Three Years of Global Positioning System Experience on International Space Station
NASA Technical Reports Server (NTRS)
Gomez, Susan
2005-01-01
The International Space Station global positioning systems (GPS) receiver was activated in April 2002. Since that time, numerous software anomalies surfaced that had to be worked around. Some of the software problems required waivers, such as the time function, while others required extensive operator intervention, such as numerous power cycles. Eventually, enough anomalies surfaced that the three pieces of code included in the GPS unit have been re-written and the GPS units were upgraded. The technical aspects of the problems are discussed, as well as the underlying causes that led to the delivery of a product that has had numerous problems. The technical aspects of the problems included physical phenomena that were not well understood, such as the affect that the ionosphere would have on the GPS measurements. The underlying causes were traced to inappropriate use of legacy software, changing requirements, inadequate software processes, unrealistic schedules, incorrect contract type, and unclear ownership responsibilities.
Endocrine-disrupting chemicals (EDCs) are increasingly being reported in waterways worldwide and have been shown to affect fish species by disrupting numerous aspects of development, behavior, reproduction, and survival. Furthermore, new data have suggested that the reduced repr...
ERIC Educational Resources Information Center
Lynch, Tai E.
2013-01-01
Educational leaders are charged with making informed decisions regarding various aspects of schooling that affect the overall achievement of students. Numerous legislative ideas, funding initiatives, programming standards, and practicing guidelines for early childhood education programs have been introduced (Buyssee & Wesley, 2006). Early care…
Prediction of dynamic and mixing characteristics of drop-laden mixing layers using DNS and LES
NASA Technical Reports Server (NTRS)
Okong'o, N.; Leboissetier, A.; Bellan, J.
2004-01-01
Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) have been conducted of a temporal mixing layer laden with evaporating drops, in order to assess the ability of LES to reproduce dynamic and mixing aspects of the DNS which affect combustion, independently of combustion models.
Elevated levels of endocrine-disrupting chemicals (EDCs) have been reported in waterways worldwide and have been shown to affect numerous aspects of development, behavior, reproduction, and survival in various fish species. We have examined the effects of the synthetic steroid 1...
Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes
NASA Astrophysics Data System (ADS)
Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.
2017-12-01
Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation differences amplify the soil moisture variability of semi-arid landscapes.
Erba, Alessandro; Caglioti, Dominique; Zicovich-Wilson, Claudio Marcelo; Dovesi, Roberto
2017-02-15
Two alternative approaches for the quantum-mechanical calculation of the nuclear-relaxation term of elastic and piezoelectric tensors of crystalline materials are illustrated and their computational aspects discussed: (i) a numerical approach based on the geometry optimization of atomic positions at strained lattice configurations and (ii) a quasi-analytical approach based on the evaluation of the force- and displacement-response internal-strain tensors as combined with the interatomic force-constant matrix. The two schemes are compared both as regards their computational accuracy and performance. The latter approach, not being affected by the many numerical parameters and procedures of a typical quasi-Newton geometry optimizer, constitutes a more reliable and robust mean to the evaluation of such properties, at a reduced computational cost for most crystalline systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Elevated levels of endocrine-disrupting chemicals (EDCs) have been reported in waterways worldwide and have been shown to affect numerous aspects of development, behavior, reproduction, and survival in various fish species. We have examined the effects of the synthetic steroid 17...
ERIC Educational Resources Information Center
Cheng, Yufang; Chen, Shuhui
2010-01-01
Individuals with intellectual and developmental disabilities (IDD) have specific difficulties in cognitive social-emotional capability, which affect numerous aspects of social competence. This study evaluated the learning effects of using 3D-emotion system intervention program for individuals with IDD in learning socially based-emotions capability…
ERIC Educational Resources Information Center
Amador-Ruiz, Santiago; Gutierrez, David; Martínez-Vizcaíno, Vicente; Gulías-González, Roberto; Pardo-Guijarro, María J.; Sánchez-López, Mairena
2018-01-01
Background: Motor competence (MC) affects numerous aspects of children's daily life. The aims of this study were to: evaluate MC, provide population-based percentile values for MC; and determine the prevalence of developmental coordination disorder (DCD) in Spanish schoolchildren. Methods: This cross-sectional study included 1562 children aged 4…
Language Classroom: A "Girls' Domain"? Female and Male Students' Perspectives on Language Learning
ERIC Educational Resources Information Center
Nikitina, Larisa; Furuoka, Fumitaka
2007-01-01
Substantial research has been done on gender differences in relation to various aspects of learning and teaching. In the field of language learning learner's gender and its relationship with emotional (affective) components of language study has been a subject of numerous academic inquiries. These studies have focused on female and male students'…
ERIC Educational Resources Information Center
Davis, Michael W.
2013-01-01
Although numerous studies have focused on understanding various aspects of the science of weight loss and weight gain in college students, understanding how the weight-loss process affects college students psychologically and behaviorally may help administrators and student affairs professionals to better work with students on their campuses. The…
Tong, Nelson Y O; Leung, Dennis Y C
2012-01-01
A photochemistry coupled computational fluid dynamics (CFD) based numerical model has been developed to model the reactive pollutant dispersion within urban street canyons, particularly integrating the interrelationship among diurnal heating scenario (solar radiation affections in nighttime, daytime, and sun-rise/set), wind speed, building aspect ratio (building-height-to-street-width), and dispersion of reactive gases, specifically nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) such that a higher standard of air quality in metropolitan cities can be achieved. Validation has been done with both experimental and numerical results on flow and temperature fields in a street canyon with bottom heating, which justifies the accuracy of the current model. The model was applied to idealized street canyons of different aspect ratios from 0.5 to 8 with two different ambient wind speeds under different diurnal heating scenarios to estimate the influences of different aforementioned parameters on the chemical evolution of NO, NO2 and O3. Detailed analyses of vertical profiles of pollutant concentrations showed that different diurnal heating scenarios could substantially affect the reactive gases exchange between the street canyon and air aloft, followed by respective dispersion and reaction. Higher building aspect ratio and stronger ambient wind speed were revealed to be, in general, responsible for enhanced entrainment of O3 concentrations into the street canyons along windward walls under all diurnal heating scenarios. Comparatively, particular attention can be paid on the windward wall heating and nighttime uniform surface heating scenarios.
NASA Astrophysics Data System (ADS)
Cho, Yi Je; Lee, Wook Jin; Park, Yong Ho
2014-11-01
Aspects of numerical results from computational experiments on representative volume element (RVE) problems using finite element analyses are discussed. Two different boundary conditions (BCs) are examined and compared numerically for volume elements with different sizes, where tests have been performed on the uniaxial tensile deformation of random particle reinforced composites. Structural heterogeneities near model boundaries such as the free-edges of particle/matrix interfaces significantly influenced the overall numerical solutions, producing force and displacement fluctuations along the boundaries. Interestingly, this effect was shown to be limited to surface regions within a certain distance of the boundaries, while the interior of the model showed almost identical strain fields regardless of the applied BCs. Also, the thickness of the BC-affected regions remained constant with varying volume element sizes in the models. When the volume element size was large enough compared to the thickness of the BC-affected regions, the structural response of most of the model was found to be almost independent of the applied BC such that the apparent properties converged to the effective properties. Finally, the mechanism that leads a RVE model for random heterogeneous materials to be representative is discussed in terms of the size of the volume element and the thickness of the BC-affected region.
Simanowski, Stefanie; Krajewski, Kristin
2017-08-10
This study assessed the extent to which executive functions (EF), according to their factor structure in 5-year-olds (N = 244), influenced early quantity-number competencies, arithmetic fluency, and mathematics school achievement throughout first and second grades. A confirmatory factor analysis resulted in updating as a first, and inhibition and shifting as a combined second factor. In the structural equation model, updating significantly affected knowledge of the number word sequence, suggesting a facilitatory effect on basic encoding processes in numerical materials that can be learnt purely by rote. Shifting and inhibition significantly influenced quantity to number word linkages, indicating that these processes promote developing a profound understanding of numbers. These results show the supportive role of specific EF for specific aspects of a numerical foundation. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Three Years of Global Positioning System Experience on International Space Station
NASA Technical Reports Server (NTRS)
Gomez, Susan
2006-01-01
The International Space Station global positioning system (GPS) receiver was activated in April 2002. Since that time, numerous software anomalies surfaced that had to be worked around. Some of the software problems required waivers, such as the time function, while others required extensive operator intervention, such as numerous power cycles. Eventually enough anomalies surfaced that the three pieces of code included in the GPS unit have been re-written and the GPS units upgraded. The technical aspects of the problems are discussed, as well as the underlying causes that led to the delivery of a product that has had so many problems. The technical aspects of the problems included physical phenomena that were not well understood, such as the affect that the ionosphere would have on the GPS measurements. The underlying causes were traced to inappropriate use of legacy software, changing requirements, inadequate software processes, unrealistic schedules, incorrect contract type, and unclear ownership responsibilities..
