSTIMS)
DOT National Transportation Integrated Search
2012-11-30
In coordination with the West Virginia Division of Motor Vehicles (WVDMV), the Rahall Transportation Institute (RTI) integrated the eCDL program with the CSTIMS, a software program owned by the American Motor Vehicles Administrators Association (AAMV...
Bernardi, Marialivia; Leonard, Hayley C; Hill, Elisabeth L; Henry, Lucy A
2016-01-01
A previous study reported that children with poor motor skills, classified as having motor difficulties (MD) or Developmental Coordination Disorder (DCD), produced more errors in a motor response inhibition task compared to typically developing (TD) children but did not differ in verbal inhibition errors. The present study investigated whether these groups differed in the length of time they took to respond in order to achieve these levels of accuracy, and whether any differences in response speed could be explained by generally slow information processing in children with poor motor skills. Timing data from the Verbal Inhibition Motor Inhibition test were analyzed to identify differences in performance between the groups on verbal and motor inhibition, as well as on processing speed measures from standardized batteries. Although children with MD and DCD produced more errors in the motor inhibition task than TD children, the current analyses found that they did not take longer to complete the task. Children with DCD were slower at inhibiting verbal responses than TD children, while the MD group seemed to perform at an intermediate level between the other groups in terms of verbal inhibition speed. Slow processing speed did not account for these group differences. Results extended previous research into response inhibition in children with poor motor skills by explicitly comparing motor and verbal responses, and suggesting that slow performance, even when accurate, may be attributable to an inefficient way of inhibiting responses, rather than slow information processing speed per se.
Egger, Fabienne; Benzing, Valentin; Jäger, Katja; Conzelmann, Achim; Roebers, Claudia M.; Pesce, Caterina
2017-01-01
Even though positive relations between children’s motor ability and their academic achievement are frequently reported, the underlying mechanisms are still unclear. Executive function has indeed been proposed, but hardly tested as a potential mediator. The aim of the present study was therefore to examine the mediating role of executive function in the relationship between motor ability and academic achievement, also investigating the individual contribution of specific motor abilities to the hypothesized mediated linkage to academic achievement. At intervals of ten weeks, 236 children aged between 10 and 12 years were tested in terms of their motor ability (t1: cardiovascular endurance, muscular strength, motor coordination), core executive functions (t2: updating, inhibition, shifting), and academic achievement (t3: mathematics, reading, spelling). Structural equation modelling revealed executive function to be a mediator in the relation between motor ability and academic achievement, represented by a significant indirect effect. In separate analyses, each of the three motor abilities were positively related to children’s academic achievement. However, only in the case of children’s motor coordination, the mediation by executive function accounted for a significance percentage of variance of academic achievement data. The results provide evidence in support of models that conceive executive function as a mechanism explaining the relationship that links children’s physical activity-related outcomes to academic achievement and strengthen the advocacy for quality physical activity not merely focused on health-related physical fitness outcomes, but also on motor skill development and learning. PMID:28817625
Functional Assessment of Corticospinal System Excitability in Karate Athletes
Moscatelli, Fiorenzo; Messina, Giovanni; Valenzano, Anna; Monda, Vincenzo; Viggiano, Andrea; Messina, Antonietta; Petito, Annamaria; Triggiani, Antonio Ivano; Ciliberti, Michela Anna Pia; Monda, Marcellino; Capranica, Laura; Cibelli, Giuseppe
2016-01-01
Objectives To investigate the involvement of the primary motor cortex (M1) in the coordination performance of karate athletes through transcranial magnetic stimulation (TMS). Methods Thirteen right-handed male karate athletes (25.0±5.0 years) and 13 matched non-athlete controls (26.7±6.2 years) were enrolled. A single-pulse TMS was applied using a figure-eight coil stimulator. Resting motor threshold (rMT) was determined. Surface electromyography was recorded from the first dorsal interosseous muscle. Motor evoked potential (MEP) latencies and amplitudes at rMT, 110%, and 120% of rMT were considered. Functional assessment of the coordination performance was assessed by in-phase (IP) and anti-phase (AP) homolateral hand and foot coordination tasks performed at 80, 120, and 180 bpm. Results Compared to controls, athletes showed lower rMT (p<0.01), shorter MEP latency (p<0.01) and higher MEP amplitude (p<0.01), with a significant correlation (r = 0.50, p<0.01) between rMT and MEP latency. Coordination decreased with increasing velocity, and better IP performances emerged compared to AP ones (p<0.001). In general, a high correlation between rMT and coordination tasks was found for both IP and AP conditions. Conclusion With respect to controls, karate athletes present a higher corticospinal excitability indicating the presence of an activity-dependent alteration in the balance and interactions between inhibitory and facilitatory circuits determining the final output from the M1. Furthermore, the high correlation between corticospinal excitability and coordination performance could support sport-specific neurophysiological arrangements. PMID:27218465
Evidence to Practice Commentary: New Evidence in Developmental Coordination Disorder (DCD)
ERIC Educational Resources Information Center
Novak, Iona
2013-01-01
Developmental coordination disorder (DCD) is frequently under-recognized, but in fact, it occurs in as many as 5-6% of children. DCD is a disorder of motor coordination that is not explained by intellectual disability or any congenital or acquired neurological disorder. Families seek physical and occupational therapy (OT) to ameliorate a child…
Rhythmic Bimanual Coordination Is Impaired in Young Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Isenhower, Robert W.; Marsh, Kerry L.; Richardson, Michael J.; Helt, Molly; Schmidt, R. C.; Fein, Deborah
2012-01-01
Impairments in motor coordination are a common behavioral manifestation of autism spectrum disorder (ASD). We, therefore, used a drumming methodology to examine rhythmic bimanual coordination in children diagnosed with ASD (M = 47.3 months) and age-matched typically developing (TD) children (M = 42.6 months). Both groups were instructed to drum on…
ERIC Educational Resources Information Center
Rihtman, Tanya; Wilson, Brenda N.; Parush, Shula
2011-01-01
Purpose: The early identification of motor coordination challenges before school age may enable close monitoring of a child's development and perhaps ameliorate some of the social, psychological and behavioral sequela that often accompany unrecognized Developmental Coordination Disorder (DCD). The purpose of this study was to develop and assess…
ERIC Educational Resources Information Center
Li, Yao-Chuen; Wu, Sheng K.; Cairney, John; Hsieh, Chiu-Yun
2011-01-01
Health-related physical fitness is an important risk factor of cardiovascular disease. While previous studies have identified children with developmental coordination disorder (DCD) to be less physically fit than typically developing (TD) peers, there is limited longitudinal research in this area. This study was undertaken to evaluate concomitant…
ERIC Educational Resources Information Center
Abu-Dahab, Sana M. N.; Skidmore, Elizabeth R.; Holm, Margo B.; Rogers, Joan C.; Minshew, Nancy J.
2013-01-01
We examined motor and tactile-perceptual skills in individuals with high-functioning autism (IHFA) and matched typically developing individuals (TDI) ages 5-21 years. Grip strength, motor speed and coordination were impaired in IHFA compared to matched TDI, and the differences between groups varied with age. Although tactile-perceptual skills of…
Motor and cognitive growth following a Football Training Program.
Alesi, Marianna; Bianco, Antonino; Padulo, Johnny; Luppina, Giorgio; Petrucci, Marco; Paoli, Antonio; Palma, Antonio; Pepi, Annamaria
2015-01-01
Motor and cognitive growth in children may be influenced by football practice. Therefore the aim of this study was to assess whether a Football Training Program taken over 6 months would improve motor and cognitive performances in children. Motor skills concerned coordinative skills, running, and explosive legs strength. Cognitive abilities involved visual discrimination times and visual selective attention times. Forty-six children with chronological age of ∼9.10 years, were divided into two groups: Group 1 (n = 24) attended a Football Exercise Program and Group 2 (n = 22) was composed of sedentary children. Their abilities were measured by a battery of tests including motor and cognitive tasks. Football Exercise Program resulted in improved running, coordination, and explosive leg strength performances as well as shorter visual discrimination times in children regularly attending football courses compared with their sedentary peers. On the whole these results support the thesis that the improvement of motor and cognitive abilities is related not only to general physical activity but also to specific ability related to the ball. Football Exercise Programs is assumed to be a "natural and enjoyable tool" to enhance cognitive resources as well as promoting and encouraging the participation in sport activities from early development.
Motor and cognitive growth following a Football Training Program
Alesi, Marianna; Bianco, Antonino; Padulo, Johnny; Luppina, Giorgio; Petrucci, Marco; Paoli, Antonio; Palma, Antonio; Pepi, Annamaria
2015-01-01
Motor and cognitive growth in children may be influenced by football practice. Therefore the aim of this study was to assess whether a Football Training Program taken over 6 months would improve motor and cognitive performances in children. Motor skills concerned coordinative skills, running, and explosive legs strength. Cognitive abilities involved visual discrimination times and visual selective attention times. Forty-six children with chronological age of ∼9.10 years, were divided into two groups: Group 1 (n = 24) attended a Football Exercise Program and Group 2 (n = 22) was composed of sedentary children. Their abilities were measured by a battery of tests including motor and cognitive tasks. Football Exercise Program resulted in improved running, coordination, and explosive leg strength performances as well as shorter visual discrimination times in children regularly attending football courses compared with their sedentary peers. On the whole these results support the thesis that the improvement of motor and cognitive abilities is related not only to general physical activity but also to specific ability related to the ball. Football Exercise Programs is assumed to be a “natural and enjoyable tool” to enhance cognitive resources as well as promoting and encouraging the participation in sport activities from early development. PMID:26579014
Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice
Tung, Victoria W. K.; Burton, Thomas J.; Quail, Stephanie L.; Mathews, Miranda A.; Camp, Aaron J.
2016-01-01
Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5–6, 8–9 and 27–28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2–3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27–28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27–28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27–28 months. Conclusion: this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed. PMID:26869921
Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice.
Tung, Victoria W K; Burton, Thomas J; Quail, Stephanie L; Mathews, Miranda A; Camp, Aaron J
2016-01-01
Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5-6, 8-9 and 27-28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2-3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27-28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27-28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27-28 months. this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed.
Acquisition, representation, and transfer of models of visuo-motor error
Zhang, Hang; Kulsa, Mila Kirstie C.; Maloney, Laurence T.
2015-01-01
We examined how human subjects acquire and represent models of visuo-motor error and how they transfer information about visuo-motor error from one task to a closely related one. The experiment consisted of three phases. In the training phase, subjects threw beanbags underhand towards targets displayed on a wall-mounted touch screen. The distribution of their endpoints was a vertically elongated bivariate Gaussian. In the subsequent choice phase, subjects repeatedly chose which of two targets varying in shape and size they would prefer to attempt to hit. Their choices allowed us to investigate their internal models of visuo-motor error distribution, including the coordinate system in which they represented visuo-motor error. In the transfer phase, subjects repeated the choice phase from a different vantage point, the same distance from the screen but with the throwing direction shifted 45°. From the new vantage point, visuo-motor error was effectively expanded horizontally by . We found that subjects incorrectly assumed an isotropic distribution in the choice phase but that the anisotropy they assumed in the transfer phase agreed with an objectively correct transfer. We also found that the coordinate system used in coding two-dimensional visuo-motor error in the choice phase was effectively one-dimensional. PMID:26057549
Sensorimotor Oscillations Prior to Speech Onset Reflect Altered Motor Networks in Adults Who Stutter
Mersov, Anna-Maria; Jobst, Cecilia; Cheyne, Douglas O.; De Nil, Luc
2016-01-01
Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG). Twelve AWS and 12 age-matched controls were presented with 220 words, each word embedded in a carrier phrase. Controls were presented with the same word list as their matched AWS participant. Neural oscillatory activity was localized using minimum-variance beamforming during two time periods of interest: speech preparation (prior to speech onset) and speech execution (following speech onset). Compared to controls, AWS showed stronger beta (15–25 Hz) suppression in the speech preparation stage, followed by stronger beta synchronization in the bilateral mouth motor cortex. AWS also recruited the right mouth motor cortex significantly earlier in the speech preparation stage compared to controls. Exaggerated motor preparation is discussed in the context of reduced coordination in the speech-motor network of AWS. It is further proposed that exaggerated beta synchronization may reflect a more strongly inhibited motor system that requires a stronger beta suppression to disengage prior to speech initiation. These novel findings highlight critical differences in the speech-motor network of AWS that occur prior to speech onset and emphasize the need to investigate further the speech-motor assembly in the stuttering population. PMID:27642279
Development of early handwriting: Visual-motor control during letter copying.
Maldarelli, Jennifer E; Kahrs, Björn A; Hunt, Sarah C; Lockman, Jeffrey J
2015-07-01
Despite the importance of handwriting for school readiness and early academic progress, prior research on the development of handwriting has focused primarily on the product rather than the process by which young children write letters. In contrast, in the present work, early handwriting is viewed as involving a suite of perceptual, motor, and cognitive abilities, which must work in unison if children are to write letters efficiently. To study such coordination, head-mounted eye-tracking technology was used to investigate the process of visual-motor coordination while kindergarten children (N = 23) and adults (N = 11) copied individual letters and strings of letters that differed in terms of their phonemic properties. Results indicated that kindergarten children were able to copy single letters efficiently, as did adults. When the cognitive demands of the task increased and children were presented with strings of letters, however, their ability to copy letters efficiently was compromised: Children frequently interrupted their writing midletter, whereas they did not do so on single letter trials. Yet, with increasing age, children became more efficient in copying letter strings, in part by using vision more prospectively when writing. Taken together, the results illustrate how the coordination of perceptual, motor, and cognitive processes contributes to advances in the development of letter writing skill. (c) 2015 APA, all rights reserved).
Development of Early Handwriting: Visual-Motor Control During Letter Copying
Maldarelli, Jennifer E.; Kahrs, Björn A.; Hunt, Sarah C.; Lockman, Jeffrey J.
