A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle.
James, Rob S
2013-08-01
Environmental temperature varies spatially and temporally, affecting many aspects of an organism's biology. In ectotherms, variation in environmental temperature can cause parallel changes in skeletal muscle temperature, potentially leading to significant alterations in muscle performance. Endotherms can also undergo meaningful changes in skeletal muscle temperature that can affect muscle performance. Alterations in skeletal muscle temperature can affect contractile performance in both endotherms and ectotherms, changing the rates of force generation and relaxation, shortening velocity, and consequently mechanical power. Such alterations in the mechanical performance of skeletal muscle can in turn affect locomotory performance and behaviour. For instance, as temperature increases, a consequent improvement in limb muscle performance causes some lizard species to be more likely to flee from a potential predator. However, at lower temperatures, they are much more likely to stand their ground, show threatening displays and even bite. There is no consistent pattern in reported effects of temperature on skeletal muscle fatigue resistance. This review focuses on the effects of temperature variation on skeletal muscle performance in vertebrates, and investigates the thermal sensitivity of different mechanical measures of skeletal muscle performance. The plasticity of thermal sensitivity in skeletal muscle performance has been reviewed to investigate the extent to which individuals can acclimate to chronic changes in their thermal environment. The effects of thermal sensitivity of muscle performance are placed in a wider context by relating thermal sensitivity of skeletal muscle performance to aspects of vertebrate species distribution.
Muscle MRI findings in facioscapulohumeral muscular dystrophy.
Gerevini, Simonetta; Scarlato, Marina; Maggi, Lorenzo; Cava, Mariangela; Caliendo, Giandomenico; Pasanisi, Barbara; Falini, Andrea; Previtali, Stefano Carlo; Morandi, Lucia
2016-03-01
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by extremely variable degrees of facial, scapular and lower limb muscle involvement. Clinical and genetic determination can be difficult, as molecular analysis is not always definitive, and other similar muscle disorders may have overlapping clinical manifestations. Whole-body muscle MRI examination for fat infiltration, atrophy and oedema was performed to identify specific patterns of muscle involvement in FSHD patients (30 subjects), and compared to a group of control patients (23) affected by other myopathies (NFSHD). In FSHD patients, we detected a specific pattern of muscle fatty replacement and atrophy, particularly in upper girdle muscles. The most frequently affected muscles, including paucisymptomatic and severely affected FSHD patients, were trapezius, teres major and serratus anterior. Moreover, asymmetric muscle involvement was significantly higher in FSHD as compared to NFSHD patients. In conclusion, muscle MRI is very sensitive for identifying a specific pattern of involvement in FSHD patients and in detecting selective muscle involvement of non-clinically testable muscles. Muscle MRI constitutes a reliable tool for differentiating FSHD from other muscular dystrophies to direct diagnostic molecular analysis, as well as to investigate FSHD natural history and follow-up of the disease. Muscle MRI identifies a specific pattern of muscle involvement in FSHD patients. Muscle MRI may predict FSHD in asymptomatic and severely affected patients. Muscle MRI of upper girdle better predicts FSHD. Muscle MRI may differentiate FSHD from other forms of muscular dystrophy. Muscle MRI may show the involvement of non-clinical testable muscles.
Fernandez-Gonzalo, Rodrigo; Fernandez-Gonzalo, Sol; Turon, Marc; Prieto, Cristina; Tesch, Per A; García-Carreira, Maria del Carmen
2016-04-06
Resistance exercise (RE) improves neuromuscular function and physical performance after stroke. Yet, the effects of RE emphasizing eccentric (ECC; lengthening) actions on muscle hypertrophy and cognitive function in stroke patients are currently unknown. Thus, this study explored the effects of ECC-overload RE training on skeletal muscle size and function, and cognitive performance in individuals with stroke. Thirty-two individuals with chronic stroke (≥6 months post-stroke) were randomly assigned into a training group (TG; n = 16) performing ECC-overload flywheel RE of the more-affected lower limb (12 weeks, 2 times/week; 4 sets of 7 maximal closed-chain knee extensions; <2 min of contractile activity per session) or a control group (CG; n = 16), maintaining daily routines. Before and after the intervention, quadriceps femoris volume, maximal force and power for each leg were assessed, and functional and dual task performance, and cognitive functions were measured. Quadriceps femoris volume of the more-affected leg increased by 9.4 % in TG. Muscle power of the more-affected, trained (48.2 %), and the less-affected, untrained limb (28.1 %) increased after training. TG showed enhanced balance (8.9 %), gait performance (10.6 %), dual-task performance, executive functions (working memory, verbal fluency tasks), attention, and speed of information processing. CG showed no changes. ECC-overload flywheel resistance exercise comprising 4 min of contractile activity per week offers a powerful aid to regain muscle mass and function, and functional performance in individuals with stroke. While the current intervention improved cognitive functions, the cause-effect relationship, if any, with the concomitant neuromuscular adaptations remains to be explored. Clinical Trials NCT02120846.
Manca, Andrea; Cabboi, Maria Paola; Ortu, Enzo; Ginatempo, Francesca; Dragone, Daniele; Zarbo, Ignazio Roberto; de Natale, Edoardo Rosario; Mureddu, Giovanni; Bua, Guido; Deriu, Franca
2016-06-01
The contralateral strength training (CST) effect is a transfer of muscle performance to the untrained limb following training of the contralateral side. The aim of this study was to explore, in individuals with multiple sclerosis (MS) presenting marked lower limb strength asymmetry, the effectiveness of CST on management of muscle weakness of the more-affected limb following training of the less-affected limb. A single-subject research design was used. Eight individuals with MS underwent 16 to 18 high-intensity training sessions of the less-affected ankle dorsiflexor muscles. The primary outcome measure of this single-system case series was maximal strength expressed as peak moment and maximal work. Secondary outcome measures were: Six-Minute-Walk Test, Timed "Up & Go" Test, 10-Meter Timed Walk Test, and Multiple Sclerosis Quality of Life-54 questionnaire. After the 6-week intervention, the contralateral more affected (untrained) limb showed a 22% to 24% increase in maximal strength. From pretest-posttest measurements, participants also performed significantly better on the clinical and functional secondary outcome measures. At the 12-week follow-up, the strength levels of the weaker untrained limb remained significantly superior to baseline levels in the majority (5 out of 8) of the outcome parameters. Considering the design used, the absence of a control group, and the sample size, these findings should be cautiously generalized and will need confirmation in a properly planned randomized controlled trial. The present proof-of-concept study shows, for the first time, the occurrence of the CST effect on muscle performance of ankle dorsiflexor muscles in people with MS. These preliminary findings reveal new potential implications for CST as a promising rehabilitation approach to those conditions where unilateral muscle weakness does not allow or makes difficult performing conventional strength training of the weaker limb. © 2016 American Physical Therapy Association.
NASA Technical Reports Server (NTRS)
Lafevers, E. V.; Nicogossian, A. E.; Hursta, W. N.
1976-01-01
Both integration and frequency analyses of the electromyograms from voluntary contractions were performed in one crewman of the Apollo-Soyuz Test Project mission. Of particular interest were changes in excitability, electrical efficiency, and fatigability. As a result of 9 days of weightlessness, muscle excitability was shown to increase; muscle electrical efficiency was found to decrease in calf muscles and to increase in arm muscles; and fatigability was found to increase significantly, as shown by spectral power shifts into lower frequencies. It was concluded from this study that skeletal muscles are affected by the disuse of weightlessness early in the period of weightlessness, antigravity muscles seem most affected by weightlessness, and exercise may abrogate the weightlessness effect. It was further concluded that electromyography is a sensitive tool for measuring spaceflight muscle effects.
Hierarchy of Dysfunction Related to Dressing Performance in Stroke Patients: A Path Analysis Study.
Fujita, Takaaki; Nagayama, Hirofumi; Sato, Atsushi; Yamamoto, Yuichi; Yamane, Kazuhiro; Otsuki, Koji; Tsuchiya, Kenji; Tozato, Fusae
2016-01-01
Previous reports indicated that various dysfunctions caused by stroke affect the level of independence in dressing. These dysfunctions can be hierarchical, and these effects on dressing performance can be complicated in stroke patients. However, there are no published reports focusing on the hierarchical structure of the relationships between the activities of daily living and balance function, motor and sensory functions of the affected lower limb, strength of the abdominal muscles and knee extension on the unaffected side, and visuospatial deficits. The purpose of this study was to elucidate the hierarchical and causal relationships between dressing performance and these dysfunctions in stroke patients. This retrospective study included 104 first-time stroke patients. The causal relationship between the dressing performance and age, time post stroke, balance function, motor and sensory functions of the affected lower limb, strength of the abdominal muscles and knee extension on the unaffected side, and visuospatial deficits were examined using path analysis. A hypothetical path model was created based on previous studies, and the goodness of fit between the data and model were verified. A modified path model was created that achieved an almost perfect fit to the data. Balance function and abdominal muscle strength have direct effects on dressing performance, with standardized direct effect estimates of 0.78 and 0.15, respectively. Age, motor and sensory functions of the affected lower limb, and strength of abdominal muscle and knee extension on the unaffected side have indirect effects on dressing by influencing balance function. Our results suggest that dressing performance depends strongly on balance function, and it is mainly influenced by the motor function of the affected lower limb.
NASA Technical Reports Server (NTRS)
2003-01-01
The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.
Cammarato, Anthony; Dambacher, Corey M.; Knowles, Aileen F.; Kronert, William A.; Bodmer, Rolf
2008-01-01
Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders. PMID:18045988
2003-01-22
The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.
Lee, Dong Ryul; You, Joshua H; Lee, Nam Gi; Oh, Jin Hwan; Cha, You Jin
2009-01-01
This case study was conducted to determine Comprehensive Hand Repetitive Intensive Strengthening Training (CHRIST)-induced morphological changes in the commonly affected extensor carpi radialis (ECR) and triceps brachii (TRI) muscle and associated muscle strength and motor performance in a child with hemiparetic cerebral palsy (CP) using standardized clinical tests and ultrasound imaging. A single case study with pre-/post-test. A 4.9-year-old female, diagnosed with hemiparetic CP. The child received a 5-week course of CHRIST course, comprising of 60-minute periods a day, five times a week. A real-time ultrasound imaging was performed to determine the CHRIST-induced changes in cross-sectional area (CSA) of the ECR and TRI. Clinical tests including the modified Wolf Motor function test (WMFT), the modified Jebsen-taylor hand function test (Jebsen hand) and the modified Pediatric Motor Activity Log (PMAL) questionnaire were used to compare the intervention-related changes in motor performance in upper extremity. Ultrasound imaging data showed that the CSAs of both ECR and TRI muscles of the affected upper limb at relaxation and contraction states were enhanced and these therapy-induced morphological changes were associated with enhanced muscle strength and gross motor performance in reaching and grasping skills. Our results suggest that the CHRIST is effective in treating muscle weakness and motor function in a child with hemiparetic CP. This is the first evidence in literature that might shed light on the therapeutic efficacy of our novel intervention on muscle size, associated muscle strength and motor improvement.
Abaïdia, Abd-Elbasset; Delecroix, Barthélémy; Leduc, Cédric; Lamblin, Julien; McCall, Alan; Baquet, Georges; Dupont, Grégory
2017-01-01
Abaïdia, A-E, Delecroix, B, Leduc, C, Lamblin, J, McCall, A, Baquet, G, and Dupont, G. Effects of a strength training session after an exercise inducing muscle damage on recovery kinetics. J Strength Cond Res 31(1): 115-125, 2017-The purpose of this study was to investigate the effects of an upper-limb strength training session the day after an exercise inducing muscle damage on recovery of performance. In a randomized crossover design, subjects performed the day after the exercise, on 2 separate occasions (passive vs. active recovery conditions) a single-leg exercise (dominant in one condition and nondominant in the other condition) consisting of 5 sets of 15 eccentric contractions of the knee flexors. Active recovery consisted of performing an upper-body strength training session the day after the exercise. Creatine kinase, hamstring strength, and muscle soreness were assessed immediately and 20, 24, and 48 hours after exercise-induced muscle damage. The upper-body strength session, after muscle-damaging exercise accelerated the recovery of slow concentric force (effect size = 0.65; 90% confidence interval = -0.06 to 1.32), but did not affect the recovery kinetics for the other outcomes. The addition of an upper-body strength training session the day after muscle-damaging activity does not negatively affect the recovery kinetics. Upper-body strength training may be programmed the day after a competition.
Spillane, Mike; Schwarz, Neil; Willoughby, Darryn S
2014-12-01
This study determined the effects of heavy resistance training and peri-exercise ergogenic multi-ingredient nutritional supplement ingestion on blood and skeletal markers of muscle protein synthesis (MPS), body composition, and muscle performance. Twenty-four college-age males were randomly assigned to either a multi-ingredient SizeOn Maximum Performance (SIZE) or protein/carbohydrate/creatine (PCC) comparator supplement group in a double-blind fashion. Body composition and muscle performance were assessed, and venous blood samples and muscle biopsies were obtained before and after 6 weeks of resistance training and supplementation. Data were analyzed by 2-way ANOVA (p ≤ 0.05). Total body mass, body water, and fat mass were not differentially affected (p > 0.05). However, fat-free mass was significantly increased in both groups in response to resistance training (p = 0.037). Lower-body muscle strength (p = 0.029) and endurance (p = 0.027) were significantly increased with resistance training, but not supplementation (p > 0.05). Serum insulin, IGF-1, GH, and cortisol were not differentially affected (p > 0.05). Muscle creatine content was significantly increased in both groups from supplementation (p = 0.044). Total muscle protein (p = 0.038), MHC 1 (p = 0.041), MHC 2A, (p = 0.029), total IRS- (p = 0.041), and total Akt (p = 0.011) were increased from resistance training, but not supplementation. In response to heavy resistance training when compared to PCC, the peri-exercise ingestion of SIZE did not preferentially improve body composition, muscle performance, and markers indicative of MPS. Key pointsIn response to 42 days of heavy resistance training and either SizeOn Maximum Performance or protein/carbohydrate/creatine supplementation, similar increases in muscle mass and strength in both groups occurred; however, the increases were not different between supplement groups.The supplementation of SizeOn Maximum Performance had no preferential effect on augmenting serum insulin, IGF-1, and GH, or in decreasing cortisol.While resistance training was effective in increasing total creatine content in skeletal muscle, myofibrillar protein, and the content of total IRS-1 and Akt, it was not preferentially due to SizeOn Maximum Performance supplementation.At the daily dose of 50 g, SizeOn Maximum Performance supplementation for 42 days combined with resistance training does not increases muscle mass and strength due to its ability to elevate serum hormones and growth factors or in its ability to augment skeletal muscle signaling pathway markers indicative of muscle protein synthesis when compared to an equivalent daily dose of protein/carbohydrate/creatine.
Zambonelli, Paolo; Zappaterra, Martina; Soglia, Francesca; Petracci, Massimiliano; Sirri, Federico; Cavani, Claudio; Davoli, Roberta
2016-12-01
White Striping and Wooden Breast (WS/WB) are abnormalities increasingly occurring in the fillets of high breast yield and growth rate chicken hybrids. These defects lead to consistent economic losses for poultry meat industry, as affected broiler fillets present an impaired visual appearance that negatively affects consumers' acceptability. Previous studies have highlighted in affected fillets a severely damaged muscle, showing profound inflammation, fibrosis, and lipidosis. The present study investigated the differentially expressed genes and pathways linked to the compositional changes observed in WS/WB breast muscles, in order to outline a more complete framework of the gene networks related to the occurrence of this complex pathological picture. The biochemical composition was performed on 20 pectoralis major samples obtained from high breast yield and growth rate broilers (10 affected vs. 10 normal) and 12 out of the 20 samples were used for the microarray gene expression profiling (6 affected vs. 6 normal). The obtained results indicate strong changes in muscle mineral composition, coupled to an increased deposition of fat. In addition, 204 differentially expressed genes (DEG) were found: 102 up-regulated and 102 down-regulated in affected breasts. The gene expression pathways found more altered in WS/WB muscles are those related to muscle development, polysaccharide metabolic processes, proteoglycans synthesis, inflammation, and calcium signaling pathway. On the whole, the findings suggest that a multifactorial and complex etiology is associated with the occurrence of WS/WB muscle abnormalities, contributing to further defining the transcription patterns associated with these myopathies. © 2016 Poultry Science Association Inc.
Jackson, Rachel W; Dembia, Christopher L; Delp, Scott L; Collins, Steven H
2017-06-01
The goal of this study was to gain insight into how ankle exoskeletons affect the behavior of the plantarflexor muscles during walking. Using data from previous experiments, we performed electromyography-driven simulations of musculoskeletal dynamics to explore how changes in exoskeleton assistance affected plantarflexor muscle-tendon mechanics, particularly for the soleus. We used a model of muscle energy consumption to estimate individual muscle metabolic rate. As average exoskeleton torque was increased, while no net exoskeleton work was provided, a reduction in tendon recoil led to an increase in positive mechanical work performed by the soleus muscle fibers. As net exoskeleton work was increased, both soleus muscle fiber force and positive mechanical work decreased. Trends in the sum of the metabolic rates of the simulated muscles correlated well with trends in experimentally observed whole-body metabolic rate ( R 2 =0.9), providing confidence in our model estimates. Our simulation results suggest that different exoskeleton behaviors can alter the functioning of the muscles and tendons acting at the assisted joint. Furthermore, our results support the idea that the series tendon helps reduce positive work done by the muscle fibers by storing and returning energy elastically. We expect the results from this study to promote the use of electromyography-driven simulations to gain insight into the operation of muscle-tendon units and to guide the design and control of assistive devices. © 2017. Published by The Company of Biologists Ltd.
Peragallo, Jason H
2017-05-01
Myasthenia gravis is a disorder of neuromuscular transmission that leads to fatigue of skeletal muscles and fluctuating weakness. Myasthenia that affects children can be classified into the following 3 forms: transient neonatal myasthenia, congenital myasthenic syndromes, and juvenile myasthenia gravis (JMG). JMG is an autoimmune disorder that has a tendency to affect the extraocular muscles, but can also affect all skeletal muscles leading to generalized weakness and fatigability. Respiratory muscles may be involved leading to respiratory failure requiring ventilator support. Diagnosis should be suspected clinically, and confirmatory diagnostic testing be performed, including serum acetylcholine receptor antibodies, repetitive nerve stimulation, and electromyography. Treatment for JMG includes acetylcholinesterase inhibitors, immunosuppressive medications, plasma exchange, intravenous immunoglobulins, and thymectomy. Children with myasthenia gravis require monitoring by a pediatric ophthalmologist for the development of amblyopia from ptosis or strabismus. Copyright © 2017 Elsevier Inc. All rights reserved.
The effects of ageing on respiratory muscle function and performance in older adults.
Watsford, Mark L; Murphy, Aron J; Pine, Matthew J
2007-02-01
The reduced physiological capacity evident with ageing may affect the ability to perform many tasks, potentially affecting quality of life. Previous research has clearly demonstrated the reduced capacity of the respiratory system with ageing and described the effect that habitual physical activity has upon this decline. This research aimed to examine the influence of age on respiratory muscle (RM) function and the relationship between RM function and physical performance within the Australian population. Seventy-two healthy older adults (50-79 years) were divided into males (n=36) and females (n=36) and examined for pulmonary function, RM strength, inspiratory muscle endurance (IME) and 1.6 km walking performance. There were no significant age by gender effects for any variables; however, ageing was significantly related to reduced RM function and walking capacity within each gender. Furthermore, regression analysis showed that the RM strength could be predicted from age. Partial correlations controlling for age indicated that expiratory muscle strength was significantly related to walking performance in males (p=0.04), whilst IME contributed significantly to walking performance in all participants. These within-gender effects and relationships indicate that RM strength is an important physiological variable to maintain in the older population, as it may be related to functional ability.
Body weight-supported training in Becker and limb girdle 2I muscular dystrophy.
Jensen, Bente R; Berthelsen, Martin P; Husu, Edith; Christensen, Sofie B; Prahm, Kira P; Vissing, John
2016-08-01
We studied the functional effects of combined strength and aerobic anti-gravity training in severely affected patients with Becker and Limb-Girdle muscular dystrophies. Eight patients performed 10-week progressive combined strength (squats, calf raises, lunges) and aerobic (walk/run, jogging in place or high knee-lift) training 3 times/week in a lower-body positive pressure environment. Closed-kinetic-chain leg muscle strength, isometric knee strength, rate of force development (RFD), and reaction time were evaluated. Baseline data indicated an intact neural activation pattern but showed compromised muscle contractile properties. Training (compliance 91%) improved functional leg muscle strength. Squat series performance increased 30%, calf raises 45%, and lunges 23%. Anti-gravity training improved closed-kinetic-chain leg muscle strength despite no changes in isometric knee extension strength and absolute RFD. The improved closed-kinetic-chain performance may relate to neural adaptation involving motor learning and/or improved muscle strength of other muscles than the weak knee extensors. Muscle Nerve 54: 239-243, 2016. © 2016 Wiley Periodicals, Inc.
Jeffriess, Matthew D.; Schultz, Adrian B.; McGann, Tye S.; Callaghan, Samuel J.; Lockie, Robert G.
2015-01-01
This study investigated the effects of preventative ankle taping on planned change-of-direction and reactive agility performance and peak ankle muscle activity in basketballers. Twenty male basketballers (age = 22.30 ± 3.97 years; height = 1.84 ± 0.09 meters; body mass = 85.96 ± 11.88 kilograms) with no ankle pathologies attended two testing sessions. Within each session, subjects completed six planned and six reactive randomized trials (three to the left and three to the right for each condition) of the Y-shaped agility test, which was recorded by timing lights. In one session, subjects had both ankles un-taped. In the other, both ankles were taped using a modified subtalar sling. Peak tibialis anterior, peroneus longus (PL), peroneus brevis (PB), and soleus muscle activity was recorded for both the inside and outside legs across stance phase during the directional change, which was normalized against 10-meter sprint muscle activity (nEMG). Both the inside and outside cut legs during the change-of-direction step were investigated. Repeated measures ANOVA determined performance time and nEMG differences between un-taped and taped conditions. There were no differences in planned change-of-direction or reactive agility times between the conditions. Inside cut leg PL nEMG decreased when taped for the planned left, reactive left, and reactive right cuts (p = 0.01). Outside leg PB and soleus nEMG increased during the taped planned left cut (p = 0.02). There were no other nEMG changes during the cuts with taping. Taping did not affect change-of-direction or agility performance. Inside leg PL activity was decreased, possibly due to the tape following the line of muscle action. This may reduce the kinetic demand for the PL during cuts. In conclusion, ankle taping did not significantly affect planned change-of-direction or reactive agility performance, and did not demonstrate large changes in activity of the muscle complex in healthy basketballers. Key points Ankle taping using the modified subtalar sling will not affect planned change-of-direction or reactive agility performance as measured by the Y-shaped agility test in healthy male basketball players. Ankle taping using the modified subtalar sling will also generally not affect the activity of the muscles about the ankle. There was some indication for reductions in the activity of the PL in the inside leg of certain cuts. The tape used for the modified subtalar sling may have supported the line of action of the PL, which could reduce the kinetic demand placed on this muscle, and provide a potential fatigue-reducing component for cutting actions. The subtalar sling taping of the ankle in healthy basketball players did not have any adverse effects on the muscle activity of the ankle-foot complex during planned change-of-direction or reactive agility performance tasks. PMID:26664285
Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight
NASA Technical Reports Server (NTRS)
Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.
2011-01-01
The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (p<0.05). Bench press total work was also significantly impaired, although maximal isometric force and power were not significantly affected. No changes were noted for measurements of central activation or force steadiness. Results for ISS crew were not analyzed due to the current small sample size. DISCUSSION: Significant reductions in lower body muscle performance metrics were observed in returning Shuttle crew and these adaptations are likely contributors to impaired functional tasks that are ambulatory in nature (See abstract Functional Task Test: 1). Interestingly, no significant changes in central activation capacity were detected. Therefore, impairments in muscle function in response to short-duration space flight are likely myocellular rather than neuromotor in nature.
Brorsson, Sofia; Nilsdotter, Anna; Thorstensson, Carina; Bremander, Ann
2014-05-15
Impaired hand function is common in patients with arthritis and it affects performance of daily activities; thus, hand exercises are recommended. There is little information on the extent to which the disease affects activation of the flexor and extensor muscles during these hand-dexterity tasks. The purpose of this study was to compare muscle activation during such tasks in subjects with arthritis and in a healthy reference group. Muscle activation was measured in m. extensor digitorium communis (EDC) and in m. flexor carpi radialis (FCR) with surface electromyography (EMG) in women with rheumatoid arthritis (RA, n = 20), hand osteoarthritis (HOA, n = 16) and in a healthy reference group (n = 20) during the performance of four daily activity tasks and four hand exercises. Maximal voluntary isometric contraction (MVIC) was measured to enable intermuscular comparisons, and muscle activation is presented as %MVIC. The arthritis group used a higher %MVIC than the reference group in both FCR and EDC when cutting with a pair of scissors, pulling up a zipper and-for the EDC-also when writing with a pen and using a key (p < 0.02). The exercise "rolling dough with flat hands" required the lowest %MVIC and may be less effective in improving muscle strength. Women with arthritis tend to use higher levels of muscle activation in daily tasks than healthy women, and wrist extensors and flexors appear to be equally affected. It is important that hand training programs reflect real-life situations and focus also on extensor strength.
Camargo, Marcela R; Barela, José A; Nozabieli, Andréa J L; Mantovani, Alessandra M; Martinelli, Alessandra R; Fregonesi, Cristina E P T
2015-01-01
The aims of this study were to evaluate aspects of balance, ankle muscle strength and spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy (DPN) and verify whether deficits in spatiotemporal gait parameters were associated with ankle muscle strength and balance performance. Thirty individuals with DPN and 30 control individuals have participated. Spatiotemporal gait parameters were evaluated by measuring the time to walk a set distance during self-selected and maximal walking speeds. Functional mobility and balance performance were assessed using the Functional Reach and the Time Up and Go tests. Ankle isometric muscle strength was assessed with a handheld digital dynamometer. Analyses of variance were employed to verify possible differences between groups and conditions. Multiple linear regression analysis was employed to uncover possible predictors of gait deficits. Gait spatiotemporal, functional mobility, balance performance and ankle muscle strength were affected in individuals with DPN. The Time Up and Go test performance and ankle muscle isometric strength were associated to spatiotemporal gait changes, especially during maximal walking speed condition. Functional mobility and balance performance are damaged in DPN and balance performance and ankle muscle strength can be used to predict spatiotemporal gait parameters in individuals with DPN. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Millet, Guillaume Y; Muthalib, Makii; Jubeau, Marc; Laursen, Paul B; Nosaka, Kazunori
2012-04-01
To test the hypothesis that hypoxia centrally affects performance independently of afferent feedback and peripheral fatigue, we conducted two experiments under complete vascular occlusion of the exercising muscle under different systemic O(2) environmental conditions. In experiment 1, 12 subjects performed repeated submaximal isometric contractions of the elbow flexor to exhaustion (RCTE) with inspired O(2) fraction fixed at 9% (severe hypoxia, SevHyp), 14% (moderate hypoxia, ModHyp), 21% (normoxia, Norm), or 30% (hyperoxia, Hyper). The number of contractions (performance), muscle (biceps brachii), and prefrontal near-infrared spectroscopy (NIRS) parameters and high-frequency paired-pulse (PS100) evoked responses to electrical muscle stimulation were monitored. In experiment 2, 10 subjects performed another RCTE in SevHyp and Norm conditions in which the number of contractions, biceps brachii electromyography responses to electrical nerve stimulation (M wave), and transcranial magnetic stimulation responses (motor-evoked potentials, MEP, and cortical silent period, CSP) were recorded. Performance during RCTE was significantly reduced by 10-15% in SevHyp (arterial O(2) saturation, SpO(2) = ∼75%) compared with ModHyp (SpO(2) = ∼90%) or Norm/Hyper (SpO(2) > 97%). Performance reduction in SevHyp occurred despite similar 1) metabolic (muscle NIRS parameters) and functional (changes in PS100 and M wave) muscle states and 2) MEP and CSP responses, suggesting comparable corticospinal excitability and spinal and cortical inhibition between SevHyp and Norm. It is concluded that, in SevHyp, performance and central drive can be altered independently of afferent feedback and peripheral fatigue. It is concluded that submaximal performance in SevHyp is partly reduced by a mechanism related directly to brain oxygenation.
A View of the Therapy for Bell's Palsy Based on Molecular Biological Analyses of Facial Muscles.
Moriyama, Hiroshi; Mitsukawa, Nobuyuki; Itoh, Masahiro; Otsuka, Naruhito
2017-12-01
Details regarding the molecular biological features of Bell's palsy have not been widely reported in textbooks. We genetically analyzed facial muscles and clarified these points. We performed genetic analysis of facial muscle specimens from Japanese patients with severe (House-Brackmann facial nerve grading system V) and moderate (House-Brackmann facial nerve grading system III) dysfunction due to Bell's palsy. Microarray analysis of gene expression was performed using specimens from the healthy and affected sides, and gene expression was compared. Changes in gene expression were defined as an affected side/healthy side ratio of >1.5 or <0.5. We observed that the gene expression in Bell's palsy changes with the degree of facial nerve palsy. Especially, muscle, neuron, and energy category genes tended to fluctuate with the degree of facial nerve palsy. It is expected that this study will aid in the development of new treatments and diagnostic/prognostic markers based on the severity of facial nerve palsy.
Skeletal muscle performance and ageing
Trouwborst, Inez; Clark, Brian C.
2017-01-01
Abstract The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co‐morbidity, and premature death. An important cause of physical limitations is the age‐related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation–contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. PMID:29151281
Skeletal muscle performance and ageing.
Tieland, Michael; Trouwborst, Inez; Clark, Brian C
2018-02-01
The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Tallis, Jason; Hill, Cameron; James, Rob S; Cox, Val M; Seebacher, Frank
2017-01-01
Obesity affects the major metabolic and cellular processes involved in skeletal muscle contractility. Surprisingly, the effect of obesity on isolated skeletal muscle performance remains unresolved. The present study is the first to examine the muscle-specific changes in contractility following dietary-induced obesity using an isolated muscle work-loop (WL) model that more closely represents in vivo muscle performance. Following 16-wk high-calorific feeding, soleus (SOL), extensor digitorum longus (EDL), and diaphragm (DIA) were isolated from female (CD-1) mice, and contractile performance was compared against a lean control group. Obese SOL produced greater isometric force; however, isometric stress (force per unit muscle area), absolute WL power, and normalized WL power (watts per kilogram muscle mass) were unaffected. Maximal isometric force and absolute WL power of the EDL were similar between groups. For both EDL and DIA, isometric stress and normalized WL power were reduced in the obese groups. Obesity caused a significant reduction in fatigue resistance in all cases. Our findings demonstrate a muscle-specific reduction in contractile performance and muscle quality that is likely related to in vivo mechanical role, fiber type, and metabolic profile, which may in part be related to changes in myosin heavy chain expression and AMP-activated protein kinase activity. These results infer that, beyond the additional requirement of moving a larger body mass, functional performance and quality of life may be further limited by poor muscle function in obese individuals. As such, a reduction in muscle performance may be a substantial contributor to the negative cycle of obesity. The effect of obesity on isolated muscle function is surprisingly underresearched. The present study is the first to examine the effects of obesity on isolated muscle performance using a method that more closely represents real-world muscle function. This work uniquely establishes a muscle-specific profile of mechanical changes in relation to underpinning mechanisms. These findings may be important to understanding the negative cycle of obesity and in designing interventions for improving weight status. Copyright © 2017 the American Physiological Society.
Proximal arm kinematics affect grip force-load force coordination
Vermillion, Billy C.; Lum, Peter S.
2015-01-01
During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P < 0.001). Biomechanical coupling between extrinsic hand muscles and the elbow joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio). PMID:26289460
Arjunan, Sridhar P; Kumar, Dinesh K; Naik, Ganesh
2014-01-01
The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG) was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC). Six features were considered in this study: normalised spectral index (NSM5), median frequency, root mean square, waveform length, normalised root mean square (NRMS), and increase in synchronization (IIS) index. Analysis of variance (ANOVA) and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P < 0.01), while NSM5 associated best with level of muscle contraction (%MVC) (P < 0.01). Both of these features were not affected by the intersubject variations (P > 0.05).
Arjunan, Sridhar P.; Kumar, Dinesh K.; Naik, Ganesh
2014-01-01
The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG) was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC). Six features were considered in this study: normalised spectral index (NSM5), median frequency, root mean square, waveform length, normalised root mean square (NRMS), and increase in synchronization (IIS) index. Analysis of variance (ANOVA) and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P < 0.01), while NSM5 associated best with level of muscle contraction (%MVC) (P < 0.01). Both of these features were not affected by the intersubject variations (P > 0.05). PMID:24995275
Reversed Palmaris Longus Muscle Causing Volar Forearm Pain and Ulnar Nerve Paresthesia.
Bhashyam, Abhiram R; Harper, Carl M; Iorio, Matthew L
2017-04-01
A case of volar forearm pain associated with ulnar nerve paresthesia caused by a reversed palmaris longus muscle is described. The patient, an otherwise healthy 46-year-old male laborer, presented after a previous unsuccessful forearm fasciotomy for complaints of exercise exacerbated pain affecting the volar forearm associated with paresthesia in the ulnar nerve distribution. A second decompressive fasciotomy was performed revealing an anomalous "reversed" palmaris longus, with the muscle belly located distally. Resection of the anomalous muscle was performed with full relief of pain and sensory symptoms. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Characterizing the Peano fluidic muscle and the effects of its geometry properties on its behavior
NASA Astrophysics Data System (ADS)
Veale, Allan Joshua; Xie, Sheng Quan; Anderson, Iain Alexander
2016-06-01
In this work, we explore the basic static and dynamic behavior of a hydraulically actuated Peano muscle and how its geometry affects key static and dynamic performance metrics. The Peano muscle, or pouch motor is a fluid powered artificial muscle. Similar to McKibben pneumatic artificial muscles (PAMs), it has the ability to generate the high forces of biological muscles with the low threshold pressure of pleated PAMs, but in a slim, easily distributed form. We found that Peano muscles have similar characteristics to other PAMs, but produce lower free-strains. A test rig capable of measuring high-speed flow rates with a Venturi tube revealed that their efficiency peaks at about 40% during highly dynamic movements. Peano muscles with more tubes and of a greater size do not move faster. Also, their muscle tubes should have an aspect ratio of at least 1:3 and channel width greater than 20% to maximize performance. These findings suggest that finite element modeling be used to optimize more complex Peano muscle geometries.
Primary Motor Cortex Representation of Handgrip Muscles in Patients with Leprosy
Rangel, Maria Luíza Sales; Sanchez, Tiago Arruda; Moreira, Filipe Azaline; Hoefle, Sebastian; Souto, Inaiacy Bittencourt; da Cunha, Antônio José Ledo Alves
2015-01-01
Background Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS). Methods In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1) the representations of the hand flexor digitorum superficialis (FDS), as well as of the intrinsic hand muscles abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM). All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of p<0.05. Findings Dynamometry performance of the patients’ most affected hand (MAH), was worse than that of the less affected hand (LAH) and of healthy controls participants (p = 0.031), confirming handgrip impairment. Motor threshold (MT) of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP) amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy. Conclusion Decreased sensory-motor function induced by leprosy affects handgrip muscle representation in M1. PMID:26203653
Monjo, Florian; Forestier, Nicolas
2017-08-01
We investigated whether and how the movement initiation condition (IC) encountered during the early movements performed following focal muscle fatigue affects the postural control of discrete ballistic movements. For this purpose, subjects performed shoulder flexions in a standing posture at maximal velocity under two movement IC, i.e., in self-paced conditions and submitted to a Stroop-like task in which participants had to trigger fast shoulder flexions at the presentation of incongruent colors. Shoulder flexion kinematics, surface muscle activity of focal and postural muscles as well as center-of-pressure kinematics were recorded. The initial IC and the order in which subjects were submitted to these two conditions were varied within two separate experimental sessions. IC schedule was repeated before and after fatigue protocols involving shoulder flexors. The aim of this fatigue procedure was to affect acceleration-generating capacities of focal muscles. In such conditions, the postural muscle activity preceding and accompanying movement execution is expected to decrease. Following fatigue, when subjects initially moved in self-paced conditions, postural muscle activity decreased and scaled to the lower focal peak acceleration. This postural strategy then transferred to the Stroop-like task. In contrast, when subjects initially moved submitted to the Stroop-like task, postural muscle activity did not decrease and this transferred to self-paced movements. Regarding the center-of-pressure peak velocity, which is indicative of the efficiency of the postural actions generated in stabilizing posture, no difference appeared between the two sessions post-fatigue. This highlights an optimization of the postural actions when subjects first moved in self-paced conditions, smaller postural muscle activation levels resulting in similar postural consequences. In conclusion, the level of neuromuscular activity associated with the postural control is affected and can be optimized by the initial movement IC experienced post-fatigue. Beyond the fundamental contributions arising from these results, we point out potential applications for trainers and sports instructors. Copyright © 2017 Elsevier B.V. All rights reserved.
Novakova, Katerina; Kummer, Oliver; Bouitbir, Jamal; Stoffel, Sonja D; Hoerler-Koerner, Ulrike; Bodmer, Michael; Roberts, Paul; Urwyler, Albert; Ehrsam, Rolf; Krähenbühl, Stephan
2016-02-01
More than 95% of the body carnitine is located in skeletal muscle, where it is essential for energy metabolism. Vegetarians ingest less carnitine and carnitine precursors and have lower plasma carnitine concentrations than omnivores. Principle aims of the current study were to assess the plasma and skeletal muscle carnitine content and physical performance of male vegetarians and matched omnivores under basal conditions and after L-carnitine supplementation. Sixteen vegetarians and eight omnivores participated in this interventional study with oral supplementation of 2 g L-carnitine for 12 weeks. Before carnitine supplementation, vegetarians had a 10% lower plasma carnitine concentration, but maintained skeletal muscle carnitine stores compared to omnivores. Skeletal muscle phosphocreatine, ATP, glycogen and lactate contents were also not different from omnivores. Maximal oxygen uptake (VO2max) and workload (P max) per bodyweight (bicycle spiroergometry) were not significantly different between vegetarians and omnivores. Sub-maximal exercise (75% VO2max for 1 h) revealed no significant differences between vegetarians and omnivores (respiratory exchange ratio, blood lactate and muscle metabolites). Supplementation with L-carnitine significantly increased the total plasma carnitine concentration (24% in omnivores, 31% in vegetarians) and the muscle carnitine content in vegetarians (13%). Despite this increase, P max and VO2max as well as muscle phosphocreatine, lactate and glycogen were not significantly affected by carnitine administration. Vegetarians have lower plasma carnitine concentrations, but maintained muscle carnitine stores compared to omnivores. Oral L-carnitine supplementation normalizes the plasma carnitine stores and slightly increases the skeletal muscle carnitine content in vegetarians, but without affecting muscle function and energy metabolism.
Effects of Muscle Atrophy on Motor Control: Cage-size Effects
NASA Technical Reports Server (NTRS)
Stuart, D. G.
1985-01-01
Two populations of male Sprague-Dawley rats were raised either in conventional minimum-specification cages or in a larger cage. When the animals were mature (125 to 150 d), the physiological status of the soleus (SOL) and extensor digitorum longus (EDL) muscles of the small- and large-cage animals were compared. Analysis of whole-muscle properties including the performance of the test muscle during a standardized fatigue test in which the nerve to the test muscle was subjected to supramaximal intermittent stimulation shows: (1) the amplitude, area, mean amplitude, and peak-to-peak rate of the compound muscle action potential decreased per the course of the fatigue test; (2) cage size did not affect the profile of changes for any of the action-potential measurements; (3) changes exhibited in the compound muscle action potential by SOL and EDL were substantially different; and (4) except for SOL of the large-cage rats, there was a high correlation between all four measures of the compound muscle action potential and the peak tetanic force during the fatigue test; i.e., either the electrical activity largely etermines the force profile during the fatigue test or else contractile-related activity substantially affects the compound muscle action potential.
Nho, Jae-Hwi; Gong, Hyun Sik; Song, Cheol Ho; Wi, Seung Myung; Lee, Young Ho; Baek, Goo Hyun
2014-09-01
It is not clear whether the pronator quadratus (PQ) muscle actually heals and provides a meaningful pronation force after volar plating for distal radius fractures (DRFs). We aimed to determine whether the length of the PQ muscle, which is dissected and then repaired during volar plating for a DRF, affects the forearm rotation strength and clinical outcomes. We examined 41 patients who requested hardware removal after volar plating. We measured the isokinetic forearm rotation strength and clinical outcomes including grip strength, wrist range of motion, and disabilities of the arm, shoulder and hand (DASH) scores at 6 months after fracture fixation. During the hardware removal surgery, which was performed at an average of 9 months (range, 8.3 to 11.5 months) after fracture fixation, we measured the PQ muscle length. The average PQ muscle length was 68% of the normal muscle length, and no significant relationship was found between the PQ muscle length and the outcomes including isokinetic forearm rotation strength, grip strength, wrist range of motion, and DASH scores. This study demonstrates that the length of the healed PQ muscle does not affect isokinetic forearm rotation strength and clinical outcomes after volar plating for DRFs. The results of this study support our current practice of loose repair of the PQ that is performed by most of the surgeons to prevent tendon irritation over the plate, and suggest that tight repair of the PQ is not necessary for achieving improved forearm function.
Fetal programming in meat production.
Du, Min; Wang, Bo; Fu, Xing; Yang, Qiyuan; Zhu, Mei-Jun
2015-11-01
Nutrient fluctuations during the fetal stage affects fetal development, which has long-term impacts on the production efficiency and quality of meat. During the early development, a pool of mesenchymal progenitor cells proliferate and then diverge into either myogenic or adipogenic/fibrogenic lineages. Myogenic progenitor cells further develop into muscle fibers and satellite cells, while adipogenic/fibrogenic lineage cells develop into adipocytes, fibroblasts and resident fibro-adipogenic progenitor cells. Enhancing the proliferation and myogenic commitment of progenitor cells during fetal development enhances muscle growth and lean production in offspring. On the other hand, promoting the adipogenic differentiation of adipogenic/fibrogenic progenitor cells inside the muscle increases intramuscular adipocytes and reduces connective tissue, which improves meat marbling and tenderness. Available studies in mammalian livestock, including cattle, sheep and pigs, clearly show the link between maternal nutrition and the quantity and quality of meat production. Similarly, chicken muscle fibers develop before hatching and, thus, egg and yolk sizes and hatching temperature affect long-term growth performance and meat production of chicken. On the contrary, because fishes are able to generate new muscle fibers lifelong, the impact of early nutrition on fish growth performance is expected to be minor, which requires further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of fatigue and surface instability on neuromuscular performance during jumping.
Lesinski, M; Prieske, O; Demps, M; Granacher, U
2016-10-01
It has previously been shown that fatigue and unstable surfaces affect jump performance. However, the combination thereof is unresolved. Thus, the purpose of this study was to examine the effects of fatigue and surface instability on jump performance and leg muscle activity. Twenty elite volleyball players (18 ± 2 years) performed repetitive vertical double-leg box jumps until failure. Before and after a fatigue protocol, jump performance (i.e., jump height) and electromyographic activity of selected lower limb muscles were recorded during drop jumps (DJs) and countermovement jumps (CMJs) on a force plate on stable and unstable surfaces (i.e., balance pad on top of force plate). Jump performance (3-7%; P < 0.05; 1.14 ≤ d ≤ 2.82), and muscle activity (2-27%; P < 0.05; 0.59 ≤ d ≤ 3.13) were lower following fatigue during DJs and CMJs, and on unstable compared with stable surfaces during DJs only (jump performance: 8%; P < 0.01; d = 1.90; muscle activity: 9-25%; P < 0.05; 1.08 ≤ d ≤ 2.54). No statistically significant interactions of fatigue by surface condition were observed. Our findings revealed that fatigue impairs neuromuscular performance during DJs and CMJs in elite volleyball players, whereas surface instability affects neuromuscular DJ performance only. Absent fatigue × surface interactions indicate that fatigue-induced changes in jump performance are similar on stable and unstable surfaces in jump-trained athletes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Delayed onset muscle soreness : treatment strategies and performance factors.
Cheung, Karoline; Hume, Patria; Maxwell, Linda
2003-01-01
Delayed onset muscle soreness (DOMS) is a familiar experience for the elite or novice athlete. Symptoms can range from muscle tenderness to severe debilitating pain. The mechanisms, treatment strategies, and impact on athletic performance remain uncertain, despite the high incidence of DOMS. DOMS is most prevalent at the beginning of the sporting season when athletes are returning to training following a period of reduced activity. DOMS is also common when athletes are first introduced to certain types of activities regardless of the time of year. Eccentric activities induce micro-injury at a greater frequency and severity than other types of muscle actions. The intensity and duration of exercise are also important factors in DOMS onset. Up to six hypothesised theories have been proposed for the mechanism of DOMS, namely: lactic acid, muscle spasm, connective tissue damage, muscle damage, inflammation and the enzyme efflux theories. However, an integration of two or more theories is likely to explain muscle soreness. DOMS can affect athletic performance by causing a reduction in joint range of motion, shock attenuation and peak torque. Alterations in muscle sequencing and recruitment patterns may also occur, causing unaccustomed stress to be placed on muscle ligaments and tendons. These compensatory mechanisms may increase the risk of further injury if a premature return to sport is attempted.A number of treatment strategies have been introduced to help alleviate the severity of DOMS and to restore the maximal function of the muscles as rapidly as possible. Nonsteroidal anti-inflammatory drugs have demonstrated dosage-dependent effects that may also be influenced by the time of administration. Similarly, massage has shown varying results that may be attributed to the time of massage application and the type of massage technique used. Cryotherapy, stretching, homeopathy, ultrasound and electrical current modalities have demonstrated no effect on the alleviation of muscle soreness or other DOMS symptoms. Exercise is the most effective means of alleviating pain during DOMS, however the analgesic effect is also temporary. Athletes who must train on a daily basis should be encouraged to reduce the intensity and duration of exercise for 1-2 days following intense DOMS-inducing exercise. Alternatively, exercises targeting less affected body parts should be encouraged in order to allow the most affected muscle groups to recover. Eccentric exercises or novel activities should be introduced progressively over a period of 1 or 2 weeks at the beginning of, or during, the sporting season in order to reduce the level of physical impairment and/or training disruption. There are still many unanswered questions relating to DOMS, and many potential areas for future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leeuwen-Segarceanu, Elena M. van, E-mail: e.segarceanu@antoniusziekenhuis.nl; Dorresteijn, Lucille D.A.; Pillen, Sigrid
Purpose: To describe the damage to the muscles and propose a pathophysiologic mechanism for muscle atrophy and weakness after mantle field radiotherapy in Hodgkin lymphoma (HL) survivors. Methods and Materials: We examined 12 patients treated by mantle field radiotherapy between 1969 and 1998. Besides evaluation of their symptoms, the following tests were performed: dynamometry; ultrasound of the sternocleidomastoid, biceps, and antebrachial flexor muscles; and needle electromyography of the neck, deltoid, and ultrasonographically affected arm muscles. Results: Ten patients (83%) experienced neck complaints, mostly pain and muscle weakness. On clinical examination, neck flexors were more often affected than neck extensors. Onmore » ultrasound, the sternocleidomastoid was severely atrophic in 8 patients, but abnormal echo intensity was seen in only 3 patients. Electromyography of the neck muscles showed mostly myogenic changes, whereas the deltoid, biceps, and antebrachial flexor muscles seemed to have mostly neurogenic damage. Conclusions: Many patients previously treated by mantle field radiotherapy develop severe atrophy and weakness of the neck muscles. Neck muscles within the radiation field show mostly myogenic damage, and muscles outside the mantle field show mostly neurogenic damage. The discrepancy between echo intensity and atrophy suggests that muscle damage is most likely caused by an extrinsic factor such as progressive microvascular fibrosis. This is also presumed to cause damage to nerves within the radiated field, resulting in neurogenic damage of the deltoid and arm muscles.« less
Contraction-induced muscle damage is unaffected by vitamin E supplementation.
Beaton, Louise J; Allan, Damon A; Tarnopolsky, Mark A; Tiidus, Peter M; Phillips, Stuart M
2002-05-01
Vitamin E supplementation may confer a protective effect against eccentrically biased exercise-induced muscle damage through stabilization of the cell membrane and possibly via inhibition of free radical formation. Evidence supporting a protective role of vitamin E after contraction-induced muscle injury in humans is, however, inconsistent. The present study sought to determine the effect of vitamin E supplementation on indices of exercise-induced muscle damage and the postexercise inflammatory response after performance of repeated eccentric muscle contractions. Young healthy men performed a bout of 240 maximal isokinetic eccentric muscle contractions (0.52 rad.s-1) after being supplemented for 30 d with either vitamin E (N = 9; 1200 IU.d-1) or placebo (N = 7; safflower oil). Measurements of torque (isometric and concentric) decreased (P < 0.05) below preexercise values immediately post- and at 48 h post-exercise. Biopsies taken 24 h postexercise showed a significant increase in the amount of extensive Z-band disruption (P < 0.01); however, neither the torque deficit nor the extent of Z-band disruption were affected by vitamin E. Exercise resulted in increased macrophage cell infiltration (P = 0.05) into muscle, which was also unaffected by vitamin E. Serum CK also increased as a result of the exercise (P < 0.05) with no effect of vitamin E. We conclude that vitamin E supplementation (30 d at 1200 IU.d-1), which resulted in a 2.8-fold higher serum vitamin E concentration (P < 0.01), had no affect on indices of contraction-induced muscle damage nor inflammation (macrophage infiltration) as a result of eccentrically biased muscle contractions.
Markers of muscle damage and performance recovery after exercise in the heat.
Nybo, Lars; Girard, Olivier; Mohr, Magni; Knez, Wade; Voss, Sven; Racinais, Sebastien
2013-05-01
This study aimed to determine whether competitive intermittent exercise in the heat affects recovery, aggravates markers of muscle fiber damage, and delays the recovery of performance and muscle glycogen stores. Plasma creatine kinase, serum myoglobin, muscle glycogen, and performance parameters (sprint, endurance, and neuromuscular testing) were evaluated in 17 semiprofessional soccer players before, immediately after, and during 48 h of recovery from a match played in 43°C (HOT) and compared with a control match (21°C with similar turf and setup). Muscle temperature was ∼1°C higher (P < 0.001) after the game in HOT compared with control and reached individual values between 39.9°C and 41.1°C. Serum myoglobin levels increased by more than threefold after the matches (P < 0.01), but values were not different in HOT compared with control, and they were similar to baseline values after 24 h of recovery. Creatine kinase was significantly elevated both immediately and 24 h after the matches, but the response after HOT was reduced compared with control. Muscle glycogen responses were similar across trials and remained depressed for more than 48 h after both matches. Sprint performance and voluntary muscle activation were impaired to a similar extent after the matches (sprint by ∼2% and voluntary activation by ∼1.5%; P < 0.05). Both of these performance parameters as well as intermittent endurance capacity (estimated by a Yo-Yo IR1 test) were fully recovered 48 h after both matches. Environmental heat stress does not aggravate the recovery response from competitive intermittent exercise associated with elevated muscle temperatures and markers of muscle damage, delayed resynthesis of muscle glycogen, and impaired postmatch performance.
Wójtowicz, Inga; Jabłońska, Jadwiga; Zmojdzian, Monika; Taghli-Lamallem, Ouarda; Renaud, Yoan; Junion, Guillaume; Daczewska, Malgorzata; Huelsmann, Sven; Jagla, Krzysztof; Jagla, Teresa
2015-03-01
Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture. © 2015. Published by The Company of Biologists Ltd.
Effect of cooling on thixotropic position-sense error in human biceps muscle.
Sekihara, Chikara; Izumizaki, Masahiko; Yasuda, Tomohiro; Nakajima, Takayuki; Atsumi, Takashi; Homma, Ikuo
2007-06-01
Muscle temperature affects muscle thixotropy. However, it is unclear whether changes in muscle temperature affect thixotropic position-sense errors. We studied the effect of cooling on thixotropic position-sense errors induced by short-length muscle contraction (hold-short conditioning) in the biceps of 12 healthy men. After hold-short conditioning of the right biceps muscle in a cooled (5.0 degrees C) or control (36.5 degrees C) environment, subjects perceived greater extension of the conditioned forearm at 5.0 degrees C. The angle differences between the two forearms following hold-short conditioning of the right biceps muscle in normal or cooled conditions were significantly different (-3.335 +/- 1.680 degrees at 36.5 degrees C vs. -5.317 +/- 1.096 degrees at 5.0 degrees C; P=0.043). Induction of a tonic vibration reflex in the biceps muscle elicited involuntary forearm elevation, and the angular velocities of the elevation differed significantly between arms conditioned in normal and cooled environments (1.583 +/- 0.326 degrees /s at 36.5 degrees C vs. 3.100 +/- 0.555 degrees /s at 5.0 degrees C, P=0.0039). Thus, a cooled environment impairs a muscle's ability to provide positional information, potentially leading to poor muscle performance.
The relationship of hip muscle performance to leg, ankle and foot injuries: a systematic review.
Steinberg, Nili; Dar, Gali; Dunlop, Martin; Gaida, James Edmund
2017-02-01
Hip control affects movement and muscle firing patterns in the leg, ankle and foot, and may contribute to overuse injuries. Muscle performance can be measured as strength, endurance or muscle activation patterns. Our objective was to systematically review whether hip muscle performance is associated with leg, ankle and foot injuries. A structured and comprehensive search of six medical literature databases was combined with forward and backward citation tracking (AMED, CINAHL, EMBASE, Medline, Scopus and SportDiscus). Eligible studies measured hip muscle performance in individuals with musculoskeletal injuries below the tibial tuberosity, using dynamometry or electromyography (EMG). All studies compared an injured group with a control group or compared the injured and non-injured limb in the same individual. Data was extracted from each study independently by two authors. Twenty case-control and four prospective studies (n = 24) met the inclusion criteria. Injury classifications included chronic ankle instability (n = 18), Achilles tendinopathy (n = 2), medial tibial stress syndrome and tibial stress fracture (n = 1), posterior tibial tendon dysfunction (n = 1), and exertional medial tibial pain (n = 2). Eleven of the studies revealed differences in hip muscle performance indicating less strength, delayed onset activation and decreased duration of activation in the injured groups. Two studies found evidence for differences between groups only in some of their measurements. Three out of the four prospective studies revealed that hip muscle performance was not a risk factor for leg, ankle and foot injuries. This review provides limited evidence that hip muscle performance variables are related to leg, ankle and foot injuries. Emerging evidence indicates this might be a result of the injury rather than a contributor to the injury.
Pumpa, Kate L; Fallon, Kieran E; Bensoussan, Alan; Papalia, Shona
2014-01-01
The aim of the study was to determine if topical Arnica is effective in reducing pain, indicators of inflammation and muscle damage, and in turn improve performance in well-trained males experiencing delayed onset muscle soreness (DOMS). Twenty well-trained males matched by maximal oxygen uptake (V̇O2 Max) completed a double-blind, randomised placebo-controlled trial. Topical Arnica was applied to the skin superficial to the quadriceps and gastrocnemius muscles immediately after a downhill running protocol designed to induce DOMS. Topical Arnica was reapplied every 4 waking hours for the duration of the study. Performance measures (peak torque, countermovement and squat jump), pain assessments (visual analogue scale (VAS) and muscle tenderness) and blood analysis (interleukin-1 beta, interleukin-6, tumour necrosis factor-alpha, C-reactive protein, myoglobin and creatine kinase) were assessed at seven time points over five days (pre-, post-, 4, 24, 48, 72 and 96 hours after the downhill run). Participants in the topical Arnica group reported less pain as assessed through muscle tenderness and VAS 72 hours post-exercise. The application of topical Arnica did not affect any performance assessments or markers of muscle damage or inflammation. Topical Arnica used immediately after intense eccentric exercise and for the following 96 hours did not have an effect on performance or blood markers. It did however demonstrate the possibility of providing pain relief three days post-eccentric exercise.
Ristanis, Stavros; Tsepis, Elias; Giotis, Dimitrios; Stergiou, Nicholas; Cerulli, Guiliano; Georgoulis, Anastasios D
2009-11-01
Changes in electromechanical delay during muscle activation are expected when there are substantial alterations in the structural properties of the musculotendinous tissue. In anterior cruciate ligament reconstruction, specific tendons are being harvested for grafts. Thus, there is an associated scar tissue development at the tendon that may affect the corresponding electromechanical delay. This study was conducted to investigate whether harvesting of semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction will affect the electromechanical delay of the knee flexors. Case-control study; Level of evidence, 3. The authors evaluated 12 patients with anterior cruciate ligament reconstruction with a semitendinosus and gracilis autograft, 2 years after the reconstruction, and 12 healthy controls. Each participant performed 4 maximally explosive isometric contractions with a 1-minute break between contractions. The surface electromyographic activity of the biceps femoris and the semitendinosus was recorded from both legs during the contractions. The statistical comparisons revealed significant increases of the electromechanical delay of the anterior cruciate ligament-reconstructed knee for both investigated muscles. Specifically, the electromechanical delay values were increased for both the biceps femoris (P = .029) and the semitendinosus (P = .005) of the reconstructed knee when compared with the intact knee. Comparing the anterior cruciate ligament-reconstructed knee against healthy controls revealed similar significant differences for both muscles (semitendinosus, P = .011; biceps femoris, P = .024). The results showed that harvesting the semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction significantly increased the electromechanical delay of the knee flexors. Increased hamstring electromechanical delay might impair knee safety and performance by modifying the transfer time of muscle tension to the tibia and therefore affecting muscle response during sudden movements in athletic activities. However, further investigation is required to identify whether the increased electromechanical delay of the hamstrings can actually influence optimal sports performance and increase the risk for knee injury in athletes with anterior cruciate ligament reconstructions.
Rosales Nieto, C A; Ferguson, M B; Macleay, C A; Briegel, J R; Wood, D A; Martin, G B; Bencini, R; Thompson, A N
2018-02-26
In ewe lambs, acceleration of growth and accumulation of both muscle and fat leads to earlier sexual maturity and better reproductive performance. The next stage in the development of this theme is to test whether these aspects of growth in young ewes affect milk production in their first lactation and the growth of their first progeny. We studied 75 young Merino ewes that had known phenotypic values for depth of eye muscle (EMD) and fat (FAT), and known Australian Sheep Breeding Values for post-weaning weight (PWT) and depths of eye muscle (PEMD) and fat (PFAT). They lambed for the first time at 1 year of age. Their lambs were weighed weekly from birth to weaning at 10 weeks to determine live weight gain and weaning weight. Progeny birth weight was positively associated with live weight gain and weaning weight (P0.05). The PWT of the sire was positively associated with live weight gain (P0.05). The concentrations of fat, protein, lactose and total solids in the milk were not affected by the phenotype or genotype of the mothers or of the sires of the mothers, or by the sex of the progeny (P>0.05). We conclude that selection of young Merino ewes for better growth, and more rapid accumulation of muscle and fat, will lead to progeny that are heavier at birth, grow faster and are heavier at weaning. Moreover, milk production and composition do not seem to be affected by the genetic merit of the mother for post-weaning live weight or PEMD or PFAT. Therefore, Merino ewes can lamb at 1 year of age without affecting the production objectives of the Merino sheep industry.
Effects of hypoxia and hypercapnia on geniohyoid contractility and endurance.
Salmone, R J; Van Lunteren, E
1991-08-01
Sleep apnea and other respiratory diseases produce hypoxemia and hypercapnia, factors that adversely affect skeletal muscle performance. To examine the effects of these chemical alterations on force production by an upper airway dilator muscle, the contractile and endurance characteristics of the geniohyoid muscle were examined in situ during severe hypoxia (arterial PO2 less than 40 Torr), mild hypoxia (PO2 45-65 Torr), and hypercapnia (PCO2 55-80 Torr) and compared with hyperoxic-normocapnic conditions in anesthetized cats. Muscles were studied at optimal length, and contractile force was assessed in response to supramaximal electrical stimulation of the hypoglossal nerve (n = 7 cats) or geniohyoid muscle (n = 2 cats). There were no significant changes in the twitch kinetics or force-frequency curve of the geniohyoid muscle during hypoxia or hypercapnia. However, the endurance of the geniohyoid, as reflected in the fatigue index (ratio of force at 2 min to initial force in response to 40-Hz stimulation at a duty cycle 0.33), was significantly reduced by severe hypoxia but not by hypercapnia or mild hypoxia. In addition, the downward shift in the force-frequency curve after the repetitive stimulation protocol was greater during hypoxia than hyperoxia, especially at higher frequencies. In conclusion, the ability of the geniohyoid muscle to maintain force output during high levels of activation is adversely affected by severe hypoxia but not mild hypoxia or hypercapnia. However, none of these chemical perturbations affected muscle contractility acutely.
Effects of local and widespread muscle fatigue on movement timing.
Cowley, Jeffrey C; Dingwell, Jonathan B; Gates, Deanna H
2014-12-01
Repetitive movements can cause muscle fatigue, leading to motor reorganization, performance deficits, and/or possible injury. The effects of fatigue may depend on the type of fatigue task employed, however. The purpose of this study was to determine how local fatigue of a specific muscle group versus widespread fatigue of various muscle groups affected the control of movement timing. Twenty healthy subjects performed an upper extremity low-load work task similar to sawing for 5 continuous minutes both before and after completing a protocol that either fatigued all the muscles used in the task (widespread fatigue) or a protocol that selectively fatigued the primary muscles used to execute the pushing stroke of the sawing task (localized fatigue). Subjects were instructed to time their movements with a metronome. Timing error, movement distance, and speed were calculated for each movement. Data were then analyzed using a goal-equivalent manifold approach to quantify changes in goal-relevant and non-goal-relevant variability. We applied detrended fluctuation analysis to each time series to quantify changes in fluctuation dynamics that reflected changes in the control strategies used. After localized fatigue, subjects made shorter, slower movements and exerted greater control over non-goal-relevant variability. After widespread fatigue, subjects exerted less control over non-goal-relevant variability and did not change movement patterns. Thus, localized and widespread muscle fatigue affected movement differently. Local fatigue may reduce the available motor solutions and therefore cause greater movement reorganization than widespread muscle fatigue. Subjects altered their control strategies but continued to achieve the timing goal after both fatigue tasks.
Ronzoni, Flavio; Ceccarelli, Gabriele; Perini, Ilaria; Benedetti, Laura; Galli, Daniela; Mulas, Francesca; Balli, Martina; Magenes, Giovanni; Bellazzi, Riccardo; De Angelis, Gabriella C; Sampaolesi, Maurilio
2017-01-01
Myogenic progenitor cells (activated satellite cells) are able to express both HGF and its receptor cMet. After muscle injury, HGF-Met stimulation promotes activation and primary division of satellite cells. MAGIC-F1 (Met-Activating Genetically Improved Chimeric Factor-1) is an engineered protein that contains two human Met-binding domains that promotes muscle hypertrophy. MAGIC-F1 protects myogenic precursors against apoptosis and increases their fusion ability enhancing muscle differentiation. Hemizygous and homozygous Magic-F1 transgenic mice displayed constitutive muscle hypertrophy. Here we describe microarray analysis on Magic-F1 myogenic progenitor cells showing an altered gene signatures on muscular hypertrophy and angiogenesis compared to wild-type cells. In addition, we performed a functional analysis on Magic-F1+/+ transgenic mice versus controls using treadmill test. We demonstrated that Magic-F1+/+ mice display an increase in muscle mass and cross-sectional area leading to an improvement in running performance. Moreover, the presence of MAGIC-F1 affected positively the vascular network, increasing the vessel number in fast twitch fibers. Finally, the gene expression profile analysis of Magic-F1+/+ satellite cells evidenced transcriptomic changes in genes involved in the control of muscle growth, development and vascularisation. We showed that MAGIC-F1-induced muscle hypertrophy affects positively vascular network, increasing vessel number in fast twitch fibers. This was due to unique features of mammalian skeletal muscle and its remarkable ability to adapt promptly to different physiological demands by modulating the gene expression profile in myogenic progenitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running
Uchida, Thomas K.; Hicks, Jennifer L.; Dembia, Christopher L.; Delp, Scott L.
2016-01-01
Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2–5 m/s with tendon force–strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2–3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail. PMID:26930416
The effect of intramuscular fat on skeletal muscle mechanics: implications for the elderly and obese
Rahemi, Hadi; Nigam, Nilima; Wakeling, James M.
2015-01-01
Skeletal muscle accumulates intramuscular fat through age and obesity. Muscle quality, a measure of muscle strength per unit size, decreases in these conditions. It is not clear how fat influences this loss in performance. Changes to structural parameters (e.g. fibre pennation and connective tissue properties) affect the muscle quality. This study investigated the mechanisms that lead to deterioration in muscle performance due to changes in intramuscular fat, pennation and aponeurosis stiffness. A finite-element model of the human gastrocnemius was developed as a fibre-reinforced composite biomaterial containing contractile fibres within the base material. The base-material properties were modified to include intramuscular fat in five different ways. All these models with fat generated lower fibre stress and muscle quality than their lean counterparts. This effect is due to the higher stiffness of the tissue in the fatty models. The fibre deformations influence their interactions with the aponeuroses, and these change with fatty inclusions. Muscles with more compliant aponeuroses generated lower forces. The muscle quality was further reduced for muscles with lower pennation. This study shows that whole-muscle force is dependent on its base-material properties and changes to the base material due to fatty inclusions result in reductions to force and muscle quality. PMID:26156300
Lourdais, Olivier; Lorioux, Sophie; DeNardo, Dale F
2013-01-01
Females often manage the high energy demands associated with reproduction by accumulating and storing energy in the form of fat before initiating their reproductive effort. However, fat stores cannot satisfy all reproductive resource demands, which include considerable investment of amino acids (e.g., for the production of yolk proteins or gluconeogenesis). Because capital breeders generally do not eat during reproduction, these amino acids must come from internal resources, typically muscle proteins. Although the energetic costs of reproduction have been fairly well studied, there are limited data on structural and performance costs associated with the muscle degradation required to meet amino acid demands. Thus, we examined structural changes (epaxial muscle width) and performance costs (constriction and strength) over the course of reproduction in a pure capital breeder, the children's python (Antaresia childreni). We found that both egg production (i.e., direct resource allocation) and maternal care (egg brooding) induce muscle catabolism and affect performance of the female. Although epaxial muscle loss was minimal in nonreproductive females, it reached up to 22% (in females after oviposition) and 34% (in females after brooding) of initial muscle width. Interestingly, we found that individuals with higher initial muscular condition allocated more of their muscle into reproduction. The amount of muscle loss was significantly linked to clutch mass, underscoring the role of structural protein in egg production. Egg brooding significantly increased proteolysis and epaxial loss despite no direct allocation to the offspring. Muscle loss was linked to a significant reduction in performance in postreproductive females. Overall, these results demonstrate that capital-breeding females experience dramatic costs that consume structural resources and jeopardize performance.
Fredriksen, Per Morten; Mamen, Asgeir; Gammelsrud, Heidi; Lindberg, Morten; Hjelle, Ole Petter
2018-05-01
The purpose of this study was to examine factors affecting running performance in children. A cross-sectional study exploring the relationships between height, weight, waist circumference, muscle mass, body fat percentage, relevant biomarkers, and the Andersen intermittent running test in 2272 children aged 6 to 12 years. Parental education level was used as a non-physiological explanatory variable. Mean values (SD) and percentiles are presented as reference values. Height (β = 6.4, p < .0001), high values of haemoglobin (β = 18, p = .013) and low percentage of body fat (β = -7.5, p < .0001) showed an association with results from the running test. In addition, high parental education level showed a positive association with the running test. Boys display better running performance than girls at all age ages, except 7 years old, probably because of additional muscle mass and less fatty tissue. Height and increased level of haemoglobin positively affected running performance. Lower body fat percentage and high parental education level correlated with better running performance.
Historical Overview of the Effect of β-Adrenergic Agonists on Beef Cattle Production
Johnson, Bradley J.; Smith, Stephen B.; Chung, Ki Yong
2014-01-01
Postnatal muscle hypertrophy of beef cattle is the result of enhanced myofibrillar protein synthesis and reduced protein turnover. Skeletal muscle hypertrophy has been studied in cattle fed β-adrenergic agonists (β-AA), which are receptor-mediated enhancers of protein synthesis and inhibitors of protein degradation. Feeding β-AA to beef cattle increases longissimus muscle cross-sectional area 6% to 40% compared to non-treated cattle. The β-AA have been reported to improve live animal performance, including average daily gain, feed efficiency, hot carcass weight, and dressing percentage. Treatment with β-AA increased mRNA concentration of the β2 or β1-adrenergic receptor and myosin heavy chain IIX in bovine skeletal muscle tissue. This review will examine the effects of skeletal muscle and adipose development with β-AA, and will interpret how the use of β-AA affects performance, body composition, and growth in beef cattle. PMID:25050012
Statins Affect Skeletal Muscle Performance: Evidence for Disturbances in Energy Metabolism.
Allard, Neeltje A E; Schirris, Tom J J; Verheggen, Rebecca J; Russel, Frans G M; Rodenburg, Richard J; Smeitink, Jan A M; Thompson, Paul D; Hopman, Maria T E; Timmers, Silvie
2018-01-01
Statin myopathy is linked to disturbances in mitochondrial function and exercise intolerance. To determine whether differences exist in exercise performance, muscle function, and muscle mitochondrial oxidative capacity and content between symptomatic and asymptomatic statin users, and control subjects. Cross-sectional study. Department of Physiology, Radboud University Medical Center. Long-term symptomatic and asymptomatic statin users, and control subjects (n = 10 per group). Maximal incremental cycling tests, involuntary electrically stimulated isometric quadriceps-muscle contractions, and biopsy of vastus lateralis muscle. Maximal exercise capacity, substrate use during exercise, muscle function, and mitochondrial energy metabolism. Peak oxygen uptake, maximal work load, and ventilatory efficiency were comparable between groups, but both statin groups had a depressed anaerobic threshold compared with the control group (P = 0.01). Muscle relaxation time was prolonged in both statin groups compared with the control group and rate of maximal force rise was decreased (Ptime×group < 0.001 for both measures). Mitochondrial activity of complexes II and IV was lower in symptomatic statin users than control subjects and tended to be lower for complex (C) III (CII: P = 0.03; CIII: P = 0.05; CIV: P = 0.04). Mitochondrial content tended to be lower in both statin groups than in control subjects. Statin use attenuated substrate use during maximal exercise performance, induced muscle fatigue during repeated muscle contractions, and decreased muscle mitochondrial oxidative capacity. This suggests disturbances in mitochondrial oxidative capacity occur with statin use even in patients without statin-induced muscle complaints. Copyright © 2017 Endocrine Society
Electrical impedance myography in facioscapulohumeral muscular dystrophy.
Statland, Jeffrey M; Heatwole, Chad; Eichinger, Katy; Dilek, Nuran; Martens, William B; Tawil, Rabi
2016-10-01
In this study we determined the reliability and validity of electrical impedance myography (EIM) in facioscapulohumeral muscular dystrophy (FSHD). We performed a prospective study of EIM on 16 bilateral limb and trunk muscles in 35 genetically defined and clinically affected FSHD patients (reliability testing on 18 patients). Summary scores based on body region were derived. Reactance and phase (50 and 100 kHz) were compared with measures of strength, FSHD disease severity, and functional outcomes. Participants were mostly men, mean age 53.0 years, and included a full range of severity. Limb and trunk muscles showed good to excellent reliability [intraclass correlation coefficients (ICC) 0.72-0.99]. Summary scores for the arm, leg, and trunk showed excellent reliability (ICC 0.89-0.98). Reactance was the most sensitive EIM parameter to a broad range of FSHD disease metrics. EIM is a reliable measure of muscle composition in FSHD that offers the possibility to serially evaluate affected muscles. Muscle Nerve 54: 696-701, 2016. © 2016 Wiley Periodicals, Inc.
Clinical heterogeneity and phenotype/genotype findings in 5 families with GYG1 deficiency
Ben Yaou, Rabah; Hubert, Aurélie; Nelson, Isabelle; Dahlqvist, Julia R.; Gaist, David; Streichenberger, Nathalie; Beuvin, Maud; Krahn, Martin; Petiot, Philippe; Parisot, Frédéric; Michel, Fabrice; Malfatti, Edoardo; Romero, Norma; Carlier, Robert Yves; Eymard, Bruno; Labrune, Philippe; Duno, Morten; Krag, Thomas; Cerino, Mathieu; Bartoli, Marc; Bonne, Gisèle; Vissing, John; Laforet, Pascal
2017-01-01
Objective: To describe the variability of muscle symptoms in patients carrying mutations in the GYG1 gene, encoding glycogenin-1, an enzyme involved in the biosynthesis of glycogen, and to discuss genotype-phenotype relations. Methods: We describe 9 patients from 5 families in whom muscle biopsies showed vacuoles with an abnormal accumulation of glycogen in muscle fibers, partially α-amylase resistant suggesting polyglucosan bodies. The patients had either progressive early-onset limb-girdle weakness or late-onset distal or scapuloperoneal muscle affection as shown by muscle imaging. No clear definite cardiac disease was found. Histologic and protein analysis investigations were performed on muscle. Results: Genetic analyses by direct or exome sequencing of the GYG1 gene revealed 6 different GYG1 mutations. Four of the mutations were novel. They were compound heterozygous in 3 families and homozygous in 2. Protein analysis revealed either the absence of glycogenin-1 or reduced glycogenin-1 expression with impaired glucosylation. Conclusions: Our report extends the genetic and clinical spectrum of glycogenin-1–related myopathies to include scapuloperoneal and distal affection with glycogen accumulation. PMID:29264399
Clinical heterogeneity and phenotype/genotype findings in 5 families with GYG1 deficiency.
Ben Yaou, Rabah; Hubert, Aurélie; Nelson, Isabelle; Dahlqvist, Julia R; Gaist, David; Streichenberger, Nathalie; Beuvin, Maud; Krahn, Martin; Petiot, Philippe; Parisot, Frédéric; Michel, Fabrice; Malfatti, Edoardo; Romero, Norma; Carlier, Robert Yves; Eymard, Bruno; Labrune, Philippe; Duno, Morten; Krag, Thomas; Cerino, Mathieu; Bartoli, Marc; Bonne, Gisèle; Vissing, John; Laforet, Pascal; Petit, François M
2017-12-01
To describe the variability of muscle symptoms in patients carrying mutations in the GYG1 gene, encoding glycogenin-1, an enzyme involved in the biosynthesis of glycogen, and to discuss genotype-phenotype relations. We describe 9 patients from 5 families in whom muscle biopsies showed vacuoles with an abnormal accumulation of glycogen in muscle fibers, partially α-amylase resistant suggesting polyglucosan bodies. The patients had either progressive early-onset limb-girdle weakness or late-onset distal or scapuloperoneal muscle affection as shown by muscle imaging. No clear definite cardiac disease was found. Histologic and protein analysis investigations were performed on muscle. Genetic analyses by direct or exome sequencing of the GYG1 gene revealed 6 different GYG1 mutations. Four of the mutations were novel. They were compound heterozygous in 3 families and homozygous in 2. Protein analysis revealed either the absence of glycogenin-1 or reduced glycogenin-1 expression with impaired glucosylation. Our report extends the genetic and clinical spectrum of glycogenin-1-related myopathies to include scapuloperoneal and distal affection with glycogen accumulation.
Sorbie, Graeme G; Hunter, Henry H; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike Chris
2016-01-01
The study describes the differences in surface electromyography (EMG) activity of two forearm muscles in the lead and trail arm at specific phases of the golf swing using a 7-iron with three different grip sizes among amateur and professional golfers. Fifteen right-handed male golfers performed five golf swings using golf clubs with three different grip sizes. Surface EMG was used to measure muscle activity of the extensor carpi radialis brevis (ECRB) and flexor digitorum superficialis (FDS) on both forearms. There were no significant differences in forearm muscle activity when using the three golf grips within the group of 15 golfers (p > 0.05). When using the undersize grip, club head speed significantly increased (p = 0.044). During the backswing and downswing phases, amateurs produced significantly greater forearm muscle activity with all three grip sizes (p < 0.05). In conclusion, forearm muscle activity is not affected by grip sizes. However, club head speed increases when using undersize grips.
Nur, Nurhayati Mohd; Dawal, Siti Zawiah Md; Dahari, Mahidzal; Sanusi, Junedah
2015-01-01
[Purpose] This study investigated the variations in muscle fatigue, time to fatigue, and maximum task duration at different levels of production standard time. [Methods] Twenty subjects performed repetitive tasks at three different levels of production standard time corresponding to “normal”, “hard” and “very hard”. Surface electromyography was used to measure the muscle activity. [Results] The results showed that muscle activity was significantly affected by the production standard time level. Muscle activity increased twice in percentage as the production standard time shifted from hard to very hard (6.9% vs. 12.9%). The muscle activity increased over time, indicating muscle fatigue. The muscle fatigue rate increased for the harder production standard time (Hard: 0.105; Very hard: 0.115), which indicated the associated higher risk of work-related musculoskeletal disorders. Muscle fatigue was also found to occur earlier for hard and very hard production standard times. [Conclusion] It is recommended that the maximum task duration should not exceed 5.6, 2.9, and 2.2 hours for normal, hard, and very hard production standard times, respectively, in order to maintain work performance and minimize the risk of work-related musculoskeletal disorders. PMID:26311974
Fuentes, Eduardo N; Einarsdottir, Ingibjörg Eir; Paredes, Rodolfo; Hidalgo, Christian; Valdes, Juan Antonio; Björnsson, Björn Thrandur; Molina, Alfredo
2015-01-01
Knowledge about the underlying mechanisms, particularly the signaling pathways that account for muscle growth in vivo in early vertebrates is still scarce. Fish (Paralichthys adspersus) were fasted for 3weeks to induce a catabolic period of strong muscle atrophy. Subsequently, fish were refed for 2weeks to induce compensatory muscle hypertrophy. During refeeding, the fish were treated daily with either rapamycin (TORC blocker), PD98059 (MEK blocker), or PBS (V; vehicle), or were untreated (C; control). Rapamycin and PD98059 differentially impaired muscle cellularity in vivo, growth performance, and the expression of growth-related genes, and the inhibition of TORC1 had a greater impact on fish muscle growth than the inhibition of MAPK. Blocking TORC1 inhibited the phosphorylation of P70S6K and 4EBP1, two downstream components activated by TORC1, thus affecting protein contents in muscle. Concomitantly, the gene expression in muscle of igf-1, 2 and igfbp-4, 5 was down-regulated while the expression of atrogin-1, murf-1, and igfbp-2, 3 was up-regulated. Muscle hypertrophy was abolished and muscle atrophy was promoted, which finally affected body weight. TORC2 complex was not affected by rapamycin. On the other hand, the PD98059 treatment triggered ERK inactivation, a downstream component activated by MEK. mRNA contents of igf-1 in muscle were down-regulated, and muscle hypertrophy was partially impaired. The present study provides the first direct data on the in vivo contribution of TORC1/P70S6K, TORC1/4EBP1, and MAPK/ERK signaling pathways in the skeletal muscle of an earlier vertebrate, and highlights the transcendental role of TORC1 in growth from the cellular to organism level. Copyright © 2014 Elsevier Inc. All rights reserved.
The individual response to training and competition at altitude.
Chapman, Robert F
2013-12-01
Performance in athletic activities that include a significant aerobic component at mild or moderate altitudes shows a large individual variation. Physiologically, a large portion of the negative effect of altitude on exercise performance can be traced to limitations of oxygen diffusion, either at the level of the alveoli or the muscle microvasculature. In the lung, the ability to maintain arterial oxyhaemoglobin saturation (SaO₂) appears to be a primary factor, ultimately influencing oxygen delivery to the periphery. SaO₂ in hypoxia can be defended by increasing ventilatory drive; however, during heavy exercise, many athletes demonstrate limitations to expiratory flow and are unable to increase ventilation in hypoxia. Additionally, increasing ventilatory work in hypoxia may actually be negative for performance, if dyspnoea increases or muscle blood flow is reduced secondary to an increased sympathetic outflow (eg, the muscle metaboreflex response). Taken together, some athletes are clearly more negatively affected during exercise in hypoxia than other athletes. With careful screening, it may be possible to develop a protocol for determining which athletes may be the most negatively affected during competition and/or training at altitude.