Quantifying and valuing the role of trees and forests on environmental quality and human health
David J. Nowak
2018-01-01
Nature provides numerous services that affect the lives and wellbeing of people across the globe. Understanding impacts and benefits of nature will lead to better management decisions and designs in sustaining nature within society. One of the most dominant aspects of nature in many areas of the globe is vegetation, and one of the most dominant elements of vegetation...
Performance Analysis for Lateral-Line-Inspired Sensor Arrays
2011-06-01
found to affect numerous aspects of behavior including maneuvering in complex fluid environments, schooling, prey tracking, and environment mapping...190 5-29 Maps of the cost function for a reflected vortex model with an increasing array length but constant sensor spacing . The x at...length but constant sensor spacing . The x in each image denotes the true location of the vortex. The black lines correspond to level sets generated by the
Evaluation and Validation (E&V) Team Public Report. Volume 5
1990-10-31
aspects, software engineering practices, etc. The E&V requirements which are developed will be used to guide the E&V technical effort. The currently...interoperability of Ada software engineering environment tools and data. The scope of the CAIS-A includes the functionality affecting transportability that is...requirement that they be CAIS conforming tools or data. That is, for example numerous CIVC data exist on special purpose software currently available
Movies and juvenile delinquency: an overview.
Snyder, S
1991-01-01
Film viewing may affect the juvenile delinquent through the processes known as social learning and instigation. Identification with the movie and its characters by the delinquent viewer is common, and studies have consistently demonstrated that films can affect delinquents, although in some cases the effects are small. Numerous examples of how films may serve as either the initiator or the final common pathway of delinquent acts are presented. However, prosocial aspects of films dealing with delinquency may exert a positive influence on the juvenile delinquent. Treatment implications of these observations are discussed from social learning and other perspectives.
The effect of aspect ratio on adhesion and stiffness for soft elastic fibres
Aksak, Burak; Hui, Chung-Yuen; Sitti, Metin
2011-01-01
The effect of aspect ratio on the pull-off stress and stiffness of soft elastic fibres is studied using elasticity and numerical analysis. The adhesive interface between a soft fibre and a smooth rigid surface is modelled using the Dugdale–Barenblatt model. Numerical simulations show that, while pull-off stress increases with decreasing aspect ratio, fibres get stiffer. Also, for sufficiently low aspect ratio fibres, failure occurs via the growth of internal cracks and pull-off stress approaches the intrinsic adhesive strength. Experiments carried out with various aspect ratio polyurethane elastomer fibres are consistent with the numerical simulations. PMID:21227962
Numerical simulation of turbulent flow and heat transfer though sinusoidal ducts
NASA Astrophysics Data System (ADS)
Abroshan, Hamid
2018-02-01
Turbulent forced convection heat transfer in corrugated plate surfaces was studied by means of CFD. Flow through corrugated plates, which are sets of sinusoidal ducts, was analyzed for different inlet flow angles (0° to 50°), aspect ratios (0.1 to 10), Reynolds numbers (2000 to 40,000) and Prantdel numbers (0.7 to 5). Heat transfer is affected significantly by variation of aspect ratio. A maximum heat transfer coefficient is observed at a particular aspect ratio although the aspect ratio has a minor effect on friction factor. Enlarging inlet flow angle also leads to a higher heat transfer coefficient and pressure loss in aspect ratios close to unity. Dependency of Nusselt and friction factor on the angle and aspect ratio was interpreted by means of appearance of secondary motions and coexistence of laminar and turbulent flow in a cross section. Comparing the results with experimental data shows a maximum 12.8% difference. By evaluating the results, some correlations were proposed to calculate Nusselt number and friction factor for entrance and fully developed regions. A corrugated plate with an aspect ratio equal to 1.125 and an inlet flow angle equal to 50° gives the best heat transfer and pressure drop characteristics.
NASA Astrophysics Data System (ADS)
Kim, Sungwon; Uprety, Bibhisha; Mathews, V. John; Adams, Daniel O.
2015-03-01
Structural Health Monitoring (SHM) based on Acoustic Emission (AE) is dependent on both the sensors to detect an impact event as well as an algorithm to determine the impact location. The propagation of Lamb waves produced by an impact event in thin composite structures is affected by several unique aspects including material anisotropy, ply orientations, and geometric discontinuities within the structure. The development of accurate numerical models of Lamb wave propagation has important benefits towards the development of AE-based SHM systems for impact location estimation. Currently, many impact location algorithms utilize the time of arrival or velocities of Lamb waves. Therefore the numerical prediction of characteristic wave velocities is of great interest. Additionally, the propagation of the initial symmetric (S0) and asymmetric (A0) wave modes is important, as these wave modes are used for time of arrival estimation. In this investigation, finite element analyses were performed to investigate aspects of Lamb wave propagation in composite plates with active signal excitation. A comparative evaluation of two three-dimensional modeling approaches was performed, with emphasis placed on the propagation and velocity of both the S0 and A0 wave modes. Results from numerical simulations are compared to experimental results obtained from active AE testing. Of particular interest is the directional dependence of Lamb waves in quasi-isotropic carbon/epoxy composite plates. Numerical and experimental results suggest that although a quasi-isotropic composite plate may have the same effective elastic modulus in all in-plane directions, the Lamb wave velocity may have some directional dependence. Further numerical analyses were performed to investigate Lamb wave propagation associated with circular cutouts in composite plates.
Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces
Li, Qing; Kang, Qinjun J.; Francois, Marianne M.; ...
2016-10-09
Here in this paper, the self-propelled motion of Leidenfrost droplets on ratchet surfaces is numerically investigated with a thermal multiphase lattice Boltzmann model with liquid-vapor phase change. The capability of the model for simulating evaporation is validated via the D 2 law. Using the model, we first study the performances of Leidenfrost droplets on horizontal ratchet surfaces. It is numerically shown that the motion of self-propelled Leidenfrost droplets on ratchet surfaces is owing to the asymmetry of the ratchets and the vapor flows beneath the droplets. It is found that the Leidenfrost droplets move in the direction toward the slowlymore » inclined side from the ratchet peaks, which agrees with the direction of droplet motion in experiments [Linke et al., Phys. Rev. Lett., 2006, 96, 154502]. Moreover, the influences of the ratchet aspect ratio are investigated. For the considered ratchet surfaces, a critical value of the ratchet aspect ratio is approximately found, which corresponds to the maximum droplet moving velocity. Furthermore, the processes that the Leidenfrost droplets climb uphill on inclined ratchet surfaces are also studied. Lastly, numerical results show that the maximum inclination angle at which a Leidenfrost droplet can still climb uphill successfully is affected by the initial radius of the droplet.« less
Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qing; Kang, Qinjun J.; Francois, Marianne M.
Here in this paper, the self-propelled motion of Leidenfrost droplets on ratchet surfaces is numerically investigated with a thermal multiphase lattice Boltzmann model with liquid-vapor phase change. The capability of the model for simulating evaporation is validated via the D 2 law. Using the model, we first study the performances of Leidenfrost droplets on horizontal ratchet surfaces. It is numerically shown that the motion of self-propelled Leidenfrost droplets on ratchet surfaces is owing to the asymmetry of the ratchets and the vapor flows beneath the droplets. It is found that the Leidenfrost droplets move in the direction toward the slowlymore » inclined side from the ratchet peaks, which agrees with the direction of droplet motion in experiments [Linke et al., Phys. Rev. Lett., 2006, 96, 154502]. Moreover, the influences of the ratchet aspect ratio are investigated. For the considered ratchet surfaces, a critical value of the ratchet aspect ratio is approximately found, which corresponds to the maximum droplet moving velocity. Furthermore, the processes that the Leidenfrost droplets climb uphill on inclined ratchet surfaces are also studied. Lastly, numerical results show that the maximum inclination angle at which a Leidenfrost droplet can still climb uphill successfully is affected by the initial radius of the droplet.« less
Unconscious Desire: The Affective and Motivational Aspects of Subliminal Sexual Priming.
Gillath, Omri; Collins, Tara
2016-01-01
Sexual arousal is thought to be the result of the processing of sexual cues at two levels: conscious and unconscious. Whereas numerous studies have examined the affective and motivational responses to supraliminal (consciously processed) sexual cues, much less is known regarding the responses to subliminal (processed outside of one's awareness) sexual cues. Five studies examined responses to subliminal sexual cues. Studies 1–3 demonstrated increases in adults' positive affect following exposure to subliminal sexual cues compared to control cues. Study 4 demonstrated that the positive affect resulting from exposure to subliminal sexual cues increased motivation to further engage in a neutral task. Study 5 provided evidence suggesting that the affect and motivation found in Studies 1–4 were associated with motivation to engage in sex specifically, rather than a general approach motivation. The implications of these findings for the processing of subliminal sexual cues and for human sexuality are discussed.