2015-01-01
Despite the importance of handwriting for school readiness and early academic progress, prior research on the development of handwriting has focused primarily on the product rather than the process by which young children write letters. In contrast, in the present work, early handwriting is viewed as involving a suite of perceptual, motor and cognitive abilities, which must work in unison if children are to write letters efficiently. To study such coordination, head-mounted eye-tracking technology was used to investigate the process of visual-motor coordination while kindergarten children (N=23) and adults (N=11) copied individual letters and strings of letters that differed in terms of their phonemic properties. Results indicated that kindergarten children were able to copy single letters efficiently, as did adults. When the cognitive demands of the task increased and children were presented with strings of letters, however, their ability to copy letters efficiently was compromised: children frequently interrupted their writing mid-letter, whereas they did not do so on single letter trials. Yet, with increasing age, children became more efficient in copying letter strings, in part by using vision more prospectively when writing. Taken together, the results illustrate how the coordination of perceptual, motor and cognitive processes contributes to advances in the development of letter writing skill. PMID:26029821
Samad, Noreen; Haleem, Muhammad Abdul; Haleem, Darakhshan Jabeen
2016-07-01
Effect of administration of Rice bran oil (RBO) was evaluated on haloperidol elicited tardive dyskinesia in rats. Albino Wistar rats treated with haloperidol in drinking water at a dose of 0.2mg/kg/day and RBO by oral tubes at a dose of 0.4 mL/day for 5 weeks. Motor coordination, VCMs and 8-hydroxy-2-(di-n-propylamino) tetraline)[8-OH-DPAT] _syndrome were monitored. Striatal serotonin (5-hydroxytryptamine; 5-HT) and 5-hydroxyindolacetic acid (5-HIAA) levels were determined by high performance liquid chromatography (HPLC-EC). Rats treated with haloperidol orally at a dose of for a period of 5 weeks developed VCMs, which increased progressively as the treatment continued for 5 weeks. Motor coordination impairment started after the 1st week and was maximally impaired after 3 weeks and gradually returned to the 1st week value. Co-administration of RBO prevented haloperidol_induced VCMs as well impairment of motor coordination. The intensity of 8-OH-DPAT_induced syndrome and decreased 5-HT metabolism were greater in water + haloperidol treated animals than RBO + haloperidol treated animals. The present study suggested that involvement of free radical in the development of TD and point to RBO as a possible therapeutic option to treat this hyperkinetic motor disorder.
McLeod, Kevin R.; Langevin, Lisa Marie; Goodyear, Bradley G.; Dewey, Deborah
2014-01-01
Developmental coordination disorder (DCD) and attention deficit/hyperactivity disorder (ADHD) are prevalent childhood disorders that frequently co-occur. Evidence from neuroimaging research suggests that children with these disorders exhibit disruptions in motor circuitry, which could account for the high rate of co-occurrence. The primary objective of this study was to investigate the functional connections of the motor network in children with DCD and/or ADHD compared to typically developing controls, with the aim of identifying common neurophysiological substrates. Resting-state fMRI was performed on seven children with DCD, 21 with ADHD, 18 with DCD + ADHD and 23 controls. Resting-state connectivity of the primary motor cortex was compared between each group and controls, using age as a co-factor. Relative to controls, children with DCD and/or ADHD exhibited similar reductions in functional connectivity between the primary motor cortex and the bilateral inferior frontal gyri, right supramarginal gyrus, angular gyri, insular cortices, amygdala, putamen, and pallidum. In addition, children with DCD and/or ADHD exhibited different age-related patterns of connectivity, compared to controls. These findings suggest that children with DCD and/or ADHD exhibit disruptions in motor circuitry, which may contribute to problems with motor functioning and attention. Our results support the existence of common neurophysiological substrates underlying both motor and attention problems. PMID:24818082
Influences of gender and socioeconomic status on the motor proficiency of children in the UK.
Morley, David; Till, Kevin; Ogilvie, Paul; Turner, Graham
2015-12-01
As the development of movement skills are so crucial to a child's involvement in lifelong physical activity and sport, the purpose of this study was to assess the motor proficiency of children aged 4-7 years (range=4.3-7.2 years), whilst considering gender and socioeconomic status. 369 children (176 females, 193 males, aged=5.96 ± 0.57 years) were assessed for fine motor precision, fine motor integration, manual dexterity, bilateral co-ordination, balance, speed and agility, upper-limb co-ordination and strength. The average standard score for all participants was 44.4 ± 8.9, classifying the participants towards the lower end of the average score. Multivariate analysis of covariance identified significant effects for gender (p<0.001) and socioeconomic status (p<0.001). Females outperformed males for fine motor skills and boys outperformed girls for catch and dribble gross motor skills. High socioeconomic status significantly outperformed middle and/or low socioeconomic status for total, fine and gross motor proficiency. Current motor proficiency of primary children aged 4-7 years in the UK is just below average with differences evident between gender and socioeconomic status. Teachers and sport coaches working with primary aged children should concentrate on the development of movement skills, whilst considering differences between genders and socioeconomic status. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Liu, Yishi; LeBeouf, Brigitte; Guo, Xiaoyan; Correa, Paola A.; Gualberto, Daisy G.; Lints, Robyn; Garcia, L. Rene
2011-01-01
Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components. PMID:21423722
Hippotherapy as a treatment for socialization after sexual abuse and emotional stress
Guerino, Marcelo R.; Briel, Alysson F.; Araújo, Maria das Graças Rodrigues
2015-01-01
[Purpose] Hippotherapy is a therapeutic resource that uses the horse as a kinesiotherapy instrument to elicit motor and cognitive improvements in individuals with special needs. [Subjects and Methods] This research evaluated two women aged 18 and 21 years, who had suffered sexual violence when they were children between the ages of 6 and 7 years old. The subjects did not have mental dysfunction but they were regular students registered at a school of special education. The patients presented severe motor limitation, difficulty with coordination, significant muscular retractions, thoracic and cervical kyphosis, cervical protrusion wich was basically a function of the postures they had adopted when victims of the sexual violence suffered in childhood. The patients performed twenty sessions of 30 minutes of hippotherapy on a horse. The activities were structured to stimulate coordination, proprioception, the vestibular and motor-sensorial systems for the improvement of posture, muscle activity and cognition. [Results] The activities provided during the hippotherapy sessions elicited alterations in postural adjustment resulting in 30% improvement, 80% improvement in coordination in, 50% improvement in corporal balance and in sociability and self-esteem. [Conclusion] Hippotherapy proved to be an effective treatment method for coordination, balance and postural correction, and also improved the patients’ self-esteem that had suffered serious emotional stress. PMID:25931769
Effect of height on motor coordination in college students participating in a dancesport program.
Li, Xiaoxin; Wang, Huazhuo; Yang, Yaohua; Qi, Chunying; Wang, Fei; Jin, Man
2015-03-01
Athlete screening tools combine measures of physical performance and morphometric parameters unique to each sport. Given the increasing competitiveness of dancesport, we designed the present quasi-experimental study to analyze the relationship between body height and motor coordination in college students. Six hundred eighty-six students were randomly selected to participate in a dancing sport program that consisted of 16 weeks (32 hrs) of training. The program included an assessment of basic skills (rhythm, movement specificity, intensity, expressive force, and action coherence) and skills related to a doubles dance routine. Male and female students were divided into four single-sex groups based on their heights (each group had a 5-cm range), and the average scores for each performance indicator were analyzed. A one-way ANOVA revealed significant differences in performance scores for each indicator of basic skills and double routine skills between the different height groups. Male in the 175-179 cm group and female students in the 165-169 cm group had the best performance scores on each indicator, while the shortest students had the worst performance scores. The height of students participating in sport dancing training had an impact on dancesport performance and motor coordination, counter to the traditional belief that shorter people have better coordination.
Lyle, Keith B; Dombroski, Brynn A; Faul, Leonard; Hopkins, Robin F; Naaz, Farah; Switala, Andrew E; Depue, Brendan E
2017-11-01
Some people remember events more completely and accurately than other people, but the origins of individual differences in episodic memory are poorly understood. One way to advance understanding is by identifying characteristics of individuals that reliably covary with memory performance. Recent research suggests motor behavior is related to memory performance, with individuals who consistently use a single preferred hand for unimanual actions performing worse than individuals who make greater use of both hands. This research has relied on self-reports of behavior. It is unknown whether objective measures of motor behavior also predict memory performance. Here, we tested the predictive power of bimanual coordination, an important form of manual dexterity. Bimanual coordination, as measured objectively on the Purdue Pegboard Test, was positively related to correct recall on the California Verbal Learning Test-II and negatively related to false recall. Furthermore, MRI data revealed that cortical surface area in right lateral prefrontal regions was positively related to correct recall. In one of these regions, cortical thickness was negatively related to bimanual coordination. These results suggest that individual differences in episodic memory may partially reflect morphological variation in right lateral prefrontal cortex and suggest a relationship between neural correlates of episodic memory and motor behavior. Copyright © 2017 Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
2011-11-30
Driving is a complicated psychomotor performance that depends on fine coordination between the sensory and motor systems. Many health conditions exist which have the potential to impair perception, cognition (including alertness, attitude to risk, an...
DOT National Transportation Integrated Search
2011-11-11
Driving is a complicated psychomotor performance that depends on fine coordination between the sensory and motor systems. Many health conditions exist which have the potential to impair perception, cognition (including alertness, attitude to risk, an...
Effects of blueberries on inflammation, motor performance and cognitive function
USDA-ARS?s Scientific Manuscript database
Motor and cognitive function decrease with age, to include deficits in balance, coordination, gait, processing speed, executive function, memory, and spatial learning. These functional declines may be caused by long term increases in and susceptibility to oxidative stress and inflammation. Research ...
Rossi, Pia Irene Anna; Musante, Ilaria; Summa, Maria; Pittaluga, Anna; Emionite, Laura; Ikehata, Masami; Rastaldi, Maria Pia; Ravazzolo, Roberto; Puliti, Aldamaria
2013-09-01
The metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, the only members of group I mGlu receptors, are implicated in synaptic plasticity and mechanisms of feedback control of glutamate release. They exhibit nearly complementary distributions throughout the central nervous system, well evident in the cerebellum, where mGlu1 receptor is most intensely expressed while mGlu5 receptor is not. Despite their different distribution, they show a similar subcellular localization and use common transducing pathways. We recently described the Grm1(crv4) mouse with motor coordination deficits and renal anomalies caused by a spontaneous mutation inactivating the mGlu1 receptor. To define the neuropathological mechanisms in these mice, we evaluated expression and function of the mGlu5 receptor in cerebral and cerebellar cortices. Western blot and immunofluorescence analyses showed mGlu5 receptor overexpression. Quantitative reverse transcriptase-polymerase chain reaction results indicated that the up-regulation is already evident at RNA level. Functional studies confirmed an enhanced glutamate release from cortical cerebral and cerebellar synaptosomes when compared with wild-type that is abolished by the mGlu5 receptor-specific inhibitor, 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). Finally, acute MPEP treatment of Grm1(crv4/crv4) mice induced an evident although incomplete improvement of motor coordination, suggesting that mGlu5 receptors enhanced activity worsens, instead of improving, the motor-coordination defects in the Grm1(crv4/crv4) mice.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Roads, Trails, and Areas for Motor Vehicle Use § 212.53 Coordination with Federal, State, county, and... designating National Forest System roads, National Forest System trails, and areas on National Forest System...
Bondi, Moshe; Zeilig, Gabi; Bloch, Ayala; Fasano, Alfonso; Plotnik, Meir
2017-08-01
Human locomotion is defined by bilateral coordination of gait (BCG) and shared features with the fore-hindlimb coordination of quadrupeds. The objective of the present study is to explore the influence of arm swinging (AS) on BCG. Sixteen young, healthy individuals (eight women; eight right motor-dominant, eight left-motor dominant) participated. Participants performed 10 walking trials (2 min). In each of the trials AS was unilaterally manipulated (e.g., arm restriction, weight on the wrist), bilaterally manipulated, or not manipulated. The order of trials was random. Walking trials were performed on a treadmill. Gait kinematics were recorded by a motion capture system. Using feedback-controlled belt speed allowed the participants to walk at a self-determined gait speed. Effects of the manipulations were assessed by AS amplitudes and the phase coordination index (PCI), which quantifies the left-right anti-phased stepping pattern. Most of the AS manipulations caused an increase in PCI values (i.e., reduced lower limb coordination). Unilateral AS manipulation had a reciprocal effect on the AS amplitude of the other arm such that, for example, over-swinging of the right arm led to a decrease in the AS amplitude of the left arm. Side of motor dominance was not found to have a significant impact on PCI and AS amplitude. The present findings suggest that lower limb BCG is markedly influenced by the rhythmic AS during walking. It may thus be important for gait rehabilitation programs targeting BCG to take AS into account. NEW & NOTEWORTHY Control mechanisms for four-limb coordination in human locomotion are not fully known. To study the influence of arm swinging (AS) on bilateral coordination of the lower limbs during walking, we introduced a split-AS paradigm in young, healthy adults. AS manipulations caused deterioration in the anti-phased stepping pattern and impacted the AS amplitudes for the contralateral arm, suggesting that lower limb coordination is markedly influenced by the rhythmic AS during walking. Copyright © 2017 the American Physiological Society.
Unstable Binocular Fixation Affects Reaction Times But Not Implicit Motor Learning in Dyslexia.
Przekoracka-Krawczyk, Anna; Brenk-Krakowska, Alicja; Nawrot, Pawel; Rusiak, Patrycja; Naskrecki, Ryszard
2017-12-01
Individuals with developmental dyslexia suffer not only from reading problems as more general motor deficits can also be observed in this patient group. Both psychometric clinical tests and objective eyetracking methods suggest that unstable binocular fixation may contribute to reading problems. Because binocular instability may cause poor eye-hand coordination and impair motor control, the primary aim of this study was to explore in dyslexic subjects the influence of unstable binocular fixation on reaction times (RTs) and implicit motor learning (IML), which is one of the fundamental cerebellar functions. Fixation disparity (FD) and instability of FD were assessed subjectively using the Wesson card and a modified Mallett test. A modified version of the Serial Reaction Time Task (SRTT) was used to measure the RTs and IML skills. The results for the dyslexic group (DG), which included 29 adult subjects (15 were tested binocularly, DGbin; 14 were tested monocularly, DGmono), were compared with data from the control group (CG), which consisted of 30 age-matched nondyslexic subjects (15 tested binocularly, CGbin; and the other 15 tested monocularly, CGmono). The results indicated that the DG showed poorer binocular stability and longer RTs in the groups tested binocularly (RTs: 534 vs. 411 ms for DGbin and CGbin, respectively; P < 0.001) as compared with the groups examined monocularly (RTs: 431 vs. 424 ms for DGmono and CGmono, respectively; P = 0.996). The DG also exhibited impaired IML when compared with the CG (EFIML: 25 vs. 50 ms for DG and CG, respectively; P = 0.012). Unstable binocularity in dyslexia may affect RTs but was not related to poor IML skills. Impaired IML in dyslexia was independent of the viewing conditions (monocular versus binocular) and may be related to cerebellar deficits.