Effects of visually demanding near work on trapezius muscle activity.
Zetterberg, C; Forsman, M; Richter, H O
2013-10-01
Poor visual ergonomics is associated with visual and neck/shoulder discomfort, but the relation between visual demands and neck/shoulder muscle activity is unclear. The aims of this study were to investigate whether trapezius muscle activity was affected by: (i) eye-lens accommodation; (ii) incongruence between accommodation and convergence; and (iii) presence of neck/shoulder discomfort. Sixty-six participants (33 controls and 33 with neck pain) performed visually demanding near work under four different trial-lens conditions. Results showed that eye-lens accommodation per se did not affect trapezius muscle activity significantly. However, when incongruence between accommodation and convergence was present, a significant positive relationship between eye-lens accommodation and trapezius muscle activity was found. There were no significant group-differences. It was concluded that incongruence between accommodation and convergence is an important factor in the relation between visually demanding near work and trapezius muscle activity. The relatively low demands on accommodation and convergence in the present study imply that visually demanding near work may contribute to increased muscle activity, and over time to the development of near work related neck/shoulder discomfort. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Performance-Enhancing Drugs: Know the Risks
... edge by taking muscle-building supplements or other performance-enhancing drugs? Learn how these drugs work and how they can affect your health. By Mayo Clinic Staff Most serious athletes will tell you that the ... performance-enhancing drugs has become increasingly common. But using ...
Changes in muscle strength in patients with statin myalgia.
Panza, Gregory A; Taylor, Beth A; Roman, William; Thompson, Paul D
2014-10-15
Statins can produce myalgia or muscle pain, which may affect medication adherence. We measured the effects of statins on muscle strength in patients with previous statin myalgia. Leg isokinetic extension average power at 60° per second (-8.8 ± 10.5N-M, p = 0.02) and average peak torque at 60° per second (-14.0 ± 19.7N-M, p = 0.04) decreased slightly with statin use, but 8 of 10 other variables for leg strength did not change (all p >0.13). Handgrip, muscle pain, respiratory exchange ratio, and daily activity also did not change (all p >0.09). In conclusion, statin myalgia is not associated with reduced muscle strength or muscle performance. Published by Elsevier Inc.
The effect of caffeine on skeletal muscle anabolic signaling and hypertrophy.
Moore, Timothy M; Mortensen, Xavier M; Ashby, Conrad K; Harris, Alexander M; Kump, Karson J; Laird, David W; Adams, Aaron J; Bray, Jeremy K; Chen, Ting; Thomson, David M
2017-06-01
Caffeine is a widely consumed stimulant with the potential to enhance physical performance through multiple mechanisms. However, recent in vitro findings have suggested that caffeine may block skeletal muscle anabolic signaling through AMP-activated protein kinase (AMPK)-mediated inhibition of mechanistic target of rapamycin (mTOR) signaling pathway. This could negatively affect protein synthesis and the capacity for muscle growth. The primary purpose of this study was to assess the effect of caffeine on in vivo AMPK and mTOR pathway signaling, protein synthesis, and muscle growth. In cultured C2C12 muscle cells, physiological levels of caffeine failed to impact mTOR activation or myoblast proliferation or differentiation. We found that caffeine administration to mice did not significantly enhance the phosphorylation of AMPK or inhibit signaling proteins downstream of mTOR (p70S6k, S6, or 4EBP1) or protein synthesis after a bout of electrically stimulated contractions. Skeletal muscle-specific knockout of LKB1, the primary AMPK activator in skeletal muscle, on the other hand, eliminated AMPK activation by contractions and enhanced S6k, S6, and 4EBP1 activation before and after contractions. In rats, the addition of caffeine did not affect plantaris hypertrophy induced by the tenotomy of the gastrocnemius and soleus muscles. In conclusion, caffeine administration does not impair skeletal muscle load-induced mTOR signaling, protein synthesis, or muscle hypertrophy.
Tallis, Jason; Duncan, Michael J; James, Rob S
2015-01-01
Caffeine is an increasingly popular nutritional supplement due to the legal, significant improvements in sporting performance that it has been documented to elicit, with minimal side effects. Therefore, the effects of caffeine on human performance continue to be a popular area of research as we strive to improve our understanding of this drug and make more precise recommendations for its use in sport. Although variations in exercise intensity seems to affect its ergogenic benefits, it is largely thought that caffeine can induce significant improvements in endurance, power and strength-based activities. There are a number of limitations to testing caffeine-induced effects on human performance that can be better controlled when investigating its effects on isolated muscles under in vitro conditions. The hydrophobic nature of caffeine results in a post-digestion distribution to all tissues of the body making it difficult to accurately quantify its key mechanism of action. This review considers the contribution of evidence from isolated muscle studies to our understating of the direct effects of caffeine on muscle during human performance. The body of in vitro evidence presented suggests that caffeine can directly potentiate skeletal muscle force, work and power, which may be important contributors to the performance-enhancing effects seen in humans. PMID:25988508
Ishak, Nor Azizah; Zahari, Zarina; Justine, Maria
2017-01-01
This study aims (1) to determine the association between kinesiophobia and pain, muscle functions, and functional performances and (2) to determine whether kinesiophobia predicts pain, muscle functions, and functional performance among older persons with low back pain (LBP). This is a correlational study, involving 63 institutionalized older persons (age = 70.98 ± 7.90 years) diagnosed with LBP. Anthropometric characteristics (BMI) and functional performances (lower limb function, balance and mobility, and hand grip strength) were measured. Muscle strength (abdominal and back muscle strength) was assessed using the Baseline® Mechanical Push/Pull Dynamometer, while muscle control (transverse abdominus and multifidus) was measured by using the Pressure Biofeedback Unit. The pain intensity and the level of kinesiophobia were measured using Numerical Rating Scale and Tampa Scale of Kinesiophobia, respectively. Data were analyzed using Pearson's correlation coefficients and multivariate linear regressions. No significant correlations were found between kinesiophobia and pain and muscle functions (all p > 0.05). Kinesiophobia was significantly correlated with mobility and balance ( p = 0.038, r = 0.263). Regressions analysis showed that kinesiophobia was a significant predictor of mobility and balance ( p = 0.038). We can conclude that kinesiophobia predicted mobility and balance in older persons with LBP. Kinesiophobia should be continuously assessed in clinical settings to recognize the obstacles that may affect patient's compliance towards a rehabilitation program in older persons with LBP.
2017-01-01
Objectives This study aims (1) to determine the association between kinesiophobia and pain, muscle functions, and functional performances and (2) to determine whether kinesiophobia predicts pain, muscle functions, and functional performance among older persons with low back pain (LBP). Methods This is a correlational study, involving 63 institutionalized older persons (age = 70.98 ± 7.90 years) diagnosed with LBP. Anthropometric characteristics (BMI) and functional performances (lower limb function, balance and mobility, and hand grip strength) were measured. Muscle strength (abdominal and back muscle strength) was assessed using the Baseline® Mechanical Push/Pull Dynamometer, while muscle control (transverse abdominus and multifidus) was measured by using the Pressure Biofeedback Unit. The pain intensity and the level of kinesiophobia were measured using Numerical Rating Scale and Tampa Scale of Kinesiophobia, respectively. Data were analyzed using Pearson's correlation coefficients and multivariate linear regressions. Results No significant correlations were found between kinesiophobia and pain and muscle functions (all p > 0.05). Kinesiophobia was significantly correlated with mobility and balance (p = 0.038, r = 0.263). Regressions analysis showed that kinesiophobia was a significant predictor of mobility and balance (p = 0.038). Conclusion We can conclude that kinesiophobia predicted mobility and balance in older persons with LBP. Kinesiophobia should be continuously assessed in clinical settings to recognize the obstacles that may affect patient's compliance towards a rehabilitation program in older persons with LBP. PMID:28634547
Is muscle coordination affected by loading condition in ballistic movements?
Giroux, Caroline; Guilhem, Gaël; Couturier, Antoine; Chollet, Didier; Rabita, Giuseppe
2015-02-01
This study aimed to investigate the effect of loading on lower limb muscle coordination involved during ballistic squat jumps. Twenty athletes performed ballistic squat jumps on a force platform. Vertical force, velocity, power and electromyographic (EMG) activity of lower limb muscles were recorded during the push-off phase and compared between seven loading conditions (0-60% of the concentric-only maximal repetition). The increase in external load increased vertical force (from 1962 N to 2559 N; P=0.0001), while movement velocity decreased (from 2.5 to 1.6 ms(-1); P=0.0001). EMG activity of tibialis anterior first peaked at 5% of the push-off phase, followed by gluteus maximus (35%), vastus lateralis and soleus (45%), rectus femoris (55%), gastrocnemius lateralis (65%) and semitendinosus (75%). This sequence of activation (P=0.67) and the amplitude of muscle activity (P=0.41) of each muscle were not affected by loading condition. However, a main effect of muscle was observed on these parameters (peak value: P<0.001; peak occurrence: P=0.02) illustrating the specific role of each muscle during the push-off phase. Our findings suggest that muscle coordination is not influenced by external load during a ballistic squat jump. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Pang; Cui, Kai; Zhang, Bo; Wang, Zhendan; Shen, Yangyang; Wang, Xiangyu; Zhang, Jianbo; Tong, Feng; Li, Sheng
2015-04-01
The regeneration of muscle tissue has been achieved using multipotent mesenchymal stem cells in mouse models of injured skeletal muscle. In the present study, the utility of multipotent human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in the treatment of Becker muscular dystrophy (BMD), a genetic disease where muscle tissue fails to regenerate, was examined in members from a pedigree affected by BMD. The disease status was evaluated in 4 affected pedigree members (II1, II2, II3 and III2; aged 50, 46, 42 and 6 years, respectively). The transplantation of the hUC‑MSCs (performed on 3 patients, I2, II3 and III2) was performed by infusion with an intravenous drip over a 30‑min period, and the patients were evaluated at 1, 3, 4 and 12 weeks following the procedure. The evaluation was based on physical characteristics, as well as on molecular testing for serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels and a histological examination of muscle biopsies. The patients suffered no adverse reactions in response to the transplantation of the hUC‑MSCs. At 1 week following transplantation all 3 patients showed improvement in the muscle force of the limbs, muscle size and daily activity. The walking gait of patient III2 had improved by 1 week post-transplantation and reached a normal status by 12 weeks. Serum CK and LDH levels were decreased relative to the baseline levels. A histological examination of muscle biopsies displayed no obvious tissue regeneration. In conclusion, the treatment of patients with BMD using hUC-MSCs was safe and of therapeutic benefit that lasted for up to 12 weeks. hUC-MSCs are, therefore, a potential cell therapy-based treatment option for patients with muscular dystrophies.
Srinivasan, Divya; Mathiassen, Svend Erik; Hallman, David M; Samani, Afshin; Madeleine, Pascal; Lyskov, Eugene
2016-01-01
Most previous studies of concurrent physical and cognitive demands have addressed tasks of limited relevance to occupational work, and with dissociated physical and cognitive task components. This study investigated effects on muscle activity and heart rate variability of executing a repetitive occupational task with an added cognitive demand integral to correct task performance. Thirty-five healthy females performed 7.5 min of standardized repetitive pipetting work in a baseline condition and a concurrent cognitive condition involving a complex instruction for correct performance. Average levels and variabilities of electromyographic activities in the upper trapezius and extensor carpi radialis (ECR) muscles were compared between these two conditions. Heart rate and heart rate variability were also assessed to measure autonomic nervous system activation. Subjects also rated perceived fatigue in the neck-shoulder region, as well as exertion. Concurrent cognitive demands increased trapezius muscle activity from 8.2% of maximum voluntary exertion (MVE) in baseline to 9.0% MVE (p = 0.0005), but did not significantly affect ECR muscle activity, heart rate, heart rate variability, perceived fatigue or exertion. Trapezius muscle activity increased by about 10%, without any accompanying cardiovascular response to indicate increased sympathetic activation. We suggest this slight increase in trapezius muscle activity to be due to changed muscle activation patterns within or among shoulder muscles. The results suggest that it may be possible to introduce modest cognitive demands necessary for correct performance in repetitive precision work without any major physiological effects, at least in the short term.
Brisswalter, Jeanick; Nosaka, Kazunori
2013-01-01
This review focuses on neuromuscular factors that may affect endurance performance in master athletes. During the last decade, due to the rapid increase in the number of master or veteran participants in endurance sporting competitions, many studies attempted to identify metabolic factors associated with the decrease in endurance, especially long-distance running performance with ageing, focusing on decreases in maximal oxygen consumption. However, neuromuscular factors have been less studied despite the well-known phenomena of strength loss with ageing. For master athletes to perform better in long-distance running events, it is important to reduce muscle fatigue and/or muscle damage, to improve locomotion efficiency and to facilitate recovery. To date, no consensus exists that regular endurance training is beneficial for improving locomotion efficiency, reducing muscle fatigue and muscle damage, and enhancing recovery capacity in master athletes. Some recent studies seem to indicate that master athletes have similar muscle damage to young athletes, but they require a longer recovery time after a long-distance running event. Further analyses of these parameters in master athletes require more experimental and practical interest from researchers and coaches. In particular, more attention should be directed towards the capacity to maintain muscle function with training and the role of neuromuscular factors in long-distance performance decline with ageing using a more cellular and molecular approach.
Thain, Peter K; Bleakley, Christopher M; Mitchell, Andrew C S
2015-07-01
Cryotherapy is used widely in sport and exercise medicine to manage acute injuries and facilitate rehabilitation. The analgesic effects of cryotherapy are well established; however, a potential caveat is that cooling tissue negatively affects neuromuscular control through delayed muscle reaction time. This topic is important to investigate because athletes often return to exercise, rehabilitation, or competitive activity immediately or shortly after cryotherapy. To compare the effects of wet-ice application, cold-water immersion, and an untreated control condition on peroneus longus and tibialis anterior muscle reaction time during a simulated lateral ankle sprain. Randomized controlled clinical trial. University of Hertfordshire human performance laboratory. A total of 54 physically active individuals (age = 20.1 ± 1.5 years, height = 1.7 ± 0.07 m, mass = 66.7 ± 5.4 kg) who had no injury or history of ankle sprain. Wet-ice application, cold-water immersion, or an untreated control condition applied to the ankle for 10 minutes. Muscle reaction time and muscle amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain were calculated. The ankle-sprain simulation incorporated a combined inversion and plantar-flexion movement. We observed no change in muscle reaction time or muscle amplitude after cryotherapy for either the peroneus longus or tibialis anterior (P > .05). Ten minutes of joint cooling did not adversely affect muscle reaction time or muscle amplitude in response to a simulated lateral ankle sprain. These findings suggested that athletes can safely return to sporting activity immediately after icing. Further evidence showed that ice can be applied before ankle rehabilitation without adversely affecting dynamic neuromuscular control. Investigation in patients with acute ankle sprains is warranted to assess the clinical applicability of these interventions.
Cardiovascular control during concomitant dynamic leg exercise and static arm exercise in humans
Strange, S
1999-01-01
Skeletal muscle blood flow is thought to be determined by a balance between sympathetic vasoconstriction and metabolic vasodilatation. The purpose of this study was to assess the importance of high levels of sympathetic vasoconstrictor activity in control of blood flow to human skeletal muscle during dynamic exercise.Muscle sympathetic nerve activity to the exercising leg was increased by static or static ischaemic arm exercise added to on-going dynamic leg exercise. Ten subjects performed light (20 W) or moderate (40 W) dynamic knee extension for 6 min with one leg alone or concomitant with bilateral static handgrip at 20% of maximal voluntary contraction force with or without forearm muscle ischaemia or post-exercise forearm muscle ischaemia.Muscle sympathetic nerve activity was measured by microneurography (peroneal nerve) and leg muscle blood flow by a constant infusion thermodilution technique (femoral vein).Activation of an exercise pressor reflex from the arms, causing a 2- to 4-fold increase in muscle sympathetic nerve activity and a 15–32% increase in mean arterial blood pressure, did not affect blood flow to the dynamically exercising leg muscles at any level of leg exercise. Leg vascular conductance was reduced in line with the higher perfusion pressure.The results demonstrate that the vasoconstrictor effects of high levels of muscle sympathetic nerve activity does not affect blood flow to human skeletal muscle exercising at moderate intensities. One question remaining is whether the observed decrease in muscle vascular conductance is the result of sympathetic vasoconstriction or metabolic autoregulation of muscle blood flow. PMID:9831733
Obesity-induced decreases in muscle performance are not reversed by weight loss.
Seebacher, F; Tallis, J; McShea, K; James, R S
2017-08-01
Obesity can affect muscle phenotypes, and may thereby constrain movement and energy expenditure. Weight loss is a common and intuitive intervention for obesity, but it is not known whether the effects of obesity on muscle function are reversible by weight loss. Here we tested whether obesity-induced changes in muscle metabolic and contractile phenotypes are reversible by weight loss. We used zebrafish (Danio rerio) in a factorial design to compare energy metabolism, locomotor capacity, muscle isometric force and work-loop power output, and myosin heavy chain (MHC) composition between lean fish, diet-induced obese fish, and fish that were obese and then returned to lean body mass following diet restriction. Obesity increased resting metabolic rates (P<0.001) and decreased maximal metabolic rates (P=0.030), but these changes were reversible by weight loss, and were not associated with changes in muscle citrate synthase activity. In contrast, obesity-induced decreases in locomotor performance (P=0.0034), and isolated muscle isometric stress (P=0.01), work-loop power output (P<0.001) and relaxation rates (P=0.012) were not reversed by weight loss. Similarly, obesity-induced decreases in concentrations of fast and slow MHCs, and a shift toward fast MHCs were not reversed by weight loss. Obesity-induced changes in locomotor performance and muscle contractile function were not reversible by weight loss. These results show that weight loss alone may not be a sufficient intervention.
Hill, Ethan C; Housh, Terry J; Camic, Clayton L; Smith, Cory M; Cochrane, Kristen C; Jenkins, Nathaniel D M; Cramer, Joel T; Schmidt, Richard J; Johnson, Glen O
2016-06-01
The purposes of this study were to examine the effects of the velocity of repeated eccentric muscle actions on the torque and neuromuscular responses during maximal isometric and eccentric muscle actions. Twelve resistance-trained men performed 30 repeated, maximal, eccentric, isokinetic muscle actions at randomly ordered velocities of 60, 120, or 180°·s on separate days. Maximal voluntary isometric contractions (MVICs) were performed before (pretest) and after (posttest) the repeated eccentric muscle actions on each day. Eccentric isokinetic peak torque (EIPT) values were the averages of the first 3 and last 3 repetitions of the 30 repeated eccentric muscle actions. During the EIPT and MVIC muscle actions, electromyographic (EMG) and mechanomyographic (MMG) amplitude (EMG AMP and MMG AMP) and mean power frequency (EMG MPF and MMG MPF) values were assessed. These results indicated that the repeated eccentric muscle actions had no effects on EIPT, or the EMG AMP, EMG MPF, or MMG MPF values assessed during the EIPT muscle actions, but decreased MMG AMP. The repeated eccentric muscle actions, however, decreased MVIC torque, and also the EMG AMP and MMG MPF values assessed during the MVIC muscle actions, but increased MMG AMP. The results indicated that the velocity of the repeated eccentric muscle actions affected the MVIC torque responses, but not EIPT or any of the neuromuscular parameters. Furthermore, there are differences in the torque and neuromuscular responses for isometric vs. eccentric muscle actions after repeated eccentric muscle actions.
Dannenberger, Dirk; Nuernberg, Karin; Nuernberg, Gerd; Priepke, Antje
2012-01-01
The present study investigated the effect of a reduced protein diet in combination with different vegetable oils (sunflower seed oil or linseed oil) on carcass traits, meat quality and fatty acid profile in porcine muscle. Forty male Landrace pigs were allocated into four experimental groups (each n = 8) and one control group (n = 8) at a live weight of approximately 60 kg. The pigs were fed ad libitum from 60 kg to 100 kg live weight and restricted to 2.8 kg/day until they reached 120 kg. In contrast to other studies, the intramuscular fat content (IMF) did not increase in animals of groups fed a reduced protein diet and vegetable oils. The IMF ranged between 1.2% and 1.4%. The growth performance and meat quality of the longissimus muscle was not affected by the diet, but the average daily gain (ADG) and drip loss were affected. The muscle fatty acid concentrations were significantly affected by the diet, resulting in higher n-3 FA concentrations up to 113 mg/100 g muscle and lower n-6/n-3 PUFA ratio for pigs fed linseed oil-containing high- and reduced protein diets, compared to sunflower seed oil-containing diets. PMID:23112912
Zhang, Hong; Kumar, Abhishek; Kothari, Mohit; Luo, Xiaoping; Trulsson, Mats; Svensson, Krister G; Svensson, Peter
2016-07-01
The aim was to test the hypothesis that short-term oral sensorimotor training of the jaw muscles would increase the precision of task performance and induce neuroplastic changes in the corticomotor pathways, related to the masseter muscle. Fifteen healthy volunteers performed six series with ten trials of an oral sensorimotor task. The task was to manipulate and position a spherical chocolate candy in between the anterior teeth and split it into two equal halves. The precision of the task performance was evaluated by comparing the ratio between the two split halves. A series of "hold-and-split" tasks was also performed before and after the training. The hold force and split force along with the electromyographic (EMG) activity of jaw muscles were recorded. Motor-evoked potentials and cortical motor maps of the right masseter muscle were evoked by transcranial magnetic stimulation. There was a significant effect of series on the precision of the task performance during the short-term oral sensorimotor training (P < 0.002). The hold force during the "hold-and-split" task was significantly lower after training than before the short-term training (P = 0.011). However, there was no change in the split force and the EMG activity of the jaw muscles before and after the training. Further, there was a significant increase in the amplitude of the motor-evoked potentials (P < 0.016) and in the motor cortex map areas (P = 0.033), after the short-term oral sensorimotor training. Therefore, short-term oral sensorimotor task training increased the precision of task performance and induced signs of neuroplastic changes in the corticomotor pathways, related to the masseter muscle.
Effects of Statins on Skeletal Muscle: A Perspective for Physical Therapists
Di Stasi, Stephanie L.; MacLeod, Toran D.; Winters, Joshua D.
2010-01-01
Hyperlipidemia, also known as high blood cholesterol, is a cardiovascular health risk that affects more than one third of adults in the United States. Statins are commonly prescribed and successful lipid-lowering medications that reduce the risks associated with cardiovascular disease. The side effects most commonly associated with statin use involve muscle cramping, soreness, fatigue, weakness, and, in rare cases, rapid muscle breakdown that can lead to death. Often, these side effects can become apparent during or after strenuous bouts of exercise. Although the mechanisms by which statins affect muscle performance are not entirely understood, recent research has identified some common causative factors. As musculoskeletal and exercise specialists, physical therapists have a unique opportunity to identify adverse effects related to statin use. The purposes of this perspective article are: (1) to review the metabolism and mechanisms of actions of statins, (2) to discuss the effects of statins on skeletal muscle function, (3) to detail the clinical presentation of statin-induced myopathies, (4) to outline the testing used to diagnose statin-induced myopathies, and (5) to introduce a role for the physical therapist for the screening and detection of suspected statin-induced skeletal muscle myopathy. PMID:20688875
Inhibitory effects of botulinum toxin on pyloric and antral smooth muscle.
James, Arlene N; Ryan, James P; Parkman, Henry P
2003-08-01
Botulinum toxin injection into the pylorus is reported to improve gastric emptying in gastroparesis. Classically, botulinum toxin inhibits ACh release from cholinergic nerves in skeletal muscle. The aim of this study was to determine the effects of botulinum toxin on pyloric smooth muscle. Guinea pig pyloric muscle strips were studied in vitro. Botulinum toxin type A was added; electric field stimulation (EFS) was performed every 30 min for 6 h. ACh (100 microM)-induced contractile responses were determined before and after 6 h. Botulinum toxin caused a concentration-dependent decrease of pyloric contractions to EFS. At a low concentration (2 U/ml), botulinum toxin decreased pyloric contractions to EFS by 43 +/- 9% without affecting ACh-induced contractions. At higher concentrations (10 U/ml), botulinum toxin decreased pyloric contraction to EFS by 75 +/- 7% and decreased ACh-induced contraction by 79 +/- 9%. In conclusion, botulinum toxin inhibits pyloric smooth muscle contractility. At a low concentration, botulinum toxin decreases EFS-induced contractile responses without affecting ACh-induced contractions suggesting inhibition of ACh release from cholinergic nerves. At higher concentrations, botulinum toxin directly inhibits smooth muscle contractility as evidenced by the decreased contractile response to ACh.
Postmortem findings in four litters of dogs with familial canine dermatomyositis.
Hargis, A. M.; Prieur, D. J.; Haupt, K. H.; Collier, L. L.; Evermann, J. F.; Ladiges, W. C.
1986-01-01
Postmortem evaluations were performed on 20 juvenile to young adult collie and collie-Labrador retriever crossbred dogs with dermatomyositis and 10 neonatal collies. Cutaneous, muscular, and vascular lesions were present in the juvenile and adult dogs and were most severe in areas of the head and distal extremities. In more severely affected dogs, lesions were more generalized, including myositis of esophageal muscle and arteritis of skin, muscle, bladder, and spermatic cord. Although viruses were not isolated from muscle, crystalline viral-like structures were present in cytoplasm of endothelial cells within skeletal muscle. The dogs with dermatitis and myositis consistently had lymphoid hyperplasia, especially of peripheral lymph nodes. More severely affected dogs were smaller than less severely affected littermates, and the more severely affected males had reduced weight of testicles and prostate glands, compared with body weight. The reduced weight of genital organs correlated positively with reduced fertility. A few lymphoid aggregates were present in or around thyroid glands of 6 of the 20 dogs. There was no histologic evidence of glomerular disease in any of the dogs. The neonatal collies had no evidence of dermatomyositis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:3717301
Exercise in muscle glycogen storage diseases.
Preisler, Nicolai; Haller, Ronald G; Vissing, John
2015-05-01
Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.
Spillane, Mike; Willoughby, Darryn S.
2016-01-01
This study determined the effects of heavy resistance training and daily overfeeding with carbohydrate and/or protein on blood and skeletal muscle markers of protein synthesis (MPS), myogenesis, body composition, and muscle performance. Twenty one resistance-trained males were randomly assigned to either a protein + carbohydrate [HPC (n = 11)] or a carbohydrate [HC (n = 10)] supplement group in a double-blind fashion. Body composition and muscle performance were assessed, and venous blood samples and muscle biopsies were obtained before and after eight weeks of resistance training and supplementation. Data were analyzed by two-way ANOVA (p ≤ 0.05). Total body mass, body water, and fat mass were significantly increased in both groups in response to resistance training, but not supplementation (p < 0.05); however, lean mass was not significantly increased in either group (p = 0.068). Upper- (p = 0.024) and lower-body (p = 0.001) muscle strength and myosin heavy chain (MHC) 1 (p = 0.039) and MHC 2A (p = 0.027) were also significantly increased with resistance training. Serum IGF-1, GH, and HGF were not significantly affected (p > 0.05). Muscle total DNA, total protein, and c-Met were not significantly affected (p > 0.05). In conjunction with resistance training, the peri-exercise and daily overfeeding of protein and/or carbohydrate did not preferentially improve body composition, muscle performance, and markers indicative of MPS and myogenic activation. Key points In response to 56 days of heavy resistance training and HC or HPC supplementation, similar increases in muscle mass and strength in both groups occurred; however, the increases were not different between supplement groups. The supplementation of HPC had no preferential effect on augmenting serum IGF-1 GH, or HGF. The supplementation of HPC had no preferential effect on augmenting increases in total muscle protein content or the myogenic markers, total DNA and muscle cMet content. In response to 56 days of a daily supplemental dose of 94 g of protein and 196 g of carbohydrate, the HPC group was no more effective than 312 g of carbohydrate in the HC group in increasing muscle strength and mass due to its ability to elevate serum anabolic hormones and growth factors and markers of myogenic activation of satellite cells. PMID:26957922
Prevalence of Bruxism in Hemifacial-Spasm Patients.
Ella, Bruno; Guillaud, Etienne; Langbour, Nicolas; Guehl, Dominique; Burbaud, Pierre
2017-06-01
A previous study reported an increased prevalence of bruxism (25%) in patients with cranio-cervical dystonia (CCD) compared to normal controls (13%). CCD can affect the muscles of the head and neck. Besides the CCD affecting these muscles, hemifacial spasm (HFS) is a form of peripheral myoclonus due to a neurovascular conflict affecting the muscles of the face. The fact that they affect the same muscle regions could lead to other links in clinical manifestations such as bruxism, which is more common in patients with CCD than in the normal population. The aim was to study the prevalence of bruxism in patients with HFS. Patients with HFS were enrolled in the department of clinical neurophysiology (Bordeaux University Hospital) over a 6-month period. They were paired regarding age, the absence of neurological pathology or neuroleptics intake. To be included in the study, patients needed to have had unilateral involuntary facial muscle contractions affecting one hemiface. A hetero-questionnaire and a clinicial study were performed. The diagnostic criteria of bruxism included parafunction items such as grinding and clenching and at least one of the following clinical signs: abnormal tooth wear, temporomandibular joint (TMJ) pain, TMJ clicking, muscle hypertonia (masseter or temporal muscles). Additional epidemiological data were collected including age, sex, disease duration, stress, and sleep disorders. Stress symptoms inventory included symptoms like depression, strong heartbeat, dry mouth, anger, inability to concentrate, weakness, fatigability, insomnia, headache, and excessive sweating. The sleep disorder diagnosis included at least two of the symptoms described in the ICSD-3. All these criteria were recorded as either present (scored "1") or absent (scored "0"). The prevalence of bruxism in the two groups (normal and HFS) was not significantly different (p = 0.37). The rate was not significantly different between sleep and awake bruxism (p = 0.15) in both groups. Stress influenced the occurrence of bruxism in these two groups (p < 0.001). The results of this study indicated that clenching behaviors were higher in the HFS group, and that factors such as stress affected this group. The prevalence of bruxism was not higher in this population than in the normal control. © 2015 by the American College of Prosthodontists.
Vitamin D, a modulator of musculoskeletal health in chronic kidney disease.
Molina, Pablo; Carrero, Juan J; Bover, Jordi; Chauveau, Philippe; Mazzaferro, Sandro; Torres, Pablo Ureña
2017-10-01
The spectrum of activity of vitamin D goes beyond calcium and bone homeostasis, and growing evidence suggests that vitamin D contributes to maintain musculoskeletal health in healthy subjects as well as in patients with chronic kidney disease (CKD), who display the combination of bone metabolism disorder, muscle wasting, and weakness. Here, we review how vitamin D represents a pathway in which bone and muscle may interact. In vitro studies have confirmed that the vitamin D receptor is present on muscle, describing the mechanisms whereby vitamin D directly affects skeletal muscle. These include genomic and non-genomic (rapid) effects, regulating cellular differentiation and proliferation. Observational studies have shown that circulating 25-hydroxyvitamin D levels correlate with the clinical symptoms and muscle morphological changes observed in CKD patients. Vitamin D deficiency has been linked to low bone formation rate and bone mineral density, with an increased risk of skeletal fractures. The impact of low vitamin D status on skeletal muscle may also affect muscle metabolic pathways, including its sensitivity to insulin. Although some interventional studies have shown that vitamin D may improve physical performance and protect against the development of histological and radiological signs of hyperparathyroidism, evidence is still insufficient to draw definitive conclusions. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Brazaitis, Marius; Skurvydas, Albertas; Pukėnas, Kazimieras; Daniuseviciūtė, Laura; Mickevicienė, Dalia; Solianik, Rima
2012-11-01
In this study, we questioned whether local cooling of muscle or heating involving core and muscle temperatures are the main indicators for force variability. Ten volunteers performed a 2-min maximum voluntary contraction (MVC) of the knee extensors under control (CON) conditions after passive heating (HT) and cooling (CL) of the lower body. HT increased muscle and rectal temperatures, whereas CL lowered muscle temperature but did not affect rectal temperature. During 2-min MVC, peak force decreased to a lower level in HT compared with CON and CL experiments. Greater central fatigue was found in the HT experiment, and there was less in the CL experiment than in the CON experiment. Increased core and muscle temperature increased physiological tremor and the amount and structural complexity of force variability of the exercising muscles, whereas local muscle cooling decreased all force variability variables measured. Copyright © 2012 Wiley Periodicals, Inc.
Vibration-induced muscle injury. An experimental model and preliminary findings.
Necking, L E; Dahlin, L B; Fridén, J; Lundborg, G; Lundström, R; Thornell, L E
1992-06-01
The hind paws of rats were subjected to vibration at a frequency of 80 Hz., an acceleration of 32 m./s.2 rms (i.e. ah.w approximately 6.3 m./s.2 rms) for five hours daily during five consecutive days. Morphological, histochemical and immunohistochemical analyses of the soleus, extensor digitorum longus and the plantar muscles in the vibrated limb and the contralateral control limb were performed. No changes were seen in the soleus or extensor digitorum longus muscles but different degrees of degeneration of the muscle fibres were seen in the plantar muscle sections as well as signs of regeneration. No changes were observed in the contralateral unexposed limb. It is concluded that it is not only nervous tissue but also muscle tissue that can be affected by vibration. The changes seem to be confined to muscles close to the vibration exciter.
The muscle engram: the reflex that limits conventional occlusal treatment.
Lerman, Martin D
2011-10-01
The engram (the masticatory "muscle memory") is shown to be a conditionable reflex whose muscle conditioning lasts less than two minutes, far shorter than previously thought. This reflex, reinforced and stored in the masticatory muscles at every swallow, adjusts masticatory muscle activity to guide the lower arch unerringly into its ICP. These muscle adjustments compensate for the continually changing intemal and external factors that affect the mandible's entry into the ICP. A simple quick experiment described in this article isolates the engram, enabling the reader to see its action clearly for the first time. It is urged that every reader perform this experiment. This experiment shows how the engram, by hiding the masticatory muscles' reaction (the hit-and-slide), limits the success of the therapist in achieving occlusion-muscle compatibility. This finding has major clinical implications. It means that, as regards the muscle aspect of treating occlusion, the dentist treating occlusion conventionally is working blind, a situation the neuromuscular school of occlusal thought seeks to correct. The controversy over occlusion continues.
Ophoff, Jill; Van Proeyen, Karen; Callewaert, Filip; De Gendt, Karel; De Bock, Katrien; Vanden Bosch, An; Verhoeven, Guido; Hespel, Peter; Vanderschueren, Dirk
2009-08-01
Muscle frailty is considered a major cause of disability in the elderly and chronically ill. However, the exact role of androgen receptor (AR) signaling in muscle remains unclear. Therefore, a postmitotic myocyte-specific AR knockout (mARKO) mouse model was created and investigated together with a mouse model with ubiquitous AR deletion. Muscles from mARKO mice displayed a marked reduction in AR protein (60-88%). Interestingly, body weights and lean body mass were lower in mARKO vs. control mice (-8%). The weight of the highly androgen-sensitive musculus levator ani was significantly reduced (-46%), whereas the weights of other peripheral skeletal muscles were not or only slightly reduced. mARKO mice had lower intra-abdominal fat but did not demonstrate a cortical or trabecular bone phenotype, indicating that selective ablation of the AR in myocytes affected male body composition but not skeletal homeostasis. Furthermore, muscle contractile performance in mARKO mice did not differ from their controls. Myocyte-specific AR ablation resulted in a conversion of fast toward slow fibers, without affecting muscle strength or fatigue. Similar results were obtained in ubiquitous AR deletion, showing lower body weight, whereas some but not all muscle weights were reduced. The percent slow fibers was increased, but no changes in muscle strength or fatigue could be detected. Together, our findings show that myocyte AR signaling contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. The levator ani weight remains the most sensitive and specific marker of AR-mediated anabolic action on muscle.
2013-01-01
Background Vibration is known to alter proprioceptive afferents and create a tonic vibration reflex. The control of force and its variability are often considered determinants of motor performance and neuromuscular control. However, the effect of vibration on paraspinal muscle control and force production remains to be determined. Methods Twenty-one healthy adults were asked to perform isometric trunk flexion and extension torque at 60% of their maximal voluntary isometric contraction, under three different vibration conditions: no vibration, vibration frequencies of 30 Hz and 80 Hz. Eighteen isometric contractions were performed under each condition without any feedback. Mechanical vibrations were applied bilaterally over the lumbar erector spinae muscles while participants were in neutral standing position. Time to peak torque (TPT), variable error (VE) as well as constant error (CE) and absolute error (AE) in peak torque were calculated and compared between conditions. Results The main finding suggests that erector spinae muscle vibration significantly decreases the accuracy in a trunk extension isometric force reproduction task. There was no difference between both vibration frequencies with regard to force production parameters. Antagonist muscles do not seem to be directly affected by vibration stimulation when performing a trunk isometric task. Conclusions The results suggest that acute erector spinae muscle vibration interferes with torque generation sequence of the trunk by distorting proprioceptive information in healthy participants. PMID:23919578
Capobianco, Robyn A; Feeney, Daniel F; Jeffers, Jana R; Nelson-Wong, Erika; Morreale, Joseph; Grabowski, Alena M; Enoka, Roger M
2018-04-03
The ability to rise from a chair is a basic functional task that is frequently compromised in individuals diagnosed with orthopedic disorders in the low back and hip. There is no published literature that describes how this task is altered by sacroiliac joint dysfunction (SIJD). The objective of this study was to compare lower extremity biomechanics and the onset of muscle activity when rising from a chair in subjects with SIJD and in healthy persons. Six women with unilateral SIJD and six age-matched healthy controls performed a sit-to-stand task while we measured kinematics, kinetics, and muscle activity. Subjects stood up at a preferred speed from a seated position on an armless and backless adjustable stool. We measured kinematics with a 10-camera motion capture system, ground reaction forces for each leg with force plates, and muscle activity with surface electromyography. Joint angles and torques were calculated using inverse dynamics. Leg-loading rate was quantified as the average slope of vertical ground reaction (VGRF) force during the 500-millisecond interval preceding maximal knee extension. Between-leg differences in loading rates and peak VGRFs were significantly greater for the SIJD group than for the control group. Maximal hip angles were significantly less for the SIJD group (p=.001). Peak hip moment in the SIJD group was significantly greater in the unaffected leg (0.75±0.22 N⋅m/kg) than in the affected leg (0.47±0.29 N⋅m/kg, p=.005). There were no between-leg or between-group differences for peak knee or ankle moments. The onset of activity in the latissimus dorsi muscle on the affected side was delayed and the erector spinae muscles were activated earlier in the SIJD group than in the control group. Subjects with SIJD have a greater VGRF on the unaffected leg, generate a greater peak hip moment in the unaffected leg, use a smaller range of motion at the hip joint of the affected leg, and delay the onset of a key muscle on the affected side when rising from a seated position. Copyright © 2018 Elsevier Inc. All rights reserved.
Layec, Gwenael; Millet, Grégoire P; Jougla, Aurélie; Micallef, Jean-Paul; Bendahan, David
2008-02-01
Electromyostimulation (EMS) is commonly used as part of training programs. However, the exact effects at the muscle level are largely unknown and it has been recently hypothesized that the beneficial effect of EMS could be mediated by an improved muscle perfusion. In the present study, we investigated rates of changes in pulmonary oxygen consumption (VO(2p)) and muscle deoxygenation during a standardized exercise performed after an EMS warm-up session. We aimed at determining whether EMS could modify pulmonary O(2) uptake and muscle deoxygenation as a result of improved oxygen delivery. Nine subjects performed a 6-min heavy constant load cycling exercise bout preceded either by an EMS session (EMS) or under control conditions (CONT). VO(2p) and heart rate (HR) were measured while deoxy-(HHb), oxy-(HbO(2)) and total haemoglobin/myoglobin (Hb(tot)) relative contents were measured using near infrared spectroscopy. EMS significantly increased (P < 0.05) the Hb(tot) resting level illustrating a residual hyperaemia. The EMS priming exercise did not affect either the HHb time constant (17.7 +/- 14.2 s vs. 13.1 +/- 2.3 s under control conditions) or the VO(2p) kinetics (time-constant = 18.2 +/- 5.2 s vs. 15.4 +/- 4.6 s under control conditions). Likewise, the other VO(2p) parameters were unchanged. Our results further indicated that EMS warm-up improved muscle perfusion through a residual hyperaemia. However, neither VO(2p) nor [HHb] kinetics were modified accordingly. These results suggest that improved O(2) delivery by residual hyperaemia induced by EMS does not accelerate the rate of aerobic metabolism during heavy exercise at least in trained subjects.
Marden, James H; Fescemyer, Howard W; Saastamoinen, Marjo; MacFarland, Suzanne P; Vera, J Cristobal; Frilander, Mikko J; Hanski, Ilkka
2008-12-01
A fundamental feature of gene expression in multicellular organisms is the production of distinct transcripts from single genes by alternative splicing (AS), which amplifies protein and functional diversity. In spite of the likely consequences for organismal biology, little is known about how AS varies among individuals or responds to body condition, environmental variation or extracellular signals in general. Here we show that evolutionarily conserved AS of troponin-t in flight muscle of adult moths responds in a quantitative fashion to experimental manipulation of larval nutrition and adult body weight. Troponin-t (Tnt) isoform composition is known to affect muscle force and power output in other animals, and is shown here to be associated with the thorax mass-specific rate of energy consumption during flight. Loading of adults with external weights for 5 days caused an AS response nearly identical to equal increases in actual body weight. In addition, there were effects of larval feeding history on adult Tnt isoform composition that were independent of body weight, with moths from poorer larval feeding regimes producing isoform profiles associated with reduced muscle performance and energy consumption rate. Thus, Tnt isoform composition in striated muscle is responsive to both weight-sensing and nutrition-sensing mechanisms, with consequent effects on function. In free-living butterflies, Tnt isoform composition was also associated with activity level and very strongly with the rate of egg production. Overall, these results show that AS of a muscle gene responds in a quantitative fashion to whole-organism variables, which apparently serves to coordinate muscle strength and energy expenditure with body condition and life history.
The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)
NASA Astrophysics Data System (ADS)
Azman, M. F.; Azman, A. W.
2017-11-01
Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.
Oueslati, Ferid; Boone, Jan; Ahmaidi, Said
2016-06-15
The purpose of this study was to investigate the relationships between respiratory muscle endurance, tissue oxygen saturation index dynamics of leg muscle (TSI) and the time to exhaustion (TTE) during high intensity exercise. Eleven males performed a respiratory muscle endurance test, a maximal incremental running field test (8 km h(-1)+0.5 km h(-1) each 60s) and a high-intensity constant speed field test at 90% VO2max. The TSI in vastus lateralis was monitored with near-infrared spectroscopy. The TSI remained steady between 20 and 80% of TTE. Between 80 and 100% of TTE (7.5 ± 6.1%, p<0.05), a significant drop in TSI concomitant with a minute ventilation increase (16 ± 10 l min(-1)) was observed. Moreover, the increase of ventilation was correlated to the drop in TSI (r=0.70, p<0.05). Additionally, respiratory muscle endurance was significantly correlated to TSI time plateau (20-80% TTE) (r=0.83, p<0.05) and to TTE (r=0.95, p<0.001). The results of the present study show that the tissue oxygen saturation plateau might be affected by ventilatory work and that respiratory muscle endurance could be considered as a determinant of performance during heavy exercise. Copyright © 2016 Elsevier B.V. All rights reserved.
Neyroud, Daria; Cheng, Arthur J; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan
2016-01-01
The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on-1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on-3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased "voluntary activation." In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.
Neuromotor control in chronic obstructive pulmonary disease.
Mantilla, Carlos B; Sieck, Gary C
2013-05-01
Neuromotor control of skeletal muscles, including respiratory muscles, is ultimately dependent on the structure and function of the motor units (motoneurons and the muscle fibers they innervate) comprising the muscle. In most muscles, considerable diversity of contractile and fatigue properties exists across motor units, allowing a range of motor behaviors. In diseases such as chronic obstructive pulmonary disease (COPD), there may be disproportional primary (disease related) or secondary effects (related to treatment or other concomitant factors) on the size and contractility of specific muscle fiber types that would influence the relative contribution of different motor units. For example, with COPD there is a disproportionate atrophy of type IIx and/or IIb fibers that comprise more fatigable motor units. Thus fatigue resistance may appear to improve, while overall motor performance (e.g., 6-min walk test) and endurance (e.g., reduced aerobic exercise capacity) are diminished. There are many coexisting factors that might also influence motor performance. For example, in COPD patients, there may be concomitant hypoxia and/or hypercapnia, physical inactivity and unloading of muscles, and corticosteroid treatment, all of which may disproportionately affect specific muscle fiber types, thereby influencing neuromotor control. Future studies should address how plasticity in motor units can be harnessed to mitigate the functional impact of COPD-induced changes.
CHANGES IN MUSCLE DAMAGE MARKERS IN FEMALE BASKETBALL PLAYERS
Moreira, A.; Nosaka, K.; Nunes, J.A.; Viveiros, L.; Jamurtas, A.Z.
2014-01-01
The aim of the present study was to investigate changes in muscle soreness, blood muscle damage markers, muscle strength and agility following an official basketball match. Eleven elite female professional basketball players (27.4 ± 4.8 years, 179.5 ± 5.5 cm, 72.0 ± 7.8 kg) of a team participated in this study. The official match was the seventh match of the season in the first phase of the Brazilian National Female Basketball Championship. Muscle soreness, plasma creatine kinase activity (CK), and myoglobin concentration (Mb) were determined before and after the match (post-match, 24 and 48 hours after the match). The 1RM strength for bench press and leg press, and the agility T test were assessed before and at 24 and 48 hours after the match. Significant increases in muscle soreness, CK and Mb were observed at 24 and 48 hours post-match (p<0.05). No significant changes in the 1RM strength and T test were detected during recovery (24 and 48 hours after the match). These results suggest that a basketball match induced limited muscle damage with minimal effect on performance during recovery. The small increase in muscle damage markers following a basketball match did not affect strength and agility performance. PMID:24917683
Changes in muscle damage markers in female basketball players.
Moreira, A; Nosaka, K; Nunes, J A; Viveiros, L; Jamurtas, A Z; Aoki, M S
2014-03-01
The aim of the present study was to investigate changes in muscle soreness, blood muscle damage markers, muscle strength and agility following an official basketball match. Eleven elite female professional basketball players (27.4 ± 4.8 years, 179.5 ± 5.5 cm, 72.0 ± 7.8 kg) of a team participated in this study. The official match was the seventh match of the season in the first phase of the Brazilian National Female Basketball Championship. Muscle soreness, plasma creatine kinase activity (CK), and myoglobin concentration (Mb) were determined before and after the match (post-match, 24 and 48 hours after the match). The 1RM strength for bench press and leg press, and the agility T test were assessed before and at 24 and 48 hours after the match. Significant increases in muscle soreness, CK and Mb were observed at 24 and 48 hours post-match (p<0.05). No significant changes in the 1RM strength and T test were detected during recovery (24 and 48 hours after the match). These results suggest that a basketball match induced limited muscle damage with minimal effect on performance during recovery. The small increase in muscle damage markers following a basketball match did not affect strength and agility performance.
McFarlane, Laura; Altringham, John D.; Askew, Graham N.
2016-01-01
ABSTRACT Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass. PMID:26994175
Maas, Huub; Baan, Guus C; Huijing, Peter A
2013-01-01
The aim of this paper is to investigate mechanical functioning of a single skeletal muscle, active within a group of (previously) synergistic muscles. For this purpose, we assessed wrist angle-active moment characteristics exerted by a group of wrist flexion muscles in the rat for three conditions: (i) after resection of the upper arm skin; (ii) after subsequent distal tenotomy of flexor carpi ulnaris muscle (FCU); and (iii) after subsequent freeing of FCU distal tendon and muscle belly from surrounding tissues (MT dissection). Measurements were performed for a control group and for an experimental group after recovery (5 weeks) from tendon transfer of FCU to extensor carpi radialis (ECR) insertion. To assess if FCU tenotomy and MT dissection affects FCU contributions to wrist moments exclusively or also those of neighboring wrist flexion muscles, these data were compared to wrist angle-moment characteristics of selectively activated FCU. FCU tenotomy and MT dissection decreased wrist moments of the control group at all wrist angles tested, including also angles for which no or minimal wrist moments were measured when activating FCU exclusively. For the tendon transfer group, wrist flexion moment increased after FCU tenotomy, but to a greater extent than can be expected based on wrist extension moments exerted by selectively excited transferred FCU. We conclude that dissection of a single muscle in any surgical treatment does not only affect mechanical characteristics of the target muscle, but also those of other muscles within the same compartment. Our results demonstrate also that even after agonistic-to-antagonistic tendon transfer, mechanical interactions with previously synergistic muscles do remain present.
Lee, Tzu-Hsien
2005-12-01
This study examined the effects of operating a built-in touch-pad pointing device and a trackball mouse on participants' completion times, hand positions during operation, postural angles, and muscle activities. 8 young men were asked to perform a cursor travel task on a notebook computer using both 60- and 80-cm high table conditions. Analysis showed that the trackball mouse significantly decreased completion times. Participants selected a hand position farther from the table edge and larger elbow angle for the trackball mouse than for the built-in touch-pad pointing device. Participants' neck, thoracic, and arm angles, or splenius capitis, trapezius, deltoid, and erector spinae muscle activities were not significantly affected by the devices, but table height significantly affected participants' completion times, hand positions, and postural angles.
Injury Prevention and Performance Enhancement in 101st Airbourne Soldiers
2013-02-01
associated with tactical operations training. These muscle groups contribute to the dissipation of forces imposed on and neuromuscular control of the...flexibility in one or both of these muscle groups may contribute to acute or chronic injuries affecting the proper functioning of the knee and jeopardizing...continuous NP (non-pain group : 91 pilots) on several factors: work-related, personal demographics, and health-related. The pain group had significantly
Gage, C Colby; Huxel Bliven, Kellie C; Bay, R Curtis; Sturgill, Jeremiah S; Park, Jae Hyun
2015-01-01
Mandibular repositioning and subsequent neuromuscular signaling are proposed mechanisms of action for commercial mouthguards marketed for performance enhancement. A prospective cross-sectional study of 24 healthy adult weightlifters with normal occlusal relationships was designed to determine whether 2 self-fit performance mouthguards; a custom-fabricated, bilaterally balanced, dual-laminated mouthguard; and no mouthguard (control) differed in their effects on vertical dimension, muscle activation, and user preference during a 75% maximum power clean lift. Each subject was tested for each of the mouthguard categories: Power Balance POWERUP, Under Armour ArmourBite, custom, and no mouthguard. Interocclusal distance was measured at baseline and with each mouthguard. Mean and peak activity of the anterior temporalis, masseter, sternocleidomastoid, and cervical paraspinal muscles was measured during sitting and during a 75% maximum power clean lift. A mouthguard preference questionnaire was completed. Analyses were conducted to determine whether interocclusal distance differed among mouthguard type and to examine the effect of mouthguard type on mean and peak muscle activation during the clean lift. Interocclusal distance was affected by mouthguard type (P = 0.01). Mean and peak activity of the anterior temporalis and masseter muscles and mean activity of the sternocleidomastoid muscle differed among mouthguards (P < 0.05). Mouthguard type did not influence muscle activation of the cervical paraspinal muscle group. Overall, the Power Balance mouthguard produced more muscle activity. Participants preferred custom mouthguards nearly 2:1 over self-fit performance mouthguards (P = 0.05). Participants perceived that they were stronger and were less encumbered when using a custom mouthguard during submaximum power clean lifts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, S.; Galperin, M; Melvin, G
Pompe disease, a deficiency of lysosomal acid {alpha}-glucosidase, is a disorder of glycogen metabolism that can affect infants, children, or adults. In all forms of the disease, there is progressive muscle pathology leading to premature death. The pathology is characterized by accumulation of glycogen in lysosomes, autophagic buildup, and muscle atrophy. The purpose of the present investigation was to determine if myofibrillar dysfunction in Pompe disease contributes to muscle weakness beyond that attributed to atrophy. The study was performed on isolated myofibers dissected from severely affected fast glycolytic muscle in the {alpha}-glucosidase knockout mouse model. Psoas muscle fibers were firstmore » permeabilized, so that the contractile proteins could be directly relaxed or activated by control of the composition of the bathing solution. When normalized by cross-sectional area, single fibers from knockout mice produced 6.3 N/cm{sup 2} of maximum Ca{sup 2+}-activated tension compared with 12.0 N/cm{sup 2} produced by wild-type fibers. The total protein concentration was slightly higher in the knockout mice, but concentrations of the contractile proteins myosin and actin remained unchanged. Structurally, X-ray diffraction showed that the actin and myosin filaments, normally arranged in hexagonal arrays, were disordered in the knockout muscle, and a lower fraction of myosin cross bridges was near the actin filaments in the relaxed muscle. The results are consistent with a disruption of actin and myosin interactions in the knockout muscles, demonstrating that impaired myofibrillar function contributes to weakness in the diseased muscle fibers.« less
The Impact of Experience on Affective Responses during Action Observation.
Kirsch, Louise P; Snagg, Arielle; Heerey, Erin; Cross, Emily S
2016-01-01
Perceiving others in action elicits affective and aesthetic responses in observers. The present study investigates the extent to which these responses relate to an observer's general experience with observed movements. Facial electromyographic (EMG) responses were recorded in experienced dancers and non-dancers as they watched short videos of movements performed by professional ballet dancers. Responses were recorded from the corrugator supercilii (CS) and zygomaticus major (ZM) muscles, both of which show engagement during the observation of affect-evoking stimuli. In the first part of the experiment, participants passively watched the videos while EMG data were recorded. In the second part, they explicitly rated how much they liked each movement. Results revealed a relationship between explicit affective judgments of the movements and facial muscle activation only among those participants who were experienced with the movements. Specifically, CS activity was higher for disliked movements and ZM activity was higher for liked movements among dancers but not among non-dancers. The relationship between explicit liking ratings and EMG data in experienced observers suggests that facial muscles subtly echo affective judgments even when viewing actions that are not intentionally emotional in nature, thus underscoring the potential of EMG as a method to examine subtle shifts in implicit affective responses during action observation.
Foster-Burns, S B
1999-01-01
A principle component of age-related weakness and frailty in women is sarcopenia. This decrease in skeletal muscle mass is a progressive syndrome that will affect the quality of life for elderly women by decreasing the ability to perform many activities of daily living. Strength training is known to be an effective means of increasing muscular strength and size in many populations, and can be utilized successfully to significantly improve muscle strength, muscle mass and functional mobility in elderly women up to the age of 96 years. Such exercise can minimize the syndrome of physical frailty due to decreased muscle mass and strength. Any rehabilitation or exercise program for the elderly woman would benefit from the inclusion of such a training regime.
Liyanagamage, Shanie A.; Bertucco, Matteo; Bhanpuri, Nasir H.; Sanger, Terence D.
2016-01-01
Vibratory feedback can be a useful tool for rehabilitation. We examined its use in children with dystonia to understand how it affects muscle activity in a population that does not respond well to standard rehabilitation. We predicted scaled vibration (i.e. vibration that was directly or inversely proportional to muscle activity) would increase use of the vibrated muscle because of task-relevant sensory information, while non-scaled vibration would not change muscle use. The study was conducted on 11 subjects with dystonia and 14 controls. Each subject underwent 4 different types of vibration on the more dystonic biceps muscle (or non-dominant arm in controls) in a one-dimensional, bimanual myocontrol task. Our results showed that only scaled vibratory feedback could bias muscle use without changing overall performance in children with dystonia. We believe there may be a role in rehabilitation for scaled vibratory feedback to retrain abnormal muscle patterns. PMID:27798370
Deisenroth, Anne; Söntgerath, Regine; Schuster, Anne Judith; von Busch, Christine; Huber, Gerhard; Eckert, Katharina; Kulozik, Andreas E; Wiskemann, Joachim
2016-09-01
Cancer- and treatment-related side effects in patients with childhood cancer may cause limitations in motor performance affecting activities of daily living (ADLs). Data focusing on long-term effects are available, but little is known with regard to the short-term perspective. Therefore, the purpose of this study was to assess muscle strength performance and quality of life (QoL) in children and adolescents with cancer at the beginning of primary treatment. Forty children and adolescents aged 5-18 years (mean: 11.39 ± 4.08 years) with different types of childhood cancer were enrolled. On average 36 ± 20.5 days after diagnosis, strength performance in 7 muscle groups was assessed by handheld dynamometry. KINDL questionnaires were completed to evaluate QoL (children's self-report and parents' report). All parameters were compared with age- and gender-matched reference values. Patients with childhood cancer showed significantly lower strength values in all muscle groups (P < .01) compared with age- and gender-matched controls. Most affected were the lower extremities, with a -57.1% ± 10.4%, median: -59.2%, minimum: -75.4%, maximum: -41.4% percentage deviation in knee flexion from healthy peers. Children themselves and parents assessed total QoL significantly below age- and gender-matched reference values (P < .01). Correlation between elbow flexion and self-reported QoL was detected. Broader correlations were found for the parents' report. Muscle weakness and decreased QoL in children and adolescents seem to persist already at the beginning of anticancer treatment. This underlines the need of counteracting measures, such as exercise intervention programs, starting as early as possible during the treatment process. Efforts on this topic are currently being carried out by our group.
Osteoporosis and gait and balance disturbances in older sarcopenic obese New Zealanders.
Waters, D L; Hale, L; Grant, A M; Herbison, P; Goulding, A
2010-02-01
Bone, muscle, and fat may affect gait and balance in older adults. Osteoporosis was prevalent in low muscle mass participants and related to gait and balance deficits. Low muscle combined with high fat mass had more functional deficits and poorer bone health, which has implications for falls risk and fractures. Decreasing bone density and muscle mass and increasing fat mass may act synergistically to affect gait and balance in older adults. One hundred eighty-three older adults (age 72.7 +/- 6 years, range 56-93; body mass index 28.2 +/- 4.9, range 16.6-46.0) were recruited from a New Zealand falls prevention intervention trial. Total and appendicular skeletal muscle mass (ASM), percent fat, and bone mineralization were assessed by dual energy X-ray absorptiometry and used to characterize normal lean (NL, n = 51), sarcopenic (SS, n = 18), sarcopenic obese (SO, n = 29), and obese (OO, n = 85) phenotypes. Functional performance was assessed using timed up and go, chair stand, single leg stand, and step test. Regression models were adjusted for age, sex, medications, and physical activity. Femoral neck osteoporosis was present in 22% SS, 17% SO, 12% NL, and 7% OO. Femoral neck osteoporosis with low ASM predicted poor chair stand performance (beta -3.3, standard error 1.6, p = 0.04). SO scored lowest on the chair stand (p = 0.03) and step test (p = 0.03). Higher ASM predicted faster timed up and go performance (p = 0.001). Osteoporosis was prevalent in low ASM groups (SS and SO) and related to gait and balance deficits, particularly in the SO. This has implications for falls risk, fractures, and interventions.
Goron, Arthur; Lamarche, Frédéric; Cunin, Valérie; Dubouchaud, Hervé; Hourdé, Christophe; Noirez, Philippe; Corne, Christelle; Couturier, Karine; Sève, Michel; Fontaine, Eric; Moinard, Christophe
2017-04-25
Background: Exercise and citrulline (CIT) are both regulators of muscle protein metabolism. However, the combination of both has been under-studied yet may have synergistic effects on muscle metabolism and performance. Methods: Three-month-old healthy male rats were randomly assigned to be fed ad libitum for 4 weeks with either a citrulline-enriched diet (1 g·kg -1 ·day -1 ) ( CIT ) or an isonitrogenous standard diet (by addition of nonessential amino acid) ( Ctrl ) and trained (running on treadmill 5 days·week -1 ) ( ex ) or not. Maximal endurance activity and body composition were assessed, and muscle protein metabolism (protein synthesis, proteomic approach) and energy metabolism [energy expenditure, mitochondrial metabolism] were explored. Results: Body composition was affected by exercise but not by CIT supplementation. Endurance training was associated with a higher maximal endurance capacity than sedentary groups ( P <0.001), and running time was 14% higher in the CITex group than the Ctrlex group (139±4 min versus 122±6 min, P <0.05). Both endurance training and CIT supplementation alone increased muscle protein synthesis (by +27% and +33%, respectively, versus Ctrl , P <0.05) with an additive effect (+48% versus Ctrl , P <0.05). Mitochondrial metabolism was modulated by exercise but not directly by CIT supplementation. However, the proteomic approach demonstrated that CIT supplementation was able to affect energy metabolism, probably due to activation of pathways generating acetyl-CoA. Conclusion: CIT supplementation and endurance training in healthy male rats modulates both muscle protein and energy metabolisms, with synergic effects on an array of parameters, including performance and protein synthesis. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Seebacher, Frank; Tallis, Jason A; James, Rob S
2014-06-01
Metabolic energy (ATP) supply to muscle is essential to support activity and behaviour. It is expected, therefore, that there is strong selection to maximise muscle power output for a given rate of ATP use. However, the viscosity and stiffness of muscle increases with a decrease in temperature, which means that more ATP may be required to achieve a given work output. Here, we tested the hypothesis that ATP use increases at lower temperatures for a given power output in Xenopus laevis. To account for temperature variation at different time scales, we considered the interaction between acclimation for 4 weeks (to 15 or 25°C) and acute exposure to these temperatures. Cold-acclimated frogs had greater sprint speed at 15°C than warm-acclimated animals. However, acclimation temperature did not affect isolated gastrocnemius muscle biomechanics. Isolated muscle produced greater tetanus force, and faster isometric force generation and relaxation, and generated more work loop power at 25°C than at 15°C acute test temperature. Oxygen consumption of isolated muscle at rest did not change with test temperature, but oxygen consumption while muscle was performing work was significantly higher at 15°C than at 25°C, regardless of acclimation conditions. Muscle therefore consumed significantly more oxygen at 15°C for a given work output than at 25°C, and plastic responses did not modify this thermodynamic effect. The metabolic cost of muscle performance and activity therefore increased with a decrease in temperature. To maintain activity across a range of temperature, animals must increase ATP production or face an allocation trade-off at lower temperatures. Our data demonstrate the potential energetic benefits of warming up muscle before activity, which is seen in diverse groups of animals such as bees, which warm flight muscle before take-off, and humans performing warm ups before exercise. © 2014. Published by The Company of Biologists Ltd.
Thain, Peter K.; Bleakley, Christopher M.; Mitchell, Andrew C. S.
2015-01-01
Context Cryotherapy is used widely in sport and exercise medicine to manage acute injuries and facilitate rehabilitation. The analgesic effects of cryotherapy are well established; however, a potential caveat is that cooling tissue negatively affects neuromuscular control through delayed muscle reaction time. This topic is important to investigate because athletes often return to exercise, rehabilitation, or competitive activity immediately or shortly after cryotherapy. Objective To compare the effects of wet-ice application, cold-water immersion, and an untreated control condition on peroneus longus and tibialis anterior muscle reaction time during a simulated lateral ankle sprain. Design Randomized controlled clinical trial. Setting University of Hertfordshire human performance laboratory. Patients or Other Participants A total of 54 physically active individuals (age = 20.1 ± 1.5 years, height = 1.7 ± 0.07 m, mass = 66.7 ± 5.4 kg) who had no injury or history of ankle sprain. Intervention(s) Wet-ice application, cold-water immersion, or an untreated control condition applied to the ankle for 10 minutes. Main Outcome Measure(s) Muscle reaction time and muscle amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain were calculated. The ankle-sprain simulation incorporated a combined inversion and plantar-flexion movement. Results We observed no change in muscle reaction time or muscle amplitude after cryotherapy for either the peroneus longus or tibialis anterior (P > .05). Conclusions Ten minutes of joint cooling did not adversely affect muscle reaction time or muscle amplitude in response to a simulated lateral ankle sprain. These findings suggested that athletes can safely return to sporting activity immediately after icing. Further evidence showed that ice can be applied before ankle rehabilitation without adversely affecting dynamic neuromuscular control. Investigation in patients with acute ankle sprains is warranted to assess the clinical applicability of these interventions. PMID:26067429
Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.
Saito, Akira; Akima, Hiroshi
2013-12-01
It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P < 0.05). Comparing the normalized EMG among the four QF synergists, a significantly lower normalized EMG was observed in the VI at 150° as compared with the other three QF muscles (P < 0.05). These results suggest that the EMG-force relationship of the four QF synergists shifted downward at an extended knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lee, Kyeongbong; Cho, Ji-Eun; Hwang, Dal-Yeon; Lee, WanHee
2018-06-01
The abdominal muscles play a role in trunk balance. Abdominal muscle thickness is asymmetrical in stroke survivors, who also have decreased respiratory muscle function. We compared the thickness of the abdominal muscles between the affected and less affected sides in stroke survivors. In addition, the relationship between respiratory muscle function and trunk balance was evaluated. Chronic stroke patients (18 men, 15 women; mean age, 58.94 ± 12.30 years; Mini-Mental Status Examination score ≥ 24) who could sit without assist were enrolled. Abdominal muscle thickness during rest and contraction was measured with ultrasonography, and the thickening ratio was calculated. Respiratory muscle function assessment included maximum respiratory pressure, peak flow, and air volume. Trunk function was evaluated using the Trunk Impairment Scale, and trunk balance was estimated based on the center of pressure velocity and path length within the limit of stability in sitting posture. Abdominal muscles were significantly thinner on the affected side, and the thickening ratio was lower in the affected side (P < 0.05). In addition, the higher thickening ratio of the affected side showed significant relationship with higher trunk function. Moreover, higher respiratory muscle function was significantly correlated with higher level of trunk function and balance in stroke patients (P < 0.05). Thus, chronic stroke survivors have decreased abdominal muscle thickness on the affected side, and respiratory muscle function has positive correlation with trunk function and balance. We propose that respiratory muscle training should be included as part of trunk balance training in chronic stroke patients.
Valenzuela, Cristián A; Zuloaga, Rodrigo; Mercado, Luis; Einarsdottir, Ingibjörg Eir; Björnsson, Björn Thrandur; Valdés, Juan Antonio; Molina, Alfredo
2018-01-01
Chronic stress detrimentally affects animal health and homeostasis, with somatic growth, and thus skeletal muscle, being particularly affected. A detailed understanding of the underlying endocrine and molecular mechanisms of how chronic stress affects skeletal muscle growth remains lacking. To address this issue, the present study assessed primary (plasma cortisol), secondary (key components of the GH/IGF system, muscular proteolytic pathways, and apoptosis), and tertiary (growth performance) stress responses in fine flounder ( Paralichthys adspersus) exposed to crowding chronic stress. Levels of plasma cortisol, glucocorticoid receptor 2 ( gr2), and its target genes ( klf15 and redd1) mRNA increased significantly only at 4 wk of crowding ( P < 0.05). The components of the GH/IGF system, including ligands, receptors, and their signaling pathways, were significantly downregulated at 7 wk of crowding ( P < 0.05). Interestingly, chronic stress upregulated the ubiquitin-proteasome pathway and the intrinsic apoptosis pathways at 4wk ( P < 0.01), whereas autophagy was only significantly activated at 7 wk ( P < 0.05), and meanwhile the ubiquitin-proteasome and the apoptosis pathways returned to control levels. Overall growth was inhibited in fish in the 7-wk chronic stress trial ( P < 0.05). In conclusion, chronic stress directly affects muscle growth and downregulates the GH/IGF system, an action through which muscular catabolic mechanisms are promoted by two different and nonoverlapping proteolytic pathways. These findings provide new information on molecular mechanisms involved in the negative effects that chronic stress has on muscle anabolic/catabolic signaling balance.
Clark, D L; Velleman, S G
2016-12-01
The wooden breast (WB) myopathy is identified by the palpation of a rigid pectoralis major (p. major) muscle and is characterized as a fibrotic, necrotic p. major disorder in broilers. The objective of the current study was to determine spatial morphological and gene expression differences at 4 locations within WB affected muscle from different genetic lines. Morphology was evaluated in 2 broiler lines expressing the WB myopathy (Lines A and B) and a line without WB (Line C) at 3 ventral locations and one anterodorsal location in the p. major muscle. In WB affected muscle of Line A, fibrosis was greatest in the anterior locations of WB affected muscle. In Line B muscle, fibrosis was greatest in the anteroventral region and minimal in the anterodorsal or posterior regions. Average p. major myofiber diameter was 30% larger in Lines A and B compared to Line C. However, in Line A there were no differences between the percentage of large fibers (diameter >70 μm) in unaffected and WB affected muscles at any sampling region. The percentage of small fibers (diameter <10 μm), likely small regenerating fibers, and expression of myogenic determination factor 1 (MYOD1) and myogenin were increased in Line A WB affected muscle compared to unaffected muscle. In Line B, the percentage of small fibers and MYOD1 expression in WB affected muscle was not different from unaffected muscle. Connective tissue organization within WB affected muscle was also different in Lines A and B, which may be attributed to decorin, a proteoglycan that mediates collagen crosslinking, growth factor signaling, and cell growth. Decorin expression was increased at all locations within Line A. However, in Line B decorin was increased only in the fibrotic regions of the p. major. The compiled results provide evidence that the WB myopathy is not uniform throughout the entire p. major muscle and the anterior end of the p. major muscle was more affected by the condition. © 2016 Poultry Science Association Inc.
Chmielewska, Daria; Stania, Magdalena; Smykla, Agnieszka; Kwaśna, Krystyna; Błaszczak, Edward; Sobota, Grzegorz; Skrzypulec-Plinta, Violetta
2016-01-01
The aim of the study was to evaluate the effects of a 6-week sEMG-biofeedback-assisted pelvic floor muscle training program on pelvic floor muscle activity in young continent women. Pelvic floor muscle activity was recorded using a vaginal probe during five experimental trials. Biofeedback training was continued for 6 weeks, 3 times a week. Muscle strenghtening and endurance exercises were performed alternately. SEMG (surface electromyography) measurements were recorded on four different occasions: before training started, after the third week of training, after the sixth week of training, and one month after training ended. A 6-week sEMG-biofeedback-assisted pelvic floor muscle training program significantly decreased the resting activity of the pelvic floor muscles in supine lying and standing. The ability to relax the pelvic floor muscles after a sustained 60-second contraction improved significantly after the 6-week training in both positions. SEMG-biofeedback training program did not seem to affect the activity of the pelvic floor muscles or muscle fatigue during voluntary pelvic floor muscle contractions. SEMG-biofeedback-assisted pelvic floor muscle training might be recommended for physiotherapists to improve the effectiveness of their relaxation techniques.
Reorganization of muscle activity in patients with chronic temporomandibular disorders.
Mapelli, Andrea; Zanandréa Machado, Bárbara Cristina; Giglio, Lucia Dantas; Sforza, Chiarella; De Felício, Cláudia Maria
2016-12-01
To investigate whether reorganization of muscle activity occurs in patients with chronic temporomandibular disorders (TMD) and, if so, how it is affected by symptomatology severity. Surface electromyography (sEMG) of masticatory muscles was made in 30 chronic TMD patients, diagnosed with disc displacement with reduction (DDR) and pain. Two 15-patient subgroups, with moderate (TMDmo) and severe (TMDse) signs and symptoms, were compared with a control group of 15 healthy subjects matched by age. The experimental tasks were: a 5s inter-arch maximum voluntary clench (MVC); right and left 15s unilateral gum chewing tests. Standardized sEMG indices characterizing masseter and temporalis muscles activity were calculated, and a comprehensive functional index (FI) was introduced to quantitatively summarize subjects' overall performance. Mastication was also clinically evaluated. During MVC, TMDse patients had a significantly larger asymmetry of temporalis muscles contraction. Both TMD groups showed reduced coordination between masseter and temporalis muscles' maximal contraction, and their muscular activity distribution shifted significantly from masseter to temporalis muscles. During chewing, TMDse patients recruited the balancing side muscles proportionally more than controls, specifically the masseter muscle. When comparing right and left side chewing, the muscles' recruitment pattern resulted less symmetric in TMD patients, especially in TMDse. Overall, the functional index of both TMDmo and TMDse patients was significantly lower than that obtained by controls. Chronic TMD patients, specifically those with severe symptomatology, showed a reorganized activity, mainly resulting in worse functional performances. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gee, Thomas I; French, Duncan N; Howatson, Glyn; Payton, Stephen J; Berger, Nicolas J; Thompson, Kevin G
2011-11-01
Rowers regularly undertake rowing training within 24 h of performing bouts of strength training; however, the effect of this practice has not been investigated. This study evaluated the impact of a bout of high-intensity strength training on 2,000 m rowing ergometer performance and rowing-specific maximal power. Eight highly trained male club rowers performed baseline measures of five separate, static squat jumps (SSJ) and countermovement jumps (CMJ), maximal rowing ergometer power strokes (PS) and a single 2,000 m rowing ergometer test (2,000 m). Subsequently, participants performed a high-intensity strength training session consisting of various multi-joint barbell exercises. The 2,000 m test was repeated at 24 and 48 h post-ST, in addition SSJ, CMJ and PS tests were performed at these time points and also at 2 h post-ST. Muscle soreness, serum creatine kinase (CK) and lactate dehydrogenase (LDH) were assessed pre-ST and 2, 24 and 48 h post-ST. Following the ST, there were significant elevations in muscle soreness (2 and 24 h, P < 0.01), CK (2, 24 and 48 h, P < 0.01), and LDH (2 h, P < 0.05) in comparison to baseline values. There were significant decrements across all time points for SSJ, CMJ and PS, which ranged between 3 and 10% (P < 0.05). However, 2,000 m performance and related measurements of heart rate and blood lactate were not significantly affected by ST. In summary, a bout of high-intensity strength training resulted in symptoms of muscle damage and decrements in rowing-specific maximal power, but this did not affect 2,000 m rowing ergometer performance in highly trained rowers.
Integration of active pauses and pattern of muscular activity during computer work.
St-Onge, Nancy; Samani, Afshin; Madeleine, Pascal
2017-09-01
Submaximal isometric muscle contractions have been reported to increase variability of muscle activation during computer work; however, other types of active contractions may be more beneficial. Our objective was to determine which type of active pause vs. rest is more efficient in changing muscle activity pattern during a computer task. Asymptomatic regular computer users performed a standardised 20-min computer task four times, integrating a different type of pause: sub-maximal isometric contraction, dynamic contraction, postural exercise and rest. Surface electromyographic (SEMG) activity was recorded bilaterally from five neck/shoulder muscles. Root-mean-square decreased with isometric pauses in the cervical paraspinals, upper trapezius and middle trapezius, whereas it increased with rest. Variability in the pattern of muscular activity was not affected by any type of pause. Overall, no detrimental effects on the level of SEMG during active pauses were found suggesting that they could be implemented without a cost on activation level or variability. Practitioner Summary: We aimed to determine which type of active pause vs. rest is best in changing muscle activity pattern during a computer task. Asymptomatic computer users performed a standardised computer task integrating different types of pauses. Muscle activation decreased with isometric pauses in neck/shoulder muscles, suggesting their implementation during computer work.
Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta
2017-08-01
Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O 2 delivery, were mainly responsible for the functional improvement. Copyright © 2017 the American Physiological Society.
Orlando, Giorgio; Balducci, Stefano; Bazzucchi, Ilenia; Pugliese, Giuseppe; Sacchetti, Massimo
2016-01-01
Diabetic patients are at higher risk of developing physical disabilities than non-diabetic subjects. Physical disability appears to be related, at least in part, to muscle dysfunction. Several studies have reported reduced muscle strength and power under dynamic and static conditions in both the upper and lower limbs of patients with type 2 diabetes. Additional effects of diabetes include a reduction in muscle mass, quality, endurance and an alteration in muscle fibre composition, though the available data on these parameters are conflicting. The impact of diabetes on neuromuscular function has been related to the co-existence of long-term complications. Peripheral neuropathy has been shown to affect muscle by impairing motor nerve conduction. Also, vascular complications may contribute to the decline in muscle strength. However, muscle dysfunction occurs early in the course of diabetes and affects also the upper limbs, thus suggesting that it may develop independently of micro and macrovascular disease. A growing body of evidence indicates that hyperglycaemia may cause an alteration of the intrinsic properties of the muscle to generate force, via several mechanisms. Recently, resistance exercise has been shown to be an effective strategy to counteract the deterioration of muscular performance. High-intensity exercise seems to provide greater benefits than moderate-intensity training, whereas the effect of a power training is yet unknown. This article reviews the available literature on the impairment of muscle function induced by diabetes, the underlying mechanisms, and the effect of resistance training on this defect. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
... can affect any of the muscles that you control voluntarily, certain muscle groups are more commonly affected than others. Eye muscles In more than half the people who develop myasthenia gravis, their first signs and ... that control your facial expressions have been affected. Neck and ...
Paschalis, Vassilis; Theodorou, Anastasios A.; Panayiotou, George; Kyparos, Antonios; Patikas, Dimitrios; Grivas, Gerasimos V.; Nikolaidis, Michalis G.; Vrabas, Ioannis S.
2013-01-01
A novel automatic escalator was designed, constructed and used in the present investigation. The aim of the present investigation was to compare the effect of two repeated sessions of stair descending versus stair ascending exercise on muscle performance and health-related parameters in young healthy men. Twenty males participated and were randomly divided into two equal-sized groups: a stair descending group (muscle-damaging group) and a stair ascending group (non-muscle-damaging group). Each group performed two sessions of stair descending or stair ascending exercise on the automatic escalator while a three week period was elapsed between the two exercise sessions. Indices of muscle function, insulin sensitivity, blood lipid profile and redox status were assessed before and immediately after, as well as at day 2 and day 4 after both exercise sessions. It was found that the first bout of stair descending exercise caused muscle damage, induced insulin resistance and oxidative stress as well as affected positively blood lipid profile. However, after the second bout of stair descending exercise the alterations in all parameters were diminished or abolished. On the other hand, the stair ascending exercise induced only minor effects on muscle function and health-related parameters after both exercise bouts. The results of the present investigation indicate that stair descending exercise seems to be a promising way of exercise that can provoke positive effects on blood lipid profile and antioxidant status. PMID:23437093
Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation
NASA Astrophysics Data System (ADS)
Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles
2011-10-01
In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.
Bio-inspired Hybrid Carbon Nanotube Muscles
NASA Astrophysics Data System (ADS)
Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong
2016-05-01
There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.
Neuroimaging of classic neuralgic amyotrophy.
Lieba-Samal, Doris; Jengojan, Suren; Kasprian, Gregor; Wöber, Christian; Bodner, Gerd
2016-12-01
Neuralgic amyotrophy (NA) often imposes diagnostic problems. Recently, MRI and high-resolution ultrasound (HRUS) have proven useful in diagnosing peripheral nerve disorders. We performed a chart and imaging review of patients who were examined using neuroimaging and who were referred because of clinically diagnosed NA between March 1, 2014 and May 1, 2015. Six patients were included. All underwent HRUS, and 5 underwent MRI. Time from onset to evaluation ranged from 2 weeks to 6 months. HRUS showed segmental swelling of all clinically affected nerves/trunks. Atrophy of muscles was detected in those assessed >1 month after onset. MRI showed T2-weighted hyperintensity in all clinically affected nerves, except for the long thoracic nerve, and denervation edema of muscles. HRUS and MRI are valuable diagnostic tools in NA. This could change the diagnostic approach from one now focused on excluding other disorders to confirming NA through imaging markers. Muscle Nerve 54: 1079-1085, 2016. © 2016 Wiley Periodicals, Inc.
Nerve and muscle involvement in mitochondrial disorders: an electrophysiological study.