Yoshihara, Hiroyuki
2014-07-01
Numerous surgical procedures and instrumentation techniques for lumbosacral fusion (LSF) have been developed. This is probably because of its high mechanical demand and unique anatomy. Surgical options include anterior column support (ACS) and posterior stabilization procedures. Biomechanical studies have been performed to verify the stability of those options. The options have their own advantage but also disadvantage aspects. This review article reports the surgical options for lumbosacral fusion, their biomechanical stability, advantages/disadvantages, and affecting factors in option selection. Review of literature. LSF has lots of options both for ACS and posterior stabilization procedures. Combination of posterior stabilization procedures is an option. Furthermore, combinations of ACS and posterior stabilization procedures are other options. It is difficult to make a recommendation or treatment algorithm of LSF from the current literature. However, it is important to know all aspects of the options and decision-making of surgical options for LSF needs to be tailored for each patient, considering factors such as biomechanical stress and osteoporosis.
The Art and Science of Climate Model Tuning
Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew; ...
2017-03-31
The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less
The Art and Science of Climate Model Tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew
The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less
NASA Technical Reports Server (NTRS)
Mikic, Gregor Veble; Stoll, Alex; Bevirt, JoeBen; Grah, Rok; Moore, Mark D.
2016-01-01
Theoretical and numerical aspects of aerodynamic efficiency of propulsion systems are studied. Focus is on types of propulsion that closely couples to the aerodynamics of the complete vehicle. We discuss the effects of local flow fields, which are affected both by conservative flow acceleration as well as total pressure losses, on the efficiency of boundary layer immersed propulsion devices. We introduce the concept of a boundary layer retardation turbine that helps reduce skin friction over the fuselage. We numerically investigate efficiency gains offered by boundary layer and wake interacting devices. We discuss the results in terms of a total energy consumption framework and show that efficiency gains offered depend on all the elements of the propulsion system.
"It's the economy, stupid": strategies for improved cost containment in cancer treatment.
Sleijfer, S
2014-04-01
The advent of numerous novel antitumor compounds has improved the prognosis of many cancer patients but has also substantially increased the costs of cancer care and put more pressure on health-care budgets. This situation increasingly raises questions such as the extent to which these drugs offer value sufficient to justify their cost and how to accommodate the increasing costs of cancer care. Here I look at the various aspects that affect cancer care economics and offer potential solutions.
A clinical study on oral lichen planus with special emphasis on hyperpigmentation
Chitturi, Ravi Teja; Sindhuja, Pandian; Parameswar, R. Arjun; Nirmal, Ramdas Madhavan; Reddy, B. Venkat Ramana; Dineshshankar, Janardhanam; Yoithapprabhunath, Thukanayakanpalayam Ragunathan
2015-01-01
Background: Oral lichen planus (OLP) is a unique disorder affecting generally the older age group. Numerous studies have been done on various aspects of OLP such as pathogenesis, rate of malignant transformation, etc. However, very few studies are available with respect to clinical features especially association of hyperpigmentation and OLP. This study aims at studying the clinical aspects of OLP and study the association between hyperpigmentation and OLP in a south Indian population. Materials and Methods: A total of 58 patients with OLP who attended the outpatient department of our institution were included in the study and a complete history, followed by thorough intraoral examination was done. All the data were recorded and assessed for statistical analysis using SPSS software. Results: We found that the male to female ratio affected with OLP was 1:1 and the most common form of OLP that was seen was the reticular subtype. Also, buccal mucosa was the most common affected site and more than 60% patients had hyperpigmentation associated with the site affected by OLP. We found a statistically significant relation between the reticular type of OLP and the older age group (51–70 years) with hyperpigmentation. Conclusion: Although further studies are required to say anything conclusively, post-inflammatory changes occurring the mucosa due to OLP could be a cause for hyperpigmentation in the sites affected. PMID:26538905
Numerical studies of the reversed-field pinch at high aspect ratio
NASA Astrophysics Data System (ADS)
Sätherblom, H.-E.; Drake, J. R.
1998-10-01
The reversed field pinch (RFP) configuration at an aspect ratio of 8.8 is studied numerically by means of the three-dimensional magnetohydrodynamic code DEBS [D. D. Schnack et al., J. Comput. Phys. 70, 330 (1987)]. This aspect ratio is equal to that of the Extrap T1 experiment [S. Mazur et al., Nucl. Fusion 34, 427 (1994)]. A numerical study of a RFP with this level of aspect ratio requires extensive computer achievements and has hitherto not been performed. The results are compared with previous studies [Y. L. Ho et al., Phys. Plasmas 2, 3407 (1995)] of lower aspect ratio RFP configurations. In particular, an evaluation of the extrapolation to the aspect ratio of 8.8 made in this previous study shows that the extrapolation of the spectral spread, as well as most of the other findings, are confirmed. An important exception, however, is the magnetic diffusion coefficient, which is found to decrease with aspect ratio. Furthermore, an aspect ratio dependence of the magnetic energy and of the helicity of the RFP is found.
Yassin, Mohamed F
2013-06-01
Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.
Magnitude knowledge: the common core of numerical development.
Siegler, Robert S
2016-05-01
The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic numbers, (2) connecting small symbolic numbers to their non-symbolic referents, (3) extending understanding from smaller to larger whole numbers, and (4) accurately representing the magnitudes of rational numbers. The present review identifies substantial commonalities, as well as differences, in these four aspects of numerical development. With both whole and rational numbers, numerical magnitude knowledge is concurrently correlated with, longitudinally predictive of, and causally related to multiple aspects of mathematical understanding, including arithmetic and overall math achievement. Moreover, interventions focused on increasing numerical magnitude knowledge often generalize to other aspects of mathematics. The cognitive processes of association and analogy seem to play especially large roles in this development. Thus, acquisition of numerical magnitude knowledge can be seen as the common core of numerical development. © 2016 John Wiley & Sons Ltd.
Numerical analysis of two-fluid tearing mode instability in a finite aspect ratio cylinder
NASA Astrophysics Data System (ADS)
Ito, Atsushi; Ramos, Jesús J.
2018-01-01
The two-fluid resistive tearing mode instability in a periodic plasma cylinder of finite aspect ratio is investigated numerically for parameters such that the cylindrical aspect ratio and two-fluid effects are of order unity, hence the real and imaginary parts of the mode eigenfunctions and growth rate are comparable. Considering a force-free equilibrium, numerical solutions of the complete eigenmode equations for general aspect ratios and ion skin depths are compared and found to be in very good agreement with the corresponding analytic solutions derived by means of the boundary layer theory [A. Ito and J. J. Ramos, Phys. Plasmas 24, 072102 (2017)]. Scaling laws for the growth rate and the real frequency of the mode are derived from the analytic dispersion relation by using Taylor expansions and Padé approximations. The cylindrical finite aspect ratio effect is inferred from the scaling law for the real frequency of the mode.
A numerical simulation of finite-length Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Streett, C. L.; Hussaini, M. Y.
1988-01-01
Results from numerical simulations of finite-length Taylor-Couette flow are presented. Included are time-accurate and steady-state studies of the change in the nature of the symmetric two-cell/asymmetric one-cell bifurcation with varying aspect ratio and of the Reynolds number/aspect ratio locus of the two-cell/four-cell bifurcation. Preliminary results from wavy-vortex simulations at low aspect ratios are also presented.
Ink-constrained halftoning with application to QR codes
NASA Astrophysics Data System (ADS)
Bayeh, Marzieh; Compaan, Erin; Lindsey, Theodore; Orlow, Nathan; Melczer, Stephen; Voller, Zachary
2014-01-01
This paper examines adding visually significant, human recognizable data into QR codes without affecting their machine readability by utilizing known methods in image processing. Each module of a given QR code is broken down into pixels, which are halftoned in such a way as to keep the QR code structure while revealing aspects of the secondary image to the human eye. The loss of information associated to this procedure is discussed, and entropy values are calculated for examples given in the paper. Numerous examples of QR codes with embedded images are included.
Noncommutative massive unquenched ABJM
NASA Astrophysics Data System (ADS)
Bea, Yago; Jokela, Niko; Pönni, Arttu; Ramallo, Alfonso V.
2018-05-01
In this paper, we study noncommutative massive unquenched Chern-Simons matter theory using its gravity dual. We construct this novel background by applying a TsT-transformation on the known parent commutative solution. We discuss several aspects of this solution to the Type IIA supergravity equations of motion and, amongst others, check that it preserves 𝒩 = 1 supersymmetry. We then turn our attention to applications and investigate how dynamical flavor degrees of freedom affect numerous observables of interest. Our framework can be regarded as a key step toward the construction of holographic quantum Hall states on a noncommutative plane.