Jarus, Tal; Ghanouni, Parisa; Abel, Rachel L; Fomenoff, Shelby L; Lundberg, Jocelyn; Davidson, Stephanie; Caswell, Sarah; Bickerton, Laura; Zwicker, Jill G
2015-02-01
Children with developmental coordination disorder (DCD) struggle to learn new motor skills. It is unknown whether children with DCD learn motor skills more effectively with an external focus of attention (focusing on impact of movement on the environment) or an internal focus of attention (focusing on one's body movements) during implicit (unconscious) and explicit (conscious) motor learning. This paper aims to determine the trends of implicit motor learning in children with DCD, and how focus of attention influences motor learning in children with DCD in comparison with typically developing children. 25 children, aged 8-12, with (n=12) and without (n=13) DCD were randomly assigned to receive instructions that focused attention externally or internally while completing a computer tracking task during acquisition, retention, and transfer phases. The motor task involved tracking both repeated and random patterns, with the repeated pattern indicative of implicit learning. Children with DCD scored lower on the motor task in all three phases of the study, demonstrating poorer implicit learning. Furthermore, graphical data showed that for the children with DCD, there was no apparent difference between internal and external focus of attention during retention and transfer, while there was an advantage to the external focus of attention group for typically developing children. Children with DCD demonstrate less accuracy than typically developing children in learning a motor task. Also, the effect of focus of attention on motor performance is different in children with DCD versus their typically developing counterparts during the three phases of motor learning. Results may inform clinicians how to facilitate motor learning in children with DCD by incorporating explicit learning with either internal or external focus of attention within interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pesyna, Colin; Pundi, Krishna; Flanders, Martha
2011-03-09
The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.
Functional Performance of Children with Developmental Coordination Disorder at Home and at School
ERIC Educational Resources Information Center
Wang, Tien-Ni; Tseng, Mei-Hui; Wilson, Brenda N.; Hu, Fu-Chang
2009-01-01
This study investigated the functional performance of daily activities at home and at school in a population-based sample of children with different degrees of motor coordination impairment and competence. Sixteen children (seven males, nine females; mean age 8y, SD 9mo) with developmental coordination disorder (DCD), 25 with suspected DCD ([sDCD]…
D-Aspartate drinking solution alleviates pain and cognitive impairment in neuropathic mice.
Palazzo, Enza; Luongo, Livio; Guida, Francesca; Marabese, Ida; Romano, Rosaria; Iannotta, Monica; Rossi, Francesca; D'Aniello, Antimo; Stella, Luigi; Marmo, Federica; Usiello, Alessandro; de Bartolomeis, Andrea; Maione, Sabatino; de Novellis, Vito
2016-07-01
D-Aspartate (D-Asp) is a free D-amino acid detected in multiple brain regions and putative precursor of endogenous N-methyl-D-aspartate (NMDA) acting as agonist at NMDA receptors. In this study, we investigated whether D-Asp (20 mM) in drinking solution for 1 month affects pain responses and pain-related emotional, and cognitive behaviour in a model of neuropathic pain induced by the spared nerve injury (SNI) of the sciatic nerve in mice. SNI mice developed mechanical allodynia and motor coordination impairment 30 days after SNI surgery. SNI mice showed cognitive impairment, anxiety and depression-like behaviour, reduced sociability in the three chamber sociability paradigm, increased expression of NR2B subunit of NMDA receptor and Homer 1a in the medial prefrontal cortex (mPFC). The expression of (post synaptic density) PSD-95 and Shank 1was instead unaffected in the mPFC of the SNI mice. Treatment with D-Asp drinking solution, started right after the SNI (day 0), alleviated mechanical allodynia, improved cognition and motor coordination and increased social interaction. D-Asp also restored the levels of extracellular D-Asp, Homer 1a and NR2B subunit of the NMDA receptor to physiological levels and reduced Shank1 and PSD-95 protein levels in the mPFC. Amitriptyline, a tricyclic antidepressant used also to alleviate neuropathic pain in humans, reverted mechanical allodynia and cognitive impairment, and unlike D-Asp, was effective in reducing depression and anxiety-like behaviour in the SNI mice and increased PSD protein level. Altogether these findings demonstrate that D-Asp improves sensorial, motor and cognitive-like symptoms related to chronic pain possibly through glutamate neurotransmission normalization in neuropathic mice.
NASA Astrophysics Data System (ADS)
Sajdel-Sulkowska, Elizabeth M.; Nguon, Kosal; Sulkowski, Zachary L.; Lipinski, Boguslaw
We have previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that exposure to hypergravity results in oxidative stress that may contribute to the decrease in Purkinje cell number and the impairment of motor coordination in hypergravity-exposed rat neonates. To test this hypothesis we compared cerebellar oxidative stress markers 3-nitrotyrosine (3-NT; an index of oxidative protein modification) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG; an index of oxidative DNA damage) between stationary control (SC) and rat neonates exposed to 1.65 G (HG) on a 24-ft centrifuge from gestational day (G) 8 to postnatal day (P) 21. The levels of 3-NT and 8-OH-dG were determined by specific ELISAs. We also compared the Purkinje cell number (stereorologically) and rotarod performance between the two groups. The levels of 3-NT were increased only in HG females on P6 and on P12 in the cerebellum, and only in HG females on P12 in the extracellabellar tissue. Limited cerebellar data suggests an increase in the levels of 8-OH-dG on P12 only in HG females. In extracerebellar tissue the increase in 8-OH-dG levels was observed in both HG males and HG females except on P6 when it was only observed in HG males. While preliminary, these data suggest that the effect of hypergravity on the developing brain is sex-dependent and may involve oxidative stress. Oxidative stress may, in turn, contribute to the decrease Purkinje cell number and impaired motor behavior observed in hypergravity-exposed rats.
Draicchio, F; Silvetti, A; Ranavolo, A; Iavicoli, S
2008-01-01
We analyzed the coordination patterns between elbow, shoulder and trunk in a motor task consisting of reaching out, picking up a cylinder, and transporting it back by using the Dynamical Systems Theory and calculating the continuous relative phase (CRP), a continuous measure of the coupling between two interacting joints. We used an optoelectronic motion analysis system consisting of eight infra-red ray cameras to detect the movements of nine skin-mounted markers. We calculated the root square of the adjusted coefficient of determination, the coefficient of multiple correlation (CMC), in order to investigate the repeatability of the joints coordination. The data confirm that the CNS establishes both synergic (i.e. coupling between shoulder and trunk on the frontal plane) and hierarchical (i.e. coupling between elbow-shoulder-trunk on the horizontal plane) relationships among the available degrees of freedom to overcome the complexity due to motor redundancy. The present study describes a method to investigate the organization of the kinematic degrees of freedom during upper limb multi-joint motor tasks that can be useful to assess upper limb repetitive movements.
Saklani, Reetu; Jaggi, Amteshwar; Singh, Nirmal
2010-07-01
We tested the neuroprotective effect of milrinone, a phosphodiesterase III inhibitor, in pharmacological preconditioning. Bilateral carotid artery occlusion for 12 min followed by reperfusion for 24 h produced ischemia-reperfusion (I/R) cerebral injury in male Swiss albino mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using the Morris water maze test, and motor coordination was evaluated using the inclined beam walking test, rota-rod test, and lateral push test. Milrinone (50 microg/kg & 100 microg/kg i.v.) was administered 24 h before surgery in a separate group of animals to induce pharmacological preconditioning. I/R increased cerebral infarct size and impaired memory and motor coordination. Milrinone treatment significantly decreased cerebral infarct size and reversed I/R-induced impairments in memory and motor coordination. This neuroprotective effect was blocked by ruthenium red (3 mg/kg, s.c.), an intracellular ryanodine receptor blocker. These findings indicate that milrinone preconditioning exerts a marked neuroprotective effect on the ischemic brain, putatively due to increased intracellular calcium levels activating calcium-sensitive signal transduction cascades.
The Role of Sensorimotor Difficulties in Autism Spectrum Conditions
Hannant, Penelope; Tavassoli, Teresa; Cassidy, Sarah
2016-01-01
In addition to difficulties in social communication, current diagnostic criteria for autism spectrum conditions (ASC) also incorporate sensorimotor difficulties, repetitive motor movements, and atypical reactivity to sensory input (1). This paper explores whether sensorimotor difficulties are associated with the development and maintenance of symptoms in ASC. First, studies have shown difficulties coordinating sensory input into planning and executing movement effectively in ASC. Second, studies have shown associations between sensory reactivity and motor coordination with core ASC symptoms, suggesting these areas each strongly influence the development of social and communication skills. Third, studies have begun to demonstrate that sensorimotor difficulties in ASC could account for reduced social attention early in development, with a cascading effect on later social, communicative and emotional development. These results suggest that sensorimotor difficulties not only contribute to non-social difficulties such as narrow circumscribed interests, but also to the development of social behaviors such as effectively coordinating eye contact with speech and gesture, interpreting others’ behavior, and responding appropriately. Further research is needed to explore the link between sensory and motor difficulties in ASC and their contribution to the development and maintenance of ASC. PMID:27559329
Allen, Susan; Casey, Jackie
2017-09-01
Children with developmental coordination disorder or sensory processing and integration difficulties face challenges to participation in daily living. To date there has been no exploration of the co-occurrence of developmental coordination disorders and sensory processing and integration difficulties. Records of children meeting Diagnostic and Statistical Manual - V criteria for developmental coordination disorder ( n = 93) age 5 to 12 years were examined. Data on motor skills (Movement Assessment Battery for Children - 2) and sensory processing and integration (Sensory Processing Measure) were interrogated. Of the total sample, 88% exhibited some or definite differences in sensory processing and integration. No apparent relationship was observed between motor coordination and sensory processing and integration. The full sample showed high rates of some difficulties in social participation, hearing, body awareness, balance and motion, and planning and ideation. Further, children with co-morbid autistic spectrum disorder showed high rates of difficulties with touch and vision. Most, but not all, children with developmental coordination disorder presented with some difficulties in sensory processing and integration that impacted on their participation in everyday activities. Sensory processing and integration difficulties differed significantly between those with and without co-morbid autistic spectrum disorder.
In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience.
Monfils, Marie-H; Plautz, Erik J; Kleim, Jeffrey A
2005-10-01
Motor skill acquisition occurs through modification and organization of muscle synergies into effective movement sequences. The learning process is reflected neurophysiologically as a reorganization of movement representations within the primary motor cortex, suggesting that the motor map is a motor engram. However, the specific neural mechanisms underlying map plasticity are unknown. Here the authors review evidence that 1) motor map topography reflects the capacity for skilled movement, 2) motor skill learning induces reorganization of motor maps in a manner that reflects the kinematics of acquired skilled movement, 3) map plasticity is supported by a reorganization of cortical microcircuitry involving changes in synaptic efficacy, and 4) motor map integrity and topography are influenced by various neurochemical signals that coordinate changes in cortical circuitry to encode motor experience. Finally, the role of motor map plasticity in recovery of motor function after brain damage is discussed.
Biological Movement and Laws of Physics.
Latash, Mark L
2017-07-01
Living systems may be defined as systems able to organize new, biology-specific, laws of physics and modify their parameters for specific tasks. Examples include the force-length muscle dependence mediated by the stretch reflex, and the control of movements with modification of the spatial referent coordinates for salient performance variables. Low-dimensional sets of referent coordinates at a task level are transformed to higher-dimensional sets at lower hierarchical levels in a way that ensures stability of performance. Stability of actions can be controlled independently of the actions (e.g., anticipatory synergy adjustments). Unintentional actions reflect relaxation processes leading to drifts of corresponding referent coordinates in the absence of changes in external load. Implications of this general framework for movement disorders, motor development, motor skill acquisition, and even philosophy are discussed.
The Percentage of Body Fat in Children and the Level of their Motor Skills.
Prskalo, Ivan; Badrić, Marko; Kunješić, Mateja
2015-07-01
The aim of this study was to determine the prevalence of overweight and obesity among primary education pupils and to identify differences in motor skills between normal weight, excessive and obese pupils. Partial aim was to determine differences in motor status of girls and boys and their anthropometric characteristics (Body Mass Index, body fat percentage). The study was conducted in two primary schools in Zagreb, Ivan Goran Kovačić and Davorin Trstenjak. Total of 333 pupils, aged 7-11, were measured (178 boys and 155 girls). Four anthropometric and seven motor variables were used to analyze differences in motor abilities of children. Children were divided into three groups within gender based on their body fat measures. We established a statistically significant difference in motor abilities between groups of subjects in three subsamples (1st-2nd class girls and 3rd-4th boys and girls). Children with normal weight have better results in explosive strength, coordination, static strength of arm and shoulder than children who are overweight and obese. The differences are not observed in motor variables where body weight is not a requisite for efficient execution of movement. Differences in motor skills by gender showed that boys are better in coordination, speed of the simple movements, explosive and repetitive strength, and girls are better in flexibility. The conclusion of this study confirmed the existence of differences in the development of motor skills in children with normal body weight compared to children who are overweight or obese. These facts prove that excessive body weight has negative repercussions on motor performance.
A finite element code for electric motor design
NASA Technical Reports Server (NTRS)
Campbell, C. Warren
1994-01-01
FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.
Balagam, Rajesh; Litwin, Douglas B.; Czerwinski, Fabian; Sun, Mingzhai; Kaplan, Heidi B.; Shaevitz, Joshua W.; Igoshin, Oleg A.