Mancuso, Michelangelo; Piazza, Selina; Volpi, Leda; Orsucci, Daniele; Calsolaro, Valeria; Caldarazzo Ienco, Elena; Carlesi, Cecilia; Rocchi, Anna; Petrozzi, Lucia; Calabrese, Rosanna; Siciliano, Gabriele
2012-04-01
Involvement of the peripheral nervous system in mitochondrial disorders (MD) has been previously reported. However, the exact prevalence of peripheral neuropathy and/or myopathy in MD is still unclear. In order to evaluate the prevalence of neuropathy and myopathy in MD, we performed sensory and motor nerve conduction studies (NCS) and concentric needle electromyography (EMG) in 44 unselected MD patients. NCS were abnormal in 36.4% of cases, and were consistent with a sensori-motor axonal multineuropathy (multifocal neuropathy), mainly affecting the lower limbs. EMG evidence of myopathy was present in 54.5% of patients, again mainly affecting the lower limbs. Nerve and muscle involvement was frequently subclinical. Peripheral nerve and muscle involvement is common in MD patients. Our study supports the variability of the clinical expression of MD. Further studies are needed to better understand the molecular basis underlying the phenotypic variability among MD patients.
The effect of 630-nm light stimulation on the sEMG signal of forearm muscle
NASA Astrophysics Data System (ADS)
Yang, Dan D.; Hou, W. Sheng; Wu, Xiao Y.; Zheng, Xiao L.; Zheng, Jun; Jiang, Ying T.
2010-11-01
This study aimed to explore if the red light irradiation can affect the electrophysiology performance of flexor digitorum superficialis (FDS) and fatigue recovery. Four healthy volunteers were randomly divided into two groups. In the designed force-tracking tasks, all subjects performed the four fingertip isometric force production except thumb with a load of 30% of the maximum voluntary contraction (MVC) force until exhaustion. Subsequently, for the red light group, red light irradiation (640 nm wavelength, 0.23J/cm2, 20 min) was used on the right forearm; for the control group, the subjects relaxed without red light irradiation. Then subjects were required to perform fatigue trail again, and sEMG signal was collected simultaneously from FDS during finger force production. Average rectified value (ARV) and median frequency (MF) of sEMG were calculated. Compared to the control group, the red light irradiation induced more smoother value of ARV between 30% and 40%, and the value of MF was obviously large and smooth. The above electrophysiological markers indicated that recovery from muscle fatigue may be positively affected by the red light irradiation, suggesting that sEMG would become a power tool for exploring the effect of red light irradiation on local muscle fatigue.
Intermittent-sprint performance and muscle glycogen after 30 h of sleep deprivation.
Skein, Melissa; Duffield, Rob; Edge, Johann; Short, Michael J; Mündel, Toby
2011-07-01
The aim of this study was to determine the effects of 30 h of sleep deprivation on consecutive-day intermittent-sprint performance and muscle glycogen content. Ten male, team-sport athletes performed a single-day "baseline" session and two consecutive-day experimental trials separated either by a normal night's sleep (CONT1 and CONT2) or no sleep (SDEP1 and SDEP2). Each session included a 30-min graded exercise run and 50-min intermittent-sprint exercise protocol, including a 15-m maximal sprint every minute and self-paced exercise bouts of varying intensities. Muscle biopsies were extracted before and after exercise during the baseline session and before exercise on day 2 during experimental trials. Voluntary force and activation of the right quadriceps, nude mass, HR, core temperature, capillary blood lactate and glucose, RPE, and a modified POMS were recorded before, after, and during the exercise protocols. Mean sprint times were slower on SDEP2 (2.78±0.17 s) compared with SDEP1 (2.70±0.16 s) and CONT2 (2.74±0.15 s, P<0.05). Distance covered during self-paced exercise was reduced during SDEP2 during the initial 10 min compared with SDEP1 and during the final 10 min compared with CONT2 (P<0.05). Muscle glycogen concentration was lower before exercise on SDEP2 (209±60 mmol·kg dry weight) compared with CONT2 (274±54 mmol·kg dry weight, P=0.05). Voluntary force and activation were reduced on day 2 of both conditions; however, both were lower in SDEP2 compared with CONT2 (P<0.05). Sleep loss did not affect RPE but negatively affected POMS ratings (P<0.05). Sleep loss and associated reductions in muscle glycogen and perceptual stress reduced sprint performance and slowed pacing strategies during intermittent-sprint exercise for male team-sport athletes.
Neuromuscular Electrical Stimulation for Skeletal Muscle Function
Doucet, Barbara M.; Lam, Amy; Griffin, Lisa
2012-01-01
Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049
Functional Performance Evaluation
NASA Technical Reports Server (NTRS)
Greenisen, Michael C.; Hayes, Judith C.; Siconolfi, Steven F.; Moore, Alan D.
1999-01-01
The Extended Duration Orbiter Medical Project (EDOMP) was established to address specific issues associated with optimizing the ability of crews to complete mission tasks deemed essential to entry, landing, and egress for spaceflights lasting up to 16 days. The main objectives of this functional performance evaluation were to investigate the physiological effects of long-duration spaceflight on skeletal muscle strength and endurance, as well as aerobic capacity and orthostatic function. Long-duration exposure to a microgravity environment may produce physiological alterations that affect crew ability to complete critical tasks such as extravehicular activity (EVA), intravehicular activity (IVA), and nominal or emergency egress. Ultimately, this information will be used to develop and verify countermeasures. The answers to three specific functional performance questions were sought: (1) What are the performance decrements resulting from missions of varying durations? (2) What are the physical requirements for successful entry, landing, and emergency egress from the Shuttle? and (3) What combination of preflight fitness training and in-flight countermeasures will minimize in-flight muscle performance decrements? To answer these questions, the Exercise Countermeasures Project looked at physiological changes associated with muscle degradation as well as orthostatic intolerance. A means of ensuring motor coordination was necessary to maintain proficiency in piloting skills, EVA, and IVA tasks. In addition, it was necessary to maintain musculoskeletal strength and function to meet the rigors associated with moderate altitude bailout and with nominal or emergency egress from the landed Orbiter. Eight investigations, referred to as Detailed Supplementary Objectives (DSOs) 475, 476, 477, 606, 608, 617, 618, and 624, were conducted to study muscle degradation and the effects of exercise on exercise capacity and orthostatic function (Table 3-1). This chapter is divided into three parts. Part 1 describes specific findings from studies of muscle strength, endurance, fiber size, and volume. Part 2 describes results from studies of how in-flight exercise affects postflight exercise capacity and orthostatic function. Part 3 focuses on the development of new noninvasive methods for assessing body composition in astronauts and how those methods can be used to correlate measures of exercise performance and changes in body composition.
Evaluation of space capacities of the respiratory muscles during hypokinesia
NASA Astrophysics Data System (ADS)
Baranov, V. M.; Aleksandrova, N. P.; Tikhonov, M. A.
2005-08-01
Nowdays, the phenomenon of physical performance degradation after a long period of motor restraint or microgravity is universally interpreted as a result of deconditioning of the cardiovascular system and anti- gravity skeletal muscles.Yet, deconditioning affects not only the skeletal but also respiratory muscles exhaustion of which by relative hypoventilation brings about hypercapnia, hypoxia and pulmonary acidosis conducive to the sensations of painful breathlessness impacting the capacity for physical work. It should be emphasized that these developments are little known in spite of their theoretical and practical significance; therefore, our purpose was to study the functional state and spare capacity of the respiratory muscles in laboratory animals (Wistar rats) following 3-wk tail-suspension.The experiment strengthened the hypothesis according to which simulation of the physiological effects of motor restraint and microgravity leads to fatigue and deconditioning of the respiratory muscles.
Muscle Activation Differs Between Partial and Full Back Squat Exercise With External Load Equated.
da Silva, Josinaldo J; Schoenfeld, Brad J; Marchetti, Priscyla N; Pecoraro, Silvio L; Greve, Julia M D; Marchetti, Paulo H
2017-06-01
Changes in range of motion affect the magnitude of the load during the squat exercise and, consequently, may influence muscle activation. The purpose of this study was to evaluate muscle activation between the partial and full back squat exercise with external load equated on a relative basis between conditions. Fifteen young, healthy, resistance-trained men (age: 26 ± 5 years, height: 173 ± 6 cm) performed a back squat at their 10 repetition maximum (10RM) using 2 different ranges of motion (partial and full) in a randomized, counterbalanced fashion. Surface electromyography was used to measure muscle activation of the vastus lateralis, vastus medialis, rectus femoris, biceps femoris (BF), semitendinosus, erector spinae, soleus (SL), and gluteus maximus (GM). In general, muscle activity was highest during the partial back squat for GM (p = 0.004), BF (p = 0.009), and SL (p = 0.031) when compared with full-back squat. There was no significant difference for rating of perceived exertion between partial and full back squat exercise at 10RM (8 ± 1 and 9 ± 1, respectively). In conclusion, the range of motion in the back squat alters muscle activation of the prime mover (GM) and stabilizers (SL and BF) when performed with the load equated on a relative basis. Thus, the partial back squat maximizes the level of muscle activation of the GM and associated stabilizer muscles.
Zorzano, A; Muñoz, P; Camps, M; Mora, C; Testar, X; Palacín, M
1996-01-01
Insulin rapidly stimulates glucose transport in muscle fiber. This process controls the utilization of glucose in skeletal muscle, and it is deficient in various insulin-resistant states, such as non-insulin-dependent diabetes mellitus. The effect of insulin on muscle glucose transport is mainly due to the recruitment of GLUT4 glucose carriers to the cell surface of the muscle fiber. There is increasing evidence that the recruitment of GLUT4 carriers triggered by insulin affects selective domains of sarcolemma and transverse tubules. In contrast, GLUT1 is located mainly in sarcolemma and is absent in transverse tubules, and insulin does not alter its cellular distribution in muscle fiber. The differential distribution of GLUT1 and GLUT4 in the cell surface raises new questions regarding the precise endocytic and exocytic pathways that are functional in the muscle fiber. The current view of insulin-induced GLUT4 translocation is based mainly on studies performed in adipocytes. These studies have proposed the existence of intracellular compartments of GLUT4 that respond to insulin in a highly homogeneous manner. However, studies performed in skeletal muscle have identified insulin-sensitive as well as insulin-insensitive intracellular GLUT4-containing membranes. These data open a new perspective on the dynamics of intracellular GLUT4 compartments in insulin-sensitive cells.
Eijckelhof, B H W; Huysmans, M A; Bruno Garza, J L; Blatter, B M; van Dieën, J H; Dennerlein, J T; van der Beek, A J
2013-12-01
Workplace stressors have been indicated to play a role in the development of neck and upper extremity pain possibly through an increase of sustained (low-level) muscle activity. The aim of this review was to study the effects of workplace stressors on muscle activity in the neck-shoulder and forearm muscles. An additional aim was to find out whether the muscles of the neck-shoulder and the forearm are affected differently by different types of workplace stressors. A systematic literature search was conducted on studies investigating the relation between simulated or realistic workplace stressors and neck-shoulder and forearm muscle activity. For studies meeting the inclusion criteria, a risk of bias assessment was performed and data were extracted for synthesis. Results were pooled when possible and otherwise described. Twenty-eight articles met the inclusion criteria, reporting data of 25 different studies. Except for one field study, all included studies were laboratory studies. Data of 19 articles could be included in the meta-analysis and revealed a statistically significant, medium increase in neck-shoulder and forearm muscle activity as a result of workplace stressors. In subgroup analyses, we found an equal effect of different stressor types (i.e. cognitive/emotional stress, work pace, and precision) on muscle activity in both body regions. In conclusion, simulated workplace stressors result in an increase in neck-shoulder and forearm muscle activity. No indications were found that different types of stressors affect these body regions differently. These conclusions are fully based on laboratory studies, since field studies on this topic are currently lacking.
Making Olympic lizards: the effects of specialised exercise training on performance.
Husak, Jerry F; Keith, Allison R; Wittry, Beth N
2015-03-01
Exercise training is well known to affect a suite of physiological and performance traits in mammals, but effects of training in other vertebrate tetrapod groups have been inconsistent. We examined performance and physiological differences among green anole lizards (Anolis carolinensis) that were trained for sprinting or endurance, using an increasingly rigorous training regimen over 8 weeks. Lizards trained for endurance had significantly higher post-training endurance capacity compared with the other treatment groups, but groups did not show post-training differences in sprint speed. Although acclimation to the laboratory environment and training explain some of our results, mechanistic explanations for these results correspond with the observed performance differences. After training, endurance-trained lizards had higher haematocrit and larger fast glycolytic muscle fibres. Despite no detectable change in maximal performance of sprint-trained lizards, we detected that they had significantly larger slow oxidative muscle fibre areas compared with the other treatments. Treatment groups did not differ in the proportion of number of fibre types, nor in the mass of most limb muscles or the heart. Our results offer some caveats for investigators conducting training research on non-model organisms and they reveal that muscle plasticity in response to training may be widespread phylogenetically. © 2015. Published by The Company of Biologists Ltd.
Electrophysiological characteristics of task-specific tremor in 22 instrumentalists.
Lee, André; Tominaga, Kenta; Furuya, Shinichi; Miyazaki, Fumio; Altenmüller, Eckart
2015-03-01
Our aim was to address three characteristics of task-specific tremor in musicians (TSTM): First, we quantified muscular activity of flexor and extensor muscles, of coactivation as well as tremor acceleration. Second, we compared muscular activity between task-dependent and position-dependent tremor. Third, we investigated, whether there is an overflow of muscular activity to muscles adjacent to the affected muscles in TSTM. Tremor acceleration and muscular activity were measured in the affected muscles and the muscles adjacent to the affected muscles in 22 patients aged 51.5 ± 11.4 years with a task-specific tremor. We assessed power of muscular oscillatory activity and calculated the coherence between EMG activity of affected muscles and tremor acceleration as well as between adjacent muscles and tremor acceleration. This was done for task-dependent and position-dependent tremor. We found the highest power and coherence of muscular oscillatory activity in the frequency range of 3-8 Hz for affected and adjacent muscles. No difference was found between task-dependent and position-dependent tremor in neither power nor coherence measures. Our results generalize previous results of a relation between coactivation and tremor among a variety of musicians. Furthermore, we found coherence of adjacent muscles and TSTM. This indicates that overflow exists in TSTM and suggests an association of TST with dystonia.
Use of electromyography for the diagnosis of equine hyperkalemic periodic paresis.
Robinson, J A; Naylor, J M; Crichlow, E C
1990-01-01
The use of electromyography (EMG) as a diagnostic aid for equine hyperkalemic periodic paresis (EHPP) was investigated in seven affected and seven control horses. Affected horses were confirmed positive for EHPP either by elevated serum potassium concentration with clinical signs of myotonia, or by inducing hyperkalemia and clinical signs using oral potassium chloride challenge. All horses were asymptomatic at the time EMG was performed, using bipolar fine wire needle electrodes. The myopotentials were recorded on magnetic tape and displayed on paper charts for analysis. Insertional and resting activity were recorded from the right supraspinatus, triceps, extensor carpi radialis and gluteal muscles in standing horses. Myotonic discharges were seen in six of seven affected horses but not in any of the controls. All seven affected horses and two control horses had prolonged insertional activity. Five out of seven affected horses and one control horse displayed spontaneous motor unit discharges unrelated to recording electrode movement. Myoelectrical potentials containing closely timed muscle potentials, i.e. doublets, were found in all affected horses, with four of seven affected horses also showing triplets. These potentials were not observed in any of the controls. No obvious difference in activity was observed among the four muscle sites tested. It is concluded that EMG is a safe and useful tool for diagnosing EHPP in horses not currently displaying clinical signs. Myotonic discharges and doublets appear to be the most diagnostically significant electromyographic abnormalities in EHPP affected horses. PMID:2249182
Hearris, Mark A.; Hammond, Kelly M.; Fell, J. Marc; Morton, James P.
2018-01-01
Since the introduction of the muscle biopsy technique in the late 1960s, our understanding of the regulation of muscle glycogen storage and metabolism has advanced considerably. Muscle glycogenolysis and rates of carbohydrate (CHO) oxidation are affected by factors such as exercise intensity, duration, training status and substrate availability. Such changes to the global exercise stimulus exert regulatory effects on key enzymes and transport proteins via both hormonal control and local allosteric regulation. Given the well-documented effects of high CHO availability on promoting exercise performance, elite endurance athletes are typically advised to ensure high CHO availability before, during and after high-intensity training sessions or competition. Nonetheless, in recognition that the glycogen granule is more than a simple fuel store, it is now also accepted that glycogen is a potent regulator of the molecular cell signaling pathways that regulate the oxidative phenotype. Accordingly, the concept of deliberately training with low CHO availability has now gained increased popularity amongst athletic circles. In this review, we present an overview of the regulatory control of CHO metabolism during exercise (with a specific emphasis on muscle glycogen utilization) in order to discuss the effects of both high and low CHO availability on modulating exercise performance and training adaptations, respectively. PMID:29498691
Masanés, F; Rojano I Luque, X; Salvà, A; Serra-Rexach, J A; Artaza, I; Formiga, F; Cuesta, F; López Soto, A; Ruiz, D; Cruz-Jentoft, A J
2017-01-01
The European Working Group on Sarcopenia in Older People (EWGSOP) has proposed different methods and cut-off points for the three parameters that define sarcopenia: muscle mass, muscle strength and physical performance. Although this facilitates clinical practice, it limits comparability between studies and leads to wide differences in published prevalence rates. The aim of this study was to assess how changes in cut-off points for muscle mass, gait speed and grip strength affected sarcopenia prevalence according to EWGSOP criteria. Cross-sectional analysis of elderly individuals recruited from outpatient clinics (n=298) and nursing homes (n=276). We measured muscle mass, grip strength and gait speed and assessed how changes in cut-off points changed sarcopenia prevalence in both populations. An increase from 5.45 kg/m2 to 6.68 kg/m2 in the muscle mass index for female outpatients and nursing-home residents increased sarcopenia prevalence from 4% to 23% and from 9% to 47%, respectively; for men, for an increase from 7.25 kg/m2 to 8.87 kg/m2, the corresponding increases were from 1% to 22% and from 6% to 41%, respectively. Changes in gait speed and grip strength had a limited impact on sarcopenia prevalence. The cut-off points used for muscle mass affect the reported prevalence rates for sarcopenia and, in turn, affect comparability between studies. The main factors influencing the magnitude of the change are muscle mass index distribution in the population and the absolute value of the cut-off points: the same difference between two references (e.g., 7.5 kg/m2 to 7.75 kg/m2 or 7.75 kg/m2 to 8 kg/m2) may produce different changes in prevalence. Changes in cut-off points for gait speed and grip strength had a limited impact on sarcopenia prevalence and on study comparability.
Myositis Ossificans Mimicking Sarcoma, the Importance of Diagnostic Imaging – Case Report
Łuczyńska, Elżbieta; Kasperkiewicz, Hanna; Domalik, Agnieszka; Cwierz, Anna; Bobek-Billewicz, Barbara
2014-01-01
Summary Background Myositis ossificans is localized inflammatory process affecting skeletal muscles. Very rarely it can affect one of the neck muscles and present as a neck tumor, it can be misdiagnosed as the clinical, radiological and histological examinations can mimic a sarcoma. Case Report We report a 29 year old female patient with neck tumor suspected to be a sarcoma who underwent full diagnostics imaging and open bipsy with histopatological examination, afterwards surgical excision was performed. Conclusions The aim of this study was to present the differential diagnosis based on diagnostics imaging between MO and malignant tumors, such as parosteal sarcoma, synovial sarcoma and malignant fibrous histiocytoma. PMID:25077008
Wytra̦żek, Marcin; Huber, Juliusz; Lisiński, Przemysław
Summary Spine-related muscle pain can affect muscle strength and motor unit activity. This study was undertaken to investigate whether surface electromyographic (sEMG) recordings performed during relaxation and maximal contraction reveal differences in the activity of muscles with or without trigger points (TRPs). We also analyzed the possible coexistence of characteristic spontaneous activity in needle electromyographic (eEMG) recordings with the presence of TRPs. Thirty patients with non-specific cervical and back pain were evaluated using clinical, neuroimaging and electroneurographic examinations. Muscle pain was measured using a visual analog scale (VAS), and strength using Lovett’s scale; trigger points were detected by palpation. EMG was used to examine motor unit activity. Trigger points were found mainly in the trapezius muscles in thirteen patients. Their presence was accompanied by increased pain intensity, decreased muscle strength, increased resting sEMG amplitude, and decreased sEMG amplitude during muscle contraction. eEMG revealed characteristic asynchronous discharges in TRPs. The results of EMG examinations point to a complexity of muscle pain that depends on progression of the myofascial syndrome PMID:22152435
NASA Astrophysics Data System (ADS)
Sun, Zhuangzhi; Zhao, Gang; Qiao, Dongpan; Song, Wenlong
2017-12-01
Artificial muscles have attracted great attention for their potentials in intelligent robots, biomimetic devices, and micro-electromechanical system. However, there are many performance bottlenecks restricting the development of artificial muscles in engineering applications, e.g., the little blocking force and short working life. Focused on the larger requirements of the output force and the lack characteristics of the linear motion, an innovative muscle-like linear actuator based on two segmented IPMC strips was developed to imitate linear motion of artificial muscles. The structures of the segmented IPMC strip of muscle-like linear actuator were developed and the established mathematical model was to determine the appropriate segmented proportion as 1:2:1. The muscle-like linear actuator with two segmented IPMC strips assemble by two supporting link blocks was manufactured for the study of electromechanical properties. Electromechanical properties of muscle-like linear actuator under the different technological factors were obtained to experiment, and the corresponding changing rules of muscle-like linear actuators were presented to research. Results showed that factors of redistributed resistance and surface strain on both end-sides were two main reasons affecting the emergence of different electromechanical properties of muscle-like linear actuators.
The role of impact forces and foot pronation: a new paradigm.
Nigg, B M
2001-01-01
This article discusses the possible association between impact forces and foot pronation and the development of running-related injuries, and proposes a new paradigm for impact forces and foot pronation. The article is based on a critical analysis of the literature on heel-toe running addressing kinematics, kinetics, resultant joint movements and forces, muscle activity, subject and material characteristics, epidemiology, and biologic reactions. However, this paper is not a review of the literature but rather an attempt to replace the established concepts of impact forces and movement control with a new paradigm that would allow explaining some of the current contradictions in this topic of research. The analysis included all papers published on this topic over the last 25 years. For the last few years, it concentrated on papers expressing critical concerns on the established concepts of impact and movement control. An attempt was made to find indications in the various publications to support or reject the current concept of impact forces and movement control. Furthermore, the results of the available studies were searched for indications expanding the current understanding of impact forces and movement control in running. Data were synthesized revealing contradictions in the experimental results and the established concepts. Based on the contradictions in the existing research publications, a new paradigm was proposed. Theoretical, experimental, and epidemiological evidence on impact forces showed that one cannot conclude that impact forces are important factors in the development of chronic and/or acute running-related injuries. A new paradigm for impact forces during running proposes that impact forces are input signals that produce muscle tuning shortly before the next contact with the ground to minimize soft tissue vibration and/or reduce joint and tendon loading. Muscle tuning might affect fatigue, comfort, work, and performance. Experimental evidence suggests that the concept of "aligning the skeleton" with shoes, inserts, and orthotics should be reconsidered. They produce only small, not systematic. and subject-specific changes of foot and leg movement. A new paradigm for movement control for the lower extremities proposes that forces acting on the foot during the stance phase act as an input signal producing a muscle reaction. The cost function used in this adaptation process is to maintain a preferred joint movement path for a given movement task. If an intervention counteracts the preferred movement path, muscle activity must be increased. An optimal shoe, insert, or orthotic reduces muscle activity. Thus, shoes, inserts, and orthotics affect general muscle activity and, therefore, fatigue, comfort, work, and performance. The two proposed paradigms suggest that the locomotor system use a similar strategy for "impact" and "movement control." In both cases the locomotor system keeps the general kinematic and kinetic situations similar for a given task. The proposed muscle tuning reaction to impact loading affects the muscle activation before ground contact. The proposed muscle adaptation to provide a constant joint movement pattern affects the muscle activation during ground contact. However, further experimental and theoretical studies are needed to support or reject the proposed paradigms.
Wada, Keizo; Goto, Tomohiro; Takasago, Tomoya; Hamada, Daisuke; Sairyo, Koichi
2017-10-01
Piriformis muscle syndrome (PMS) is difficult to diagnose by objective evaluation of sciatic nerve injury. Here we report a case of PMS diagnosed by diffusion tensor imaging (DTI) and tractography of the sciatic nerve, which can assess and visualize the extent of nerve injury. The patient was a 53-year-old man with a 2-year history of continuous pain and numbness in the left leg. His symptoms worsened when sitting. Physical examination, including sensorimotor neurologic tests, the deep tendon reflex test, and the straight leg raise test, revealed no specific findings. The hip flexion adduction and internal rotation test and resisted contraction maneuvers for the piriformis muscle were positive. There were no abnormal findings on magnetic resonance imaging (MRI) of the lumbar spine. The transverse diameter of piriformis muscle was slightly thicker in affected side on MRI of the pelvis. A single DTI sequence was performed during MRI of the pelvis. Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) of the sciatic nerve were quantified at three levels using the fiber-tracking method. FA values were significantly lower and ADC values were significantly higher distal to the piriformis muscle. We performed endoscopic-assisted resection of the piriformis tendon. Intraoperatively, the motor-evoked potentials in the left gastrocnemius were improved by resection of the piriformis tendon. The patient's symptoms improved immediately after surgery. There was no significant difference in FA or ADC at any level between the affected side and the unaffected side 3 months postoperatively. MRI-DTI may aid the diagnosis of PMS.
Mechanisms of topical analgesics in relieving pain in an animal model of muscular inflammation.
Duan, Wan-Ru; Lu, Jie; Xie, Yi-Kuan
2013-09-01
To investigate the possible mechanisms of topical analgesics in relieving pain in an animal model of muscular inflammation. Adult Sprague-Dawley rats of both sexes were injected with complete Freund's adjuvant to induce inflammation in the anterior tibialis muscle of left hindlimb. One of two types of topical analgesics: Xiaotong Tiegao (XTT), a Tibetan herb compound, or Capzasin (CAP), a cream containing 0.1% capsaicin, was applied to the skin over the inflamed anterior tibialis muscle. The following experiments were performed: pain behavioral tests, evaluation of plasma extravasation in the affected limb, and electrophysiological recordings of afferent nerve fibers. The behavioral experiments demonstrated that applications of either type of topical analgesic to the skin over the inflamed muscle significantly reduced muscular inflammatory pain, as indicated by the increased weight bearing capacity on the affected hindlimb (with latencies of 10 minutes for XTT and 1-2 hours for CAP). Meanwhile, both analgesics caused plasma extravasation in the affected skin. Electrophysiological recordings from the afferent fibers in the related cutaneous nerve indicated that topical analgesics selectively activated C-fibers, but not A-fibers innervating the same region of receptive field. The latency and duration of C-fiber activation was similar to those of the reduction of muscular inflammatory pain. On the contrary, topical analgesics substantially decreased C-fiber afferent spontaneous firing in the nerve innervating the inflamed muscle. Moreover, denervation of the affected skin blocked the analgesic effects of both topical analgesics in muscular inflammatory pain. This study suggests that topical analgesics may reduce the nociceptive input from inflamed muscles via a reflex mechanism by activating the cutaneous nociceptive afferents. Wiley Periodicals, Inc.
Monjo, Florian; Forestier, Nicolas
2018-04-01
This study was designed to explore the effects of intrafusal thixotropy, a property affecting muscle spindle sensitivity, on the sense of force. For this purpose, psychophysical measurements of force perception were performed using an isometric force matching paradigm of elbow flexors consisting of matching different force magnitudes (5, 10 and 20% of subjects' maximal voluntary force). We investigated participants' capacity to match these forces after their indicator arm had undergone voluntary isometric conditioning contractions known to alter spindle thixotropy, i.e., contractions performed at long ('hold long') or short muscle lengths ('hold short'). In parallel, their reference arm was conditioned at the intermediate muscle length ('hold-test') at which the matchings were performed. The thixotropy hypothesis predicts that estimation errors should only be observed at low force levels (up to 10% of the maximal voluntary force) with overestimation of the forces produced following 'hold short' conditioning and underestimation following 'hold long' conditioning. We found the complete opposite, especially following 'hold-short' conditioning where subjects underestimated the force they generated with similar relative error magnitudes across force levels. In a second experiment, we tested the hypothesis that estimation errors depended on the degree of afferent-induced facilitation using the Kohnstamm phenomenon as a probe of motor pathway excitability. Because the stronger post-effects were observed following 'hold-short' conditioning, it appears that the conditioning-induced excitation of spindle afferents leads to force misjudgments by introducing a decoupling between the central effort and the cortical motor outputs.
Bolger, Conor M.; Sandbakk, Øyvind; Ettema, Gertjan; Federolf, Peter
2016-01-01
The purposes of the current study were to 1) test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2) investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding’s hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG) signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA). Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P < 0.05). The changed patterns in muscle activation are in alignment with previously described mechanisms that explain the effects of hinge positioning in speed-skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants. PMID:27203597
Zheng, Xianhu; Kuang, Youyi; Lv, Weihua; Cao, Dingchen; Sun, Zhipeng; Sun, Xiaowen
2016-01-01
Muscle fat content is an important phenotypic trait in fish, as it affects the nutritional, technical and sensory qualities of flesh. To identify loci and candidate genes associated with muscle fat content and abdominal fat traits, we performed a genome-wide association study (GWAS) using the common carp 250 K SNP assay in a common carp F2 resource population. A total of 18 loci surpassing the genome-wide suggestive significance level were detected for 4 traits: fat content in dorsal muscle (MFdo), fat content in abdominal muscle (MFab), abdominal fat weight (AbFW), and AbFW as a percentage of eviscerated weight (AbFP). Among them, one SNP (carp089419) affecting both AbFW and AbFP reached the genome-wide significance level. Ten of those loci were harbored in or near known genes. Furthermore, relative expressions of 5 genes related to MFdo were compared using dorsal muscle samples with high and low phenotypic values. The results showed that 4 genes were differentially expressed between the high and low phenotypic groups. These genes are, therefore, prospective candidate genes for muscle fat content: ankyrin repeat domain 10a (ankrd10a), tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2 (tanc2), and four jointed box 1 (fjx1) and choline kinase alpha (chka). These results offer valuable insights into the complex genetic basis of fat metabolism and deposition. PMID:28030623
Tseng, Zhijie Jack; Mcnitt-Gray, Jill L.; Flashner, Henryk; Wang, Xiaoming; Enciso, Reyes
2011-01-01
Finite Element Analysis (FEA) is a powerful tool gaining use in studies of biological form and function. This method is particularly conducive to studies of extinct and fossilized organisms, as models can be assigned properties that approximate living tissues. In disciplines where model validation is difficult or impossible, the choice of model parameters and their effects on the results become increasingly important, especially in comparing outputs to infer function. To evaluate the extent to which performance measures are affected by initial model input, we tested the sensitivity of bite force, strain energy, and stress to changes in seven parameters that are required in testing craniodental function with FEA. Simulations were performed on FE models of a Gray Wolf (Canis lupus) mandible. Results showed that unilateral bite force outputs are least affected by the relative ratios of the balancing and working muscles, but only ratios above 0.5 provided balancing-working side joint reaction force relationships that are consistent with experimental data. The constraints modeled at the bite point had the greatest effect on bite force output, but the most appropriate constraint may depend on the study question. Strain energy is least affected by variation in bite point constraint, but larger variations in strain energy values are observed in models with different number of tetrahedral elements, masticatory muscle ratios and muscle subgroups present, and number of material properties. These findings indicate that performance measures are differentially affected by variation in initial model parameters. In the absence of validated input values, FE models can nevertheless provide robust comparisons if these parameters are standardized within a given study to minimize variation that arise during the model-building process. Sensitivity tests incorporated into the study design not only aid in the interpretation of simulation results, but can also provide additional insights on form and function. PMID:21559475
Selective recruitment of the triceps surae muscles with changes in knee angle.
Signorile, Joseph F; Applegate, Brooks; Duque, Maurice; Cole, Natalie; Zink, Attila
2002-08-01
The muscles of the triceps surae group are important for performance in most sports and in the performance of activities of daily life. In addition, hypertrophy and balance among these muscles are integral to success in bodybuilding. The purpose of this study was to compare the muscle utilization patterns of the 2 major muscles of the triceps surae group, the soleus (SOL) and gastrocnemius (lateral head = LG and medial head = MG), and the tibialis anterior (TA) as an antagonist muscle to the group. Their electromyographic (EMG) signals were compared during 50 constant external resistance contractions at a level established before the testing session. Eleven experienced subjects contributed data during plantar flexion at 3 different knee angles (90, 135, and 180 degrees ). Both root mean square amplitude and integrated signal analyses of the EMGs revealed that the MG produced significantly greater activity than either the SOL or TA at 180 degrees, whereas the LG was not different from the SOL at any knee angle measured. Data also revealed that the SOL produced less electrical activity at 180 degrees than at the other knee angles, whereas the MG produced greater electrical activity. As would be expected, the TA produced lower EMG values than any of the triceps surae muscles at all angles tested. These data indicate that selective targeting of the SOL and MG is possible through the manipulation of knee angle. This targeting appears to be controlled by the biarticular and monoarticular structures of the MG and SOL, respectively. The LG appears less affected by knee position than the MG. Results suggest that the SOL can be targeted most effectively with the knee flexed at 90 degrees and the MG with the leg fully extended. The LG appears to also be more active at 180 degrees; however, it is not as affected as the MG or SOL by knee angle.
Examining Ankle-Joint Laxity Using 2 Knee Positions and With Simulated Muscle Guarding
Hanlon, Shawn; Caccese, Jaclyn; Knight, Christopher A.; Swanik, Charles “Buz”; Kaminski, Thomas W.
2016-01-01
Context: Several factors affect the reliability of the anterior drawer and talar tilt tests, including the individual clinician's experience and skill, ankle and knee positioning, and muscle guarding. Objectives: To compare gastrocnemius activity during the measurement of ankle-complex motion at different knee positions, and secondarily, to compare ankle-complex motion during a simulated trial of muscle guarding. Design: Cross-sectional study. Setting: Research laboratory. Patients or Other Participants: Thirty-three participants aged 20.2 ± 1.7 years were tested. Intervention(s): The ankle was loaded under 2 test conditions (relaxed, simulated muscle guarding) at 2 knee positions (0°, 90° of flexion) while gastrocnemius electromyography (EMG) activity was recorded. Main Outcome Measure(s): Anterior displacement (mm), inversion-eversion motion (°), and peak EMG amplitude values of the gastrocnemius (μV). Results: Anterior displacement did not differ between the positions of 0° and 90° of knee flexion (P = .193). Inversion-eversion motion was greater at 0° of knee flexion compared with 90° (P < .001). Additionally, peak EMG amplitude of the gastrocnemius was not different between 0° and 90° of knee flexion during anterior displacement (P = .101). As expected, the simulated muscle-guarding trial reduced anterior displacement compared with the relaxed condition (0° of knee flexion, P = .008; 90° of knee flexion, P = .016) and reduced inversion-eversion motion (0° of knee flexion, P = .03; 90° of knee flexion, P < .001). Conclusions: In a relaxed state, the gastrocnemius muscle did not appear to affect anterior ankle laxity at the 2 most common knee positions for anterior drawer testing; however, talar tilt testing may be best performed with the knee in 0° of knee flexion. Finally, our outcomes from the simulated muscle-guarding condition suggest that clinicians should use caution and be aware of reduced perceived laxity when performing these clinical examination techniques immediately postinjury. PMID:26881870
Examining Ankle-Joint Laxity Using 2 Knee Positions and With Simulated Muscle Guarding.
Hanlon, Shawn; Caccese, Jaclyn; Knight, Christopher A; Swanik, Charles Buz; Kaminski, Thomas W
2016-02-01
Several factors affect the reliability of the anterior drawer and talar tilt tests, including the individual clinician's experience and skill, ankle and knee positioning, and muscle guarding. To compare gastrocnemius activity during the measurement of ankle-complex motion at different knee positions, and secondarily, to compare ankle-complex motion during a simulated trial of muscle guarding. Cross-sectional study. Research laboratory. Thirty-three participants aged 20.2 ± 1.7 years were tested. The ankle was loaded under 2 test conditions (relaxed, simulated muscle guarding) at 2 knee positions (0°, 90° of flexion) while gastrocnemius electromyography (EMG) activity was recorded. Anterior displacement (mm), inversion-eversion motion (°), and peak EMG amplitude values of the gastrocnemius (μV). Anterior displacement did not differ between the positions of 0° and 90° of knee flexion (P = .193). Inversion-eversion motion was greater at 0° of knee flexion compared with 90° (P < .001). Additionally, peak EMG amplitude of the gastrocnemius was not different between 0° and 90° of knee flexion during anterior displacement (P = .101). As expected, the simulated muscle-guarding trial reduced anterior displacement compared with the relaxed condition (0° of knee flexion, P = .008; 90° of knee flexion, P = .016) and reduced inversion-eversion motion (0° of knee flexion, P = .03; 90° of knee flexion, P < .001). In a relaxed state, the gastrocnemius muscle did not appear to affect anterior ankle laxity at the 2 most common knee positions for anterior drawer testing; however, talar tilt testing may be best performed with the knee in 0° of knee flexion. Finally, our outcomes from the simulated muscle-guarding condition suggest that clinicians should use caution and be aware of reduced perceived laxity when performing these clinical examination techniques immediately postinjury.
Rummel, Andrea D; Swartz, Sharon M; Marsh, Richard L
2018-05-29
Temperature affects contractile rate properties in muscle, which may affect locomotor performance. Endotherms are known to maintain high core body temperatures, but temperatures in the periphery of the body can fluctuate. Such a phenomenon occurs in bats, whose wing musculature is relatively poorly insulated, resulting in substantially depressed temperatures in the distal wing. We examined a wing muscle in the small-bodied tropical bat Carollia perspicillata and a hindlimb muscle in the laboratory mouse at 5°C intervals from 22 to 42°C to determine the thermal dependence of the contractile properties of both muscles. We found that the bat ECRL had low thermal dependence from near body temperature to 10°C lower, with Q 10 values of less than 1.5 for relaxation from contraction and shortening velocities in that interval, and with no significant difference in some rate properties in the interval between 32 and 37°C. In contrast, for all temperature intervals below 37°C, Q 10 values for the mouse EDL were 1.5 or higher, and rate properties differed significantly across successive temperature intervals from 37 to 22°C. An ANCOVA analysis found that the thermal dependencies of all measured isometric and isotonic rate processes were significantly different between the bat and mouse muscles. The relatively low thermal dependence of the bat muscle likely represents a downward shift of its optimal temperature and may be functionally significant in light of the variable operating temperatures of bat wing muscles. © 2018. Published by The Company of Biologists Ltd.
Barber, Laura; Scicchitano, Bianca Maria; Musaro, Antonio
2015-08-24
The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers), alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors..
Muscle cooling delays activation of the muscle metaboreflex in humans.
Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T
1997-11-01
Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.
Tsuda, Satoshi; Egawa, Tatsuro; Kitani, Kazuto; Oshima, Rieko; Ma, Xiao; Hayashi, Tatsuya
2015-01-01
5′-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr172 phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser473 phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction. PMID:26471759
NASA Technical Reports Server (NTRS)
Fotedar, L. K.; Marshburn, T.; Quast, M. J.; Feeback, D. L.
1999-01-01
Forearm muscle fatigue is one of the major limiting factors affecting endurance during performance of deep-space extravehicular activity (EVA) by crew members. Magnetic resonance (MR) provides in vivo noninvasive analysis of tissue level metabolism and fluid exchange dynamics in exercised forearm muscles through the monitoring of proton magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (P-31-MRS) parameter variations. Using a space glove box and EVA simulation protocols, we conducted a preliminary MRS/MRI study in a small group of human test subjects during submaximal exercise and recovery and following exhaustive exercise. In assessing simulated EVA-related muscle fatigue and function, this pilot study revealed substantial changes in the MR image longitudinal relaxation times (T2) as an indicator of specific muscle activation and proton flux as well as changes in spectral phosphocreatine-to-phosphate (PCr/Pi) levels as a function of tissue bioenergetic potential.
Granic, Antoneta; Jagger, Carol; Davies, Karen; Adamson, Ashley; Kirkwood, Thomas; Hill, Tom R; Siervo, Mario; Mathers, John C; Sayer, Avan Aihie
2016-01-01
Healthy diet has been associated with better muscle strength and physical performance in cross-sectional studies of older adults but the effect of dietary patterns (DP) on subsequent decline, particularly in the very old (aged 85+), has not been determined. We investigated the association between previously established DP and decline in muscle strength and physical performance in the very old. 791 participants (61.8% women) from the Newcastle 85+ Study were followed-up for change in hand grip strength (HGS) and Timed Up-and Go (TUG) test over 5 years (four waves 1.5 years apart). Mixed models were used to determine the effects of DP on muscle strength and physical performance in the entire cohort and separately by sex. Previously we have established three DP that varied in intake of red meats, potato, gravy and butter and differed with key health and social factors. HGS declined linearly by 1.59 kgF in men and 1.08 kgF in women (both p<0.001), and TUG slowed by 0.13 log10-transformed seconds (log10-s) in men and 0.11 log10-s in women per wave after adjusting for important covariates (both p<0.001), and also showed a nonlinear change (p<0.001). Men in DP1 ('High Red Meat') had worse overall HGS (β = -1.70, p = 0.05), but men in DP3 ('High Butter') had a steeper decline (β = -0.63, p = 0.05) than men in DP2 ('Low Meat'). Men in DP1 and women in DP3 also had overall slower TUG than those in DP2 (β = 0.08, p = 0.001 and β = 0.06, p = 0.01, respectively), but similar rate of decline after adjusting for sociodemographic, lifestyle, health, and functioning factors. The results for HGS and TUG were not affected by participants' cognitive status. DP high in red meats, potato and gravy (DP1), or butter (DP3) may adversely affect muscle strength and physical performance in later life, independently of important covariates and cognitive status.
Granic, Antoneta; Jagger, Carol; Davies, Karen; Adamson, Ashley; Kirkwood, Thomas; Hill, Tom R.; Siervo, Mario; Mathers, John C.; Sayer, Avan Aihie
2016-01-01
Background Healthy diet has been associated with better muscle strength and physical performance in cross-sectional studies of older adults but the effect of dietary patterns (DP) on subsequent decline, particularly in the very old (aged 85+), has not been determined. Objective We investigated the association between previously established DP and decline in muscle strength and physical performance in the very old. Design 791 participants (61.8% women) from the Newcastle 85+ Study were followed-up for change in hand grip strength (HGS) and Timed Up-and Go (TUG) test over 5 years (four waves 1.5 years apart). Mixed models were used to determine the effects of DP on muscle strength and physical performance in the entire cohort and separately by sex. Results Previously we have established three DP that varied in intake of red meats, potato, gravy and butter and differed with key health and social factors. HGS declined linearly by 1.59 kgF in men and 1.08 kgF in women (both p<0.001), and TUG slowed by 0.13 log10-transformed seconds (log10-s) in men and 0.11 log10-s in women per wave after adjusting for important covariates (both p<0.001), and also showed a nonlinear change (p<0.001). Men in DP1 (‘High Red Meat’) had worse overall HGS (β = -1.70, p = 0.05), but men in DP3 (‘High Butter’) had a steeper decline (β = -0.63, p = 0.05) than men in DP2 (‘Low Meat’). Men in DP1 and women in DP3 also had overall slower TUG than those in DP2 (β = 0.08, p = 0.001 and β = 0.06, p = 0.01, respectively), but similar rate of decline after adjusting for sociodemographic, lifestyle, health, and functioning factors. The results for HGS and TUG were not affected by participants’ cognitive status. Conclusions DP high in red meats, potato and gravy (DP1), or butter (DP3) may adversely affect muscle strength and physical performance in later life, independently of important covariates and cognitive status. PMID:26934360
Bourguignon, Aurore; Rameau, Anaïs; Toullec, Gaëlle; Romestaing, Caroline; Roussel, Damien
2017-07-01
In the final stage of fasting, skeletal muscle mass and protein content drastically decrease when the maintenance of efficient locomotor activity becomes crucial for animals to reactivate feeding behaviour and survive a very long period of starvation. As mitochondrial metabolism represents the main physiological link between the endogenous energy store and animal performance, the aim of this study was to determine how a very long, natural period of fasting affected skeletal muscle mitochondrial bioenergetics in king penguin ( Aptenodytes patagonicus ) chicks. Rates of mitochondrial oxidative phosphorylation were measured in pectoralis permeabilized fibres and isolated mitochondria. Mitochondrial ATP synthesis efficiency and the activities of respiratory chain complexes were measured in mitochondria isolated from pectoralis muscle. Results from long-term (4-5 months) naturally fasted chicks were compared with those from short-term (10 day) fasted birds. The respiratory activities of muscle fibres and isolated mitochondria were reduced by 60% and 45%, respectively, on average in long-term fasted chicks compared with short-term fasted birds. Oxidative capacity and mitochondrial content of pectoralis muscle were lowered by long-term fasting. Bioenergetic analysis of pectoralis muscle also revealed that mitochondria were, on average, 25% more energy efficient in the final stage of fasting (4-5 months) than after 10 days of fasting (short-term fasted birds). These results suggest that the strong reduction in respiratory capacity of pectoralis muscle was partly alleviated by increased mitochondrial ATP synthesis efficiency. Such oxidative phosphorylation optimization can impact animal performance, e.g. the metabolic cost of locomotion or the foraging efficiency. © 2017. Published by The Company of Biologists Ltd.
Malmström, Eva-Maj; Olsson, Joakim; Baldetorp, Johan; Fransson, Per-Anders
2015-12-01
Long-term use of unfavorable postures, congenital deformations and degenerative processes associated with aging or disease may generate an increased thoracic curvature resulting in pain and disability. We wanted to examine whether a slouched postural alignment with increased thoracic kyphosis changes the shoulder kinematics and muscle activity in upper trapezius (UT), lower trapezius (LT) and serratus anterior (SA) during arm elevation. The aim was to determine if a slouched posture influences range of motion, muscle activation patterns, maximal muscle activity and the total muscle work required when performing arm elevations. Twelve male subjects (23.3 ± 1.5 years) performed maximum arm elevations in upright and slouched postures. A combined 3D movement and EMG system recorded arm movements and spine curvature simultaneously with EMG activity in the UT, LT and SA. Slouched posture affected the biomechanical conditions by significantly decreasing maximum arm elevation by ~15° (p < 0.001) and decreasing arm movement velocity by ~8 % during movements upwards (p < 0.001) and downwards (p = 0.034). The peak muscle activity increased in all muscles: UT (p = 0.034, +32.3 %), LT (p = 0.001, +48.6 %) and SA (p = 0.007, +20.9 %). The total muscle work increased significantly in the slouched posture during movements upwards: UT (p = 0.003, +36.6 %), LT (p < 0.001, +89.0 %), SA (p = 0.002, +19.4 %) and downwards: UT (p = 0.012, +29.8 %) and LT (p < 0.001, +122.5 %). An increased thoracic kyphosis was found associated with marked increased physical costs when performing arm movements. Hence, patients suffering from neck-shoulder pain and disability should be investigated and treated for defective thoracic curvature issues.
Body checking behaviors in men.
Walker, D Catherine; Anderson, Drew A; Hildebrandt, Thomas
2009-06-01
Males have been facing increasing pressure from the media to attain a lean, muscular physique, and are at risk for body dissatisfaction, disturbed eating and exercise behaviors, and abuse of appearance- and performance-enhancing drugs (APEDs). The aim of the current study was to examine the relationship between body checking and mood, symptoms of muscle dysmorphia, importance of shape and weight, and APED use in undergraduate males. Body checking in males was correlated with weight and shape concern, symptoms of muscle dysmorphia, depression, negative affect, and APED use. Body checking predicted APED use and uniquely accounted for the largest amount of variance in Muscle Dysmorphic Disorder Inventory (MDDI) scores (16%). Findings support the view that body checking is an important construct in male body image, muscle dysmorphia, and body change strategies and suggest a need for further research.
On the efficiency of FES cycling: a framework and systematic review.
Hunt, K J; Fang, J; Saengsuwan, J; Grob, M; Laubacher, M
2012-01-01
Research and development in the art of cycling using functional electrical stimulation (FES) of the paralysed leg muscles has been going on for around thirty years. A range of physiological benefits has been observed in clinical studies but an outstanding problem with FES-cycling is that efficiency and power output are very low. The present work had the following aims: (i) to provide a tutorial introduction to a novel framework and methods of estimation of metabolic efficiency using example data sets, and to propose benchmark measures for evaluating FES-cycling performance; (ii) to systematically review the literature pertaining specifically to the metabolic efficiency of FES-cycling, to analyse the observations and possible explanations for the low efficiency, and to pose hypotheses for future studies which aim to improve performance. We recommend the following as benchmark measures for assessment of the performance of FES-cycling: (i) total work efficiency, delta efficiency and stimulation cost; (ii) we recommend, further, that these benchmark measures be complemented by mechanical measures of maximum power output, sustainable steady-state power output and endurance. Performance assessments should be carried out at a well-defined operating point, i.e. under conditions of well controlled work rate and cadence, because these variables have a strong effect on energy expenditure. Future work should focus on the two main factors which affect FES-cycling performance, namely: (i) unfavourable biomechanics, i.e. crude recruitment of muscle groups, non-optimal timing of muscle activation, and lack of synergistic and antagonistic joint control; (ii) non-physiological recruitment of muscle fibres, i.e. mixed recruitment of fibres of different type and deterministic constant-frequency stimulation. We hypothesise that the following areas may bring better FES-cycling performance: (i) study of alternative stimulation strategies for muscle activation including irregular stimulation patterns (e.g. doublets, triplets, stochastic patterns) and variable frequency stimulation trains, where it appears that increasing frequency over time may be profitable; (ii) study of better timing parameters for the stimulated muscle groups, and addition of more muscle groups: this path may be approached using EMG studies and constrained numerical optimisation employing dynamic models; (iii) development of optimal stimulation protocols for muscle reconditioning and FES-cycle training.
[Pattern of paralysis and reconstructive operations after traumatic brachial plexus lesions].
Rühmann, O; Schmolke, S; Carls, J; Wirth, C J
2002-12-01
The aim of this study was to evaluate persistent patterns of paralysis after traumatic brachial plexus lesions. As a result, consecutive reconstructive operations according to our differential therapy concept are presented. Between 04/1994 and 12/2000 in 104 patients with brachial plexus palsy, the grade of muscle power of the affected upper extremities was evaluated prospectively. The neuromuscular patterns of defect showed, in most cases, insufficient muscle power grades of 0-2 for the deltoid muscle (90%), supraspinatus muscle (82%), infraspinatus muscle (93%), elbow flexors (67% to 77%), hand and finger extensors (69% to 71%), and the abductor and extensors of the thumb (67% to 70%). In corresponding frequency, the following operations were performed between 04/1994 and 06/2002: shoulder arthrodesis (n 26), trapezius transfer (n 80), rotation osteotomy of humerus (n 10), triceps to biceps transposition (n 11), transposition of forearm flexors or extensors/Steindler operation (n 12), latissimus transfer (n 7), pectoralis transfer (n 1), teres major transfer (n 1), transposition of forearm flexors to the tendons of extensor digitorum (n 19) and of the extensor pollicis longus (n 9), and wrist arthrodesis (n 5). On malfunction of muscles following brachial plexus lesions, taking into account the individual neuromuscular defect, passive joint function, and bony deformities, different procedures such as muscle transposition, arthrodesis, and corrective osteotomy can be performed to improve function of the upper extremity.
Quantifying the history dependency of muscle recovery from a fatiguing intermittent task.
Rashedi, Ehsan; Nussbaum, Maury A
2017-01-25
Muscle fatigue and recovery are complex processes influencing muscle force generation capacity. While fatigue reduces this capacity, recovery acts to restore the unfatigued muscle state. Many factors can potentially affect muscle recovery, and among these may be a task dependency of recovery following an exercise. However, little has been reported regarding the history dependency of recovery after fatiguing contractions. We examined the dependency of muscle recovery subsequent to four different histories of fatiguing muscle contractions, imposed using two cycle times (30 and 60s) during low to moderate levels (15% and 25% of maximum voluntary contraction (MVC)) of intermittent static exertions involving index finger abduction. MVC and low-frequency electrical stimulation (LFES) measures (i.e., magnitude, rise and relaxation rates) of muscle capacity were used, all of which indicated a dependency of muscle recovery on the muscle capacity state existing immediately after fatiguing exercise. This dependency did not appear to be modified by either the cycle time or exertion level leading to that state. These results imply that the post-exercise rate of recovery is primarily influenced by the immediate post-exercise muscle contractile status (estimated by MVC and LFES measures). Such results may help improve existing models of muscle recovery, facilitating more accurate predictions of localized muscle fatigue development and thereby helping to enhance muscle performance and reduce the risk of injury. Copyright © 2016 Elsevier Ltd. All rights reserved.
No impaired hemoglobin oxygenation in forearm muscles of patients with chronic CRPS-1.
Brunnekreef, Jaap J J; Oosterhof, Jan; Wolff, André P; Crul, Ben J P; Wilder-Smith, Oliver H G; Oostendorp, Rob A B
2009-01-01
Physiotherapy is considered an important treatment option in patients with upper limb complex regional pain syndrome type-1 (CRPS-1). In case of chronic CRPS-1, exercise therapy of the affected limb forms an important part of the physiotherapeutic program. We investigated whether muscle loading in chronic CRPS-1 patients is associated with impairments in muscle circulation of the forearm of the affected limb. Thirty patients with chronic CRPS-1 unilaterally affecting their upper limbs, and 30 age-matched and sex-matched control participants were included in this study. Local muscle blood flow and hemoglobin oxygenation were measured by near infrared spectroscopy within the muscles of the forearm at rest, after 1-minute isometric handgrip exercises, and after arterial occlusion. Main outcome parameters were: local muscle blood flow, O2 consumption (mVO2), and postischemic reoxygenation (ReOx). We found no differences in baseline muscle blood flow, mVO2, and ReOx between the affected CRPS-1, unaffected CRPS-1, and control arms. After exercise, mVO2 of the affected CRPS-1 arms was not different from the clinically unaffected CRPS-1 arms. Furthermore, in comparison with the control arms, unaffected CRPS-1 arms showed no difference in mVO2 or ReOx. Muscle loading does not seems to be related to impairments in muscle oxygen uptake in forearm muscles of upper limbs affected by chronic CRPS-1. Our results suggest that exercise therapy can be safely used in physiotherapeutic training programs for chronic CRPS-1 of the upper limb.
Vo, Tu A.; Galloway, Trina F.; Bardal, Tora; Halseth, Christine K.; Øie, Gunvor
2016-01-01
ABSTRACT Dynamics between hypertrophy (increase in cell size) and hyperplasia (increase in cell numbers) of white and red muscle in relation to body size [standard length (SL)], and the influence of the first-feeding diets on muscle growth were investigated in Atlantic cod larvae (Gadus morhua). Cod larvae were fed copepod nauplii or rotifers of different nutritional qualities from 4 to 29 days post hatching (dph), Artemia nauplii from 20 to 40 dph and a formulated diet from 36 to 60 dph. The short period of feeding with cultivated copepod nauplii had a positive effect on both muscle hyperplasia and hypertrophy after the copepod/rotifer phase (19 dph), and a positive long term effect on muscle hypertrophy (60 dph). The different nutritional qualities of rotifers did not significantly affect muscle growth. We suggest here a model of the dynamics between hyperplasia and hypertrophy of red and white muscle fibre cells in relation to cod SL (4 to 30 mm), where the different red and white muscle growth phases clearly coincided with different metamorphosis stages in cod larvae. These shifts could be included as biomarkers for the different stages of development during metamorphosis. The main dietary muscle effect was that hypertrophic growth of red muscle fibres was stronger in cod larvae that were fed copepods than in larvae that were fed rotifers, both in relation to larval age and size. Red muscle fibres are directly involved in larval locomotory performance, but may also play an important role in the larval myogenesis. This can have a long term effect on growth potential and fish performance. PMID:27612513
Collateral circulation of the rat lower limb and its significance in ischemia-reperfusion studies.
Rosero, Olivér; Németh, Károly; Turóczi, Zsolt; Fülöp, András; Garbaisz, Dávid; Győrffy, András; Szuák, András; Dorogi, Bence; Kiss, Mátyás; Nemeskéri, Ágnes; Harsányi, László; Szijártó, Attila
2014-12-01
Rats are the most commonly used animal model for studies of acute lower limb ischemia-reperfusion. The ischemia induced by arterial clamping may cause milder damage than the application of a tourniquet if the presence of a possible collateral system is considered. Male Wistar rats were randomized into three groups: in group A, the muscle weight affected by ischemia was measured; in group B, the severity of muscle damage caused by the application of a tourniquet and by infrarenal aortic occlusion was examined. Blood and muscle samples were taken from group B to assess the serum necroenzyme, potassium and TNF-α levels, as well as the muscle fiber viability and for histological examinations. In group C, the identification of the lower limb collateral system was performed using corrosion casting. Tourniquet application affected the lower muscle mass and resulted in significantly more severe injury compared to infrarenal aortic occlusion. This difference was reflected in the serum necroenzyme, potassium and TNF-α levels. The histological examination and viability assay confirmed these findings. The corrosion casts showed several anastomoses capable of supplying the lower limb. Tourniquet application proved to be capable of inducing absolute lower limb ischemia, in contrast to infrarenal aortic ligation, where a rich collateral system is considered to help mitigate the injury.
NASA Technical Reports Server (NTRS)
St Pierre, B. A.; Kasper, C. E.; Lindsey, A. M.
1992-01-01
Fatigue is a common adverse effect of cancer and its therapy. However, the specific mechanisms underlying cancer fatigue are unclear. One physiologic mechanism may involve changes in skeletal muscle protein stores or metabolite concentration. A reduction in skeletal muscle protein stores may result from endogenous tumor necrosis factor (TNF) or from TNF administered as antineoplastic therapy. This muscle wasting would require patients to exert an unusually high amount of effort to generate adequate contractile force during exercise performance or during extended periods of sitting or standing. This additional effort could result in the onset of fatigue. Additionally, cancer fatigue may develop or become exacerbated during exercise as a consequence of changes in the concentration of skeletal muscle metabolites. These biochemical alterations may interfere with force that is produced by the muscle contractile proteins. These physiologic changes may play a role in the decision to include exercise in the rehabilitation plans of patients with cancer. They also may affect ideas about fatigue.
Bell, Martin P; Ferguson, Richard A
2009-09-01
The effect of elevated muscle temperature on mechanical efficiency was investigated during exercise at different pedal frequencies in young and older women. Eight young (24 +/- 3 yr) and eight older (70 +/- 4 yr) women performed 6-min periods of cycling at 75% ventilatory threshold at pedal frequencies of 45, 60, 75, and 90 rpm under control and passively elevated local muscle temperature conditions. Mechanical efficiency was calculated from the ratio of energy turnover (pulmonary O(2) uptake) and mechanical power output. Overall, elevating muscle temperature increased (P < 0.05) mechanical efficiency in young (32.0 +/- 3.1 to 34.0 +/- 5.5%) and decreased (P < 0.05) efficiency in older women (30.2 +/- 5.6 to 27.9 +/- 4.1%). The different effect of elevated muscle temperature in young and older women reflects a shift in the efficiency-velocity relationship of skeletal muscle. These effects may be due to differences in recruitment patterns, as well as sarcopenic and fiber-type changes with age.
Electrophysiology of Muscle Fatigue in Cardiopulmonary Resuscitation on Manikin Model.
Cobo-Vázquez, Carlos; De Blas, Gemma; García-Canas, Pablo; Del Carmen Gasco-García, María
2018-01-01
Cardiopulmonary resuscitation requires the provider to adopt positions that could be dangerous for his or her spine, specifically affecting the muscles and ligaments in the lumbar zone and the scapular spinal muscles. Increased fatigue caused by muscular activity during the resuscitation could produce a loss of quality and efficacy, resulting in compromising resuscitation. The aim of this study was to evaluate the maximum time a rescuer can perform uninterrupted chest compressions correctly without muscle fatigue. This pilot study was performed at Universidad Complutense de Madrid (Spain) with the population recruited following CONSORT 2010 guidelines. From the 25 volunteers, a total of 14 students were excluded because of kyphoscoliosis (4), lumbar muscle pain (1), anti-inflammatory treatment (3), or not reaching 80% of effective chest compressions during the test (6). Muscle activity at the high spinal and lumbar (L5) muscles was assessed using electromyography while students performed continuous chest compressions on a ResusciAnne manikin. The data from force exerted were analyzed according to side and muscle groups using Student's t test for paired samples. The influence of time, muscle group, and side was analyzed by multivariate analyses ( p ≤ .05). At 2 minutes, high spinal muscle activity (right: 50.82 ± 9.95; left: 57.27 ± 20.85 μV/ms) reached the highest values. Activity decreased at 5 and 15 minutes. At 2 minutes, L5 activity (right: 45.82 ± 9.09; left: 48.91 ± 10.02 μV/ms) reached the highest values. After 5 minutes and at 15 minutes, activity decreased. Fatigue occurred bilaterally and time was the most important factor. Fatigue began at 2 minutes. Rescuers exert muscular countervailing forces in order to maintain effective compressions. This imbalance of forces could determine the onset of poor posture, musculoskeletal pain, and long-term injuries in the rescuer.
Importance of the levator labii alaeque nasi muscle in dorsal septal deviations.
Tellioğlu, Ali Teoman; Özakpinar, Hülda Rifat; Cakir, Bariş; Tekdemir, Ibrahim
2011-03-01
Deviated cartilages structures of the nose can be affected by nasal muscles, and deviation becomes conspicuous when the patient smiles. This condition depends on activity of nasal muscles, particularly the levator labii alaeque nasi muscle. A total of 124 septorhinoplasty operations were performed to correct dorsal concave septal deviation between 2005 and 2009 years. The 70 women and 54 men included in the study had an average age of 28 years. The average follow-up period was 12 months. Open septorhinoplasty was preferred in all cases. The medial part of the levator labii alaeque nasi muscle was extensively dissected from the lateral crus and surrounding tissues. The lateral crura of the alar cartilages were separated from the upper lateral cartilages in the scroll area. The dorsal septal deviation was corrected by combination of bilateral spreader grafts, which reinforced cartilage with horizontal control sutures. Early postoperative period was uneventful. Nasal obstruction was reduced after surgery, and significant subjective postoperative improvements were observed in all patients. Comparison of preoperative and postoperative photographs demonstrated improved dorsal nasal contour. Revision operation was performed in 3 cases. The corrected septal cartilage was in a good position in all revised cases; therefore, septal surgery was not performed in the revision operations. In conclusion, surgical disruption of the anatomic relationship between the muscle with the dorsal septal cartilage and reinforcement of the dorsal septal cartilage with spreader grafts and horizontal control sutures can decrease risk of recurrence.
... muscle ( myopathic changes ) Tissue death of the muscle (necrosis) Disorders that involve inflammation of the blood vessels and affect muscles ( necrotizing vasculitis ) Traumatic muscle damage ...
Bilateral experimental neck pain reorganize axioscapular muscle coordination and pain sensitivity.
Christensen, S W; Hirata, R P; Graven-Nielsen, T
2017-04-01
Neck pain is a large clinical problem where reorganized trunk and axioscapular muscle activities have been hypothesised contributing to pain persistence and pain hypersensitivity. This study investigated the effects of bilateral experimental neck pain on trunk and axioscapular muscle function and pain sensitivity. In 25 healthy volunteers, bilateral experimental neck pain was induced in the splenius capitis muscles by hypertonic saline injections. Isotonic saline was used as control. In sitting, subjects performed slow, fast and slow-resisted unilateral arm movements before, during and after injections. Electromyography (EMG) was recorded from eight shoulder and trunk muscles bilaterally. Pressure pain thresholds (PPTs) were assessed bilaterally at the neck, head and arm. Data were normalized to the before-measures. Compared with control and post measurements, experimental neck pain caused (1) decreased EMG activity of the ipsilateral upper trapezius muscles during all but slow-resisted down movements (p < 0.001), and (2) increased EMG activity in the ipsilateral erector spinae muscle during slow and fast movements (p < 0.02), and in the contralateral erector spinae muscle during all but fast up and slow-resisted down movements (p < 0.007). The PPTs in the painful condition increased at the head and arm compared with post measurements and the control condition (p < 0.001). In the post-pain condition, the neck PPT was decreased compared with the control condition (p < 0.001). Acute bilateral neck pain reorganized axioscapular and trunk muscle activity together with local hyperalgesia and widespread hypoalgesia indicating that acute neck pain immediately affects trunk and axioscapular function which may affect both assessment and treatment. Bilateral clinical neck pain alters axioscapular muscle coordination but only effects of unilateral experimental neck pain has been investigated. Bilateral experimental neck pain causes task-dependent reorganized axioscapular and trunk muscle activity in addition to widespread decrease in pressure pain sensitivity. © 2016 European Pain Federation - EFIC®.
Ellegast, Rolf P; Kraft, Kathrin; Groenesteijn, Liesbeth; Krause, Frank; Berger, Helmut; Vink, Peter
2012-03-01
Prolonged and static sitting postures provoke physical inactivity at VDU workplaces and are therefore discussed as risk factors for the musculoskeletal system. Manufacturers have designed specific dynamic office chairs featuring structural elements which promote dynamic sitting and therefore physical activity. The aim of the present study was to evaluate the effects of four specific dynamic chairs on erector spinae and trapezius EMG, postures/joint angles and physical activity intensity (PAI) compared to those of a conventional standard office chair. All chairs were fitted with sensors for measurement of the chair parameters (backrest inclination, forward and sideward seat pan inclination), and tested in the laboratory by 10 subjects performing 7 standardized office tasks and by another 12 subjects in the field during their normal office work. Muscle activation revealed no significant differences between the specific dynamic chairs and the reference chair. Analysis of postures/joint angles and PAI revealed only a few differences between the chairs, whereas the tasks performed strongly affected the measured muscle activation, postures and kinematics. The characteristic dynamic elements of each specific chair yielded significant differences in the measured chair parameters, but these characteristics did not appear to affect the sitting dynamics of the subjects performing their office tasks. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Severe polysaccharide storage myopathy in Belgian and Percheron draught horses.
Valentine, B A; Credille, K M; Lavoie, J P; Fatone, S; Guard, C; Cummings, J F; Cooper, B J
1997-05-01
A severe myopathy leading to death or euthanasia was identified in 4 Belgian and 4 Percheron draught horses age 2-21 years. Clinical signs ranged from overt weakness and muscle atrophy in 2 horses age 2 and 3 years, to recumbency with inability to rise in 6 horses age 4-21 years. In 5 horses there was mild to severe increases in muscle enzyme levels. Clinical diagnoses included equine motor neuron disease (2 horses), post anaesthetic myopathy (2 horses), exertional myopathy (2 horses), myopathy due to unknown (one horse), and equine protozoal myelitis (one horse). Characteristic histopathology of muscle from affected horses was the presence of excessive complex polysaccharide and/or glycogen, revealed by periodic acid-Schiff staining in all cases and by electron microscopy in one case. Evaluation of frozen section histochemistry performed on 2 cases indicated that affected fibres were Type 2 glycolytic fibres. Subsarcolemmal and intracytoplasmic vacuoles were most prominent in 3 horses age 2-4 years, and excessive glycogen, with little or no complex polysaccharide, was the primary compound stored in affected muscle in these young horses. Myopathic changes, including fibre size variation, fibre hypertrophy, internal nuclei, and interstitial fat infiltration, were most prominent in 5 horses age 6-21 years, and the accumulation of complex polysaccharide appeared to increase with age. Mild to moderate segmental myofibre necrosis was present in all cases.
Performance in sports--With specific emphasis on the effect of intensified training.
Bangsbo, J
2015-12-01
Performance in most sports is determined by the athlete's technical, tactical, physiological and psychological/social characteristics. In the present article, the physical aspect will be evaluated with a focus on what limits performance, and how training can be conducted to improve performance. Specifically how intensified training, i.e., increasing the amount of aerobic high-intensity and speed endurance training, affects physiological adaptations and performance of trained subjects. Periods of speed endurance training do improve performance in events lasting 30 s-4 min, and when combined with aerobic high-intensity sessions, also performance during longer events. Athletes in team sports involving intense exercise actions and endurance aspects, such as soccer and basketball, can also benefit from intensified training. Speed endurance training does reduce energy expenditure and increase expression of muscle Na(+), K(+) pump α subunits, which may preserve muscle cell excitability and delay fatigue development during intense exercise. When various types of training are conducted in the same period (concurrent training), as done in a number of sports, one type of training may blunt the effect of other types of training. It is not, however, clear how various training modalities are affecting each other, and this issue should be addressed in future studies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takegahara, Yuki; Yamanouchi, Keitaro, E-mail: akeita@mail.ecc.u-tokyo.ac.jp; Nakamura, Katsuyuki
2014-05-15
Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether directmore » cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.« less
Quantitative muscle ultrasound and quadriceps strength in patients with post-polio syndrome.
Bickerstaffe, Alice; Beelen, Anita; Zwarts, Machiel J; Nollet, Frans; van Dijk, Johannes P
2015-01-01
We investigated whether muscle ultrasound can distinguish muscles affected by post-polio syndrome (PPS) from healthy muscles and whether severity of ultrasound abnormalities is associated with muscle strength. Echo intensity, muscle thickness, and isometric strength of the quadriceps muscles were measured in 48 patients with PPS and 12 healthy controls. Patients with PPS had significantly higher echo intensity and lower muscle thickness than healthy controls. In patients, both echo intensity and muscle thickness were associated independently with muscle strength. A combined measure of echo intensity and muscle thickness was more strongly related to muscle strength than either parameter alone. Quantitative ultrasound distinguishes healthy muscles from those affected by PPS, and measures of muscle quality and quantity are associated with muscle strength. Hence, ultrasound could be a useful tool for assessing disease severity and monitoring changes resulting from disease progression or clinical intervention in patients with PPS. © 2014 Wiley Periodicals, Inc.
Oxidative Stress and Metabolic Perturbations in Wooden Breast Disorder in Chickens.
Abasht, Behnam; Mutryn, Marie F; Michalek, Ryan D; Lee, William R
2016-01-01
This study was conducted to characterize metabolic features of the breast muscle (pectoralis major) in chickens affected with the Wooden Breast myopathy. Live birds from two purebred chicken lines and one crossbred commercial broiler population were clinically examined by manual palpation of the breast muscle (pectoralis major) at 47-48 days of age. Metabolite abundance was determined by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using breast muscle tissue samples from 16 affected and 16 unaffected chickens. Muscle glycogen content was also quantified in breast muscle tissue samples from affected and unaffected chickens. In total, levels of 140 biochemicals were significantly different (FDR<0.1 and fold-change A/U>1.3 or <0.77) between affected and unaffected chickens. Glycogen content measurements were considerably lower (1.7-fold) in samples taken from Wooden Breast affected birds when compared with samples from unaffected birds. Affected tissues exhibited biomarkers related to increased oxidative stress, elevated protein levels, muscle degradation, and altered glucose utilization. Affected muscle also showed elevated levels of hypoxanthine, xanthine, and urate molecules, the generation of which can contribute to altered redox homeostasis. In conclusion, our findings show that Wooden Breast affected tissues possess a unique metabolic signature. This unique profile may identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into altered biochemical processes contributing to tissue hardening associated with the Wooden Breast myopathy in commercial chickens.
Oxidative Stress and Metabolic Perturbations in Wooden Breast Disorder in Chickens
Abasht, Behnam; Mutryn, Marie F.; Michalek, Ryan D.; Lee, William R.
2016-01-01
This study was conducted to characterize metabolic features of the breast muscle (pectoralis major) in chickens affected with the Wooden Breast myopathy. Live birds from two purebred chicken lines and one crossbred commercial broiler population were clinically examined by manual palpation of the breast muscle (pectoralis major) at 47–48 days of age. Metabolite abundance was determined by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using breast muscle tissue samples from 16 affected and 16 unaffected chickens. Muscle glycogen content was also quantified in breast muscle tissue samples from affected and unaffected chickens. In total, levels of 140 biochemicals were significantly different (FDR < 0.1 and fold-change A/U > 1.3 or < 0.77) between affected and unaffected chickens. Glycogen content measurements were considerably lower (1.7-fold) in samples taken from Wooden Breast affected birds when compared with samples from unaffected birds. Affected tissues exhibited biomarkers related to increased oxidative stress, elevated protein levels, muscle degradation, and altered glucose utilization. Affected muscle also showed elevated levels of hypoxanthine, xanthine, and urate molecules, the generation of which can contribute to altered redox homeostasis. In conclusion, our findings show that Wooden Breast affected tissues possess a unique metabolic signature. This unique profile may identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into altered biochemical processes contributing to tissue hardening associated with the Wooden Breast myopathy in commercial chickens. PMID:27097013
Task-based mirror therapy enhances ipsilesional motor functions in stroke: A pilot study.
Arya, Kamal Narayan; Pandian, Shanta; Kumar, Dharmendra
2017-04-01
To examine the effect of Mirror therapy (MT) on dexterity, coordination, and muscle strength of the less-affected upper limb in stroke. Pre-test post-test, single group, experimental design. Rehabilitation institute. Post-stroke hemiparetic chronic subjects (N = 21). Forty sessions of MT using various tasks in addition to the conventional rehabilitation. Tasks such as lifting a glass, ball-squeezing, and picking-up objects were performed by the less-affected side in front of the mirror-box creating an illusion for the affected side. Minnesota Manual Dexterity Test (MMDT), Purdue Peg Board Test (PPBT), and Manual Muscle Testing (MMT) were used to measure the deficits of the less-affected side. Post-intervention, the less-affected side of the participants exhibited significant improvement on MMDT (p < 0.001), PPBT (p < 0.001), and MMT (shoulder flexors, wrist extensors and deviators, and finger flexors-extensors; p = 0.005-0.046). In post-stroke hemiparesis, MT also led to the improvement in dexterity, coordination, and strength of the less-affected side. In addition to the affected side, the technique may augment the subtle motor deficits of the less-affected side. Copyright © 2016 Elsevier Ltd. All rights reserved.
Choi, Woo-Jeong; Yoon, Tae-Lim; Choi, Sil-Ah; Lee, Ji-Hyun; Cynn, Heon-Seock
2017-07-01
The aim of the present study was to determine whether the application of isometric horizontal abduction (IHA) differentially affected two weight-bearing push-up plus exercises by examining activation of the scapulothoracic muscles in subjects with scapular winging. Fifteen male subjects performed standard push-up plus (SPP) and wall push-up plus (WPP), with and without IHA. Two-way analyses of variance using two within-subject factors were used to determine the statistical significance of observed differences in upper trapezius (UT), pectoralis major (PM), and serratus anterior (SA) muscle activities and UT/SA and PM/SA muscle activity ratios. UT and SA muscle activities were greater during SPP than WPP. PM muscle activity was lower with IHA application. The UT/SA and PM/SA muscle activity ratios were lower during SPP than WPP. The PM/SA muscle activity ratio was lower with IHA application. The results suggest that IHA application using a Thera-Band can effectively reduce PM muscle activity during SPP and WPP exercises. Moreover, the SPP exercise can be used to increase UT and SA muscle activity and reduce the UT/SA and PM/SA muscle activity ratios in subjects with scapular winging. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pereira, Anieli G; Abdala, Virginia; Kohlsdorf, Tiana
2015-02-01
Skeletal muscles can be classified as flexors or extensors according to their function, and as dorsal or ventral according to their position. The latter classification evokes their embryological origin from muscle masses initially divided during limb development, and muscles sharing a given position do not necessarily perform the same function. Here, we compare the relative proportions of different fiber types among six limb muscles in the lizard Tropidurus psammonastes. Individual fibers were classified as slow oxidative (SO), fast glycolytic (FG) or fast oxidative-glycolytic (FOG) based on mitochondrial content; muscles were classified according to position and function. Mixed linear models considering one or both effects were compared using likelihood ratio tests. Variation in the proportion of FG and FOG fibers is mainly explained by function (flexor muscles have on average lower proportions of FG and higher proportions of FOG fibers), while variation in SO fibers is better explained by position (they are less abundant in ventral muscles than in those developed from a dorsal muscle mass). Our results clarify the roles of position and function in determining the relative proportions of the various muscle fibers and provide evidence that these factors may differentially affect distinct fiber types. Copyright © 2014. Published by Elsevier GmbH.
Yim, JongEun; Petrofsky, Jerrold; Lee, Haneul
2018-03-01
Ankle and foot injuries are common among athletes and physically active individuals. The most common residual disability, ankle sprain, is characterized by instability along with postural sway. If the supporting structures around a joint become lax, posture stability and balance are also affected. Previous studies have examined muscle stiffness and elasticity and postural sway separately; however, the relationship between these factors is yet unknown. It is well known that the levels of sex hormones, especially estrogen, change in women over the phase of the menstrual cycle. Therefore, this study examined the relationship between the mechanical properties of tissue and balance activity using a non-invasive digital palpation device to determine if they undergo any changes over the menstrual cycle in young women. Sixteen young women with regular menstrual cycles completed the study. Tone, stiffness, and elasticity of the ankle muscles (lateral gastrocnemius, peroneus longus, and tibialis anterior) were measured using a non-invasive digital palpation device. Postural sway was recorded while the participants performed balance tasks during ovulation and menstruation. Significantly greater posture sway characteristics and ankle muscle elasticity were found during ovulation than during menstruation; lower tone and stiffness of the ankle muscles were observed at ovulation (p < 0.05). Additionally, weak-to-strong relationships between ankle muscle mechanical properties and postural sway characteristics were found (p < 0.05). These results suggest the effect of estrogen on human connective tissues. We therefore postulate that estrogen increases joint and muscle laxity and affects posture stability according to the phase of the menstrual cycle.
Predictive neuromechanical simulations indicate why walking performance declines with ageing.
Song, Seungmoon; Geyer, Hartmut
2018-04-01
Although the natural decline in walking performance with ageing affects the quality of life of a growing elderly population, its physiological origins remain unknown. By using predictive neuromechanical simulations of human walking with age-related neuro-musculo-skeletal changes, we find evidence that the loss of muscle strength and muscle contraction speed dominantly contribute to the reduced walking economy and speed. The findings imply that focusing on recovering these muscular changes may be the only effective way to improve performance in elderly walking. More generally, the work is of interest for investigating the physiological causes of altered gait due to age, injury and disorders. Healthy elderly people walk slower and energetically less efficiently than young adults. This decline in walking performance lowers the quality of life for a growing ageing population, and understanding its physiological origin is critical for devising interventions that can delay or revert it. However, the origin of the decline in walking performance remains unknown, as ageing produces a range of physiological changes whose individual effects on gait are difficult to separate in experiments with human subjects. Here we use a predictive neuromechanical model to separately address the effects of common age-related changes to the skeletal, muscular and nervous systems. We find in computer simulations of this model that the combined changes produce gait consistent with elderly walking and that mainly the loss of muscle strength and mass reduces energy efficiency. In addition, we find that the slower preferred walking speed of elderly people emerges in the simulations when adapting to muscle fatigue, again mainly caused by muscle-related changes. The results suggest that a focus on recovering these muscular changes may be the only effective way to improve performance in elderly walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Özcan Kahraman, Buse; Özsoy, İsmail; Acar, Serap; Özpelit, Ebru; Akdeniz, Bahri; Sevinç, Can; Savcı, Sema
2017-07-01
Pulmonary arterial hypertension (PAH) is a rare disease. Although muscle strength, exercise capacity, quality of life, and activities of daily living of patients with PAH are affected, it is not known how they are affected by disease severity. The purpose of the present study was to investigate effects of disease severity on upper extremity muscle strength, exercise capacity, and performance of activities of daily living in patients with PAH. Twenty-five patients with disease severity classified according to the New York Heart Association (NYHA) as functional class II (n=14) or class III (n=11) were included in the study. Upper-extremity exercise capacity and limitations in performing activities of daily living were assessed with 6-minute pegboard and ring test (6PBRT) and the Milliken activities of daily living scale (MAS), respectively. Shoulder flexion, elbow extension, elbow flexion muscle strength, and handgrip strength were measured with dynamometer. There were no significant differences in age, gender, body mass index, or mean pulmonary artery pressure between groups (p>0.05). The 6PBRT, MAS, and elbow flexion (right) and grip strength (right and left) results were significantly lower in NYHA III group than in NYHA II group (p=0.004, p=0.002, p=0.043, p=0.002 and p=0.003, respectively). There was no significant difference in shoulder flexion, elbow flexion (left), or elbow extension between groups (p>0.05). Results suggest that upper extremity exercise capacity, elbow flexion muscle strength (right), and handgrip strength decrease and that limitations in activities of daily living grow as disease severity increases in patients with PAH. When planning rehabilitation programs, disease severity should be considered and evaluations and treatments for the upper extremities should be included.