Pezzulo, Giovanni; Barsalou, Lawrence W.; Cangelosi, Angelo; Fischer, Martin H.; McRae, Ken; Spivey, Michael J.
2013-01-01
Grounded theories assume that there is no central module for cognition. According to this view, all cognitive phenomena, including those considered the province of amodal cognition such as reasoning, numeric, and language processing, are ultimately grounded in (and emerge from) a variety of bodily, affective, perceptual, and motor processes. The development and expression of cognition is constrained by the embodiment of cognitive agents and various contextual factors (physical and social) in which they are immersed. The grounded framework has received numerous empirical confirmations. Still, there are very few explicit computational models that implement grounding in sensory, motor and affective processes as intrinsic to cognition, and demonstrate that grounded theories can mechanistically implement higher cognitive abilities. We propose a new alliance between grounded cognition and computational modeling toward a novel multidisciplinary enterprise: Computational Grounded Cognition. We clarify the defining features of this novel approach and emphasize the importance of using the methodology of Cognitive Robotics, which permits simultaneous consideration of multiple aspects of grounding, embodiment, and situatedness, showing how they constrain the development and expression of cognition. PMID:23346065
Gerbrandt, Kelsey; Chu, Pei Lin; Simmonds, Allison; Mullins, Kimberley A; MacLean, Heather L; Griffin, W Michael; Saville, Bradley A
2016-04-01
Lignocellulosic ethanol has potential for lower life cycle greenhouse gas emissions compared to gasoline and conventional grain-based ethanol. Ethanol production 'pathways' need to meet economic and environmental goals. Numerous life cycle assessments of lignocellulosic ethanol have been published over the last 15 years, but gaps remain in understanding life cycle performance due to insufficient data, and model and methodological issues. We highlight key aspects of these issues, drawing on literature and a case study of corn stover ethanol. Challenges include the complexity of feedstock/ecosystems and market-mediated aspects and the short history of commercial lignocellulosic ethanol facilities, which collectively have led to uncertainty in GHG emissions estimates, and to debates on LCA methods and the role of uncertainty in decision making. Copyright © 2016 Elsevier Ltd. All rights reserved.
A numerical analysis of the British Experimental Rotor Program blade
NASA Technical Reports Server (NTRS)
Duque, Earl P. N.
1989-01-01
Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.
Cognitive behavioral approach to understanding irritable bowel syndrome
Hauser, Goran; Pletikosic, Sanda; Tkalcic, Mladenka
2014-01-01
Irritable bowel syndrome (IBS) is considered a biopsychosocial disorder, whose onset and precipitation are a consequence of interaction among multiple factors which include motility disturbances, abnormalities of gastrointestinal sensation, gut inflammation and infection, altered processing of afferent sensory information, psychological distress, and affective disturbances. Several models have been proposed in order to describe and explain IBS, each of them focusing on specific aspects or mechanisms of the disorder. This review attempts to present and discuss different determinants of IBS and its symptoms, from a cognitive behavioral therapy framework, distinguishing between the developmental predispositions and precipitants of the disorder, and its perpetuating cognitive, behavioral, affective and physiological factors. The main focus in understanding IBS will be placed on the numerous psychosocial factors, such as personality traits, early experiences, affective disturbances, altered attention and cognitions, avoidance behavior, stress, coping and social support. In conclusion, a symptom perpetuation model is proposed. PMID:24944466
Does the use of melatonin overcome drug resistance in cancer chemotherapy?
Asghari, Mohammad Hossein; Ghobadi, Emad; Moloudizargari, Milad; Fallah, Marjan; Abdollahi, Mohammad
2018-03-01
Our knowledge regarding the implications of melatonin in the therapy of numerous medical conditions, including cancer is constantly expanding. Melatonin can variably affect cancer pathology via targeting several key aspects of any neoplastic condition, including the very onset of carcinogenesis as well as tumor growth, differentiation, and dissemination. Numerous studies have examined the effects of melatonin in the context of various cancers reporting the enhanced efficacy of chemo/radiotherapy in combination with this compound. Reduced sensitivity and also resistance of cancer cells to antineoplastic agents are common events which might arise as a result of genomic instability of the malignant cells. Genetic mutations provide numerous mechanisms for these cells to resist cytotoxic therapies. Melatonin, due to its pleitropic effects, is able to correct these alterations in favour of sensitization to antineoplastic agents as evident by increased response to treatment via modulating the expression and phosphorylation status of drug targets, the reduced clearance of drugs by affecting their metabolism and transport within the body, decreased survival of malignant cells via altering DNA repair and telomerase activity, and enhanced responsiveness to cell death-associated mechanisms such as apoptosis and autophagy. These effects are presumably governed by melatonin's interventions in the main signal transduction pathways such as Akt and MAPK, independent of its antioxidant properties. Possessing such a signaling altering nature, melatonin can considerably affect the drug-resistance mechanisms employed by the malignant cells in breast, lung, hepatic, and colon cancers as well as different types of leukemia which are the subject of the current review. Copyright © 2018 Elsevier Inc. All rights reserved.
Phloem-mobile signals affecting flowers: applications for crop breeding.
McGarry, Roisin C; Kragler, Friedrich
2013-04-01
Transport of endogenous macromolecules within and between tissues serves as a signaling pathway to regulate numerous aspects of plant growth. The florigenic FT gene product moves via the phloem from leaves to apical tissues and induces the flowering program in meristems. Similarly, short interfering RNA (siRNA) signals produced in source or sink tissues move cell-to-cell and long distance via the phloem to apical tissues. Recent advances in identifying these mobile signals regulating flowering or the epigenetic status of targeted tissues can be applicable to crop-breeding programs. In this review, we address the identity of florigen, the mechanism of allocation, and how virus-induced flowering and grafting of transgenes producing siRNA signals affecting meiosis can produce transgene-free progenies useful for agriculture. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bidding factors-the reduction of the data dimension with the use of PCA
NASA Astrophysics Data System (ADS)
Leśniak, Agnieszka
2017-07-01
Making the decision to participate in the tender is subject to a number of factors, affects the health of the company and is an important aspect in its quest for success. Efforts to select bidding factors have been repeatedly undertaken in various countries and in numerous construction markets. Researchers usually give a long list of factors, also called criteria, which in their opinion may significantly influence the bidding decision. The paper presents an attempt to reduce a proposed set of bidding factorsdefined in Poland with the use of thePrincipal Component Analysis.
Collapse of a Liquid Column: Numerical Simulation and Experimental Validation
NASA Astrophysics Data System (ADS)
Cruchaga, Marcela A.; Celentano, Diego J.; Tezduyar, Tayfun E.
2007-03-01
This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.
Haase, Claudia M; Heckhausen, Jutta; Silbereisen, Rainer K
2012-11-01
A successful entry into work is one of the key developmental tasks in young adulthood. The present 4-wave longitudinal study examined the interplay between occupational motivation (i.e., goal engagement and goal disengagement) and well-being (i.e., satisfaction with life, satisfaction with work, satisfaction with partnership, positive affect, depressive symptoms, autonomy, purpose in life, positive relations with others) during the transition from university to work. The sample consisted of 498 university graduates from 4 majors with favorable or unfavorable employment opportunities. Data were analyzed using latent growth curve modeling. The results showed that increases in goal engagement were associated with increases in numerous aspects of well-being. Increases in goal disengagement were associated with decreases in numerous aspects of well-being. However, this dynamic was not without exception. Goal engagement at graduation was associated with a decrease in autonomy and, for individuals with unfavorable employment opportunities, an increase in depressive symptoms. Goal disengagement at graduation was associated with an increase in satisfaction with work. These findings elucidate why some individuals may opt for overall maladaptive motivational strategies during the transition into the workforce: They provide selective well-being benefits. In sum, how young adults deal with their occupational goals is closely linked to changes in their well-being.
A third-order approximation method for three-dimensional wheel-rail contact
NASA Astrophysics Data System (ADS)
Negretti, Daniele
2012-03-01
Multibody train analysis is used increasingly by railway operators whenever a reliable and time-efficient method to evaluate the contact between wheel and rail is needed; particularly, the wheel-rail contact is one of the most important aspects that affects a reliable and time-efficient vehicle dynamics computation. The focus of the approach proposed here is to carry out such tasks by means of online wheel-rail elastic contact detection. In order to improve efficiency and save time, a main analytical approach is used for the definition of wheel and rail surfaces as well as for contact detection, then a final numerical evaluation is used to locate contact. The final numerical procedure consists in finding the zeros of a nonlinear function in a single variable. The overall method is based on the approximation of the wheel surface, which does not influence the contact location significantly, as shown in the paper.