2014-01-01
Myxococcus xanthus is a model organism for studying bacterial social behaviors due to its ability to form complex multi-cellular structures. Knowledge of M. xanthus surface gliding motility and the mechanisms that coordinated it are critically important to our understanding of collective cell behaviors. Although the mechanism of gliding motility is still under investigation, recent experiments suggest that there are two possible mechanisms underlying force production for cell motility: the focal adhesion mechanism and the helical rotor mechanism, which differ in the biophysics of the cell–substrate interactions. Whereas the focal adhesion model predicts an elastic coupling, the helical rotor model predicts a viscous coupling. Using a combination of computational modeling, imaging, and force microscopy, we find evidence for elastic coupling in support of the focal adhesion model. Using a biophysical model of the M. xanthus cell, we investigated how the mechanical interactions between cells are affected by interactions with the substrate. Comparison of modeling results with experimental data for cell-cell collision events pointed to a strong, elastic attachment between the cell and substrate. These results are robust to variations in the mechanical and geometrical parameters of the model. We then directly measured the motor-substrate coupling by monitoring the motion of optically trapped beads and find that motor velocity decreases exponentially with opposing load. At high loads, motor velocity approaches zero velocity asymptotically and motors remain bound to beads indicating a strong, elastic attachment. PMID:24810164
Multi-Finger Interaction and Synergies in Finger Flexion and Extension Force Production
Park, Jaebum; Xu, Dayuan
2017-01-01
The aim of this study was to discover finger interaction indices during single-finger ramp tasks and multi-finger coordination during a steady state force production in two directions, flexion, and extension. Furthermore, the indices of anticipatory adjustment of elemental variables (i.e., finger forces) prior to a quick pulse force production were quantified. It is currently unknown whether the organization and anticipatory modulation of stability properties are affected by force directions and strengths of in multi-finger actions. We expected to observe a smaller finger independency and larger indices of multi-finger coordination during extension than during flexion due to both neural and peripheral differences between the finger flexion and extension actions. We also examined the indices of the anticipatory adjustment between different force direction conditions. The anticipatory adjustment could be a neural process, which may be affected by the properties of the muscles and by the direction of the motions. The maximal voluntary contraction (MVC) force was larger for flexion than for extension, which confirmed the fact that the strength of finger flexor muscles (e.g., flexor digitorum profundus) was larger than that of finger extensor (e.g., extensor digitorum). The analysis within the uncontrolled manifold (UCM) hypothesis was used to quantify the motor synergy of elemental variables by decomposing two sources of variances across repetitive trials, which identifies the variances in the uncontrolled manifold (VUCM) and that are orthogonal to the UCM (VORT). The presence of motor synergy and its strength were quantified by the relative amount of VUCM and VORT. The strength of motor synergies at the steady state was larger in the extension condition, which suggests that the stability property (i.e., multi-finger synergies) may be a direction specific quantity. However, the results for the existence of anticipatory adjustment; however, no difference between the directional conditions suggests that feed-forward synergy adjustment (changes in the stability property) may be at least independent of the magnitude of the task-specific apparent performance variables and its direction (e.g., flexion and extension forces). PMID:28674489
Vitamin D receptor deficiency impairs inner ear development in zebrafish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Hye-Joo; Biology Department, Princess Nourah University, Riyadh 11671
The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effectmore » on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. - Highlights: • VDR signaling is involved in ear development. • Knockdown of vdrb causes inner ear malformations during embryogenesis. • Knockdown of vdrb affects otic placode induction. • Knockdown of vdrb reduces the number of sensory hair cells in the inner ear. • Knockdown of vdrb disrupts balance and motor coordination.« less
Toney, Megan E.; Chang, Young-Hui
2016-01-01
Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step-to-step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production. PMID:27334888
Curriculum Guide for Day Care Primary.
ERIC Educational Resources Information Center
Radke, Mary Ann
This curriculum, designed for severely retarded children in a primary day care setting, is divided into three sections: (1) Awareness of Body Parts, (2) Gross Motor Skills, and (3) Language Arts. Detailed activities are suggested to develop and reinforce various gross motor coordinations and learning skills. (CS)
NASA Astrophysics Data System (ADS)
Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam
2017-09-01
This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.
ERIC Educational Resources Information Center
Hoopes, Amy T.
Research into visual, perceptual, and motor coordination suggests that the kind of physical activity and coordination involved in swimming might prevent some cases of dyslexia and improve the academic performance of many learning disabled children. Early neurological development shows a relationship among the creeping period, later communication…
Development of upper body coordination during sitting in typically developing infants
KYVELIDOU, ANASTASIA; STUBERG, WAYNE A.; HARBOURNE, REGINA T.; DEFFEYES, JOAN E.; BLANKE, DANIEL; STERGIOU, NICHOLAS
2009-01-01
Pediatric Research Articles Ahead of Print contains articles in unedited manuscript form that have been peer-reviewed and accepted for publication. As a service to our readers, we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting and review of the resulting proof before it is published in its final definitive form. Please note that during the production process errors may be discovered, which could affect the content, and all legal disclaimers that apply to the journal pertain. Our goal was to determine how the actions of the thorax and the pelvis are organized and coordinated to achieve independent sitting posture in typically developing infants. The participants were ten typically developing infants that were evaluated longitudinally from first onset of sitting until sitting independence. Each infant underwent nine testing sessions. The first session included motor evaluation with the Peabody test. The other eight sessions occurred over a period of four months where sitting behavior was evaluated by angular kinematics of the thorax and the pelvis. A physical therapist evaluated sitting behavior in each session and categorized it according to five stages. The phasing relationship of the thorax and the pelvis was calculated and evaluated longitudinally using a one-way ANOVA. With development, the infants progressed from an in-phase (moving in the same direction) to an out-of-phase (moving in an opposite direction) coordinative relationship between the thorax and the pelvis segments. This change was significant for both the sagittal and frontal planes of motion. Clinically, this relationship is important because it provides a method to quantify infant sitting postural development, and can be used to assess efficacy of early interventions for pediatric populations with developmental motor delays. PMID:19190546
The Case for Musical Instrument Training in Cerebral Palsy for Neurorehabilitation
2016-01-01
Recent imaging studies in cerebral palsy (CP) have described several brain structural changes, functional alterations, and neuroplastic processes that take place after brain injury during early development. These changes affect motor pathways as well as sensorimotor networks. Several of these changes correlate with behavioral measures of motor and sensory disability. It is now widely acknowledged that management of sensory deficits is relevant for rehabilitation in CP. Playing a musical instrument demands the coordination of hand movements with integrated auditory, visual, and tactile feedback, in a process that recruits multiple brain regions. These multiple demands during instrument playing, together with the entertaining character of music, have led to the development and investigation of music-supported therapies, especially for rehabilitation with motor disorders resulting from brain damage. We review scientific evidence that supports the use of musical instrument playing for rehabilitation in CP. We propose that active musical instrument playing may be an efficient means for triggering neuroplastic processes necessary for the development of sensorimotor skills in patients with early brain damage. We encourage experimental research on neuroplasticity and on its impact on the physical and personal development of individuals with CP. PMID:27867664
Pressure-Induced Changes in the Structure and Function of the Kinesin-Microtubule Complex
Nishiyama, Masayoshi; Kimura, Yoshifumi; Nishiyama, Yoshio; Terazima, Masahide
2009-01-01
Kinesin-1 is an ATP-driven molecular motor that “walks” along a microtubule by working two heads in a “hand-over-hand” fashion. The stepping motion is well-coordinated by intermolecular interactions between the kinesin head and microtubule, and is sensitively changed by applied forces. We demonstrate that hydrostatic pressure works as an inhibitory action on kinesin motility. We developed a high-pressure microscope that enables the application of hydrostatic pressures of up to 200 MPa (2000 bar). Under high-pressure conditions, taxol-stabilized microtubules were shortened from both ends at the same speed. The sliding velocity of kinesin motors was reversibly changed by pressure, and reached half-maximal value at ∼100 MPa. The pressure-velocity relationship was very close to the force-velocity relationship of single kinesin molecules, suggesting a similar inhibitory mechanism on kinesin motility. Further analysis showed that the pressure mainly affects the stepping motion, but not the ATP binding reaction. The application of pressure is thought to enhance the structural fluctuation and/or association of water molecules with the exposed regions of the kinesin head and microtubule. These pressure-induced effects could prevent kinesin motors from completing the stepping motion. PMID:19186149
The Case for Musical Instrument Training in Cerebral Palsy for Neurorehabilitation.
Alves-Pinto, Ana; Turova, Varvara; Blumenstein, Tobias; Lampe, Renée
2016-01-01
Recent imaging studies in cerebral palsy (CP) have described several brain structural changes, functional alterations, and neuroplastic processes that take place after brain injury during early development. These changes affect motor pathways as well as sensorimotor networks. Several of these changes correlate with behavioral measures of motor and sensory disability. It is now widely acknowledged that management of sensory deficits is relevant for rehabilitation in CP. Playing a musical instrument demands the coordination of hand movements with integrated auditory, visual, and tactile feedback, in a process that recruits multiple brain regions. These multiple demands during instrument playing, together with the entertaining character of music, have led to the development and investigation of music-supported therapies, especially for rehabilitation with motor disorders resulting from brain damage. We review scientific evidence that supports the use of musical instrument playing for rehabilitation in CP. We propose that active musical instrument playing may be an efficient means for triggering neuroplastic processes necessary for the development of sensorimotor skills in patients with early brain damage. We encourage experimental research on neuroplasticity and on its impact on the physical and personal development of individuals with CP.
Motor functioning in autistic spectrum disorders: a preliminary analysis.
Behere, Aniruddh; Shahani, Lokesh; Noggle, Chad A; Dean, Raymond
2012-01-01
The study sought to identify differences in motor functioning between autism and Asperger syndrome while also assessing the diagnostic contribution of such assessment. A sample of 16 individuals with autism and 10 with Asperger syndrome completed the Dean-Woodcock Sensory-Motor Battery, and outcomes were compared. Significant differences were found in measures of cerebellar functioning, favoring Asperger subjects. Deficits in coordination, ambulation, and the Romberg test were associated with both disorders. On the basis of motor outcomes alone, 100% were accurately differentiated. Findings support the idea that motor dysfunction is a core feature of these presentations and demonstrated the utility of motor assessment in diagnostic practice.
Chang, Chun-Ju; Yang, Tsui-Fen; Yang, Sai-Wei; Chern, Jen-Suh
2016-01-01
The cerebral cortex provides sensorimotor integration and coordination during motor control of daily functional activities. Power spectrum density based on electroencephalography (EEG) has been employed as an approach that allows an investigation of the spatial–temporal characteristics of neuromuscular modulation; however, the biofeedback mechanism associated with cortical activation during motor control remains unclear among elderly individuals. Thirty one community-dwelling elderly participants were divided into low fall-risk potential (LF) and high fall-risk potential (HF) groups based upon the results obtained from a receiver operating characteristic analysis of the ellipse area of the center of pressure. Electroencephalography (EEG) was performed while the participants stood on a 6-degree-of-freedom Stewart platform, which generated continuous perturbations and done either with or without the virtual reality scene. The present study showed that when there was visual stimulation and poor somatosensory coordination, a higher level of cortical response was activated in order to keep postural balance. The elderly participants in the LF group demonstrated a significant and strong correlation between postural-related cortical regions; however, the elderly individuals in the HF group did not show such a relationship. Moreover, we were able to clarify the roles of various brainwave bands functioning in motor control. Specifically, the gamma and beta bands in the parietal–occipital region facilitate the high-level cortical modulation and sensorimotor integration, whereas the theta band in the frontal–central region is responsible for mediating error detection during perceptual motor tasks. Finally, the alpha band is associated with processing visual challenges in the occipital lobe.With a variety of motor control demands, increment in brainwave band coordination is required to maintain postural stability. These investigations shed light on the cortical modulation of motor control among elderly participants with varying fall-risk potentials. The results suggest that, although elderly adults may be without neurological deficits, inefficient central modulation during challenging postural conditions could be an internal factor that contributes to the risk of fall. Furthermore, training that helps to improve coordinated sensorimotor integration may be a useful approach to reduce the risk of fall among elderly populations or when patients suffer from neurological deficits. PMID:27199732
Social Motor Synchronization: Insights for Understanding Social Behavior in Autism.
Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C
2017-07-01
Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and assessments of ASD traits. We found (a) spontaneous social motor synchronization was associated with responding to joint attention, cooperation, and theory of mind while intentional social motor synchronization was associated with initiating joint attention and theory of mind; and (b) social motor synchronization was associated with ASD severity but not fully explained by motor problems. Findings suggest that objective measures of social motor synchronization may provide insights into understanding ASD traits.
Celletti, Claudia; Mari, Giorgia; Ghibellini, Giulia; Celli, Mauro; Castori, Marco; Camerota, Filippo
2015-03-01
Developmental coordination disorder (DCD) is a recognized childhood disorder mostly characterized by motor coordination difficulties. Joint hypermobility syndrome, alternatively termed Ehlers-Danlos syndrome, hypermobility type (JHS/EDS-HT), is a hereditary connective tissue disorder mainly featuring generalized joint hypermobility (gJHM), musculoskeletal pain, and minor skin features. Although these two conditions seem apparently unrelated, recent evidence highlights a high rate of motor and coordination findings in children with gJHM or JHS/EDS-HT. Here, we investigated the prevalence of gJHM in 41 Italian children with DCD in order to check for the existence of recognizable phenotypic subgroups of DCD in relation to the presence/absence of gJHM. All patients were screened for Beighton score and a set of neuropsychological tests for motor competences (Movement Assessment Battery for Children and Visual-Motor Integration tests), and language and learning difficulties (Linguistic Comprehension Test, Peabody Picture Vocabulary Test, Boston Naming Test, Bus Story Test, and Memoria-Training tests). All patients were also screening for selected JHS/EDS-HT-associated features and swallowing problems. Nineteen (46%) children showed gJHM and 22 (54%) did not. Children with DCD and gJHM showed a significant excess of frequent falls (95 vs. 18%), easy bruising (74 vs. 0%), motor impersistence (89 vs. 23%), sore hands for writing (53 vs. 9%), attention deficit/hyperactivity disorder (89 vs. 36%), constipation (53 vs. 0%), arthralgias/myalgias (58 vs. 4%), narrative difficulties (74 vs. 32%), and atypical swallowing (74 vs. 18%). This study confirms the non-causal association between DCD and gJHM, which, in turn, seems to increase the risk for non-random additional features. The excess of language, learning, and swallowing difficulties in patients with DCD and gJHM suggests a wider effect of lax tissues in the development of the nervous system. © 2015 Wiley Periodicals, Inc.
The 50s cliff: a decline in perceptuo-motor learning, not a deficit in visual motion perception.