Siff, Lauren N; Hill, Audra J; Walters, Samantha J; Walters, Ginny; Walters, Mark D
2018-05-02
The aim oft his study was to compare the effects of 10 common exercises to traditional pelvic floor muscle (PFM) contractions (Kegel) on levator hiatus (LH) area and PFM length and strength. This is a cross-sectional study of 15 healthy postpartum women. Ten exercises were studied. These were common variations of leg, core, and back exercises used in yoga, Pilates, strength training, and physical therapy. Each participant performed all 10 exercises at a single visit in 2 examination settings: transperineal ultrasound and perineometry. Ultrasound measured the LH area and PFM length, and perineometry measured the muscle strength (peak squeeze pressure). Kegel generates an increase in squeeze pressure (24.3 cm H2O), shortens the muscles (-0.46 cm) and narrows the LH (-0.13 cm). The bird-dog and plank exercises were not different from Kegel in any measurement. While the leg-lift ultrasound dimensions are similar to Kegel, leg lifts generated peak squeeze pressures stronger than any other exercise (including Kegel). Whereas ultrasound dimensions were similar to Kegel, tucked and untucked squats and thigh adductions generated weaker contractions than Kegel. While crunch generated a squeeze pressure similar to Kegel, the ultrasound dimensions showed a significantly wider LH and longer muscle than Kegel. Bridge, clam, and plié exercises affected the PFMs differently than Kegel in all measures. Bird-dog, plank, and leg-lift exercises should be evaluated as alternative exercises to Kegel as they affect PFM strength and length and LH area similarly to Kegel, and leg lifts generate a stronger contraction than Kegel.
Sprinting performance on the Woodway Curve 3.0 is related to muscle architecture.
Mangine, Gerald T; Fukuda, David H; Townsend, Jeremy R; Wells, Adam J; Gonzalez, Adam M; Jajtner, Adam R; Bohner, Jonathan D; LaMonica, Michael; Hoffman, Jay R; Fragala, Maren S; Stout, Jeffrey R
2015-01-01
To determine if unilateral measures of muscle architecture in the rectus femoris (RF) and vastus lateralis (VL) were related to (and predictive of) sprinting speed and unilateral (and bilateral) force (FRC) and power (POW) during a 30 s maximal sprint on the Woodway Curve 3.0 non-motorized treadmill. Twenty-eight healthy, physically active men (n = 14) and women (n = 14) (age = 22.9 ± 2.4 years; body mass = 77.1 ± 16.2 kg; height = 171.6 ± 11.2 cm; body-fa t = 19.4 ± 8.1%) completed one familiarization and one 30-s maximal sprint on the TM to obtain maximal sprinting speed, POW and FRC. Muscle thickness (MT), cross-sectional area (CSA) and echo intensity (ECHO) of the RF and VL in the dominant (DOM; determined by unilateral sprinting power) and non-dominant (ND) legs were measured via ultrasound. Pearson correlations indicated several significant (p < 0.05) relationships between sprinting performance [POW (peak, DOM and ND), FRC (peak, DOM, ND) and sprinting time] and muscle architecture. Stepwise regression indicated that POW(DOM) was predictive of ipsilateral RF (MT and CSA) and VL (CSA and ECHO), while POW(ND) was predictive of ipsilateral RF (MT and CSA) and VL (CSA); sprinting power/force asymmetry was not predictive of architecture asymmetry. Sprinting time was best predicted by peak power and peak force, though muscle quality (ECHO) and the bilateral percent difference in VL (CSA) were strong architectural predictors. Muscle architecture is related to (and predictive of) TM sprinting performance, while unilateral POW is predictive of ipsilateral architecture. However, the extent to which architecture and other factors (i.e. neuromuscular control and sprinting technique) affect TM performance remains unknown.
Hotfiel, T; Carl, H D; Swoboda, B; Engelhardt, M; Heinrich, M; Strobel, D; Wildner, D
2016-03-01
Ultrasound is a standard procedure widely used in the diagnostic investigation of muscle injuries and widely described in the literature. Its advantages include rapid availability, cost effectiveness and the possibility to perform a real-time dynamic examination with the highest possible spatial resolution. In the diagnostic work-up of minor lesions (muscle stiffness, muscle strain), plain ultrasound has so far been inferior to MRI. The case presented by us is an example of the possibilities offered by contrast-enhanced ultrasound (CEUS) in the imaging of muscle injuries compared with plain B-mode image ultrasound and MRI imaging of the affected region. This case report is about a high-performance football player who sustained a muscle injury. He underwent an ultrasound examination (S 2000, 9L4 Probe, Siemens, Germany), which was performed simultaneously in the conventional and contrast-enhanced mode at the level of the lesion. An intravenous bolus injection of 4.8 ml of intravascular contrast agent (SonoVue(®), Bracco, Italy) was given via a cubital intravenous line. After that, the distribution of contrast agent was visualised in the early arterial phase. In addition, a plain magnetic resonance imaging scan of both thighs was performed for reference. On conventional ultrasound, the lesion was not clearly distinguishable from neighbouring tissue, whereas contrast-enhanced ultrasound demonstrated a well delineated, circumscribed area of impaired perfusion with hypoenhancement compared with the surrounding muscles at the clinical level of the lesion in the arterial wash-in phase (0-30 sec, after intravenous administration). The MRI scan revealed an edema signal with perifascial fluid accumulation in the corresponding site. The use of intravascular contrast agent enabled the sensitive detection of a minor injury by ultrasound for the first time. An intramuscular edema seen in the MRI scan showed a functional arterial perfusion impairment on ultrasound, which was sensitively detected in the early phase. Further examinations must be performed on muscle injuries of various degrees of severity in order to validate the application of this procedure and to standardise the examination process. © Georg Thieme Verlag KG Stuttgart · New York.
Illi, Sabine K; Held, Ulrike; Frank, Irène; Spengler, Christina M
2012-08-01
Two distinct types of specific respiratory muscle training (RMT), i.e. respiratory muscle strength (resistive/threshold) and endurance (hyperpnoea) training, have been established to improve the endurance performance of healthy individuals. We performed a systematic review and meta-analysis in order to determine the factors that affect the change in endurance performance after RMT in healthy subjects. A computerized search was performed without language restriction in MEDLINE, EMBASE and CINAHL and references of original studies and reviews were searched for further relevant studies. RMT studies with healthy individuals assessing changes in endurance exercise performance by maximal tests (constant load, time trial, intermittent incremental, conventional [non-intermittent] incremental) were screened and abstracted by two independent investigators. A multiple linear regression model was used to identify effects of subjects' fitness, type of RMT (inspiratory or combined inspiratory/expiratory muscle strength training, respiratory muscle endurance training), type of exercise test, test duration and type of sport (rowing, running, swimming, cycling) on changes in performance after RMT. In addition, a meta-analysis was performed to determine the effect of RMT on endurance performance in those studies providing the necessary data. The multiple linear regression analysis including 46 original studies revealed that less fit subjects benefit more from RMT than highly trained athletes (6.0% per 10 mL · kg⁻¹ · min⁻¹ decrease in maximal oxygen uptake, 95% confidence interval [CI] 1.8, 10.2%; p = 0.005) and that improvements do not differ significantly between inspiratory muscle strength and respiratory muscle endurance training (p = 0.208), while combined inspiratory and expiratory muscle strength training seems to be superior in improving performance, although based on only 6 studies (+12.8% compared with inspiratory muscle strength training, 95% CI 3.6, 22.0%; p = 0.006). Furthermore, constant load tests (+16%, 95% CI 10.2, 22.9%) and intermittent incremental tests (+18.5%, 95% CI 10.8, 26.3%) detect changes in endurance performance better than conventional incremental tests (both p < 0.001) with no difference between time trials and conventional incremental tests (p = 0.286). With increasing test duration, improvements in performance are greater (+0.4% per minute test duration, 95% CI 0.1, 0.6%; p = 0.011) and the type of sport does not influence the magnitude of improvements (all p > 0.05). The meta-analysis, performed on eight controlled trials revealed a significant improvement in performance after RMT, which was detected by constant load tests, time trials and intermittent incremental tests, but not by conventional incremental tests. RMT improves endurance exercise performance in healthy individuals with greater improvements in less fit individuals and in sports of longer durations. The two most common types of RMT (inspiratory muscle strength and respiratory muscle endurance training) do not differ significantly in their effect, while combined inspiratory/expiratory strength training might be superior. Improvements are similar between different types of sports. Changes in performance can be detected by constant load tests, time trials and intermittent incremental tests only. Thus, all types of RMT can be used to improve exercise performance in healthy subjects but care must be taken regarding the test used to investigate the improvements.
Nozdrenko, D M; Abramchuk, O M; Soroca, V M; Miroshnichenko, N S
2015-01-01
We studied enzymatic activity and measured strain-gauge contraction properties of the frog Rana temporaria m. tibialis anterior muscle fascicles during the action of aluminum chloride solution. It was shown that AlCl3 solutions did not affect the dynamic properties of skeletal muscle preparation in concentrations less than 10(-4) M Increasing the concentration of AlCl3 to 10(-2) M induce complete inhibition of muscle contraction. A linear correlation between decrease in Ca2+,Mg(2+)-ATPase activity of sarcoplasmic reticulum and the investigated concentrations range of aluminum chloride was observed. The reduction in the dynamic contraction performance and the decrease Ca2+,Mg(2+)-ATPase activity of the sarcoplasmic reticulum under the effect of the investigated AlCl3 solution were minimal in pre-tetanus period of contraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at differentmore » developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner. • The nicotine-induced secondary motoneuron axonal pathfinding errors can occur independent of any muscle fiber alterations. • Nicotine exposure primarily affects dorsal projecting secondary motoneurons axons. • Nicotine-induced primary motoneuron axon pathfinding errors can influence secondary motoneuron axon morphology.« less
Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng
2015-10-15
The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Seebacher, Frank; Webster, Mike M.; James, Rob S.; Tallis, Jason; Ward, Ashley J. W.
2016-01-01
Local specialization can be advantageous for individuals and may increase the resilience of the species to environmental change. However, there may be trade-offs between morphological responses and physiological performance and behaviour. Our aim was to test whether habitat-specific morphology of stickleback (Gasterosteus aculeatus) interacts with physiological performance and behaviour at different salinities. We rejected the hypothesis that deeper body shape of fish from habitats with high predation pressure led to decreases in locomotor performance. However, there was a trade-off between deeper body shape and muscle quality. Muscle of deeper-bodied fish produced less force than that of shallow-bodied saltmarsh fish. Nonetheless, saltmarsh fish had lower swimming performance, presumably because of lower muscle mass overall coupled with smaller caudal peduncles and larger heads. Saltmarsh fish performed better in saline water (20 ppt) relative to freshwater and relative to fish from freshwater habitats. However, exposure to salinity affected shoaling behaviour of fish from all habitats and shoals moved faster and closer together compared with freshwater. We show that habitat modification can alter phenotypes of native species, but local morphological specialization is associated with trade-offs that may reduce its benefits. PMID:27429785
Seebacher, Frank; Webster, Mike M; James, Rob S; Tallis, Jason; Ward, Ashley J W
2016-06-01
Local specialization can be advantageous for individuals and may increase the resilience of the species to environmental change. However, there may be trade-offs between morphological responses and physiological performance and behaviour. Our aim was to test whether habitat-specific morphology of stickleback (Gasterosteus aculeatus) interacts with physiological performance and behaviour at different salinities. We rejected the hypothesis that deeper body shape of fish from habitats with high predation pressure led to decreases in locomotor performance. However, there was a trade-off between deeper body shape and muscle quality. Muscle of deeper-bodied fish produced less force than that of shallow-bodied saltmarsh fish. Nonetheless, saltmarsh fish had lower swimming performance, presumably because of lower muscle mass overall coupled with smaller caudal peduncles and larger heads. Saltmarsh fish performed better in saline water (20 ppt) relative to freshwater and relative to fish from freshwater habitats. However, exposure to salinity affected shoaling behaviour of fish from all habitats and shoals moved faster and closer together compared with freshwater. We show that habitat modification can alter phenotypes of native species, but local morphological specialization is associated with trade-offs that may reduce its benefits.
MacDonald, Nicole; Baker, Russell; Cheatham, Scott W
2016-12-01
Instrument-Assisted Soft Tissue Mobilization (IASTM) is a non-invasive therapeutic technique used to theoretically aid in scar tissue breakdown and absorption, fascial mobilization, and improved tissue healing. Researchers have hypothesized that utilizing IASTM will improve muscular efficiency and performance; yet previous Investigations has been focused on treating injury. The purpose of this investigation was to explore the effects of IASTM on muscle performance to assess if typical treatment application affected measures of muscular performance. A pretest-posttest randomized control design. A convenience sample of 48 physically active adults (mean age 24 ± 4 years), randomly assigned to one of three groups: quadriceps treatment group, triceps surae treatment group, or control group. Participants performed a five-minute warm-up on a Monark bicycle ergometer before performing three countermovement vertical jumps (CMJ). Immediately after, the IASTM treatment was applied by one researcher for three minutes on each leg at the specified site (e.g., quadriceps) for those assigned to the treatment groups, while the control group rested for six minutes. Immediately following treatment, participants performed three additional CMJs. Pre- and post-testing included measures of vertical jump height (JH), peak power (PP) and peak velocity (PV). There were no statistically significant differences found between treatment groups in JH, PP, or PV or across pre- and post-test trials. These preliminary findings suggest that standard treatment times of IASTM do not produce an immediate effect in muscular performance in healthy participants. This may help clinicians determine the optimal sequencing of IASTM when it is part of a pre-performance warm-up program. Future research should be conducted to determine the muscle performance effects of IASTM in individuals with known myofascial restriction and to determine optimal treatment parameters, such as instrument type, amount of pressure, and treatment time necessary to affect muscular performance. 1b.
Iyomasa, Mamie Mizusaki; Issa, João Paulo Mardegan; Siéssere, Selma; Regalo, Simone Cecílio Hallak; Watanabe, Ii-sei
2008-12-01
Anatomical and physiologic components are parts of the stomatognathic system and their interaction results in integrated functional activities. Important alterations in the masticatory system originated by dental loss affect the bone, oral mucosa and muscular function. Dental arch structures specifically designed to receive and expose teeth allow performance of their functions. But the distinction between bony and soft tissues is lost when teeth are removed since there is not a specific function to be completed. The aim of this study was to evaluate the macroscopic and ultrastructural effects of the unilateral extraction of molar teeth on the suprahyoid muscles function, using twenty young male gerbils (Meriones unguiculatus) as the experimental animal model. They were divided in experimental malocclusion (n=10) and control (n=10) groups. The experimental malocclusion group was submitted to exodontia of the left upper molars and the control group was not submitted to this procedure and served as sham-operated. For macroscopic analysis of the suprahyoid muscle, the skin was uplifted and the muscles dissected individually and removed for weight analysis according to Scherle method. The electron microscopy analysis was made in ultra thin sections of small suprahyoid muscle fragments from the experimental and control groups, examined in a Jeol 1010, 880 Kv transmission electron microscope. Several micrographs at magnifications of 3000x, 6000x, 30,000x were randomly selected for the qualitative analysis of the muscle fiber ultrastructures. Sixty days after the induced unilateral occlusal alteration no macroscopic morphologic changes was detected in the suprahyoid muscles and the muscle volume differences between the right and left sides and between groups were not significant. However, in the ultrastructural analysis suprahyoid muscles showed characteristics of specific adaptation to the unilateral occlusal alteration, by the reduced density of subsarcolemmal mitochondria and the shorter and less numerous ramifications in intermyofibrilar mitochondria localized between electronlucid myofibrils. It is concluded that unilateral exodontia of all the upper left molars affect the ultrastructural morphology of suprahyoid muscle fibers.
Teklemariam, A.; Hodson-Tole, E. F.; Reeves, N. D.; Costen, N. P.; Cooper, G.
2016-01-01
Introduction Surface electromyography (sEMG) is the measurement of the electrical activity of the skeletal muscle tissue detected at the skin’s surface. Typically, a bipolar electrode configuration is used. Most muscles have pennate and/or curved fibres, meaning it is not always feasible to align the bipolar electrodes along the fibres direction. Hence, there is a need to explore how different electrode designs can affect sEMG measurements. Method A three layer finite element (skin, fat, muscle) muscle model was used to explore different electrode designs. The implemented model used as source signal an experimentally recorded intramuscular EMG taken from the biceps brachii muscle of one healthy male. A wavelet based intensity analysis of the simulated sEMG signal was performed to analyze the power of the signal in the time and frequency domain. Results The model showed muscle tissue causing a bandwidth reduction (to 20-92- Hz). The inter-electrode distance (IED) and the electrode orientation relative to the fibres affected the total power but not the frequency filtering response. The effect of significant misalignment between the electrodes and the fibres (60°- 90°) could be reduced by increasing the IED (25–30 mm), which attenuates signal cancellation. When modelling pennated fibres, the muscle tissue started to act as a low pass filter. The effect of different IED seems to be enhanced in the pennated model, while the filtering response is changed considerably only when the electrodes are close to the signal termination within the model. For pennation angle greater than 20°, more than 50% of the source signal was attenuated, which can be compensated by increasing the IED to 25 mm. Conclusion Differences in tissue filtering properties, shown in our model, indicates that different electrode designs should be considered for muscle with different geometric properties (i.e. pennated muscles). PMID:26886908
Teklemariam, A; Hodson-Tole, E F; Reeves, N D; Costen, N P; Cooper, G
2016-01-01
Surface electromyography (sEMG) is the measurement of the electrical activity of the skeletal muscle tissue detected at the skin's surface. Typically, a bipolar electrode configuration is used. Most muscles have pennate and/or curved fibres, meaning it is not always feasible to align the bipolar electrodes along the fibres direction. Hence, there is a need to explore how different electrode designs can affect sEMG measurements. A three layer finite element (skin, fat, muscle) muscle model was used to explore different electrode designs. The implemented model used as source signal an experimentally recorded intramuscular EMG taken from the biceps brachii muscle of one healthy male. A wavelet based intensity analysis of the simulated sEMG signal was performed to analyze the power of the signal in the time and frequency domain. The model showed muscle tissue causing a bandwidth reduction (to 20-92- Hz). The inter-electrode distance (IED) and the electrode orientation relative to the fibres affected the total power but not the frequency filtering response. The effect of significant misalignment between the electrodes and the fibres (60°-90°) could be reduced by increasing the IED (25-30 mm), which attenuates signal cancellation. When modelling pennated fibres, the muscle tissue started to act as a low pass filter. The effect of different IED seems to be enhanced in the pennated model, while the filtering response is changed considerably only when the electrodes are close to the signal termination within the model. For pennation angle greater than 20°, more than 50% of the source signal was attenuated, which can be compensated by increasing the IED to 25 mm. Differences in tissue filtering properties, shown in our model, indicates that different electrode designs should be considered for muscle with different geometric properties (i.e. pennated muscles).
Kopeć, W; Jamroz, D; Wiliczkiewicz, A; Biazik, E; Pudlo, A; Hikawczuk, T; Skiba, T; Korzeniowska, M
2013-01-01
1. The objective of this study was to investigate how a diet containing spray-dried blood cells (SDBC) (4%) with or without zinc (Zn) would affect the concentration of two histidine heterodipeptides and the antioxidant status of broiler blood and breast muscles. 2. The study was carried out on 920 male Flex chickens randomly assigned to 4 dietary treatments: I - control, II - diet I with SDBC, III - diet I with SDBC and supplemented with Zn and IV - diet I supplemented with L-histidine. Birds were raised on floor littered with wood shavings, given free access to water and fed ad libitum. Performance indices were measured on d 1, 21 and 42. 3. The activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase was analysed in plasma, erythrocytes and muscle tissue. The total antioxidant capacity of plasma and breast muscles was measured by 2,2-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, as well as by ferric reducing antioxidant power (FRAP). Carnosine/anserine content of meat and plasma were determined using HPLC. Diets and breast muscles were analysed for amino acid profile and selected microelement content. 4. Histidine supplementation of the diet increased glutathione peroxidase activity in plasma and superoxide dismutase activity in erythrocytes. Moreover, the addition of SDBC or pure histidine in the diet increased histidine dipeptide content and activated enzymatic and non-enzymatic antioxidant systems in chicken blood and muscles. However, it led to lower growth performance indices. 5. The enrichment of broiler diets with Zn increased the antioxidant potential and the activity of superoxide dismutase in plasma, which was independent of the histidine dipeptide concentration. Zn supplementation combined with SDBC in a broiler diet led to the increase of superoxide dismutase and glutathione peroxidase activity, but it did not affect the radical-scavenging or ferric iron reduction abilities of muscles.
Gomes, Matheus M; Reis, Júlia G; Carvalho, Regiane L; Tanaka, Erika H; Hyppolito, Miguel A; Abreu, Daniela C C
2015-01-01
muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women.
Outcome of Low-Invasive Local Split-Thickness Lengthening for Iliotibial Band Friction Syndrome.
Inoue, Hiroaki; Hara, Kunio; Arai, Yuji; Nakagawa, Shuji; Kan, Hiroyuki; Hino, Manabu; Fujiwara, Hiroyoshi; Kubo, Toshikazu
2018-02-01
Conventional surgical methods for iliotibial band friction syndrome (ITBFS) may affect the iliotibial band (ITB), delaying return to sports activities or impeding performance. We have developed a minimally invasive method. This study retrospectively analyzed the outcomes of this procedure in individuals with ITBFS. This study included 34 knees of 31 individuals. Surgery involved lengthening the central part of the ITB by splitting it into a superficial and a deep layer, maintaining the anterior and posterior fibers immediately above the lateral epicondyle. Outcomes included time to resume sports activity, personal best times to run a 5000-m race before and after surgery, and 2-month post-surgery muscle strengths. The mean postoperative time to return to competition was 5.8 weeks. Personal best times of 5000-m race improved in 13 of 17 runners. Two months post-surgery, the mean extensor muscle strengths on the healthy and affected sides did not significantly differ nor did the flexor muscle strengths. In ITBFS, the ITB itself is normal. Lengthening the limited region of the ITB immediately above the lateral femoral epicondyle removes the cause of ITBFS, with a reduction in inflammation. This technique resulted in early return to competition without degrading performance. © Georg Thieme Verlag KG Stuttgart · New York.
Bdaiwi, Alya H; Mackenzie, Tanya Anne; Herrington, Lee; Horsley, Ian; Cools, Ann M
2015-07-01
Compromise to the acromiohumeral distance has been reported in participants with subacromial impingement syndrome compared with healthy participants. In clinical practice, patients with subacromial shoulder impingement are given strengthening programs targeting the lower trapezius (LT) and serratus anterior (SA) muscles to increase scapular posterior tilt and upward rotation. We are the first to use neuromuscular electrical stimulation to stimulate these muscle groups and evaluate how the muscle contraction affects the acromiohumeral distance. To investigate if electrical muscle stimulation of the LT and SA muscles, both separately and simultaneously, increases the acromiohumeral distance and to identify which muscle-group contraction or combination most influences the acromiohumeral distance. Controlled laboratory study. Human performance laboratory. Twenty participants (10 men and 10 women, age = 26.9 ± 8.0 years, body mass index = 23.8) were screened. Neuromuscular electrical stimulation of the LT and SA. Ultrasound measurement of the acromiohumeral distance. Acromiohumeral distance increased during contraction via neuromuscular electrical stimulation of the LT muscle (t(19) = -3.89, P = .004), SA muscle (t(19) = -7.67, P = .001), and combined LT and SA muscles (t(19) = -5.09, P = .001). We observed no differences in the increased acromiohumeral distance among the 3 procedures (F(2,57) = 3.109, P = .08). Our results supported the hypothesis that the muscle force couple around the scapula is important in rehabilitation and scapular control and influences acromiohumeral distance.
The Effect of the Wooden Breast Myopathy on Sarcomere Structure and Organization.
Velleman, Sandra G; Clark, Daniel L; Tonniges, Jeffrey R
2018-03-01
The wooden breast (WB) has been classically identified by the phenotypic presence of a wood-like pectoralis major (p. major) muscle. The WB-affected p. major muscle is characterized by necrotic muscle fibers and the replacement of muscle with connective tissue, water, and fat. The objective of the current study was to determine the effect of the WB myopathy on sarcomere organization by transmission electron microscopy. Sarcomere structure and organization were examined in two broiler lines with a high incidence of WB (Lines A and B) and another broiler line without WB (Line C). Affected muscle had an increase in smaller myofibers with diameters of 20 μm or less. Sarcomere organization decreased with fiber diameter in both Lines A and B. The structure and organization of sarcomeres in Line C were similar to WB-unaffected muscle in Lines A and B. Taken together, these data demonstrate that the WB myopathy detrimentally affects sarcomere organization in a broiler line-specific manner. Disorganization of sarcomere structure will affect the function of the p. major muscle as well as meat quality.
Shoulder muscle strength in paraplegics before and after kayak ergometer training.
Bjerkefors, Anna; Jansson, Anna; Thorstensson, Alf
2006-07-01
The purpose was to investigate if shoulder muscle strength in post-rehabilitated persons with spinal cord injury (SCI) was affected by kayak ergometer training and to compare shoulder strength in persons with SCI and able-bodied persons. Ten persons with SCI (7 males and 3 females, injury levels T3-T12) performed 60 min kayak ergometer training three times a week for 10 weeks with progressively increased intensity. Maximal voluntary concentric contractions were performed during six shoulder movements: flexion and extension (range of motion 65 degrees ), abduction and adduction (65 degrees ), and external and internal rotation (60 degrees ), with an angular velocity of 30 degrees s(-1). Position specific strength was assessed at three shoulder angles (at the beginning, middle and end of the range of motion) in the respective movements. Test-retests were performed for all measurements before the training and the mean intraclass correlation coefficient was 0.941 (95% CI 0.928-0.954). There was a main effect of kayak ergometer training with increased shoulder muscle strength after training in persons with SCI. The improvements were independent of shoulder movement, and occurred in the beginning and middle positions. A tendency towards lower shoulder muscle strength was observed in the SCI group compared to a matched reference group of able-bodied persons. Thus, it appears that post-rehabilitated persons with SCI have not managed to fully regain/maintain their shoulder muscle strength on a similar level as that of able-bodied persons, and are able to improve their shoulder muscle strength after a period of kayak ergometer training.
Effect of unilateral knee extensor fatigue on force and balance of the contralateral limb.
Arora, Shruti; Budden, Shawn; Byrne, Jeannette M; Behm, David G
2015-10-01
Fatigue in one limb can decrease force production in the homologous muscle as well as other muscles of the non-fatigued limb affecting balance. The objective of the study was to examine the effect of unilateral knee extensor fatigue on the non-fatigued limb's standing balance, muscle force and activation. Sixteen healthy male subjects performed pre-fatigue balance trials, warm-up exercises, maximum voluntary isometric contractions, a knee extensors fatigue protocol, and post-fatigue balance trials. The fatigue protocol consisted of sets of 15 consecutive isometric contractions of 16 s each with 4 s recovery between repetitions, which were performed at 30% peak force for the dominant knee extensor muscles. Additional sets of contractions continued until a 50% decrease in MVIC knee extensor force was observed. Pre- and post-fatigue balance assessment consisted of transition from double to single leg standing and also single leg standing trials, which were performed bilaterally and in randomized order. The peak force and F100 were significantly decreased by 44.8% (ES = 2.54) and 39.9% (ES = 0.59), respectively, for the fatigued limb post-fatigue. There were no significant changes in the non-fatigued limb's muscle force, activation, muscle onset timing or postural stability parameters. While the lack of change in non-fatigued limb force production is in agreement with some of the previous literature in this area, the lack of effect on postural measures directly contradicts earlier work. It is hypothesized that discrepancies in the duration and the intensity of the fatigue protocol may have accounted for this discrepancy.
Randolph, Matthew E; Luo, Qingwei; Ho, Justin; Vest, Katherine E; Sokoloff, Alan J; Pavlath, Grace K
2014-01-01
The inability to swallow, or dysphagia, is a debilitating and life-threatening condition that arises with ageing or disease. Dysphagia results from neurological or muscular impairment of one or more pharyngeal muscles, which function together to ensure proper swallowing and prevent the aspiration of food or liquid into the lungs. Little is known about the effects of age or disease on pharyngeal muscles as a group. Here we show ageing affected pharyngeal muscle growth and atrophy in wild-type mice depending on the particular muscle analysed. Furthermore, wild-type mice also developed dysphagia with ageing. Additionally, we studied pharyngeal muscles in a mouse model for oculopharyngeal muscular dystrophy, a dysphagic disease caused by a polyalanine expansion in the RNA binding protein, PABPN1. We examined pharyngeal muscles of mice overexpressing either wild-type A10 or mutant A17 PABPN1. Overexpression of mutant A17 PABPN1 differentially affected growth of the palatopharyngeus muscle dependent on its location within the pharynx. Interestingly, overexpression of wild-type A10 PABPN1 was protective against age-related muscle atrophy in the laryngopharynx and prevented the development of age-related dysphagia. These results demonstrate that pharyngeal muscles are differentially affected by both ageing and muscular dystrophy in a region-dependent manner. These studies lay important groundwork for understanding the molecular and cellular mechanisms that regulate pharyngeal muscle growth and atrophy, which may lead to novel therapies for individuals with dysphagia. PMID:25326455
Quadriceps oxygenation changes during walking and running on a treadmill
NASA Astrophysics Data System (ADS)
Quaresima, Valentina; Pizzi, Assunta; De Blasi, Roberto A.; Ferrari, Adriano; de Angelis, Marco; Ferrari, Marco
1995-04-01
Vastus lateralis muscle oxygenation was investigated on volunteers as well as muscular dystrophy patients during a walking test, and on volunteers during a free running by a continuous wave near infrared instrument. The data were analyzed using an oxygenation index independent on pathlength changes. Walking did not significantly affect the oxygenation of volunteers and patients. A relative deoxygenation was found only during free running indicating an unbalance between oxygen supply and tissue oxygen extraction. Preliminary measurements of exercising muscle oxygen saturation were performed by a 110 MHz frequency-domain, multisource instrument.
Sharples, Adam P; Stewart, Claire E; Seaborne, Robert A
2016-08-01
Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can 'remember' early-life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an 'epi'-memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re-encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early-life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise-induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the 'epi'-memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Lymphatic Muscle Cells in Rat Mesenteric Lymphatic Vessels of Various Ages
Bridenbaugh, Eric A.; Nizamutdinova, Irina Tsoy; Jupiter, Daniel; Nagai, Takashi; Thangaswamy, Sangeetha; Chatterjee, Victor
2013-01-01
Abstract Background Recent studies on aging-associated changes in mesenteric lymph flow in situ demonstrated predominance of the severe negative chronotropic effect of aging on the contractility of aged mesenteric lymphatic vessels (MLV). At the same time, contraction amplitude of the aged vessels was only slightly diminished by aging and can be rapidly stimulated within 5–15 minutes. However, the detailed quantitative evaluation of potential aging-associated changes in muscle cells investiture in MLV has never been performed. Methods and Results In this study we, for the first time, performed detailed evaluation of muscle cells investiture in MLV in reference to the position of lymphatic valve in different zones of lymphangion within various age groups (3-mo, 9-mo and 24-mo Fischer-344 rats). Using visual and quantitative analyses of the images of MLV immunohistochemically labeled for actin, we confirmed that the zones located close upstream (pre-valve zones) and above lymphatic valves (valve zones) possess the lowest investiture of lymphatic muscle cells. Most of the high muscle cells investiture zones exist downstream to the lymphatic valve (post-valve zones). The muscle cells investiture of these zones is not affected by aging, while pre-valve and valve zones demonstrate significant aging-associated decrease in muscle cells investiture. Conclusions The low muscle cells investiture zones in lymphatic vessels consist of predominantly longitudinally oriented muscle cells which are positioned in pre-valve and valve zones and connect adjacent lymphangions. These cells may provide important functional impact on the biomechanics of the lymphatic valve gating and electrical coupling between lymphangions, while their aging-associated changes may delimit adaptive reserves of aged lymphatic vessels. PMID:23531183
Hauerslev, Simon; Sveen, Marie L; Vissing, John; Krag, Thomas O
2013-01-01
Patients with Limb girdle muscular dystrophy type 2I (LGMD2I) are characterized by progressive muscle weakness and wasting primarily in the proximal muscles, while distal muscles often are spared. Our aim was to investigate if wasting could be caused by impaired regeneration in the proximal compared to distal muscles. Biopsies were simultaneously obtained from proximal and distal muscles of the same patients with LGMD2I (n = 4) and healthy subjects (n = 4). The level of past muscle regeneration was evaluated by counting internally nucleated fibers and determining actively regenerating fibers by using the developmental markers embryonic myosin heavy chain (eMHC) and neural cell adhesion molecule (NCAM) and also assessing satellite cell activation status by myogenin positivity. Severe muscle histopathology was occasionally observed in the proximal muscles of patients with LGMD2I whereas distal muscles were always relatively spared. No difference was found in the regeneration markers internally nucleated fibers, actively regenerating fibers or activation status of satellite cells between proximal and distal muscles. Protein turnover, both synthesis and breakdown, as well as cellular stress were highly increased in severely affected muscles compared to mildly affected muscles. Our results indicate that alterations in the protein turnover and myostatin levels could progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy.
Huang, Jinyu; Jiao, Jinzhen; Tan, Zhi-Liang; He, Zhixiong; Beauchemin, Karen A; Forster, Robert; Han, Xue-Feng; Tang, Shao-Xun; Kang, Jinghe; Zhou, Chuanshe
2016-09-14
Thirty-six Xiangdong black goats were used to investigate age-related mRNA and protein expression levels of some genes related to skeletal muscle structural proteins, MRFs and MEF2 family, and skeletal muscle fiber type and composition during skeletal muscle growth under grazing (G) and barn-fed (BF) feeding systems. Goats were slaughtered at six time points selected to reflect developmental changes of skeletal muscle during nonrumination (days 0, 7, and 14), transition (day 42), and rumination phases (days 56 and 70). It was observed that the number of type IIx in the longissimus dorsi was increased quickly while numbers of type IIa and IIb decreased slightly, indicating that these genes were coordinated during the rapid growth and development stages of skeletal muscle. No gene expression was affected (P > 0.05) by feeding system except Myf5 and Myf6. Protein expressions of MYOZ3 and MEF2C were affected (P < 0.05) by age, whereas PGC-1α was linearly decreased in the G group, and only MYOZ3 protein was affected (P < 0.001) by feeding system. Moreover, it was found that PGC-1α and MEF2C proteins may interact with each other in promoting muscle growth. The current results indicate that (1) skeletal muscle growth during days 0-70 after birth is mainly myofiber hypertrophy and differentiation, (2) weaning affects the expression of relevant genes of skeletal muscle structural proteins, skeletal muscle growth, and skeletal muscle fiber type and composition, and (3) nutrition or feeding regimen mainly influences the expression of skeletal muscle growth genes.
An update on the relationship between statins and physical activity.
Panza, Gregory A; Taylor, Beth A; Thompson, Paul D
2016-09-01
This review examined studies published within the last 16 months that investigated the relationship between statins and physical activity. These recent studies suggest that statins do not adversely affect cardiorespiratory fitness, muscle strength, athletic performance, or physical activity adherence. One recent study comparing patients with statin-associated myalgia and nonstatin-using controls did report that statins are associated with a slowing of time to peak power output, increased abdominal adiposity, and insulin resistance. Statin users also had different muscle gene expression than controls, but conclusions are limited by the design of that study. Previous reports suggest that statin-associated muscle symptoms such as myalgia, cramps, and weakness occur more frequently in physically active individuals, but the recent studies we reviewed do not provide additional support for this possibility. Well-designed clinical trials are needed to determine whether different statins or statin doses evoke statin-associated muscle symptoms or muscle damage that may reduce cardiorespiratory fitness and adherence to physical activity.
Bruno Garza, Jennifer L.; Eijckelhof, Belinda H.W.; Huysmans, Maaike A.; Catalano, Paul J.; Katz, Jeffrey N.; Johnson, Peter W.; van Dieen, Jaap H.; van der Beek, Allard J.; Dennerlein, Jack T.
2015-01-01
Background Because of reported associations of psychosocial factors and computer related musculoskeletal symptoms, we investigated the effects of a workplace psychosocial factor, reward, in the presence of over-commitment, on trapezius muscle activity and shoulder, head, neck, and torso postures during computer use. Methods We measured 120 office workers across four groups (lowest/highest reward/over-commitment), performing their own computer work at their own workstations over a 2 hour period. Results Median trapezius muscle activity (p=0.04) and median neck flexion (p=0.03) were largest for participants reporting simultaneously low reward and high over-commitment. No differences were observed for other muscle activities or postures. Conclusions These data suggest that the interaction of reward and over-commitment can affect upper extremity muscle activity and postures during computer use in the real work environment. This finding aligns with the hypothesized biomechanical pathway connecting workplace psychosocial factors and musculoskeletal symptoms of the neck and shoulder. PMID:23818000
Creatine-Kinase- and Exercise-Related Muscle Damage Implications for Muscle Performance and Recovery
Baird, Marianne F.; Graham, Scott M.; Baker, Julien S.; Bickerstaff, Gordon F.
2012-01-01
The appearance of creatine kinase (CK) in blood has been generally considered to be an indirect marker of muscle damage, particularly for diagnosis of medical conditions such as myocardial infarction, muscular dystrophy, and cerebral diseases. However, there is controversy in the literature concerning its validity in reflecting muscle damage as a consequence of level and intensity of physical exercise. Nonmodifiable factors, for example, ethnicity, age, and gender, can also affect enzyme tissue activity and subsequent CK serum levels. The extent of effect suggests that acceptable upper limits of normal CK levels may need to be reset to recognise the impact of these factors. There is a need for standardisation of protocols and stronger guidelines which would facilitate greater scientific integrity. The purpose of this paper is to examine current evidence and opinion relating to the release of CK from skeletal muscle in response to physical activity and examine if elevated concentrations are a health concern. PMID:22288008
Impact of dietary branched chain amino acids concentration on broiler chicks during aflatoxicosis.
Chen, X; Zhang, Q; Applegate, T J
2016-06-01
A 20-day trial was conducted to determine the effects of dietary branched-chain amino acids (BCAA) on performance, nutrient digestibility, and gene expression of the mTOR pathway in broiler chicks when exposed to aflatoxin B1 (AFB1). The 6 dietary treatments were arranged in a 2 × 3 factorial with 3 BCAA concentrations (1.16, 1.94, and 2.73%) with or without 1.5 mg/kg AFB1 (1.77 mg/kg analyzed). Each diet was fed to 8 replicate cages (6 chicks per cage) from 6 to 20 d of age. Exposure to AFB1 significantly reduced gain:feed ratio and breast muscle weight (P < 0.05), and tended to decrease cumulative BW gain (P = 0.087), while increasing dietary BCAA improved all performance measures (P ≤ 0.0002), except relative breast muscle weight. Apparent ileal digestibility of N and 9 amino acids were increased by AFB1 (P ≤ 0.05), but were reduced by higher dietary BCAA (P ≤ 0.023). Jejunum histology was not affected by AFB1, while higher dietary BCAA tended to increase villus height (P = 0.08). Additionally, the gene expression of mTOR pathway (mTOR, 4EBP1, and S6K1) from liver and jejunum were not affected by dietary treatments, while muscle expression of S6K1 tended to be increased by AFB1 (P = 0.07). No significant interaction between AFB1 and dietary BCAA were observed for any measures in the current study. Results from this study suggested that feed AFB1 contamination can significantly reduce growth performance and breast muscle growth in broiler chicks at 20 d. Higher BCAA supply may have beneficial impact on bird performance, but this effect is independent of AFB1 exposure. © 2016 Poultry Science Association Inc.
Jia, Yimin; Song, Haogang; Gao, Guichao; Cai, Demin; Yang, Xiaojing; Zhao, Ruqian
2015-11-25
Betaine has been widely used in animal and human nutrition to promote muscle growth and performance, yet it remains unknown whether maternal betaine supplementation during gestation affects the metabolic characteristics of neonatal skeletal muscles. In the present study, feeding sows with betaine-supplemented diets throughout gestation significantly upregulated the expression of mtDNA-encoded OXPHOS genes (p < 0.05), including COX1, COX2, and ND5, in the muscle of newborn piglets, which was associated with enhanced mitochondrial COX enzyme activity (p < 0.05). Concurrently, maternal betaine supplementation increased the plasma betaine concentration and muscle expression of methyl transfer enzymes (p < 0.05), BHMT and GNMT, in offspring piglets. Nevertheless, Dnmt3a was downregulated at the level of both mRNA and protein, which was associated with a hypomethylated mtDNA D-loop region (p < 0.05). These results suggest that maternal betaine supplementation during gestation enhances expression of mtDNA-encoded genes through D-loop DNA hypomethylation in the skeletal muscle of newborn piglets.
Metabolic Disturbance in PCOS: Clinical and Molecular Effects on Skeletal Muscle Tissue
Silva Dantas, Wagner; Gualano, Bruno; Patrocínio Rocha, Michele; Roberto Grimaldi Barcellos, Cristiano; dos Reis Vieira Yance, Viviane; Miguel Marcondes, José Antonio
2013-01-01
Polycystic ovary syndrome is a complex hormonal disorder affecting the reproductive and metabolic systems with signs and symptoms related to anovulation, infertility, menstrual irregularity and hirsutism. Skeletal muscle plays a vital role in the peripheral glucose uptake. Since PCOS is associated with defects in the activation and pancreatic dysfunction of β-cell insulin, it is important to understand the molecular mechanisms of insulin resistance in PCOS. Studies of muscle tissue in patients with PCOS reveal defects in insulin signaling. Muscle biopsies performed during euglycemic hyperinsulinemic clamp showed a significant reduction in glucose uptake, and insulin-mediated IRS-2 increased significantly in skeletal muscle. It is recognized that the etiology of insulin resistance in PCOS is likely to be as complicated as in type 2 diabetes and it has an important role in metabolic and reproductive phenotypes of this syndrome. Thus, further evidence regarding the effect of nonpharmacological approaches (e.g., physical exercise) in skeletal muscle of women with PCOS is required for a better therapeutic approach in the management of various metabolic and reproductive problems caused by this syndrome. PMID:23844380
Muscle damage produced during a simulated badminton match in competitive male players.
Abián, Pablo; Del Coso, Juan; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco; Ruiz-Vicente, Diana; Lara, Beatriz; Soriano, Lidón; Muñoz, Victor; Lorenzo-Capella, Irma; Abián-Vicén, Javier
2016-01-01
The purpose of the study was to assess the occurrence of muscle damage after a simulated badminton match and its influence on physical and haematological parameters. Sixteen competitive male badminton players participated in the study. Before and just after a 45-min simulated badminton match, maximal isometric force and badminton-specific running/movement velocity were measured to assess muscle fatigue. Blood samples were also obtained before and after the match. The badminton match did not affect maximal isometric force or badminton-specific velocity. Blood volume and plasma volume were significantly reduced during the match and consequently haematite, leucocyte, and platelet counts significantly increased. Blood myoglobin and creatine kinase concentrations increased from 26.5 ± 11.6 to 197.3 ± 70.2 µg·L(-1) and from 258.6 ± 192.2 to 466.0 ± 296.5 U·L(-1), respectively. In conclusion, a simulated badminton match modified haematological parameters of whole blood and serum blood that indicate the occurrence of muscle fibre damage. However, the level of muscle damage did not produce decreased muscle performance.
Influence on muscle oxygenation to EMG parameters at different skeletal muscle contraction
NASA Astrophysics Data System (ADS)
Zhang, Li; Song, Gaoqing
2010-02-01
The purpose of this study is to investigate the influence of muscle oxygenation on EMG parameters during isometric and incremental exercises and to observe the relationship between EMG parameters and muscle oxygenation. Twelve rowers took part in the tests. Near infrared spectrometer was utilized for measurements of muscle oxygenation on lateral quadriceps. sEMG measurement is performed for EMG parameters during isometric and incremental exercises. Results indicated that Oxy-Hb decrease significantly correlated with IEMG, E/T ratio and frequency of impulse signal during 1/3 MVC and 2/3 MVC isometric exercise, and it is also correlated with IEMG, E/T ratio and frequency of impulse signal. Increase of IEMG occurred at the time after Oxy-Hb decrease during incremental exercise and highly correlated with BLa. It is concluded that no matter how heavy the intensity is, Oxy-Hb dissociation may play an important role in affecting EMG parameters of muscle fatigue during isometric exercise. 2) EMG parameters may be influenced by Oxy-Hb dissociation and blood lactate concentration during dynamic exercise.
Influence on muscle oxygenation to EMG parameters at different skeletal muscle contraction
NASA Astrophysics Data System (ADS)
Zhang, Li; Song, Gaoqing
2009-10-01
The purpose of this study is to investigate the influence of muscle oxygenation on EMG parameters during isometric and incremental exercises and to observe the relationship between EMG parameters and muscle oxygenation. Twelve rowers took part in the tests. Near infrared spectrometer was utilized for measurements of muscle oxygenation on lateral quadriceps. sEMG measurement is performed for EMG parameters during isometric and incremental exercises. Results indicated that Oxy-Hb decrease significantly correlated with IEMG, E/T ratio and frequency of impulse signal during 1/3 MVC and 2/3 MVC isometric exercise, and it is also correlated with IEMG, E/T ratio and frequency of impulse signal. Increase of IEMG occurred at the time after Oxy-Hb decrease during incremental exercise and highly correlated with BLa. It is concluded that no matter how heavy the intensity is, Oxy-Hb dissociation may play an important role in affecting EMG parameters of muscle fatigue during isometric exercise. 2) EMG parameters may be influenced by Oxy-Hb dissociation and blood lactate concentration during dynamic exercise.
Metabolic disturbance in PCOS: clinical and molecular effects on skeletal muscle tissue.
Dantas, Wagner Silva; Gualano, Bruno; Rocha, Michele Patrocínio; Barcellos, Cristiano Roberto Grimaldi; dos Reis Vieira Yance, Viviane; Marcondes, José Antonio Miguel
2013-01-01
Polycystic ovary syndrome is a complex hormonal disorder affecting the reproductive and metabolic systems with signs and symptoms related to anovulation, infertility, menstrual irregularity and hirsutism. Skeletal muscle plays a vital role in the peripheral glucose uptake. Since PCOS is associated with defects in the activation and pancreatic dysfunction of β-cell insulin, it is important to understand the molecular mechanisms of insulin resistance in PCOS. Studies of muscle tissue in patients with PCOS reveal defects in insulin signaling. Muscle biopsies performed during euglycemic hyperinsulinemic clamp showed a significant reduction in glucose uptake, and insulin-mediated IRS-2 increased significantly in skeletal muscle. It is recognized that the etiology of insulin resistance in PCOS is likely to be as complicated as in type 2 diabetes and it has an important role in metabolic and reproductive phenotypes of this syndrome. Thus, further evidence regarding the effect of nonpharmacological approaches (e.g., physical exercise) in skeletal muscle of women with PCOS is required for a better therapeutic approach in the management of various metabolic and reproductive problems caused by this syndrome.
Cidem, Muharrem; Karacan, İlhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Özkaya, Murat; Karamehmetoğlu, Şafak Sahir
2014-01-01
Background: Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. Aims: The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. Study Design: A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Methods: Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. Results: In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by 20.8% (p=0.028) in the control group. A change in the sclerostin index was an important predictor of a change in the vibration-induced normalised Root Mean Square of the semitendinosus muscle (R2=0.7, p=0.0001). Femoral neck bone mineral density was an important predictor of muscle strength gain (R2=0.26, p=0.035). Conclusion: This study indicates that bone tissue may have an effect on vibration-induced muscle strength gain and vibration-induced reflex muscle activity. Trial registration: ClinicalTrials.gov: NCT01310348. PMID:25207162
Cidem, Muharrem; Karacan, Ilhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Ozkaya, Murat; Karamehmetoğlu, Safak Sahir
2014-03-01
Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by 20.8% (p=0.028) in the control group. A change in the sclerostin index was an important predictor of a change in the vibration-induced normalised Root Mean Square of the semitendinosus muscle (R2=0.7, p=0.0001). Femoral neck bone mineral density was an important predictor of muscle strength gain (R2=0.26, p=0.035). This study indicates that bone tissue may have an effect on vibration-induced muscle strength gain and vibration-induced reflex muscle activity. ClinicalTrials.gov: NCT01310348.
Changes in shoulder muscle size and activity following treatment for breast cancer.
Shamley, Delva R; Srinanaganathan, Ragavan; Weatherall, Rosamund; Oskrochi, Reza; Watson, Marion; Ostlere, Simon; Sugden, Elaine
2007-11-01
Morbidity of the shoulder after breast cancer is a well-known phenomenon. MRI studies have shown muscle morbidity in cervical cancer and prostate cancer. In breast cancer clinical observations and patient reports include muscle morbidity in a number of muscles acting at the shoulder. Several of these muscles lie in the field of surgery and radiotherapy. Timed interaction between muscles that stabilise the shoulder and those acting as prime movers is essential to achieve a smooth scapulohumeral rthythm during functional elevation of the arm. CROSS-SECTIONAL STUDY: Seventy-four women treated for unilateral carcinoma of the breast were included in the study. All patients filled out the Shoulder Pain and Disability Index (SPADI). EMG activity of four muscles was recorded during scaption on the affected and unaffected side. Muscle cross sectional area and signal intensity was determined from MRI scans. The association between EMG and covariates was determined using multiple linear regression techniques. Three of the 4 muscles on the affected side demonstrated significantly less EMG activity, particularly when lowering the arm. Upper trapezius demonstrated the greatest loss in activity. Decreased activity in both upper trapezius and rhomboid were significantly associated with an increase in SPADI score and increased time since surgery. Pectoralis major and minor were significantly smaller on the affected side. Muscles affected in the long term are the muscles associated with pain and disability yet are not in the direct field of surgery or radiotherapy. Primary muscle shortening and secondary loss of muscle activity may be producing a movement disorder similar to the 'Dropped Shoulder Syndrome'. Exercise programmes should aim not only for range of movement but also for posture correction and education of potential long-term effects.
Motor unit firing frequency of lower limb muscles during an incremental slide board skating test.
Piucco, Tatiane; Bini, Rodrigo; Sakaguchi, Masanori; Diefenthaeler, Fernando; Stefanyshyn, Darren
2017-11-01
This study investigated how the combination of workload and fatigue affected the frequency components of muscle activation and possible recruitment priority of motor units during skating to exhaustion. Ten male competitive speed skaters performed an incremental maximal test on a slide board. Activation of six muscles from the right leg was recorded throughout the test. A time-frequency analysis was performed to compute overall, high, and low frequency bands from the whole signal at 10, 40, 70, and 90% of total test time. Overall activation increased for all muscles throughout the test (p < 0.05 and ES > 0.80). There was an increase in low frequency (90 vs. 10%, p = 0.035, ES = 1.06) and a decrease in high frequency (90 vs. 10%, p = 0.009, ES = 1.38, and 90 vs. 40%, p = 0.025, ES = 1.12) components of gluteus maximus. Strong correlations were found between the maximal cadence and vastus lateralis, gluteus maximus and gluteus medius activation at the end of the test. In conclusion, the incremental skating test lead to an increase in activation of lower limb muscles, but only gluteus maximus was sensitive to changes in frequency components, probably caused by a pronounced fatigue.
Murphy, Kate T.; Chee, Annabel; Trieu, Jennifer; Naim, Timur; Lynch, Gordon S.
2012-01-01
SUMMARY Cancer cachexia describes the progressive skeletal muscle wasting and weakness that is associated with many cancers. It impairs quality of life and accounts for >20% of all cancer-related deaths. The main outcome that affects quality of life and mortality is loss of skeletal muscle function and so preclinical models should exhibit similar functional impairments in order to maximize translational outcomes. Mice bearing colon-26 (C-26) tumors are commonly used in cancer cachexia studies but few studies have provided comprehensive assessments of physiological and metabolic impairment, especially those factors that impact quality of life. Our aim was to characterize functional impairments in mildly and severely affected cachectic mice, and determine the suitability of these mice as a preclinical model. Metabolic abnormalities are also evident in cachectic patients and we investigated whether C-26-tumor-bearing mice had similar metabolic aberrations. Twelve-week-old CD2F1 mice received a subcutaneous injection of PBS (control) or C-26 tumor cells. After 18–20 days, assessments were made of grip strength, rotarod performance, locomotor activity, whole body metabolism, and contractile properties of tibialis anterior (TA) muscles (in situ) and diaphragm muscle strips (in vitro). Injection of C-26 cells reduced body and muscle mass, and epididymal fat mass. C-26-tumor-bearing mice exhibited lower grip strength and rotarod performance. Locomotor activity was impaired following C-26 injection, with reductions in movement distance, duration and speed compared with controls. TA muscles from C-26-tumor-bearing mice had lower maximum force (−27%) and were more susceptible to fatigue. Maximum specific (normalized) force of diaphragm muscle strips was reduced (−10%) with C-26 injection, and force during fatiguing stimulation was also lower. C-26-tumor-bearing mice had reduced carbohydrate oxidation and increased fat oxidation compared with controls. The range and consistency of functional and metabolic impairments in C-26-tumor-bearing mice confirm their suitability as a preclinical model for cancer cachexia. We recommend the use of these comprehensive functional assessments to maximize the translation of findings to more accurately identify effective treatments for cancer cachexia. PMID:22563056
Vaughan, David; Brogioli, Michael; Maier, Thomas; White, Andy; Waldron, Sarah; Rittweger, Jörn; Toigo, Marco; Wettstein, Jessica; Laczko, Endre; Flück, Martin
2016-01-01
Objective A silencer region (I-allele) within intron 16 of the gene for the regulator of vascular perfusion, angiotensin-converting enzyme (ACE), is implicated in phenotypic variation of aerobic fitness and the development of type II diabetes. We hypothesised that the reportedly lower aerobic performance in non-carriers compared to carriers of the ACE I-allele, i.e. ACE-DD vs. ACE-ID/ACE-II genotype, is associated with alterations in activity-induced glucose metabolism and capillarisation in exercise muscle. Methods Fifty-three, not-specifically trained Caucasian men carried out a one-legged bout of cycling exercise to exhaustion and/or participated in a marathon, the aim being to identify and validate genotype effects on exercise metabolism. Respiratory exchange ratio (RER), serum glucose and lipid concentration, glycogen, and metabolite content in vastus lateralis muscle based on ultra-performance lipid chromatography-mass spectrometry (UPLC-MS), were assessed before and after the cycling exercise in thirty-three participants. Serum metabolites were measured in forty subjects that completed the marathon. Genotype effects were assessed post-hoc. Results Cycling exercise reduced muscle glycogen concentration and this tended to be affected by the ACE I-allele (p = 0.09). The ACE-DD genotype showed a lower maximal RER and a selective increase in serum glucose concentration after exercise compared to ACE-ID and ACE-II genotypes (+24% vs. +2% and –3%, respectively). Major metabolites of mitochondrial metabolism (i.e. phosphoenol pyruvate, nicotinamide adenine dinucleotide phosphate, L-Aspartic acid, glutathione) were selectively affected in vastus lateralis muscle by exercise in the ACE-DD genotype. Capillary-to-fibre ratio was 24%-lower in the ACE-DD genotype. Individuals with the ACE-DD genotype demonstrated an abnormal increase in serum glucose to 7.7 mM after the marathon. Conclusion The observations imply a genetically modulated role for ACE in control of glucose import and oxidation in working skeletal muscle. ACE-DD genotypes thereby transit into a pre-diabetic state with exhaustive exercise, which relates to a lowered muscle capillarisation, and deregulation of mitochondria-associated metabolism. PMID:26982073
Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver
2016-01-01
Key points Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation–contraction coupling (ECC) of mammalian skeletal muscle remains unknown.We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca2+‐sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue.We demonstrate that CB1Rs are not connected to the inositol 1,4,5‐trisphosphate pathway either in myotubes or in adult muscle fibres.By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca2+ release and sarcoplasmic reticulum Ca2+ ATPase during ECC in a Gi/o protein‐mediated way in adult skeletal muscle fibres but not in myotubes.These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. Abstract Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R‐mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca2+‐sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5‐trisphosphate (IP3)‐mediated Ca2+ transients, nor did they alter excitation–contraction coupling. By contrast, in isolated muscle fibres of wild‐type mice, although CB1R agonists did not evoke IP3‐mediated Ca2+ transients too, they significantly reduced the amplitude of the depolarization‐evoked transients in a pertussis‐toxin sensitive manner, indicating a Gi/o protein‐dependent mechanism. Concurrently, on skeletal muscle fibres isolated from CB1R‐knockout animals, depolarization‐evoked Ca2+ transients, as well qas Ca2+ release flux via ryanodine receptors (RyRs), and the total amount of released Ca2+ was significantly greater than that from wild‐type mice. Our results show that CB1R‐mediated signalling exerts both a constitutive and an agonist‐mediated inhibition on the Ca2+ transients via RyR, regulates the activity of the sarcoplasmic reticulum Ca2+ ATPase and enhances muscle fatigability, which might decrease exercise performance, thus playing a role in myopathies, and therefore should be considered during the development of new cannabinoid drugs. PMID:27641745
Bernard, J; Beldame, J; Van Driessche, S; Brunel, H; Poirier, T; Guiffault, P; Matsoukis, J; Billuart, F
2017-11-01
Minimally invasive total hip arthroplasty (THA) is presumed to provide functional and clinical benefits, whereas in fact the literature reveals that gait and posturographic parameters following THA do not recover values found in the general population. There is a significant disturbance of postural sway in THA patients, regardless of the surgical approach, although with some differences between approaches compared to controls: the anterior and anterolateral minimally invasive approaches seem to be more disruptive of postural parameters than the posterior approach. Electromyographic (EMG) study of the hip muscles involved in surgery [gluteus maximus (GMax), gluteus medius (GMed), tensor fasciae latae (TFL), and sartorius (S)] could shed light, the relevant literature involves discordant methodologies. We developed a methodology to assess EMG activity during maximal voluntary contraction (MVC) of the GMax, GMed, TFL and sartorius muscles as a reference for normalization. A prospective study aimed to assess whether hip joint positioning and the learning curve on an MVC test affect the EMG signal during a maximal voluntary contraction. Hip positioning and the learning curve on an MVC test affect EMG signal during MVC of GMax, GMed, TFL and S. Thirty young asymptomatic subjects participated in the study. Each performed 8 hip muscle MVCs in various joint positions recorded with surface EMG sensors. Each MVC was performed 3 times in 1 week, with the same schedule every day, controlling for activity levels in the preceding 24h. EMG activity during MVC was expressed as a ratio of EMG activity during unipedal stance. Non-parametric tests were applied. Statistical analysis showed no difference according to hip position for abductors or flexors in assessing EMG signal during MVC over the 3 sessions. Hip abductors showed no difference between abduction in lateral decubitus with hip straight versus hip flexed: GMax (19.8±13.7 vs. 14.5±7.8, P=0.78), GMed (13.4±9.0 vs. 9.9±6.6, P=0.21) and TFL (69.5±61.7 vs. 65.9±51.3, P=0.50). Flexors showed no difference between hip flexion/abduction/lateral rotation performed in supine or sitting position: TFL (70.6±45.9 vs. 61.6±45.8, P=0.22) and S (101.1±67.9 vs. 72.6±44.6, P=0.21). The most effective tests to assess EMG signal during MVC were for the hip abductors: hip abduction performed in lateral decubitus (36.7% for GMax, 76.7% for GMed), and for hip flexors: hip flexion/abduction/lateral rotation performed in supine decubitus (50% for TFL, 76.7% for S). The study hypothesis was not confirmed, since hip joint positioning and the learning curve on an MVC test did not affect EMG signal during MVC of GMax, GMed, TFL and S muscles. Therefore, a single session and one specific test is enough to assess MVC in hip abductors (abduction in lateral decubitus) and flexors (hip flexion/abduction/lateral rotation in supine position). This method could be applied to assess muscle function after THA, and particularly to compare different approaches. III, case-matched study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Protein metabolism in Turner syndrome and the impact of hormone replacement therapy.
Gravholt, Claus Højbjerg; Riis, Anne Lene; Møller, Niels; Christiansen, Jens Sandahl
2007-09-01
Studies have documented an altered body composition in Turner syndrome (TS). Body fat is increased and muscle mass is decreased. Ovarian failure necessitates substitution with female hormone replacement therapy (HRT), and HRT induces favourable changes in body composition. It is unknown how HRT affects protein metabolism. To test whether alterations in body composition before and after HRT in TS are a result of altered protein metabolism. We performed a randomized crossover study with active treatment (HRT in TS and oral contraceptives in controls) or no treatment. We studied eight women (age 29.7 +/- 5.6 (mean +/- SD) years) with TS, verified by karyotype, and eight age-matched controls (age 27.3 +/- 4.9 years). All subjects underwent a 3-h study in the postabsorptive state. Protein dynamics of the whole body and of the forearm muscles were measured by an amino acid tracer dilution technique using [(15)N]phenylalanine and [(2)H(4)]tyrosine. Substrate metabolism was examined by indirect calorimetry. Energy expenditure was comparable among TS and controls, and did not change during active treatment. Whole-body phenylalanine and tyrosine fluxes were similar in the untreated situations, and did not change during active treatment. Amino acid degradation and protein synthesis were similar in all situations. Muscle protein breakdown was similar among groups, and was not affected by treatment. Muscle protein synthesis rate and forearm blood flow did not differ among groups or due to treatment. Protein metabolism in TS is comparable to controls, and is not affected by HRT.
Muscular coordination and strength training. Implications for injury rehabilitation.
Rutherford, O M
1988-03-01
Strength training is commonly used in the rehabilitation of muscles atrophied as a result of injury and/or disuse. Studies on the effects of conventional leg extension training in healthy subjects have shown the changes to be very task-specific to the training manoeuvre itself. After conventional leg extension training for the quadriceps muscle the major improvement was in weightlifting ability with only small increases in isometric strength. The maximum dynamic force and power output during sprint cycling showed no improvement. These results suggest that the major benefit of this type of training is learning to coordinate the different muscle groups involved in the training movement rather than intrinsic increases in strength of the muscle group being trained. Other studies have shown changes in strength to be specific to the length and speed at which the muscle has been trained. The implication for rehabilitation is that strength training for isolated muscle groups may not be the most effective way of increasing functional ability. As the major changes are task-specific it may be better to incorporate the training into task-related practice. This would have the advantage of strengthening the muscle groups affected whilst increasing performance in those activities which are required in daily life.
Muscle MRI of classic infantile pompe patients: Fatty substitution and edema-like changes.
Pichiecchio, Anna; Rossi, Marta; Cinnante, Claudia; Colafati, Giovanna Stefania; De Icco, Roberto; Parini, Rossella; Menni, Francesca; Furlan, Francesca; Burlina, Alberto; Sacchini, Michele; Donati, Maria Alice; Fecarotta, Simona; Casa, Roberto Della; Deodato, Federica; Taurisano, Roberta; Di Rocco, Maja
2017-06-01
The aim of this study was to evaluate the muscle MRI pattern of 9 patients (median age: 6.5 ± 2.74 years) affected by classic infantile-onset Pompe disease who were treated with enzyme replacement therapy. We performed and qualitatively scored T1-weighted (T1-w) sequences of the facial, shoulder girdle, paravertebral, and lower limb muscles and short-tau inversion recovery (STIR) sequences of the lower limbs using the Mercuri and Morrow scales, respectively. On T1-w images, mild (grade 1) or moderate (grade 2) involvement was found in the tongue in 6 of 6 patients and in the adductor magnus muscle in 6 of 9. STIR hyperintensity was detected in all areas examined and was categorized as limited to mild in 5 of 8 patients. On T1-w sequences, mild/moderate adipose substitution in the adductor magnus and tongue muscles was documented. STIR edema-like alterations of thigh and calf muscles are novel findings. Correlations with biopsy findings and clinical parameters are needed to fully understand these findings. Muscle Nerve 55: 841-848, 2017. © 2016 Wiley Periodicals, Inc.
A texture analysis method for MR images of airway dilator muscles: a feasibility study
Järnstedt, J; Sikiö, M; Viik, J; Dastidar, P; Peltomäki, T; Eskola, H
2014-01-01
Objectives: Airway dilator muscles play an important role in the analysis of breathing-related symptoms, such as obstructive sleep apnoea. Texture analysis (TA) provides a new non-invasive method for analysing airway dilator muscles. In this study, we propose a TA methodology for airway dilator muscles and prove the robustness of this method. Methods: 15 orthognathic surgery patients underwent 3-T MRI. Computerized TA was performed on 20 regions of interest (ROIs) in the patients' airway dilator muscles. 53 texture parameters were calculated for all ROIs. The robustness of the TA method was analysed by altering the locations, sizes and shapes of the ROIs. Results: Our study shows that there is significant difference in TA results as the size or shape of ROI changes. The change of location of the ROI inside the studied muscle does not affect the TA results. Conclusions: The TA method is valid for airway dilator muscles. We propose a methodology in which the number of co-occurrence parameters is reduced by using mean values from four different directions (0°, 45°, 90° and 135°) with pixel spacing of 1 pixel. PMID:24773626
Miyaguchi, Shota; Kojima, Sho; Kirimoto, Hikari; Tamaki, Hiroyuki; Onishi, Hideaki
2016-01-01
We conducted two experiments to determine how differences in muscle contraction levels, muscle contraction types, and movement duration affect degree of post-exercise depression (PED) after non-exhaustive, repetitive finger movement. Twelve healthy participants performed repetitive abduction movements of the right index finger at 2 Hz. In experiment 1, we examined the effects of muscle contraction levels at 10, 20, and 30% maximum voluntary contraction and the effects of muscle contraction types at isotonic and isometric contraction. In experiment 2, we examined the effects of movement duration at 2 and 6 min. Motor-evoked potentials (MEPs) were recorded from the right first dorsal interosseous muscle before movement tasks and 1-10 min after movement tasks. MEP amplitudes after isotonic contraction tasks were significantly smaller than those after isometric contraction tasks and decreased with increasing contraction levels, but were independent of movement duration. This study demonstrated that the degree of PED after non-exhaustive repetitive finger movement depended on muscle contraction levels and types. Thus, the degree of PED may depend on the levels of activity in the motor cortex during a movement task. This knowledge will aid in the design of rehabilitation protocols.
Rahman, M. H.; Hossain, M. M.; Rahman, S. M. E.; Amin, M. R.; Oh, Deog-Hwan
2015-01-01
This study was performed to explore the deterioration of physicochemical quality of beef hind limb during frozen storage at −20℃, affected by repeated freeze-thaw cycles. The effects of three successive freeze-thaw cycles on beef hind limb were investigated comparing with unfrozen beef muscle for 80 d by keeping at −20±1℃. The freeze-thaw cycles were subjected to three thawing methods and carried out to select the best one on the basis of deterioration of physicochemical properties of beef. As the number of repeated freeze-thaw cycles increased, drip loss decreased and water holding capacity (WHC) increased (p<0.05) till two cycles and then decreased. Cooking loss increased in cycle one and three but decreased in cycle two. Moreover, drip loss, WHC and cooking loss affected (p<0.05) by thawing methods within the cycles. However, pH value decreased (p<0.05), but peroxide value (p<0.05), free fatty acids value (p<0.05) and TBARS value increased (p<0.05) significantly as the number of repeated freeze-thaw cycles increased. Moreover, significant (p<0.05) interactive effects were found among the thawing methods and repeated cycles. As a result, freeze-thaw cycles affected the physicochemical quality of beef muscle, causing the degradation of its quality. PMID:26877637
Mechanical Properties of Respiratory Muscles
Sieck, Gary C.; Ferreira, Leonardo F.; Reid, Michael B.; Mantilla, Carlos B.
2014-01-01
Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures. PMID:24265238
Sarcolipin overexpression improves muscle energetics and reduces fatigue
Sopariwala, Danesh H.; Pant, Meghna; Shaikh, Sana A.; Goonasekera, Sanjeewa A.; Molkentin, Jeffery D.; Weisleder, Noah; Ma, Jianjie; Pan, Zui
2015-01-01
Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (SlnOE) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that SlnOE mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that SlnOE EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and SlnOE EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in SlnOE EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from SlnOE mice fatigued significantly less than WT muscles. Interestingly, SlnOE muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in SlnOE EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of SlnOE compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics. PMID:25701006
Shi, Zhan; Song, Wentao; Sun, Yuecheng; Wang, Liansheng; Shi, Baoming; Shan, Anshan; Bi, Zhongpeng
2018-01-01
The present study investigated the effects of dietary supplementation of l-arginine and chromium picolinate (CrP) in sows during gestation on muscle fibre characteristics, performance and carcass characteristics of their progeny. Sixty healthy sows were randomly divided into four groups as a 2 × 2 factorial experiment design: one group received the control diet, another received the control diet + 10 g kg -1 l-arginine, the third group received the control diet + 400 ppb CrP, and the fourth group received the control diet + 10 g kg -1 l-arginine and 400 ppb CrP. The results showed that sows fed the diet supplemented with CrP produced progeny with higher muscle fibre numbers at birth, weaning and slaughter compared to sows fed the control diet. For mean fibre areas, the same result was found at weaning. For progeny of sows fed diets supplemented with l-arginine, only higher muscle fibre numbers at slaughter was observed. Almost no differences were observed regarding average daily gains, average daily feed intake, gain-to-feed ratios, carcass and meat traits. The results of the present study indicate that dietary supplementation of l-arginine and particularly CrP in sows during gestation alters muscle fibre numbers in their offspring, although not their performance or carcass characteristics. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Zahoor, I.; Mitchell, M.A.; Hall, S.; Beard, P.M.; Gous, R.M.; De Koning, D.J.; Hocking, P.M.
2016-01-01
Abstract An experiment was conducted to test the hypothesis that muscle damage in fast-growing broiler chickens is associated with an ambient temperature that does not permit the birds to lose metabolic heat resulting in physiological heat stress and a reduction in meat quality.The experiment was performed in 4 climate chambers and was repeated in 2 trials using a total of 200 male broiler chickens. Two treatments compared the recommended temperature profile and a cool regimen. The cool regimen was defined by a theoretical model that determined the environmental temperature that would enable heat generated by the bird to be lost to the environment.There were no differences in growth rate or feed intake between the two treatments. Breast muscles from birds on the recommended temperature regimen were lighter, less red and more yellow than those from the cool temperature regimen. There were no differences in moisture loss or shear strength but stiffness was greater in breast muscle from birds housed in the cool compared to the recommended regimen.Histopathological changes in the breast muscle were similar in both treatments and were characterised by mild to severe myofibre degeneration and necrosis with regeneration, fibrosis and adipocyte infiltration. There was no difference in plasma creatine kinase activity, a measure of muscle cell damage, between the two treatments consistent with the absence of differences in muscle pathology.It was concluded that breast muscle damage in fast-growing broiler chickens was not the result of an inability to lose metabolic heat at recommended ambient temperatures. The results suggest that muscle cell damage and breast meat quality concerns in modern broiler chickens are related to genetic selection for muscle yields and that genetic selection to address breast muscle integrity in a balanced breeding programme is imperative. PMID:26670305
Zahoor, I; Mitchell, M A; Hall, S; Beard, P M; Gous, R M; De Koning, D J; Hocking, P M
2016-01-01
An experiment was conducted to test the hypothesis that muscle damage in fast-growing broiler chickens is associated with an ambient temperature that does not permit the birds to lose metabolic heat resulting in physiological heat stress and a reduction in meat quality. The experiment was performed in 4 climate chambers and was repeated in 2 trials using a total of 200 male broiler chickens. Two treatments compared the recommended temperature profile and a cool regimen. The cool regimen was defined by a theoretical model that determined the environmental temperature that would enable heat generated by the bird to be lost to the environment. There were no differences in growth rate or feed intake between the two treatments. Breast muscles from birds on the recommended temperature regimen were lighter, less red and more yellow than those from the cool temperature regimen. There were no differences in moisture loss or shear strength but stiffness was greater in breast muscle from birds housed in the cool compared to the recommended regimen. Histopathological changes in the breast muscle were similar in both treatments and were characterised by mild to severe myofibre degeneration and necrosis with regeneration, fibrosis and adipocyte infiltration. There was no difference in plasma creatine kinase activity, a measure of muscle cell damage, between the two treatments consistent with the absence of differences in muscle pathology. It was concluded that breast muscle damage in fast-growing broiler chickens was not the result of an inability to lose metabolic heat at recommended ambient temperatures. The results suggest that muscle cell damage and breast meat quality concerns in modern broiler chickens are related to genetic selection for muscle yields and that genetic selection to address breast muscle integrity in a balanced breeding programme is imperative.
The effect of oral motor activity on the athletic performance of professional golfers
Ringhof, Steffen; Hellmann, Daniel; Meier, Florian; Etz, Eike; Schindler, Hans J.; Stein, Thorsten
2015-01-01
Human motor control is based on complex sensorimotor processes. Recent research has shown that neuromuscular activity of the craniomandibular system (CMS) might affect human motor control. In particular, improvements in postural stability and muscle strength have been observed as a result of voluntary jaw clenching. Potential benefits of jaw aligning appliances on muscle strength and golf performance have also been described. These reports are highly contradictory, however, and the oral motor task performed is often unclear. The purpose of our study was, therefore, to investigate the effect of submaximum biting on golf performance via shot precision and shot length over three different distances. Participants were 14 male professional golfers – seven with sleep bruxism and seven without – randomly performing golf shots over 60m, 160m, or driving distance while either biting on an oral splint or biting on their teeth; habitual jaw position served as the control condition. Statistical analysis revealed that oral motor activity did not systematically affect golf performance in respect of shot precision or shot length for 60m, 160 m, or driving distance. These findings were reinforced by impact variables such as club head speed and ball speed, which were also not indicative of significant effects. The results thus showed that the strength improvements and stabilizing effects described previously are, apparently, not transferable to such coordination-demanding sports as golf. This could be due to the divergent motor demands associated with postural control and muscle strength on the one hand and the complex coordination of a golf swing on the other. Interestingly, subjects without sleep bruxism performed significantly better at the short distance (60 m) than those with bruxism. Because of the multifactorial etiology of parafunctional CMS activity, conclusions about the need for dental treatment to improve sports performance are, however, completely unwarranted. PMID:26082747
Motor Unit Activity during Fatiguing Isometric Muscle Contraction in Hemispheric Stroke Survivors
McManus, Lara; Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.; Lowery, Madeleine M.
2017-01-01
Enhanced muscle weakness is commonly experienced following stroke and may be accompanied by increased susceptibility to fatigue. To examine the contributions of central and peripheral factors to isometric muscle fatigue in stroke survivors, this study investigates changes in motor unit (MU) mean firing rate, and action potential duration during, and directly following, a sustained submaximal fatiguing contraction at 30% maximum voluntary contraction (MVC). A series of short contractions of the first dorsal interosseous muscle were performed pre- and post-fatigue at 20% MVC, and again following a 10-min recovery period, by 12 chronic stroke survivors. Individual MU firing times were extracted using surface EMG decomposition and used to obtain the spike-triggered average MU action potential waveforms. During the sustained fatiguing contraction, the mean rate of change in firing rate across all detected MUs was greater on the affected side (-0.02 ± 0.03 Hz/s) than on the less-affected side (-0.004 ± 0.003 Hz/s, p = 0.045). The change in firing rate immediately post-fatigue was also greater on the affected side than less-affected side (-13.5 ± 20 and 0.1 ± 19%, p = 0.04). Mean MU firing rates increased following the recovery period on the less-affected side when compared to the affected side (19.3 ± 17 and 0.5 ± 20%, respectively, p = 0.03). MU action potential duration increased post-fatigue on both sides (10.3 ± 1.2 to 11.2 ± 1.3 ms on the affected side and 9.9 ± 1.7 to 11.2 ± 1.9 ms on the less-affected side, p = 0.001 and p = 0.02, respectively), and changes in action potential duration tended to be smaller in subjects with greater impairment (p = 0.04). This study presents evidence of both central and peripheral fatigue at the MU level during isometric fatiguing contraction for the first time in stroke survivors. Together, these preliminary observations indicate that the response to an isometric fatiguing contraction differs between the affected and less-affected side post-stroke, and may suggest that central mechanisms observed here as changes in firing rate are the dominant processes leading to task failure on the affected side. PMID:29225574
Rafiq, Rachida; Prins, Hendrik J; Boersma, Wim G; Daniels, Johannes Ma; den Heijer, Martin; Lips, Paul; de Jongh, Renate T
2017-01-01
Although vitamin D is well known for its function in calcium homeostasis and bone mineralization, several studies have shown positive effects on muscle strength and physical function. In addition, vitamin D has been associated with pulmonary function and the incidence of airway infections. As vitamin D deficiency is highly prevalent in chronic obstructive pulmonary disease (COPD) patients, supplementation might have a beneficial effect in these patients. To assess the effect of vitamin D supplementation on respiratory muscle strength and physical performance in vitamin D-deficient COPD patients. Secondary outcomes are pulmonary function, handgrip strength, exacerbation rate, and quality of life. We performed a randomized, double-blind, placebo-controlled pilot trial. Participants were randomly allocated to receive 1,200 IU vitamin D3 per day (n=24) or placebo (n=26) during 6 months. Study visits were conducted at baseline, and at 3 and 6 months after randomization. During the visits, blood was collected, respiratory muscle strength was measured (maximum inspiratory and expiratory pressure), physical performance and 6-minute walking tests were performed, and handgrip strength and pulmonary function were assessed. In addition, participants kept a diary card in which they registered respiratory symptoms. At baseline, the mean (standard deviation [SD]) serum 25-hydroxyvitamin D (25(OH)D) concentration (nmol/L) was 42.3 (15.2) in the vitamin D group and 40.6 (17.0) in the placebo group. Participants with vitamin D supplementation had a larger increase in serum 25(OH)D compared to the placebo group after 6 months (mean difference (SD): +52.8 (29.8) vs +12.3 (25.1), P <0.001). Primary outcomes, respiratory muscle strength and physical performance, did not differ between the groups after 6 months. In addition, no differences were found in the 6-minute walking test results, handgrip strength, pulmonary function, exacerbation rate, or quality of life. Vitamin D supplementation did not affect (respiratory) muscle strength or physical performance in this pilot trial in vitamin D-deficient COPD patients.
Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.