Human implantation: the last barrier in assisted reproduction technologies?
Edwards, Robert G
2006-12-01
Implantation processes are highly complex involving the actions of numerous hormones, immunoglobulins, cytokines and other factors in the endometrium. They are also essential matters for the success of assisted reproduction. The nature of early embryonic development is of equal significance. It involves ovarian follicle growth, ovulation, fertilization and preimplantation growth. These processes are affected by imbalanced chromosomal constitutions or slow developmental periods. Post-implantation death is also a significant factor in cases of placental insufficiency or recurrent abortion. Clearly, many of these matters can significantly affect birth rates. This review is concerned primarily with the oocyte, the early embryo and its chromosomal anomalies, and the nature of factors involved in implantation. These are clearly among the most important features in determining successful embryonic and fetal growth. Successive sections cover the endocrine stimulation of follicle growth in mice and humans, growth of human embryos in vitro, their apposition and attachment to the uterus, factors involved in embryo attachment to uterine epithelium and later stages of implantation, and understanding the gene control of polarities and other aspects of preimplantation embryo differentiation. New aspects of knowledge include the use of human oocyte maturation in vitro as an approach to simpler forms of IVF, and new concepts in developmental genetics.
Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2004-01-01
Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.
NASA Astrophysics Data System (ADS)
Thebault, P.; Haghighipour, N.
Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the "standard" planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.
Debris flow-induced topographic changes: effects of recurrent debris flow initiation.
Chen, Chien-Yuan; Wang, Qun
2017-08-12
Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.
Kucian, Karin; von Aster, Michael
2015-01-01
Numerical skills are essential in our everyday life, and impairments in the development of number processing and calculation have a negative impact on schooling and professional careers. Approximately 3 to 6 % of children are affected from specific disorders of numerical understanding (developmental dyscalculia (DD)). Impaired development of number processing skills in these children is characterized by problems in various aspects of numeracy as well as alterations of brain activation and brain structure. Moreover, DD is assumed to be a very heterogeneous disorder putting special challenges to define homogeneous diagnostic criteria. Finally, interdisciplinary perspectives from psychology, neuroscience and education can contribute to the design for interventions, and although results are still sparse, they are promising and have shown positive effects on behaviour as well as brain function. In the current review, we are going to give an overview about typical and atypical development of numerical abilities at the behavioural and neuronal level. Furthermore, current status and obstacles in the definition and diagnostics of DD are discussed, and finally, relevant points that should be considered to make an intervention as successful as possible are summarized.
Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation.
Ehrhardt, Loïc; Cheinet, Sylvain; Juvé, Daniel; Blanc-Benon, Philippe
2013-04-01
Sound propagation outdoors is strongly affected by atmospheric turbulence. Under strongly perturbed conditions or long propagation paths, the sound fluctuations reach their asymptotic behavior, e.g., the intensity variance progressively saturates. The present study evaluates the ability of a numerical propagation model based on the finite-difference time-domain solving of the linearized Euler equations in quantitatively reproducing the wave statistics under strong and saturated intensity fluctuations. It is the continuation of a previous study where weak intensity fluctuations were considered. The numerical propagation model is presented and tested with two-dimensional harmonic sound propagation over long paths and strong atmospheric perturbations. The results are compared to quantitative theoretical or numerical predictions available on the wave statistics, including the log-amplitude variance and the probability density functions of the complex acoustic pressure. The match is excellent for the evaluated source frequencies and all sound fluctuations strengths. Hence, this model captures these many aspects of strong atmospheric turbulence effects on sound propagation. Finally, the model results for the intensity probability density function are compared with a standard fit by a generalized gamma function.
Pinhole induced efficiency variation in perovskite solar cells
NASA Astrophysics Data System (ADS)
Agarwal, Sumanshu; Nair, Pradeep R.
2017-10-01
Process induced efficiency variation is a major concern for all thin film solar cells, including the emerging perovskite based solar cells. In this article, we address the effect of pinholes or process induced surface coverage aspects on the efficiency of such solar cells through detailed numerical simulations. Interestingly, we find that the pinhole size distribution affects the short circuit current and open circuit voltage in contrasting manners. Specifically, while the JS C is heavily dependent on the pinhole size distribution, surprisingly, the VO C seems to be only nominally affected by it. Further, our simulations also indicate that, with appropriate interface engineering, it is indeed possible to design a nanostructured device with efficiencies comparable to those of ideal planar structures. Additionally, we propose a simple technique based on terminal I-V characteristics to estimate the surface coverage in perovskite solar cells.
[Aspects of cognition and language in children with fragile X syndrome].
Ferrando-Lucas, M T; Banús-Gómez, P; López-Pérez, G
2003-02-01
Fragile X syndrome, which is produced by mutation of a gene in the X chromosome, is the most frequent cause of hereditary mental retardation. The multisystemic alterations of the disorder are due to the inhibition of the expression of the FMR1 gene and to the lack or absence of FMRP protein. Mental retardation and autistic spectrum constitute the most serious manifestations of the syndrome, but there are numerous neuropsychological disorders that make up the cognitive behavioural (CB) phenotype of patients, and the number of clinical manifestations they are going to present is also high. The aim of the study was to evaluate the parameters that can contribute to the elaboration of a set of generally agreed guidelines that include early diagnosis and the indispensable genetic counselling, as well as a multidisciplinary intervention that contemplates, in a global manner, the medical and educational needs of those affected. The method used to conduct the study involved an analysis of the early manifestations of the disease and the neuropsychological aspects of those affected, by means of a study protocol that includes biological and pedagogical data together with batteries of standard tests. Preliminary results confront us with the delay in diagnosis and in genetic counselling because the CB phenotype, in which language disorders were the most constant element, is not taken as being an early sign of the clinical manifestations or as a serious interference factor in the cognitive aspects in the progress of the disease.
The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows
NASA Technical Reports Server (NTRS)
1992-01-01
This volume contains the papers presented at the Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, held at the California State University, Long Beach, from 13 to 15 January 1992. The symposium, like its immediate predecessors, considers the calculation of flows of relevance to aircraft, ships, and missiles with emphasis on the solution of two-dimensional unsteady and three-dimensional equations.
Numerical and experimental approaches to simulate soil clogging in porous media
NASA Astrophysics Data System (ADS)
Kanarska, Yuliya; LLNL Team
2012-11-01
Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. To get more precise understanding of the soil transport in granular filters we investigated sensitivity of particle clogging mechanisms to various aspects such as particle size ration, the amplitude of hydraulic gradient, particle concentration and contact properties. By averaging the results derived from the grain-scale simulations, we investigated how those factors affect the semi-empirical multiphase model parameters in the large-scale simulation tool. The Department of Homeland Security Science and Technology Directorate provided funding for this research.
Numerical investigation of flow on NACA4412 aerofoil with different aspect ratios
NASA Astrophysics Data System (ADS)
Demir, Hacımurat; Özden, Mustafa; Genç, Mustafa Serdar; Çağdaş, Mücahit
2016-03-01
In this study, the flow over NACA4412 was investigated both numerically and experimentally at a different Reynolds numbers. The experiments were carried out in a low speed wind tunnel with various angles of attack and different Reynolds numbers (25000 and 50000). Airfoil was manufactured using 3D printer with a various aspect ratios (AR = 1 and AR = 3). Smoke-wire and oil flow visualization methods were used to visualize the surface flow patterns. NACA4412 aerofoil was designed by using SOLIDWORKS. The structural grid of numerical model was constructed by ANSYS ICEM CFD meshing software. Furthermore, ANSYS FLUENT™ software was used to perform numerical calculations. The numerical results were compared with experimental results. Bubble formation was shown in CFD streamlines and smoke-wire experiments at z / c = 0.4. Furthermore, bubble shrunk at z / c = 0.2 by reason of the effects of tip vortices in both numerical and experimental studies. Consequently, it was seen that there was a good agreement between numerical and experimental results.
Mathematical model for the assessment of fracture risk associated with osteoporosis
NASA Astrophysics Data System (ADS)
Dinis, Jairson; Pereira, Ana I.; Fonseca, Elza M.
2012-09-01
Osteoporosis is a skeletal disease characterized by low bone mass. It is considered a worldwide public health problem that affects a large number of people, in particularly for women with more than 50 years old. The occurrence pattern of osteoporosis in a population may be related to several factors, including socio-economic factors such as income, educational attainment, and factors related to lifestyle such as diet and physical activity. These and other aspects have increasingly been identified as determining the occurrence of various diseases, including osteoporosis. This work proposes a mathematical model that provides the level of osteoporosis in the patient. Preliminary numerical results are presented.