Ren, Jie; Huang, Shaochen; Zhang, Jiancheng; Zhu, Qin; Wilson, Andrew D; Snapp-Childs, Winona; Bingham, Geoffrey P
2015-01-01
Previously, we measured perceptuo-motor learning rates across the lifespan and found a sudden drop in learning rates between ages 50 and 60, called the "50s cliff." The task was a unimanual visual rhythmic coordination task in which participants used a joystick to oscillate one dot in a display in coordination with another dot oscillated by a computer. Participants learned to produce a coordination with a 90° relative phase relation between the dots. Learning rates for participants over 60 were half those of younger participants. Given existing evidence for visual motion perception deficits in people over 60 and the role of visual motion perception in the coordination task, it remained unclear whether the 50s cliff reflected onset of this deficit or a genuine decline in perceptuo-motor learning. The current work addressed this question. Two groups of 12 participants in each of four age ranges (20s, 50s, 60s, 70s) learned to perform a bimanual coordination of 90° relative phase. One group trained with only haptic information and the other group with both haptic and visual information about relative phase. Both groups were tested in both information conditions at baseline and post-test. If the 50s cliff was caused by an age dependent deficit in visual motion perception, then older participants in the visual group should have exhibited less learning than those in the haptic group, which should not exhibit the 50s cliff, and older participants in both groups should have performed less well when tested with visual information. Neither of these expectations was confirmed by the results, so we concluded that the 50s cliff reflects a genuine decline in perceptuo-motor learning with aging, not the onset of a deficit in visual motion perception.
Editor's Introduction and Review: Coordination and Context in Cognitive Science.
Kello, Christopher T
2018-01-01
The role of coordination in cognitive science has been on the rise in recent years, in terms of coordination among neurons, coordination among sensory and motor systems, and coordination among individuals. Research has shown that coordination patterns corresponding to cognitive activities depend on the various contexts in which the underlying interactions are situated. The present issue of Topics in Cognitive Science centers on studies of coordination that address the role of context in shaping or interpreting dynamical patterns of human behavior. This introductory article reviews some of the prior literature leading up to current and future research on coordination and context in cognitive science. Copyright © 2017 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Venter, Amné; Pienaar, Anita E.; Coetzee, Dané
2015-01-01
Background: In order to identify Developmental Coordination Disorder (DCD) as soon as possible, we need validated screening instruments that can be used for the early identification of motor coordination delays. The aim of this study was to establish the suitability of the Little Developmental Coordination Disorder Questionnaire (Little DCDQ) for…
Motor simulation and the coordination of self and other in real-time joint action
Ticini, Luca F.; Schütz-Bosbach, Simone; Keller, Peter E.
2014-01-01
Joint actions require the integration of simultaneous self- and other-related behaviour. Here, we investigated whether this function is underpinned by motor simulation, that is the capacity to represent a perceived action in terms of the neural resources required to execute it. This was tested in a music performance experiment wherein on-line brain stimulation (double-pulse transcranial magnetic stimulation, dTMS) was employed to interfere with motor simulation. Pianists played the right-hand part of piano pieces in synchrony with a recording of the left-hand part, which had (Trained) or had not (Untrained) been practiced beforehand. Training was assumed to enhance motor simulation. The task required adaptation to tempo changes in the left-hand part that, in critical conditions, were preceded by dTMS delivered over the right primary motor cortex. Accuracy of tempo adaptation following dTMS or sham stimulations was compared across Trained and Untrained conditions. Results indicate that dTMS impaired tempo adaptation accuracy only during the perception of trained actions. The magnitude of this interference was greater in empathic individuals possessing a strong tendency to adopt others’ perspectives. These findings suggest that motor simulation provides a functional resource for the temporal coordination of one’s own behaviour with others in dynamic social contexts. PMID:23709353
Prevalence of motor problems in children with attention deficit hyperactivity disorder in Hong Kong.
Tsui, K W; Lai, Kelly Y C; Lee, Marshall M C; Shea, Caroline K S; Tong, Luke C T
2016-04-01
Local data on the occurrence of motor problems in children with attention deficit hyperactivity disorder are not available but an understanding of this important issue may enable better planning of medical services. We aimed to determine the prevalence of motor problems in children with attention deficit hyperactivity disorder in a local population. In this descriptive cross-sectional study, children aged 6 to 9 years diagnosed with attention deficit hyperactivity disorder over a period of 6 months from 1 July to 31 December 2011 were recruited from the Joint Paediatric and Child Psychiatric ADHD Program in New Territories East Cluster in Hong Kong. Movement Assessment Battery for Children and Developmental Coordination Disorder Questionnaire-Chinese version were used to determine the presence of motor problems. Data from 95 participants were included in the final analysis. The number of children who had no, borderline, or definite motor problems was 63, 15, and 17, respectively. It is estimated that up to one third of local children with attention deficit hyperactivity disorder might have developmental coordination disorder. Motor problems are common in local children with attention deficit hyperactivity disorder and figures are comparable with those from other parts of the world. Despite the various limitations of this study, the magnitude of the problem should not be overlooked.
Fong, Shirley S.M.; Chung, Joanne W.Y.; Cheng, Yoyo T.Y.; Yam, Timothy T.T.; Chiu, Hsiu-Ching; Fong, Daniel Y.T.; Cheung, C.Y.; Yuen, Lily; Yu, Esther Y.T.; Hung, Yeung Sam; Macfarlane, Duncan J.; Ng, Shamay S.M.
2016-01-01
Abstract This cross-sectional and exploratory study aimed to compare motor performance and electroencephalographic (EEG) attention levels in children with developmental coordination disorder (DCD) and those with typical development, and determine the relationship between motor performance and the real-time EEG attention level in children with DCD. Eighty-six children with DCD [DCD: n = 57; DCD and attention deficit hyperactivity disorder (ADHD): n = 29] and 99 children with typical development were recruited. Their motor performance was assessed with the Movement Assessment Battery for Children (MABC) and attention during the tasks of the MABC was evaluated by EEG. All children with DCD had higher MABC impairment scores and lower EEG attention scores than their peers (P < 0.05). After accounting for age, sex, body mass index, and physical activity level, the attention index remained significantly associated with the MABC total impairment score and explained 14.1% of the variance in children who had DCD but not ADHD (P = 0.009) and 17.5% of the variance in children with both DCD and ADHD (P = 0.007). Children with DCD had poorer motor performance and were less attentive to movements than their peers. Their poor motor performance may be explained by inattention. PMID:27631272
Silva, A P dos S; Cerqueira, G S; Nunes, L C C; de Freitas, R M
2012-03-01
The antioxidant activities of aqueous extract (AE) of Orbignya phalerata were assessed in vitro as well as its effect on locomotor activity and motor coordination in mice. AE does not possesses a strong antioxidant potential according to the scavenging assays; it also did not present scavenger activity in vitro. Following oral administration, AE (1, 2 and 3 g/kg) did not significantly change the motor activity of animals when compared with the control group, up to 24 h after administration and did not alter the remaining time of the animals on the Rota-rod apparatus. Further studies currently in progress will enable us to understand the mechanisms of action of the aqueous extract of Orbignya phalerata widely used in Brazilian flok medicine.
The remapping of space in motor learning and human-machine interfaces
Mussa-Ivaldi, F.A.; Danziger, Z.
2009-01-01
Studies of motor adaptation to patterns of deterministic forces have revealed the ability of the motor control system to form and use predictive representations of the environment. One of the most fundamental elements of our environment is space itself. This article focuses on the notion of Euclidean space as it applies to common sensory motor experiences. Starting from the assumption that we interact with the world through a system of neural signals, we observe that these signals are not inherently endowed with metric properties of the ordinary Euclidean space. The ability of the nervous system to represent these properties depends on adaptive mechanisms that reconstruct the Euclidean metric from signals that are not Euclidean. Gaining access to these mechanisms will reveal the process by which the nervous system handles novel sophisticated coordinate transformation tasks, thus highlighting possible avenues to create functional human-machine interfaces that can make that task much easier. A set of experiments is presented that demonstrate the ability of the sensory-motor system to reorganize coordination in novel geometrical environments. In these environments multiple degrees of freedom of body motions are used to control the coordinates of a point in a two-dimensional Euclidean space. We discuss how practice leads to the acquisition of the metric properties of the controlled space. Methods of machine learning based on the reduction of reaching errors are tested as a means to facilitate learning by adaptively changing he map from body motions to controlled device. We discuss the relevance of the results to the development of adaptive human machine interfaces and optimal control. PMID:19665553
Bora, Kundan Singh; Arora, Shruti; Shri, Richa
2011-10-11
The genus Ocimum (Lamiaceae) has a long history of use as culinary and medicinal herbs. Many species are used for their antioxidant and neuroprotective activity in various parts of the world. Ocimum basilicum Linn. has been used traditionally for the treatment of anxiety, diabetes, cardiovascular diseases, headaches, nerve pain, as anticonvulsant and anti-inflammatory, and used in a variety of neurodegenerative disorders. The present study is designed to investigate the effect of ethyl acetate extract of Ocimum basilicum leaves on ischemia and reperfusion-induced cerebral damage, and motor dysfunctions in mice. Global cerebral ischemia was induced by bilateral carotid artery occlusion for 15 min followed by reperfusion for 24h. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. The concentration of thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) content was determined by colorimetric assay. Short-term memory was evaluated using elevated plus-maze. Inclined beam walking was employed to assess motor coordination. Bilateral carotid artery occlusion followed by reperfusion produced significant increase in cerebral infarct size and lipid peroxidation (TBARS), and reduced GSH content, and impaired short-term memory and motor coordination. Pre-treatment with standardized ethyl acetate extract of Ocimum basilicum (100 and 200mg/kg, p.o.) markedly reduced cerebral infarct size and lipid peroxidation, restored GSH content, and attenuated impairment in short-term memory and motor coordination. The results of the study suggest that Ocimum basilicum could be useful clinically in the prevention of stroke. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Corrective response times in a coordinated eye-head-arm countermanding task.
Tao, Gordon; Khan, Aarlenne Z; Blohm, Gunnar
2018-06-01
Inhibition of motor responses has been described as a race between two competing decision processes of motor initiation and inhibition, which manifest as the reaction time (RT) and the stop signal reaction time (SSRT); in the case where motor initiation wins out over inhibition, an erroneous movement occurs that usually needs to be corrected, leading to corrective response times (CRTs). Here we used a combined eye-head-arm movement countermanding task to investigate the mechanisms governing multiple effector coordination and the timing of corrective responses. We found a high degree of correlation between effector response times for RT, SSRT, and CRT, suggesting that decision processes are strongly dependent across effectors. To gain further insight into the mechanisms underlying CRTs, we tested multiple models to describe the distribution of RTs, SSRTs, and CRTs. The best-ranked model (according to 3 information criteria) extends the LATER race model governing RTs and SSRTs, whereby a second motor initiation process triggers the corrective response (CRT) only after the inhibition process completes in an expedited fashion. Our model suggests that the neural processing underpinning a failed decision has a residual effect on subsequent actions. NEW & NOTEWORTHY Failure to inhibit erroneous movements typically results in corrective movements. For coordinated eye-head-hand movements we show that corrective movements are only initiated after the erroneous movement cancellation signal has reached a decision threshold in an accelerated fashion.
Unique characteristics of motor adaptation during walking in young children.
Musselman, Kristin E; Patrick, Susan K; Vasudevan, Erin V L; Bastian, Amy J; Yang, Jaynie F
2011-05-01
Children show precocious ability in the learning of languages; is this the case with motor learning? We used split-belt walking to probe motor adaptation (a form of motor learning) in children. Data from 27 children (ages 8-36 mo) were compared with those from 10 adults. Children walked with the treadmill belts at the same speed (tied belt), followed by walking with the belts moving at different speeds (split belt) for 8-10 min, followed again by tied-belt walking (postsplit). Initial asymmetries in temporal coordination (i.e., double support time) induced by split-belt walking were slowly reduced, with most children showing an aftereffect (i.e., asymmetry in the opposite direction to the initial) in the early postsplit period, indicative of learning. In contrast, asymmetries in spatial coordination (i.e., center of oscillation) persisted during split-belt walking and no aftereffect was seen. Step length, a measure of both spatial and temporal coordination, showed intermediate effects. The time course of learning in double support and step length was slower in children than in adults. Moreover, there was a significant negative correlation between the size of the initial asymmetry during early split-belt walking (called error) and the aftereffect for step length. Hence, children may have more difficulty learning when the errors are large. The findings further suggest that the mechanisms controlling temporal and spatial adaptation are different and mature at different times.
McLeod, Kevin R; Langevin, Lisa Marie; Dewey, Deborah; Goodyear, Bradley G
2016-01-01
Developmental coordination disorder (DCD) and attention-deficit hyperactivity disorder (ADHD) are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1) cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD), a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.
Fujioka, Takako; Dawson, Deirdre R; Wright, Rebecca; Honjo, Kie; Chen, Joyce L; Chen, J Jean; Black, Sandra E; Stuss, Donald T; Ross, Bernhard
2018-05-24
Neuroplasticity accompanying learning is a key mediator of stroke rehabilitation. Training in playing music in healthy populations and patients with movement disorders requires resources within motor, sensory, cognitive, and affective systems, and coordination among these systems. We investigated effects of music-supported therapy (MST) in chronic stroke on motor, cognitive, and psychosocial functions compared to conventional physical training (GRASP). Twenty-eight adults with unilateral arm and hand impairment were randomly assigned to MST (n = 14) and GRASP (n = 14) and received 30 h of training over a 10-week period. The assessment was conducted at four time points: before intervention, after 5 weeks, after 10 weeks, and 3 months after training completion. As for two of our three primary outcome measures concerning motor function, all patients slightly improved in Chedoke-McMaster Stroke Assessment hand score, while the time to complete Action Research Arm Test became shorter in the MST group. The third primary outcome measure for well-being, Stroke Impact Scale, was improved for emotion and social communication earlier in MST and coincided with the improved executive function for task switching and music rhythm perception. The results confirmed previous findings and expanded the potential usage of MST for enhancing quality of life in community-dwelling chronic-stage survivors. © 2018 New York Academy of Sciences.
McNulty, Penelope A.; Lin, Gaven; Doust, Catherine G.