2015-01-01
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMN). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30µM). Previous work showed that the paralytic mutant zebrafish known as sofa potato, exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. PMID:25668718
Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin
2017-01-01
The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities of the non-stretched agonist quadriceps or hamstring muscles. Key points The effects of dynamic stretching of the antagonist muscles on strength performance are unknown. We showed that both static and dynamic stretching of the antagonist muscle does not influence strength and EMG activities in the agonist muscles. Further research should focus on the effects of antagonist stretching using other techniques like PNF or ballistic stretching and/or different volumes of stretching. PMID:28344445
Kronert, W A; Edwards, K A; Roche, E S; Wells, L; Bernstein, S I
1991-01-01
We show that the molecular lesions in two homozygousviable mutants of the Drosophila muscle myosin heavy chain gene affect an alternative exon (exon 9a) which encodes a portion of the myosin head that is highly conserved among both cytoplasmic and muscle myosins of all organisms. In situ hybridization and Northern blotting analysis in wild-type organisms indicates that exon 9a is used in indirect flight muscles whereas both exons 9a and 9b are utilized in jump muscles. Alternative exons 9b and 9c are used in other larval and adult muscles. One of the mutations in exon 9a is a nonsense allele that greatly reduces myosin RNA stability. It prevents thick filament accumulation in indirect flight muscles and severely reduces the number of thick filaments in a subset of cells of the jump muscles. The second mutation affects the 5' splice site of exon 9a. This results in production of an aberrantly spliced transcript in indirect flight muscles, which prevents thick filament accumulation. Jump muscles of this mutant substitute exon 9b for exon 9a and consequently have normal levels of thick filaments in this muscle type. This isoform substitution does not obviously affect the ultrastructure or function of the jump muscle. Analysis of this mutant illustrates that indirect flight muscles and jump muscles utilize different mechanisms for alternative RNA splicing. Images PMID:1907912
Lomax, Mitch; Tasker, Louise; Bostanci, Ozgur
2014-08-01
The purpose of this study was to determine whether inspiratory muscle fatigue (IMF) affects the muscle activity of the latissimus dorsi and pectoralis major during maximal arms only front crawl swimming. Eight collegiate swimmers were recruited to perform 2 maximal 20-second arms only front crawl sprints in a swimming flume. Both sprints were performed on the same day, and IMF was induced 30 minutes after the first (control) sprint. Maximal inspiratory and expiratory mouth pressures (PImax and PEmax, respectively) were measured before and after each sprint. The median frequency (MDF) of the electromyographic signal burst was recorded from the latissimus dorsi and pectoralis major during each 20-second sprint along with stroke rate and breathing frequency. Median frequency was assessed in absolute units (Hz) and then referenced to the start of the control sprint for normalization. After IMF inducement, stroke rate increased from 56 ± 4 to 59 ± 5 cycles per minute, and latissimus dorsi MDF fell from 67 ± 11 Hz at the start of the sprint to 61 ± 9 Hz at the end. No change was observed in the MDF of the latissimus dorsi during the control sprint. Conversely, the MDF of the pectoralis major shifted to lower frequencies during both sprints but was unaffected by IMF. As the latter induced fatigue in the latissimus dorsi, which was not otherwise apparent during maximal arms only control sprinting, the presence of IMF affects the activity of the latissimus dorsi during front crawl sprinting.
TREATMENT OF THE SPASTICITY IN CHILDREN WITH CEREBRAL PALSY
Meholjić-Fetahović, Ajša
2007-01-01
Botulinum toxin is a natural purified protein and one of the strongest biological poisons - neurotoxin. It is produced by the bacterium Clostridium botulinum. Its medical usage started in USA in 1981 and in Europe in 1992. There are seven different immune types of the toxin: A, B, C1, D, E, F and G. Toxin types A and B are used to decrease muscular spasticity. Botulinum toxin prevents the formation of acetylcholine from cholinergic nerve tissues in muscles, which in the end irreversibly destroys neuromuscular synapses. It is called temporary local chemodenervation. It does not affect the synthesis of acetylcholine. As it affects neuromuscular bond it also affects one of the symptoms of cerebral palsy - spasticity Decreasing the spasticity of children with cerebral palsy leads to the improvement of conscious movements, muscles are less toned, passive mobility is improved, orthosis tolerance is also improved, and the child is enabled to perform easier and better motor functions such as crawling, standing and walking. Since the action of Botulinum toxin is limited to 2-6 months, new neural collaterals are formed and neuromuscular conductivity is reestablished which in the end once again develops a muscular spasm. This leads to a conclusion that botulinum toxin should again be applied into spastic muscles. It is very important for good effect of Botulinum toxin to set the goals of the therapy in advance. The goals include improvement of a function, prevention of contractions and deformities, ease of care and decrease of pain for children with cerebral palsy. After application of botulinum toxin, it is necessary to perform adequate and intensive physical treatment with regular monitoring of effects. This work shows a case of a boy with spastic form of cerebral palsy. After being habilitated using Vojta therapy and Bobath concept and the conduct of certain physical procedures, botulinum toxin is administered into his lower limbs’ muscles and kinezitherapy intensified. After the administration of botulinum toxin significant functional improvement is noted. PMID:18039197
Reduction of Movement in Neurological Diseases: Effects on Neural Stem Cells Characteristics.
Adami, Raffaella; Pagano, Jessica; Colombo, Michela; Platonova, Natalia; Recchia, Deborah; Chiaramonte, Raffaella; Bottinelli, Roberto; Canepari, Monica; Bottai, Daniele
2018-01-01
Both astronauts and patients affected by chronic movement-limiting pathologies face impairment in muscle and/or brain performance. Increased patient survival expectations and the expected longer stays in space by astronauts may result in prolonged motor deprivation and consequent pathological effects. Severe movement limitation can influence not only the motor and metabolic systems but also the nervous system, altering neurogenesis and the interaction between motoneurons and muscle cells. Little information is yet available about the effect of prolonged muscle disuse on neural stem cells characteristics. Our in vitro study aims to fill this gap by focusing on the biological and molecular properties of neural stem cells (NSCs). Our analysis shows that NSCs derived from the SVZ of HU mice had shown a reduced proliferation capability and an altered cell cycle. Furthermore, NSCs obtained from HU animals present an incomplete differentiation/maturation. The overall results support the existence of a link between reduction of exercise and muscle disuse and metabolism in the brain and thus represent valuable new information that could clarify how circumstances such as the absence of load and the lack of movement that occurs in people with some neurological diseases, may affect the properties of NSCs and contribute to the negative manifestations of these conditions.
Grazziotin Dos Santos, C; Pagnussat, Aline S; Simon, A S; Py, Rodrigo; Pinho, Alexandre Severo do; Wagner, Mário B
2014-10-20
This study aimed to investigate the electromyographic activity of cervical and trunk extensors muscles in children with cerebral palsy during two handlings according to the Bobath concept. A crossover trial involving 40 spastic diplegic children was conducted. Electromyography (EMG) was used to measure muscular activity at sitting position (SP), during shoulder internal rotation (IR) and shoulder external rotation (ER) handlings, which were performed using the elbow joint as key point of control. Muscle recordings were performed at the fourth cervical (C4) and at the tenth thoracic (T10) vertebral levels. The Gross Motor Function Classification System (GMFCS) was used to assess whether muscle activity would vary according to different levels of severity. Humeral ER handling induced an increase on EMG signal of trunk extensor muscles at the C4 (P=0.007) and T10 (P<0.001) vertebral levels. No significant effects were observed between SP and humeral IR handling at C4 level; However at T10 region, humeral IR handling induced an increase of EMG signal (P=0.019). Humeral ER resulted in an increase of EMG signal at both levels, suggesting increase of extensor muscle activation. Furthermore, the humeral ER handling caused different responses on EMG signal at T10 vertebra level, according to the GMFCS classification (P=0.017). In summary, an increase of EMG signal was observed during ER handling in both evaluated levels, suggesting an increase of muscle activation. These results indicate that humeral ER handling can be used for diplegic CP children rehabilitation to facilitate cervical and trunk extensor muscles activity in a GMFCS level-dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of changes of femoral offset on abductor and joint reaction forces in total hip arthroplasty.
Rüdiger, Hannes A; Guillemin, Maïka; Latypova, Adeliya; Terrier, Alexandre
2017-11-01
Anatomical reconstruction in total hip arthroplasty (THA) allows for physiological muscle function, good functional outcome and implant longevity. Quantitative data on the effect of a loss or gain of femoral offset (FO) are scarce. The aim of this study was to quantitatively describe the effect of FO changes on abductor moment arms, muscle and joint reactions forces. THA was virtually performed on 3D models built from preoperative CT scans of 15 patients undergoing THA. Virtual THA was performed with a perfectly anatomical reconstruction, a loss of 20% of FO (-FO), and a gain of 20% of FO (+FO). These models were combined with a generic musculoskeletal model (OpenSim) to predict moment arms, muscle and joint reaction forces during normal gait cycles. In average, with -FO reconstructions, muscle moment arms decreased, while muscle and hip forces increased significantly (p < 0.001). We observed the opposite with +FO reconstructions. Gluteus medius was more affected than gluteus minimus. -FO had more effect than +FO. A change of 20% of FO induced an average change 8% of abductor moment arms, 16% of their forces, and 6% of the joint reaction force. To our knowledge, this is the first report providing quantitative data on the effect of FO changes on muscle and joint forces during normal gait. A decrease of FO necessitates an increase of abductor muscle force to maintain normal gait, which in turn increases the joint reaction force. This effect underscores the importance of an accurate reconstruction of the femoral offset.
Gomes, Matheus M.; Reis, Júlia G.; Carvalho, Regiane L.; Tanaka, Erika H.; Hyppolito, Miguel A.; Abreu, Daniela C. C.
2015-01-01
BACKGROUND: muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. OBJECTIVES: the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. METHOD: eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. RESULTS: the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). CONCLUSION: despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women. PMID:25651132
MRI-based registration of pelvic alignment affected by altered pelvic floor muscle characteristics.
Bendová, Petra; Růzicka, Pavel; Peterová, Vera; Fricová, Martina; Springrová, Ingrid
2007-11-01
Pelvic floor muscles have potential to influence relative pelvic alignment. Side asymmetry in pelvic floor muscle tension is claimed to induce pelvic malalignment. However, its nature and amplitude are not clear. There is a need for non-invasive and reliable assessment method. An intervention experiment of unilateral pelvic floor muscle activation on healthy females was performed using image data for intra-subject comparison of normal and altered configuration of bony pelvis. Sequent magnetic resonance imaging of 14 females in supine position was performed with 1.5 T static body coil in coronal orientation. The intervention, surface functional electrostimulation, was applied to activate pelvic floor muscles on the right side. Spatial coordinates of 23 pelvic landmarks were localized in each subject and registered by specially designed magnetic resonance image data processing tool (MPT2006), where individual error calculation; data registration, analysis and 3D visualization were interfaced. The effect of intervention was large (Cohen's d=1.34). We found significant differences in quantity (P<0.01) and quality (P=0.02) of normal and induced pelvic displacements. After pelvic floor muscle activation on the right side, pelvic structures shifted most frequently to the right side in ventro-caudal direction. The right femoral head, the right innominate and the coccyx showed the largest displacements. The consequences arising from the capacity of pelvic floor muscles to displace pelvic bony structures are important to consider not only in management of malalignment syndrome but also in treatment of incontinence. The study has demonstrated benefits associated with processing of magnetic resonance image data within pelvic region with high localization and registration reliability.
Cho, Misuk
2013-01-01
[Purpose] The purpose of this study was to compare the effects of bridge exercises applying the abdominal drawing-in method and modified wall squat exercises on deep abdominal muscle thickness and lumbar stability. [Subjects] A total of 30 subjects were equally divided into an experimental group and a control group. [Methods] The experimental group completed modified wall squat exercises, and the control group performed bridge exercises. Both did so for 30 minutes three times per week over a six-week period. Both groups’ transversus abdominis (Tra), internal oblique (IO), and multifidus muscle thickness were measured using ultrasonography, while their static lumbar stability and dynamic lumbar stability were measured using a pressure biofeedback unit. [Results] A comparison of the pre-intervention and post-intervention measures of the experimental group and the control group was made; the Tra and IO thicknesses were significantly different in both groups. [Conclusion] The modified wall squat exercise and bridge exercise affected the thicknesses of the Tra and the IO muscles. While the bridge exercise requirs space and a mattress to lie on, the modified wall squat exercise can be conveniently performed anytime. PMID:24259831
Regula, J U; Jestaedt, L; Jende, F; Bartsch, A; Meinck, H-M; Weber, M-A
2016-12-01
The objective of this study was to evaluate the clinical usefulness of whole-body magnetic resonance imaging (MRI) in facio-scapulo-humeral muscular dystrophy (FSHD). In 20 patients with genetically proven FSHD1, we prospectively assessed muscular involvement and correlated the results of semi-quantitative manual muscle testing and other parameters such as disease duration, creatine kinase (CK) levels and repeat length of the D4Z4 locus with whole-body MRI. Clinical muscle testing revealed the trapezius, pectoralis and infraspinatus as the most severely affected muscles in the shoulder, and the knee flexors and gluteus medius in the hip girdle. MRI revealed the trapezius and serratus anterior muscles in the shoulder, and the hamstrings and adductor muscles in the hip girdle, as the most severely affected muscle groups. Overall, degrees of fatty degeneration on MRI scans correlated significantly with clinical weakness. Moreover, we could detect clear affection of the trunk muscles. Corresponding to earlier reports, asymmetric involvement was frequent in both clinical examination and MRI scoring. Moreover, MRI revealed inhomogeneous muscle degeneration in a considerable proportion of both, muscles and patients. Both clinical and MRI scores significantly correlated to disease duration, but not to fragment size or CK levels. Fatty degeneration in whole-body MRI correlates well to clinical muscle testing of the extremities but gives more information on deeper or trunk muscles. It shows structural changes in muscular disorders and may become an excellent tool for assessment of muscle involvement and follow-up studies.
Yoshie, Michiko; Kudo, Kazutoshi; Murakoshi, Takayuki; Ohtsuki, Tatsuyuki
2009-11-01
Music performance anxiety (MPA), or stage fright in music performance, is a serious problem for many musicians, because performance impairment accompanied by MPA can threaten their career. The present study sought to clarify on how a social-evaluative performance situation affects subjective, autonomic, and motor stress responses in pianists. Measurements of subjective state anxiety, heart rate (HR), sweat rate (SR), and electromyographic (EMG) activity of upper extremity muscles were obtained while 18 skilled pianists performed a solo piano piece(s) of their choice under stressful (competition) and non-stressful (rehearsal) conditions. Participants reported greater anxiety in the competition condition, which confirmed the effectiveness of stress manipulation. The HR and SR considerably increased from the rehearsal to competition condition reflecting the activation of sympathetic division of the autonomic nervous system. Furthermore, participants showed higher levels of the EMG magnitude of proximal muscles (biceps brachii and upper trapezius) and the co-contraction of antagonistic muscles in the forearm (extensor digitorum communis and flexor digitorum superficialis) in the competition condition. Although these responses can be interpreted as integral components of an adaptive biological system that creates a state of motor readiness in an unstable or unpredictable environment, they can adversely influence pianists by disrupting their fine motor control on stage and by increasing the risk of playing-related musculoskeletal disorders.
Chang, Chia-Yuan; Rupp, Jonathan D; Reed, Matthew P; Hughes, Richard E; Schneider, Lawrence W
2009-11-01
In a previous study, the authors reported on the development of a finite-element model of the midsize male pelvis and lower extremities with lower-extremity musculature that was validated using PMHS knee-impact response data. Knee-impact simulations with this model were performed using forces from four muscles in the lower extremities associated with two-foot bracing reported in the literature to provide preliminary estimates of the effects of lower-extremity muscle activation on knee-thigh-hip injury potential in frontal impacts. The current study addresses a major limitation of these preliminary simulations by using the AnyBody three-dimensional musculoskeletal model to estimate muscle forces produced in 35 muscles in each lower extremity during emergency one-foot braking. To check the predictions of the AnyBody Model, activation levels of twelve major muscles in the hip and lower extremities were measured using surface EMG electrodes on 12 midsize-male subjects performing simulated maximum and 50% of maximum braking in a laboratory seating buck. Comparisons between test results and the predictions of the AnyBody Model when it was used to simulate these same braking tests suggest that the AnyBody model appropriately predicts agonistic muscle activations but under predicts antagonistic muscle activations. Simulations of knee-to-knee-bolster impacts were performed by impacting the knees of the lower-extremity finite element model with and without the muscle forces predicted by the validated AnyBody Model. Results of these simulations confirm previous findings that muscle tension increases knee-impact force by increasing the effective mass of the KTH complex due to tighter coupling of muscle mass to bone. They also indicate that muscle activation preferentially couples mass distal to the hip, thereby accentuating the decrease in femur force from the knee to the hip. However, the reduction in force transmitted from the knee to the hip is offset by the increased force at the knee and by increased compressive forces at the hip due to activation of lower-extremity muscles. As a result, approximately 45% to 60% and 50% to 65% of the force applied to the knee is applied to the hip in the simulations without and with muscle tension, respectively. The simulation results suggest that lower-extremity muscle tension has little effect on the risk of hip injuries, but it increases the bending moments in the femoral shaft, thereby increasing the risk of femoral shaft fractures by 20%-40%. However, these findings may be affected by the inability of the AnyBody Model to appropriately predict antagonistic muscle forces.
Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S
2016-02-11
Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.
Do skeletal muscle properties recover following repeat onabotulinum toxin A injections?
Fortuna, Rafael; Horisberger, Monika; Vaz, Marco Aurélio; Herzog, Walter
2013-09-27
Onabotulinum toxin A (BTX-A) is a frequently used treatment modality to relax spastic muscles by preventing acetylcholine release at the motor nerve endings. Although considered safe, previous studies have shown that BTX-A injections cause muscle atrophy and deterioration in target and non-target muscles. Ideally, muscles should fully recover following BTX-A treatments, so that muscle strength and performance are not affected in the long-term. However, systematic, long-term data on the recovery of muscles exposed to BTX-A treatments are not available, thus practice guidelines on the frequency and duration of BTX-A injections, and associated recovery protocols, are based on clinical experience with little evidence-based information. Therefore, the purpose of this study was to investigate muscle recovery following a six months, monthly BTX-A injection (3.5 U/kg) protocol. Twenty seven skeletally mature NZW rabbits were divided into 5 groups: Control (n=5), zero month recovery - BTX-A+0M (n=5), one month recovery - BTX-A+1M (n=5), three months recovery - BTX-A+3M (n=5), and six months recovery - BTX-A+6M (n=7). Knee extensor strength, muscle mass and percent contractile material in injected and contralateral non-injected muscles was measured at each point of recovery. Strength and muscle mass were partially and completely recovered in injected and contralateral non-injected muscles for BTX-A+6M group animals, respectively. The percent of contractile material partially recovered in the injected, but did not recover in the contralateral non-injected muscles. We conclude from these results that neither target nor non-target muscles fully recover within six months of a BTX-A treatment protocol and that clinical studies on muscle recovery should be pursued. © 2013 Elsevier Ltd. All rights reserved.
Quantitative phosphoproteomic analysis of porcine muscle within 24 h postmortem.
Huang, Honggang; Larsen, Martin R; Palmisano, Giuseppe; Dai, Jie; Lametsch, René
2014-06-25
Protein phosphorylation can regulate most of the important processes in muscle, such as metabolism and contraction. The postmortem (PM) metabolism and rigor mortis have essential effects on meat quality. In order to identify and characterize the protein phosphorylation events involved in meat quality development, a quantitative mass spectrometry-based phosphoproteomic study was performed to analyze the porcine muscle within 24h PM using dimethyl labeling combined with the TiSH phosphopeptide enrichment strategy. In total 305 unique proteins were identified, including 160 phosphoproteins with 784 phosphorylation sites. Among these, 184 phosphorylation sites on 93 proteins had their phosphorylation levels significantly changed. The proteins involved in glucose metabolism and muscle contraction were the two largest clusters of phosphoproteins with significantly changed phosphorylation levels in muscle within 24 h PM. The high phosphorylation level of heat shock proteins (HSPs) in early PM may be an adaptive response to slaughter stress and protect muscle cell from apoptosis, as observed in the serine 84 of HSP27. This work indicated that PM muscle proteins underwent significant changes at the phosphorylation level but were relatively stable at the total protein level, suggesting that protein phosphorylation may have important roles in meat quality development through the regulation of proteins involved in glucose metabolism and muscle contraction, thereby affecting glycolysis and rigor mortis development in PM muscle. The manuscript describes the characterization of postmortem (PM) porcine muscle within 24 h postmortem from the perspective of protein phosphorylation using advanced phosphoproteomic techniques. In the study, the authors employed the dimethyl labeling combined with the TiSH phosphopeptide enrichment and LC-MS/MS strategy. This was the first high-throughput quantitative phosphoproteomic study in PM muscle of farm animals. In the work, both the proteome and phosphoproteome were analyzed, and the large number of identified peptides, phosphopeptides and phosphorylation sites can greatly enrich the current farm animal protein database. The proteins involved in glycometabolism, muscle contraction and heat shock proteins (HSPs) showed significantly changed phosphorylation levels during PM meat development. This work indicated that PM muscle proteins underwent significant changes at phosphorylation level but were relatively stable at the total protein level, suggesting that protein phosphorylation may have important roles in meat development through the regulation of proteins involved in metabolism and muscle contraction, thereby affecting glycolysis and rigor mortis development in PM muscle. The work can promote the understanding of PM muscle metabolism and meat quality development, and be helpful for future meat quality control. Copyright © 2014 Elsevier B.V. All rights reserved.
Dalager, Tina; Bredahl, Thomas G V; Pedersen, Mogens T; Boyle, Eleanor; Andersen, Lars L; Sjøgaard, Gisela
2015-10-01
The aim was to determine the effect of one weekly hour of specific strength training within working hours, performed with the same total training volume but with different training frequencies and durations, or with different levels of supervision, on compliance, muscle health and performance, behavior and work performance. In total, 573 office workers were cluster-randomized to: 1 WS: one 60-min supervised session/week, 3 WS: three 20-min supervised sessions/week, 9 WS: nine 7-min supervised sessions/week, 3 MS: three 20-min sessions/week with minimal supervision, or REF: a reference group without training. Outcomes were diary-based compliance, total training volume, muscle performance and questionnaire-based health, behavior and work performance. Comparisons were made among the WS training groups and between 3 WS and 3 MS. If no difference, training groups were collapsed (TG) and compared with REF. Results demonstrated similar degrees of compliance, mean(range) of 39(33-44)%, and total training volume, 13.266(11.977-15.096)kg. Musculoskeletal pain in neck and shoulders were reduced with approx. 50% in TG, which was significant compared with REF. Only the training groups improved significantly their muscle strength 8(4-13)% and endurance 27(12-37)%, both being significant compared with REF. No change in workability, productivity or self-rated health was demonstrated. Secondary analysis showed exercise self-efficacy to be a significant predictor of compliance. Regardless of training schedule and supervision, similar degrees of compliance were shown together with reduced musculoskeletal pain and improved muscle performance. These findings provide evidence that a great degree of flexibility is legitimate for companies in planning future implementation of physical exercise programs at the workplace. ClinicalTrials.gov, number NCT01027390. Copyright © 2015 Elsevier Ltd. All rights reserved.
Raouf, Joan; Idborg, Helena; Englund, Petter; Alexanderson, Helene; Dastmalchi, Maryam; Jakobsson, Per-Johan; Lundberg, Ingrid E; Korotkova, Marina
2018-05-02
Polymyositis (PM) and dermatomyositis (DM) are severe chronic autoimmune diseases, characterized by muscle fatigue and low muscle endurance. Conventional treatment includes high doses of glucocorticoids and immunosuppressive drugs; however, few patients recover full muscle function. One explanation of the persistent muscle weakness could be altered lipid metabolism in PM/DM muscle tissue as we previously reported. Using a targeted lipidomic approach we aimed to characterize serum lipid profiles in patients with PM/DM compared to healthy individuals (HI) in a cross-sectional study. Also, in the longitudinal study we compared serum lipid profiles in patients newly diagnosed with PM/DM before and after immunosuppressive treatment. Lipidomic profiles were analyzed in serum samples from 13 patients with PM/DM, 12 HI and 8 patients newly diagnosed with PM/DM before and after conventional immunosuppressive treatment using liquid chromatography tandem mass spectrometry (LC-MS/MS) and a gas-chromatography flame ionization detector (GC-FID). Functional Index (FI), as a test of muscle performance and serum levels of creatine kinase (s-CK) as a proxy for disease activity were analyzed. The fatty acid (FA) composition of total serum lipids was altered in patients with PM/DM compared to HI; the levels of palmitic (16:0) acid were significantly higher while the levels of arachidonic (20:4, n-6) acid were significantly lower in patients with PM/DM. The profiles of serum phosphatidylcholine and triacylglycerol species were changed in patients with PM/DM compared to HI, suggesting disproportionate levels of saturated and polyunsaturated FAs that might have negative effects on muscle performance. After immunosuppressive treatment the total serum lipid levels of eicosadienoic (20:2, n-6) and eicosapentaenoic (20:5, n-3) acids were increased and serum phospholipid profiles were altered in patients with PM/DM. The correlation between FI or s-CK and levels of several lipid species indicate the important role of lipid changes in muscle performance and inflammation. Serum lipids profiles are significantly altered in patients with PM/DM compared to HI. Moreover, immunosuppressive treatment in patients newly diagnosed with PM/DM significantly affected serum lipid profiles. These findings provide new evidence of the dysregulated lipid metabolism in patients with PM/DM that could possibly contribute to low muscle performance.
10-20-30 training increases performance and lowers blood pressure and VEGF in runners.
Gliemann, Lasse; Gunnarsson, Thomas P; Hellsten, Ylva; Bangsbo, Jens
2015-10-01
The present study examined the effect of training by the 10-20-30 concept on performance, blood pressure (BP), and skeletal muscle angiogenesis as well as the feasibility of completing high-intensity interval training in local running communities. One hundred sixty recreational runners were divided into either a control group (CON; n = 28), or a 10-20-30 training group (10-20-30; n = 132) replacing two of three weekly training sessions with 10-20-30 training for 8 weeks and performance of a 5-km run (5-K) and BP was measured. VO2max was measured and resting muscle biopsies were taken in a subgroup of runners (n = 18). 10-20-30 improved 5-K time (38 s) and lowered systolic BP (2 ± 1 mmHg). For hypertensive subjects in 10-20-30 (n = 30), systolic and diastolic BP was lowered by 5 ± 4 and 3 ± 2 mmHg, respectively, which was a greater reduction than in the non-hypertensive subjects (n = 102). 10-20-30 increased VO2max but did not influence muscle fiber area, distribution or capillarization, whereas the expression of the pro-angiogenic vascular endothelial growth factor (VEGF) was lowered by 22%. No changes were observed in CON. These results suggest that 10-20-30 training is an effective and easily implemented training intervention improving endurance performance, VO2max and lowering BP in recreational runners, but does not affect muscle morphology and reduces muscle VEGF. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Walking performance and muscle strength in the later stage poststroke: a nonlinear relationship.
Carvalho, Cristiane; Sunnerhagen, Katharina S; Willén, Carin
2013-05-01
To evaluate the relation between muscle strength in the lower extremities and walking performance (speed and distance) in subjects in the later stage poststroke and to compare this with normative data. A cross-sectional observational study. University hospital department. Subjects poststroke (n=41; 31 men, 10 women) with a mean age of 59±5.8 years and a time from stroke onset of 52±36 months were evaluated. An urban sample (n=144) of 40- to 79-year-olds (69 men, 75 women) formed the healthy reference group. Not applicable. Muscle strength in the lower extremities was measured with an isokinetic dynamometer and combined into a strength index. Values for the 30-meter walk test for self-selected and maximum speed and the 6-minute walk test were measured. A nonlinear regression model was used. The average strength index was 730±309 in the subjects after stroke compared with 1112±362 in the healthy group. A nonlinear relation between walking performance and muscle strength was evident. The model explained 37% of the variance in self-selected speed in the stroke group and 20% in the healthy group, and 63% and 38%, respectively, in the maximum walking speed. For the 6-minute walk test, the model explained 44% of the variance in the stroke group. Subjects in the later stage poststroke were weaker than the healthy reference group, and their weakness was associated with walking performance. At the same strength index, subjects walked at lower speeds and shorter distances after stroke, indicating that there are multiple impairments that affect walking ability. Treatments focused on increasing muscle strength thus continue to hold promise. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
van den Engel-Hoek, Lenie; Erasmus, Corrie E; Hendriks, Jan C M; Geurts, Alexander C H; Klein, Willemijn M; Pillen, Sigrid; Sie, Lilian T; de Swart, Bert J M; de Groot, Imelda J M
2013-05-01
Dysphagia is reported in advanced stages of Duchenne muscular dystrophy (DMD). The population of DMD is changing due to an increasing survival. We aimed to describe the dysphagia in consecutive stages and to assess the underlying mechanisms of dysphagia in DMD, in order to develop mechanism based recommendations for safe swallowing. In this cross-sectional study, participants were divided into: early and late ambulatory stage (AS, n = 6), early non-ambulatory stage (ENAS, n = 7), and late non-ambulatory stage (LNAS, n = 11). Quantitative oral muscle ultrasound was performed to quantify echo intensity. Swallowing was assessed with a video fluoroscopic swallow study, surface electromyography (sEMG) of the submental muscle group and tongue pressure. Differences in outcome parameters among the three DMD stages were tested with analysis of variance. Oral muscles related to swallowing were progressively affected, starting in the AS with the geniohyoid muscle. Tongue (pseudo) hypertrophy was found in 70 % of patients in the ENAS and LNAS. Oral phase problems and post-swallow residue were observed, mostly in the LNAS with solid food. sEMG and tongue pressure data of swallowing solid food revealed the lowest sEMG amplitude, the longest duration and lowest tongue pressure in the LNAS. In case of swallowing problems in DMD, based on the disturbed mechanisms of swallowing, it is suggested to (1) adjust meals in terms of less solid food, and (2) drink water after meals to clear the oropharyngeal area.
Nosaka, K; Sakamoto, K
1999-11-01
The purpose of this study was to examine the time course of changes in plasma creatine kinase (CK), lactate dehydrogenase (LDH), aspartate (AST) and alanine aminotransferase (ALT) activity after intramuscular injection of 0.5% bupivacaine (BPVC). A total of 10 mL BPVC was injected into the biceps brachii (two sites, 5 mL per site) of five healthy, male subjects. Blood samples were obtained from the antecubital vein before and 2, 4, 8, 12, 24, 48, 72 and 96 h after the injection. Affected muscle size was visualized using magnetic resonance imaging (MRI), which was performed 4 days after the injection. Plasma CK activity started to increase 2 h and peaked 12 h after the injection. The peak CK activity (470 +/- 62 IU L-1) was approximately four times the pre-injection value (133 +/- 24 IU L-1), and no additional increase was observed after 24 h. Plasma LDH, AST and ALT activities did not change significantly over time. Muscle around the injection sites showed increased T2 signal intensity using MRI. When smaller (2 mL) or larger (20 mL) amounts of BPVC were injected into the biceps brachii in additional experiments, the amount of increase in plasma CK activity appeared to be related to the size of the affected muscle. It was concluded that CK started to leak from damaged muscle cells shortly after the BPVC injection, and the amount of increase in plasma CK activity appeared to reflect the amount of muscle damage.
Control of thumb force using surface functional electrical stimulation and muscle load sharing
2013-01-01
Background Stroke survivors often have difficulties in manipulating objects with their affected hand. Thumb control plays an important role in object manipulation. Surface functional electrical stimulation (FES) can assist movement. We aim to control the 2D thumb force by predicting the sum of individual muscle forces, described by a sigmoidal muscle recruitment curve and a single force direction. Methods Five able bodied subjects and five stroke subjects were strapped in a custom built setup. The forces perpendicular to the thumb in response to FES applied to three thumb muscles were measured. We evaluated the feasibility of using recruitment curve based force vector maps in predicting output forces. In addition, we developed a closed loop force controller. Load sharing between the three muscles was used to solve the redundancy problem having three actuators to control forces in two dimensions. The thumb force was controlled towards target forces of 0.5 N and 1.0 N in multiple directions within the individual’s thumb work space. Hereby, the possibilities to use these force vector maps and the load sharing approach in feed forward and feedback force control were explored. Results The force vector prediction of the obtained model had small RMS errors with respect to the actual measured force vectors (0.22±0.17 N for the healthy subjects; 0.17±0.13 N for the stroke subjects). The stroke subjects showed a limited work range due to limited force production of the individual muscles. Performance of feed forward control without feedback, was better in healthy subjects than in stroke subjects. However, when feedback control was added performances were similar between the two groups. Feedback force control lead, especially for the stroke subjects, to a reduction in stationary errors, which improved performance. Conclusions Thumb muscle responses to FES can be described by a single force direction and a sigmoidal recruitment curve. Force in desired direction can be generated through load sharing among redundant muscles. The force vector maps are subject specific and also suitable in feedforward and feedback control taking the individual’s available workspace into account. With feedback, more accurate control of muscle force can be achieved. PMID:24103414
Morosetti, Roberta; Mirabella, Massimiliano; Gliubizzi, Carla; Broccolini, Aldobrando; Sancricca, Cristina; Pescatori, Mario; Gidaro, Teresa; Tasca, Giorgio; Frusciante, Roberto; Tonali, Pietro Attilio; Cossu, Giulio; Ricci, Enzo
2007-12-01
Facioscapulohumeral muscular dystrophy (FSHD) is the third most frequent inherited muscle disease. Because in FSHD patients the coexistence of affected and unaffected muscles is common, myoblasts expanded from unaffected FSHD muscles have been proposed as suitable tools for autologous cell transplantation. Mesoangioblasts are a new class of adult stem cells of mesodermal origin, potentially useful for the treatment of primitive myopathies of different etiology. Here, we report the isolation and characterization of mesoangioblasts from FSHD muscle biopsies and describe morphology, proliferation, and differentiation abilities of both mesoangioblasts and myoblasts derived from various affected and unaffected muscles of nine representative FSHD patients. We demonstrate that mesoangioblasts can be efficiently isolated from FSHD muscle biopsies and expanded to an amount of cells necessary to transplant into an adult patient. Proliferating mesoangioblasts from all muscles examined did not differ from controls in terms of morphology, phenotype, proliferation rate, or clonogenicity. However, their differentiation ability into skeletal muscle was variably impaired, and this defect correlated with the overall disease severity and the degree of histopathologic abnormalities of the muscle of origin. A remarkable differentiation defect was observed in mesoangioblasts from all mildly to severely affected FSHD muscles, whereas mesoangioblasts from morphologically normal muscles showed no myogenic differentiation block. Our study could open the way to cell therapy for FSHD patients to limit muscle damage in vivo through the use of autologous mesoangioblasts capable of reaching damaged muscles and engrafting into them, without requiring immune suppression or genetic correction in vitro. Disclosure of potential conflicts of interest is found at the end of this article.
Chanjula, Pin; Petcharat, Vasun; Cherdthong, Anusorn
2017-01-01
Objective This experiment was conducted to investigate the effects of fungal treated oil palm fronds (FTOPF) on performance, carcass traits, meat quality, and muscle chemical composition. Methods Eighteen growing crossbred male goats (Thai Native×Anglo Nubian) with 18.7±2.0 kg of initial body weight (BW) were stratified and blocked by BW in a randomized complete block design. Three diets containing 30% of oil palm fronds (OPF) either untreated (UOPF) or treated with Lentinussajor-caju (FTOPF) with or without urea (FTOPFU) were used as roughage sources in total mixed rations (TMRs). The diets were offered ad libitum and weight gain was determined. At the end of the experimental period, the harvest data and carcass characteristics of the goats were recorded, and muscular longissimus dorsi composition was determined. Results No significant effect of fungal treated (FT) inclusion was observed in any of the feed intake, growth performance, and carcass characteristics. Likewise, no apparent effects on carcass composition and muscle chemical composition were detected in this study, except for hind leg and chump were affected (p<0.05) by FT inclusion. Conclusion In conclusion, feeding of fungal (Lentinussajor-caju) treated oil palm frond in TMR diet did not affect performance and carcass characteristics in finishing goats. PMID:28446002
Chanjula, Pin; Petcharat, Vasun; Cherdthong, Anusorn
2017-06-01
This experiment was conducted to investigate the effects of fungal treated oil palm fronds (FTOPF) on performance, carcass traits, meat quality, and muscle chemical composition. Eighteen growing crossbred male goats (Thai Native×Anglo Nubian) with 18.7±2.0 kg of initial body weight (BW) were stratified and blocked by BW in a randomized complete block design. Three diets containing 30% of oil palm fronds (OPF) either untreated (UOPF) or treated with Lentinussajor-caju (FTOPF) with or without urea (FTOPFU) were used as roughage sources in total mixed rations (TMRs). The diets were offered ad libitum and weight gain was determined. At the end of the experimental period, the harvest data and carcass characteristics of the goats were recorded, and muscular longissimus dorsi composition was determined. No significant effect of fungal treated (FT) inclusion was observed in any of the feed intake, growth performance, and carcass characteristics. Likewise, no apparent effects on carcass composition and muscle chemical composition were detected in this study, except for hind leg and chump were affected (p<0.05) by FT inclusion. In conclusion, feeding of fungal ( Lentinussajor-caju ) treated oil palm frond in TMR diet did not affect performance and carcass characteristics in finishing goats.
Lower limb muscle impairment in myotonic dystrophy type 1: the need for better guidelines.
Petitclerc, Émilie; Hébert, Luc J; Desrosiers, Johanne; Gagnon, Cynthia
2015-04-01
In myotonic dystrophy type 1 (DM1), leg muscle weakness is a major impairment. There are challenges to obtaining a clear portrait of muscle strength impairment. A systematic literature review was conducted on lower limb strength impairment in late-onset and adult phenotypes to document variables which affect strength measurement. Thirty-two articles were reviewed using the COSMIN guidelines. Only a third of the studies described a reproducible protocol. Only 2 muscle groups have documented reliability for quantitative muscle testing and only 1 total score for manual muscle testing. Variables affecting muscle strength impairment are not described in most studies. This review illustrates the variability in muscle strength assessment in relation to DM1 characteristics and the questionable validity of the results with regard to undocumented methodological properties. There is therefore a clear need to adopt a consensus on the use of a standardized muscle strength assessment protocol. © 2015 Wiley Periodicals, Inc.
Muscle-Bone Interactions in Pediatric Bone Diseases.
Veilleux, Louis-Nicolas; Rauch, Frank
2017-10-01
Here, we review the skeletal effects of pediatric muscle disorders as well as muscle impairment in pediatric bone disorders. When starting in utero, muscle disorders can lead to congenital multiple contractures. Pediatric-onset muscle weakness such as cerebral palsy, Duchenne muscular dystrophy, spinal muscular atrophy, or spina bifida typically are associated with small diameter of long-bone shafts, low density of metaphyseal bone, and increased fracture incidence in the lower extremities, in particular, the distal femur. Primary bone diseases can affect muscles through generic mechanisms, such as decreased physical activity or in disease-specific ways. For example, the collagen defect underlying the bone fragility of osteogenesis imperfecta may also affect muscle force generation or transmission. Transforming growth factor beta released from bone in Camurati Engelman disease may decrease muscle function. Considering muscle-bone interactions does not only contribute to the understanding of musculoskeletal disorders but also can identify new targets for therapeutic interventions.
Evaluating the influence of massage on leg strength, swelling, and pain following a half-marathon.
Dawson, Lance G; Dawson, Kimberley A; Tiidus, Peter M
2004-11-01
Massage therapy is commonly used following endurance running races with the expectation that it will enhance post-run recovery of muscle function and reduce soreness. A limited number of studies have reported little or no influence of massage therapy on post-exercise muscle recovery. However, no studies have been conducted in a field setting to assess the potential for massage to influence muscle recovery following an actual endurance running race. To evaluate the potential for repeated massage therapy interventions to influence recovery of quadriceps and hamstring muscle soreness, recovery of quadriceps and hamstring muscle strength and reduction of upper leg muscle swelling over a two week recovery period following an actual road running race. Twelve adult recreational runners (8 male, 4 female) completed a half marathon (21.1 km) road race. On days 1,4, 8, and 11 post-race, subjects received 30 minutes of standardized massage therapy performed by a registered massage therapist on a randomly assigned massage treatment leg, while the other (control) leg received no massage treatment. Two days prior to the race (baseline) and preceding the treatments on post-race days 1, 4, 8, and 11 the following measures were conducted on each of the massage and control legs: strength of quadriceps and hamstring muscles, leg swelling, and soreness perception. At day 1, post-race quadriceps peak torque was significantly reduced (p < 0.05), and soreness and leg circumference significantly elevated (p < 0.05) relative to pre-race values with no difference between legs. This suggested that exercise-induced muscle disruption did occur. Comparing the rate of return to baseline measures between the massaged and control legs, revealed no significant differences (p > 0.05). All measures had returned to baseline at day 11. Massage did not affect the recovery of muscles in terms of physiological measures of strength, swelling, or soreness. However, questionnaires revealed that 7 of the 12 participants perceived that the massaged leg felt better upon recovery. Key PointsMassage does not appear to affect physiological indices of muscle recovery post exercise.Massage does appear to positively influence perceptions of recovery.More research needs to be completed on the purported benefits of massage.
Leal Junior, Ernesto Cesar Pinto; Lopes-Martins, Rodrigo Alvaro Brandão; Frigo, Lucio; De Marchi, Thiago; Rossi, Rafael Paolo; de Godoi, Vanessa; Tomazoni, Shaiane Silva; Silva, Daniela Perin; Basso, Maira; Filho, Pedro Lotti; de Valls Corsetti, Francisco; Iversen, Vegard V; Bjordal, Jan Magnus
2010-08-01
Randomized crossover double-blinded placebo-controlled trial. To investigate if low-level laser therapy (LLLT) can affect biceps muscle performance, fatigue development, and biochemical markers of postexercise recovery. Cell and animal studies have suggested that LLLT can reduce oxidative stress and inflammatory responses in muscle tissue. But it remains uncertain whether these findings can translate into humans in sport and exercise situations. Nine healthy male volleyball players participated in the study. They received either active LLLT (cluster probe with 5 laser diodes; lambda = 810 nm; 200 mW power output; 30 seconds of irradiation, applied in 2 locations over the biceps of the nondominant arm; 60 J of total energy) or placebo LLLT using an identical cluster probe. The intervention or placebo were applied 3 minutes before the performance of exercise. All subjects performed voluntary elbow flexion repetitions with a workload of 75% of their maximal voluntary contraction force until exhaustion. Active LLLT increased the number of repetitions by 14.5% (mean +/- SD, 39.6 +/- 4.3 versus 34.6 +/- 5.6; P = .037) and the elapsed time before exhaustion by 8.0% (P = .034), when compared to the placebo treatment. The biochemical markers also indicated that recovery may be positively affected by LLLT, as indicated by postexercise blood lactate levels (P<.01), creatine kinase activity (P = .017), and C-reactive protein levels (P = .047), showing a faster recovery with LLLT application prior to the exercise. We conclude that pre-exercise irradiation of the biceps with an LLLT dose of 6 J per application location, applied in 2 locations, increased endurance for repeated elbow flexion against resistance and decreased postexercise levels of blood lactate, creatine kinase, and C-reactiveprotein. Performance enhancement, level 1b.
Nerve injury affects the capillary supply in rat slow and fast muscles differently.
Cebasek, Vita; Radochová, Barbora; Ribaric, Samo; Kubínová, Lucie; Erzen, Ida
2006-02-01
The goal of this study was to determine the acute effects of permanent denervation on the length density of the capillary network in rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles and the effect of short-lasting reinnervation in slow muscle only. Denervation was performed by cutting the sciatic nerve. Both muscles were excised 2 weeks later. Reinnervation was studied 4 weeks after nerve crush in SOL muscle only. Capillaries and muscle fibres were visualised by triple immunofluorescent staining with antibodies against CD31 and laminin and with fluorescein-labelled Griffonia (Bandeira) simplicifolia lectin. A recently developed stereological approach allowing the estimation of the length of capillaries adjacent to each individual fibre (Lcap/Lfib) was employed. Three-dimensional virtual test grids were applied to stacks of optical images captured with a confocal microscope and their intersections with capillaries and muscle fibres were counted. Interrelationships among capillaries and muscle fibres were demonstrated with maximum intensity projection of the acquired stacks of optical images. The course of capillaries in EDL seemed to be parallel to the fibre axes, whereas in SOL, their preferential direction deviated from the fibre axes and formed more cross-connections among neighbouring capillaries. Lcap/Lfib was clearly reduced in denervated SOL but remained unchanged in EDL, although the muscle fibres significantly atrophied in both muscle types. When soleus muscle was reinnervated, capillary length per unit fibre length was completely restored. The physiological background for the different responses of the capillary network in slow and fast muscle is discussed.
Cabrera, Daniel; Gutiérrez, Jaime; Cabello-Verrugio, Claudio; Morales, Maria Gabriela; Mezzano, Sergio; Fadic, Ricardo; Casar, Juan Carlos; Hancke, Juan L; Brandan, Enrique
2014-01-01
Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-β) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy. mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-β signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice. mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-β signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells. These results suggest that andrographolide could be used to improve quality of life in individuals with DMD.
van Loon, Luc J C; Murphy, Robyn; Oosterlaar, Audrey M; Cameron-Smith, David; Hargreaves, Mark; Wagenmakers, Anton J M; Snow, Rodney
2004-01-01
It has been speculated that creatine supplementation affects muscle glucose metabolism in humans by increasing muscle glycogen storage and up-regulating GLUT-4 protein expression. In the present study, we assessed the effects of creatine loading and prolonged supplementation on muscle glycogen storage and GLUT-4 mRNA and protein content in humans. A total of 20 subjects participated in a 6-week supplementation period during which creatine or a placebo was ingested. Muscle biopsies were taken before and after 5 days of creatine loading (20 g.day(-1)) and after 6 weeks of continued supplementation (2 g.day(-1)). Fasting plasma insulin concentrations, muscle creatine, glycogen and GLUT-4 protein content as well as GLUT-4, glycogen synthase-1 (GS-1) and glycogenin-1 (Gln-1) mRNA expression were determined. Creatine loading significantly increased total creatine, free creatine and creatine phosphate content with a concomitant 18 +/- 5% increase in muscle glycogen content (P<0.05). The subsequent use of a 2 g.day(-1) maintenance dose for 37 days did not maintain total creatine, creatine phosphate and glycogen content at the elevated levels. The initial increase in muscle glycogen accumulation could not be explained by an increase in fasting plasma insulin concentration, muscle GLUT-4 mRNA and/or protein content. In addition, neither muscle GS-1 nor Gln-1 mRNA expression was affected. We conclude that creatine ingestion itself stimulates muscle glycogen storage, but does not affect muscle GLUT-4 expression.
... by episodes in which the affected muscles become slack, weak, and unable to contract. Between attacks, the ... by episodes in which the affected muscles become slack, weak, and unable to contract. Between attacks, the ...
Effect of Fatigue Upon Performance and Electromyographic Activity in 6-RM Bench Press
van den Tillaar, Roland; Saeterbakken, Atle
2014-01-01
The aim of this study was to examine the effect of fatigue during one set of 6-RM bench pressing upon the muscle patterning and performance. Fourteen resistance-trained males (age 22.5±2.0 years, stature 1.82±0.07 m, body mass 82.0±7.8 kg) conducted a 6-RM bench press protocol. Barbell kinematics and EMG activity of pectoralis major, deltoid anterior, biceps brachii, triceps brachii, rectus abdominis, oblique external and erector spinae were measured in each repetition during the 6-RM bench press. Total lifting time increased and the velocity in the ascending movement decreased (p≤0.001). However, the kinematics in the descending phase deferred: the time decreased and velocity increased during the 6-RM (p≤0.001). Generally, muscles increased their EMG amplitude during the six repetitions in the ascending movement, while only three of the seven measured muscles showed an increase over the six repetitions in the descending part in 6-RM bench pressing. It was concluded that the bench pressing performance decreased (lower barbell velocities and longer lifting times) with increasing fatigue in the 6-RM execution. Furthermore EMG increased in the prime movers and the trunk stabilizers (abdominal and spine), while the antagonist muscle (biceps) activity was not affected by fatigue during the lifting phase in a single set of 6-RM bench pressing PMID:25031673
Effect of Fatigue Upon Performance and Electromyographic Activity in 6-RM Bench Press.
van den Tillaar, Roland; Saeterbakken, Atle
2014-03-27
The aim of this study was to examine the effect of fatigue during one set of 6-RM bench pressing upon the muscle patterning and performance. Fourteen resistance-trained males (age 22.5±2.0 years, stature 1.82±0.07 m, body mass 82.0±7.8 kg) conducted a 6-RM bench press protocol. Barbell kinematics and EMG activity of pectoralis major, deltoid anterior, biceps brachii, triceps brachii, rectus abdominis, oblique external and erector spinae were measured in each repetition during the 6-RM bench press. Total lifting time increased and the velocity in the ascending movement decreased (p≤0.001). However, the kinematics in the descending phase deferred: the time decreased and velocity increased during the 6-RM (p≤0.001). Generally, muscles increased their EMG amplitude during the six repetitions in the ascending movement, while only three of the seven measured muscles showed an increase over the six repetitions in the descending part in 6-RM bench pressing. It was concluded that the bench pressing performance decreased (lower barbell velocities and longer lifting times) with increasing fatigue in the 6-RM execution. Furthermore EMG increased in the prime movers and the trunk stabilizers (abdominal and spine), while the antagonist muscle (biceps) activity was not affected by fatigue during the lifting phase in a single set of 6-RM bench pressing.
Associations between muscle structure and contractile performance in seniors.
Randhawa, Avleen; Wakeling, James M
2013-07-01
Changes in muscle structure due to aging occur in a process known as sarcopenia. These changes can alter muscle mechanics during contraction that may limit mobility in seniors. The purpose of this study was to investigate the effect of sarcopenia on muscle fascicle length, pennation and belly thickness in a contracting muscle during isokinetic movements. Fascicles within a pennate muscle shorten at a slower velocity than that of the muscle belly, in a process called belly gearing. Belly gearing may be affected by atrophy and so was also tested in these seniors. The gastrocnemii were tested using ultrasound from 10 young adults (20-40 years) and 9 seniors (70-85 years). The muscle structure was imaged during standing and maximal plantarflexion at four constant velocities on a dynamometer and torque, position and time were recorded during contractions. The muscle belly thickness and pennation in seniors were significantly lower than young adults during standing. Belly thickness, changes in pennation, the belly gearing, ankle torque and power output were all significantly lower in seniors during plantarflexion contractions of the medial gastrocnemius (MG) and lateral gastrocnemius (LG). The higher pennation observed in young adults is commonly associated with increased fascicle rotations during contraction causing an increased belly gearing. The decreased fascicle rotations in seniors resulted in reduced belly gearing but the size of this effect did not match the loss in strength or power from the muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Impaired control of weight bearing ankle inversion in subjects with chronic ankle instability.
Terrier, R; Rose-Dulcina, K; Toschi, B; Forestier, N
2014-04-01
Previous studies have proposed that evertor muscle weakness represents an important factor affecting chronic ankle instability. For research purposes, ankle evertor strength is assessed by means of isokinetic evaluations. However, this methodology is constraining for daily clinical use. The present study proposes to assess ankle evertor muscle weakness using a new procedure, one that is easily accessible for rehabilitation specialists. To do so, we compared weight bearing ankle inversion control between patients suffering from chronic ankle instability and healthy subjects. 12 healthy subjects and 11 patients suffering from chronic ankle instability conducted repetitions of one leg weight bearing ankle inversion on a specific ankle destabilization device equipped with a gyroscope. Ankle inversion control was performed by means of an eccentric recruitment of evertor muscles. Instructions were to perform, as slow as possible, the ankle inversion while resisting against full body weight applied on the tested ankle. Data clearly showed higher angular inversion velocity peaks in patients suffering from chronic ankle instability. This illustrates an impaired control of weight bearing ankle inversion and, by extension, an eccentric weakness of evertor muscles. The present study supports the hypothesis of a link between the decrease of ankle joint stability and evertor muscle weakness. Moreover, it appears that the new parameter is of use in a clinical setting. Copyright © 2014 Elsevier Ltd. All rights reserved.
Scientific basis and practical aspects of creatine supplementation for athletes.
Volek, Jeff S; Rawson, Eric S
2004-01-01
A large number of studies have been published on creatine supplementation over the last decade. Many studies show that creatine supplementation in conjunction with resistance training augments gains in muscle strength and size. The underlying physiological mechanism(s) to explain this ergogenic effect remain unclear. Increases in muscle fiber hypertrophy and myosin heavy chain expression have been observed with creatine supplementation. Creatine supplementation increases acute weightlifting performance and training volume, which may allow for greater overload and adaptations to training. Creatine supplementation may also induce a cellular swelling in muscle cells, which in turn may affect carbohydrate and protein metabolism. Several studies point to the conclusion that elevated intramuscular creatine can enhance glycogen levels but an effect on protein synthesis/degradation has not been consistently detected. As expected there is a distribution of responses to creatine supplementation that can be largely explained by the degree of creatine uptake into muscle. Thus, there is wide interest in methods to maximize muscle creatine levels. A carbohydrate or carbohydrate/protein-induced insulin response appears to benefit creatine uptake. In summary, the predominance of research indicates that creatine supplementation represents a safe, effective, and legal method to enhance muscle size and strength responses to resistance training.
Effect of acetylcysteine on adaptation of intestinal smooth muscle after small bowel bypass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbrodt, N.W.; Belloso, R.M.; Biskin, L.C.
1986-03-05
The authors have postulated that the adaptive changes in function and structure of bypassed segments of small bowel are due in part to the change in intestinal contents following operation. The purpose of these experiments was to determine if a mucolytic agent could alter the adaptation. Rats were anesthetized and a 70% jejunoileal bypass was performed. The bypassed segments then were perfused with either saline or acetylcysteine for 3-12 days. Then, either intestinal transit was determined using Cr-51, or segments were taken for morphometric analysis. Transit, as assessed by the geometric center, was increased 32% by acetylcysteine treatment. Treatment alsomore » caused a decrease in hypertrophy of the muscularis. Muscle wet weight, muscle cross-sectional area, and muscle layer thickness all were significantly less in those animals infused with acetyl-cysteine. No decreases in hypertrophy were seen in the in-continuity segments. These data indicate that alterations in intestinal content can affect the course of adaptation of intestinal muscle in response to small bowel bypass.« less
Experimental neck muscle pain impairs standing balance in humans.
Vuillerme, Nicolas; Pinsault, Nicolas
2009-02-01
Impaired postural control has been reported in patients with chronic neck pain of both traumatic and non-traumatic etiologies, but whether painful stimulation of neck muscle per se can affect balance control during quiet standing in humans remains unclear. The purpose of the present experiment was thus to investigate the effect of experimental neck muscle pain on standing balance in young healthy adults. To achieve this goal, 16 male university students were asked to stand upright as still as possible on a force platform with their eyes closed in two conditions of No pain and Pain of the neck muscles elicited by experimental painful electrical stimulation. Postural control and postural performance were assessed by the displacements of the center of foot pressure (CoP) and of the center of mass (CoM), respectively. The results showed increased CoP and CoM displacements variance, range, mean velocity, and mean and median frequencies in the Pain relative to the No pain condition. The present findings emphasize the destabilizing effect of experimental neck muscle pain per se, and more largely stress the importance of intact neck neuromuscular function on standing balance.
Gmeiner, Matthias; Topakian, Raffi; Göschl, Manuel; Wurm, Sarah; Holzinger, Anita; van Ouwerkerk, Willem J R; Holl, Kurt
2015-09-01
An accessory to suprascapular nerve (XIN-SSN) transfer is considered in patients with obstetric brachial plexus lesion who fail to recover active shoulder external rotation. The aim of this study was to evaluate the quality of extraplexal suprascapular nerve neurotization and to perform a detailed analysis of the infraspinatus muscle (IM) and shoulder external rotation. A XIN-SSN transfer was performed in 14 patients between 2000 and 2007. Patients had been operated at the age of 3.7 ± 2.8 years. Follow-up examinations were conducted up to 8.5 ± 2.5 years. Magnetic resonance imaging was performed to investigate muscle trophism. Fatty muscle degeneration of the IM was classified according to the Goutallier classification. We conducted nerve conduction velocity studies of the suprascapular nerve and needle electromyography of the IM to assess pathologic spontaneous activity and interference patterns. Active glenohumeral shoulder external rotation and global shoulder function were evaluated using the Mallet score. Postoperatively, growth of the IM increased equally on the affected and unaffected sides, although significant differences of muscle thickness persisted over time. There was only grade 1 or 2 fatty degeneration pre- and postoperatively. Electromyography of the IM revealed a full interference pattern in all except one patient, and there was no pathological spontaneous activity. Glenohumeral external rotation as well as global shoulder function increased significantly. Our results indicate that the anastomosis after XIN-SSN transfer is functional and that successful reinnervation of the infraspinatus muscle may enable true glenohumeral active external rotation.
Silva, Paulo Eugênio; Maldaner, Vinicius; Vieira, Luciana; de Carvalho, Karina Livino; Gomes, Hedian; Melo, Priscilla; Babault, Nicolas; Cipriano, Gerson; Durigan, Joao Luiz Quagliotti
2018-04-01
It is unclear whether the muscular changes in mechanically-ventilated traumatic brain injury patients (TBI) are only associated with disuse or additionally to neuromuscular electrophysiological disorders (NED). The correlation between muscle atrophy and NED may affect functional outcomes and rehabilitation programs significantly. An observational study was performed to investigate the presence of NED and muscle atrophy in TBI patients undergoing mechanical ventilation. NED was diagnosed by the stimulus electrodiagnosis test when chronaxie was ≥1000μs. The muscle structure (thickness and echogenicity) was assessed by B-mode ultrasound. Tibialis anterior (TA), rectus femoris (RF), and biceps brachialis (BB) muscles were analyzed. Patients were followed from the first day of admission in the intensive care unit (ICU) to the fourteenth day. Twenty-two patients were analyzed. An increase of 48% in NED from day 1 to day 14 was detected in TA (p=0.004). All muscles presented a significant decrease in thickness (~18%, p<0.05), but echogenicity increased only in TA (19%), p<0.01 and RF (23%), p<0.01. Mechanically-ventilated patients with TBI developed NED in addition to changes in muscle structure during their stay in the ICU. Copyright © 2017 Elsevier Inc. All rights reserved.
Carmona, G; Guerrero, M; Cussó, R; Padullés, J M; Moras, G; Lloret, M; Bedini, J L; Cadefau, J A
2015-12-01
Muscle damage induced by inertial exercise performed on a flywheel device was assessed through the serum evolution of muscle enzymes, interleukin 6, and fiber type-specific sarcomere proteins such as fast myosin (FM) and slow myosin (SM). We hypothesized that a model of muscle damage could be constructed by measuring the evolution of serum concentration of muscle proteins following inertial exercise, according to their molecular weight and the fiber compartment in which they are located. Moreover, by measuring FM and SM, the type of fibers that are affected could be assessed. Serum profiles were registered before and 24, 48, and 144 h after exercise in 10 healthy and recreationally active young men. Creatine kinase (CK) and CK-myocardial band isoenzyme increased in serum early (24 h) and returned to baseline values after 48 h. FM increased in serum late (48 h) and remained elevated 144 h post-exercise. The increase in serum muscle enzymes suggests increased membrane permeability of both fast and slow fibers, and the increase in FM reveals sarcomere disruption as well as increased membrane permeability of fast fibers. Consequently, FM could be adopted as a fiber type-specific biomarker of muscle damage. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Saeterbakken, Atle H; Andersen, Vidar; Jansson, June; Kvellestad, Ann C; Fimland, Marius S
2014-12-01
The objective of this study was to assess the electromyographic activity of the rectus abdominis (upper and lower part) and external oblique during sit-ups performed on BOSU ball(s). Twenty-four men participated in a familiarization session, and in the next session, they performed the experimental tests in randomized order. The sit-ups were performed with 10 repetitions with body weight and with 10 repetition maximum (10RM) using elastic bands as external resistance under 4 different conditions: (a) on a stable surface, (b) with the BOSU ball under their feet (dome side down, lower-body instability), (c) BOSU ball under the low back (dome side up, upper-body instability), and (d) with BOSU balls under both feet and the low back (dual instability). The feet were not attached to the surface. We observed that with body weight, external oblique activation was decreased by upper-body instability and dual instability by 22-24% (p = 0.002-0.006), whereas the rectus abdominis was not affected by the surface. Using 10RM loads, the upper and lower rectus abdominis activities were increased by upper body and dual instability by 21-24% compared with that for a stable surface (P ≤ 0.001-0.036). Further, lower-body instability did not affect muscle activities significantly with either load for any condition. Hence, BOSU balls under the low back can increase and decrease abdominal muscle activation depending on the load, whereas placing a BOSU ball under the feet with the dome side down had little impact.
The wasting continuum in heart failure: from sarcopenia to cachexia.
von Haehling, Stephan
2015-11-01
Sarcopenia (muscle wasting) and cachexia share some pathophysiological aspects. Sarcopenia affects approximately 20 %, cachexia <10 % of ambulatory patients with heart failure (HF). Whilst sarcopenia means loss of skeletal muscle mass and strength that predominantly affects postural rather than non-postural muscles, cachexia means loss of muscle and fat tissue that leads to weight loss. The wasting continuum in HF implies that skeletal muscle is lost earlier than fat tissue and may lead from sarcopenia to cachexia. Both tissues require conservation, and therapies that stop the wasting process have tremendous therapeutic appeal. The present paper reviews the pathophysiology of muscle and fat wasting in HF and discusses potential treatments, including exercise training, appetite stimulants, essential amino acids, growth hormone, testosterone, electrical muscle stimulation, ghrelin and its analogues, ghrelin receptor agonists and myostatin antibodies.
NASA Astrophysics Data System (ADS)
Ren, Yuanyuan; Wen, Haishen; Li, Yun; Li, Jifang
2017-07-01
The effects of stocking density on the growth and metabolism of Amur sturgeon were assessed. Amur sturgeon were grown for 70 days at three different stocking densities (low stocking density, LSD: 5.5 kg/m3; medium stocking density, MSD: 8.0 kg/m3; and high stocking density, HSD: 11.0 kg/m3), and the biometric index, muscle composition, and serum biochemical parameters were evaluated. In addition, pituitary, liver, and muscle samples were collected for gene cloning and expression analyses. After 70 days of growth, the fish maintained at HSD had significantly lower final body weight and specific growth rate, and a higher feed conversion ratio than those of the fish in the MSD and LSD groups. The HSD group had the lowest lipid and protein concentrations in serum and muscle. The serum cortisol concentration increased significantly in the HSD group, indicating that the stress-response system was activated in these fish. There was no change in the concentration of serum insulin-like growth factor 2 (IGF-2), while the concentrations of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) decreased in the HSD group. The full-length cDNAs of GH and IGF-2 genes (995-bp and 1 207-bp long, respectively), were cloned and analyzed. In the HSD group, the expressions of GH in the pituitary and growth hormone receptor (GHR) and IGF-1 in the liver were down-regulated at the end of the 70-day experiment. In the HSD group, the transcript level of IGF-2 significantly decreased in the liver, but did not change in muscle. Overall, our results indicated that a HSD negatively affects the growth performance and leads to changes in lipid and protein metabolism in Amur sturgeon. The down-regulated expression of genes related to the GH/IGF axis may be responsible for the poor growth performance of Amur sturgeon under crowding stress.
Genetics Home Reference: Poland syndrome
... disorder in which affected individuals are born with missing or underdeveloped muscles on one side of the ... affected individuals. People with Poland syndrome are typically missing part of one of the major chest muscles, ...
Caplan, Nicholas; Christian Gibbon, Karl; Howatson, Glyn; Grant Thompson, Kevin
2016-01-01
Abstract This study aimed to determine the effects of a short-term, strength training intervention, typically undertaken by club-standard rowers, on 2,000 m rowing performance and strength and power development. Twenty-eight male rowers were randomly assigned to intervention or control groups. All participants performed baseline testing involving assessments of muscle soreness, creatine kinase activity (CK), maximal voluntary contraction (leg-extensors) (MVC), static-squat jumps (SSJ), counter-movement jumps (CMJ), maximal rowing power strokes (PS) and a 2,000 m rowing ergometer time-trial (2,000 m) with accompanying respiratory-exchange and electromyography (EMG) analysis. Intervention group participants subsequently performed three identical strength training (ST) sessions, in the space of five days, repeating all assessments 24 h following the final ST. The control group completed the same testing procedure but with no ST. Following ST, the intervention group experienced significant elevations in soreness and CK activity, and decrements in MVC, SSJ, CMJ and PS (p < 0.01). However, 2,000 m rowing performance, pacing strategy and gas exchange were unchanged across trials in either condition. Following ST, significant increases occurred for EMG (p < 0.05), and there were non-significant trends for decreased blood lactate and anaerobic energy liberation (p = 0.063 – 0.086). In summary, club-standard rowers, following an intensive period of strength training, maintained their 2,000 m rowing performance despite suffering symptoms of muscle damage and disruption to muscle function. This disruption likely reflected the presence of acute residual fatigue, potentially in type II muscle fibres as strength and power development were affected. PMID:28149354
Messere, Alessandro; Roatta, Silvestro
2013-12-01
The potential interference of cutaneous circulation on muscle blood volume and oxygenation monitoring by near-infrared spectroscopy (NIRS) remains an important limitation of this technique. Spatially resolved spectroscopy (SRS) was reported to minimize the contribution of superficial tissue layers in cerebral monitoring but this characteristic has never been documented in muscle tissue monitoring. This study aims to compare SRS with the standard Beer-Lambert (BL) technique in detecting blood volume changes selectively induced in muscle and skin. In 16 healthy subjects, the biceps brachii was investigated during isometric elbow flexion at 70% of the maximum voluntary contractions lasting 10 sec, performed before and after exposure of the upper arm to warm air flow. From probes applied over the muscle belly the following variables were recorded: total hemoglobin index (THI, SRS-based), total hemoglobin concentration (tHb, BL-based), tissue oxygenation index (TOI, SRS-based), and skin blood flow (SBF), using laser Doppler flowmetry. Blood volume indices exhibited similar changes during muscle contraction but only tHb significantly increased during warming (+5.2 ± 0.7 μmol/L·cm, an effect comparable to the increase occurring in postcontraction hyperemia), accompanying a 10-fold increase in SBF. Contraction-induced changes in tHb and THI were not substantially affected by warming, although the tHb tracing was shifted upward by (5.2 ± 3.5 μmol/L·cm, P < 0.01). TOI was not affected by cutaneous warming. In conclusion, SRS appears to effectively reject interference by SBF in both muscle blood volume and oxygenation monitoring. Instead, BL-based parameters should be interpreted with caution, whenever changes in cutaneous perfusion cannot be excluded.
Messere, Alessandro; Roatta, Silvestro
2013-01-01
Abstract The potential interference of cutaneous circulation on muscle blood volume and oxygenation monitoring by near‐infrared spectroscopy (NIRS) remains an important limitation of this technique. Spatially resolved spectroscopy (SRS) was reported to minimize the contribution of superficial tissue layers in cerebral monitoring but this characteristic has never been documented in muscle tissue monitoring. This study aims to compare SRS with the standard Beer–Lambert (BL) technique in detecting blood volume changes selectively induced in muscle and skin. In 16 healthy subjects, the biceps brachii was investigated during isometric elbow flexion at 70% of the maximum voluntary contractions lasting 10 sec, performed before and after exposure of the upper arm to warm air flow. From probes applied over the muscle belly the following variables were recorded: total hemoglobin index (THI, SRS‐based), total hemoglobin concentration (tHb, BL‐based), tissue oxygenation index (TOI, SRS‐based), and skin blood flow (SBF), using laser Doppler flowmetry. Blood volume indices exhibited similar changes during muscle contraction but only tHb significantly increased during warming (+5.2 ± 0.7 μmol/L·cm, an effect comparable to the increase occurring in postcontraction hyperemia), accompanying a 10‐fold increase in SBF. Contraction‐induced changes in tHb and THI were not substantially affected by warming, although the tHb tracing was shifted upward by (5.2 ± 3.5 μmol/L·cm, P < 0.01). TOI was not affected by cutaneous warming. In conclusion, SRS appears to effectively reject interference by SBF in both muscle blood volume and oxygenation monitoring. Instead, BL‐based parameters should be interpreted with caution, whenever changes in cutaneous perfusion cannot be excluded. PMID:24744858
Piaggio, L; Quintans, G; San Julián, R; Ferreira, G; Ithurralde, J; Fierro, S; Pereira, A S C; Baldi, F; Banchero, G E
2018-02-01
The objective of this study was to evaluate the effects of the energy restriction of gestation of adult ewes from day 45 to day 115 on lamb live performance parameters, carcass and meat traits. In experiment I, dietary energy was restricted at 70% of the metabolizable energy (ME) requirements, after which ewes were re-fed ad libitum until lambing. In experiment II, dietary energy was restricted at 60% of the ME requirements, and ewes were re-fed to ME requirements until lambing. All ewes grazed together from the end of the restriction periods to weaning. Lambs were weaned and lot fed until slaughter. Feed intake, weight gain and feed efficiency were recorded, and body fat thickness and ribeye area (REA) were measured in the longissimus thoracis muscle. After slaughter, carcass weight and yield, fat depth, carcass and leg length, and frenched rack and leg weights and yields were determined. Muscle fiber type composition, Warner-Bratzler shear force, pH and color were determined in the longissimus lumborum muscle. In experiment I, energy restriction followed by ad libitum feeding affected lamb birth weight (P0.05) were observed on later BW, REA, BF or carcass traits. Lambs born to non-restricted-fed ewes had higher (P<0.05) weight and yield of the frenched rack cut and their meat tended (P=0.11) to be tender compared with that of lambs from restricted ewes. The percentage of oxidative muscle fibers was lower for lambs born to non-restricted ewes (P<0.05); however, no effects of ewe treatment were observed on other muscle fiber types. For experiment II, energy restriction followed by ME requirements feeding, affected (P<0.01) pre-weaning live weight gain, weaning and final weights. Lambs from restricted ewes had higher (P<0.05) feed intake as % of leg weight and a trend to be less efficient (P=0.16) than lambs from unrestricted dams. Ribeye area and BF were not influenced by treatment. Treatment significantly affected slaughter weight, but had no effects on carcass yield and traits or on meat traits. The results obtained in both experiments indicate submitting ewes to energy restriction during gestation affects the performance of their progeny but the final outcome would depend on the ewe's re-feeding level during late gestation and the capacity of the offspring to compensate the in utero restriction after birth.
Lui, Mikaela A.; Mahalingam, Sajeni; Patel, Paras; Connaty, Alex D.; Ivy, Catherine M.; Cheviron, Zachary A.; Storz, Jay F.; McClelland, Grant B.
2015-01-01
The hypoxic and cold environment at high altitudes requires that small mammals sustain high rates of O2 transport for exercise and thermogenesis while facing a diminished O2 availability. We used laboratory-born and -raised deer mice (Peromyscus maniculatus) from highland and lowland populations to determine the interactive effects of ancestry and hypoxia acclimation on exercise performance. Maximal O2 consumption (V̇o2max) during exercise in hypoxia increased after hypoxia acclimation (equivalent to the hypoxia at ∼4,300 m elevation for 6–8 wk) and was consistently greater in highlanders than in lowlanders. V̇o2max during exercise in normoxia was not affected by ancestry or acclimation. Highlanders also had consistently greater capillarity, oxidative fiber density, and maximal activities of oxidative enzymes (cytochrome c oxidase and citrate synthase) in the gastrocnemius muscle, lower lactate dehydrogenase activity in the gastrocnemius, and greater cytochrome c oxidase activity in the diaphragm. Hypoxia acclimation did not affect any of these muscle traits. The unique gastrocnemius phenotype of highlanders was associated with higher mRNA and protein abundances of peroxisome proliferator-activated receptor γ (PPARγ). Vascular endothelial growth factor (VEGFA) transcript abundance was lower in highlanders, and hypoxia acclimation reduced the expression of numerous genes that regulate angiogenesis and energy metabolism, in contrast to the observed population differences in muscle phenotype. Lowlanders exhibited greater increases in blood hemoglobin content, hematocrit, and wet lung mass (but not dry lung mass) than highlanders after hypoxia acclimation. Genotypic adaptation to high altitude, therefore, improves exercise performance in hypoxia by mechanisms that are at least partially distinct from those underlying hypoxia acclimation. PMID:25695288
Min, Yang Won; Ko, Eun-Ju; Lee, Ji Yeon; Min, Byung-Hoon; Lee, Jun Haeng; Kim, Jae J; Rhee, Poong-Lyul
2014-07-31
DA-9701 significantly improved gastric accommodation by increasing the postprandial gastric volume. In this study, we investigated how DA-9701 affects the rat gastric fundus relaxation. Gastric fundus muscle strips (9 longitudinal and 7 circular muscles) were obtained from rats. Electrical field stimulation (EFS) was performed at various frequencies (1, 5, 10 and 20 Hz) and train durations (1, 5, 10 and 20 seconds) to select optimal condition for experiments. Isometric force measurements were performed in response to EFS. Peak and nadir were observed during the first 1 minute after initiation of EFS in control state and after sequential addition of atropine (1 μM), DA-9701 (0.5, 5, 25 and 50 μg), N-nitro-L-arginine (L-NNA, 100 μM), MRS2500 (1 μM) and tetrodotoxin (TTX, 1 μM) to the organ bath. The optimal frequency and duration of EFS to evoke nerve-mediated relaxation was determined as 5 Hz for 10 seconds. Addition of L-NNA in the presence of atropine and DA-9701 (50 μg) decreased nadir by inhibiting relaxation from -0.054 ± 0.021 g to -0.022 ± 0.015 g (P = 0.026) in longitudinal muscles. However, subsequent application of MRS2500 in the presence of atropine, DA-9701 (50 μg) and L-NNA did not affect nadir. In circular muscles, subsequent addition of L-NNA and MRS2500 in the presence of atropine and DA-9701 (50 μg) did not show significant change of nadir. Our data suggest that the effect of DA-9701 on the rat gastric fundus relaxation is mainly mediated by nitrergic rather than purinergic pathway.
Yan, Xu; Bishop, David J.
2018-01-01
Gene expression analysis by quantitative PCR in skeletal muscle is routine in exercise studies. The reproducibility and reliability of the data fundamentally depend on how the experiments are performed and interpreted. Despite the popularity of the assay, there is a considerable variation in experimental protocols and data analyses from different laboratories, and there is a lack of consistency of proper quality control steps throughout the assay. In this study, we present a number of experiments on various steps of quantitative PCR workflow, and demonstrate how to perform a quantitative PCR experiment with human skeletal muscle samples in an exercise study. We also tested some common mistakes in performing qPCR. Interestingly, we found that mishandling of muscle for a short time span (10 mins) before RNA extraction did not affect RNA quality, and isolated total RNA was preserved for up to one week at room temperature. Demonstrated by our data, use of unstable reference genes lead to substantial differences in the final results. Alternatively, cDNA content can be used for data normalisation; however, complete removal of RNA from cDNA samples is essential for obtaining accurate cDNA content. PMID:29746477
NASA Astrophysics Data System (ADS)
Gurley, Katelyn; Shang, Yu; Yu, Guoqiang
2012-07-01
This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.
Gurley, Katelyn; Shang, Yu
2012-01-01
Abstract. This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V˙O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V˙O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (rV˙O2). The rBF and rV˙O2 signals were calibrated with absolute baseline BF and V˙O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482
... be affected. Limb-girdle muscular dystrophy (LGMD) affects boys and girls equally, weakening muscles in the shoulders and upper ... weakness and poor muscle tone. Occurring in both girls and boys, it can have different symptoms. It varies in ...
... Archive JAOCD Information for Authors Information for Reviewers Human & Animal Rights Job ... Dermatomyositis (DM) is a rare inflammatory muscle disease that affects both the muscles as well as the skin. DM can affect people of all races, sex ...
Morosetti, Roberta; Gidaro, Teresa; Broccolini, Aldobrando; Gliubizzi, Carla; Sancricca, Cristina; Tonali, Pietro Attilio; Ricci, Enzo; Mirabella, Massimiliano
2011-01-01
Facioscapulohumeral muscular dystrophy (FSHD) is the third most frequent inherited myopathy. We previously demonstrated that mesoangioblasts can be efficiently isolated from FSHD muscles, although their differentiation ability into skeletal muscle was variably impaired. This correlates with overall disease severity and degree of histopathologic abnormalities, since mesoangioblasts from morphologically normal muscles did not show any myogenic differentiation block. The aim of our present study was to verify whether mesoangioblasts from differentially affected FSHD muscles reproduce in vivo the same differentiation ability shown in vitro by studying their capability to form new muscle fibers during muscle regeneration of experimentally damaged muscles. We show that a diverse ability of FSHD mesoangioblasts to engraft and differentiate into skeletal muscle of SCID mice is strictly related to the characteristics of the muscle of origin, closely replicating in vivo what was previously observed in vitro. Moreover, we demonstrate that mesoangioblasts obtained from severely affected muscles scarcely integrate into muscle fibers, remaining mainly localized in the connective tissue. This suggests a defective migration in response to chemoattractants released by damaged fibers, as indicated by cell migration assays in response to HMGB1 and very low levels of RAGE expression, along with a decreased ability to fuse or to appropriately trigger the myogenic program. Our study indicates that FSHD mesoangioblasts from unaffected muscles can be used as selective treatment to halt muscle degeneration in severely affected muscles, and suggests that pharmacological and molecular interventions aimed to ameliorate homing and engraftment of transplanted autologous mesoangioblasts may open the way to cell therapy for FSHD patients, without requiring immunosuppression or genetic correction in vitro.
The effects of sarcopenia on muscles with different recruitment patterns and myofiber profiles.
Deschenes, Michael R; Gaertner, Jennifer R; O'Reilly, Shaelyn
2013-12-01
Sarcopenia, or the age-related loss of muscle size/mass, is a major health concern in western societies where aging is prevalent. Currently, more is known about sarcopenia's impact on health and quality of life, than its physiological etiology. It remains to be clearly determined whether the onset and progression of sarcopenia is similar throughout the body (systemic), or is more localized to certain muscles and myofiber types comprising those muscles (local). The objective of this project was to quantify the systemic vs. local nature of sarcopenia. Three muscles of different myofiber type composition and/or function (Soleus, Plantaris, EDL) were collected from 10 young adult rats, and 10 aged rats. Immunohistochemical procedures were then performed on frozen muscle sections to determine average myofiber size, fiber type composition, and relative areas of muscles occupied by each myofiber type. Significant (P ≤ 0.05) overall age-related myofiber atrophy occurred in the predominantly fast-twitch, non-postural Plantaris and EDL muscles, but not in the primarily slow-twitch, postural Soleus. Moreover, age-related atrophy was significantly (~100%) greater in the EDL than the Plantaris. Age-related myofiber type conversion also demonstrated muscle specificity in that all fiber types were affected in the Soleus, compared to three of the four myofiber types of the Plantaris, and only one of the four myofiber types identified in the EDL. In sum, these data suggest that although sarcopenia may be ubiquitous among skeletal muscles, the degree of its impact displays specificity based not only on myofiber type composition, but also on muscle function.
Bdaiwi, Alya H.; Mackenzie, Tanya Anne; Herrington, Lee; Horsley, Ian; Cools, Ann M.