NASA Astrophysics Data System (ADS)
Ashat, Ali; Pratama, Heru Berian
2017-12-01
The successful Ciwidey-Patuha geothermal field size assessment required integration data analysis of all aspects to determined optimum capacity to be installed. Resources assessment involve significant uncertainty of subsurface information and multiple development scenarios from these field. Therefore, this paper applied the application of experimental design approach to the geothermal numerical simulation of Ciwidey-Patuha to generate probabilistic resource assessment result. This process assesses the impact of evaluated parameters affecting resources and interacting between these parameters. This methodology have been successfully estimated the maximum resources with polynomial function covering the entire range of possible values of important reservoir parameters.
Pharmacological approaches to restore mitochondrial function
Andreux, Pénélope A.; Houtkooper, Riekelt H.; Auwerx, Johan
2014-01-01
Mitochondrial dysfunction is not only a hallmark of rare inherited mitochondrial disorders, but is also implicated in age-related diseases, including those that affect the metabolic and nervous system, such as type 2 diabetes and Parkinson’s disease. Numerous pathways maintain and/or restore proper mitochondrial function, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and the mitochondrial unfolded protein response. New and powerful phenotypic assays in cell-based models, as well as multicellular organisms, have been developed to explore these different aspects of mitochondrial function. Modulating mitochondrial function has therefore emerged as an attractive therapeutic strategy for a range of diseases, which has spurred active drug discovery efforts in this area. PMID:23666487
Camomilla, Valentina; Cereatti, Andrea; Cutti, Andrea Giovanni; Fantozzi, Silvia; Stagni, Rita; Vannozzi, Giuseppe
2017-08-18
Quantitative gait analysis can provide a description of joint kinematics and dynamics, and it is recognized as a clinically useful tool for functional assessment, diagnosis and intervention planning. Clinically interpretable parameters are estimated from quantitative measures (i.e. ground reaction forces, skin marker trajectories, etc.) through biomechanical modelling. In particular, the estimation of joint moments during motion is grounded on several modelling assumptions: (1) body segmental and joint kinematics is derived from the trajectories of markers and by modelling the human body as a kinematic chain; (2) joint resultant (net) loads are, usually, derived from force plate measurements through a model of segmental dynamics. Therefore, both measurement errors and modelling assumptions can affect the results, to an extent that also depends on the characteristics of the motor task analysed (i.e. gait speed). Errors affecting the trajectories of joint centres, the orientation of joint functional axes, the joint angular velocities, the accuracy of inertial parameters and force measurements (concurring to the definition of the dynamic model), can weigh differently in the estimation of clinically interpretable joint moments. Numerous studies addressed all these methodological aspects separately, but a critical analysis of how these aspects may affect the clinical interpretation of joint dynamics is still missing. This article aims at filling this gap through a systematic review of the literature, conducted on Web of Science, Scopus and PubMed. The final objective is hence to provide clear take-home messages to guide laboratories in the estimation of joint moments for the clinical practice.
Insights into numerical cognition: considering eye-fixations in number processing and arithmetic.
Mock, J; Huber, S; Klein, E; Moeller, K
2016-05-01
Considering eye-fixation behavior is standard in reading research to investigate underlying cognitive processes. However, in numerical cognition research eye-tracking is used less often and less systematically. Nevertheless, we identified over 40 studies on this topic from the last 40 years with an increase of eye-tracking studies on numerical cognition during the last decade. Here, we review and discuss these empirical studies to evaluate the added value of eye-tracking for the investigation of number processing. Our literature review revealed that the way eye-fixation behavior is considered in numerical cognition research ranges from investigating basic perceptual aspects of processing non-symbolic and symbolic numbers, over assessing the common representational space of numbers and space, to evaluating the influence of characteristics of the base-10 place-value structure of Arabic numbers and executive control on number processing. Apart from basic results such as reading times of numbers increasing with their magnitude, studies revealed that number processing can influence domain-general processes such as attention shifting-but also the other way round. Domain-general processes such as cognitive control were found to affect number processing. In summary, eye-fixation behavior allows for new insights into both domain-specific and domain-general processes involved in number processing. Based thereon, a processing model of the temporal dynamics of numerical cognition is postulated, which distinguishes an early stage of stimulus-driven bottom-up processing from later more top-down controlled stages. Furthermore, perspectives for eye-tracking research in numerical cognition are discussed to emphasize the potential of this methodology for advancing our understanding of numerical cognition.
NASA Astrophysics Data System (ADS)
Boothroyd, R.; Hardy, R. J.; Warburton, J.; Marjoribanks, T.
2015-12-01
Aquatic vegetation has a significant influence on the hydraulic functioning of river systems. Plant morphology has previously been shown to alter the mean and turbulent properties of flow, influenced by the spatial distribution of branches and foliage, and these effects can be further investigated through numerical models. We report on a novel method for the measurement and incorporation of complex plant morphologies into a computational fluid dynamics (CFD) model. The morphological complexity of Prunus laurocerasus is captured under foliated and defoliated states through terrestrial laser scanning (TLS). Point clouds are characterised by a voxelised representation and incorporated into a CFD scheme using a mass flux scaling algorithm, allowing the numerical prediction of flows around individual plants. Here we examine the sensitivity of plant aspect, i.e. the positioning of the plant relative to the primary flow direction, by rotating the voxelised plant representation through 15° increments (24 rotations) about the vertical axis. This enables the impact of plant aspect to be quantified upon the velocity and pressure fields, and in particular how this effects species-specific drag forces and drag coefficients. Plant aspect is shown to considerably influence the flow field response, producing spatially heterogeneous downstream velocity fields with both symmetric and asymmetric wake shapes, and point of reattachments that extend up to seven plant lengths downstream. For the same plant, changes in aspect are shown to account for a maximum variation in drag force of 168%, which equates to a 65% difference in the drag coefficient. An explicit consideration of plant aspect is therefore important in studies concerning flow-vegetation interactions, especially when reducing the uncertainty in parameterising the effect of vegetation in numerical models.
ERIC Educational Resources Information Center
Siegler, Robert S.; Braithwaite, David W.
2016-01-01
In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…
Techniques for determining physical zones of influence
Hamann, Hendrik F; Lopez-Marrero, Vanessa
2013-11-26
Techniques for analyzing flow of a quantity in a given domain are provided. In one aspect, a method for modeling regions in a domain affected by a flow of a quantity is provided which includes the following steps. A physical representation of the domain is provided. A grid that contains a plurality of grid-points in the domain is created. Sources are identified in the domain. Given a vector field that defines a direction of flow of the quantity within the domain, a boundary value problem is defined for each of one or more of the sources identified in the domain. Each of the boundary value problems is solved numerically to obtain a solution for the boundary value problems at each of the grid-points. The boundary problem solutions are post-processed to model the regions affected by the flow of the quantity on the physical representation of the domain.
Wintertime component of the THORPEX Pacific-Asian Regional Campaign (T-PARC)
NASA Astrophysics Data System (ADS)
Song, Y.; Toth, Z.; Asuma, Y.; Reynolds, C.; Lngland, R.; Szunyogh, I.; Colle, B.; Chang, E.; Doyle, C.; Kats, A.
2009-04-01
The winter component of the T-PARC is an international field project that aims at improving high impact weather event forecasts for North America. The main objective is to understand how perturbations from the tropics, Eurasia and polar fronts travel through waveguide and turn into high impact weather events. Through adaptive observations by using manned aircrafts (NOAA G-IV and US Air force C-130s) and Russian rawinsonde network over data sparse regions, it is expected that accurate initial conditions will improve the numerical weather forecasts. Non-adaptive aircraft measurements over the Pacific Rim and part of India are also deployed through E-AMDAR program, which is expected to improve the background field over Asia where perturbations are initiated. The campaign is led by NOAA and joined by agencies and universities from US, Canada, Mexico, Japan, ECWMF, and Russia. While most observational data will be assimilated by operational centers to improve real time numerical weather predictions, post field studies will focus on aspects such as: data impact on forecast and analysis, dry and moist processes that affect the formation and propagation of perturbations, meso-scale storm structure, error growth, forecast "busts" under certain atmospheric regimes, and socio-economic applications such as costs and benefits of improved forecasts and their use by the public for high impact weather events. In particular, a Winter Olympics demonstration project (February 12 - February 28) is expected to be a test bed during winter T-PARC for real user outreach and application purposes. Effectiveness of existing targeting methods as well as new targeting methods in the 3-5 day lead time range will be pursued and other aspects related to data assimilation and numerical forecasts (both deterministic and ensemble forecasts) will be investigated within this project as well.
Green roof soil system affected by soil structural changes: A project initiation
NASA Astrophysics Data System (ADS)
Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal
2014-05-01
Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.