2014-01-01
Muscle weakness is the most common outcome after stroke and a leading cause of adult-acquired motor disability. Single motor unit properties provide insight into the mechanisms of post-stroke motor impairment. Motor units on the more-affected side are reported to have lower peak firing rates, reduced discharge variability and a more compressed dynamic range than healthy subjects. The activity of 169 motor units was discriminated from surface electromyography in 28 stroke patients during sustained voluntary contractions 10% of maximal and compared to 110 units recorded in 16 healthy subjects. Motor units were recorded in three series: ankle dorsiflexion, wrist flexion and elbow flexion. Mean firing rates after stroke were significantly lower on the more-affected than the less-affected side (p < 0.001) with no differences between dominant and non-dominant sides for healthy subjects. When data were combined, firing rates on the less-affected side were significantly higher than those either on the more-affected side or healthy subjects (p < 0.001). Motor unit mean firing rate was higher in the upper-limb than the lower-limb (p < 0.05). The coefficient of variation of motor unit discharge rate was lower for motor units after stroke compared to controls for wrist flexion (p < 0.05) but not ankle dorsiflexion. However the dynamic range of motor units was compressed only for motor units on the more-affected side during wrist flexion. Our results show that the pathological change in motor unit firing rate occurs on the less-affected side after stroke and not the more-affected side as previously reported, and suggest that motor unit behavior recorded in a single muscle after stroke cannot be generalized to muscles acting on other joints even within the same limb. These data emphasize that the less-affected side does not provide a valid control for physiological studies on the more-affected side after stroke and that both sides should be compared to data from age- and sex-matched healthy subjects. PMID:25100969
2012-01-01
Background Humans are capable of fast adaptation to new unknown dynamics that affect their movements. Such motor learning is also believed to be an important part of motor rehabilitation. Bimanual training can improve post-stroke rehabilitation outcome and is associated with interlimb coordination between both limbs. Some studies indicate partial transfer of skills among limbs of healthy individuals. Another aspect of bimanual training is the (a)symmetry of bimanual movements and how these affect motor learning and possibly post-stroke rehabilitation. Methods A novel bimanual 2-DOF robotic system was used for both bimanual and unimanual reaching movements. 35 young healthy adults participated in the study. They were divided into 5 test groups that performed movements under different conditions (bimanual or unimanual movements and symmetric or asymmetric bimanual arm loads). The subjects performed a simple tracking exercise with the bimanual system. The exercise was developed to stimulate motor learning by applying a velocity-dependent disturbance torque to the handlebar. Each subject performed 255 trials divided into three phases: baseline without disturbance torque, training phase with disturbance torque and evaluation phase with disturbance torque. Results Performance was assessed with the maximal values of rotation errors of the handlebar. After exposure to disturbance torque, the errors decreased for both unimanual and bimanual training. Errors in unimanual evaluation following the bimanual training phase were not significantly different from errors in unimanual evaluation following unimanual training. There was no difference in performance following symmetric or asymmetric training. Changing the arm force symmetry during bimanual movements from asymmetric to symmetric had little influence on performance. Conclusions Subjects could adapt to an unknown disturbance torque that was changing the dynamics of the movements. The learning effect was present during both unimanual and bimanual training. Transfer of learned skills from bimanual training to unimanual movements was also observed, as bimanual training also improved single limb performance with the dominant arm. Changes of force symmetry did not have an effect on motor learning. As motor learning is believed to be an important mechanism of rehabilitation, our findings could be tested for future post-stroke rehabilitation systems. PMID:22805223
Pion, Johan A; Fransen, Job; Deprez, Dieter N; Segers, Veerle I; Vaeyens, Roel; Philippaerts, Renaat M; Lenoir, Matthieu
2015-06-01
It was hypothesized that differences in anthropometry, physical performance, and motor coordination would be found between Belgian elite and sub-elite level female volleyball players using a retrospective analysis of test results gathered over a 5-year period. The test sample in this study consisted of 21 young female volleyball players (15.3 ± 1.5 years) who were selected to train at the Flemish Top Sports Academy for Volleyball in 2008. All players (elite, n = 13; sub-elite, n = 8) were included in the same talent development program, and the elite-level athletes were of a high to very high performance levels according to European competition level in 2013. Five multivariate analyses of variance were used. There was no significant effect of playing level on measures of anthropometry (F = 0.455, p = 0.718, (Equation is included in full-text article.)= 0.07), flexibility (F = 1.861, p = 0.188, (Equation is included in full-text article.)= 0.19), strength (F = 1.218, p = 0.355, (Equation is included in full-text article.)= 0.32); and speed and agility (F = 1.176, p = 0.350, (Equation is included in full-text article.)= 0.18). Multivariate analyses of variance revealed significant multivariate effects between playing levels for motor coordination (F = 3.470, p = 0.036, (Equation is included in full-text article.)= 0.59). A Mann-Whitney U test and a sequential discriminant analysis confirmed these results. Previous research revealed that stature and jump height are prerequisites for talent identification in female volleyball. In addition, the results show that motor coordination is an important factor in determining inclusion into the elite level in female volleyball.
Developmental coordination disorder in children - experimental work and data annotation.
Vareka, Lukáš; Bruha, Petr; Moucek, Roman; Mautner, Pavel; Cepicka, Ladislav; Holecková, Irena
2017-04-01
Developmental coordination disorder (DCD) is described as a motor skill disorder characterized by a marked impairment in the development of motor coordination abilities that significantly interferes with performance of daily activities and/or academic achievement. Since some electrophysiological studies suggest differences between children with/without motor development problems, we prepared an experimental protocol and performed electrophysiological experiments with the aim of making a step toward a possible diagnosis of this disorder using the event-related potentials (ERP) technique. The second aim is to properly annotate the obtained raw data with relevant metadata and promote their long-term sustainability. The data from 32 school children (16 with possible DCD and 16 in the control group) were collected. Each dataset contains raw electroencephalography (EEG) data in the BrainVision format and provides sufficient metadata (such as age, gender, results of the motor test, and hearing thresholds) to allow other researchers to perform analysis. For each experiment, the percentage of ERP trials damaged by blinking artifacts was estimated. Furthermore, ERP trials were averaged across different participants and conditions, and the resulting plots are included in the manuscript. This should help researchers to estimate the usability of individual datasets for analysis. The aim of the whole project is to find out if it is possible to make any conclusions about DCD from EEG data obtained. For the purpose of further analysis, the data were collected and annotated respecting the current outcomes of the International Neuroinformatics Coordinating Facility Program on Standards for Data Sharing, the Task Force on Electrophysiology, and the group developing the Ontology for Experimental Neurophysiology. The data with metadata are stored in the EEG/ERP Portal. © The Authors 2017. Published by Oxford University Press.
Gerecsei, László I.; Csillag, András; Zachar, Gergely; Gévai, Lőrinc; Simon, László; Dobolyi, Árpád; Ádám, Ágota
2018-01-01
The member of synthetic cathinone family, methylenedioxypyrovalerone (MDPV), is a frequently used psychoactive drug of abuse. The objective of our study was to determine the effect of MDPV (administered from the 8th to the 14th day of gestation) on the behavior of neonatal and adolescent mice, as well as its effect on maternal care. We measured maternal care (pup retrieval test, nest building), locomotor activity (open field test), and motor coordination (grip strength test) of dams, whereas on pups we examined locomotor activity at postnatal day 7 and day 21 (open field test) and motor coordination on day 21 (grip strength test). On fresh-frozen brain samples of the dams we examined the expression of two important peptides implicated in the regulation of maternal behavior and lactation: tuberoinfundibular peptide 39 (TIP39) mRNA in the thalamic posterior intralaminar complex, and amylin mRNA in the medial preoptic nucleus. We detected decreased birth rate and survival of offspring, and reduced maternal care in the drug-treated animals, whereas there was no difference between the motility of treated and control mothers. Locomotor activity of the pups was increased in the MDPV treated group both at 7 and 21 days of age, while motor coordination was unaffected by MDPV treatment. TIP39 and amylin were detected in their typical location but failed to show a significant difference of expression between the drug-treated and control groups. The results suggest that chronic systemic administration of the cathinone agent MDPV to pregnant mice can reduce birth rate and maternal care, and it also enhances motility (without impairment of motor coordination) of the offspring. PMID:29459818
Understanding the Impact of Expertise in Joint and Solo-Improvisation.
Issartel, Johann; Gueugnon, Mathieu; Marin, Ludovic
2017-01-01
Joint-improvisation is not only an open-ended creative action that two or more people perform together in the context of an artistic performance (e.g., theatre, music or dance). Joint-improvisation also takes place in daily life activities when humans take part in collective performance such as toddlers at play or adults engaged in a conversation. In the context of this article, joint-improvisation has been looked at from a social motor coordination perspective. In the literature, the nature of the social motor coordination characteristics of joint-improvisation for either the creative aspect or daily life features of this motor performance remains unclear. Additionally, both solo-improvisation and joint-improvisation need to be studied conjointly to establish the influence of the social element of improvisation in the emergence of multi-agent motor coordination. In order to better understand those two types of improvisation, we compared three level of expertise - novice, intermediate and professional in dance improvisation to identify movement characteristics for each of the groups. Pairs of the same level were asked to improvise together. Each individual was also asked to perform an improvisation on his/her own. We found that each of the three groups present specific movement organization with movement complexity increasing with the level of expertise. Experts performed shorter movement duration in conjunction with an increase range of movement. The direct comparison of individual and paired Conditions highlighted that the joint-improvisation reduced the complexity of the movement organization and those for all three levels while maintaining the differences between the groups. This direct comparison amongst those three distinct groups provides an original insight onto the nature of movement patterns in joint-improvisation situation. Overall, it reveals the role of both individual and collective properties in the emergence of social coordination.
Understanding the Impact of Expertise in Joint and Solo-Improvisation
Issartel, Johann; Gueugnon, Mathieu; Marin, Ludovic
2017-01-01
Joint-improvisation is not only an open-ended creative action that two or more people perform together in the context of an artistic performance (e.g., theatre, music or dance). Joint-improvisation also takes place in daily life activities when humans take part in collective performance such as toddlers at play or adults engaged in a conversation. In the context of this article, joint-improvisation has been looked at from a social motor coordination perspective. In the literature, the nature of the social motor coordination characteristics of joint-improvisation for either the creative aspect or daily life features of this motor performance remains unclear. Additionally, both solo-improvisation and joint-improvisation need to be studied conjointly to establish the influence of the social element of improvisation in the emergence of multi-agent motor coordination. In order to better understand those two types of improvisation, we compared three level of expertise – novice, intermediate and professional in dance improvisation to identify movement characteristics for each of the groups. Pairs of the same level were asked to improvise together. Each individual was also asked to perform an improvisation on his/her own. We found that each of the three groups present specific movement organization with movement complexity increasing with the level of expertise. Experts performed shorter movement duration in conjunction with an increase range of movement. The direct comparison of individual and paired Conditions highlighted that the joint-improvisation reduced the complexity of the movement organization and those for all three levels while maintaining the differences between the groups. This direct comparison amongst those three distinct groups provides an original insight onto the nature of movement patterns in joint-improvisation situation. Overall, it reveals the role of both individual and collective properties in the emergence of social coordination. PMID:28713301
Normann, R A; Dowden, B R; Frankel, M A; Wilder, A M; Hiatt, S D; Ledbetter, N M; Warren, D A; Clark, G A
2012-04-01
The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.
NASA Astrophysics Data System (ADS)
Normann, R. A.; Dowden, B. R.; Frankel, M. A.; Wilder, A. M.; Hiatt, S. D.; Ledbetter, N. M.; Warren, D. A.; Clark, G. A.
2012-04-01
The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.
A SUGGESTED METHOD FOR PRE-SCHOOL IDENTIFICATION OF POTENTIAL READING DISABILITY.
ERIC Educational Resources Information Center
NEWTON, KENNETH R.; AND OTHERS
THE RELATIONSHIPS BETWEEN PREREADING MEASURES OF VISUAL-MOTOR-PERCEPTUAL SKILLS AND READING ACHIEVEMENT WERE STUDIED. SUBJECTS WERE 172 FIRST GRADERS. PRETESTS AND POST-TESTS FOR WORD RECOGNITION, MOTOR COORDINATION, AND VISUAL PERCEPTION WERE ADMINISTERED. FOURTEEN VARIABLES WERE TESTED. RESULTS INDICATED THAT FORM-COPYING WAS MORE EFFECTIVE THAN…
The Relationship of Neurogenesis and Growth of Brain Regions to Song Learning
ERIC Educational Resources Information Center
Kirn, John R.
2010-01-01
Song learning, maintenance and production require coordinated activity across multiple auditory, sensory-motor, and neuromuscular structures. Telencephalic components of the sensory-motor circuitry are unique to avian species that engage in song learning. The song system shows protracted development that begins prior to hatching but continues well…
Teaching through Sensory-Motor Experiences.
ERIC Educational Resources Information Center
Arena, John I., Ed.
Included in the collection are articles on sensory-motor sequencing experiences in learning by R.G. Heckelman, integrating form perception by Floria Coon-Teters, building patterns of retention by Harold Helms, hand-eye coordination by Shirley Linn, laterality and directionality by Sheila Benyon, body image and body awareness by Grace Petitclerc,…
Barisic, Marin; Aguiar, Paulo; Geley, Stephan; Maiato, Helder
2014-12-01
Accurate chromosome segregation during cell division in metazoans relies on proper chromosome congression at the equator. Chromosome congression is achieved after bi-orientation to both spindle poles shortly after nuclear envelope breakdown, or by the coordinated action of motor proteins that slide misaligned chromosomes along pre-existing spindle microtubules. These proteins include the minus-end-directed kinetochore motor dynein, and the plus-end-directed motors CENP-E at kinetochores and chromokinesins on chromosome arms. However, how these opposite and spatially distinct activities are coordinated to drive chromosome congression remains unknown. Here we used RNAi, chemical inhibition, kinetochore tracking and laser microsurgery to uncover the functional hierarchy between kinetochore and arm-associated motors, exclusively required for congression of peripheral polar chromosomes in human cells. We show that dynein poleward force counteracts chromokinesins to prevent stabilization of immature/incorrect end-on kinetochore-microtubule attachments and random ejection of polar chromosomes. At the poles, CENP-E becomes dominant over dynein and chromokinesins to bias chromosome ejection towards the equator. Thus, dynein and CENP-E at kinetochores drive congression of peripheral polar chromosomes by preventing arm-ejection forces mediated by chromokinesins from working in the wrong direction.
New Angles on Motor and Sensory Coordination in Learning Disabilities.
ERIC Educational Resources Information Center
Goldey, Ellen S.