2015-01-01
Context Compromise to the acromiohumeral distance has been reported in participants with subacromial impingement syndrome compared with healthy participants. In clinical practice, patients with subacromial shoulder impingement are given strengthening programs targeting the lower trapezius (LT) and serratus anterior (SA) muscles to increase scapular posterior tilt and upward rotation. We are the first to use neuromuscular electrical stimulation to stimulate these muscle groups and evaluate how the muscle contraction affects the acromiohumeral distance. Objective To investigate if electrical muscle stimulation of the LT and SA muscles, both separately and simultaneously, increases the acromiohumeral distance and to identify which muscle-group contraction or combination most influences the acromiohumeral distance. Design Controlled laboratory study. Setting Human performance laboratory. Patients or Other Participants Twenty participants (10 men and 10 women, age = 26.9 ± 8.0 years, body mass index = 23.8) were screened. Intervention(s) Neuromuscular electrical stimulation of the LT and SA. Main Outcome Measure(s) Ultrasound measurement of the acromiohumeral distance. Results Acromiohumeral distance increased during contraction via neuromuscular electrical stimulation of the LT muscle (t19 = −3.89, P = .004), SA muscle (t19 = −7.67, P = .001), and combined LT and SA muscles (t19 = −5.09, P = .001). We observed no differences in the increased acromiohumeral distance among the 3 procedures (F2,57 = 3.109, P = .08). Conclusions Our results supported the hypothesis that the muscle force couple around the scapula is important in rehabilitation and scapular control and influences acromiohumeral distance. PMID:25933249
Chen, Ying; He, Lu; Xu, Kaishou; Li, Jinling; Guan, Buyun; Tang, Hongmei
2018-01-01
To compare the muscle thickness, fascicle length, and pennation angle of the gastrocnemius, soleus, and tibialis anterior between Asian children with spastic cerebral palsy (CP) and typically developing (TD) peers. This cross-sectional study involved a total of 72 children with hemiplegic CP (n = 24), and diplegic CP (n = 24) and their TD peers (n = 24). Muscle architecture was measured at rest using ultrasound. Clinical measures included gross motor function and a modified Ashworth scale. The thicknesses of the tibialis anterior and medial gastrocnemius muscles were smaller in the affected calf of children with CP (p<0.05) than in those of their TD peers. Additionally, the lengths of the lateral gastrocnemius and soleus fascicle were shorter (p<0.05) in children with diplegic CP than in their TD peers. The fascicle length was shorter in the affected calf of children with CP (p<0.05) than in the calves of their TD peers or the unaffected calf of children with hemiplegic CP. However, the length of the lateral gastrocnemius fascicle was similar between the two legs of children with hemiplegic CP. The pennation angles of the medial gastrocnemius and soleus muscles were larger (p<0.05) in the affected calf in children with hemiplegic CP than in the calves of their TD peers. The fascicle length of the lateral gastrocnemius and the thickness of the soleus muscle were positively correlated with gross motor function scores in children with CP (p<0.05). Muscle thickness and fascicle length were lower in the affected tibialis anterior, gastrocnemius, and soleus in children with spastic CP. These changes may limit the ability to stand and walk, and indicate a need to strengthen the affected muscle.
Li, Jinling; Guan, Buyun; Tang, Hongmei
2018-01-01
Objective To compare the muscle thickness, fascicle length, and pennation angle of the gastrocnemius, soleus, and tibialis anterior between Asian children with spastic cerebral palsy (CP) and typically developing (TD) peers. Methods This cross-sectional study involved a total of 72 children with hemiplegic CP (n = 24), and diplegic CP (n = 24) and their TD peers (n = 24). Muscle architecture was measured at rest using ultrasound. Clinical measures included gross motor function and a modified Ashworth scale. Results The thicknesses of the tibialis anterior and medial gastrocnemius muscles were smaller in the affected calf of children with CP (p<0.05) than in those of their TD peers. Additionally, the lengths of the lateral gastrocnemius and soleus fascicle were shorter (p<0.05) in children with diplegic CP than in their TD peers. The fascicle length was shorter in the affected calf of children with CP (p<0.05) than in the calves of their TD peers or the unaffected calf of children with hemiplegic CP. However, the length of the lateral gastrocnemius fascicle was similar between the two legs of children with hemiplegic CP. The pennation angles of the medial gastrocnemius and soleus muscles were larger (p<0.05) in the affected calf in children with hemiplegic CP than in the calves of their TD peers. The fascicle length of the lateral gastrocnemius and the thickness of the soleus muscle were positively correlated with gross motor function scores in children with CP (p<0.05). Conclusions Muscle thickness and fascicle length were lower in the affected tibialis anterior, gastrocnemius, and soleus in children with spastic CP. These changes may limit the ability to stand and walk, and indicate a need to strengthen the affected muscle. PMID:29304114
Warren, Gordon L; Moran, Amy L; Hogan, Harry A; Lin, Angela S; Guldberg, Robert E; Lowe, Dawn A
2007-11-01
The study's objective was to investigate how estrogen deficiency and run training affect the tibial bone-soleus muscle functional relationship in mice. Female mice were assigned into one of two surgical conditions, ovariectomy (OVX) or sham ovariectomy (sham), and one of two activity conditions, voluntary wheel running (Run) or sedentary (Sed). To determine whether differences observed between OVX and sham conditions could be attributed to estradiol (E(2)), additional OVX mice were supplemented with E(2). Tibial bones were analyzed for their functional capacities, ultimate load, and stiffness. Soleus muscles were analyzed for their functional capacities, maximal isometric tetanic force (P(o)), and peak eccentric force. The ratios of bone functional capacities to those of muscle were calculated. The bone functional capacities were affected by both surgical condition and activity but more strongly by surgical condition. Ultimate load and stiffness for the sham group were 7-12% greater than those for OVX animals (P = 0.002), whereas only stiffness was greater for Run than for Sed animals (9%; P = 0.015). The muscle functional capacities were affected by both surgical condition and activity; however, in contrast to the bone, the muscle was more affected by activity. P(o) and peak eccentric force were 10-21% greater for Run than for Sed animals (P < or = 0.016), whereas only P(o) was greater in sham than in OVX animals (9%; P = 0.011). The bone-to-muscle ratios of functional capacities were affected by activity but not by surgical condition or E(2) supplementation. Thus a mismatch of bone-muscle function occurred in mice that voluntarily ran on wheels, irrespective of estrogen status.
Yakabe, Mitsutaka; Ota, Hidetaka; Iijima, Katsuya; Eto, Masato; Ouchi, Yasuyoshi; Akishita, Masahiro
2018-01-01
Background Interleukin-6 (IL-6) is an inflammatory cytokine. Whether systemic IL-6 affects atrogene expression and disuse-induced skeletal muscle atrophy is unclear. Methods Tail-suspended mice were used as a disuse-induced muscle atrophy model. We administered anti-mouse IL-6 receptor antibody, beta-hydroxy-beta-methylbutyrate (HMB) and vitamin D to the mice and examined the effects on atrogene expression and muscle atrophy. Results Serum IL-6 levels were elevated in the mice. Inhibition of IL-6 receptor suppressed muscle RING finger 1 (MuRF1) expression and prevented muscle atrophy. HMB and vitamin D inhibited the serum IL-6 surge, downregulated the expression of MuRF1 and atrogin-1 in the soleus muscle, and ameliorated atrophy in the mice. Conclusion Systemic IL-6 affects MuRF1 expression and disuse-induced muscle atrophy. PMID:29351340
The callipyge mutation and other genes that affect muscle hypertrophy in sheep
2005-01-01
Genetic strategies to improve the profitability of sheep operations have generally focused on traits for reproduction. However, natural mutations exist in sheep that affect muscle growth and development, and the exploitation of these mutations in breeding strategies has the potential to significantly improve lamb-meat quality. The best-documented mutation for muscle development in sheep is callipyge (CLPG), which causes a postnatal muscle hypertrophy that is localized to the pelvic limbs and loin. Enhanced skeletal muscle growth is also observed in animals with the Carwell (or rib-eye muscling) mutation, and a double-muscling phenotype has been documented for animals of the Texel sheep breed. However, the actual mutations responsible for these muscular hypertrophy phenotypes in sheep have yet to be identified, and further characterization of the genetic basis for these phenotypes will provide insight into the biological control of muscle growth and body composition. PMID:15601596
PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle
Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette
2017-01-01
The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322
Sterzing, Thorsten; Frommhold, Clivia; Rosenbaum, Dieter
2016-05-01
Backward locomotion in humans occurs during leisure, rehabilitation, and competitive sports. Little is known about its general biomechanical characteristics and how it affects lower extremity loading as well as muscle coordination. Thus, the purpose of this research was to analyze in-shoe plantar pressure patterns and lower extremity muscle activity patterns for backward compared to forward running. On a treadmill, nineteen runners performed forward running at their individually preferred speed, followed by backward running at 70% of their self-selected forward speed. In-shoe plantar pressures of nine foot regions and muscular activity of nine lower extremity muscles were recorded simultaneously over a one-minute interval. Backward and forward running variables were averaged over the accumulated steps and compared with Wilcoxon-signed rank tests (p<.05). For backward compared to forward running, in-shoe plantar pressure distribution showed a load increase under metatarsal heads I and II, as well as under the medial midfoot. This was indicated by higher maximum forces and peak pressures, and by longer contact times. Muscle activity showed significantly higher mean amplitudes during backward running in the semitendinosus, rectus femoris, vastus lateralis, and gluteus medius during stance, and in the rectus femoris during swing phase, while significantly lower mean amplitudes were observed in the tibialis anterior during swing phase. Observations indicate plantar foot loading and muscle activity characteristics that are specific for the running direction. Thus, backward running may be used on purpose for certain rehabilitation tasks, aiming to strengthen respective lower extremity muscles. Furthermore, the findings are relevant for sport specific backward locomotion training. Finally, results provide an initial baseline for innovative athletic footwear development aiming to increase comfort and performance during backward running. Copyright © 2016 Elsevier B.V. All rights reserved.
Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Aagaard, Per; Andersen, Lars L
2013-02-01
The present study's aim was to evaluate muscle activity during leg exercises using elastic vs. isoinertial resistance at different exertion and loading levels, respectively. Twenty-four women and eighteen men aged 26-67 years volunteered to participate in the experiment. Electromyographic (EMG) activity was recorded in nine muscles during a standardized forward lunge movement performed with dumbbells and elastic bands during (1) ballistic vs. controlled exertion, and (2) at low, medium and high loads (33%, 66% and 100% of 10 RM, respectively). The recorded EMG signals were normalized to MVC EMG. Knee joint angle was measured using electronic inclinometers. The following results were obtained. Loading intensity affected EMG amplitude in the order: low
Resisted side-stepping: the effect of posture on hip abductor muscle activation
Berry, Justin W.; Lee, Theresa S.; Foley, Hanna D.; Lewis, Cara L.
2016-01-01
Study Design Controlled laboratory study, repeated-measures design. Objectives To compare hip abductor muscle activity and hip and knee joint kinematics in the moving limb to the stance limb during resisted side-stepping and also to determine if muscle activity was affected by the posture (upright standing versus squat) used to perform the exercise. Background Hip abductor weakness has been associated with a variety of lower extremity injuries. Resisted side-stepping is often used as an exercise to increase strength and endurance of the hip abductors. Exercise prescription would benefit from knowing the relative muscle activity level generated in each limb and for different postures during the side-stepping exercise. Methods Twenty-four healthy adults participated in this study. Kinematics and surface electromyographic (EMG) data from the gluteus maximus, gluteus medius, and tensor fascia lata (TFL) were collected as participants performed side-stepping with a resistive band around the ankle while maintaining each of 2 postures: 1) upright standing and 2) squat. Results Mean normalized EMG signal amplitude of the gluteus maximus, gluteus medius, and TFL was higher in the stance limb than the moving limb (P≤.001). Gluteal muscle activity was higher, while TFL muscle activity was lower, in the squat posture compared to the upright standing posture (P<.001). Hip abduction excursion was greater in the stance limb than in the moving limb (P<.001). Conclusions The 3 hip abductor muscles respond differently to the posture variations of side-stepping exercise in healthy individuals. When prescribing resisted side-stepping exercises, therapists should consider the differences in hip abductor activation across limbs and variations in trunk posture. PMID:26161629
Burlina, Philippe; Billings, Seth; Joshi, Neil
2017-01-01
Objective To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Methods Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and “engineered” features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. Results The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). Conclusions This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification. PMID:28854220
Burlina, Philippe; Billings, Seth; Joshi, Neil; Albayda, Jemima
2017-01-01
To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and "engineered" features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification.
Muscle activation in the loaded free barbell squat: a brief review.
Clark, Dave R; Lambert, Mike I; Hunter, Angus M
2012-04-01
The purpose of this article was to review a series of studies (n = 18) where muscle activation in the free barbell back squat was measured and discussed. The loaded barbell squat is widely used and central to many strength training programs. It is a functional and safe exercise that is obviously transferable to many movements in sports and life. Hence, a large and growing body of research has been published on various aspects of the squat. Training studies have measured the impact of barbell squat loading schemes on selected training adaptations including maximal strength and power changes in the squat. Squat exercise training adaptations and their impact on a variety of performance parameters, in particular countermovement jump, acceleration, and running speed, have also been reported. Furthermore, studies have reported on the muscle activation of the lower limb resulting from variations of squat depth, foot placement, training status, and training intensity. There have also been studies on the impact of squatting with or without a weight belt on trunk muscle activation (TMA). More recently, studies have reported on the effect of instability on TMA and squat performance. Research has also shown that muscle activation of the prime movers in the squat exercise increases with an increase in the external load. Also common variations such as stance width, hip rotation, and front squat do not significantly affect muscle activation. However, despite many studies, this information has not been consolidated, resulting in a lack of consensus about how the information can be applied. Therefore, the purpose of this review was to examine studies that reported muscle activation measured by electromyography in the free barbell back squat with the goal of clarifying the understanding of how the exercise can be applied.
Anttila, K; Jokikokko, E; Erkinaro, J; Järvilehto, M; Mänttäri, S
2011-02-01
The relative amount of muscle contraction regulating dihydropyridine and ryanodine receptors in the swimming muscles of trained reared Atlantic salmon Salmo salar smolts was compared with those of untrained and wild smolts. After an optimized 2 week training period, i.e. swimming with a velocity of 1·5 body lengths per second for 6 h per day, the level of both receptors was significantly higher in the muscles of trained S. salar than in the untrained ones before they were released into the natural environment. This difference persisted after downstream migration in the river. The highest level of receptors was observed in wild S. salar. Swimming performance was also higher in trained fish compared to untrained ones. Furthermore, swimming performance was positively associated with the level of receptors in both red and white muscle types. Downstream migration after release into the wild was significantly slower in trained smolts than in untrained fish. This indicates that trained smolts were most probably swimming harder against the current in the river than untrained smolts. The possible advantages for a slower migration in the river are discussed. This study shows that the prerequisites for effective contraction of the swimming muscles are better met in trained S. salar compared to untrained fish, and the muscles of trained smolts more closely resemble those of wild smolts. The results also imply that the capacity of untrained, reared smolts to swim against the current is not equal to that of their trained or wild counterparts which affects the downstream migration pattern of S. salar smolts. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Li, Dong-Jie; Fu, Hui; Zhao, Ting; Ni, Min; Shen, Fu-Ming
2016-05-01
Physical exercise induces many adaptive changes in skeletal muscle and the whole body and improves metabolic characteristics. Fibroblast growth-factor 23 (FGF23) is a unique member of the FGF family that acts as a hormone regulating phosphate metabolism, calcitriol concentration, and kidney functions. The role of FGF23 in exercise and skeletal muscle is largely unknown yet. C57BL/6J mice were exercised on a motor treadmill. Mice serum FGF23 levels; FGF23 mRNA expression in various organs including the liver, heart, skeletal muscle tissue, and thyroid; and FGF23 receptor Klotho mRNA expression were examined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunoblotting, respectively, after a single bout of acute exercise (60min), exhaustive exercise, and chronic prolonged exercise (60min every day for one week). C57BL/6J mice were injected with recombinant FGF23 (100mg/kg, twice per day, i.p.) or vehicle control (saline) for 3days, and then the exercise performance, reactive oxygen species (ROS), H2O2 production, and mitochondrial functional biomarkers in muscle (gene expression of sirtuin 1, PPAR-δ, PGC-1α and mitochondrial transcription factor A [TFAM], and citrate synthase activity) were assayed. Three forms of exercise, acute exercise, exhaustive exercise, and chronic exercise, increased serum FGF23 levels. However, only chronic exercise upregulated FGF23 mRNA and protein expression in skeletal muscle. FGF23 mRNA expression in the heart, liver, and thyroid was not affected. FGF23 protein was mainly located in the cytoplasm in skeletal muscle tissue and the localization of FGF23 was not altered by exercise. Exogenous FGF23 treatment significantly extended the time to exhaustion and reduced the exercise-induced ROS and H2O2 production. FGF23 treatment increased the mRNA level of PPAR-δ and citrate synthase activity, but did not influence the mRNA expression of sirtuin 1, PGC-1α, and TFAM in skeletal muscle. These results demonstrate that exercise-stimulated FGF23 promotes exercise performance via controlling the excess ROS production and enhancing mitochondrial function in skeletal muscle, which reveals an entirely novel role of FGF23 in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.
Heckscher, Ellie S; Zarin, Aref Arzan; Faumont, Serge; Clark, Matthew Q; Manning, Laurina; Fushiki, Akira; Schneider-Mizell, Casey M; Fetter, Richard D; Truman, James W; Zwart, Maarten F; Landgraf, Matthias; Cardona, Albert; Lockery, Shawn R; Doe, Chris Q
2015-10-21
Bilaterally symmetric motor patterns--those in which left-right pairs of muscles contract synchronously and with equal amplitude (such as breathing, smiling, whisking, and locomotion)--are widespread throughout the animal kingdom. Yet, surprisingly little is known about the underlying neural circuits. We performed a thermogenetic screen to identify neurons required for bilaterally symmetric locomotion in Drosophila larvae and identified the evolutionarily conserved Even-skipped(+) interneurons (Eve/Evx). Activation or ablation of Eve(+) interneurons disrupted bilaterally symmetric muscle contraction amplitude, without affecting the timing of motor output. Eve(+) interneurons are not rhythmically active and thus function independently of the locomotor CPG. GCaMP6 calcium imaging of Eve(+) interneurons in freely moving larvae showed left-right asymmetric activation that correlated with larval behavior. TEM reconstruction of Eve(+) interneuron inputs and outputs showed that the Eve(+) interneurons are at the core of a sensorimotor circuit capable of detecting and modifying body wall muscle contraction. Copyright © 2015 Elsevier Inc. All rights reserved.
Heckscher, Ellie S.; Zarin, Aref Arzan; Faumont, Serge; Clark, Matthew Q.; Manning, Laurina; Fushiki, Akira; Schneider-Mizel, Casey M.; Fetter, Richard D.; Truman, James W.; Zwart, Maarten F.; Landgraf, Matthias; Cardona, Albert; Lockery, Shawn R.; Doe, Chris Q.
2015-01-01
Summary Bilaterally symmetric motor patterns—those in which left-right pairs of muscles contract synchronously and with equal amplitude (such as breathing, smiling, whisking, locomotion)—are widespread throughout the animal kingdom. Yet surprisingly little is known about the underlying neural circuits. We performed a thermogenetic screen to identify neurons required for bilaterally symmetric locomotion in Drosophila larvae, and identified the evolutionarily-conserved Even-skipped+ interneurons (Eve/Evx). Activation or ablation of Eve+ interneurons disrupted bilaterally symmetric muscle contraction amplitude, without affecting the timing of motor output. Eve+ interneurons are not rhythmically active, and thus function independently of the locomotor CPG. GCaMP6 calcium imaging of Eve+ interneurons in freely-moving larvae showed left-right asymmetric activation that correlated with larval behavior. TEM reconstruction of Eve+ interneuron inputs and outputs showed that the Eve+ interneurons are at the core of a sensorimotor circuit capable of detecting and modifying body wall muscle contraction. PMID:26439528
Cheng, Wei; Cornwall, Roger; Crouch, Dustin L; Li, Zhongyu; Saul, Katherine R
2015-06-01
Two potential mechanisms leading to postural and osseous shoulder deformity after brachial plexus birth palsy are muscle imbalance between functioning internal rotators and paralyzed external rotators and impaired longitudinal growth of paralyzed muscles. Our goal was to evaluate the combined and isolated effects of these 2 mechanisms on transverse plane shoulder forces using a computational model of C5-6 brachial plexus injury. We modeled a C5-6 injury using a computational musculoskeletal upper limb model. Muscles expected to be denervated by C5-6 injury were classified as affected, with the remaining shoulder muscles classified as unaffected. To model muscle imbalance, affected muscles were given no resting tone whereas unaffected muscles were given resting tone at 30% of maximal activation. To model impaired growth, affected muscles were reduced in length by 30% compared with normal whereas unaffected muscles remained normal in length. Four scenarios were simulated: normal, muscle imbalance only, impaired growth only, and both muscle imbalance and impaired growth. Passive shoulder rotation range of motion and glenohumeral joint reaction forces were evaluated to assess postural and osseous deformity. All impaired scenarios exhibited restricted range of motion and increased and posteriorly directed compressive glenohumeral joint forces. Individually, impaired muscle growth caused worse restriction in range of motion and higher and more posteriorly directed glenohumeral forces than did muscle imbalance. Combined muscle imbalance and impaired growth caused the most restricted joint range of motion and the highest joint reaction force of all scenarios. Both muscle imbalance and impaired longitudinal growth contributed to range of motion and force changes consistent with clinically observed deformity, although the most substantial effects resulted from impaired muscle growth. Simulations suggest that treatment strategies emphasizing treatment of impaired longitudinal growth are warranted for reducing deformity after brachial plexus birth palsy. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Arnold, Edith M.; Hamner, Samuel R.; Seth, Ajay; Millard, Matthew; Delp, Scott L.
2013-01-01
SUMMARY The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle–tendon dynamics to calculate the lengths and velocities of muscle fibers from electromyographic recordings of 11 lower limb muscles and kinematic measurements of the hip, knee and ankle made as five subjects walked at speeds of 1.0–1.75 m s−1 and ran at speeds of 2.0–5.0 m s−1. We analyzed the simulated fiber lengths, fiber velocities and forces to evaluate the influence of force–length and force–velocity properties on force generation at different walking and running speeds. The simulations revealed that force generation ability (i.e. the force generated per unit of activation) of eight of the 11 muscles was significantly affected by walking or running speed. Soleus force generation ability decreased with increasing walking speed, but the transition from walking to running increased the force generation ability by reducing fiber velocities. Our results demonstrate the influence of soleus muscle architecture on the walk-to-run transition and the effects of muscle–tendon compliance on the plantarflexors' ability to generate ankle moment and power. The study presents data that permit lower limb muscles to be studied in unprecedented detail by relating muscle fiber dynamics and force generation to the mechanical demands of walking and running. PMID:23470656
USDA-ARS?s Scientific Manuscript database
This study determined if zilpaterol hydrochloride (ZH) altered muscle metabolism and lipid components of ten muscles. Crossbred heifers were either supplemented with ZH (n = 9) or not (Control; n = 10). Muscle tissue was collected (adductor femoris, biceps femoris, gluteus medius, infraspinatus, lat...
Serrancolí, Gil; Kinney, Allison L.; Fregly, Benjamin J.; Font-Llagunes, Josep M.
2016-01-01
Though walking impairments are prevalent in society, clinical treatments are often ineffective at restoring lost function. For this reason, researchers have begun to explore the use of patient-specific computational walking models to develop more effective treatments. However, the accuracy with which models can predict internal body forces in muscles and across joints depends on how well relevant model parameter values can be calibrated for the patient. This study investigated how knowledge of internal knee contact forces affects calibration of neuromusculoskeletal model parameter values and subsequent prediction of internal knee contact and leg muscle forces during walking. Model calibration was performed using a novel two-level optimization procedure applied to six normal walking trials from the Fourth Grand Challenge Competition to Predict In Vivo Knee Loads. The outer-level optimization adjusted time-invariant model parameter values to minimize passive muscle forces, reserve actuator moments, and model parameter value changes with (Approach A) and without (Approach B) tracking of experimental knee contact forces. Using the current guess for model parameter values but no knee contact force information, the inner-level optimization predicted time-varying muscle activations that were close to experimental muscle synergy patterns and consistent with the experimental inverse dynamic loads (both approaches). For all the six gait trials, Approach A predicted knee contact forces with high accuracy for both compartments (average correlation coefficient r = 0.99 and root mean square error (RMSE) = 52.6 N medial; average r = 0.95 and RMSE = 56.6 N lateral). In contrast, Approach B overpredicted contact force magnitude for both compartments (average RMSE = 323 N medial and 348 N lateral) and poorly matched contact force shape for the lateral compartment (average r = 0.90 medial and −0.10 lateral). Approach B had statistically higher lateral muscle forces and lateral optimal muscle fiber lengths but lower medial, central, and lateral normalized muscle fiber lengths compared to Approach A. These findings suggest that poorly calibrated model parameter values may be a major factor limiting the ability of neuromusculoskeletal models to predict knee contact and leg muscle forces accurately for walking. PMID:27210105
Hinds, Terry D.; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S.
2016-01-01
Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids. PMID:26875982
Effects of systemic hypoxia on human muscular adaptations to resistance exercise training
Kon, Michihiro; Ohiwa, Nao; Honda, Akiko; Matsubayashi, Takeo; Ikeda, Tatsuaki; Akimoto, Takayuki; Suzuki, Yasuhiro; Hirano, Yuichi; Russell, Aaron P.
2014-01-01
Abstract Hypoxia is an important modulator of endurance exercise‐induced oxidative adaptations in skeletal muscle. However, whether hypoxia affects resistance exercise‐induced muscle adaptations remains unknown. Here, we determined the effect of resistance exercise training under systemic hypoxia on muscular adaptations known to occur following both resistance and endurance exercise training, including muscle cross‐sectional area (CSA), one‐repetition maximum (1RM), muscular endurance, and makers of mitochondrial biogenesis and angiogenesis, such as peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α), citrate synthase (CS) activity, nitric oxide synthase (NOS), vascular endothelial growth factor (VEGF), hypoxia‐inducible factor‐1 (HIF‐1), and capillary‐to‐fiber ratio. Sixteen healthy male subjects were randomly assigned to either a normoxic resistance training group (NRT, n =7) or a hypoxic (14.4% oxygen) resistance training group (HRT, n =9) and performed 8 weeks of resistance training. Blood and muscle biopsy samples were obtained before and after training. After training muscle CSA of the femoral region, 1RM for bench‐press and leg‐press, muscular endurance, and skeletal muscle VEGF protein levels significantly increased in both groups. The increase in muscular endurance was significantly higher in the HRT group. Plasma VEGF concentration and skeletal muscle capillary‐to‐fiber ratio were significantly higher in the HRT group than the NRT group following training. Our results suggest that, in addition to increases in muscle size and strength, HRT may also lead to increased muscular endurance and the promotion of angiogenesis in skeletal muscle. PMID:24907297
Higashino, Kosaku; Matsuura, Tetsuya; Suganuma, Katsuyoshi; Yukata, Kiminori; Nishisho, Toshihiko; Yasui, Natsuo
2013-05-20
Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus muscle.
Zahed, Nargesosadat; Chehrazi, Saghar; Falaknasi, Kianosh
2014-09-01
Muscle force of lower limb is a major factor for sustaining physical activity. Decreased muscle force can limit physical activity, which can increase mortality and morbidity in end-stage renal disease (ESRD) patients. Muscle force depends on several factors. One of the most important factors is 25-hydroxy vitamin D (25-OHD) that affects muscle function in both uremic and non-uremic patients. The aim of this study was to investigate the association between serum level of 25-OHD and muscle force of lower extremities in hemodialysis patients estimated by a Micro Manual Muscle Tester, a digital instrument that measures muscle force in kilograms This cross-sectional study was performed on 135 adult patients, 69 male (51%) and 66 female (69%) (mean: 1.4, standard deviation: 0.5), undergoing hemodialysis. Standard biochemistry parameters were measured before hemodialysis, including 25-OHD, calcium, albumin, para-hyroid hormone and C-reactive protein (CRP). Based on the result of serum level of 25-OHD, patients were classified into the following three groups: 85 patients (63%) were 25-OHD deficient (25-OHD <30), 43 patients (32%) had a normal level of 25-OHD (30-70) and seven patients (5%) had a toxic level of 25-OHD (>70) (mean: 1.42, standard deviation: 0.59). Also, based on the result of muscle force, patients were classified into the following three groups: 84/133 patients (62%) had weak muscle force (<5 kg), 46/133 patients (34%) had normal muscle force (5-10 kg) and three patients (21%) had strong muscle force (>10 kg) (mean: 1.39, standard deviation: 0.53). There was a significant relation between 25-OHD level and muscle force (P = 0.02), between age and muscle force (P = 0.002) and between gender and muscle force (P <0.001). In our opinion, 25-OHD can be a useful drug in ESRD patients to improve muscle force and physical activity.
Brennecke, Allan; Guimarães, Thiago M; Leone, Ricardo; Cadarci, Mauro; Mochizuki, Luiz; Simão, Roberto; Amadio, Alberto Carlos; Serrão, Júlio C
2009-10-01
The purpose of the present study was to investigate the effects of exercise order on the tonic and phasic characteristics of upper-body muscle activity during bench press exercise in trained subjects. The preexhaustion method involves working a muscle or a muscle group combining a single-joint exercise immediately followed by a multi-joint exercise (e.g., flying exercise followed by bench press exercise). Twelve subjects performed 1 set of bench press exercises with and without the preexhaustion method following 2 protocols (P1-flying before bench press; P2-bench press). Both exercises were performed at a load of 10 repetition maximum (10RM). Electromyography (EMG) sampled at 1 kHz was recorded from the pectoralis major (PM), anterior deltoid (DA), and triceps brachii (TB). Kinematic data (60 Hz) were synchronized to define upward and downward phases of exercise. No significant (p > 0.05) changes were seen in tonic control of PM and DA muscles between P1 and P2. However, TB tonic aspect of neurophysiologic behavior of motor units was significantly higher (p < 0.05) during P1. Moreover, phasic control of PM, DA, and TB muscles were not affected (p > 0.05). The kinematic pattern of movement changed as a result of muscular weakness in P1. Angular velocity of the right shoulder performed during the upward phase of the bench press exercise was significantly slower (p < 0.05) during P1. Our results suggest that the strategies set by the central nervous system to provide the performance required by the exercise are held constant throughout the exercise, but the tonic aspects of the central drive are increased so as to adapt to the progressive occurrence of the neuromuscular fatigue. Changes in tonic control as a result of the muscular weakness and fatigue can cause changes in movement techniques. These changes may be related to limited ability to control mechanical loads and mechanical energy transmission to joints and passive structures.
Anwer, S; Equebal, A; Nezamuddin, M; Kumar, R; Lenka, P K
2013-09-01
The objective of this trial was to evaluate the effect of gender on strength gains after five week training programme that consisted of isometric exercise coupled with electromyographic biofeedback to the quadriceps muscle. Forty-three (20 men and 23 women) patients with knee osteoarthritis (OA), were placed into two groups based on their gender. Both groups performed isometric exercise coupled with electromyographic biofeedback for five days a week for five weeks. Both groups reported gains in muscle strength after five week training. However, the difference was found to be statistically insignificant between the two groups (P=0.224). The results suggest that gender did not affect gains in muscle strength by isometric exercise coupled with electromyographic biofeedback in patients with knee OA. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Korsholm, Anne Sofie; Kjær, Thomas Nordstrøm; Ornstrup, Marie Juul; Pedersen, Steen Bønløkke
2017-03-04
Resveratrol possesses several beneficial metabolic effects in rodents, while the effects of resveratrol in humans remain unclear. Therefore, we performed a non-targeted comprehensive metabolomic analysis on blood, urine, adipose tissue, and skeletal muscle tissue in middle-aged men with metabolic syndrome randomized to either resveratrol or placebo treatment for four months. Changes in steroid hormones across all four matrices were the most pronounced changes observed. Resveratrol treatment reduced sulfated androgen precursors in blood, adipose tissue, and muscle tissue, and increased these metabolites in urine. Furthermore, markers of muscle turnover were increased and lipid metabolism was affected, with increased intracellular glycerol and accumulation of long-chain saturated, monounsaturated, and polyunsaturated (n3 and n6) free fatty acids in resveratrol-treated men. Finally, urinary derivatives of aromatic amino acids, which mainly reflect the composition of the gut microbiota, were altered upon resveratrol treatment. In conclusion, the non-targeted metabolomics approach applied to four different matrices provided evidence of subtle but robust effects on several metabolic pathways following resveratrol treatment for four months in men with metabolic syndrome-effects that, for the most part, would not have been detected by routine analyses. The affected pathways should be the focus of future clinical trials on resveratrol's effects, and perhaps particularly the areas of steroid metabolism and the gut microbiome.
Gandolla, Marta; Guanziroli, Eleonora; D'Angelo, Andrea; Cannaviello, Giovanni; Molteni, Franco; Pedrocchi, Alessandra
2018-01-01
Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground gait training. The user controls the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of the exoskeleton control system is crucial—it is set according to the residual functional abilities of the patient, and it needs to ensure lower limbs powered gait to be the most physiological as possible. This work focuses on the definition of an automatic calibration procedure able to detect the best Ekso setting for each patient. EMG activity has been recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles in a group of 7 healthy controls and 13 neurological patients. EMG signals have been processed so to obtain muscles activation patterns. The mean muscular activation pattern derived from the controls cohort has been set as reference. The developed automatic calibration procedure requires the patient to perform overground walking trials supported by the exoskeleton while changing parameters setting. The Gait Metric index is calculated for each trial, where the closer the performance is to the normative muscular activation pattern, in terms of both relative amplitude and timing, the higher the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best parameters set. It has to be noted that the automatic computational calibration procedure is based on the same number of overground walking trials, and the same experimental set-up as in the current manual calibration procedure. The proposed approach allows supporting the rehabilitation team in the setting procedure. It has been demonstrated to be robust, and to be in agreement with the current gold standard (i.e., manual calibration performed by an expert engineer). The use of a graphical user interface is a promising tool for the effective use of an automatic procedure in a clinical context. PMID:29615890
Gandolla, Marta; Guanziroli, Eleonora; D'Angelo, Andrea; Cannaviello, Giovanni; Molteni, Franco; Pedrocchi, Alessandra
2018-01-01
Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground gait training. The user controls the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of the exoskeleton control system is crucial-it is set according to the residual functional abilities of the patient, and it needs to ensure lower limbs powered gait to be the most physiological as possible. This work focuses on the definition of an automatic calibration procedure able to detect the best Ekso setting for each patient. EMG activity has been recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles in a group of 7 healthy controls and 13 neurological patients. EMG signals have been processed so to obtain muscles activation patterns. The mean muscular activation pattern derived from the controls cohort has been set as reference. The developed automatic calibration procedure requires the patient to perform overground walking trials supported by the exoskeleton while changing parameters setting. The Gait Metric index is calculated for each trial, where the closer the performance is to the normative muscular activation pattern, in terms of both relative amplitude and timing, the higher the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best parameters set. It has to be noted that the automatic computational calibration procedure is based on the same number of overground walking trials, and the same experimental set-up as in the current manual calibration procedure. The proposed approach allows supporting the rehabilitation team in the setting procedure. It has been demonstrated to be robust, and to be in agreement with the current gold standard (i.e., manual calibration performed by an expert engineer). The use of a graphical user interface is a promising tool for the effective use of an automatic procedure in a clinical context.
Circulating microRNAs as potential biomarkers of aerobic exercise capacity.
Mooren, Frank C; Viereck, Janika; Krüger, Karsten; Thum, Thomas
2014-02-15
Purpose microRNAs (miRs) are crucial intracellular mediators of various biological processes, also affecting the cardiovascular system. Recently, it has been shown that miRs circulate extracellularly in the bloodstream and that such circulating miRs change in response to physical activity. Therefore, the purpose of the current study was to investigate heart/muscle specific and inflammation related miRs in plasma of individuals before, directly after, and 24 h after a marathon run and to analyze their relation to conventional biochemical, cardiovascular, and performance indexes. Male endurance athletes (n =14) were recruited for the study after performing a battery of cardiac functional tests. Blood samples were collected before, directly after, and 24 h after a public marathon run. miR-1, miR-133, miR-206, miR-499, miR-208b, miR-21, and miR-155 were measured using individual Taqman assays and normalized to Caenorhabditis elegans miR-39 (cel-39) spike-in control. Moreover, soluble cardiac, inflammatory, and muscle damage markers were determined. As a result, skeletal- and heart muscle-specific miRs showed a significant increase after the marathon. The strongest increase was observed for miR-206. Twenty-four hours after the run, only miR-499 and miR-208b were returned to preexercise levels, whereas the others were still enhanced. In contrast, miR-21 and -155 were not affected by exercise. miR-1, -133a, and -206 correlated to aerobic performance parameters such as maximum oxygen uptake (VO(2max)) and running speed at individual anaerobic lactate threshold (VIAS). miR-1 showed a moderate negative correlation with fractional shortening, whereas miR-133a was positively related to the thickness of intraventricular septum. None of the miRs correlated with cardiac injury markers such as troponin T, troponin I, and pro-brain natriuretic peptide. In conclusion, these findings suggest a potential role for muscle- and heart-specific miRs in cardiovascular adaptation processes after endurance exercise. Moreover, the specific correlation of miR-1, -133a, and -206 to performance parameters indicated their potential role as biomarkers of aerobic capacity.
Circulating micrornas as potential biomarkers of aerobic exercise capacity
Viereck, Janika; Krüger, Karsten; Thum, Thomas
2013-01-01
Purpose microRNAs (miRs) are crucial intracellular mediators of various biological processes, also affecting the cardiovascular system. Recently, it has been shown that miRs circulate extracellularly in the bloodstream and that such circulating miRs change in response to physical activity. Therefore, the purpose of the current study was to investigate heart/muscle specific and inflammation related miRs in plasma of individuals before, directly after, and 24 h after a marathon run and to analyze their relation to conventional biochemical, cardiovascular, and performance indexes. Male endurance athletes (n =14) were recruited for the study after performing a battery of cardiac functional tests. Blood samples were collected before, directly after, and 24 h after a public marathon run. miR-1, miR-133, miR-206, miR-499, miR-208b, miR-21, and miR-155 were measured using individual Taqman assays and normalized to Caenorhabditis elegans miR-39 (cel-39) spike-in control. Moreover, soluble cardiac, inflammatory, and muscle damage markers were determined. As a result, skeletal- and heart muscle-specific miRs showed a significant increase after the marathon. The strongest increase was observed for miR-206. Twenty-four hours after the run, only miR-499 and miR-208b were returned to preexercise levels, whereas the others were still enhanced. In contrast, miR-21 and -155 were not affected by exercise. miR-1, -133a, and -206 correlated to aerobic performance parameters such as maximum oxygen uptake (V̇o2max) and running speed at individual anaerobic lactate threshold (VIAS). miR-1 showed a moderate negative correlation with fractional shortening, whereas miR-133a was positively related to the thickness of intraventricular septum. None of the miRs correlated with cardiac injury markers such as troponin T, troponin I, and pro-brain natriuretic peptide. In conclusion, these findings suggest a potential role for muscle- and heart-specific miRs in cardiovascular adaptation processes after endurance exercise. Moreover, the specific correlation of miR-1, -133a, and -206 to performance parameters indicated their potential role as biomarkers of aerobic capacity. PMID:24363306
Szcześniak, Katarzyna A; Ciecierska, Anna; Ostaszewski, Piotr; Sadkowski, Tomasz
2016-10-01
β-Hydroxy-β-methylbutyrate (HMB) is a popular ergogenic aid used by human athletes and as a supplement to sport horses, because of its ability to aid muscle recovery, improve performance and body composition. Recent findings suggest that HMB may stimulate satellite cells and affect expressions of genes regulating skeletal muscle cell growth. Despite the scientific data showing benefits of HMB supplementation in horses, no previous study has explained the mechanism of action of HMB in this species. The aim of this study was to reveal the molecular background of HMB action on equine skeletal muscle by investigating the transcriptomic profile changes induced by HMB in equine satellite cells in vitro. Upon isolation from the semitendinosus muscle, equine satellite cells were cultured until the 2nd day of differentiation. Differentiating cells were incubated with HMB for 24 h. Total cellular RNA was isolated, amplified, labelled and hybridised to microarray slides. Microarray data validation was performed with real-time quantitative PCR. HMB induced differential expressions of 361 genes. Functional analysis revealed that the main biological processes influenced by HMB in equine satellite cells were related to muscle organ development, protein metabolism, energy homoeostasis and lipid metabolism. In conclusion, this study demonstrated for the first time that HMB has the potential to influence equine satellite cells by controlling global gene expression. Genes and biological processes targeted by HMB in equine satellite cells may support HMB utility in improving growth and regeneration of equine skeletal muscle; however, the overall role of HMB in horses remains equivocal and requires further proteomic, biochemical and pharmacokinetic studies.
Buck, E L; Mizubuti, I Y; Alfieri, A A; Otonel, R A A; Buck, L Y; Souza, F P; Prado-Calixto, O P; Poveda-Parra, A R; Alexandre Filho, L; Lopera-Barrero, N M
2017-03-16
Propolis can be used as growth enhancer due to its antimicrobial, antioxidant, and immune-stimulant properties, but its effects on morphometry and muscle gene expression are largely unknown. The present study evaluates the influence of propolis on muscle morphometry and myostatin gene expression in Nile tilapia (Oreochromis niloticus) bred in net cages. Reversed males (GIFT strain) with an initial weight of 170 ± 25 g were distributed in a (2 x 4) factorial scheme, with two diets (DPRO, commercial diet with 4% propolis ethanol extract and DCON, commercial diet without propolis, control) and four assessment periods (0, 35, 70, and 105 experimental days). Muscles were evaluated at each assessment period. Histomorphometric analysis classified the fiber diameters into four groups: <20 μm; 20-30 μm; 30-50 μm; and > 50 μm. RT-qPCR was performed to assess myostatin gene expression. Fibers < 20 µm diameter were more frequent in DPRO than in DCON at all times. Fiber percentages >30 µm (30-50 and > 50 µm) at 70 days were 25.39% and 40.07% for DPRO and DCON, respectively. There was greater myostatin gene expression at 105 days, averaging 1.93 and 1.89 for DCON and DPRO, respectively, with no significant difference in any of the analyzed periods. Propolis ethanol extract did not affect the diameter of muscle fibers or the gene expression of myostatin. Future studies should describe the mechanisms of natural products' effects on muscle growth and development since these factors are highly relevant for fish production performance.
Hody, S; Rogister, B; Leprince, P; Laglaine, T; Croisier, J-L
2013-09-01
The aims of this study were first to compare the response of dominant and non-dominant legs to eccentric exercise and second, to examine whether there is an effect of exercise order on the magnitude of symptoms associated with intense eccentric protocols. Eighteen young men performed three sets of 30 maximal eccentric isokinetic (60° s(-1)) contractions of the knee extensors (range of motion, ROM: 0°-100°, 0 = full extension) using either dominant or non-dominant leg. They repeated a similar eccentric bout using the contralateral leg 6 weeks later. The sequence of leg's use was allocated to create equally balanced groups. Four indirect markers of muscle damage including subjective pain intensity, maximal isometric strength, muscle stiffness and plasma creatine kinase (CK) activity were measured before and 24 h after exercise. All markers changed significantly following the eccentric bout performed either by dominant or non-dominant legs, but no significant difference was observed between legs. Interestingly, the comparison between the first and second eccentric bouts revealed that muscle soreness (-42%, P<0.001), CK activity (-62%, P<0.05) and strength loss (-54%, P<0.01) were significantly lower after the second bout. This study suggests that leg dominance does not influence the magnitude of exercise-induced muscle damage and supports for the first time the existence of a contralateral protection against exercise-induced muscle damage in the lower limbs. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Muscle activity levels in upper-body push exercises with different loads and stability conditions.
Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan Carlos; Martin, Fernando; Rogers, Michael E
2014-11-01
Exercises that aim to stimulate muscular hypertrophy and increase neural drive to the muscle fibers should be used during rehabilitation. Thus, it is of interest to identify optimal exercises that efficiently achieve high muscle activation levels. The purpose of this study was to compare the muscle activation levels during push-up variations (ie, suspended push-ups with/without visual input on different suspension systems, and push-ups on the floor with/without additional elastic resistance) with the bench press exercise and the standing cable press exercise both performed at 50%, 70%, and 85% of the 1-repetition maximum. Young fit male university students (N = 29) performed 3 repetitions in all conditions under the same standardized procedures. Average amplitude of the electromyogram (EMG) root mean square for the rectus abdominis, external oblique, sternocostal head of the pectoralis major, anterior deltoid, long head of the triceps brachii, upper trapezius, anterior serratus, and posterior deltoid was recorded. The EMG signals were normalized to the maximum voluntary isometric contraction. The EMG data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Elastic-resisted push-ups induce similar EMG stimulus in the prime movers as the bench press at high loads while also providing a greater core challenge. Suspended push-ups are a highly effective way to stimulate abdominal muscles. Pectoralis major, anterior deltoid, and anterior serratus are highly elicited during more stable pushing conditions, whereas abdominal muscles, triceps brachii, posterior deltoid, and upper trapezius are affected in the opposite manner.
Experimental masseter muscle pain alters jaw-neck motor strategy.
Wiesinger, B; Häggman-Henrikson, B; Hellström, F; Wänman, A
2013-08-01
A functional integration between the jaw and neck regions has been demonstrated during normal jaw function. The effect of masseter muscle pain on this integrated motor behaviour in man is unknown. The aim of this study was to investigate the effect of induced masseter muscle pain on jaw-neck movements during a continuous jaw opening-closing task. Sixteen healthy men performed continuous jaw opening-closing movements to a target position, defined as 75% of the maximum jaw opening. Each subject performed two trials without pain (controls) and two trials with masseter muscle pain, induced with hypertonic saline as a single injection. Simultaneous movements of the mandible and the head were registered with a wireless optoelectronic three-dimensional recording system. Differences in movement amplitudes between trials were analysed with Friedman's test and corrected Wilcoxon matched pairs test. The head movement amplitudes were significantly larger during masseter muscle pain trials compared with control. Jaw movement amplitudes did not differ significantly between any of the trials after corrected Wilcoxon tests. The ratio between head and jaw movement amplitudes was significantly larger during the first pain trial compared with control. Experimental masseter muscle pain in humans affected integrated jaw-neck movements by increasing the neck component during continuous jaw opening-closing tasks. The findings indicate that pain can alter the strategy for jaw-neck motor control, which further underlines the functional integration between the jaw and neck regions. This altered strategy may have consequences for development of musculoskeletal pain in the jaw and neck regions. © 2012 European Federation of International Association for the Study of Pain Chapters.
Factors affecting outcome of triceps motor branch transfer for isolated axillary nerve injury.
Lee, Joo-Yup; Kircher, Michelle F; Spinner, Robert J; Bishop, Allen T; Shin, Alexander Y
2012-11-01
Triceps motor branch transfer has been used in upper brachial plexus injury and is potentially effective for isolated axillary nerve injury in lieu of sural nerve grafting. We evaluated the functional outcome of this procedure and determined factors that influenced the outcome. A retrospective chart review was performed of 21 patients (mean age, 38 y; range, 16-79 y) who underwent triceps motor branch transfer for the treatment of isolated axillary nerve injury. Deltoid muscle strength was evaluated using the modified British Medical Research Council grading at the last follow-up (mean, 21 mo; range, 12-41 mo). The following variables were analyzed to determine whether they affected the outcome of the nerve transfer: the age and sex of the patient, delay from injury to surgery, body mass index (BMI), severity of trauma, and presence of rotator cuff lesions. The Spearman correlation coefficient and multiple linear regression were performed for statistical analysis. The average Medical Research Council grade of deltoid muscle strength was 3.5 ± 1.1. Deltoid muscle strength correlated with the age of the patient, delay from injury to surgery, and BMI of the patient. Five patients failed to achieve more than M3 grade. Among them, 4 patients were older than 50 years and 1 was treated 14 months after injury. In the multiple linear regression model, the delay from injury to surgery, age of the patient, and BMI of the patient were the important factors, in that order, that affected the outcome of this procedure. Isolated axillary nerve injury can be treated successfully with triceps motor branch transfer. However, outstanding outcomes are not universal, with one fourth failing to achieve M3 strength. The outcome of this procedure is affected by the delay from injury to surgery and the age and BMI of the patient. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Interactive processes link the multiple symptoms of fatigue in sport competition.
Knicker, Axel J; Renshaw, Ian; Oldham, Anthony R H; Cairns, Simeon P
2011-04-01
Muscle physiologists often describe fatigue simply as a decline of muscle force and infer this causes an athlete to slow down. In contrast, exercise scientists describe fatigue during sport competition more holistically as an exercise-induced impairment of performance. The aim of this review is to reconcile the different views by evaluating the many performance symptoms/measures and mechanisms of fatigue. We describe how fatigue is assessed with muscle, exercise or competition performance measures. Muscle performance (single muscle test measures) declines due to peripheral fatigue (reduced muscle cell force) and/or central fatigue (reduced motor drive from the CNS). Peak muscle force seldom falls by >30% during sport but is often exacerbated during electrical stimulation and laboratory exercise tasks. Exercise performance (whole-body exercise test measures) reveals impaired physical/technical abilities and subjective fatigue sensations. Exercise intensity is initially sustained by recruitment of new motor units and help from synergistic muscles before it declines. Technique/motor skill execution deviates as exercise proceeds to maintain outcomes before they deteriorate, e.g. reduced accuracy or velocity. The sensation of fatigue incorporates an elevated rating of perceived exertion (RPE) during submaximal tasks, due to a combination of peripheral and higher CNS inputs. Competition performance (sport symptoms) is affected more by decision-making and psychological aspects, since there are opponents and a greater importance on the result. Laboratory based decision making is generally faster or unimpaired. Motivation, self-efficacy and anxiety can change during exercise to modify RPE and, hence, alter physical performance. Symptoms of fatigue during racing, team-game or racquet sports are largely anecdotal, but sometimes assessed with time-motion analysis. Fatigue during brief all-out racing is described biomechanically as a decline of peak velocity, along with altered kinematic components. Longer sport events involve pacing strategies, central and peripheral fatigue contributions and elevated RPE. During match play, the work rate can decline late in a match (or tournament) and/or transiently after intense exercise bursts. Repeated sprint ability, agility and leg strength become slightly impaired. Technique outcomes, such as velocity and accuracy for throwing, passing, hitting and kicking, can deteriorate. Physical and subjective changes are both less severe in real rather than simulated sport activities. Little objective evidence exists to support exercise-induced mental lapses during sport. A model depicting mind-body interactions during sport competition shows that the RPE centre-motor cortex-working muscle sequence drives overall performance levels and, hence, fatigue symptoms. The sporting outputs from this sequence can be modulated by interactions with muscle afferent and circulatory feedback, psychological and decision-making inputs. Importantly, compensatory processes exist at many levels to protect against performance decrements. Small changes of putative fatigue factors can also be protective. We show that individual fatigue factors including diminished carbohydrate availability, elevated serotonin, hypoxia, acidosis, hyperkalaemia, hyperthermia, dehydration and reactive oxygen species, each contribute to several fatigue symptoms. Thus, multiple symptoms of fatigue can occur simultaneously and the underlying mechanisms overlap and interact. Based on this understanding, we reinforce the proposal that fatigue is best described globally as an exercise-induced decline of performance as this is inclusive of all viewpoints. © 2011 Adis Data Information BV. All rights reserved.
Is Soleus Muscle-Tendon-Unit Behavior Related to Ground-Force Application During the Sprint Start?
Schrödter, Erik; Brüggemann, Gert-Peter; Willwacher, Steffen
2017-04-01
To describe the stretch-shortening behavior of ankle plantar-flexing muscle-tendon units (MTUs) during the push-off in a sprint start. Fifty-four male (100-m personal best: 9.58-12.07 s) and 34 female (100-m personal best: 11.05-14.00 s) sprinters were analyzed using an instrumented starting block and 2-dimensional high-speed video imaging. Analysis was performed separately for front and rear legs, while accounting for block obliquities and performance levels. The results showed clear signs of a dorsiflexion in the upper ankle joint (front block 15.8° ± 7.4°, 95% CI 13.2-18.2°; rear block 8.0° ± 5.7°, 95% CI 6.4-9.7°) preceding plantar flexion. When observed in their natural block settings, the athletes' block obliquity did not significantly affect push-off characteristics. It seems that the stretch-shortening-cycle-like motion of the soleus MTU has an enhancing influence on push-off force generation. This study provides the first systematic observation of ankle-joint stretch-shortening behavior for sprinters of a wide range of performance levels. The findings highlight the importance of reactive-type training for the improvement of starting performance. Nonetheless, future studies need to resolve the independent contributions of tendinous and muscle-fascicle structures to overall MTU performance.
NASA Astrophysics Data System (ADS)
Grassi, Bruno; Quaresima, Valentina
2016-09-01
In most daily activities related to work or leisure, the energy for muscle work substantially comes from oxidative metabolism. Functional limitations or impairments of this metabolism can significantly affect exercise tolerance and performance. As a method for the functional evaluation of skeletal muscle oxidative metabolism, near-infrared spectroscopy (NIRS) has important strengths but also several limitations, some of which have been overcome by recent technological developments. Skeletal muscle fractional O2 extraction, the main variable which can be noninvasively evaluated by NIRS, is the result of the dynamic balance between O2 utilization and O2 delivery; it can yield relevant information on key physiological and pathophysiological mechanisms, relevant in the evaluation of exercise performance and exercise tolerance in healthy subjects (in normal and in altered environmental conditions) and in patients. In the right hands, NIRS can offer insights into the physiological and pathophysiological adaptations to conditions of increased O2 needs that involve, in an integrated manner, different organs and systems of the body. In terms of patient evaluation, NIRS allows determination of the evolution of the functional impairments, to identify their correlations with clinical symptoms, to evaluate the effects of therapeutic or rehabilitative interventions, and to gain pathophysiological and diagnostic insights.
Grassi, Bruno; Quaresima, Valentina
2016-09-01
In most daily activities related to work or leisure, the energy for muscle work substantially comes from oxidative metabolism. Functional limitations or impairments of this metabolism can significantly affect exercise tolerance and performance. As a method for the functional evaluation of skeletal muscle oxidative metabolism, near-infrared spectroscopy (NIRS) has important strengths but also several limitations, some of which have been overcome by recent technological developments. Skeletal muscle fractional O2 extraction, the main variable which can be noninvasively evaluated by NIRS, is the result of the dynamic balance between O2 utilization and O2 delivery; it can yield relevant information on key physiological and pathophysiological mechanisms, relevant in the evaluation of exercise performance and exercise tolerance in healthy subjects (in normal and in altered environmental conditions) and in patients. In the right hands, NIRS can offer insights into the physiological and pathophysiological adaptations to conditions of increased O2 needs that involve, in an integrated manner, different organs and systems of the body. In terms of patient evaluation, NIRS allows determination of the evolution of the functional impairments, to identify their correlations with clinical symptoms, to evaluate the effects of therapeutic or rehabilitative interventions, and to gain pathophysiological and diagnostic insights.
Emotional facial expressions during REM sleep dreams.
Rivera-García, Ana P; López Ruiz, Irma E; Ramírez-Salado, Ignacio; González-Olvera, Jorge J; Ayala-Guerrero, Fructuoso; Jiménez-Anguiano, Anabel
2018-06-04
Although motor activity is actively inhibited during rapid eye movement (REM) sleep, specific activations of the facial mimetic musculature have been observed during this stage, which may be associated with greater emotional dream mentation. Nevertheless, no specific biomarker of emotional valence or arousal related to dream content has been identified to date. In order to explore the electromyographic (EMG) activity (voltage, number, density and duration) of the corrugator and zygomaticus major muscles during REM sleep and its association with emotional dream mentation, this study performed a series of experimental awakenings after observing EMG facial activations during REM sleep. The study was performed with 12 healthy female participants using an 8-hr nighttime sleep recording. Emotional tone was evaluated by five blinded judges and final valence and intensity scores were obtained. Emotions were mentioned in 80.4% of dream reports. The voltage, number, density and duration of facial muscle contractions were greater for the corrugator muscle than for the zygomaticus muscle, whereas high positive emotions predicted the number (R 2 0.601, p = 0.0001) and voltage (R 2 0.332, p = 0.005) of the zygomaticus. Our findings suggest that zygomaticus events were predictive of the experience of positive affect during REM sleep in healthy women. © 2018 European Sleep Research Society.
Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.
2009-07-01
The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifyingmore » this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.« less
Nabben, Miranda; Schmitz, Joep P J; Ciapaite, Jolita; le Clercq, Carlijn M P; van Riel, Natal A; Haak, Harm R; Nicolay, Klaas; de Coo, Irenaeus F M; Smeets, Hubert; Praet, Stephan F; van Loon, Luc J; Prompers, Jeanine J
2017-05-01
Muscle weakness and exercise intolerance negatively affect the quality of life of patients with mitochondrial myopathy. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We investigated whether 1 wk of dietary inorganic nitrate supplementation decreases the oxygen cost of exercise and improves mitochondrial function in patients with mitochondrial myopathy. Ten patients with mitochondrial myopathy (40 ± 5 yr, maximal whole body oxygen uptake = 21.2 ± 3.2 ml·min -1 ·kg body wt -1 , maximal work load = 122 ± 26 W) received 8.5 mg·kg body wt -1 ·day -1 inorganic nitrate (~7 mmol) for 8 days. Whole body oxygen consumption at 50% of the maximal work load, in vivo skeletal muscle oxidative capacity (evaluated from postexercise phosphocreatine recovery using 31 P-magnetic resonance spectroscopy), and ex vivo mitochondrial oxidative capacity in permeabilized skinned muscle fibers (measured with high-resolution respirometry) were determined before and after nitrate supplementation. Despite a sixfold increase in plasma nitrate levels, nitrate supplementation did not affect whole body oxygen cost during submaximal exercise. Additionally, no beneficial effects of nitrate were found on in vivo or ex vivo muscle mitochondrial oxidative capacity. This is the first time that the therapeutic potential of dietary nitrate for patients with mitochondrial myopathy was evaluated. We conclude that 1 wk of dietary nitrate supplementation does not reduce oxygen cost of exercise or improve mitochondrial function in the group of patients tested. Copyright © 2017 the American Physiological Society.
Modulation of the Muscle Activity During Sleep in Cervical Dystonia.
Antelmi, Elena; Ferri, Raffaele; Provini, Federica; Scaglione, Cesa M L; Mignani, Francesco; Rundo, Francesco; Vandi, Stefano; Fabbri, Margherita; Pizza, Fabio; Plazzi, Giuseppe; Martinelli, Paolo; Liguori, Rocco
2017-07-01
Impaired sleep has been reported as an important nonmotor feature in dystonia, but so far, self-reported complaints have never been compared with nocturnal video-polysomnographic (PSG) recording, which is the gold standard to assess sleep-related disorders. Twenty patients with idiopathic isolated cervical dystonia and 22 healthy controls (HC) underwent extensive clinical investigations, neurological examination, and questionnaire screening for excessive daytime sleepiness and sleep-related disorders. A full-night video PSG was performed in both patients and HC. An ad hoc montage, adding electromyographic leads over the muscle affected with dystonia, was used. When compared to controls, patients showed significantly increased pathological values on the scale assessing self-reported complaints of impaired nocturnal sleep. Higher scores of impaired nocturnal sleep did not correlate with any clinical descriptors but for a weak correlation with higher scores on the scale for depression. On video-PSG, patients had significantly affected sleep architecture (with decreased sleep efficiency and increased sleep latency). Activity over cervical muscles disappears during all the sleep stages, reaching significantly decreased values when compared to controls both in nonrapid eye movements and rapid eye movements sleep. Patients with cervical dystonia reported poor sleep quality and showed impaired sleep architecture. These features however cannot be related to the persistence of muscle activity over the cervical muscles, which disappears in all the sleep stages, reaching significantly decreased values when compared to HC. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L; Lanuza, Maria A; Tomàs, Josep
2017-01-01
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.
Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M.; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L.; Lanuza, Maria A.; Tomàs, Josep
2017-01-01
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function. PMID:28572757
Wu, Weiche; Xu, Ziye; Zhang, Ling; Liu, Jiaqi; Feng, Jie; Wang, Xinxia; Shan, Tizhong; Wang, Yizhen
2018-05-01
Excessive intramyocellular triacylglycerols (IMTGs, muscle lipids) are associated with the abnormal energy metabolism and insulin resistance of skeletal muscle. AMP-activated protein kinase (AMPK), a crucial cellular energy sensor, consists of α, β and γ subunits. Researchers have not clearly determined whether Prkaa1 (also known as AMPKα1) affects IMTG accumulation in skeletal muscle. Here, we show an important role of Prkaa1 in skeletal muscle lipid metabolism. Deletion of muscle Prkaa1 leads to the delayed development of skeletal muscles but does not affect glucose tolerance or insulin sensitivity in animals fed a normal diet. Notably, when animals are fed a high-fat diet, the skeletal muscle of muscle-specific Prkaa1 knockout mice accumulates more lipids than the skeletal muscle of wild-type (WT) mice, with concomitant upregulation of adipogenic gene expressions and downregulation of the expression of genes associated with mitochondrial oxidation. Muscle-specific Prkaa1 ablation also results in hyperlipidemia, which may contribute to the increased IMTG levels. Furthermore, Prkaa1 deletion activates skeletal muscle mTOR signalling, which has a central role in lipid metabolism and mitochondrial oxidation. Collectively, our study provides new insights into the role of Prkaa1 in skeletal muscle. This knowledge may contribute to the treatment of related metabolic diseases.
Cotten, Steven W; Kornegay, Joe N; Bogan, Daniel J; Wadosky, Kristine M; Patterson, Cam; Willis, Monte S
2013-01-01
Recent studies suggest that inhibiting the protein myostatin, a negative regulator of skeletal muscle mass, may improve outcomes in patients with Duchenne muscular dystrophy by enhancing muscle mass. When the dystrophin-deficient golden retriever muscular dystrophy (GRMD) dog was bred with whippets having a heterozygous mutation for the myostatin gene, affected GRMD dogs with decreased myostatin (GRippets) demonstrated an accelerated physical decline compared to related affected GRMD dogs with full myostatin. To examine the role of the ubiquitin proteasome and calpain systems in this accelerated decline, we determined the expression of the muscle ubiquitin ligases MuRF1, Atrogin-1, RNF25, RNF11, and CHIP: the proteasome subunits PSMA6, PSMB4, and PSME1: and calpain 1/2 by real time PCR in the cranial sartorius and vastus lateralis muscles in control, affected GRMD, and GRippet dogs. While individual affected GRMD and GRippet dogs contributed to an increased variability seen in ubiquitin ligase expression, neither group was significantly different from the control group. The affected GRMD dogs demonstrated significant increases in caspase-like and trypsin-like activity in the cranial sartorius; however, all three proteasome activities in the GRippet muscles did not differ from controls. Increased variability in calpain 1 and calpain 2 expression and activity in the affected GRMD and GRippet groups were identified, but no statistical differences from the control group were seen. These studies suggest a role of myostatin in the disease progression of GRMD, which does not significantly involve key components of the ubiquitin proteasome and calpain systems involved in the protein quality control of sarcomere and other structural skeletal muscle proteins.
Okazaki, Hisanori; Ishimura, Eiji; Okuno, Senji; Norimine, Kyoko; Yamakawa, Kenjiro; Yamakawa, Tomoyuki; Shoji, Shigeichi; Nishizawa, Yoshiki; Inaba, Masaaki
2013-01-01
Serum magnesium (Mg) levels have been associated with muscle performance in the general population. We hypothesized that serum Mg would be associated with muscle quality in hemodialysis patients. A total of 310 patients were examined (age: 58 ± 12 years, hemodialysis duration: 6.4 ± 6.0 years, 60.6% men, and 36.1% diabetics). Arm lean mass was measured by dual energy X-ray absorptiometry (DXA) on the dominant side. Arm muscle quality was defined as the ratio of the handgrip strength to the arm lean mass of the same side (kg/kg). Serum Mg was 1.15 ± 0.16 mmol/L (2.8 ± 0.4 mg/dL), being higher than the reference range of normal subjects. There was a significant negative correlation between muscle quality and age (r = -0.326, p<0.0001) and duration of hemodialysis (r = -0.253, p<0.0001). The muscle quality of the diabetics was significantly lower than that of the non-diabetics (p<0.001). There was a significant, positive correlation between muscle quality and serum Mg (r = 0.118, p<0.05), but not serum calcium or phosphate. In multiple regression analysis, age, gender, hemodialysis duration, diabetes, and serum Mg (β = 0.129, p<0.05) were significantly and independently associated with muscle quality (R(2) = 0.298, p<0.0001). These results demonstrated that a lower serum Mg concentration was significantly associated with poor muscle quality in hemodialysis patients. Further studies are needed to explore the mechanism by which lower serum Mg affects muscle quality.
Velleman, Sandra G; Clark, Daniel L
2015-09-01
The wooden breast condition is a myopathy affecting the pectoralis major (p. major) muscle in fast-growing commercial broiler lines. Currently, wooden breast-affected birds are phenotypically detected by palpation of the breast area, with affected birds having a very hard p. major muscle that is of lower value. The objective of this study was to compare the wooden breast myopathy in two fast-growing broiler lines (Lines A and B) with incidence of wooden breast to a slower growing broiler Line C with no phenotypically observable wooden breast. One of the characteristics of the wooden breast condition is fibrosis of the p. major muscle. Morphologic assessment of Lines A and B showed significant fibrosis in both lines, but the collagen distribution and arrangement of the collagen fibrils was different. In Line A, the collagen fibrils were tightly packed, whereas in Line B the collagen fibrils were diffuse. This difference in collagen organization may be due to the expression of the extracellular matrix proteoglycan decorin. Decorin is a regulator of collagen crosslinking and is expressed at significantly higher levels in Line A wooden breast-affected p. major muscle, which would lead to tightly packed collagen fibers due to high levels of collagen crosslinking. Furthermore, expression of the muscle-specific transcriptional regulatory factors for proliferation and differentiation of muscle cells leading to the regeneration of muscle in response to muscle damage was significantly elevated in Line A, and only the factor for differentiation, myogenin, was increased in Line B. The results from this study provide initial evidence that the etiology of the wooden breast myopathy may vary between fast-growing commercial broiler lines.
Farshidfar, Farnaz; Pinder, Mark A; Myrie, Semone B
2017-01-01
Creatine, a very popular supplement among athletic populations, is of growing interest for clinical applications. Since over 90% of creatine is stored in skeletal muscle, the effect of creatine supplementation on muscle metabolism is a widely studied area. While numerous studies over the past few decades have shown that creatine supplementation has many favorable effects on skeletal muscle physiology and metabolism, including enhancing muscle mass (growth/hypertrophy); the underlying mechanisms are poorly understood. This report reviews studies addressing the mechanisms of action of creatine supplementation on skeletal muscle growth/hypertrophy. Early research proposed that the osmotic effect of creatine supplementation serves as a cellular stressor (osmosensing) that acts as an anabolic stimulus for protein synthesis signal pathways. Other reports indicated that creatine directly affects muscle protein synthesis via modulations of components in the mammalian target of rapamycin (mTOR) pathway. Creatine may also directly affect the myogenic process (formation of muscle tissue), by altering secretions of myokines, such as myostatin and insulin-like growth factor-1, and expressions of myogenic regulatory factors, resulting in enhanced satellite cells mitotic activities and differentiation into myofiber. Overall, there is still no clear understanding of the mechanisms of action regarding how creatine affects muscle mass/growth, but current evidence suggests it may exert its effects through multiple approaches, with converging impacts on protein synthesis and myogenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration
Hiramuki, Yosuke; Sato, Takahiko; Furuta, Yasuhide; Surani, M. Azim; Sehara-Fujisawa, Atsuko
2015-01-01
When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle. PMID:26098312
Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration.
Hiramuki, Yosuke; Sato, Takahiko; Furuta, Yasuhide; Surani, M Azim; Sehara-Fujisawa, Atsuko
2015-01-01
When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle.
Park, Byoung-Sun; Noh, Ji-Woong; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Park, Jaehong; Kim, Junghwan
2015-11-01
[Purpose] The purpose of this study was to investigate the relationship between muscle activity and gait function following aquatic trunk exercise in hemiplegic stroke patients. [Subjects and Methods] This study's participants included thirteen hemiplegic patients (ten males and three females). The aquatic therapy consisted of administering concentrative aquatic therapy for four weeks in a therapeutic pool. Gait parameters were measured using a gait analysis system adjusted to each subject's comfortable walking speed. Electromyographic signals were measured for the rectus abdominis, external abdominal oblique, transversus abdominis/internal-abdominal oblique, and erector spine of each patients. [Results] The pre- and post-training performances of the transversus abdominis/internal-abdominal oblique were compared statistically. There was no statistical difference between the patients' pre- and post-training values of maximal voluntary isometric contraction of the rectus abdominis, but the external abdominal oblique values tended to improve. Furthermore, gait factors improved significantly in terms of walking speeds, walking cycles, affected-side stance phases, affected-stride lengths, and stance-phase symmetry indices, respectively. [Conclusion] These results suggest that the trunk exercise during aquatic therapy may in part contribute to clinically relevant improvements in muscle activities and gait parameters.
Park, Byoung-Sun; Noh, Ji-Woong; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Park, Jaehong; Kim, Junghwan
2015-01-01
[Purpose] The purpose of this study was to investigate the relationship between muscle activity and gait function following aquatic trunk exercise in hemiplegic stroke patients. [Subjects and Methods] This study’s participants included thirteen hemiplegic patients (ten males and three females). The aquatic therapy consisted of administering concentrative aquatic therapy for four weeks in a therapeutic pool. Gait parameters were measured using a gait analysis system adjusted to each subject’s comfortable walking speed. Electromyographic signals were measured for the rectus abdominis, external abdominal oblique, transversus abdominis/internal-abdominal oblique, and erector spine of each patients. [Results] The pre- and post-training performances of the transversus abdominis/internal-abdominal oblique were compared statistically. There was no statistical difference between the patients’ pre- and post-training values of maximal voluntary isometric contraction of the rectus abdominis, but the external abdominal oblique values tended to improve. Furthermore, gait factors improved significantly in terms of walking speeds, walking cycles, affected-side stance phases, affected-stride lengths, and stance-phase symmetry indices, respectively. [Conclusion] These results suggest that the trunk exercise during aquatic therapy may in part contribute to clinically relevant improvements in muscle activities and gait parameters. PMID:26696736
Porter, William; Gallagher, Sean; Torma-Krajewski, Janet
2010-05-01
Hand scaling is a physically demanding task responsible for numerous overexertion injuries in underground mining. Scaling requires the miner to use a long pry bar to remove loose rock, reducing the likelihood of rock fall injuries. The experiments described in this article simulated "rib" scaling (scaling a mine wall) from an elevated bucket to examine force generation and electromyographic responses using two types of scaling bars (steel and fiberglass-reinforced aluminum) at five target heights ranging from floor level to 176 cm. Ten male and six female subjects were tested in separate experiments. Peak and average force applied at the scaling bar tip and normalized electromyography (EMG) of the left and right pairs of the deltoid and erectores spinae muscles were obtained. Work height significantly affected peak prying force during scaling activities with highest force capacity at the lower levels. Bar type did not affect force generation. However, use of the lighter fiberglass bar required significantly more muscle activity to achieve the same force. Results of these studies suggest that miners scale points on the rock face that are below their knees, and reposition the bucket as often as necessary to do so. Published by Elsevier Ltd.
Is There Evidence that Runners can Benefit from Wearing Compression Clothing?
Engel, Florian Azad; Holmberg, Hans-Christer; Sperlich, Billy
2016-12-01
Runners at various levels of performance and specializing in different events (from 800 m to marathons) wear compression socks, sleeves, shorts, and/or tights in attempt to improve their performance and facilitate recovery. Recently, a number of publications reporting contradictory results with regard to the influence of compression garments in this context have appeared. To assess original research on the effects of compression clothing (socks, calf sleeves, shorts, and tights) on running performance and recovery. A computerized research of the electronic databases PubMed, MEDLINE, SPORTDiscus, and Web of Science was performed in September of 2015, and the relevant articles published in peer-reviewed journals were thus identified rated using the Physiotherapy Evidence Database (PEDro) Scale. Studies examining effects on physiological, psychological, and/or biomechanical parameters during or after running were included, and means and measures of variability for the outcome employed to calculate Hedges'g effect size and associated 95 % confidence intervals for comparison of experimental (compression) and control (non-compression) trials. Compression garments exerted no statistically significant mean effects on running performance (times for a (half) marathon, 15-km trail running, 5- and 10-km runs, and 400-m sprint), maximal and submaximal oxygen uptake, blood lactate concentrations, blood gas kinetics, cardiac parameters (including heart rate, cardiac output, cardiac index, and stroke volume), body and perceived temperature, or the performance of strength-related tasks after running. Small positive effect sizes were calculated for the time to exhaustion (in incremental or step tests), running economy (including biomechanical variables), clearance of blood lactate, perceived exertion, maximal voluntary isometric contraction and peak leg muscle power immediately after running, and markers of muscle damage and inflammation. The body core temperature was moderately affected by compression, while the effect size values for post-exercise leg soreness and the delay in onset of muscle fatigue indicated large positive effects. Our present findings suggest that by wearing compression clothing, runners may improve variables related to endurance performance (i.e., time to exhaustion) slightly, due to improvements in running economy, biomechanical variables, perception, and muscle temperature. They should also benefit from reduced muscle pain, damage, and inflammation.
Obesity, Muscular Strength, Muscle Composition and Physical Performance in an Elderly Population.
De Stefano, F; Zambon, S; Giacometti, L; Sergi, G; Corti, M C; Manzato, E; Busetto, L
2015-08-01
To evaluate the association between BMI levels, muscular strength, muscle composition and physical performance in the elderly. Italians subjects from the Progetto Veneto Anziani (ProVA) study were analyzed. The ProVa was a population study focused on chronic diseases and functional limitations in Italian subjects aged ≥65 years living in two Northeast Italian cities. The ProVa study included 3099 subjects. ProVa participants with unknown information on BMI or disability status were excluded. The final sample was thus represented by 1.188 men, and 1.723 women. Physical performance was measured with the Short Physical Performance Battery (SPPB) and leg muscular strength with dynamometry. Fat distribution and skeletal muscle composition were measured in an abdominal single-scan magnetic resonance (MRI) in a randomly selected sample of 348 subjects. Study population was stratified by BMI classes. An association between BMI levels and SPPB was observed. Normal weight subjects showed the best SPPB scores (8.29±0.03), with significant differences compared to underweight (7.50±0.15; p<0.001), overweight (8.12±0.02; p<0.001), class I (7.72±0.04; p<0.001), class II (6.67±0.09; p<0.001) and class III obesity (5.88±0.24; p<0.001). This pattern was not modified by adjustment for possible confounders. Compared to normal weight subjects (22.9±0.1 kg), leg muscular strength was higher in overweight (23.8±0.1; p<0.001) and in class I obesity (24.5±0.1; p<0.001), but it was reduced in class II (21.4±0.3; p<0.001) and class III (19.8±0.9; p<0.001). The association between BMI and impaired physical performance was not affected by adjustment for muscular strength. An inverse association between SPPB scores and fat infiltration in skeletal muscle was observed in patients with abdominal MRI. A poor physical performance was observed in overweight and obese elderly subjects. Leg strength was reduced only in subjects with severe obesity. Physical performance was negatively influenced by the degree of fat infiltration in skeletal muscle.
Reconstructive operations for the upper limb after brachial plexus palsy.
Rühmann, Oliver; Schmolke, Stephan; Bohnsack, Michael; Carls, Jörg; Flamme, Christian; Wirth, Carl Joachim
2004-07-01
Limited function due to paralysis following brachial plexus lesions can be improved by secondary operations of the bony and soft tissue. Between April 1994 and December 2000, 109 patients suffering from arm-plexus lesions underwent a total of 144 reconstructive operations guided by our concept of integrated therapy. The average age at the time of surgery was 32 years (range: 15-59). The following operations were performed: shoulder arthrodesis (23), trapezius transfer (74), rotation osteotomy of humerus (9), triceps to biceps transposition (9), transposition of forearm flexors or extensors (8), latissimus transfer (7), pectoralis transfer (1), teres major transfer (1), transposition of flexor carpi ulnaris to the tendons of extensor digitorum (10), and wrist arthrodesis (2). Prospectively, in all patients, the grade of muscle power of the affected upper extremity was evaluated prior to surgery. The follow-up period for all 144 operations was, on average, 22 months (range: 6-74). By means of operative measures, almost all patients obtained an improvement of shoulder function (100%) and stability (>90%), elbow flexion (85%), and hand, finger, and thumb (100%). When muscles malfunction after brachial plexus lesions, one should take into account the individual neuromuscular defect, passive joint function, and bony deformities; different procedures such as muscle transpositions, arthrodeses, and corrective osteotomies can then be performed to improve function of the upper extremity. Each form of operative treatment presents patients with certain benefits and all are integrated into a total treatment plan for the affected extremity.
Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin
2017-03-01
The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities of the non-stretched agonist quadriceps or hamstring muscles.
Nghiem, Peter P.; Bello, Luca; Stoughton, William B.; López, Sara Mata; Vidal, Alexander H.; Hernandez, Briana V.; Hulbert, Katherine N.; Gourley, Taylor R.; Bettis, Amanda K.; Balog-Alvarez, Cynthia J.; Heath-Barnett, Heather; Kornegay, Joe N.
2017-01-01
Duchenne muscular dystrophy (DMD) is an X-chromosome-linked disorder and the most common monogenic disease in people. Affected boys are diagnosed at a young age, become non-ambulatory by their early teens, and succumb to cardiorespiratory failure by their thirties. Despite being a monogenic condition resulting from mutations in the DMD gene, affected boys have noteworthy phenotypic variability. Efforts have identified genetic modifiers that could modify disease progression and be pharmacologic targets. Dogs affected with golden retriever muscular dystrophy (GRMD) have absent dystrophin and demonstrate phenotypic variability at the functional, histopathological, and molecular level. Our laboratory is particularly interested in muscle metabolism changes in dystrophin-deficient muscle. We identified several metabolic alterations, including myofiber type switching from fast (type II) to slow (type I), reduced glycolytic enzyme expression, reduced and morphologically abnormal mitochondria, and differential AMP-kinase phosphorylation (activation) between hypertrophied and wasted muscle. We hypothesize that muscle metabolism changes are, in part, responsible for phenotypic variability in GRMD. Pharmacological therapies aimed at modulating muscle metabolism can be tested in GRMD dogs for efficacy. PMID:28955176
Muscle strength in breast cancer patients receiving different treatment regimes
Klassen, Oliver; Schmidt, Martina E.; Ulrich, Cornelia M.; Schneeweiss, Andreas; Potthoff, Karin; Steindorf, Karen
2016-01-01
Abstract Background Muscle dysfunction and sarcopenia have been associated with poor performance status, an increased mortality risk, and greater side effects in oncologic patients. However, little is known about how performance is affected by cancer therapy. We investigated muscle strength in breast cancer patients in different adjuvant treatment settings and also compared it with data from healthy individuals. Methods Breast cancer patients (N = 255) from two randomized controlled exercise trials, staged 0–III and aged 54.4 ± 9.4 years, were categorized into four groups according to their treatment status. In a cross‐sectional design, muscle function was assessed bilaterally by isokinetic dynamometry (0°, 60°, 180°/s) as maximal voluntary isometric contraction (MVIC) and maximal isokinetic peak torque (MIPT) in shoulder rotators and knee flexors and extensors. Additionally, muscular fatigue index (FI%) and shoulder flexibility were evaluated. Healthy women (N = 26), aged 53.3 ± 9.8 years, were tested using the same method. Analysis of covariance was used to estimate the impact of different cancer treatments on skeletal muscle function with adjustment for various clinical and socio‐demographic factors. Results Consistently, lower muscle strength was measured in shoulder and knee strength in patients after chemotherapy. On average, patients had up to 25% lower strength in lower extremities and 12–16% in upper extremities in MVIC and MIPT during cancer treatment compared with healthy women. No substantial difference between patient groups in shoulder strength, but significantly lower shoulder flexibility in patients with radical mastectomy was measured. Chemotherapy‐treated patients had consistently higher FI%. No serious adverse events were reported. Conclusions Breast cancer patients showed markedly impaired muscle strength and joint dysfunctions before and after anticancer treatment. The significant differences between patients and healthy individuals underline the need of exercise therapy as early as possible in order to prevent or counteract the loss of muscle function after curative surgery as well as the consequences of neo‐/adjuvant chemotherapy. PMID:27896952
Diacylglycerol kinase-δ regulates AMPK signaling, lipid metabolism, and skeletal muscle energetics.