NASA Astrophysics Data System (ADS)
Tabassum, Aasma; Zhou, Jie; Han, Bing; Ni, Xiao-wu; Sardar, Maryam
2017-07-01
The interaction of continuous wave (CW) fiber laser with Ti-6Al-4V alloy is investigated numerically and experimentally at different laser fluence values and ambient pressures of N2 atmosphere to determine the melting time threshold of Ti-6Al-4V alloy. A 2D-axisymmetric numerical model considering heat transfer and laminar flow is established to describe the melting process. The simulation results indicate that material melts earlier at lower pressure (8.0 Pa) than at higher pressure (8.8×104 Pa) in several milliseconds with the same laser fluence. The experimental results demonstrate that the melting time threshold at high laser fluence (above 1.89×108 W/m2) is shorter for lower pressure (vacuum), which is consistent with the simulation. While the melting time threshold at low laser fluence (below 1.89×108 W/m2) is shorter for higher pressure. The possible aspects which can affect the melting process include the increased heat loss induced by the heat conduction between the metal surface and the ambient gas with the increased pressure, and the absorption variation of the coarse surface resulted from the chemical reaction.
NASA Astrophysics Data System (ADS)
Wang, Zizhen; Schmitt, Douglas R.; Wang, Ruihe
2017-08-01
A core scale modeling method for viscoelastic properties of rocks saturated with viscous fluid at low frequencies is developed based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. Based on this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the storage moduli and the stress-strain phase lag of saturated rocks. And we also compared the modeling results to the Hashin-Shtrikman bounds and the coherent potential approximation (CPA). The dynamic moduli calculated from the modeling are lower than the predictions of CPA, and both of these fall between the Hashin-Shtrikman bounds. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and aspect ratio affect the rock frame stiffness and result in different viscoelastic behaviors of the saturated rocks. The stress-strain phase lags are larger with smaller stiffness contrasts between the rock frame and the pore fluid. The viscoelastic properties of saturated rocks are more sensitive to aspect ratio compared to other pore structure parameters. The results suggest that significant seismic dispersion (at about 50-200 Hz) might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids.
Finite-size scaling of eigenstate thermalization
NASA Astrophysics Data System (ADS)
Beugeling, W.; Moessner, R.; Haque, Masudul
2014-04-01
According to the eigenstate thermalization hypothesis (ETH), even isolated quantum systems can thermalize because the eigenstate-to-eigenstate fluctuations of typical observables vanish in the limit of large systems. Of course, isolated systems are by nature finite and the main way of computing such quantities is through numerical evaluation for finite-size systems. Therefore, the finite-size scaling of the fluctuations of eigenstate expectation values is a central aspect of the ETH. In this work, we present numerical evidence that for generic nonintegrable systems these fluctuations scale with a universal power law D-1/2 with the dimension D of the Hilbert space. We provide heuristic arguments, in the same spirit as the ETH, to explain this universal result. Our results are based on the analysis of three families of models and several observables for each model. Each family includes integrable members and we show how the system size where the universal power law becomes visible is affected by the proximity to integrability.
Computerized Numerical Control Curriculum Guide.
ERIC Educational Resources Information Center
Reneau, Fred; And Others
This guide is intended for use in a course in programming and operating a computerized numerical control system. Addressed in the course are various aspects of programming and planning, setting up, and operating machines with computerized numerical control, including selecting manual or computer-assigned programs and matching them with…
Inertia-gravity wave radiation from the elliptical vortex in the f-plane shallow water system
NASA Astrophysics Data System (ADS)
Sugimoto, Norihiko
2017-04-01
Inertia-gravity wave (IGW) radiation from the elliptical vortex is investigated in the f-plane shallow water system. The far field of IGW is analytically derived for the case of an almost circular Kirchhoff vortex with a small aspect ratio. Cyclone-anticyclone asymmetry appears at finite values of the Rossby number (Ro) caused by the source originating in the Coriolis acceleration. While the intensity of IGWs from the cyclone monotonically decreases as f increases, that from the anticyclone increases as f increases for relatively smaller f and has a local maximum at intermediate f. A numerical experiment is conducted on a model using a spectral method in an unbounded domain. The numerical results agree quite well with the analytical ones for elliptical vortices with small aspect ratios, implying that the derived analytical forms are useful for the verification of the numerical model. For elliptical vortices with larger aspect ratios, however, significant deviation from the analytical estimates appears. The intensity of IGWs radiated in the numerical simulation is larger than that estimated analytically. The reason is that the source of IGWs is amplified during the time evolution because the shape of the vortex changes from ideal ellipse to elongated with filaments. Nevertheless, cyclone-anticyclone asymmetry similar to the analytical estimate appears in all the range of aspect ratios, suggesting that this asymmetry is a robust feature.
VR-CoDES and patient-centeredness. The intersection points between a measure and a concept.
Del Piccolo, Lidia
2017-11-01
The Verona Coding Definitions of Emotional sequences (VR-CoDES) system has been applied in a wide range of studies, in some of these, because of its attention on healthcare provider's ability to respond to patient emotions, it has been used as a proxy of patient-centeredness. The paper aims to discuss how the VR-CoDES can contribute to the broader concept of patient-centeredness and its limitations. VR-CoDES and patient-centeredness concept are briefly described, trying to detect commonalities and distinctions. The VR-CoDES dimensions of Explicit/non explicit responding and Providing or Reducing Space are analysed in relation to relevant aspects of patient-centred communication. Emotional aspects are encompassed within patient-centeredness model, but they represent only one of the numerous dimensions that contribute to define patient-centeredness as well as Explicit/non explicit responding and Providing or Reducing Space serve different functions during communication. The VR-CoDES can contribute to operationalize the description of emotional aspects emerging in a consultation, by inducing coders to adopt a factual attitude in assessing how health providers react to patient's expression of emotions. To better define empirically which measure affective aspects and dimensions of health provider responses are relevant and may contribute to patient-centeredness in different clinical settings. Copyright © 2017. Published by Elsevier B.V.
Recent advances in coronal heating
NASA Astrophysics Data System (ADS)
De Moortel, Ineke; Browning, Philippa
2015-04-01
The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This 'coronal heating problem' requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue.
Choosing a radiology workstation: technical and clinical considerations.
Krupinski, Elizabeth A; Kallergi, Maria
2007-03-01
Choosing a workstation for daily use in the interpretation of digital radiologic images can be a daunting task. There are numerous products available on the market, but differentiating among them and deciding on what is best for a particular environment can be confusing and frustrating. There is no "one-size-fits-all" workstation, so users must consider a variety of factors when choosing a workstation. This review summarizes the critical elements in a radiology workstation and the characteristics one should be aware of and look for in the selection of a workstation. Issues pertaining to both hardware and software aspects of medical workstations, including interface design, are reviewed, particularly as they may affect the interpretation process. (c) RSNA, 2007.
Shape matters: pore geometry and orientation influences the strength and stiffness of porous rocks
NASA Astrophysics Data System (ADS)
Griffiths, Luke; Heap, Michael; Xu, Tao; Chen, Chong-Feng; Baud, Patrick
2017-04-01
The geometry of voids in porous rock fall between two end-members: very low aspect ratio (the ratio of the minor to the major semi-axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of 2.4 and 1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. This weakening effect is accentuated at higher porosities. The influence of pore aspect ratio (which we vary from 0.2 to 1.0) on strength and Young's modulus depends on the pore angle. At low angles ( 0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles ( 40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles ( 20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. We find that the analytical solutions for the stress and Young's modulus at the boundary of a single elliptical pore are in excellent agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. The alignment of grains or platy minerals such as clays may play an important role in controlling strength anisotropy in porous sandstones. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.
2013-09-30
numerical efforts undertaken here implement established aspects of Boussinesq -type modeling, developed by the PI and other researchers. These aspects...the Boussinesq -type framework, and then implement in a numerical model. Once this comprehensive model is developed and tested against established...phenomena that might be observed at New River. WORK COMPLETED In FY13 we have continued the development of a Boussinesq -type formulation that
Transonic low aspect ratio wing-winglet designs
NASA Technical Reports Server (NTRS)
Kuhlman, John M.; Cerney, Michael J.; Liaw, Paul
1988-01-01
A numerical design study has been conducted to ascertain the potential of winglets as a drag-reducing measure at high subsonic Mach numbers for low aspect ratio wings. The four variants of the winglet concept studied are a 'detuned' winglet with decreased incidence at the wing-winglet juncture; a steerable winglet; more gradual pressure recovery at the wing and winglet trailing edges; and the application of supercritical airfoil technology. A further study is conducted to assess the accuracy of the numerical code's predicted pressure drag values.