1998-01-01
Provides an overview of presentations that were included in the Medical Symposium at the 1998 Learning Disabilities Association conference. The symposium addressed vestibular control and eye movement, postural sway and balance, cerebellar dysfunction, the role of the frontal lobe, developmental coordination disorder, and sensory integration…
Kashiwagi, Mitsuru; Suzuki, Shuhei
2009-09-01
Many children with developmental disorders are known to have motor impairment such as clumsiness and poor physical ability;however, the objective evaluation of such difficulties is not easy in routine clinical practice. In this study, we aimed to establish a simple method for evaluating motor difficulty of childhood. This method employs a scored interview and examination for detecting soft neurological signs (SNSs). After a preliminary survey with 22 normal children, we set the items and the cutoffs for the interview and SNSs. The interview consisted of questions pertaining to 12 items related to a child's motor skills in his/her past and current life, such as skipping, jumping a rope, ball sports, origami, and using chopsticks. The SNS evaluation included 5 tests, namely, standing on one leg with eyes closed, diadochokinesia, associated movements during diadochokinesia, finger opposition test, and laterally fixed gaze. We applied this method to 43 children, including 25 cases of developmental disorders. Children showing significantly high scores in both the interview and SNS were assigned to the "with motor difficulty" group, while those with low scores in both the tests were assigned to the "without motor difficulty" group. The remaining children were assigned to the "with suspicious motor difficulty" group. More than 90% of the children in the "with motor difficulty" group had high impairment scores in Movement Assessment Battery for Children (M-ABC), a standardized motor test, whereas 82% of the children in the "without motor difficulty" group revealed no motor impairment. Thus, we conclude that our simple method and criteria would be useful for the evaluation of motor difficulty of childhood. Further, we have discussed the diagnostic process for developmental coordination disorder using our evaluation method.
Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis.
Bonzano, Laura; Tacchino, Andrea; Brichetto, Giampaolo; Roccatagliata, Luca; Dessypris, Adriano; Feraco, Paola; Lopes De Carvalho, Maria L; Battaglia, Mario A; Mancardi, Giovanni L; Bove, Marco
2014-04-15
Upper limb impairments can occur in patients with multiple sclerosis, affecting daily living activities; however there is at present no definite agreement on the best rehabilitation treatment strategy to pursue. Moreover, motor training has been shown to induce changes in white matter architecture in healthy subjects. This study aimed at evaluating the motor behavioral and white matter microstructural changes following a 2-month upper limb motor rehabilitation treatment based on task-oriented exercises in patients with multiple sclerosis. Thirty patients (18 females and 12 males; age=43.3 ± 8.7 years) in a stable phase of the disease presenting with mild or moderate upper limb sensorimotor deficits were randomized into two groups of 15 patients each. Both groups underwent twenty 1-hour treatment sessions, three times a week. The "treatment group" received an active motor rehabilitation treatment, based on voluntary exercises including task-oriented exercises, while the "control group" underwent passive mobilization of the shoulder, elbow, wrist and fingers. Before and after the rehabilitation protocols, motor performance was evaluated in all patients with standard tests. Additionally, finger motor performance accuracy was assessed by an engineered glove. In the same sessions, every patient underwent diffusion tensor imaging to obtain parametric maps of fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. The mean value of each parameter was separately calculated within regions of interest including the fiber bundles connecting brain areas involved in voluntary movement control: the corpus callosum, the corticospinal tracts and the superior longitudinal fasciculi. The two rehabilitation protocols induced similar effects on unimanual motor performance, but the bimanual coordination task revealed that the residual coordination abilities were maintained in the treated patients while they significantly worsened in the control group (p=0.002). Further, in the treatment group white matter integrity in the corpus callosum and corticospinal tracts was preserved while a microstructural integrity worsening was found in the control group (fractional anisotropy of the corpus callosum and corticospinal tracts: p=0.033 and p=0.022; radial diffusivity of the corpus callosum and corticospinal tracts: p=0.004 and p=0.008). Conversely, a significant increase of radial diffusivity was observed in the superior longitudinal fasciculi in both groups (p=0.02), indicating lack of treatment effects on this structure, showing damage progression likely due to a demyelination process. All these findings indicate the importance of administering, when possible, a rehabilitation treatment consisting of voluntary movements. We also demonstrated that the beneficial effects of a rehabilitation treatment are task-dependent and selective in their target; this becomes crucial towards the implementation of tailored rehabilitative approaches. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Ebrahimi, Samaneh; Kamali, Fahimeh; Razeghi, Mohsen; Haghpanah, Seyyed Arash
2017-04-01
Inter-segmental coordination can be influenced by chronic low back pain (CLBP). The sagittal plane lower extremities inter-segmental coordination pattern and variability, in conjunction with the pelvis and trunk, were assessed in subjects with and without non-specific CLBP during free-speed walking. Kinematic data were collected from 10 non-specific CLBP and 10 non-CLBP control volunteers while the subjects were walking at their preferred speed. Sagittal plane time-normalized segmental angles and velocities were used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify the trunk-pelvis and bilateral pelvis-thigh, thigh-shank and shank-foot coordination pattern and variability over the stance and swing phases of gait. Mann-Whitney U test was employed to compare the means of DP and MARP values between two groups (same side comparison). Statistical analysis revealed more in-phase/less variable trunk-pelvis coordination in the CLBP group (P<0.05). CLBP group demonstrated less variable right or left pelvis-thigh coordination pattern (P<0.05). Moreover, the left thigh-shank and left shank-foot MARP values in the CLBP group, were more in-phase than left MARP values in the non-CLBP control group during the swing phase (P<0.05). In conclusion, the sagittal plane lower extremities, pelvis and trunk coordination pattern and variability could be generally affected by CLBP during walking. These changes can be possible compensatory strategies of the motor control system which can be considered in the CLBP subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Ericsson, Ingegerd
2011-01-01
Background: Studies have shown that some children do not participate in sport or exercise because they did not establish early coordination and basic motor skills while at school. Basic motor skills form significant parts of the goals for students to achieve in the Swedish school subject Physical Education and Health (PEH). Aims: The aim was to…
Anthropometry, Physical Fitness and Coordination of Young Figure Skaters of Different Levels.
Mostaert, M; Deconinck, F; Pion, J; Lenoir, M
2016-06-01
The aim of the present study was to identify anthropometric, physical, coordinative and ice-skating specific characteristics that discriminate young elite ice skaters from non-elite skaters and their non-skating peers. 32 skaters aged 9-12 years old (11 elites and 21 non-elites) voluntarily participated in the study. They were submitted to 5 anthropometric, 7 physical, 3 coordination and 5 ice-skating specific tests. Reference values of a representative healthy non-skating sample were taken from the Flemish Sports Compass dataset. Figure skaters appeared to be predominantly average mature (93.8%), were lighter and leaner than the reference sample, and demonstrated better physical characteristics and motor coordination. There was no difference between the elite and non-elite group regarding maturity status and anthropometric or physical parameters. Still, elite skaters scored better than non-elites on the coordination tests jumping sideways and tended to do so on the moving sideways test. Profiles of figure skaters differ clearly from a reference population, while non-sport-specific motor coordination tests allow discrimination between elite and non-elite skaters. The relevance of these findings with respect to talent detection and identification in young ice skaters are discussed. © Georg Thieme Verlag KG Stuttgart · New York.
ERIC Educational Resources Information Center
King, Bradley R.; Harring, Jeffrey R.; Oliveira, Marcio A.; Clark, Jane E.
2011-01-01
Previous research investigating children with Developmental Coordination Disorder (DCD) has consistently reported increased intra- and inter-individual variability during motor skill performance. Statistically characterizing this variability is not only critical for the analysis and interpretation of behavioral data, but also may facilitate our…
Current Approaches to Intervention in Children with Developmental Coordination Disorder
ERIC Educational Resources Information Center
Sugden, David
2007-01-01
This review analyzes approaches to intervention in children with developmental coordination disorder within the framework of how children develop and learn motor skills, drawing upon maturational, cognitive, and dynamic systems models. The approaches to intervention are divided into two categories: (1) process or deficit-oriented approaches; and…
Roadside Judgments in Children with Developmental Co-ordination Disorder
ERIC Educational Resources Information Center
Purcell, Catherine; Wann, John P.; Wilmut, Kate; Poulter, Damian
2011-01-01
As pedestrians, the perceptual ability to accurately judge the relative rate of approaching vehicles and select a suitable crossing gap requires sensitivity to looming. It also requires that crossing judgments are synchronized with motoric capabilities. Previous research has suggested that children with Developmental Co-ordination Disorder (DCD)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Ming-Huan; Institute of Neuroscience, National Changchi University, Taipei, Taiwan; Chung, Shiang-Sheng
Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDAmore » receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene-induced reward enhancement.« less
Spinal motor and sensory neurons are androgen targets in an acrobatic bird.
Fuxjager, Matthew J; Schultz, J Douglas; Barske, Julia; Feng, Ni Y; Fusani, Leonida; Mirzatoni, Anahid; Day, Lainy B; Hau, Michaela; Schlinger, Barney A
2012-08-01
Sex steroids affect the motivation to court mates, but less is known about how they influence motor movements associated with courtship behavior. Steroidal control of motor function may be especially important for species in which courtship requires superior strength, stamina, and neuromuscular coordination. Here we use the golden-collared manakin (Manacus vitellinus) to examine whether the neuromuscular circuitry that controls motoric aspects of courtship activity is sensitive to androgens. Males of this tropical species attract mates by rapidly jumping among branches in a courtship arena and using their wings to produce loud wing snaps. Testosterone activates this display via the androgen receptor (AR), and past work reveals that manakins injected with radio-labeled T ((3)H-T) accumulate radioactivity in the spinal cord. Thus, we used quantitative PCR to measure AR, estrogen receptor-α (ER-α) subtype, and aromatase (AROM) mRNA in spinal cords of male and female manakins and zebra finches. Expression of AR, but not ER-α or aromatase, was higher throughout the manakin spinal cord compared with the zebra finch. Next, we tested whether AR-expressing skeletal muscles are innervated by motor and sensory neurons that also express AR. To do this, we backfilled spinal neurons by injecting fluorescent tracers into select AR-sensitive wing and leg muscles of wild caught male and female manakins. We then removed these spinal cords and measured AR expression with in situ hybridization. Both sexes showed abundant AR mRNA in the cervical and lumbosacral spinal enlargements as well as in dorsal root ganglia attached to these enlargements. Together our findings suggest that androgens act widely on peripheral motor and sensory circuits in golden-collared manakins to influence wing snapping displays.
Children with Heavy Prenatal Alcohol Exposure Experience Reduced Control of Isotonic Force
Nguyen, Tanya T.; Levy, Susan S.; Riley, Edward P.; Thomas, Jennifer D.; Simmons, Roger W.
2013-01-01
Background Heavy prenatal alcohol exposure can result in diverse and extensive damage to the central nervous system, including the cerebellum, basal ganglia, and cerebral cortex. Given that these brain regions are involved in the generation and maintenance of motor force, we predicted that prenatal alcohol exposure would adversely affect this parameter of motor control. We previously reported that children with gestational alcohol exposure experience significant deficits in regulating isometric (i.e., constant) force. The purpose of the present study was to determine if these children exhibit similar deficits when producing isotonic (i.e., graded) force. Methods Children with heavy prenatal alcohol exposure and typically developing children completed a series of isotonic force contractions by exerting force on a load cell to match a criterion target force displayed on a computer monitor. Two levels of target force (5% or 20% of maximum voluntary force) were investigated in combination with varying levels of visual feedback. Results Compared to controls, children with heavy prenatal alcohol exposure generated isotonic force signals that were less accurate, more variable, and less complex in the time domain compared to control children. Specifically, interactions were found between group and visual feedback for response accuracy and signal complexity, suggesting that these children have greater difficulty altering their motor output when visual feedback is low. Conclusions These data suggest that prenatal alcohol exposure produces deficits in regulating isotonic force, which presumably result from alcohol-related damage to developing brain regions involved in motor control. These children will most likely experience difficulty performing basic motor skills and daily functional skills that require coordination of finely graded force. Therapeutic strategies designed to increase feedback and, consequently, facilitate visual-motor integration could improve isotonic force production in these children. PMID:22834891
Postural Coordination during Socio-motor Improvisation
Gueugnon, Mathieu; Salesse, Robin N.; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G.; Marin, Ludovic
2016-01-01
Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193
Postural Coordination during Socio-motor Improvisation.
Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic
2016-01-01
Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.
Li, Hui-Jie; Wang, Peng-Yun; Jiang, Yang; Chan, Raymond C K; Wang, Hua-Li; Li, Juan
2012-06-07
Neurological abnormalities have been reported in people with amnestic mild cognitive impairment (aMCI). The current study aimed to examine the prevalence of neurological soft signs (NSS) in this clinical group and to examine the relationship of NSS to other neuropsychological performances. Twenty-nine people with aMCI and 28 cognitively healthy elderly people were recruited for the present study. The NSS subscales (motor coordination, sensory integration, and disinhibition) of the Cambridge Neurological Inventory and a set of neuropsychological tests were administered to all the participants. People with aMCI exhibited significantly more motor coordination signs, disinhibition signs, and total NSS than normal controls. Correlation analysis showed that the motor coordination subscale score and total score of NSS were significantly inversely correlated with the combined Z-score of neuropsychological tests in aMCI group. These preliminary findings suggested that people with aMCI demonstrated a higher prevalence of NSS compared to healthy elderly people. Moreover, NSS was found to be inversely correlated with the neuropsychological performances in persons with aMCI. When taken together, these findings suggested that NSS may play a potential important role and serve as a tool to assist in the early detection of aMCI.
Arum, Oge; Rasche, Zachary Andrew; Rickman, Dustin John; Bartke, Andrzej
2013-01-01
Ames dwarf (Prop1 df/df) mice are remarkably long-lived and exhibit many characteristics of delayed aging and extended healthspan. Caloric restriction (CR) has similar effects on healthspan and lifespan, and causes an extension of longevity in Ames dwarf mice. Our study objective was to determine whether Ames dwarfism or CR influence neuromusculoskeletal function in middle-aged (82 ± 12 weeks old) or old (128 ± 14 w.o.) mice. At the examined ages, strength was improved by dwarfism, CR, and dwarfism plus CR in male mice; balance/ motor coordination was improved by CR in old animals and in middle-aged females; and agility/ motor coordination was improved by a combination of dwarfism and CR in both genders of middle-aged mice and in old females. Therefore, extension of longevity by congenital hypopituitarism is associated with improved maintenance of the examined measures of strength, agility, and motor coordination, key elements of frailty during human aging, into advanced age. This study serves as a particularly important example of knowledge related to addressing aging-associated diseases and disorders that results from studies in long-lived mammals. PMID:24155868
Arum, Oge; Rasche, Zachary Andrew; Rickman, Dustin John; Bartke, Andrzej
2013-01-01
Ames dwarf (Prop1 (df/df) ) mice are remarkably long-lived and exhibit many characteristics of delayed aging and extended healthspan. Caloric restriction (CR) has similar effects on healthspan and lifespan, and causes an extension of longevity in Ames dwarf mice. Our study objective was to determine whether Ames dwarfism or CR influence neuromusculoskeletal function in middle-aged (82 ± 12 weeks old) or old (128 ± 14 w.o.) mice. At the examined ages, strength was improved by dwarfism, CR, and dwarfism plus CR in male mice; balance/ motor coordination was improved by CR in old animals and in middle-aged females; and agility/ motor coordination was improved by a combination of dwarfism and CR in both genders of middle-aged mice and in old females. Therefore, extension of longevity by congenital hypopituitarism is associated with improved maintenance of the examined measures of strength, agility, and motor coordination, key elements of frailty during human aging, into advanced age. This study serves as a particularly important example of knowledge related to addressing aging-associated diseases and disorders that results from studies in long-lived mammals.