Jiang, Lake Q; de Castro Barbosa, Thais; Massart, Julie; Deshmukh, Atul S; Löfgren, Lars; Duque-Guimaraes, Daniella E; Ozilgen, Arda; Osler, Megan E; Chibalin, Alexander V; Zierath, Juleen R
2016-01-01
Decrease of AMPK-related signal transduction and insufficient lipid oxidation contributes to the pathogenesis of obesity and type 2 diabetes. Previously, we identified that diacylglycerol kinase-δ (DGKδ), an enzyme involved in triglyceride biosynthesis, is reduced in skeletal muscle from type 2 diabetic patients. Here, we tested the hypothesis that DGKδ plays a role in maintaining appropriate AMPK action in skeletal muscle and energetic aspects of contraction. Voluntary running activity was reduced in DGKδ(+/-) mice, but glycogen content and mitochondrial markers were unaltered, suggesting that DGKδ deficiency affects skeletal muscle energetics but not mitochondrial protein abundance. We next determined the role of DGKδ in AMPK-related signal transduction and lipid metabolism in isolated skeletal muscle. AMPK activation and signaling were reduced in DGKδ(+/-) mice, concomitant with impaired lipid oxidation and elevated incorporation of free fatty acids into triglycerides. Strikingly, DGKδ deficiency impaired work performance, as evident by altered force production and relaxation dynamics in response to repeated contractions. In conclusion, DGKδ deficiency impairs AMPK signaling and lipid metabolism, thereby highlighting the deleterious role of excessive lipid metabolites in the development of peripheral insulin resistance and type 2 diabetes pathogenesis. DGKδ deficiency also influences skeletal muscle energetics, which may lead to low physical activity levels in type 2 diabetes. Copyright © 2016 the American Physiological Society.
Dalewski, B; Chruściel-Nogalska, M; Frączak, B
2015-12-01
An occlusal splint and a modified nociceptive trigeminal inhibition splint (AMPS, anterior deprogrammer, Kois deprogrammer, Lucia jig, etc.) are commonly and quite frequently used in the treatment of masticatory muscle disorders, although their sustainable and long-lasting effect on these muscles' function is still not very well known. Results of scant surface electromyography studies in patients with temporomandibular disorders have been contradictory. The aim of this study was to evaluate both devices in bruxism therapy; EMG activity levels during postural activity and maximum voluntary contraction of the superficial temporal and masseter muscles were compared before and after 30 days of treatment. Surface electromyography of the examined muscles was performed in two groups of bruxers (15 patients each). Patients in the first group used occlusal splints, while those in the second used modified nociceptive trigeminal inhibition splints. The trial was randomized, controlled and semi-blind. Neither device affected the asymmetry index or postural activity/maximum voluntary contraction ratio after 1 month of treatment. Neither the occlusal nor the nociceptive trigeminal inhibition splint showed any significant influence on the examined muscles. Different scientific methods should be considered in clinical applications that require either direct influence on the muscles' bioelectrical activity or a quantitative measurement of the treatment quality. © 2015 Australian Dental Association.
Gustafsson, Ewa; Johnson, Peter W; Hagberg, Mats
2010-02-01
The aim of this study was to evaluate thumb postures, thumb movements and muscle activity when using mobile phones for SMS messaging and to determine whether there were differences in these exposures (a) across various mobile phone tasks, (b) between gender and (c) between subjects with and without musculoskeletal symptoms in shoulders and upper extremities. Fifty-six young adults (15 healthy and 41 with musculoskeletal symptoms) performed a series of distinct tasks on a mobile phone. Muscular load in four forearm/hand muscles in the right arm and the right and left trapezius muscles were measured using electromyography (EMG). Thumb movements were registered using an electrogoniometer. The results showed that postures (sitting or standing) and the type of mobile phone task (holding the phone versus texting) affected muscle activity and thumb positions. Females compared to males had higher muscle activity in the extensor digitorum and the abductor pollicis longus when entering SMS messages and tended to have greater thumb abduction, higher thumb movement velocities and fewer pauses in the thumb movements. Subjects with symptoms had lower muscle activity levels in the abductor pollicis longus and tended to have higher thumb movement velocities and fewer pauses in the thumb movements compared to those without symptoms.
Fregly, Benjamin J; Fregly, Christopher D; Kim, Brandon T
2015-12-01
Prevention of muscle atrophy caused by reduced mechanical loading in microgravity conditions remains a challenge for long-duration spaceflight. To combat leg muscle atrophy, astronauts on the International Space Station (ISS) often perform squat exercise using the Advanced Resistive Exercise Device (ARED). While the ARED is effective at building muscle strength and volume on Earth, NASA researchers do not know how closely ARED squat exercise on the ISS replicates Earth-level squat muscle moments, or how small variations in exercise form affect muscle loading. This study used dynamic simulations of ARED squat exercise on the ISS to address these two questions. A multibody dynamic model of the complete astronaut-ARED system was constructed in OpenSim. With the ARED base locked to ground and gravity set to 9.81 m/s², we validated the model by reproducing muscle moments, ground reaction forces, and foot center of pressure (CoP) positions for ARED squat exercise on Earth. With the ARED base free to move relative to the ISS and gravity set to zero, we then used the validated model to simulate ARED squat exercise on the ISS for a reference squat motion and eight altered squat motions involving changes in anterior-posterior (AP) foot or CoP position on the ARED footplate. The reference squat motion closely reproduced Earth-level muscle moments for all joints except the ankle. For the altered squat motions, changing the foot position was more effective at altering muscle moments than was changing the CoP position. All CoP adjustments introduced an undesirable shear foot reaction force that could cause the feet to slip on the ARED footplate, while some foot and CoP adjustments introduced an undesirable sagittal plane foot reaction moment that would cause the astronaut to rotate off the ARED footplate without the use of some type of foot fixation. Our results provide potentially useful information for achieving desired increases or decreases in specific muscle moments during ARED squat exercise performed on the ISS.
Multi-frequency bioimpedance in human muscle assessment
Bartels, Else Marie; Sørensen, Emma Rudbæk; Harrison, Adrian Paul
2015-01-01
Bioimpedance analysis (BIA) is a well-known and tested method for body mass and muscular health assessment. Multi-frequency BIA (mfBIA) equipment now makes it possible to assess a particular muscle as a whole, as well as looking at a muscle at the fiber level. The aim of this study was to test the hypothesis that mfBIA can be used to assess the anatomical, physiological, and metabolic state of skeletal muscles. mfBIA measurements focusing on impedance, resistance, reactance, phase angle, center frequency, membrane capacitance, and both extracellular and intracellular resistance were carried out. Eight healthy human control subjects and three selected cases were examined to demonstrate the extent to which this method may be used clinically, and in relation to training in sport. The electrode setup is shown to affect the mfBIA parameters recorded. Our recommendation is the use of noble metal electrodes in connection with a conductance paste to accommodate the typical BIA frequencies, and to facilitate accurate impedance and resistance measurements. The use of mfBIA parameters, often in conjunction with each other, can be used to reveal indications of contralateral muscle loss, extracellular fluid differences, contracted state, and cell transport/metabolic activity, which relate to muscle performance. Our findings indicate that mfBIA provides a noninvasive, easily measurable and very precise momentary assessment of skeletal muscles. PMID:25896978
Relationship of Muscle Mass Determined by DEXA with Spirometric Results in Healthy Individuals.
Martín Holguera, Rafael; Turrión Nieves, Ana Isabel; Rodríguez Torres, Rosa; Alonso, María Concepción
2017-07-01
Muscle mass maybe a determining factor in the variability of spirometry results in individuals of the same sex and age who have similar anthropometric characteristics. The aim of this study was to determine the association between spirometric results from healthy individuals and their muscle mass assessed by dual energy X-ray absorptiometry (DEXA). A sample of 161 women and 144 men, all healthy non-smokers, was studied. Ages ranged from18 to77years. For each subject, spirometry results and total and regional lean mass values obtained by full body DEXA were recorded. A descriptive analysis of the variables and a regression analysis were performed to study the relationship between spirometric variables and lean body mass, correcting for age and body mass index (BMI). In both sexes all muscle mass variables correlated positively and significantly with spirometric variables, and to a greater extent in men. After partial adjustment of correlations by age and BMI, the factor which best explains the spirometric variables is the total lean body mass in men, and trunk lean body mass in women. In men, muscle mass in the lower extremities is most closely associated with spirometric results. In women, it is the muscle mass of the trunk. In both sexes muscle mass mainly affects FEV 1 . Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Yan, Junshu; Liu, Peifeng; Xu, Liangmei; Huan, Hailin; Zhou, Weiren; Xu, Xiaoming; Shi, Zhendan
2018-04-01
The goal of this experiment was to examine effects of diets supplemented with exogenous inosine monophosphate (IMP) on the growth performance, flavor compounds, enzyme activity and gene expression of chicken. A total of 1,500 healthy, 1-day-old male 3-yellow chickens were used for a 52-d experimental period. Individuals were randomly divided into 5 groups (group I, II, III, IV, V) with 6 replicates per group, and fed a basal diet supplemented with 0.0, 0.05, 0.1, 0.2, and 0.3% IMP, respectively. There was no significant response to the increasing dietary IMP level in average daily feed intake (ADFI), average daily gain (ADG), and feed:gain ratio (F/G) (P ≥ 0.05). IMP content of the breast and thigh muscle showed an exponential and linear response to the increasing dietary IMP level (P < 0.05), the highest IMP content was obtained when the diet with 0.3% and 0.2% exogenous IMP was fed. There were significant effects of IMP level in diet on free amino acids (FAA) (exponential, linear and quadratic effect, P < 0.05) and delicious amino acids (DAA) (quadratic effect, P < 0.01) content in breast muscle. FAA and DAA content in thigh muscle showed an exponential and linear response (P < 0.05), and quadratic response (P < 0.01) to the increasing dietary IMP level, the highest FAA and DAA content was obtained when the diet with 0.2% exogenous IMP was fed. Dietary IMP supplementation had a quadratic effect on 5΄-NT and the alkaline phosphatase (ALP) enzyme activity in the breast muscle (P < 0.05), and the adenosine triphosphate (ATP) enzyme activity in the thigh muscles increased exponentially and linearly with increasing IMP level in diet (exponential effect, P = 0.061; linear effect, P = 0.059). Cyclohydrolase (ATIC) gene expression in thigh muscle had a quadratic response to the increasing dietary IMP level (P < 0.05), 0.2% exogenous IMP group had the highest (AMPD1) gene expression of the breast muscle and ATIC gene expression of the thigh muscle. These results indicate that dietary IMP did not affect the growth performance of chicken, the diet with 0.2 to 0.3% exogenous IMP is optimal to improve the meat flavor quality in chicken.
Abadi, Arkan; Crane, Justin D.; Ogborn, Daniel; Hettinga, Bart; Akhtar, Mahmood; Stokl, Andrew; MacNeil, Lauren; Safdar, Adeel; Tarnopolsky, Mark
2013-01-01
Antioxidant supplements are widely consumed by the general public; however, their effects of on exercise performance are controversial. The aim of this study was to examine the effects of an antioxidant cocktail (α-lipoic acid, vitamin E and coenzyme Q10) on exercise performance, muscle function and training adaptations in mice. C57Bl/J6 mice were placed on antioxidant supplement or placebo-control diets (n = 36/group) and divided into trained (8 wks treadmill running) (n = 12/group) and untrained groups (n = 24/group). Antioxidant supplementation had no effect on the running performance of trained mice nor did it affect training adaptations; however, untrained female mice that received antioxidants performed significantly better than placebo-control mice (p ≤ 0.05). Furthermore, antioxidant-supplemented females (untrained) showed elevated respiratory capacity in freshly excised muscle fibers (quadriceps femoris) (p ≤ 0.05), reduced oxidative damage to muscle proteins (p ≤ 0.05), and increased expression of mitochondrial proteins (p ≤ 0.05) compared to placebo-controls. These changes were attributed to increased expression of proliferator-activated receptor gamma coactivator 1α (PGC-1α) (p ≤ 0.05) via activation of AMP-activated protein kinase (AMPK) (p ≤ 0.05) by antioxidant supplementation. Overall, these results indicate that this antioxidant supplement exerts gender specific effects; augmenting performance and mitochondrial function in untrained females, but does not attenuate training adaptations. PMID:23565271
Doherty, Julie; Giles, Melanie; Gallagher, Alison M; Simpson, Ellen Elizabeth Anne
2018-03-01
Although physical activity guidelines recommend muscle-strengthening activities (MSA), public health initiatives tend to focus on increasing aerobic activity and fail to mention MSA. This study sought to identify the issues influencing pre-, peri- and post-menopausal women's intentions to perform MSA with a view to informing future interventions for these populations. Mixed methods guided by the Theory of Planned Behaviour (TPB) were used to explore factors that influence women's intentions to perform MSA. In stage one, 34 women participated in either a focus group or interview. Discussions were transcribed verbatim and analysed based on menopausal status using a deductive approach. In stage two, 186 women (M = 47 years, SD = 9) completed a questionnaire to assess participant demographics, levels of MSA, affective and instrumental attitudes, injunctive and descriptive norms, self-efficacy and perceived behavioural control. Quantitative data were analysed using descriptive statistics, bivariate correlations, regression analyses and analysis of variances. Behavioural beliefs were: improved muscular health; psychological benefits; improved body shape. Normative beliefs were: health professionals; family members; work colleagues. Control beliefs were: equipment; motivation; time constraints; knowledge; physical capability; fear of judgement. However, these beliefs were not well established. Self-efficacy was the strongest predictor of intentions (spc 2 = 0.11) followed by affective attitudes (spc 2 = 0.09), with no significant differences on TPB variables between groups. If rising rates of musculoskeletal conditions in women are to be prevented, there is an urgent need to increase women's knowledge of recommended levels of muscle strengthening, with a view to promoting positive attitudes and enhancing women's sense of self-efficacy across all menopausal phases. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Vibration parameters affecting vibration-induced reflex muscle activity.
Cidem, Muharrem; Karacan, Ilhan; Cakar, Halil Ibrahim; Cidem, Mehmet; Sebik, Oguz; Yilmaz, Gizem; Turker, Kemal Sitki; Karamehmetoglu, Safak Sahir
2017-03-01
To determine vibration parameters affecting the amplitude of the reflex activity of soleus muscle during low-amplitude whole-body vibration (WBV). This study was conducted on 19 participants. Vibration frequencies of 25, 30, 35, 40, 45, and 50 Hz were used. Surface electromyography, collision force between vibration platform and participant's heel measured using a force sensor, and acceleration measured using an accelerometer fixed to the vibration platform were simultaneously recorded. The collision force was the main independent predictor of electromyographic amplitude. The essential parameter of vibration affecting the amplitude of the reflex muscle activity is the collision force.
Manca, Andrea; Cabboi, Maria Paola; Dragone, Daniele; Ginatempo, Francesca; Ortu, Enzo; De Natale, Edoardo Rosario; Mercante, Beniamina; Mureddu, Giovanni; Bua, Guido; Deriu, Franca
2017-07-01
To compare effects of contralateral strength training (CST) and direct strength training of the more affected ankle dorsiflexors on muscle performance and clinical functional outcomes in people with multiple sclerosis (MS) exhibiting interlimb strength asymmetry. Randomized controlled trial. University hospital. Individuals with relapsing-remitting MS (N=30) and mild-to-moderate disability (Expanded Disability Status Scale score ≤6) presenting with ankle dorsiflexors' strength disparity. Participants were randomly assigned to a CST (n=15) or direct strength training (n=15) group performing 6 weeks of maximal intensity strength training of the less or more affected dorsiflexors, respectively. Maximal strength, endurance to fatigue, and mobility outcomes were assessed before, at the intervention end, and at 12-week follow-up. Strength and fatigue parameters were measured after 3 weeks of training (midintervention). In the more affected limb of both groups, pre- to postintervention significant increases in maximal strength (P≤.006) and fatigue endurance (P≤.04) were detected along with consistent retention of these improvements at follow-up (P≤.04). At midintervention, the direct strength training group showed significant improvements (P≤.002), with no further increase at postintervention, despite training continuation. Conversely, the CST group showed nonsignificant strength gains, increasing to significance at postintervention (P≤.003). In both groups, significant pre- to postintervention improvements in mobility outcomes (P≤.03), not retained at follow-up, were observed. After 6 weeks of training, CST proved as effective as direct strength training in enhancing performance of the more affected limb with a different time course, which may have practical implications in management of severely weakened limbs where direct strength training is not initially possible. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Williams, Matthew R.; Kirsch, Robert F.
2013-01-01
We investigated the performance of three user interfaces for restoration of cursor control in individuals with tetraplegia: head orientation, EMG from face and neck muscles, and a standard computer mouse (for comparison). Subjects engaged in a 2D, center-out, Fitts’ Law style task and performance was evaluated using several measures. Overall, head orientation commanded motion resembled mouse commanded cursor motion (smooth, accurate movements to all targets), although with somewhat lower performance. EMG commanded movements exhibited a higher average speed, but other performance measures were lower, particularly for diagonal targets. Compared to head orientation, EMG as a cursor command source was less accurate, was more affected by target direction and was more prone to overshoot the target. In particular, EMG commands for diagonal targets were more sequential, moving first in one direction and then the other rather than moving simultaneous in the two directions. While the relative performance of each user interface differs, each has specific advantages depending on the application. PMID:18990652
Rice, David A; McNair, Peter J; Lewis, Gwyn N; Mannion, Jamie
2015-09-12
Populations with knee joint damage, including arthritis, have noted impairments in the regulation of submaximal muscle force. It is difficult to determine the exact cause of such impairments given the joint pathology and associated neuromuscular adaptations. Experimental pain models that have been used to isolate the effects of pain on muscle force regulation have shown impaired force steadiness during acute pain. However, few studies have examined force regulation during dynamic contractions, and these findings have been inconsistent. The goal of the current study was to examine the effect of experimental knee joint pain on submaximal quadriceps force regulation during isometric and dynamic contractions. The study involved fifteen healthy participants. Participants were seated in an isokinetic dynamometer. Knee extensor force matching tasks were completed in isometric, eccentric, and concentric muscle contraction conditions. The target force was set to 10 % of maximum for each contraction type. Hypertonic saline was then injected into the infrapatella fat pad to generate acute joint pain. The force matching tasks were repeated during pain and once more 5 min after pain had subsided. Hypertonic saline resulted in knee pain with an average peak pain rating of 5.5 ± 2.1 (0-10 scale) that lasted for 18 ± 4 mins. Force steadiness significantly reduced during pain across all three muscle contraction conditions. There was a trend to increased force matching error during pain but this was not significant. Experimental knee pain leads to impaired quadriceps force steadiness during isometric, eccentric, and concentric contractions, providing further evidence that joint pain directly affects motor performance. Given the established relationship between submaximal muscle force steadiness and function, such an effect may be detrimental to the performance of tasks in daily life. In order to restore motor performance in people with painful arthritic conditions of the knee, it may be important to first manage their pain more effectively.
Morales-Alamo, David; Ponce-González, Jesús Gustavo; Guadalupe-Grau, Amelia; Rodríguez-García, Lorena; Santana, Alfredo; Cusso, Roser; Guerrero, Mario; Dorado, Cecilia; Guerra, Borja; Calbet, José A L
2013-03-01
The extremely high energy demand elicited by sprint exercise is satisfied by an increase in O2 consumption combined with a high glycolytic rate, leading to a marked lactate accumulation, increased AMP-to-ATP ratio, and reduced NAD(+)/NADH.H(+) and muscle pH, which are accompanied by marked Thr(172) AMP-activated protein kinase (AMPK)-α phosphorylation during the recovery period by a mechanism not fully understood. To determine the role played by reactive nitrogen and oxygen species (RNOS) on Thr(172)-AMPKα phosphorylation in response to cycling sprint exercise, nine voluntary participants performed a single 30-s sprint (Wingate test) on two occasions: one 2 h after the ingestion of placebo and another after the intake of antioxidants (α-lipoic acid, vitamin C, and vitamin E) in a double-blind design. Vastus lateralis muscle biopsies were obtained before, immediately postsprint, and 30 and 120 min postsprint. Performance and muscle metabolism were similar during both sprints. The NAD(+)-to-NADH.H(+) ratio was similarly reduced (84%) and the AMP-to-ATP ratio was similarly increased (×21-fold) immediately after the sprints. Thr(286) Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and Thr(172)-AMPKα phosphorylations were increased after the control sprint (with placebo) but not when the sprints were preceded by the ingestion of antioxidants. Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation, a known inhibitory mechanism of Thr(172)-AMPKα phosphorylation, was increased only with antioxidant ingestion. In conclusion, RNOS play a crucial role in AMPK-mediated signaling after sprint exercise in human skeletal muscle. Antioxidant ingestion 2 h before sprint exercise abrogates the Thr(172)-AMPKα phosphorylation response observed after the ingestion of placebo by reducing CaMKII and increasing Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation. Sprint performance, muscle metabolism, and AMP-to-ATP and NAD(+)-to-NADH.H(+) ratios are not affected by the acute ingestion of antioxidants.
Meyer, Niklaus; Sutter, Reto; Schirp, Udo; Gutzeit, Andreas
2017-08-24
Sarcoidosis is a multisystemic granulomatous disorder, which in nearly all cases involves the lungs and other organs. Isolated forms of sarcoidosis within the muscles, but without lung involvement, are extremely rare and can lead to delayed or even false diagnosis. A 52-year-old white, Swiss man presented with painful arm cramps and a history of symptoms over the previous 3 years. In the initial clinical investigation, our patient also showed edema in both legs without any other complaints. After performing an magnetic resonance imaging scan of his extremities and a positron emission tomography/computed tomography scan, diffuse myositis was described. The subsequent muscle biopsy provided the surprising diagnosis of muscle sarcoidosis, without involvement of the lungs or any other organ. After starting therapy with glucocorticoids, his symptoms improved immediately. Sarcoidosis is a common disorder, which in most cases affects the lungs. In this case report an isolated sarcoidosis is described without lung involvement, but with involvement of the muscles of the extremities and the trunk. Reported cases of sarcoidosis only involving skeletal muscle and without lung involvement are extremely rare. Radiologists should consider this presentation of sarcoidosis to avoid delayed diagnosis and therapy.
Eskinazi, Ilan; Fregly, Benjamin J
2018-04-01
Concurrent estimation of muscle activations, joint contact forces, and joint kinematics by means of gradient-based optimization of musculoskeletal models is hindered by computationally expensive and non-smooth joint contact and muscle wrapping algorithms. We present a framework that simultaneously speeds up computation and removes sources of non-smoothness from muscle force optimizations using a combination of parallelization and surrogate modeling, with special emphasis on a novel method for modeling joint contact as a surrogate model of a static analysis. The approach allows one to efficiently introduce elastic joint contact models within static and dynamic optimizations of human motion. We demonstrate the approach by performing two optimizations, one static and one dynamic, using a pelvis-leg musculoskeletal model undergoing a gait cycle. We observed convergence on the order of seconds for a static optimization time frame and on the order of minutes for an entire dynamic optimization. The presented framework may facilitate model-based efforts to predict how planned surgical or rehabilitation interventions will affect post-treatment joint and muscle function. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.
A genetic modifier suggests that endurance exercise exacerbates Huntington's disease
Corrochano, Silvia; Blanco, Gonzalo; Williams, Debbie; Wettstein, Jessica; Simon, Michelle; Kumar, Saumya; Moir, Lee; Agnew, Thomas; Stewart, Michelle; Landman, Allison; Kotiadis, Vassilios N; Duchen, Michael R; Wackerhage, Henning; Rubinsztein, David C; Brown, Steve D M
2018-01-01
Abstract Polyglutamine expansions in the huntingtin gene cause Huntington’s disease (HD). Huntingtin is ubiquitously expressed, leading to pathological alterations also in peripheral organs. Variations in the length of the polyglutamine tract explain up to 70% of the age-at-onset variance, with the rest of the variance attributed to genetic and environmental modifiers. To identify novel disease modifiers, we performed an unbiased mutagenesis screen on an HD mouse model, identifying a mutation in the skeletal muscle voltage-gated sodium channel (Scn4a, termed ‘draggen’ mutation) as a novel disease enhancer. Double mutant mice (HD; Scn4aDgn/+) had decreased survival, weight loss and muscle atrophy. Expression patterns show that the main tissue affected is skeletal muscle. Intriguingly, muscles from HD; Scn4aDgn/+ mice showed adaptive changes similar to those found in endurance exercise, including AMPK activation, fibre type switching and upregulation of mitochondrial biogenesis. Therefore, we evaluated the effects of endurance training on HD mice. Crucially, this training regime also led to detrimental effects on HD mice. Overall, these results reveal a novel role for skeletal muscle in modulating systemic HD pathogenesis, suggesting that some forms of physical exercise could be deleterious in neurodegeneration. PMID:29509900
Acute Sarcopenia Secondary to Hospitalisation - An Emerging Condition Affecting Older Adults
Welch, Carly; K. Hassan-Smith, Zaki; A. Greig, Carolyn; M. Lord, Janet; A. Jackson, Thomas
2018-01-01
There has been increasing interest and research into sarcopenia in community-dwelling older adults since the European Working Group on Sarcopenia in Older People (EWGSOP) agreed a consensus definition in 2010. Sarcopenia has been defined as loss of muscle mass with loss of muscle function (strength or physical performance), with measurements two Standard Deviations (SDs) below the mean of a young reference population. This definition does not necessitate longitudinal measurements, or the absence of acute illness and diagnosis can be made from single measurements. We hypothesise that hospitalisation, due to a combination of acute inflammatory burden and muscle disuse, leads to an acute decline in muscle mass and function and may lead to some individuals meeting criteria for sarcopenia, acutely, based on the EWGSOP definition. This may be partially recoverable or may lead to increased risk of developing sarcopenia long-term. We have denoted the term “acute sarcopenia” to refer to acute loss of muscle mass and function associated with hospitalisation. This review discusses some of the current available research in this context and also identifies some of the knowledge gaps and potential areas for future research. PMID:29392090
Gonzalez, J M; Johnson, S E; Stelzleni, A M; Thrift, T A; Savell, J D; Warnock, T M; Johnson, D D
2010-07-01
This study evaluated the effects of ractopamine-HCl (RAC) supplementation on carcass characteristics, muscle fiber morphometrics, and tenderness. Thirty-four steers (2 groups, 4 replicates) were fed RAC or carrier for 28 days prior to harvest. Seventy-two hours postmortem, the Longissimus lumborum (LL), Gracilis (GRA), Vastus lateralis (VL), Rectus femoris (RF), Semimembranosus (SM), and Adductor (ADD) were dissected from each carcass. Commodity weight, denuded weight, and muscle dimensions were collected. RAC supplementation tended to affect dressing percentage (P=0.15) and muscle firmness (P<0.15), and significantly affected lean maturity (P<0.05) and marbling score (P<0.05). With the exception of the LL and GRA (P<0.05), RAC had no effect on muscle dimensions. RAC did not influence the tenderness of vacuum-packaged, aged steaks as measured by Warner-Bratzler shear force. Muscle fiber size within the six muscles was unchanged (P>0.05) by RAC. Thus, RAC improves carcass parameters without a negative impact on tenderness. Copyright 2010 Elsevier Ltd. All rights reserved.
Bozek, Katarzyna; Wei, Yuning; Yan, Zheng; Liu, Xiling; Xiong, Jieyi; Sugimoto, Masahiro; Tomita, Masaru; Pääbo, Svante; Pieszek, Raik; Sherwood, Chet C.; Hof, Patrick R.; Ely, John J.; Steinhauser, Dirk; Willmitzer, Lothar; Bangsbo, Jens; Hansson, Ola; Call, Josep; Giavalisco, Patrick; Khaitovich, Philipp
2014-01-01
Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys. PMID:24866127
Architecture and functional ecology of the human gastrocnemius muscle-tendon unit.
Butler, Erin E; Dominy, Nathaniel J
2016-04-01
The gastrocnemius muscle-tendon unit (MTU) is central to human locomotion. Structural variation in the human gastrocnemius MTU is predicted to affect the efficiency of locomotion, a concept most often explored in the context of performance activities. For example, stiffness of the Achilles tendon varies among individuals with different histories of competitive running. Such a finding highlights the functional variation of individuals and raises the possibility of similar variation between populations, perhaps in response to specific ecological or environmental demands. Researchers often assume minimal variation in human populations, or that industrialized populations represent the human species as well as any other. Yet rainforest hunter-gatherers, which often express the human pygmy phenotype, contradict such assumptions. Indeed, the human pygmy phenotype is a potential model system for exploring the range of ecomorphological variation in the architecture of human hindlimb muscles, a concept we review here. © 2015 Anatomical Society.
Application of Infrared Thermal Imaging in a Violinist with Temporomandibular Disorder.
Clemente, M; Coimbra, D; Silva, A; Aguiar Branco, C; Pinho, J C
2015-12-01
Temporomandibular disorders (TMD) consist of a group of pathologies that affect the masticatory muscles, temporomandibular joints (TMJ), and/or related structures. String instrumentalists, like many orchestra musicians, can spend hours with head postures that may influence the biomechanical behavior of the TMJ and the muscles of the craniocervicomandibular complex (CCMC). The adoption of abnormal postures acquired during performance by musicians can lead to muscular hyperactivity of the head and cervical muscles, with the possible appearance of TMD. Medical infrared thermography is a non-invasive procedure that can monitor the changes in the superficial tissue related to blood circulation and may serve as a complement to the clinical examination. The objective of this study was to use infrared thermography to evaluate, in one subject, the cutaneous thermal changes adjacent to the CCMC that occur before, during, and after playing a string instrument.
Myopathy in CRPS-I: disuse or neurogenic?
Hulsman, Natalie M; Geertzen, Jan H B; Dijkstra, Pieter U; van den Dungen, Jan J A M; den Dunnen, Wilfred F A
2009-08-01
The diagnosis Complex Regional Pain Syndrome type I (CRPS-I) is based on clinical symptoms, including motor symptoms. Histological changes in muscle tissue may be present in the chronic phase of CRPS-I. Aim of this study was to analyze skeletal muscle tissue from amputated limbs of patients with CRPS-I, in order to gain more insight in factors that may play a role in changes in muscles in CRPS-I. These changes may be helpful in clarifying the pathophysiology of CRPS-I. Fourteen patients with therapy resistant and longstanding CRPS-I, underwent an amputation of the affected limb. In all patients histological analysis showed extensive changes in muscle tissue, such as fatty degeneration, fibre atrophy and nuclear clumping, which was not related to duration of CRPS-I prior to amputation. In all muscles affected, both type 1 and type 2 fibre atrophy was found, without selective type 2 fibre atrophy. In four patients, type grouping was observed, indicating a sequence of denervation and reinnervation of muscle tissue. In two patients even large group atrophy was present, suggesting new denervation after reinnervation. Comparison between subgroups in arms and legs showed no difference in the number of changes in muscle tissue. Intrinsic and extrinsic muscles were affected equally. Our findings show that in the chronic phase of CRPS-I extensive changes can be seen in muscle tissue, not related to duration of CRPS-I symptoms. Signs of neurogenic myopathy were present in five patients.
Tibialis anterior volumes and areas in ACL-injured limbs compared with unimpaired.
Binder-Macleod, Benjamin I; Buchanan, Thomas S
2006-09-01
Past research has shown that subjects with ACL injuries show activation differences and atrophy in the muscles that cross the knee, including the gastrocnemii, which predominately act at the ankle. However, it is not known how the other ankle muscles that do not cross the knee are affected. We focused on the two muscles that control the ankle, the soleus and tibialis anterior muscles, to see how they were affected by an ACL injury. We hypothesized that the ankle muscles of subjects with ACL injuries that did not require surgery (copers) would be more like normals and that the muscles of subjects with ACL injuries who required surgery to return to normal activity (noncopers) would atrophy. Twenty-seven subjects were divided into three even categories: unimpaired subjects, copers, and noncopers. Axial spin-echo T1-weighted MRI images were used to digitally reconstruct the tibialis anterior and the soleus. We used the digitally reconstructed muscles to determine the peak cross-sectional area and volume of each muscle. The copers' tibialis anterior muscles were similar to the unimpaired subjects, but, surprisingly, the noncoper's tibialis anterior muscles of the injured leg were larger than those of their uninjured legs (P < 0.05). In the soleus, the results showed a trend of not being affected. The increase in size of the tibialis anterior in noncopers may have been caused by altered gait patterns in noncopers. We believe this is due to either an ankle-stiffening strategy during heel strike or from the inversion of the foot causing external rotation of the tibia as a stabilizing technique for the knee.
Bish, Lawrence T; Yarchoan, Mark; Sleeper, Meg M; Gazzara, Jeffrey A; Morine, Kevin J; Acosta, Pedro; Barton, Elisabeth R; Sweeney, H Lee
2011-01-01
Duchenne muscular dystrophy (DMD) is a degenerative disorder affecting skeletal and cardiac muscle for which there is no effective therapy. Angiotension receptor blockade (ARB) has excellent therapeutic potential in DMD based on recent data demonstrating attenuation of skeletal muscle disease progression during 6-9 months of therapy in the mdx mouse model of DMD. Since cardiac-related death is major cause of mortality in DMD, it is important to evaluate the effect of any novel treatment on the heart. Therefore, we evaluated the long-term impact of ARB on both the skeletal muscle and cardiac phenotype of the mdx mouse. Mdx mice received either losartan (0.6 g/L) (n = 8) or standard drinking water (n = 9) for two years, after which echocardiography was performed to assess cardiac function. Skeletal muscle weight, morphology, and function were assessed. Fibrosis was evaluated in the diaphragm and heart by Trichrome stain and by determination of tissue hydroxyproline content. By the study endpoint, 88% of treated mice were alive compared to only 44% of untreated (p = 0.05). No difference in skeletal muscle morphology, function, or fibrosis was noted in losartan-treated animals. Cardiac function was significantly preserved with losartan treatment, with a trend towards reduction in cardiac fibrosis. We saw no impact on the skeletal muscle disease progression, suggesting that other pathways that trigger fibrosis dominate over angiotensin II in skeletal muscle long term, unlike the situation in the heart. Our study suggests that ARB may be an important prophylactic treatment for DMD-associated cardiomyopathy, but will not impact skeletal muscle disease.
De Groote, Friedl; Jonkers, Ilse; Duysens, Jacques
2014-01-01
Finding muscle activity generating a given motion is a redundant problem, since there are many more muscles than degrees of freedom. The control strategies determining muscle recruitment from a redundant set are still poorly understood. One theory of motor control suggests that motion is produced through activating a small number of muscle synergies, i.e., muscle groups that are activated in a fixed ratio by a single input signal. Because of the reduced number of input signals, synergy-based control is low dimensional. But a major criticism on the theory of synergy-based control of muscles is that muscle synergies might reflect task constraints rather than a neural control strategy. Another theory of motor control suggests that muscles are recruited by optimizing performance. Optimization of performance has been widely used to calculate muscle recruitment underlying a given motion while assuming independent recruitment of muscles. If synergies indeed determine muscle recruitment underlying a given motion, optimization approaches that do not model synergy-based control could result in muscle activations that do not show the synergistic muscle action observed through electromyography (EMG). If, however, synergistic muscle action results from performance optimization and task constraints (joint kinematics and external forces), such optimization approaches are expected to result in low-dimensional synergistic muscle activations that are similar to EMG-based synergies. We calculated muscle recruitment underlying experimentally measured gait patterns by optimizing performance assuming independent recruitment of muscles. We found that the muscle activations calculated without any reference to synergies can be accurately explained by on average four synergies. These synergies are similar to EMG-based synergies. We therefore conclude that task constraints and performance optimization explain synergistic muscle recruitment from a redundant set of muscles.
Meunier, Frédéric A; Mercado, José A; Molgó, Jordi; Tosteson, Thomas R; Escalona de Motta, Gladys
1997-01-01
The actions of a chromatographically identified extract of the marine dinoflagellate Ostreopsis lenticularis, named ostreotoxin-3 (OTX-3), were studied on frog isolated neuromuscular preparations. OTX-3 (1–10 μg ml−1) applied to cutaneous pectoris nerve-muscle preparations depolarized skeletal muscle fibres and caused spontaneous contractions. The depolarization was neither reversed by prolonged washing nor by (+)-tubocurarine. OTX-3 decreased the amplitude of miniature end plate potentials (m.e.p.ps) but did not affect their frequency. Extracellular recording of compound action potentials revealed that OTX-3 affected neither excitability nor conduction along intramuscular nerve branches. End-plate potentials (e.p.ps) elicited by nerve stimulation were reduced in amplitude by OTX-3 and even showed reversed polarity in junctions deeply depolarized by the toxin. Membrane depolarization induced by OTX-3 was decreased about 70% in muscles pretreated for 30 min with 10 μM tetrodotoxin. In contrast, muscles pretreated with 5 μM μ-conotoxin GIIIA were completely insensitive to OTX-3-induced depolarization. OTX-3 did not affect e.p.p. amplitude and the quantal content of e.p.ps in junctions in which muscle depolarization was abolished by μ-conotoxin GIIIA. OTX-3 is a novel type of sodium-channel activating toxin that discriminates between nerve and skeletal muscle membranes. PMID:9249261
Lee, Su-Hyun; Lee, Hwang-Jae; Chang, Won Hyuk; Choi, Byung-Ok; Lee, Jusuk; Kim, Jeonghun; Ryu, Gyu-Ha; Kim, Yun-Hee
2017-11-28
A robotic exoskeleton device is an intelligent system designed to improve gait performance and quality of life for the wearer. Robotic technology has developed rapidly in recent years, and several robot-assisted gait devices were developed to enhance gait function and activities of daily living in elderly adults and patients with gait disorders. In this study, we investigated the effects of the Gait-enhancing Mechatronic System (GEMS), a new wearable robotic hip-assist device developed by Samsung Electronics Co, Ltd., Korea, on gait performance and foot pressure distribution in elderly adults. Thirty elderly adults who had no neurological or musculoskeletal abnormalities affecting gait participated in this study. A three-dimensional (3D) motion capture system, surface electromyography and the F-Scan system were used to collect data on spatiotemporal gait parameters, muscle activity and foot pressure distribution under three conditions: free gait without robot assistance (FG), robot-assisted gait with zero torque (RAG-Z) and robot-assisted gait (RAG). We found increased gait speed, cadence, stride length and single support time in the RAG condition. Reduced rectus femoris and medial gastrocnemius muscle activity throughout the terminal stance phase and reduced effort of the medial gastrocnemius muscle throughout the pre-swing phase were also observed in the RAG condition. In addition, walking with the assistance of GEMS resulted in a significant increase in foot pressure distribution, specifically in maximum force and peak pressure of the total foot, medial masks, anterior masks and posterior masks. The results of the present study reveal that GEMS may present an alternative way of restoring age-related changes in gait such as gait instability with muscle weakness, reduced step force and lower foot pressure in elderly adults. In addition, GEMS improved gait performance by improving push-off power and walking speed and reducing muscle activity in the lower extremities. NCT02843828 .
Oxidative stress response in trained men following repeated squats or sprints.
Bloomer, Richard J; Falvo, Michael J; Fry, Andrew C; Schilling, Brian K; Smith, Webb A; Moore, Christopher A
2006-08-01
The purpose of this investigation was to measure the oxidative stress response to similarly matched work bouts of squat and sprint exercise. Twelve anaerobically trained men performed six 10-s sprints and, on a separate occasion, repeated barbell squats to approximately equal the amount of work performed during the sprints. Blood lactate, heart rate, and perceived exertion was measured before and following each exercise bout. Muscle soreness, muscle force, and creatine kinase activity was determined preexercise and through 48 h of recovery. Desmin cytoskeletal protein was determined via muscle biopsy of the vastus lateralis before and at 24 h following each exercise. Plasma protein carbonyls (PC) and malondialdehyde (MDA) were measured as biomarkers of oxidative stress. Heart rate and perceived exertion was not different between exercise sessions (P > 0.05), although lactate was higher following sprinting compared with squatting (P = 0.002). Muscle soreness was greater for squatting than sprinting (P = 0.003) and reached a peak immediately postexercise for both sessions (P = 0.0003). Muscle force was unaffected by either exercise session (P > 0.05), and creatine kinase activity was elevated to a similar extent following both sessions. Desmin-negative fibers were virtually nonexistent after either exercise bout, indicating no loss of this cytoskeletal protein. Neither PC nor MDA was affected by the exercise (P > 0.05). These results suggest that in anaerobically trained men, the oxidative stress and muscle injury response to similarly matched anaerobic exercise bouts is minimal, and not different between exercise modes. Furthermore, when compared with previous literature on untrained subjects, the response is significantly attenuated, possibly because of adaptations occurring as a result of chronic, strenuous anaerobic training.
Lewis, Philip; Sheehan, David; Soares, Renata; Varela Coelho, Ana; O'Halloran, Ken D.
2015-01-01
Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease. PMID:25941492
Camerino, Giulia Maria; De Bellis, Michela; Conte, Elena; Liantonio, Antonella; Musaraj, Kejla; Cannone, Maria; Fonzino, Adriano; Giustino, Arcangela; De Luca, Annamaria; Romano, Rossella; Camerino, Claudia; Laghezza, Antonio; Loiodice, Fulvio; Desaphy, Jean-Francois; Conte Camerino, Diana; Pierno, Sabata
2016-09-01
Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4-5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly. Copyright © 2016 Elsevier Inc. All rights reserved.
LeBrasseur, Nathan K.; Lajevardi, Newsha; Miciek, Renee; Mazer, Norman; Storer, Thomas W.; Bhasin, Shalender
2010-01-01
The TOM study is the first, single-site, placebo-controlled, randomized clinical trial designed to comprehensively determine the effects of testosterone administration on muscle strength and physical function in older men with mobility limitations. A total of 252 community dwelling individuals aged 65 and older with low testosterone levels and self-reported limitations in mobility and short physical performance battery (SPPB) score between 4 and 9 will be randomized to receive either placebo or testosterone therapy for 6 months. The primary objective is to determine whether testosterone therapy improves maximal voluntary muscle strength as quantified by the one repetition maximum. Secondary outcomes will include measures of physical function (walking, stair climbing and a lifting and lowering task), habitual physical activity and self-reported disability. The effects of testosterone on affect, fatigue and sense of well being will also be assessed. Unique aspects of the TOM Trial include selection of men with self-reported as well as objectively demonstrable functional limitations, community-based screening and recruitment, adjustment of testosterone dose to ensure serum testosterone levels in the target range while maintaining blinding, and inclusion of a range of self-reported and performance-based physical function measures as outcomes. Clinicaltrials.gov identifier: NCT00240981. PMID:18996225
LeBrasseur, Nathan K; Lajevardi, Newsha; Miciek, Renee; Mazer, Norman; Storer, Thomas W; Bhasin, Shalender
2009-03-01
The TOM study is the first, single-site, placebo-controlled, randomized clinical trial designed to comprehensively determine the effects of testosterone administration on muscle strength and physical function in older men with mobility limitations. A total of 252 community dwelling individuals aged 65 and older with low testosterone levels and self-reported limitations in mobility and short physical performance battery (SPPB) scores between 4 and 9 will be randomized to receive either placebo or testosterone therapy for 6 months. The primary objective is to determine whether testosterone therapy improves maximal voluntary muscle strength as quantified by the one repetition maximum. Secondary outcomes will include measures of physical function (walking, stair climbing and a lifting and lowering task), habitual physical activity and self-reported disability. The effects of testosterone on affect, fatigue and sense of well being will also be assessed. Unique aspects of the TOM Trial include selection of men with self-reported as well as objectively demonstrable functional limitations, community-based screening and recruitment, adjustment of testosterone dose to ensure serum testosterone levels in the target range while maintaining blinding, and inclusion of a range of self-reported and performance-based physical function measures as outcomes. Clinicaltrials.gov identifier: NCT00240981.
Springer, Shmuel; Vatine, Jean-Jacques; Lipson, Ronit; Wolf, Alon; Laufer, Yocheved
2012-01-01
The study objective was to assess the effect of functional electrical stimulation (FES) applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years) with hemiparesis (5.37 ± 5.43 years since diagnosis) demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (P < 0.0001). In conclusion, dual-channel FES may enhance gait performance in subjects with hemiparesis more than peroneal FES alone. PMID:23097635
ERIC Educational Resources Information Center
Tomporowski, Phillip D.; Albrecht, Chelesa; Pendleton, Daniel M.
2017-01-01
Purpose: The purpose of this study was to determine if physical arousal produced by isometric hand-dynamometer contraction performed during word-list learning affects young adults' free recall or recognition memory. Method: Twenty-four young adults (12 female; M[subscript age] = 22 years) were presented with 4 20-item word lists. Moderate arousal…
Zhang, Jiliang; Zhang, Chunnuan; Ma, Dongdong; Liu, Min; Huang, Shuntao
2017-12-01
Tributyltin (TBT) is reported to induce adipogenesis in fish, which might affect nutritional qualities and health status. Muscle tissues account for the majority of body mass, and have been described as a major site of fat deposition and an immunologically active organ. Therefore, the present study aims to evaluate whether chronic exposures of TBT, at environmental concentrations of 1, 10 and 100 ng/L, affects lipid accumulation, oxidative stress and immune status in muscle tissues of rare minnow (Gobiocypris rarus). After 60 d of exposure, TBT increased contents of total lipid, total cholesterol, triglyceride and fatty acids in muscle tissues. Interestingly, TBT exposure disrupted fatty acid composition and increased contents of unsaturated fatty acids (such as eicosapentaenoic acid and docosahexaenoic acid) in muscle tissues, which might be a response to preserve membrane functions from TBT exposure. Meanwhile, the concentrations of hepatic fatty acid desaturase 2 (Δ6-desaturase) and stearoyl-CoA desaturase (Δ9-desaturase) were increased after TBT exposure, which might contribute the increase of unsaturated fatty acids. Furthermore, TBT increased muscle lipid peroxidation products, antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), and the expression of immune-related molecules (tumor necrosis factor alpha, interleukin 1 beta and nuclear factor kappa B) in muscle tissues. The disruption of TBT on the lipid accumulation, oxidative stress and immune-toxic effects in muscle tissues of fish might reduce nutritional qualities, and affect growth and health status, which might pose a constant and serious threat to fish and result in economic loss in aquaculture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ellefsen, S; Vikmoen, O; Slettaløkken, G; Whist, J E; Nygaard, H; Hollan, I; Rauk, I; Vegge, G; Strand, T A; Raastad, T; Rønnestad, B R
2014-09-01
To investigate the effects of strength training on abundances of irisin-related biomarkers in skeletal muscle and blood of untrained young women, and their associations with body mass composition, muscle phenotype and levels of thyroid hormones. Eighteen untrained women performed 12 weeks of progressive whole-body heavy strength training, with measurement of strength, body composition, expression of irisin-related genes (FNDC5 and PGC1α) in two different skeletal muscles, and levels of serum-irisin and -thyroid hormones, before and after the training intervention. The strength training intervention did not result in changes in serum-irisin or muscle FNDC5 expression, despite considerable effects on strength, lean body mass (LBM) and skeletal muscle phenotype. Our data indicate that training affects irisin biology in a LBM-dependent manner. However, no association was found between steady-state serum-irisin or training-associated changes in serum-irisin and alterations in body composition. FNDC5 expression was higher in m.Biceps brachii than in m.Vastus lateralis, with individual expression levels being closely correlated, suggesting a systemic mode of transcriptional regulation. In pre-biopsies, FNDC5 expression was correlated with proportions of aerobic muscle fibers, a relationship that disappeared in post-biopsies. No association was found between serum-thyroid hormones and FNDC5 expression or serum-irisin. No evidence was found for an effect of strength training on irisin biology in untrained women, though indications were found for a complex interrelationship between irisin, body mass composition and muscle phenotype. FNDC5 expression was closely associated with muscle fiber composition in untrained muscle.
Muscle Strength Is Protective Against Osteoporosis in an Ethnically Diverse Sample of Adults.
McGrath, Ryan P; Kraemer, William J; Vincent, Brenda M; Hall, Orman T; Peterson, Mark D
2017-09-01
McGrath, RP, Kraemer, WJ, Vincent, BM, Hall, OT, and Peterson, MD. Muscle strength is protective against osteoporosis in an ethnically diverse sample of adults. J Strength Cond Res 31(9): 2586-2589, 2017-The odds of developing osteoporosis may be affected by modifiable and nonmodifiable factors such as muscle strength and ethnicity. This study sought to (a) determine whether increased muscle strength was associated with decreased odds of osteoporosis and (b) identify whether the odds of osteoporosis differed by ethnicity. Data from the 2013 to 2014 National Health and Nutrition Examination Survey were analyzed. Muscle strength was measured with a hand-held dynamometer, and dual-energy x-ray absorptiometry was used to assess femoral neck bone mineral density. A T-score of ≤2.5 was used to define osteoporosis. Separate covariate-adjusted logistic regression models were performed on each sex to determine the association between muscle strength and osteoporosis. Odds ratios (ORs) were also generated to identify if the association between muscle strength and osteoporosis differed by ethnicity using non-Hispanic blacks as the reference group. There were 2,861 participants included. Muscle strength was shown to be protective against osteoporosis for men (OR: 0.94; 95% confidence interval [CI]: 0.94-0.94) and women (OR: 0.90; CI: 0.90-0.90). Although ORs varied across ethnicities, non-Hispanic Asian men (OR: 6.62; CI: 6.51-6.72) and women (OR: 6.42; CI: 6.37-6.48) were at highest odds of osteoporosis. Increased muscle strength reduced the odds of osteoporosis among both men and women in a nationally representative, ethnically diverse sample of adults. Non-Hispanic Asians had the highest odds of developing osteoporosis. Irrespective of sex or ethnicity, increased muscle strength may help protect against the odds of developing osteoporosis.
Muscle Carnosine Concentration with the Co-Ingestion of Carbohydrate with β-alanine in Male Rats.
Naderi, Alireza; Sadeghi, Mehdi; Sarshin, Amir; Imanipour, Vahid; Nazeri, Seyed Ali; Farkhayi, Fatemeh; Willems, Mark E T
2017-07-04
Muscle carnosine is an intracellular buffer. The intake of β-alanine, combined with carbohydrate and protein, enhanced carnosine loading in human muscle. The aim of the present study was to examine if muscle carnosine loading was enhanced by β-alanine intake and co-ingestion of glucose in male rats. Thirty-six male rats were divided into three groups and supplemented for four weeks: β-alanine (βA group, 1.8% β-alanine in drinking water), β-alanine and glucose (βAGL group, 1.8% β-alanine and 5% glucose in drinking water), and control (C group, drinking water). During the supplementation period, rats were exercised (20 m·min -1 , 10 min·day -1 , 4 days·week -1 for 4 weeks). Muscle carnosine concentration was quantified in soleus (n = 12) and rectus femoris (n = 6) muscles using high-performance liquid chromatography. In soleus muscle, carnosine concentration was 2.24 ± 1.10, 6.12 ± 1.08, and 6.93 ± 2.56 mmol/kg dw for control, βA, and βAGL, respectively. In rectus femoris, carnosine concentration was 2.26 ± 1.31, 7.90 ± 1.66, and 8.59 ± 2.33 mmol/kg dw for control, βA, and βAGL respectively. In each muscle, βA and βAGL resulted in similar carnosine increases compared to the control. In conclusion, β-alanine intake for four weeks, either alone or with glucose co-ingestion, equally increased muscle carnosine content. It appears that the potential insulin response to fluid glucose intake does not affect muscle carnosine loading in male rats.
A reinterpretation of certain disorders affecting the eye muscles and their tissues
Poonyathalang, Anuchit; Khanna, Sangeeta; Leigh, R John
2007-01-01
Recent discoveries about the orbital tissues prompt a re-evaluation of the way that clinicians think about disorders affecting the extraocular muscles, their nerves and motoneurons in the brainstem. The revolutionary discovery that the orbital layers of the extraocular muscles insert not onto the eyeball, but into fibromuscular pulleys that guide the orbital layers, provides explanations for the kinematic properties of eye rotations and clinical findings in some patients with strabismus. The demonstration that all extraocular fibers types, except pale global fibers, lack synaptic folding provides an explanation for why saccades may remain fast in patients with limited ocular mobility due to myasthenia gravis. More than one mechanism may account for the observation that patients with disorders affecting the eye muscles or their nerves can present with the appearance of central disorders of ocular motility, such as internuclear ophthalmoplegia. New approaches to analyzing saccades in patients with disjunctive eye movements provide the means to identify disorders affecting the peripheral or central components of the ocular motor system, or both. PMID:19668518
Power, muscular work, and external forces in cycling.
de Groot, G; Welbergen, E; Clijsen, L; Clarijs, J; Cabri, J; Antonis, J
1994-01-01
Cycling performance is affected by the interaction of a number of variables, including environment, mechanical, and human factors. Engineers have focused on the development of more efficient bicycles. Kinesiologists have examined cycling performance from a human perspective. This paper summarizes only certain aspects of human ergonomics of cycling, especially those which are important for the recent current research in our departments. Power is a key to performance of physical work. During locomotion an imaginary flow of energy takes place from the metabolism to the environment, with some efficiency. The 'useful' mechanical muscle power output might be used to perform movements and to do work against the environment. The external power is defined as the sum of joint powers, each calculated as the product of the joint (net) moment and angular velocity. This definition of external power is closely related to the mean external power as applied to exercise physiology: the sum of joint powers reflects all mechanical power which in principle can be used to fulfil a certain task. In this paper, the flow of energy for cycling is traced quantitatively as far as possible. Studies on the total lower limb can give insight into the contribution of individual muscles to external power. The muscle velocity (positive or negative) is obtained from the positions and orientations of body segments and a bar linkage model of the lower limb. The muscle activity can be measured by electromyography. In this way, positive and negative work regions in individual muscles are identified. Synergy between active agonistic/antagonistic muscle groups occurs in order to deliver external power. Maximum power is influenced by body position, geometry of the bicycle and pedalling rate. This has to be interpreted in terms of the length-tension and force-velocity-power relationships of the involved muscles. Flat road and uphill cycling at different saddle-tube angles is simulated on an ergometer. The measured pedal forces (magnitude and direction) are only dependent on the intersegmental orientation of saddle tube, crank position, upper and lower leg, and foot. The changed direction of the gravitational force with respect to the saddle-tube does not interfere with the co-ordinated force production pattern. During locomotory cycling at constant speed the external power is mainly used to overcome the aerodynamic friction force. This force and the rolling resistance are determined by coasting down experiments, yielding the external power.(ABSTRACT TRUNCATED AT 400 WORDS)
Zang, Sha-Sha; Song, An; Liu, Yi-Xuan; Wang, Chao; Song, Guang-Yao; Li, Xiao-Ling; Zhu, Ya-Jun; Yu, Xian; Li, Ling; Liu, Chen-Xi; Kang, Jun-Cong; Ren, Lu-Ping
2015-01-01
The present paper reports the effects of Jinlida (JLD), a traditional Chinese medicine which has been given as a treatment for high-fat-diet (HFD)-induced insulin resistance. A randomized controlled experiment was conducted to provide evidence in support of the affects of JLD on insulin resistance induced by HFD. The affect of JLD on blood glucose, lipid, insulin, adiponectin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) in serum and lipid content in skeletal muscle was measured. Genes and proteins of the AMPK signaling pathway were analyzed by real time RT-PCR and Western blot. Adiponectin receptor 1 and 2 (ADIPOR1, ADIPOR2) and other genes involved in mitochondrial function and fat oxidation were analyzed by real time RT-PCR. Histological staining was also performed. JLD or pioglitazone administration ameliorated fasting plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), ALT, AST and non-esterified fatty acid (NEFA) (P < 0.05). Treatment with JLD or pioglitazone significantly reverted muscle lipid content (P < 0.05). JLD (1.5 g/kg) significantly increased plasma adiponectin concentration by 60.17% and increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation in skeletal muscle (P < 0.05). JLD administration increased levels of ADIPOR1 and ADIPOR2 by 1.48 and 1.29 respectively. Levels of genes involved in mitochondrial function and fat oxidation were increased. This study provides the molecular mechanism by which JLD ameliorates HFD-induced insulin resistance in rats.
Campbell, Jacob B; Nath, Rachna; Gadau, Juergen; Fox, Trevor; DeGrandi-Hoffman, Gloria; Harrison, Jon F
2016-03-01
Honey bees and other pollinators are exposed to fungicides that act by inhibiting fungal mitochondria. Here we test whether a common fungicide (Pristine®) inhibits the function of mitochondria of honeybees, and whether consumption of ecologically-realistic concentrations can cause negative effects on the mitochondria of flight muscles, or the capability for flight, as judged by CO2 emission rates and thorax temperatures during flight. Direct exposure of mitochondria to Pristine® levels above 5 ppm strongly inhibited mitochondrial oxidation rates in vitro. However, bees that consumed pollen containing Pristine® at ecologically-realistic concentrations (≈ 1 ppm) had normal flight CO2 emission rates and thorax temperatures. Mitochondria isolated from the flight muscles of the Pristine®-consuming bees had higher state 3 oxygen consumption rates than control bees, suggesting that possibly Pristine®-consumption caused compensatory changes in mitochondria. It is likely that the lack of a strong functional effect of Pristine®-consumption on flight performance and the in vitro function of flight muscle mitochondria results from maintenance of Pristine® levels in the flight muscles at much lower levels than occur in the food, probably due to metabolism and detoxification. As Pristine® has been shown to negatively affect feeding rates and protein digestion of honey bees, it is plausible that Pristine® consumption negatively affects gut wall function (where mitochondria may be exposed to higher concentrations of Pristine®). Copyright © 2015 Elsevier Ltd. All rights reserved.
Chanprasert, Sirisak; Wang, Jing; Weng, Shao-Wen; Enns, Gregory M; Boué, Daniel R; Wong, Brenda L; Mendell, Jerry R; Perry, Deborah A; Sahenk, Zarife; Craigen, William J; Alcala, Francisco J Climent; Pascual, Juan M; Melancon, Serge; Zhang, Victor Wei; Scaglia, Fernando; Wong, Lee-Jun C
2013-01-01
Mitochondrial DNA (mtDNA) depletion syndromes (MDSs) are a clinically and molecularly heterogeneous group of mitochondrial cytopathies characterized by severe mtDNA copy number reduction in affected tissues. Clinically, MDSs are mainly categorized as myopathic, encephalomyopathic, hepatocerebral, or multi-systemic forms. To date, the myopathic form of MDS is mainly caused by mutations in the TK2 gene, which encodes thymidine kinase 2, the first and rate limiting step enzyme in the phosphorylation of pyrimidine nucleosides. We analyzed 9 unrelated families with 11 affected subjects exhibiting the myopathic form of MDS, by sequencing the TK2 gene. Twelve mutations including 4 novel mutations were detected in 9 families. Skeletal muscle specimens were available from 7 out of 11 subjects. Respiratory chain enzymatic activities in skeletal muscle were measured in 6 subjects, and enzymatic activities were reduced in 3 subjects. Quantitative analysis of mtDNA content in skeletal muscle was performed in 5 subjects, and marked mtDNA content reduction was observed in each. In addition, we outline the molecular and clinical characteristics of this syndrome in a total of 52 patients including those previously reported, and a total of 36 TK2 mutations are summarized. Clinically, hypotonia and proximal muscle weakness are the major phenotypes present in all subjects. In summary, our study expands the molecular and clinical spectrum associated with TK2 deficiency. © 2013.
Acute severe male hypo-testosteronemia affects central motor command in humans.
Felici, Francesco; Bazzucchi, Ilenia; Sgrò, Paolo; Quinzi, Federico; Conti, Alessandra; Aversa, Antonio; Gizzi, Leonardo; Mezzullo, Marco; Romanelli, Francesco; Pasquali, Renato; Lenzi, Andrea; Di Luigi, Luigi
2016-06-01
To indirectly evaluate the effect of androgens on neuromuscular system in humans we analyzed if an induced short-term hypogonadal state (serum total testosterone-TT<2.3ng/ml) may affect central drive to skeletal muscle and/or muscle neuro-mechanical performance. We compared voluntary and electrically evoked muscle sEMG signals from biceps brachii in nine hypogonadal male volunteers (Hypo) and in ten healthy controls (Cont). Serum TT and dihydrotestosterone (DHT) were assayed. With respect to Hypo, Cont exhibited significantly higher median frequency content (MDF) at any angular velocity; normalized MDF [95.9% (SD=23.3) vs 73.8% (SD=9.3)]; muscle fiber conduction velocity (CV) from lowest to highest angular velocities; initial MDF at fatigue test [91.78Hz (SD=22.03) vs 70.94Hz (SD=11.06)] as well as was the normalized slope [-0.64 (SD=0.14 vs -0.5 (SD=0.11)]. In the non-fatigued state, Hypo showed a slower single twitches time to peak (TTP). In Cont, half relaxation time (HRT) decreased after fatigue while increased in Hypo (p<0.05 between groups). A significant correlation between both TT and dihydrotestosterone with MDF and CV was found during voluntary contractions only. A brief exposure to very low serum TT concentration in males seem to determine a reduced excitability of the NM system which, in turn, would favor a predominant recruitment of slow twitch MUs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cui, H X; Wang, S L; Guo, L P; Liu, L; Liu, R R; Li, Q H; Zheng, M Q; Zhao, G P; Wen, J
2018-06-26
Calpain 9 (CAPN9) is expressed in the stomach and small intestine. CAPN9 has regulatory roles in hypertension, heart disease, gastric mucosal defense, and kidney disease. The involvement of CAPN9 has not been reported in the development of chickens. CAPN9 mRNA was found in adipose and muscle tissue in this study. Two linkage single nucleotide polymorphisms (SNP; G7518A and C7542G) in intron 4 were screened from 160 birds of the D2 chicken line. The 2 mutation sites were associated with carcass weight, evisceration weight, abdominal fat weight (AFW), abdominal fat percentage (AFP), and breast muscle percentage (all P < 0.05). Intramuscular fat (IMF) content was not significantly different in the 3 genotypes. But, the AA(7518)/GG(7542) genotype had the highest IMF content, highest breast muscle weight, and lower AFW and AFP. Moreover, the mRNA level of CAPN9 in abdominal fat tissue was significantly different (P < 0.05 or P < 0.01) between any 2 genotypes, consistent with AFW and AFP. In summary, the expression of CAPN9 in adipose and breast muscle tissue is reported for the first time. CAPN9 affected production performance of chickens. As a marker, the linkage G7518A and C7542G polymorphisms in intron 4 of CAPN9 could affect the production traits by regulating mRNA expression. The findings concerning the marker enrich the theoretical foundation for molecular breeding of high-quality broilers.
Necrotizing and eosinophilic masticatory myositis in farmed mink: a preliminary description.
Needle, D B; Hollinger, C; Shelton, G D; Fitzgerald, S D
2014-01-01
This report describes necrotizing and eosinophilic myositis affecting the masticatory muscles of a group of mink. Affected animals demonstrated sudden death with marked subcutaneous oedema over the dorsal head. The temporalis and masseter muscles were pale, swollen and friable. Histologic changes consisted of varying degrees of myodegeneration, myonecrosis and inflammation. Eosinophils were prominent in the inflammatory infiltrate. Similar to dogs, masticatory muscles in mink were found to contain unique type 2M fibres, suggesting a possible target for an immune response. Aerobic and anaerobic tissue cultures of the affected musculature revealed no significant pathogens. Histological and nutritional analyses were not typical of vitamin E/selenium deficiency. This case series supports the existence of a novel disease entity in mink with some features comparable with masticatory muscle myositis in dogs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Madeira, Marta S; Rolo, Eva S; Alfaia, Cristina M; Pires, Virgínia R; Luxton, Richard; Doran, Olena; Bessa, Rui J B; Prates, José A M
2016-03-28
The isolated or combined effects of betaine and arginine supplementation of reduced protein diets (RPD) on fat content, fatty acid composition and mRNA levels of genes controlling lipid metabolism in pig m. longissimus lumborum and subcutaneous adipose tissue (SAT) were assessed. The experiment was performed on forty intact male pigs (Duroc×Large White×Landrace cross-breed) with initial and final live weights of 60 and 93 kg, respectively. Pigs were randomly assigned to one of the following five diets (n 8): 16·0 % of crude protein (control), 13·0 % of crude protein (RPD), RPD supplemented with 0·33 % of betaine, RPD supplemented with 1·5 % of arginine and RPD supplemented with 0·33 % of betaine and 1·5 % of arginine. Data confirmed that RPD increase intramuscular fat (IMF) content and total fat content in SAT. The increased total fat content in SAT was accompanied by higher GLUT type 4, lipoprotein lipase and stearoyl-CoA desaturase mRNA expression levels. In addition, the supplementation of RPD with betaine and/or arginine did not affect either IMF or total fat in SAT. However, dietary betaine supplementation slightly affected fatty acid composition in both muscle and SAT. This effect was associated with an increase of carnitine O-acetyltransferase mRNA levels in SAT but not in muscle, which suggests that betaine might be involved in the differential regulation of some key genes of lipid metabolism in pig muscle and SAT. Although the arginine-supplemented diet decreased the mRNA expression level of PPARG in muscle and SAT, it did not influence fat content or fatty acid composition in any of these pig tissues.
Han, Nami; Yabroudi, Mohammad A.; Stearns-Reider, Kristen; Helkowski, Wendy; Sicari, Brian M.; Rubin, J. Peter; Badylak, Stephen F.; Boninger, Michael L.
2016-01-01
Background Electrodiagnosis can reveal the nerve and muscle changes following surgical placement of an extracellular matrix (ECM) bioscaffold for treatment of volumetric muscle loss (VML). Objective The purpose of this study was to characterize nerve conduction study (NCS) and electromyography (EMG) changes following ECM bioscaffold placement in individuals with VML. The ability of presurgical NCS and EMG to be used as a tool to help identify candidates who are likely to display improvements postsurgically also was explored. Design A longitudinal case series design was used. Methods The study was conducted at the McGowan Institute for Regenerative Medicine at the University of Pittsburgh. Eight individuals with a history of chronic VML participated. The intervention was surgical placement of an ECM bioscaffold at the site of VML. The strength of the affected region was measured using a handheld dynamometer, and electrophysiologic evaluation was conducted on the affected limb with standard method of NCS and EMG. All measurements were obtained the day before surgery and repeated 6 months after surgery. Results Seven of the 8 participants had a preoperative electrodiagnosis of incomplete mononeuropathy within the site of VML. After ECM treatment, 5 of the 8 participants showed improvements in NCS amplitude or needle EMG parameters. The presence of electrical activity within the scaffold remodeling site was concomitant with clinical improvement in muscle strength. Limitations This study had a small sample size, and participants served as their own controls. The electromyographers and physical therapists performing the evaluation were not blinded. Conclusions Electrodiagnostic data provide objective evidence of physiological improvements in muscle function following ECM placement at sites of VML. Future studies are warranted to further investigate the potential of needle EMG as a predictor of successful outcomes following ECM treatment for VML. PMID:26564252
Modeling length-tension properties of RCPm muscles during voluntary retraction of the head.
Hallgren, Richard C
2014-08-01
Head retraction exercises are one of several commonly used clinical tools that are used to assess and treat patients with head and neck pain and to aid in restoration of a normal neutral head posture. Retraction of the head results in flexion of the occipitoatlantal (OA) joint and stretching of rectus capitis posterior minor (RCPm) muscles. The role that retraction of the head might have in treating head and neck pain patients is currently unknown. RCPm muscles arise from the posterior tubercle of the posterior arch of C1 and insert into the occipital bone inferior to the inferior nuchal line and lateral to the midline. RCPm muscles are the only muscles that attach to the posterior arch of C1. The functional role of RCPm muscles has not been clearly defined. The goal of this project was to develop a three-dimensional, computer-based biomechanical model of the posterior aspect of the OA joint. This model should help clarify why voluntary head retraction exercises seem to contribute to the resolution of head and neck pain and restoration of a normal head posture in some patients. The model documents that length-tension properties of RCPm muscles are significantly affected by variations in the physical properties of the musculotendonous unit. The model suggests that variations in the cross sectional area of RCPm muscles due to pathologies that weaken the muscle, such as muscle atrophy, may reduce the ability of these muscles to generate levels of force that are necessary for the performance of normal, daily activities. The model suggests that the main benefit of the initial phase of head retraction exercises may be to strengthen RCPm muscles through eccentric contractions, and that the main benefit of the final phase of retraction may be to stretch the muscles as the final position is held. Copyright © 2014 Elsevier Ltd. All rights reserved.
Natural disease history of mouse models for limb girdle muscular dystrophy types 2D and 2F
Putker, K.; Tanganyika-de Winter, C. L.; Boertje-van der Meulen, J. W.; van Vliet, L.; Overzier, M.; Plomp, J. J.; Aartsma-Rus, A.; van Putten, M.
2017-01-01
Limb-girdle muscular dystrophy types 2D and 2F (LGMD 2D and 2F) are autosomal recessive disorders caused by mutations in the alpha- and delta sarcoglycan genes, respectively, leading to severe muscle weakness and degeneration. The cause of the disease has been well characterized and a number of animal models are available for pre-clinical studies to test potential therapeutic interventions. To facilitate transition from drug discovery to clinical trials, standardized procedures and natural disease history data were collected for these mouse models. Implementing the TREAD-NMD standardized operating procedures, we here subjected LGMD2D (SGCA-null), LGMD2F (SGCD-null) and wild type (C57BL/6J) mice to five functional tests from the age of 4 to 32 weeks. To assess whether the functional test regime interfered with disease pathology, sedentary groups were taken along. Muscle physiology testing of tibialis anterior muscle was performed at the age of 34 weeks. Muscle histopathology and gene expression was analysed in skeletal muscles and heart. Muscle histopathology and gene expression was analysed in skeletal muscles and heart. Mice successfully accomplished the functional tests, which did not interfere with disease pathology. Muscle function of SGCA- and SGCD-null mice was impaired and declined over time. Interestingly, female SGCD-null mice outperformed males in the two and four limb hanging tests, which proved the most suitable non-invasive tests to assess muscle function. Muscle physiology testing of tibialis anterior muscle revealed lower specific force and higher susceptibility to eccentric-induced damage in LGMD mice. Analyzing muscle histopathology and gene expression, we identified the diaphragm as the most affected muscle in LGMD strains. Cardiac fibrosis was found in SGCD-null mice, being more severe in males than in females. Our study offers a comprehensive natural history dataset which will be useful to design standardized tests and future pre-clinical studies in LGMD2D and 2F mice. PMID:28797108
NASA Technical Reports Server (NTRS)
Loehr, J. A.; Lee, S. M. C.; English, K. E.; Leach, M.; Bentley, J.; Nash, R.; Hagan, R. D.
2008-01-01
The advanced Resistive Exercise Device (aRED) is a resistive exercise system designed to maintain muscle mass and strength in microgravity by simulating free weight (FW) exercise. aRED utilizes vacuum cylinders and inertial flywheels to replicate the constant mass and inertial components, respectively, of FW exercise in normal gravity. PURPOSE: To compare the effectiveness of aRED and FW resistive exercise training in ambulatory subjects. METHODS: Untrained subjects were assigned to two groups, FW (6 males, 3 females) and aRED (8 males, 3 females), and performed squat (SQ), heel raise (HR), and deadlift (DL) exercises 3 d wk-1 for 16 wks. SQ, HR and DL strength (1RM) were measured using FW hardware pre-, mid- and post-training. Subjects participated in a periodized training protocol with the exercise prescription based on a percentage of 1RM. Thigh and lower leg muscle volume were assessed using Magnetic Resonance Imaging (MRI), and leg (LLM) and total body lean mass (BLM) were measured using Dual Energy X-ray Absorptiometry (DXA) pre- and post-training. RESULTS: SQ 1RM increased in both FW (48.9+/-6.1%) and aRED (31.2+/-3.8%) groups, and there was a greater training response in FW compared with aRED (p=0.01). HR and DL 1RM increased in FW (HR: 12.3+/-2.4%, DL: 23.3+/-4.4%) and aRED (HR: 18.0+/-1.6%, DL: 23.2+'-2.8%), but there were no differences between groups. Thigh muscle volume was greater following training in both groups (FW: 9.8+/-0.9%, aRED: 7.1+/-1.2%) but lower leg muscle volume increased only in the FW group (3.0+/-1.1%). Lean tissue mass increased in both FW (LLM: 3.9+/-1.1%, BLM: 2.5+/-0.7%) and aRED (LLM: 4.8+/-0.7%, BLM: 2.6 0.7%). There were no between group differences in muscle volume or lean mass in response to training. CONCLUSIONS: In general, the increase in muscle strength, muscle volume, and lean tissue mass when training with aRED was not different than when using the same training protocol with FW. The smaller increase in SQ 1RM in the aRED group may be the result of undersizing the aRED flywheels which were intended to mimic the inertial component of the SQ movement when performing FW exercises. However, the biomechanical differences observed in body position during the performance of the aRED SQ, which may have affected training and testing, cannot be excluded as a factor that may have affected SQ 1RM results. PRACTICAL APPLICATIONS: Improvements in muscle strength, muscle volume and lean mass similar to FW exercise training may be elicited using an alternative source of resistance during exercise training. The acceleration of a mass during resistive exercise may result in greater muscle tension when changing the direction of movement resulting in enhanced strength gains. Therefore, to maximize the benefits of resistive exercise, the inertial components of FW exercise should be considered during exercise selection and hardware design. ACKNOWLEDGEMENT: This investigation was supported by NASA-JSC s Exercise Countermeasures Project.
NASA Astrophysics Data System (ADS)
Klimstra, Marc D.; Thomas, Evan; Stoloff, Rebecca H.; Ferris, Daniel P.; Zehr, E. Paul
2009-06-01
We have extensively used arm cycling to study the neural control of rhythmic movements such as arm swing during walking. Recently rhythmic movement of the arms has also been shown to enhance and shape muscle activity in the legs. However, restricted information is available concerning the conditions necessary to maximally alter lumbar spinal cord excitability. Knowledge on the neuromechanics of a task can assist in the determination of the type, level, and timing of neural signals, yet arm swing during walking and arm cycling have not received a detailed neuromechanical comparison. The purpose of this research was to provide a combined neural and mechanical measurement approach that could be used to assist in the determination of the necessary and sufficient conditions for arm movement to assist in lower limb rehabilitation after stroke and spinal cord injury. Subjects performed three rhythmic arm movement tasks: (1) cycling (cycle); (2) swinging while standing (swing); and (3) swinging while treadmill walking (walk). We hypothesized that any difference in neural control between tasks (i.e., pattern of muscle activity) would reflect changes in the mechanical constraints unique to each task. Three-dimensional kinematics were collected simultaneously with force measurement at the hand and electromyography from the arms and trunk. All data were appropriately segmented to allow a comparison between and across conditions and were normalized and averaged to 100% movement cycle based on shoulder excursion. Separate mathematical principal components analysis of kinematic and neural variables was performed to determine common task features and muscle synergies. The results highlight important neural and mechanical features that distinguish differences between tasks. For example, there are considerable differences in the anatomical positions of the arms during each task, which relate to the moments experienced about the elbow and shoulder. Also, there are differences between tasks in elbow flexion/extension kinematics alongside differential muscle activation profiles. As well, mechanical assistance and constraints during all tasks could affect muscle recruitment and the functional role of muscles. Overall, despite neural and mechanical differences, the results are consistent with conserved common central motor control mechanisms operational for cycle, walk, and swing but appropriately sculpted to demands unique to each task. However, changing the mechanical parameters could affect the role of afferent feedback altering neural control and the coupling to the lower limbs.
Cheng, Yunxia; Luo, Lizhi; Sappington, Thomas W.; Jiang, Xingfu; Zhang, Lei; Frolov, Andrei N.
2016-01-01
Flight and reproduction are usually considered as two life history traits that compete for resources in a migratory insect. The beet webworm, Loxostege sticticalis L., manages the costs of migratory flight and reproduction through a trade-off in timing of these two life history traits, where migratory behavior occurs during the preoviposition period. To gain insight into how migratory flight and reproduction are coordinated in the female beet webworm, we conducted experiments beginning at the end of the preoviposition period. We used flight mills to test whether flight performance and supportive flight musculature and fuel are affected by the number of eggs oviposited, or by the age of mated and unmated females after onset of oviposition by the former. The results showed that flight distance, flight velocity, flight duration, and flight muscle mass decreased abruptly at the onset of oviposition, compared to that of virgin females of the same age which did not change over the next 7 d. These results indicate that onset of oviposition triggers a decrease in flight performance and capacity in female beet webworms, as a way of actively managing reallocation of resources away from migratory flight and into egg production. In addition to the abrupt switch, there was a gradual, linear decline in flight performance, flight muscle mass, and flight fuel relative to the number of eggs oviposited. The histolysis of flight muscle and decrease of triglyceride content indicate a progressive degradation in the ability of adults to perform additional migratory flights after onset of oviposition. Although the results show that substantial, albeit reduced, long-duration flights remain possible after oviposition begins, additional long-distance migratory flights probably are not launched after the initiation of oviposition. PMID:27893835
Cheng, Yunxia; Luo, Lizhi; Sappington, Thomas W; Jiang, Xingfu; Zhang, Lei; Frolov, Andrei N
2016-01-01
Flight and reproduction are usually considered as two life history traits that compete for resources in a migratory insect. The beet webworm, Loxostege sticticalis L., manages the costs of migratory flight and reproduction through a trade-off in timing of these two life history traits, where migratory behavior occurs during the preoviposition period. To gain insight into how migratory flight and reproduction are coordinated in the female beet webworm, we conducted experiments beginning at the end of the preoviposition period. We used flight mills to test whether flight performance and supportive flight musculature and fuel are affected by the number of eggs oviposited, or by the age of mated and unmated females after onset of oviposition by the former. The results showed that flight distance, flight velocity, flight duration, and flight muscle mass decreased abruptly at the onset of oviposition, compared to that of virgin females of the same age which did not change over the next 7 d. These results indicate that onset of oviposition triggers a decrease in flight performance and capacity in female beet webworms, as a way of actively managing reallocation of resources away from migratory flight and into egg production. In addition to the abrupt switch, there was a gradual, linear decline in flight performance, flight muscle mass, and flight fuel relative to the number of eggs oviposited. The histolysis of flight muscle and decrease of triglyceride content indicate a progressive degradation in the ability of adults to perform additional migratory flights after onset of oviposition. Although the results show that substantial, albeit reduced, long-duration flights remain possible after oviposition begins, additional long-distance migratory flights probably are not launched after the initiation of oviposition.
Larkin, Lisa M.; Cederna, Paul S.; Horowitz, Jeffrey F.; Alexander, Neil B.; Cole, Neil M.; Galecki, Andrzej T.; Chen, Shu; Nyquist, Linda V.; Carlson, Bruce M.; Faulkner, John A.; Ashton-Miller, James A.
2011-01-01
A two-arm, prospective, randomized, controlled trial study was conducted to investigate the effects of movement velocity during progressive resistance training (PRT) on the size and contractile properties of individual fibers from human vastus lateralis muscles. The effects of age and sex were examined by a design that included 63 subjects organized into four groups: young (20–30 yr) men and women, and older (65–80 yr) men and women. In each group, one-half of the subjects underwent a traditional PRT protocol that involved shortening contractions at low velocities against high loads, while the other half performed a modified PRT protocol that involved contractions at 3.5 times higher velocity against reduced loads. Muscles were sampled by needle biopsy before and after the 14-wk PRT program, and functional tests were performed on permeabilized individual fiber segments isolated from the biopsies. We tested the hypothesis that, compared with low-velocity PRT, high-velocity PRT results in a greater increase in the cross-sectional area, force, and power of type 2 fibers. Both types of PRT increased the cross-sectional area, force, and power of type 2 fibers by 8–12%, independent of the sex or age of the subject. Contrary to our hypothesis, the velocity at which the PRT was performed did not affect the fiber-level outcomes substantially. We conclude that, compared with low-velocity PRT, resistance training performed at velocities up to 3.5 times higher against reduced loads is equally effective for eliciting an adaptive response in type 2 fibers from human skeletal muscle. PMID:21799130
Kim, Ji-Han; Kim, Dong-Han; Ji, Da-Som; Lee, Hyun-Jin; Yoon, Dong-Kyu; Lee, Chi-Ho
2017-01-01
The objective of this study was to determine the effect of aging method (dry or wet) and time (20 d or 40 d) on physical, chemical, and sensory properties of two different muscles (top round and shank) from steers (n=12) using an electronic tongue (ET). Moisture content was not affected by muscle types and aging method ( p >0.05). Shear force of dry aged beef was significantly decreased compared to that of wet aged beef. Most fatty acids of dry aged beef were significantly lower than those of wet aged beef. Dry aged shank muscles had more abundant free amino acids than top round muscles. Dry-aging process enhanced tastes such as umami and saltiness compared to wet-aging process according to ET results. Dry-aging process could enhance the instrumental tenderness and umami taste of beef. In addition, the taste of shank muscle was more affected by dry-aging process than that of round muscle.
2017-01-01
The objective of this study was to determine the effect of aging method (dry or wet) and time (20 d or 40 d) on physical, chemical, and sensory properties of two different muscles (top round and shank) from steers (n=12) using an electronic tongue (ET). Moisture content was not affected by muscle types and aging method (p>0.05). Shear force of dry aged beef was significantly decreased compared to that of wet aged beef. Most fatty acids of dry aged beef were significantly lower than those of wet aged beef. Dry aged shank muscles had more abundant free amino acids than top round muscles. Dry-aging process enhanced tastes such as umami and saltiness compared to wet-aging process according to ET results. Dry-aging process could enhance the instrumental tenderness and umami taste of beef. In addition, the taste of shank muscle was more affected by dry-aging process than that of round muscle. PMID:29725203
Effects of 5-hydroxytryptamine on isolated strips of the guinea-pig stomach
Yamaguchi, T.
1972-01-01
1. The effects of 5-hydroxytryptamine (5-HT) on isolated strips of the longitudinal and circular muscles of the guinea-pig stomach were investigated. 2. 5-HT (0·1-1 μg/ml) increased the resting tension of the longitudinal muscle while it decreased that of the circular muscle. These effects were blocked by lysergic acid diethylamide (LSD), but were not affected by tetrodotoxin, hyoscine or morphine. 3. Electrical stimulation caused contraction in the longitudinal muscle, and contraction followed by relaxation in the circular muscle. In both the longitudinal and circular muscles, the evoked contractions were potentiated by 5-HT. This effect was blocked by tetrodotoxin, hyoscine and morphine, but was not affected by LSD. 4. It is concluded that, in the stomach as well as the intestine of the guinea-pig, there are two kinds of 5-HT receptors: the morphine-sensitive M receptor is situated on the intramural nerves and the D-receptor on the smooth muscle cells. PMID:5015031
Kim, Kyoung-Eun; Jang, Soong-Nang; Lim, Soo; Park, Young Joo; Paik, Nam-Jong; Kim, Ki Woong; Jang, Hak Chul; Lim, Jae-Young
2012-11-01
the relationship between muscle mass and physical performance has not been consistent among studies. to clarify the relationship between muscle mass and physical performance in older adults with weak muscle strength. cross-sectional analysis using the baseline data of 542 older men and women from the Korean Longitudinal Study on Health and Aging. dual X-ray absorptiometry, isokinetic dynamometer and the Short Physical Performance Battery (SPPB) were performed. Two muscle mass parameters, appendicular skeletal mass divided by weight (ASM/Wt) and by height squared (ASM/Ht(2)), were measured. We divided the participants into a lower-quartile (L25) group and an upper-three-quartiles (H75) group based on the knee-extensor peak torque. Correlation analysis and logistic regression models were used to assess the association between muscle mass and low physical performance, defined as SPPB scores <9, after controlling for confounders. in the L25 group, no correlation between mass and SPPB was detected, whereas the correlation between peak torque and SPPB was significant and higher than that in the H75 group. Results from the logistic models also showed no association between muscle mass and SPPB in the L25 group, whereas muscle mass was associated with SPPB in the H75 group. muscle mass was not associated with physical performance in weak older adults. Measures of muscle strength may be of greater clinical importance in weak older adults than is muscle mass per se.
Free Neurovascular Latissimus Dorsi Muscle Transplantation for Reconstruction of Hip Abductors.
Barrera-Ochoa, Sergi; Collado-Delfa, Jose Manuel; Sallent, Andrea; Lluch, Alejandro; Velez, Roberto
2017-09-01
Resection of tumors affecting the hip abductors can cause significant decrease in muscle strength and may lead to abnormal gait and poor function. We present a case report showing full functional recovery after resection of a synovial sarcoma affecting the right gluteus medius and minimus muscles with reconstruction free neurovascular latissimus dorsi muscle transplantation. The latissimus dorsi muscle was harvested following standard technique and fixed to the ilium and the greater trochanter. Receptor vessels were end-to-end anastomosed to the subscapular vessels followed by an end-to-end epineural suture between the superior gluteal nerve and the thoracodorsal nerve. A year after surgery, there is no evidence of recurrent disease; electromyographic analysis shows complete reinnervation of the latissimus dorsi muscle flap, and the patient has achieved full functional recovery. Free functional latisimus dorsi transfer could be considered as a viable reconstruction technique after hip abductors resection in tumor surgery.
Effect of dietary plant extract on meat quality and sensory parameters of meat from Equidae.
Rossi, Raffaella; Ratti, Sabrina; Pastorelli, Grazia; Maghin, Federica; Martemucci, Giovanni; Casamassima, Donato; D'Alessandro, Angela Gabriella; Corino, Carlo
2017-11-01
Plant extracts as Lippia spp. have been proven antioxidant properties. Recent studies have been shown that dietary supplementation with plant extracts is able to enhance meat quality parameters. Studies regarding meat quality in Equidae are limited. The effect of dietary plant extract (PE), containing verbascoside, on meat quality, oxidative stability and sensory parameters of Longissimus Lumborum (LL) muscle in Equidae was studied. Dietary treatment did not affect (P > 0.05) pH, colour indices and chemical parameters of muscle in both donkey and horse. Dietary PE improved (P < 0.01) oxidative stability in donkey muscle during refrigerated storage. Sensory characteristics of LL muscle were positively affected (P < 0.05) by dietary PE in both donkey and horse. In particular, colour, taste and texture were enhanced in LL muscle from animals fed PE. Oxidative stability was lower (P < 0.05) in LL muscle of horse than that of donkey. Dietary plant extract, containing verbascoside, can be considered as a natural source of antioxidants, and is also able to improve oxidative stability of donkey meat and to affect the sensory attributes of Equidae meat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
González-Frasquet, M C; García-Covisa, N; Vidagany-Espert, L; Herranz-Gordo, A; Llopis-Calatayud, J E
2015-11-01
Amyotrophic lateral sclerosis is a chronic neurodegenerative disease of the central nervous system which affects the motor neurons and produces a progressive muscle weakness, leading to atrophy and muscle paralysis, and ultimately death. Performing a percutaneous endoscopic gastrostomy with sedation in patients with amyotrophic lateral sclerosis can be a challenge for the anesthesiologist. The case is presented of a 76-year-old patient who suffered from advanced stage amyotrophic lateral sclerosis, ASA III, in which a percutaneous endoscopic gastrostomy was performed with deep sedation, for which non-invasive ventilation was used as a respiratory support to prevent hypoventilation and postoperative respiratory complications. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Arjunan, Sridhar; Kumar, Dinesh; Kalra, Chandan; Burne, John; Bastos, Teodiano
2011-01-01
This study reports the effects of age and gender on the surface electromyogram while performing isometric contraction. Experiments were conducted with two age groups--Young (Age: 20-29) and Old (Age: 60-69) where they performed sustained isometric contractions at various force levels (50%, 75%, 100% of maximum voluntary contraction). Traditional features such as root mean square (RMS) and median frequency (MDF) were computed from the recorded sEMG. The result indicates that the MDF of sEMG was not significantly affected by age, but was impacted by gender in both age groups. Also there was a significant change in the RMS of sEMG with age and gender at all levels of contraction. The results also indicate a large inter-subject variation. This study will provide an understanding of the underlying physiological effects of muscle contraction and muscle fatigue in different cohorts.
Valente, Giordano; Taddei, Fulvia; Jonkers, Ilse
2013-09-03
The weakness of hip abductor muscles is related to lower-limb joint osteoarthritis, and joint overloading may increase the risk for disease progression. The relationship between muscle strength, structural joint deterioration and joint loading makes the latter an important parameter in the study of onset and follow-up of the disease. Since the relationship between hip abductor weakness and joint loading still remains an open question, the purpose of this study was to adopt a probabilistic modeling approach to give insights into how the weakness of hip abductor muscles, in the extent to which normal gait could be unaltered, affects ipsilateral joint contact forces. A generic musculoskeletal model was scaled to each healthy subject included in the study, and the maximum force-generating capacity of each hip abductor muscle in the model was perturbed to evaluate how all physiologically possible configurations of hip abductor weakness affected the joint contact forces during walking. In general, the muscular system was able to compensate for abductor weakness. The reduced force-generating capacity of the abductor muscles affected joint contact forces to a mild extent, with 50th percentile mean differences up to 0.5 BW (maximum 1.7 BW). There were greater increases in the peak knee joint loads than in loads at the hip or ankle. Gluteus medius, particularly the anterior compartment, was the abductor muscle with the most influence on hip and knee loads. Further studies should assess if these increases in joint loading may affect initiation and progression of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Muscle Contractile Properties in Severely Burned Rats
2010-01-01
slow - twitch muscles such as sloeus (data not shown). In rats, the TA contains predominantly fast ...Hasselgren PO. The molecular regulation of protein breakdown following burn injury is different in fast - and slow - twitch skeletal muscle . Int J Mol Med 1998;1...burn model, it was reported that only fast muscle fibers are affected and slow muscle fibers were mostly preserved [30–32]. We found similar results
Lee, Yun-Ju; Aruin, Alexander S
2014-04-01
To investigate effects of symmetric and asymmetric stance and pushing movement on anticipatory and compensatory postural adjustments (APAs and CPAs). Ten healthy volunteers stood symmetrically (feet parallel) or asymmetrically (one foot forward and the other backward) and pushed a handle with both hands or right or left hand. Bilateral EMG activity of the trunk and leg muscles and center of pressure (COP) displacements in the anterior-posterior (AP) and medial-lateral (ML) directions were recorded and analyzed during the APAs and CPAs. Isolated asymmetry of stance was associated with larger muscle activity of the backward leg while isolated asymmetry of pushing movement induced larger trunk muscle activity on the contralateral side. A combined asymmetry of stance and pushing movement resulted in the increase or decrease of the thigh muscle activity and ML COP displacement depending on whether both asymmetries were induced on the same side of the body or on opposite sides. Both isolated and combined asymmetries affect APAs and CPAs in pushing. Using combined asymmetry of stance and arm movement might be beneficial in performing pushing activity. The outcome of the study provides a basis for studying postural control in individuals with unilateral impairment while performing daily tasks involving pushing. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Sommerich, Carolyn M; Lavender, Steven A; Radin Umar, Radin Zaid; Le, Peter; Mehta, Jay; Ko, Pei-Ling; Farfan, Rafael; Dutt, Mohini; Park, SangHyun
2012-01-01
Effects of ambulance cot design features (handle design and leg folding mechanism) were evaluated. Experienced ambulance workers performed tasks simulating loading and unloading a cot to and from an ambulance, and a cot raising task. Muscle activity, ratings of perceived exertion, and performance style were significantly affected by cot condition (p < 0.05). Erector Spinae activity was significantly less when using Cot-2's stretcher-style handles. Shoulder muscle activity was significantly less when using Cot-2's loop handle. During loading and unloading, operators allowed the cot to support its own weight most often with Cot-2's stretcher-style handles. Preference for Cot-2 (either handles) over Cot-1 (with loop handle) was consistent across tasks. Handle effects were influenced by operator stature; taller participants received more benefit from Cot-2's stretcher-style handles; shoulder muscles' demands were greater for shorter participants due to handle location. Providing handle options and automatic leg folding/unfolding operation can reduce cot operator's effort and physical strain. Practitioner Summary: Paramedics frequently incur musculoskeletal injuries associated with patient-handling tasks. A controlled experiment was conducted to assess effects of ambulance cot design features on physical stress of operators, as seen through muscle activity and operator's perceptions. Differences between cots were found, signalling that intentional design can reduce operator's physical stress.
38 CFR 4.55 - Principles of combined ratings for muscle injuries.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ratings for muscle injuries. 4.55 Section 4.55 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF... Principles of combined ratings for muscle injuries. (a) A muscle injury rating will not be combined with a peripheral nerve paralysis rating of the same body part, unless the injuries affect entirely different...
38 CFR 4.55 - Principles of combined ratings for muscle injuries.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ratings for muscle injuries. 4.55 Section 4.55 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF... Principles of combined ratings for muscle injuries. (a) A muscle injury rating will not be combined with a peripheral nerve paralysis rating of the same body part, unless the injuries affect entirely different...
38 CFR 4.55 - Principles of combined ratings for muscle injuries.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ratings for muscle injuries. 4.55 Section 4.55 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF... Principles of combined ratings for muscle injuries. (a) A muscle injury rating will not be combined with a peripheral nerve paralysis rating of the same body part, unless the injuries affect entirely different...
38 CFR 4.55 - Principles of combined ratings for muscle injuries.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ratings for muscle injuries. 4.55 Section 4.55 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF... Principles of combined ratings for muscle injuries. (a) A muscle injury rating will not be combined with a peripheral nerve paralysis rating of the same body part, unless the injuries affect entirely different...
38 CFR 4.55 - Principles of combined ratings for muscle injuries.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ratings for muscle injuries. 4.55 Section 4.55 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF... Principles of combined ratings for muscle injuries. (a) A muscle injury rating will not be combined with a peripheral nerve paralysis rating of the same body part, unless the injuries affect entirely different...
Ervilha, Ulysses Fernandes; Mochizuki, Luis; Figueira, Aylton; Hamill, Joseph
2017-09-01
This study aimed to investigate the activation of lower limb muscles during barefoot and shod running with forefoot or rearfoot footfall patterns. Nine habitually shod runners were asked to run straight for 20 m at self-selected speed. Ground reaction forces and thigh and shank muscle surface electromyographic (EMG) were recorded. EMG outcomes (EMG intensity [iEMG], latency between muscle activation and ground reaction force, latency between muscle pairs and co-activation index between muscle pairs) were compared across condition (shod and barefoot), running cycle epochs (pre-strike, strike, propulsion) and footfall (rearfoot and forefoot) by ANOVA. Condition affected iEMG at pre-strike epoch. Forefoot and rearfoot strike patterns induced different EMG activation time patterns affecting co-activation index for pairs of thigh and shank muscles. All these timing changes suggest that wearing shoes or not is less important for muscle activation than the way runners strike the foot on the ground. In conclusion, the guidance for changing external forces applied on lower limbs should be pointed to the question of rearfoot or forefoot footfall patterns.
Quadriceps muscle strength and voluntary activation after polio.
Beelen, Anita; Nollet, Frans; de Visser, Marianne; de Jong, Bareld A; Lankhorst, Gustaaf J; Sargeant, Anthony J
2003-08-01
Quadriceps strength, maximal anatomical cross-sectional area (CSA), maximal voluntary activation (MVA), and maximal relaxation rate (MRR) were studied in 48 subjects with a past history of polio, 26 with and 22 without postpoliomyelitis syndrome (PPS), and in 13 control subjects. It was also investigated whether, apart from CSA, MVA and MRR were determinants of muscle strength. Polio subjects had significantly less strength, CSA, and MRR in the more-affected quadriceps than control subjects. MVA was reduced in 18 polio subjects and normal in all controls. PPS subjects differed from non-PPS subjects only in that the MVA of the more-affected quadriceps was significantly lower. Both CSA and MVA were found to be associated with muscle strength. Quadriceps strength in polio subjects was dependent not only on muscle mass, but also on the ability to activate the muscles. Since impaired activation was more pronounced in PPS subjects, the new muscle weakness and functional decline in PPS may be due not only to a gradual loss of muscle fibers, but also to an increasing inability to activate the muscles.
[Foster Modification of Full Tendon Transposition of Vertical Rectus Muscles for Sixth Nerve Palsy].
Heede, Santa
2018-04-11
Since 1907 a variety of muscle transposition procedures for the treatment of abducens nerve palsy has been established internationally. Full tendon transposition of the vertical rectus muscle was initially described by O'Connor 1935 and then augmented by Foster 1997 with addition of posterior fixation sutures on the vertical rectus muscle. Full tendon transposition augmented by Foster belongs to the group of the most powerful surgical techniques to improve the abduction. Purpose of this study was to evaluate the results of full tendon vertical rectus transposition augmented with lateral fixation suture for patients with abducens nerve palsy. Full tendon transpositions of vertical rectus muscles augmented with posterior fixation suture was performed in 2014 on five patients with abducens nerve palsy. Two of the patients received Botox injections in the medial rectus muscle: one of them three months after the surgery and another during the surgery. One of the patients had a combined surgery of the horizontal muscles one year before. On three of the patients, who received a pure transposition surgery, the preoperative deviation at the distance (mean: + 56.6 pd; range: + 40 to + 80 pd) was reduced by a mean of 39.6 pd (range 34 to 50 pd), the abduction was improved by a mean of 3 mm (range 2 to 4 mm). The other two patients, who received besides the transposition procedure additional surgeries of the horizontal muscles, the preoperative deviation at the distance (+ 25 and + 126 pd respectively) was reduced by 20 and 81 pd respectively. The abduction was improved by 4 and 8 mm respectively. After surgery two patients developed a vertical deviation with a maximum of 4 pd. None of the patients had complications or signs of anterior segment ischemia. The elevation and/or depression was only marginally affected. There was no diplopia in up- or downgaze. Full tendon transposition of vertical rectus muscles, augmented with lateral posterior fixation suture is a safe and effective treatment method for abducens nerve palsy and in most cases recession of the medial rectus can be avoided. Upgaze and downgaze are affected very slightly. Diverse studies have shown that the risk of anterior segment ischemia is low. Georg Thieme Verlag KG Stuttgart · New York.
Ambegaonkar, Jatin P; Cortes, Nelson; Caswell, Shane V; Ambegaonkar, Gautam P; Wyon, Matthew
2016-04-01
Dance is a physically demanding activity, with almost 70% of all injuries in dancers occurring in the lower extremity (LE). Prior researchers report that muscle function (e.g. muscle endurance) and anatomical factors (e.g. hypermobility) affect physical performance (e.g. balance) and can subsequently influence LE injury risk. Specifically, lesser core muscle endurance, balance deficits, and greater hypermobility are related to increased LE injury risk. However, the potentials interrelationships among these factors in dancers remain unclear. The purposes of this study were to examine the relationships among core muscle endurance, balance, and LE hypermobility, and determine the relative contributions of core muscle endurance and LE hypermobility as predictors of balance in female collegiate dancers. Cross-sectional. Core muscle endurance was evaluated using the combined average anterior, left, and right lateral plank test time scores(s). LE hypermobility was measured using the LE-specific Beighton hypermobility measure, defining hypermobility if both legs had greater than 10 ° knee hyperextension. Balance was measured via the composite anterior, posterolateral, and posteromedial Star Excursion Balance Test (SEBT) reach distances (normalized to leg length) in 15 female healthy collegiate dancers (18.3 + 0.5yrs, 165.5 + 6.9cm, 63.7 + 12.1kg). Point-biserial-correlation-coefficients examined relationships and a linear regression examined whether core endurance and hypermobility predicted balance (p<.05). LE hypermobility (Yes; n = 3, No; n = 12) and balance (87.2 + 8.3% leg length) were positively correlated r(14)=.67, (p=.01). However, core endurance (103.9 + 50.6 s) and balance were not correlated r(14)=.32, (p=.26). LE hypermobility status predicted 36.9% of the variance in balance scores (p=.01). LE hypermobility, but not core muscle endurance may be related to balance in female collegiate dancers. While LE hypermobility status influenced balance in the female collegiate dancers, how this LE hypermobility status affects their longitudinal injury risk as their careers progress needs further study. Overall, the current findings suggest that rather than using isolated core endurance-centric training, clinicians may encourage dancers to use training programs that incorporate multiple muscles - in order to improve their balance, and possibly reduce their LE injury risk. 2b.
Cortes, Nelson; Caswell, Shane V.; Ambegaonkar, Gautam P.; Wyon, Matthew
2016-01-01
Background Dance is a physically demanding activity, with almost 70% of all injuries in dancers occurring in the lower extremity (LE). Prior researchers report that muscle function (e.g. muscle endurance) and anatomical factors (e.g. hypermobility) affect physical performance (e.g. balance) and can subsequently influence LE injury risk. Specifically, lesser core muscle endurance, balance deficits, and greater hypermobility are related to increased LE injury risk. However, the potentials interrelationships among these factors in dancers remain unclear. Purpose The purposes of this study were to examine the relationships among core muscle endurance, balance, and LE hypermobility, and determine the relative contributions of core muscle endurance and LE hypermobility as predictors of balance in female collegiate dancers. Study Design Cross-sectional Methods Core muscle endurance was evaluated using the combined average anterior, left, and right lateral plank test time scores(s). LE hypermobility was measured using the LE-specific Beighton hypermobility measure, defining hypermobility if both legs had greater than 10 ° knee hyperextension. Balance was measured via the composite anterior, posterolateral, and posteromedial Star Excursion Balance Test (SEBT) reach distances (normalized to leg length) in 15 female healthy collegiate dancers (18.3 + 0.5yrs, 165.5 + 6.9cm, 63.7 + 12.1kg). Point-biserial-correlation-coefficients examined relationships and a linear regression examined whether core endurance and hypermobility predicted balance (p<.05). Results LE hypermobility (Yes; n = 3, No; n = 12) and balance (87.2 + 8.3% leg length) were positively correlated r(14)=.67, (p=.01). However, core endurance (103.9 + 50.6 s) and balance were not correlated r(14)=.32, (p=.26). LE hypermobility status predicted 36.9% of the variance in balance scores (p=.01). Conclusion LE hypermobility, but not core muscle endurance may be related to balance in female collegiate dancers. While LE hypermobility status influenced balance in the female collegiate dancers, how this LE hypermobility status affects their longitudinal injury risk as their careers progress needs further study. Overall, the current findings suggest that rather than using isolated core endurance-centric training, clinicians may encourage dancers to use training programs that incorporate multiple muscles - in order to improve their balance, and possibly reduce their LE injury risk. Level of Evidence 2b PMID:27104055
Luck, J Carter; Miller, Amanda J; Aziz, Faisal; Radtka, John F; Proctor, David N; Leuenberger, Urs A; Sinoway, Lawrence I; Muller, Matthew D
2017-07-01
Peripheral artery disease (PAD) is an atherosclerotic vascular disease that affects 200 million people worldwide. Although PAD primarily affects large arteries, it is also associated with microvascular dysfunction, an exaggerated blood pressure (BP) response to exercise, and high cardiovascular mortality. We hypothesized that fatiguing plantar flexion exercise that evokes claudication elicits a greater reduction in skeletal muscle oxygenation (SmO 2 ) and a higher rise in BP in PAD compared with age-matched healthy subjects, but low-intensity steady-state plantar flexion elicits similar responses between groups. In the first experiment, eight patients with PAD and eight healthy controls performed fatiguing plantar flexion exercise (from 0.5 to 7 kg for up to 14 min). In the second experiment, seven patients with PAD and seven healthy controls performed low-intensity plantar flexion exercise (2.0 kg for 14 min). BP, heart rate (HR), and SmO 2 were measured continuously using near-infrared spectroscopy (NIRS). SmO 2 is the ratio of oxygenated hemoglobin to total hemoglobin, expressed as a percent. At fatigue, patients with PAD had a greater increase in mean arterial BP (18 ± 2 vs. vs. 10 ± 2 mmHg, P = 0.029) and HR (14 ± 2 vs. 6 ± 2 beats/min, P = 0.033) and a greater reduction in SmO 2 (-54 ± 10 vs. -12 ± 4%, P = 0.001). However, both groups had similar physiological responses to low-intensity, nonpainful plantar flexion exercise. These data suggest that patients with PAD have altered oxygen uptake and/or utilization during fatiguing exercise coincident with an augmented BP response. NEW & NOTEWORTHY In this laboratory study, patients with peripheral artery disease performed plantar flexion exercise in the supine posture until symptoms of claudication occurred. Relative to age- and sex-matched healthy subjects we found that patients had a higher blood pressure response, a higher heart rate response, and a greater reduction in skeletal muscle oxygenation as determined by near-infrared spectroscopy. Our data suggest that muscle ischemia contributes to the augmented exercise pressor reflex in peripheral artery disease. Copyright © 2017 the American Physiological Society.
Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review.
Velleman, Sandra G
2015-12-01
Selection in meat-type birds has focused on growth rate, muscling, and feed conversion. These strategies have made substantial improvements but have affected muscle structure, repair mechanisms, and meat quality, especially in the breast muscle. The increase in muscle fiber diameters has reduced available connective tissue spacing, reduced blood supply, and altered muscle metabolism in the breast muscle. These changes have increased muscle fiber degeneration and necrosis but have limited muscle repair mechanisms mediated by the adult myoblast (satellite cell) population of cells, likely resulting in the onset of myopathies. This review focuses on muscle growth mechanisms and how changes in the cellular development of the breast muscle may be associated with breast muscle myopathies occurring in meat-type birds.
Crank inertial load has little effect on steady-state pedaling coordination.
Fregly, B J; Zajac, F E; Dairaghi, C A
1996-12-01
Inertial load can affect the control of a dynamic system whenever parts of the system are accelerated or decelerated. During steady-state pedaling, because within-cycle variations in crank angular acceleration still exist, the amount of crank inertia present (which varies widely with road-riding gear ratio) may affect the within-cycle coordination of muscles. However, the effect of inertial load on steady-state pedaling coordination is almost always assumed to be negligible, since the net mechanical energy per cycle developed by muscles only depends on the constant cadence and workload. This study test the hypothesis that under steady-state conditions, the net joint torques produced by muscles at the hip, knee, and ankle are unaffected by crank inertial load. To perform the investigation, we constructed a pedaling apparatus which could emulate the low inertial load of a standard ergometer or the high inertial load of a road bicycle in high gear. Crank angle and bilateral pedal force and angle data were collected from ten subjects instructed to pedal steadily (i.e., constant speed across cycles) and smoothly (i.e., constant speed within a cycle) against both inertias at a constant workload. Virtually no statistically significant changes were found in the net hip and knee muscle joint torques calculated from an inverse dynamics analysis. Though the net ankle muscle joint torque, as well as the one- and two-legged crank torque, showed statistically significant increases at the higher inertia, the changes were small. In contrast, large statistically significant reductions were found in crank kinematic variability both within a cycle and between cycles (i.e., cadence), primarily because a larger inertial load means a slower crank dynamic response. Nonetheless, the reduction in cadence variability was somewhat attenuated by a large statistically significant increase in one-legged crank torque variability. We suggest, therefore, that muscle coordination during steady-state pedaling is largely unaffected, though less well regulated, when crank inertial load is increased.
Muscle ultrasound elastography and MRI in preschool children with Duchenne muscular dystrophy.
Pichiecchio, Anna; Alessandrino, Francesco; Bortolotto, Chandra; Cerica, Alessandra; Rosti, Cristina; Raciti, Maria Vittoria; Rossi, Marta; Berardinelli, Angela; Baranello, Giovanni; Bastianello, Stefano; Calliada, Fabrizio
2018-06-01
The aim of this study was to determine muscle tissue elasticity, measured with shear-wave elastography, in selected lower limb muscles of patients affected by Duchenne muscular dystrophy (DMD) and to correlate the values obtained with those recorded in healthy children and with muscle magnetic resonance imaging (MRI) data from the same DMD children, specifically the pattern on T1-weighted (w) and short-tau inversion recovery (STIR) sequences. Five preschool DMD children and five age-matched healthy children were studied with shear-wave elastography. In the DMD children, muscle stiffness was moderately higher compared with the muscle stiffness in HC, in the rectus femoris, vastus lateralis, adductor magnus and gluteus maximus muscles. On muscle MRI T1-w images showed fatty replacement in 3/5 patients at the level of the GM, while thigh and leg muscles were affected in 2/5; hyperintensity on STIR images was identified in 4/5 patients. No significant correlation was observed between stiffness values and MRI scoring. Our study demonstrated that lower limb muscles of preschool DMD patients show fatty replacement and patchy edema on muscle MRI and increased stiffness on shear-wave elastography. In conclusion, although further studies in larger cohorts are needed, shear-wave elastography could be considered a useful non-invasive tool to easily monitor muscle changes in early stages of the disease. Copyright © 2018 Elsevier B.V. All rights reserved.
Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy.
André, Laurène M; Ausems, C Rosanne M; Wansink, Derick G; Wieringa, Bé
2018-01-01
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP , respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy
André, Laurène M.; Ausems, C. Rosanne M.; Wansink, Derick G.; Wieringa, Bé
2018-01-01
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3′ non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient’s lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM. PMID:29892259
Skeletal muscle and fetal alcohol spectrum disorder.
Myrie, Semone B; Pinder, Mark A
2018-04-01
Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol ("prenatal alcohol exposure"; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.
Turkoglu, Ahu N; Huijing, Peter A; Yucesoy, Can A
2014-05-07
Recent experiments involving muscle force measurements over a range of muscle lengths show that effects of botulinum toxin (BTX) are complex e.g., force reduction varies as a function of muscle length. We hypothesized that altered conditions of sarcomeres within active parts of partially paralyzed muscle is responsible for this effect. Using finite element modeling, the aim was to test this hypothesis and to study principles of how partial activation as a consequence of BTX affects muscle mechanics. In order to model the paralyzing effect of BTX, only 50% of the fascicles (most proximal, or middle, or most distal) of the modeled muscle were activated. For all muscle lengths, a vast majority of sarcomeres of these BTX-cases were at higher lengths than identical sarcomeres of the BTX-free muscle. Due to such "longer sarcomere effect", activated muscle parts show an enhanced potential of active force exertion (up to 14.5%). Therefore, a muscle force reduction originating exclusively from the paralyzed muscle fiber populations, is compromised by the changes of active sarcomeres leading to a smaller net force reduction. Moreover, such "compromise to force reduction" varies as a function of muscle length and is a key determinant of muscle length dependence of force reduction caused by BTX. Due to longer sarcomere effect, muscle optimum length tends to shift to a lower muscle length. Muscle fiber-extracellular matrix interactions occurring via their mutual connections along full peripheral fiber lengths (i.e., myofascial force transmission) are central to these effects. Our results may help improving our understanding of mechanisms of how the toxin secondarily affects the muscle mechanically. Copyright © 2014 Elsevier Ltd. All rights reserved.
Matsuo, Kiyoshi; Ban, Ryokuya
2013-02-01
Proprioceptively innervated intramuscular connective tissues in Müller's muscle function as exterior mechanoreceptors to induce reflex contraction of the levator and occipitofrontalis muscles. In aponeurotic blepharoptosis, since the levator aponeurosis is disinserted from the tarsus, stretching of the mechanoreceptors in Müller's muscle is increased even on primary gaze to induce phasic and tonic reflexive contraction of the occipitofrontalis muscle. It was hypothesised that in certain patients with aponeurotic blepharoptosis, the presence of tonic reflexive contraction of the occipitofrontalis muscle due to the sensitised mechanoreceptors in Müller's muscle, can cause chronic tension-type headache (CTTH) associated with occipitofrontalis tenderness. To verify this hypothesis, this study evaluated (1) what differentiates patients with CTTH from patients without CTTH, (2) how pharmacological contraction of Müller's smooth muscle fibres as a method for desensitising the mechanoreceptors in Müller's muscle affects electromyographic activity of the frontalis muscle, and (3) how surgical aponeurotic reinsertion to desensitise the mechanoreceptors in Müller's muscle electromyographically or subjectively affects activities of the occipitofrontalis muscle or CTTH. It was found that patients had sustained CTTH when light eyelid closure did not markedly reduce eyebrow elevation. However, pharmacological contraction of Müller's smooth muscle fibres or surgery to desensitise the mechanoreceptor electromyographically reduced the tonic contraction of the occipitofrontalis muscle on primary gaze and subjectively relieved aponeurotic blepharoptosis-associated CTTH. Over-stretching of the mechanoreceptors in Müller's muscle on primary gaze may induce CTTH due to tonic reflexive contraction of the occipitofrontalis muscle. Therefore, surgical desensitisation of the mechanoreceptors in Müller's muscle appears to relieve CTTH.
Meat science: From proteomics to integrated omics towards system biology.
D'Alessandro, Angelo; Zolla, Lello
2013-01-14
Since the main ultimate goal of farm animal raising is the production of proteins for human consumption, research tools to investigate proteins play a major role in farm animal and meat science. Indeed, proteomics has been applied to the field of farm animal science to monitor in vivo performances of livestock animals (growth performances, fertility, milk quality etc.), but also to further our understanding of the molecular processes at the basis of meat quality, which are largely dependent on the post mortem biochemistry of the muscle, often in a species-specific way. Post mortem alterations to the muscle proteome reflect the biological complexity of the process of "muscle to meat conversion," a process that, despite decades of advancements, is all but fully understood. This is mainly due to the enormous amounts of variables affecting meat tenderness per se, including biological factors, such as animal species, breed specific-characteristic, muscle under investigation. However, it is rapidly emerging that the tender meat phenotype is not only tied to genetics (livestock breeding selection), but also to extrinsic factors, such as the rearing environment, feeding conditions, physical activity, administration of hormonal growth promotants, pre-slaughter handling and stress, post mortem handling. From this intricate scenario, biochemical approaches and systems-wide integrated investigations (metabolomics, transcriptomics, interactomics, phosphoproteomics, mathematical modeling), which have emerged as complementary tools to proteomics, have helped establishing a few milestones in our understanding of the events leading from muscle to meat conversion. The growing integration of omics disciplines in the field of systems biology will soon contribute to take further steps forward. Copyright © 2012 Elsevier B.V. All rights reserved.
Alexandre, T da Silva; Duarte, Y A de Oliveira; Santos, J L Ferreira; Wong, R; Lebrão, M L
2014-03-01
The aim of the present study was to examine the prevalence and factors associated with sarcopenia in older residents in São Paulo, Brazil. Cross-sectional study. São Paulo, Brazil. 1,149 older individuals from the second wave of the Saúde, Bem-Estar e Envelhecimento (SABE) study from 2006. The definition of sarcopenia was based on the consensus of the European Working Group on Sarcopenia in Older People (EWGSOP), which include three components: low muscle mass, assessed by a skeletal muscle mass index of ≤8.90 kg/m2 for men and ≤6.37 kg/m2 for women; low muscle strength, assessed by handgrip strength <30 kg for men and <20 kg for women; and low physical performance, assessed by gait speed <0.8 m/s. Diagnosis of sarcopenia required presence of low muscle mass plus low muscle strength or low physical performance. Socio-demographic and behavioral characteristics, medical conditions and nutritional status were considered as independent variables to determine the associated factors using a logistic regression model. The prevalence of sarcopenia was 16.1% in women and 14.4% in men. Advanced age with a dose response effect, cognitive impairment, lower income, smoking, undernutrition and risk for undernutrition (p<0.05) were factors associated with sarcopenia. The EWGSOP algorithm is useful to define sarcopenia. The prevalence of sarcopenia in the Brazilian elderly population is high and several associated factors show that this syndrome is affected by multiple domains. No differences were observed by gender in any age groups.
Norman, Barbara; Esbjörnsson, Mona; Rundqvist, Håkan; Osterlund, Ted; von Walden, Ferdinand; Tesch, Per A
2009-03-01
Alpha-actinins are structural proteins of the Z-line. Human skeletal muscle expresses two alpha-actinin isoforms, alpha-actinin-2 and alpha-actinin-3, encoded by their respective genes ACTN2 and ACTN3. ACTN2 is expressed in all muscle fiber types, while only type II fibers, and particularly the type IIb fibers, express ACTN3. ACTN3 (R577X) polymorphism results in loss of alpha-actinin-3 and has been suggested to influence skeletal muscle function. The X allele is less common in elite sprint and power athletes than in the general population and has been suggested to be detrimental for performance requiring high power. The present study investigated the association of ACTN3 genotype with muscle power during 30-s Wingate cycling in 120 moderately to well-trained men and women and with knee extensor strength and fatigability in a subset of 21 men performing isokinetic exercise. Muscle biopsies were obtained from the vastus lateralis muscle to determine fiber-type composition and ACTN2 and ACTN3 mRNA levels. Peak and mean power and the torque-velocity relationship and fatigability output showed no difference across ACTN3 genotypes. Thus this study suggests that R577X polymorphism in ACTN3 is not associated with differences in power output, fatigability, or force-velocity characteristics in moderately trained individuals. However, repeated exercise bouts prompted an increase in peak torque in RR but not in XX genotypes, suggesting that ACTN3 genotype may modulate responsiveness to training. Our data further suggest that alpha-actinins do not play a significant role in determining muscle fiber-type composition. Finally, we show that ACTN2 expression is affected by the content of alpha-actinin-3, which implies that alpha-actinin-2 may compensate for the lack of alpha-actinin-3 and hence counteract the phenotypic consequences of the deficiency.
Myers, Casey A.; Laz, Peter J.; Shelburne, Kevin B.; Davidson, Bradley S.
2015-01-01
Uncertainty that arises from measurement error and parameter estimation can significantly affect the interpretation of musculoskeletal simulations; however, these effects are rarely addressed. The objective of this study was to develop an open-source probabilistic musculoskeletal modeling framework to assess how measurement error and parameter uncertainty propagate through a gait simulation. A baseline gait simulation was performed for a male subject using OpenSim for three stages: inverse kinematics, inverse dynamics, and muscle force prediction. A series of Monte Carlo simulations were performed that considered intrarater variability in marker placement, movement artifacts in each phase of gait, variability in body segment parameters, and variability in muscle parameters calculated from cadaveric investigations. Propagation of uncertainty was performed by also using the output distributions from one stage as input distributions to subsequent stages. Confidence bounds (5–95%) and sensitivity of outputs to model input parameters were calculated throughout the gait cycle. The combined impact of uncertainty resulted in mean bounds that ranged from 2.7° to 6.4° in joint kinematics, 2.7 to 8.1 N m in joint moments, and 35.8 to 130.8 N in muscle forces. The impact of movement artifact was 1.8 times larger than any other propagated source. Sensitivity to specific body segment parameters and muscle parameters were linked to where in the gait cycle they were calculated. We anticipate that through the increased use of probabilistic tools, researchers will better understand the strengths and limitations of their musculoskeletal simulations and more effectively use simulations to evaluate hypotheses and inform clinical decisions. PMID:25404535
Effects of peripheral cooling on intention tremor in multiple sclerosis
Feys, P; Helsen, W; Liu, X; Mooren, D; Albrecht, H; Nuttin, B; Ketelaer, P
2005-01-01
Objective: To investigate the effect of peripheral sustained cooling on intention tremor in patients with multiple sclerosis (MS). MS induced upper limb intention tremor affects many functional activities and is extremely difficult to treat. Materials/Methods: Deep (18°C) and moderate (25°C) cooling interventions were applied for 15 minutes to 23 and 11 tremor arms of patients with MS, respectively. Deep and moderate cooling reduced skin temperature at the elbow by 13.5°C and 7°C, respectively. Evaluations of physiological variables, the finger tapping test, and a wrist step tracking task were performed before and up to 30 minutes after cooling. Results: The heart rate and the central body temperature remained unchanged throughout. Both cooling interventions reduced overall tremor amplitude and frequency proportional to cooling intensity. Tremor reduction persisted during the 30 minute post cooling evaluation period. Nerve conduction velocity was decreased after deep cooling, but this does not fully explain the reduction in tremor amplitude or the effects of moderate cooling. Cooling did not substantially hamper voluntary movement control required for accurate performance of the step tracking task. However, changes in the mechanical properties of muscles may have contributed to the tremor amplitude reduction. Conclusions: Cooling induced tremor reduction is probably caused by a combination of decreased nerve conduction velocity, changed muscle properties, and reduced muscle spindle activity. Tremor reduction is thought to relate to decreased long loop stretch reflexes, because muscle spindle discharge is temperature dependent. These findings are clinically important because applying peripheral cooling might enable patients to perform functional activities more efficiently. PMID:15716530
Żuraw, A; Dietert, K; Kühnel, S; Sander, J; Klopfleisch, R
2016-07-01
Evidence suggest there is a link between equine atypical myopathy (EAM) and ingestion of sycamore maple tree seeds. To further evaluate the hypothesis that the ingestion of hypoglycin A (HGA) containing sycamore maple tree seeds causes acquired multiple acyl-CoA dehydrogenase deficiency and might be associated with the clinical and pathological signs of EAM. Case report. Necropsy and histopathology, using hematoxylin and eosin and Sudan III stains, were performed on a 2.5-year-old mare that died following the development of clinical signs of progressive muscle stiffness and recumbency. Prior to death, the animal ingested sycamore maple tree seeds (Acer pseudoplatanus). Detection of metabolites in blood and urine obtained post mortem was performed by rapid ultra-performance liquid chromatography-tandem mass spectrometry. Data from this case were compared with 3 geldings with no clinical history of myopathy. Macroscopic examination revealed fragments of maple tree seeds in the stomach and severe myopathy of several muscle groups including Mm. intercostales, deltoidei and trapezii. Histologically, the affected muscles showed severe, acute rhabdomyolysis with extensive accumulation of finely dispersed fat droplets in the cytoplasm of degenerated skeletal muscle cells not present in controls. Urine and serum concentrations of several acyl carnitines and acyl glycines were increased, and both contained metabolites of HGA, a toxic amino acid present in sycamore maple tree seeds. The study supports the hypothesis that ingestion of HGA-containing maple tree seeds may cause EAM due to acquired multiple acyl-CoA dehydrogenase deficiency. © 2015 EVJ Ltd.
Serotonin and central nervous system fatigue: nutritional considerations.
Davis, J M; Alderson, N L; Welsh, R S
2000-08-01
Fatigue from voluntary muscular effort is a complex phenomenon involving the central nervous system (CNS) and muscle. An understanding of the mechanisms within muscle that cause fatigue has led to the development of nutritional strategies to enhance performance. Until recently, little was known about CNS mechanisms of fatigue, even though the inability or unwillingness to generate and maintain central activation of muscle is the most likely explanation of fatigue for most people during normal daily activities. A possible role of nutrition in central fatigue is receiving more attention with the development of theories that provide a clue to its biological mechanisms. The focus is on the neurotransmitter serotonin [5-hydroxytryptamine (5-HT)] because of its role in depression, sensory perception, sleepiness, and mood. Nutritional strategies have been designed to alter the metabolism of brain 5-HT by affecting the availability of its amino acid precursor. Increases in brain 5-HT concentration and overall activity have been associated with increased physical and perhaps mental fatigue during endurance exercise. Carbohydrate (CHO) or branched-chain amino acid (BCAA) feedings may attenuate increases in 5-HT and improve performance. However, it is difficult to distinguish between the effects of CHO on the brain and those on the muscles themselves, and most studies involving BCAA show no performance benefits. It appears that important relations exist between brain 5-HT and central fatigue. Good theoretical rationale and data exist to support a beneficial role of CHO and BCAA on brain 5-HT and central fatigue, but the strength of evidence is presently weak.
Neutelings, Thibaut; Nusgens, Betty V; Liu, Yi; Tavella, Sara; Ruggiu, Alessandra; Cancedda, Ranieri; Gabriel, Maude; Colige, Alain; Lambert, Charles
2015-01-01
The Mice Drawer System (MDS) Tissue Sharing program was the longest rodent space mission ever performed. It provided 20 research teams with organs and tissues collected from mice having spent 3 months on the International Space Station (ISS). Our participation to this experiment aimed at investigating the impact of such prolonged exposure to extreme space conditions on mouse skin physiology. Mice were maintained in the MDS for 91 days aboard ISS (space group (S)). Skin specimens were collected shortly after landing for morphometric, biochemical, and transcriptomic analyses. An exact replicate of the experiment in the MDS was performed on ground (ground group (G)). A significant reduction of dermal thickness (-15%, P =0.05) was observed in S mice accompanied by an increased newly synthetized procollagen (+42%, P =0.03), likely reflecting an increased collagen turnover. Transcriptomic data suggested that the dermal atrophy might be related to an early degradation of defective newly formed procollagen molecules. Interestingly, numerous hair follicles in growing anagen phase were observed in the three S mice, validated by a high expression of specific hair follicles genes, while only one mouse in the G controls showed growing hairs. By microarray analysis of whole thickness skin, we observed a significant modulation of 434 genes in S versus G mice. A large proportion of the upregulated transcripts encoded proteins related to striated muscle homeostasis. These data suggest that a prolonged exposure to space conditions may induce skin atrophy, deregulate hair follicle cycle, and markedly affect the transcriptomic repertoire of the cutaneous striated muscle panniculus carnosus.
Feasibility and reliability of using an exoskeleton to emulate muscle contractures during walking.
Attias, M; Bonnefoy-Mazure, A; De Coulon, G; Cheze, L; Armand, S
2016-10-01
Contracture is a permanent shortening of the muscle-tendon-ligament complex that limits joint mobility. Contracture is involved in many diseases (cerebral palsy, stroke, etc.) and can impair walking and other activities of daily living. The purpose of this study was to quantify the reliability of an exoskeleton designed to emulate lower limb muscle contractures unilaterally and bilaterally during walking. An exoskeleton was built according to the following design criteria: adjustable to different morphologies; respect of the principal lines of muscular actions; placement of reflective markers on anatomical landmarks; and the ability to replicate the contractures of eight muscles of the lower limb unilaterally and bilaterally (psoas, rectus femoris, hamstring, hip adductors, gastrocnemius, soleus, tibialis posterior, and peroneus). Sixteen combinations of contractures were emulated on the unilateral and bilateral muscles of nine healthy participants. Two sessions of gait analysis were performed at weekly intervals to assess the reliability of the emulated contractures. Discrete variables were extracted from the kinematics to analyse the reliability. The exoskeleton did not affect normal walking when contractures were not emulated. Kinematic reliability varied from poor to excellent depending on the targeted muscle. Reliability was good for the bilateral and unilateral gastrocnemius, soleus, and tibialis posterior as well as the bilateral hamstring and unilateral hip adductors. The exoskeleton can be used to replicate contracture on healthy participants. The exoskeleton will allow us to differentiate primary and compensatory effects of muscle contractures on gait kinematics. Copyright © 2016 Elsevier B.V. All rights reserved.
de Oliveira, Bruno Menezes; Matsumura, Cintia Y.; Fontes-Oliveira, Cibely C.; Gawlik, Kinga I.; Acosta, Helena; Wernhoff, Patrik; Durbeej, Madeleine
2014-01-01
Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain–deficient dy3K/dy3K mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain–deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978). PMID:24994560
Complex regional pain syndrome type I (RSD): pathology of skeletal muscle and peripheral nerve.
van der Laan, L; ter Laak, H J; Gabreëls-Festen, A; Gabreëls, F; Goris, R J
1998-07-01
Reflex sympathetic dystrophy (RSD) (recently reclassified as complex regional pain syndrome type I) is a syndrome occurring in extremities and, when chronic, results in severe disability and untractable pain. RSD may be accompanied by neurologic symptoms even when there is no previous neurologic lesion. There is no consensus as to the pathogenic mechanism involved in RSD. To gain insight into the pathophysiology of RSD, we studied histopathology of skeletal muscle and peripheral nerve from patients with chronic RSD in a lower extremity. In eight patients with chronic RSD, an above-the-knee amputation was performed because of a nonfunctional limb. Specimens of sural nerves, tibial nerves, common peroneal nerves, gastrocnemius muscles, and soleus muscles were obtained from the amputated legs and analyzed by light and electron microscopy. In all patients, the affected leg showed similar neurologic symptoms such as spontaneous pain, hyperpathy, allodynia, paresis, and anesthesia dolorosa. The nerves showed no consistent abnormalities of myelinated fibers. In four patients, the C-fibers showed electron microscopic pathology. In all patients, the gastrocnemius and soleus muscle specimens showed a decrease of type I fibers, an increase of lipofuscin pigment, atrophic fibers, and severely thickened basal membrane layers of the capillaries. In chronic RSD, efferent nerve fibers were histologically unaffected; from afferent fibers, only C-fibers showed histopathologic abnormalities. Skeletal muscle showed a variety of histopathologic findings, which are similar to the histologic abnormalities found in muscles of patients with diabetes.
Plantar flexor muscle weakness and fatigue in spastic cerebral palsy patients.
Neyroud, Daria; Armand, Stéphane; De Coulon, Geraldo; Sarah R Dias Da Silva; Maffiuletti, Nicola A; Kayser, Bengt; Place, Nicolas
2017-02-01
Patients with cerebral palsy develop an important muscle weakness which might affect the aetiology and extent of exercise-induced neuromuscular fatigue. This study evaluated the aetiology and extent of plantar flexor neuromuscular fatigue in patients with cerebral palsy. Ten patients with cerebral palsy and 10 age- and sex-matched healthy individuals (∼20 years old, 6 females) performed four 30-s maximal isometric plantar flexions interspaced by a resting period of 2-3s to elicit a resting twitch. Maximal voluntary contraction force, voluntary activation level and peak twitch were quantified before and immediately after the fatiguing task. Before fatigue, patients with cerebral palsy were weaker than healthy individuals (341±134N vs. 858±151N, p<0.05) and presented lower voluntary activation (73±19% vs. 90±9%, p<0.05) and peak twitch (100±28N vs. 199±33N, p<0.05). Maximal voluntary contraction force was not significantly reduced in patients with cerebral palsy following the fatiguing task (-10±23%, p>0.05), whereas it decreased by 30±12% (p<0.05) in healthy individuals. Plantar flexor muscles of patients with cerebral palsy were weaker than their healthy peers but showed greater fatigue resistance. Cerebral palsy is a widely defined pathology that is known to result in muscle weakness. The extent and origin of muscle weakness were the topic of several previous investigations; however some discrepant results were reported in the literature regarding how it might affect the development of exercise-induced neuromuscular fatigue. Importantly, most of the studies interested in the assessment of fatigue in patients with cerebral palsy did so with general questionnaires and reported increased levels of fatigue. Yet, exercise-induced neuromuscular fatigue was quantified in just a few studies and it was found that young patients with cerebral palsy might be more fatigue resistant that their peers. Thus, it appears that (i) conflicting results exist regarding objectively-evaluated fatigue in patients with cerebral palsy and (ii) the mechanisms underlying this muscle fatigue - in comparison to those of healthy peers - remain poorly understood. The present study adds important knowledge to the field as it shows that when young adults with cerebral palsy perform sustained maximal isometric plantar flexions, they appear less fatigable than healthy peers. This difference can be ascribed to a better preservation of the neural drive to the muscle. We suggest that the inability to drive their muscles maximally accounts for the lower extent of exercise-induced neuromuscular fatigue in patients with cerebral palsy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kasapidou, E; Wood, J D; Richardson, R I; Sinclair, L A; Wilkinson, R G; Enser, M
2012-04-01
Groups of 8 lambs were allocated to one of five concentrate diets supplemented with all-rac-α-tocopheryl acetate containing 30 (C30), 60 (C60), 120 (C120), 250 (C250) and 500 (C500) mg/kg dry matter. Two other groups were fed grass silage and 400 g/day concentrate with 60 (S60) or 500 (S500) mg α-tocopheryl acetate/kg dry matter. Within diet, vitamin E level did not affect growth performance or carcass characteristics. Basal diet did not affect final live weight, conformation and fatness scores. M. semimembranosus from S lambs contained more α-tocopherol than that of C lambs on the same intake and by day 6 in MAP (75%O2/25%CO2) chroma and a* were below acceptable levels in C30 lambs. TBARS were higher in C30 and C60 muscle than in other treatments (P<0.001) after 3 and 6 days display. Muscle fatty acid composition varied with basal diet but lipid oxidation depended more on vitamin E concentration with an initial concentration of 1.9 μg/g muscle preventing significant lipid oxidation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Influences of thermal environment on fish growth.
Boltaña, Sebastián; Sanhueza, Nataly; Aguilar, Andrea; Gallardo-Escarate, Cristian; Arriagada, Gabriel; Valdes, Juan Antonio; Soto, Doris; Quiñones, Renato A
2017-09-01
Thermoregulation in ectothermic animals is influenced by the ability to effectively respond to thermal variations. While it is known that ectotherms are affected by thermal changes, it remains unknown whether physiological and/or metabolic traits are impacted by modifications to the thermal environment. Our research provides key evidence that fish ectotherms are highly influenced by thermal variability during development, which leads to important modifications at several metabolic levels (e.g., growth trajectories, microstructural alterations, muscle injuries, and molecular mechanisms). In Atlantic salmon ( Salmo salar ), a wide thermal range (Δ T 6.4°C) during development (posthatch larvae to juveniles) was associated with increases in key thermal performance measures for survival and growth trajectory. Other metabolic traits were also significantly influenced, such as size, muscle cellularity, and molecular growth regulators possibly affected by adaptive processes. In contrast, a restricted thermal range (Δ T 1.4°C) was detrimental to growth, survival, and cellular microstructure as muscle growth could not keep pace with increased metabolic demands. These findings provide a possible basic explanation for the effects of thermal environment during growth. In conclusion, our results highlight the key role of thermal range amplitude on survival and on interactions with major metabolism-regulating processes that have positive adaptive effects for organisms.
Hou, Chien-Wen; Lee, Shin-Da; Kao, Chung-Lan; Cheng, I-Shiung; Lin, Yu-Nan; Chuang, Sheng-Ju; Chen, Chung-Yu; Ivy, John L.; Huang, Chih-Yang; Kuo, Chia-Hua
2015-01-01
The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05). Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS) and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max) was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05). Conclusion: Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge. PMID:25617625
Hou, Chien-Wen; Lee, Shin-Da; Kao, Chung-Lan; Cheng, I-Shiung; Lin, Yu-Nan; Chuang, Sheng-Ju; Chen, Chung-Yu; Ivy, John L; Huang, Chih-Yang; Kuo, Chia-Hua
2015-01-01
The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05). Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS) and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max) was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05). Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge.
Morosetti, Roberta; Gliubizzi, Carla; Sancricca, Cristina; Broccolini, Aldobrando; Gidaro, Teresa; Lucchini, Matteo; Mirabella, Massimiliano
2012-04-01
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 exert pleiotropic effects, including regulation of myogenesis. Sporadic inclusion-body myositis (IBM) is the most common muscle disease of the elderly population and leads to severe disability. IBM mesoangioblasts, different from mesoangioblasts in other inflammatory myopathies, display a myogenic differentiation defect. The objective of the present study was to investigate TWEAK-Fn14 expression in IBM and other inflammatory myopathies and explore whether TWEAK modulation affects myogenesis in IBM mesoangioblasts. TWEAK, Fn14, and NF-κB expression was assessed by immunohistochemistry and Western blot in cell samples from both muscle biopsies and primary cultures. Mesoangioblasts isolated from samples of IBM, dermatomyositis, polymyositis, and control muscles were treated with recombinant human TWEAK, Fn14-Fc chimera, and anti-TWEAK antibody. TWEAK-RNA interference was performed in IBM and dermatomyositis mesoangioblasts. TWEAK levels in culture media were determined by enzyme-linked immunosorbent assay. In IBM muscle, we found increased TWEAK-Fn14 expression. Increased levels of TWEAK were found in differentiation medium from IBM mesoangioblasts. Moreover, TWEAK inhibited myogenic differentiation of mesoangioblasts. Consistent with this evidence, TWEAK inhibition by Fn14-Fc chimera or short interfering RNA induced myogenic differentiation of IBM mesoangioblasts. We provide evidence that TWEAK is a negative regulator of human mesoangioblast differentiation. Dysregulation of the TWEAK-Fn14 axis in IBM muscle may induce progressive muscle atrophy and reduce activation and differentiation of muscle precursor cells. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
From muscle wasting to sarcopenia and myopenia: update 2012.
von Haehling, Stephan; Morley, John E; Anker, Stefan D
2012-12-01
Human muscle undergoes constant changes. After about age 50, muscle mass decreases at an annual rate of 1-2 %. Muscle strength declines by 1.5 % between ages 50 and 60 and by 3 % thereafter. The reasons for these changes include denervation of motor units and a net conversion of fast type II muscle fibers into slow type I fibers with resulting loss in muscle power necessary for activities of daily living. In addition, lipids are deposited in the muscle, but these changes do not usually lead to a loss in body weight. Once muscle mass in elderly subjects falls below 2 standard deviations of the mean of a young control cohort and the gait speed falls below 0.8 m/s, a clinical diagnosis of sarcopenia can be reached. Assessment of muscle strength using tests such as the short physical performance battery test, the timed get-up-and-go test, or the stair climb power test may also be helpful in establishing the diagnosis. Serum markers may be useful when sarcopenia presence is suspected and may prompt further investigations. Indeed, sarcopenia is one of the four main reasons for loss of muscle mass. On average, it is estimated that 5-13 % of elderly people aged 60-70 years are affected by sarcopenia. The numbers increase to 11-50 % for those aged 80 or above. Sarcopenia may lead to frailty, but not all patients with sarcopenia are frail-sarcopenia is about twice as common as frailty. Several studies have shown that the risk of falls is significantly elevated in subjects with reduced muscle strength. Treatment of sarcopenia remains challenging, but promising results have been obtained using progressive resistance training, testosterone, estrogens, growth hormone, vitamin D, and angiotensin-converting enzyme inhibitors. Interesting nutritional interventions include high-caloric nutritional supplements and essential amino acids that support muscle fiber synthesis.
Honarmand, Kavan; Minaskanian, Rafael; Maboudi, Seyed Ebrahim; Oskouei, Ali E
2018-01-01
[Purpose] Sitting position is the dominant position for a professional pianist. There are many static and dynamic forces which affect musculoskeletal system during sitting. In prolonged sitting, these forces are harmful. The aim of this study was to compare pianists' back extensor muscles activity during playing piano while sitting on a regular piano bench and a chair with back rest. [Subjects and Methods] Ten professional piano players (mean age 25.4 ± 5.28, 60% male, 40% female) performed similar tasks for 5 hours in two sessions: one session sitting on a regular piano bench and the other sitting on a chair with back rest. In each session, muscular activity was assessed in 3 ways: 1) recording surface electromyography of the back-extensor muscles at the beginning and end of each session, 2) isometric back extension test, and 3) musculoskeletal discomfort questionnaire. [Results] There were significantly lesser muscular activity, more ability to perform isometric back extension and better personal comfort while sitting on a chair with back rest. [Conclusion] Decreased muscular activity and perhaps fatigue during prolonged piano playing on a chair with back rest may reduce acquired musculoskeletal disorders amongst professional pianists.
Honarmand, Kavan; Minaskanian, Rafael; Maboudi, Seyed Ebrahim; Oskouei, Ali E.
2018-01-01
[Purpose] Sitting position is the dominant position for a professional pianist. There are many static and dynamic forces which affect musculoskeletal system during sitting. In prolonged sitting, these forces are harmful. The aim of this study was to compare pianists’ back extensor muscles activity during playing piano while sitting on a regular piano bench and a chair with back rest. [Subjects and Methods] Ten professional piano players (mean age 25.4 ± 5.28, 60% male, 40% female) performed similar tasks for 5 hours in two sessions: one session sitting on a regular piano bench and the other sitting on a chair with back rest. In each session, muscular activity was assessed in 3 ways: 1) recording surface electromyography of the back-extensor muscles at the beginning and end of each session, 2) isometric back extension test, and 3) musculoskeletal discomfort questionnaire. [Results] There were significantly lesser muscular activity, more ability to perform isometric back extension and better personal comfort while sitting on a chair with back rest. [Conclusion] Decreased muscular activity and perhaps fatigue during prolonged piano playing on a chair with back rest may reduce acquired musculoskeletal disorders amongst professional pianists. PMID:29410569
Electrically-induced muscle fatigue affects feedforward mechanisms of control.
Monjo, F; Forestier, N
2015-08-01
To investigate the effects of focal muscle fatigue induced by electromyostimulation (EMS) on Anticipatory Postural Adjustments (APAs) during arm flexions performed at maximal velocity. Fifteen healthy subjects performed self-paced arm flexions at maximal velocity before and after the completion of fatiguing electromyostimulation programs involving the medial and anterior deltoids and aiming to degrade movement peak acceleration. APA timing and magnitude were measured using surface electromyography. Following muscle fatigue, despite a lower mechanical disturbance evidenced by significant decreased peak accelerations (-12%, p<.001), APAs remained unchanged as compared to control trials (p>.11 for all analyses). The fatigue signals evoked by externally-generated contractions seem to be gated by the Central Nervous System and result in postural strategy changes which aim to increase the postural safety margin. EMS is widely used in rehabilitation and training programs for its neuromuscular function-related benefits. However and from a motor control viewpoint, the present results show that the use of EMS can lead to acute inaccuracies in predictive motor control. We propose that clinicians should investigate the chronic and global effects of EMS on motor control. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Jandacka, Daniel; Zahradnik, David; Foldyna, Karel; Hamill, Joseph
2013-01-28
This study represented a unique opportunity to understand changes in the human motion biomechanics during basic locomotion within a time interval of 4 years, when the monitored individual regained his original aerobic fitness, running performance and body mass index as prior to the injury. The participant visited the laboratory a month prior to the injury and during 4 years after the surgery. The surgery, subsequent rehabilitation and a 4-year running training programme in the studied recreational athlete did not completely eliminate the consequences of the Achilles tendon rupture. The function muscle deficit is namely manifested by a lower net plantar flexion moment and a lower net-generated ankle joint power during the take-off in the stance phase. The greater dorsal flexion in the affected ankle joint at the first contact with the ground and consequently higher peaks of ground reaction forces during running are consequences of the longer Achilles tendon in the affected lower extremity and weakened calf muscles.
Takahashi, Mitsuru; Takeda, Kotaro; Otaka, Yohei; Osu, Rieko; Hanakawa, Takashi; Gouko, Manabu; Ito, Koji
2012-08-16
We developed an electroencephalogram-based brain computer interface system to modulate functional electrical stimulation (FES) to the affected tibialis anterior muscle in a stroke patient. The intensity of FES current increased in a stepwise manner when the event-related desynchronization (ERD) reflecting motor intent was continuously detected from the primary cortical motor area. We tested the feasibility of the ERD-modulated FES system in comparison with FES without ERD modulation. The stroke patient who presented with severe hemiparesis attempted to perform dorsiflexion of the paralyzed ankle during which FES was applied either with or without ERD modulation. After 20 minutes of training, the range of movement at the ankle joint and the electromyography amplitude of the affected tibialis anterior muscle were significantly increased following the ERD-modulated FES compared with the FES alone. The proposed rehabilitation technique using ERD-modulated FES for stroke patients was feasible. The system holds potentials to improve the limb function and to benefit stroke patients.
Akkoc, Orkun; Caliskan, Emine; Bayramoglu, Zuhal
2018-05-02
Athletic performance in basketball comprises the contributions of anaerobic and aerobic performance. The aim was to investigate the effects of passive muscle stiffness, using shear wave elastography (SWE), as well as muscle thickness, and body mass index (BMI), on both aerobic and anaerobic performances in adolescent female basketball players.Material and methods: Anaerobic and aerobic (VO2max) performance was assessed using the vertical jump and shuttle run tests, respectively, in 24 volunteer adolescent female basketball players. Passive muscle stiffness of the rectus femoris (RF), gastrocnemius medialis (GM), gastrocnemius lateralis (GL) and soleus muscles were measured by SWE, and the thickness of each muscle was assessed by gray scale ultrasound. The BMI of each participant was also calculated. The relationship between vertical jump and VO2max values, and those of muscle stiffness, thickness, and BMI were investigated via Pearson's correlation and multivariate linear regression analysis. No significant correlation was observed between muscle stiffness and VO2max or vertical jump (p>0.05). There was significant negative correlation between GL thickness and VO2max (p=0.026), and soleus thickness and VO2max (p=0.046). There was also a significant negative correlation between BMI and VO2max (p=0.001). Conclusions: This preliminary work can be a reference for future research. Although our article indicates that passive muscle stiffness measured by SWE is not directly related to athletic performance, future comprehensive studies should be performed in order to illuminate the complex nature of muscles. The maintenance of lower muscle thickness and optimal BMI may be associated with better aerobic performance.
Skeletal muscle design to meet functional demands
Lieber, Richard L.; Ward, Samuel R.
2011-01-01
Skeletal muscles are length- and velocity-sensitive force producers, constructed of a vast array of sarcomeres. Muscles come in a variety of sizes and shapes to accomplish a wide variety of tasks. How does muscle design match task performance? In this review, we outline muscle's basic properties and strategies that are used to produce movement. Several examples are provided, primarily for human muscles, in which skeletal muscle architecture and moment arms are tailored to a particular performance requirement. In addition, the concept that muscles may have a preferred sarcomere length operating range is also introduced. Taken together, the case is made that muscles can be fine-tuned to perform specific tasks that require actuators with a wide range of properties. PMID:21502118
NASA Technical Reports Server (NTRS)
Young, R. B.; Bridge, K. Y.; Strietzel, C. J.
2000-01-01
Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.
NASA Technical Reports Server (NTRS)
Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.
2000-01-01
Expression of the beta-adrenergic receptor (PAR) and its coupling to Adenosine 3'5' Cyclic Monophosphate (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the PAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture, were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the PAR population was not significantly affected by electrical stimulation; however, the ability, of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the PAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.
ERIC Educational Resources Information Center
van Munster, Judith C.; Maathuis, Karel G. B.; Haga, Nienke; Verheij, Nienke P.; Nicolai, Jean-Philippe A.; Hadders-Algra, Mijna
2007-01-01
The aim of this review was to examine the literature on the effects of surgery of the spastic hand in children with cerebral palsy on functional outcome and muscle coordination. We performed a search of the relevant literature in Medline, Embase, and Biological Abstracts from 1966 to June 2006. The search resulted in eight studies on the effect of…
Barnes, Benjamin T; Confides, Amy L; Rich, Mark M; Dupont-Versteegden, Esther E
2015-06-01
Critical illness myopathy (CIM) is associated with severe muscle atrophy and fatigue in affected patients. Apoptotic signaling is involved in atrophy and is elevated in muscles from patients with CIM. In this study we investigated underlying mechanisms of apoptosis-related pathways in muscles with different fiber type composition in a rat model of CIM using denervation and glucocorticoid administration (denervation and steroid-induced myopathy, DSIM). Soleus and tibialis anterior (TA) muscles showed severe muscle atrophy (40-60% of control muscle weight) and significant apoptosis in interstitial as well as myofiber nuclei that was similar between the two muscles with DSIM. Caspase-3 and -8 activities, but not caspase-9 and -12, were elevated in TA and not in soleus muscle, while the caspase-independent proteins endonuclease G (EndoG) and apoptosis inducing factor (AIF) were not changed in abundance nor differentially localized in either muscle. Anti-apoptotic proteins HSP70, -27, and apoptosis repressor with a caspase recruitment domain (ARC) were elevated in soleus compared to TA muscle and ARC was significantly decreased with induction of DSIM in soleus. Results indicate that apoptosis is a significant process associated with DSIM in both soleus and TA muscles, and that apoptosis-associated processes are differentially regulated in muscles of different function and fiber type undergoing atrophy due to DSIM. We conclude that interventions combating apoptosis with CIM may need to be directed towards inhibiting caspase-dependent as well as -independent mechanisms to be able to affect muscles of all fiber types.
Effect of incorporating low intensity exercise into the recovery period after a rugby match.
Suzuki, M; Umeda, T; Nakaji, S; Shimoyama, T; Mashiko, T; Sugawara, K
2004-08-01
The psychological and physiological condition of athletes affect both their performance in competitions and their health. Rugby is an intense sport which appears to impose psychological and physiological stress on players. However, there have been few studies of the most appropriate resting techniques to deliver effective recovery from a match. To compare the difference in recovery after a match using resting techniques with or without exercise. Fifteen Japanese college rugby football players were studied. Seven performed only normal daily activities and eight performed additional low intensity exercise during the post-match rest period. Players were examined just before and immediately after the match and one and two days after the match. Blood biochemistry and two neutrophil functions, phagocytic activity and oxidative burst, were measured to assess physiological condition, and the profile of mood states (POMS) scores were examined to evaluate psychological condition. Immediately after the match, muscle damage, decreases in neutrophil functions, and mental fatigue were observed in both groups. Muscle damage and neutrophil functions recovered with time almost equally in the two groups, but the POMS scores were significantly decreased only in subjects in the low intensity exercise group. Rugby matches impose both physiological and psychological stress on players. The addition of low intensity exercise to the rest period did not adversely affect physiological recovery and had a significantly beneficial effect on psychological recovery by enhancing relaxation.
NASA Astrophysics Data System (ADS)
Han, Tao; Wang, Jiteng; Hu, Shuixin; Li, Xinyu; Jiang, Yudong; Wang, Chunlin
2015-07-01
This study was conducted to evaluate the effects of dietary lipid sources on the growth performance and fatty acid composition of the swimming crab, Portunus trituberculatus. Four isonitrogenous and isoenergetic experimental diets were formulated to contain four separate lipid sources, including fish, soybean, rapeseed, and linseed oils (FO, SO, RO, and LO, respectively). With three replicates of 18 crabs each for each diet, crabs (initial body weight, 17.00±0.09 g) were fed twice daily for 8 weeks. There were no significant differences among these groups in terms of weight gain, specific growth rate, and hepatosomatic index. However, the RO groups' survival rate was significantly lower than FO groups. The feed conversion and protein efficiency ratios of RO groups were poorer than other groups. The proximate compositions of whole body and hepatopancreas were significantly affected by these dietary treatments. Tissue fatty acid composition mainly reflected dietary fatty acid compositions. Crabs fed FO diets exhibited significantly higher arachidonic, eicosapentaenoic, and docosahexaenoic acid contents in muscle and hepatopancreas compared with VO crabs. Linoleic, oleic, and linolenic acids in muscle and hepatopancreas were the highest in the SO, RO, and LO groups, respectively. The present study suggested that SO and LO could substitute for FO in fishmeal-based diets for swimming crabs, without affecting growth performance and survival.
Alnahhas, N; Le Bihan-Duval, E; Baéza, E; Chabault, M; Chartrin, P; Bordeau, T; Cailleau-Audouin, E; Meteau, K; Berri, C
2015-09-01
The impact of divergent selection based on the ultimate pH (pHu) of pectoralis major (P. major) muscle on the chemical, biochemical, and histological profiles of the muscle and sensorial quality of meat was investigated in broiler chickens. The protein, lipid, DM, glycogen and lactate content, glycolytic potential, proteolysis, lipid and protein oxidation index, muscle fiber cross-sectional area, capillary density, and collagen surface were determined on the breast P. major muscle of 6-wk-old broilers issued from the high-pHu (pHu+) and low-pHu (pHu-) lines. Sensory attributes were also evaluated on the breast (roasted or grilled) and thigh (roasted) meat of the 2 lines. Protein, lipid, and DM content of P. major muscle were not affected by selection ( > 0.05). However, the P. major muscle of the pHu+ line was characterized by lower residual glycogen (-16%; ≤ 0.001) and lactate (-14%; ≤ 0.001) content and lower glycolytic potential (-14%; ≤ 0.001) compared with the pHu- line. Although the average cross-sectional area of muscle fibers and surface occupied by collagen were similar ( > 0.05) in both lines, fewer capillaries per fiber (-15%; ≤ 0.05) were observed in the pHu+ line. The pHu+ line was also characterized by lower lipid oxidation (thiobarbituric acid reactive substance index: -23%; ≤ 0.05) but protein oxidation and proteolysis index were not different ( > 0.05) between the 2 lines. At the sensory level, selection on breast muscle pHu mainly affected the texture of grilled and roast breast meat, which was judged significantly more tender ( ≤ 0.001) in the pHu+ line, and the acid taste, which was less pronounced in the roasted breast meat of the pHu+ line ( ≤ 0.002). This study highlighted that selection based on pHu does not affect the chemical composition and structure of breast meat. However, by modifying muscle blood supply and glycogen turnover, it affects meat acidity and oxidant status, both of which are likely to contribute to the large differences in texture observed between the 2 lines.
Mann, S; Abuelo, A; Nydam, D V; Leal Yepes, F A; Overton, T R; Wakshlag, J J
2016-05-01
During periods of negative energy balance, mobilization of muscle is a physiologic process providing energy and amino acids. This is important in transition dairy cows experiencing negative energy and protein balance postpartum. Overconsumption of energy during late pregnancy affects resting glucose and insulin concentrations peripartum and increases the risk for hyperketonemia postpartum, but the effects on muscle tissue are not fully understood. Skeletal muscle accounts for the majority of insulin-dependent glucose utilization in ruminants. Our objective was to study peripartal skeletal muscle insulin signaling as well as muscle accretion and atrophy in cows with excess energy consumption prepartum. Skeletal muscle biopsies were obtained 28 and 10 days prepartum, as well as 4 and 21 days postpartum from 24 Holstein cows. Biopsies were taken immediately before and 60 min after intravenous glucose challenge causing endogenous release of insulin. Gene expression of IGF-1, myostatin, and atrogin-1, as well as immunoblot analysis of atrogin-1, muRF1, ubiquitinated proteins, LC3, and phosphorylation of AKT, ERK and mTORC1 substrate 4EBP1 was performed. Excess energy consumption in late pregnancy did not lead to changes in insulin-dependent molecular regulation of muscle accretion or atrophy compared with the controlled energy group. In both groups, phosphorylation of AKT and mTORC1 substrate was significantly decreased postpartum whereas proteasome activity and macroautopagy were upregulated. This study showed that in addition to the proteasome pathway of muscle atrophy, macroautophagy is upregulated in postpartum negative energy and protein balance regardless of dietary energy strategy prepartum and was higher in cows overfed energy throughout the study period.
Lawlor, Michael W.; Viola, Marissa G.; Meng, Hui; Edelstein, Rachel V.; Liu, Fujun; Yan, Ke; Luna, Elizabeth J.; Lerch-Gaggl, Alexandra; Hoffmann, Raymond G.; Pierson, Christopher R.; Buj-Bello, Anna; Lachey, Jennifer L.; Pearsall, Scott; Yang, Lin; Hillard, Cecilia J.; Beggs, Alan H.
2015-01-01
X-linked myotubular myopathy is a congenital myopathy caused by deficiency of myotubularin. Patients often present with severe perinatal weakness, requiring mechanical ventilation to prevent death from respiratory failure. We recently reported that an activin receptor type IIB inhibitor produced hypertrophy of type 2b myofibers and modest increases of strength and life span in the severely myopathic Mtm1δ4 mouse model of X-linked myotubular myopathy. We have now performed a similar study in the less severely symptomatic Mtm1 p.R69C mouse in hopes of finding greater treatment efficacy. Activin receptor type IIB inhibitor treatment of Mtm1 p.R69C animals produced behavioral and histological evidence of hypertrophy in gastrocnemius muscles but not in quadriceps or triceps. The ability of the muscles to respond to activin receptor type IIB inhibitor treatment correlated with treatment-induced increases in satellite cell number and several muscle-specific abnormalities of hypertrophic signaling. Treatment-responsive Mtm1 p.R69C gastrocnemius muscles displayed lower levels of phosphorylated ribosomal protein S6 and higher levels of phosphorylated eukaryotic elongation factor 2 kinase than were observed in Mtm1 p.R69C quadriceps muscle or in muscles from wild-type littermates. Hypertrophy in the Mtm1 p.R69C gastrocnemius muscle was associated with increased levels of phosphorylated ribosomal protein S6. Our findings indicate that muscle-, fiber type-, and mutation-specific factors affect the response to hypertrophic therapies that will be important to assess in future therapeutic trials. PMID:24726641
Diaz-Manera, Jordi; Fernandez-Torron, Roberto; LLauger, Jaume; James, Meredith K; Mayhew, Anna; Smith, Fiona E; Moore, Ursula R; Blamire, Andrew M; Carlier, Pierre G; Rufibach, Laura; Mittal, Plavi; Eagle, Michelle; Jacobs, Marni; Hodgson, Tim; Wallace, Dorothy; Ward, Louise; Smith, Mark; Stramare, Roberto; Rampado, Alessandro; Sato, Noriko; Tamaru, Takeshi; Harwick, Bruce; Rico Gala, Susana; Turk, Suna; Coppenrath, Eva M; Foster, Glenn; Bendahan, David; Le Fur, Yann; Fricke, Stanley T; Otero, Hansel; Foster, Sheryl L; Peduto, Anthony; Sawyer, Anne Marie; Hilsden, Heather; Lochmuller, Hanns; Grieben, Ulrike; Spuler, Simone; Tesi Rocha, Carolina; Day, John W; Jones, Kristi J; Bharucha-Goebel, Diana X; Salort-Campana, Emmanuelle; Harms, Matthew; Pestronk, Alan; Krause, Sabine; Schreiber-Katz, Olivia; Walter, Maggie C; Paradas, Carmen; Hogrel, Jean-Yves; Stojkovic, Tanya; Takeda, Shin'ichi; Mori-Yoshimura, Madoka; Bravver, Elena; Sparks, Susan; Bello, Luca; Semplicini, Claudio; Pegoraro, Elena; Mendell, Jerry R; Bushby, Kate; Straub, Volker
2018-05-07
Dysferlinopathies are a group of muscle disorders caused by mutations in the DYSF gene. Previous muscle imaging studies describe a selective pattern of muscle involvement in smaller patient cohorts, but a large imaging study across the entire spectrum of the dysferlinopathies had not been performed and previous imaging findings were not correlated with functional tests. We present cross-sectional T1-weighted muscle MRI data from 182 patients with genetically confirmed dysferlinopathies. We have analysed the pattern of muscles involved in the disease using hierarchical analysis and presented it as heatmaps. Results of the MRI scans have been correlated with relevant functional tests for each region of the body analysed. In 181 of the 182 patients scanned, we observed muscle pathology on T1-weighted images, with the gastrocnemius medialis and the soleus being the most commonly affected muscles. A similar pattern of involvement was identified in most patients regardless of their clinical presentation. Increased muscle pathology on MRI correlated positively with disease duration and functional impairment. The information generated by this study is of high diagnostic value and important for clinical trial development. We have been able to describe a pattern that can be considered as characteristic of dysferlinopathy. We have defined the natural history of the disease from a radiological point of view. These results enabled the identification of the most relevant regions of interest for quantitative MRI in longitudinal studies, such as clinical trials. NCT01676077. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Shefer, Gabi; Rauner, Gat; Stuelsatz, Pascal; Benayahu, Dafna; Yablonka-Reuveni, Zipora
2013-09-01
Satellite cells, the myogenic progenitors located at the myofibre surface, are essential for the repair of adult skeletal muscle. There is ample evidence for an age-linked decline in the number of satellite cells and performance in limb muscles. Hence, an effective means of activating and expanding the satellite cell pool may enhance muscle maintenance and reduce the impact of age-associated muscle deterioration (sarcopaenia). Accordingly, in the present study, we explored the beneficial effects of endurance exercise on satellite cells in young and old mice. Animals were subjected to an 8-week moderate-intensity treadmill-running approach that does not inflict apparent muscle damage (0° inclination, 11.5 m·min(-1) for 30 min·day(-1) , 6 days·week(-1) ). Myofibres of extensor digitorum longus muscles were then isolated from exercised and sedentary mice and used for monitoring the number of satellite cells, as well as for harvesting individual satellite cells for clonal growth assays. We specifically focused on satellite cell pools of single myofibres, with the view that daily wear of muscles probably affects individual myofibres rather than causing overall muscle damage. We found an expansion of the satellite cell pool in the exercised groups compared to the sedentary groups, with the same increase (~ 1.6-fold) in both ages. The results of the present study are in agreement with our findings obtained using rat gastrocnemius, indicating the consistent effect of exercise on satellite cell expansion in limb muscles. The experimental paradigm established in the present study is useful for investigating satellite cell dynamics at the myofibre niche, as well as for broader investigations of the impact of physiologically and pathologically relevant factors on adult myogenesis. © 2013 The Authors Journal compilation © 2013 FEBS.