Follow-up study of children with cerebral coordination disturbance (CCD, Vojta).
Imamura, S; Sakuma, K; Takahashi, T
1983-01-01
713 children (from newborn to 12-month-old) with delayed motor development were carefully examined and classified into normal, very light cerebral coordination disturbance (CCD, Vojta), light CCD, moderate CCD, severe CCD, suspected cerebral palsy (CP) and other diseases at their first visit, and were followed up carefully. Finally, 89.0% of very light CCD, 71.4% of light CCD, 56.0% of moderate CCD and 30.0% of severe CCD developed into normal. 59.5% of moderate CCD and 45.5% of severe CCD among children who were given Vojta's physiotherapy developed into normal. The classification of cases with delayed motor development into very light, light, moderate and severe CCD based on the extent of abnormality in their postural reflexes is useful and well correlated with their prognosis. Treatment by Vojta's method seems to be efficient and helpful for young children with delayed motor development.
Action potentials drive body wall muscle contractions in Caenorhabditis elegans
Gao, Shangbang; Zhen, Mei
2011-01-01
The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel–dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we show that C. elegans body wall muscles fire all-or-none, calcium-dependent action potentials that are driven by the L-type voltage-gated calcium and Kv1 voltage-dependent potassium channels. We further demonstrate that the excitatory and inhibitory motoneuron activities regulate the frequency of action potentials to coordinate muscle contraction and relaxation, respectively. This study provides direct evidence for the dual-modulatory model of the C. elegans motor circuit; moreover, it reveals a mode of motor control in which muscle cells integrate graded inputs of the nervous system and respond with all-or-none electrical signals. PMID:21248227
Developmental Relations Among Motor and Cognitive Processes and Mathematics Skills.
Kim, Helyn; Duran, Chelsea A K; Cameron, Claire E; Grissmer, David
2018-03-01
This study explored transactional associations among visuomotor integration, attention, fine motor coordination, and mathematics skills in a diverse sample of one hundred thirty-five 5-year-olds (kindergarteners) and one hundred nineteen 6-year-olds (first graders) in the United States who were followed over the course of 2 school years. Associations were dynamic, with more reciprocal transactions occurring in kindergarten than in the later grades. Specifically, visuomotor integration and mathematics exhibited ongoing reciprocity in kindergarten and first grade, attention contributed to mathematics in kindergarten and first grade, mathematics contributed to attention across the kindergarten year only, and fine motor coordination contributed to mathematics indirectly, through visuomotor integration, across kindergarten and first grade. Implications of examining the hierarchical interrelations among processes underlying the development of children's mathematics skills are discussed. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N
2016-01-04
The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.
Fujii, Shinya; Lulic, Tea; Chen, Joyce L.
2016-01-01
Motor learning is a process whereby the acquisition of new skills occurs with practice, and can be influenced by the provision of feedback. An important question is what frequency of feedback facilitates motor learning. The guidance hypothesis assumes that the provision of less augmented feedback is better than more because a learner can use his/her own inherent feedback. However, it is unclear whether this hypothesis holds true for all types of augmented feedback, including for example sonified information about performance. Thus, we aimed to test what frequency of augmented sonified feedback facilitates the motor learning of a novel joint coordination pattern. Twenty healthy volunteers first reached to a target with their arm (baseline phase). We manipulated this baseline kinematic data for each individual to create a novel target joint coordination pattern. Participants then practiced to learn the novel target joint coordination pattern, receiving either feedback on every trial i.e., 100% feedback (n = 10), or every other trial, i.e., 50% feedback (n = 10; acquisition phase). We created a sonification system to provide the feedback. This feedback was a pure tone that varied in intensity in proportion to the error of the performed joint coordination relative to the target pattern. Thus, the auditory feedback contained information about performance in real-time (i.e., “concurrent, knowledge of performance feedback”). Participants performed the novel joint coordination pattern with no-feedback immediately after the acquisition phase (immediate retention phase), and on the next day (delayed retention phase). The root-mean squared error (RMSE) and variable error (VE) of joint coordination were significantly reduced during the acquisition phase in both 100 and 50% feedback groups. There was no significant difference in VE between the groups at immediate and delayed retention phases. However, at both these retention phases, the 100% feedback group showed significantly smaller RMSE than the 50% group. Thus, contrary to the guidance hypothesis, our findings suggest that the provision of more, concurrent knowledge of performance auditory feedback during the acquisition of a novel joint coordination pattern, may result in better skill retention. PMID:27375414
Neural network connectivity differences in children who stutter
Zhu, David C.
2013-01-01
Affecting 1% of the general population, stuttering impairs the normally effortless process of speech production, which requires precise coordination of sequential movement occurring among the articulatory, respiratory, and resonance systems, all within millisecond time scales. Those afflicted experience frequent disfluencies during ongoing speech, often leading to negative psychosocial consequences. The aetiology of stuttering remains unclear; compared to other neurodevelopmental disorders, few studies to date have examined the neural bases of childhood stuttering. Here we report, for the first time, results from functional (resting state functional magnetic resonance imaging) and structural connectivity analyses (probabilistic tractography) of multimodal neuroimaging data examining neural networks in children who stutter. We examined how synchronized brain activity occurring among brain areas associated with speech production, and white matter tracts that interconnect them, differ in young children who stutter (aged 3–9 years) compared with age-matched peers. Results showed that children who stutter have attenuated connectivity in neural networks that support timing of self-paced movement control. The results suggest that auditory-motor and basal ganglia-thalamocortical networks develop differently in stuttering children, which may in turn affect speech planning and execution processes needed to achieve fluent speech motor control. These results provide important initial evidence of neurological differences in the early phases of symptom onset in children who stutter. PMID:24131593
Pitti, Alexandre; Lungarella, Max; Kuniyoshi, Yasuo
2009-01-01
Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots. PMID:20011216
Bouabid, Safa; Delaville, Claire; De Deurwaerdère, Philippe; Lakhdar-Ghazal, Nouria; Benazzouz, Abdelhamid
2014-01-01
Manganese neurotoxicity is associated with motor and cognitive disturbances known as Manganism. However, the mechanisms underlying these deficits remain unknown. Here we investigated the effects of manganese intoxication on motor and non-motor parkinsonian-like deficits such as locomotor activity, motor coordination, anxiety and “depressive-like” behaviors. Then, we studied the impact of this intoxication on the neuronal activity, the globus pallidus (GP) and subthalamic nucleus (STN). At the end of experiments, post-mortem tissue level of the three monoamines (dopamine, norepinephrine and serotonin) has been determined. The experiments were carried out in adult Sprague-Dawley rats, daily treated with MnCl2 (10 mg/kg/, i.p.) for 5 weeks. We show that manganese progressively reduced locomotor activity as well as motor coordination in parallel with the manifestation of anxiety and “depressive-like” behaviors. Electrophysiological results show that, while majority of GP and STN neurons discharged regularly in controls, manganese increased the number of GP and STN neurons discharging irregularly and/or with bursts. Biochemical results show that manganese significantly decreased tissue levels of norepinephrine and serotonin with increased metabolism of dopamine in the striatum. Our data provide evidence that manganese intoxication is associated with impaired neurotransmission of monoaminergic systems, which is at the origin of changes in basal ganglia neuronal activity and the manifestation of motor and non-motor deficits similar to those observed in atypical Parkinsonism. PMID:24896650
Aoi, Shinya; Funato, Tetsuro
2016-03-01
Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Axford, Caitlin; Joosten, Annette V; Harris, Courtenay
2018-04-01
Children are reported to spend less time engaged in outdoor activity and object-related play than in the past. The increased use and mobility of technology, and the ease of use of tablet devices are some of the factors that have contributed to these changes. Concern has been raised that the use of such screen and surface devices in very young children is reducing their fine motor skill development. We examined the effectiveness of iPad applications that required specific motor skills designed to improve fine motor skills. We conducted a two-group non-randomised controlled trial with two pre-primary classrooms (53 children; 5-6 years) in an Australian co-educational school, using a pre- and post-test design. The effectiveness of 30 minutes daily use of specific iPad applications for 9 weeks was compared with a control class. Children completed the Beery Developmental Test of Visual Motor Integration (VMI) and observation checklist, the Shore Handwriting Screen, and self-care items from the Hawaii Early Learning Profile. On post testing, the experimental group made a statistically and clinically significant improvement on the VMI motor coordination standard scores with a moderate clinical effect size (P < 0.001; d = 0.67). Children's occupational performance in daily tasks also improved. Preliminary evidence was gained for using the iPad, with these motor skill-specific applications as an intervention in occupational therapy practice and as part of at home or school play. © 2018 Occupational Therapy Australia.
Caçola, Priscila; Romero, Michael; Ibana, Melvin; Chuang, Jennifer
2016-01-01
Children with Developmental Coordination Disorder (DCD) have an increased risk for mental health difficulties. The present pilot study aimed to determine whether distinct group intervention programs improved several psychological variables (anxiety; adequacy and predilection for physical activity; participation, preferences, and enjoyment for activities) and motor skills from the perspective of a child with DCD as well as parental perceptions of motor skills, rate of function, and strengths and difficulties. Eleven children participated in Program A and thirteen in Program B. Both involved 10 sessions of 1 h each. Program A focused on task-oriented activities in a large group involving motor skill training and collaboration and cooperation among children, while Program B was composed of three groups with a direct goal-oriented approach for training of skills chosen by the children. Results indicated that children improved motor skills after both programs, but showed distinct results in regards to other variables - after Program A, children showed higher anxiety and lower levels of enjoyment, even though parents detected an improvement in rate of function and a decrease in peer problems. With Program B, children decreased anxiety levels, and parents noted a higher control of movement of their children. Regardless of the group approach, children were able to improve motor skills. However, it is possible that the differences between groups may have influenced parents' perception of their children's motor and psychological skills, as well as children's perception of anxiety. Copyright © 2016 Elsevier Inc. All rights reserved.
Sex Differences in the Pathway from Low Birth Weight to Inattention/Hyperactivity
ERIC Educational Resources Information Center
Martel, Michelle M.; Lucia, Victoria C.; Nigg, Joel T.; Breslau, Naomi
2007-01-01
Inattention/hyperactivity is a childhood outcome of low birth weight. However, the mechanisms by which low birth weight leads to inattention/hyperactivity are unclear. This study examined arousal, activation, motor speed, and motor coordination as possible mechanisms, attending to sex differences. 823 children (400 males) from Detroit and…
ERIC Educational Resources Information Center
Bloch, Michael H.; Sukhodolsky, Denis G.; Leckman, James F.; Schultz, Robert T.
2006-01-01
Background: Most children with Tourette's syndrome (TS) experience a significant decline in tic symptoms during adolescence. Currently no clinical measures have been identified that can predict whose tic symptoms will persist into adulthood. Patients with TS have deficits on neuropsychological tests involving fine-motor coordination and…
ERIC Educational Resources Information Center
Sukhodolsky, Denis G.; Landeros-Weisenberger, Angeli; Scahill, Lawrence; Leckman, James F.; Schultz, Robert T.
2010-01-01
Objective: Neuropsychological functioning in children with Tourette syndrome (TS) has been characterized by subtle deficits in response inhibition, visual-motor integration, and fine-motor coordination. The association of these deficits with the tics of the TS versus co-occurring attention-deficit/hyperactivity disorder (ADHD) has not been well…
Handwriting-Based Model for Identification of Developmental Disorders among North Indian Children
ERIC Educational Resources Information Center
Dhall, Jasmine Kaur
2016-01-01
Handwriting execution is based on the cognitive, kinesthetic, motor skills, and manual co-ordination skills of an individual. The deterioration in handwriting quality is a common implication of neurological disorders. Difficulty and degradation in handwriting has been attributed to the sensory motor deficits prevalent in developmental disorders.…
Developmental Relations among Motor and Cognitive Processes and Mathematics Skills
ERIC Educational Resources Information Center
Kim, Helyn; Duran, Chelsea A. K.; Cameron, Claire E.; Grissmer, David
2018-01-01
This study explored transactional associations among visuomotor integration, attention, fine motor coordination, and mathematics skills in a diverse sample of one hundred thirty-five 5-year-olds (kindergarteners) and one hundred nineteen 6-year-olds (first graders) in the United States who were followed over the course of 2 school years.…
ERIC Educational Resources Information Center
MacPherson, Megan K.; Smith, Anne
2013-01-01
Purpose: To investigate the potential effects of increased sentence length and syntactic complexity on the speech motor control of children who stutter (CWS). Method: Participants repeated sentences of varied length and syntactic complexity. Kinematic measures of articulatory coordination variability and movement duration during perceptually…
[Children with developmental coordination disorder have difficulty with action representation].
Gabbard, Carl; Cacola, Priscila
The study of children with developmental coordination disorder (DCD) has emerged as a vibrant line of inquiry over the last two decades. The literature indicates quite clearly that children with DCD display deficits with an array of perceptual-motor and daily living skills. The movements of children with DCD are often described as clumsy and uncoordinated and lead to difficulties with performing many of the activities of daily living and sports that typically developing children perform easily. It has been hypothesized, based on limited research, that an underlying problem is a deficit in generating and/or monitoring an action representation termed the internal modeling deficit hypothesis. According to the hypothesis, children with DCD have significant limitations in their ability to accurately generate and utilize internal models of motor planning and control. The focus of this review is on one of the methods used to examine action representation-motor imagery, which theorists argue provides a window into the process of action representation. Included are research methods and possible brain structures involved. An addition, a paradigm unique with this population-estimation of reachability (distance) via motor imagery, will be described.
Zhang, Jingming; Lanuza, Guillermo M.; Britz, Olivier; Wang, Zhi; Siembab, Valerie C.; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J.; Frank, Eric; Goulding, Martyn
2014-01-01
SUMMARY The reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally-located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. PMID:24698273