Rhein, Cosima; Mühle, Christiane; Richter-Schmidinger, Tanja; Alexopoulos, Panagiotis; Doerfler, Arnd; Kornhuber, Johannes
2014-01-01
In neuropsychiatric diseases with basal ganglia involvement, higher cognitive functions are often impaired. In this exploratory study, we examined healthy young adults to gain detailed insight into the relationship between basal ganglia volume and cognitive abilities under non-pathological conditions. We investigated 137 healthy adults that were between the ages of 21 and 35 years with similar educational backgrounds. Magnetic resonance imaging (MRI) was performed, and volumes of basal ganglia nuclei in both hemispheres were calculated using FreeSurfer software. The cognitive assessment consisted of verbal, numeric and figural aspects of intelligence for either the fluid or the crystallised intelligence factor using the intelligence test Intelligenz-Struktur-Test (I-S-T 2000 R). Our data revealed significant correlations of the caudate nucleus and pallidum volumes with figural and numeric aspects of intelligence, but not with verbal intelligence. Interestingly, figural intelligence associations were dependent on sex and intelligence factor; in females, the pallidum volumes were correlated with crystallised figural intelligence (r = 0.372, p = 0.01), whereas in males, the caudate volumes were correlated with fluid figural intelligence (r = 0.507, p = 0.01). Numeric intelligence was correlated with right-lateralised caudate nucleus volumes for both females and males, but only for crystallised intelligence (r = 0.306, p = 0.04 and r = 0.459, p = 0.04, respectively). The associations were not mediated by prefrontal cortical subfield volumes when controlling with partial correlation analyses. The findings of our exploratory analysis indicate that figural and numeric intelligence aspects, but not verbal aspects, are strongly associated with basal ganglia volumes. Unlike numeric intelligence, the type of figural intelligence appears to be related to distinct basal ganglia nuclei in a sex-specific manner. Subcortical brain structures thus may contribute substantially to cognitive performance.
NASA Technical Reports Server (NTRS)
Bellan, J.; Okongo, N. A.; Harstad, K. G.; Hutt, John (Technical Monitor)
2002-01-01
Results from Direct Numerical Simulations of temporal, supercritical mixing layers for two species systems are analyzed to elucidate species-specific turbulence aspects. The two species systems, O2/H2 and C7HG16/N2, have different thermodynamic characteristics; thus, although the simulations are performed at similar reduced pressure (ratio of the pressure to the critical pressure), the former system is dose to mixture ideality and has a relatively high solubility with respect to the latter, which exhibits strong departures from mixture ideality Due to the specified, smaller initial density stratification, the C7H16/N2 layers display higher growth and increased global molecular mixing as well as larger turbulence levels. However, smaller density gradients at the transitional state for the O2/H2 system indicate that on a local basis, the layer exhibits an enhanced mixing, this being attributed to the increased solubility and to mixture ideality. These thermodynamic features are shown to affect the irreversible entropy production (i.e. the dissipation), which is larger for the O2/H2 layer and is primarily concentrated in high density-gradient magnitude regions that are distortions of the initial density stratification boundary. In contrast, the regions of largest dissipation in the C7H16/N2 layer are located in high density-gradient magnitude regions resulting from the mixing of the two fluids.
Catarinucci, L; Tarricone, L
2009-12-01
With the next transposition of the 2004/40/EC Directive, employers will become responsible for the electromagnetic field level at the workplace. To make this task easier, the scientific community is compiling practical guidelines to be followed. This work aims at enriching such guidelines, especially for the dosimetric issues. More specifically, some critical aspects related to the application of numerical dosimetric techniques for the verification of the safety limit compliance have been highlighted. In particular, three different aspects have been considered: the dosimetric parameter dependence on the shape and the inner characterisation of the exposed subject as well as on the numerical algorithm used, and the correlation between reference limits and basic restriction. Results and discussions demonstrate how, even by using sophisticated numerical techniques, in some cases a complex interpretation of the result is mandatory.
Affect Consciousness in children with internalizing problems: Assessment of affect integration.
Taarvig, Eva; Solbakken, Ole André; Grova, Bjørg; Monsen, Jon T
2015-10-01
Affect integration was operationalized through the Affect Consciousness (AC) construct as degrees of awareness, tolerance, nonverbal expression and conceptual expression of 11 affects. These aspects are assessed through a semi-structured Affect Consciousness Interview (ACI) and separate rating scales (Affect Consciousness Scales (ACSs)) developed for use in research and clinical work with adults with psychopathological disorders. Age-adjusted changes were made in the interview and rating system. This study explored the applicability of the adjusted ACI to a sample of 11-year-old children with internalizing problems through examining inter-rater reliability of the adjusted ACI, along with relationships between the AC aspects and aspects of mental health as symptoms of depression, symptoms of anxiety, social competence, besides general intelligence. Satisfactory inter-rater reliability was found, as well as consistent relationships between the AC aspects and the various aspects of mental health, a finding which coincides with previous research. The finding indicates that the attainment of the capacity to deal adaptively with affect is probably an important contributor to the development of adequate social competence and maybe in the prevention of psychopathology in children. The results indicate that the adjusted ACI and rating scales are useful tools in treatment planning with children at least from the age of 11 years. © The Author(s) 2014.
ERIC Educational Resources Information Center
Smyrnova-Trybulska, Eugenia; Ogrodzka-Mazur, Ewa; Szafranska-Gajdzica, Anna; Morze, Nataliia; Makhachashvili, Rusudan; Noskova, Tatiana; Pavlova, Tatiana; Yakovleva, Olga; Issa, Tomayess; Issa, Theodora
2016-01-01
Many higher education students are interested in MOOCs. At the same time, numerous questions are still without answers: formal aspects of participation in MOOCs, the type of motivation on the part of students for participation in MOOCs, quality of MOOCs, students' opinions about type, structure, contents, communication in MOOCs and other aspects.…
An animal welfare perspective on animal testing of GMO crops.
Kolar, Roman; Rusche, Brigitte
2008-01-01
The public discussion on the introduction of agro-genetic engineering focuses mainly on economical, ecological and human health aspects. The fact is neglected that laboratory animals must suffer before either humans or the environment are affected. However, numerous animal experiments are conducted for toxicity testing and authorisation of genetically modified plants in the European Union. These are ethically questionable, because death and suffering of the animals for purely commercial purposes are accepted. Therefore, recent political initiatives to further increase animal testing for GMO crops must be regarded highly critically. Based on concrete examples this article demonstrates that animal experiments, on principle, cannot provide the expected protection of users and consumers despite all efforts to standardise, optimise or extend them.
Shape and fission instabilities of ferrofluids in non-uniform magnetic fields
NASA Astrophysics Data System (ADS)
Vieu, Thibault; Walter, Clément
2018-04-01
We study static distributions of ferrofluid submitted to non-uniform magnetic fields. We show how the normal-field instability is modified in the presence of a weak magnetic field gradient. Then we consider a ferrofluid droplet and show how the gradient affects its shape. A rich phase transitions phenomenology is found. We also investigate the creation of droplets by successive splits when a magnet is vertically approached from below and derive theoretical expressions which are solved numerically to obtain the number of droplets and their aspect ratio as function of the field configuration. A quantitative comparison is performed with previous experimental results, as well as with our own experiments, and yields good agreement with the theoretical modeling.
Numerical models of volcanic eruption plumes: inter-comparison and sensitivity
NASA Astrophysics Data System (ADS)
Costa, Antonio; Suzuki, Yujiro; Folch, Arnau; Cioni, Raffaello
2016-10-01
The accurate description of the dynamics of convective plumes developed during explosive volcanic eruptions represents one of the most crucial and intriguing challenges in volcanology. Eruptive plume dynamics are significantly affected by complex interactions with the surrounding atmosphere, in the case of both strong eruption columns, rising vertically above the tropopause, and weak volcanic plumes, developing within the troposphere and often following bended trajectories. The understanding of eruptive plume dynamics is pivotal for estimating mass flow rates of volcanic sources, a crucial aspect for tephra dispersion models used to assess aviation safety and tephra fallout hazard. For these reasons, several eruption column models have been developed in the past decades, including the more recent sophisticated computational fluid dynamic models.
Beyond Cannabis: Plants and the Endocannabinoid System.
Russo, Ethan B
2016-07-01
Plants have been the predominant source of medicines throughout the vast majority of human history, and remain so today outside of industrialized societies. One of the most versatile in terms of its phytochemistry is cannabis, whose investigation has led directly to the discovery of a unique and widespread homeostatic physiological regulator, the endocannabinoid system. While it had been the conventional wisdom until recently that only cannabis harbored active agents affecting the endocannabinoid system, in recent decades the search has widened and identified numerous additional plants whose components stimulate, antagonize, or modulate different aspects of this system. These include common foodstuffs, herbs, spices, and more exotic ingredients: kava, chocolate, black pepper, and many others that are examined in this review. Copyright © 2016 Elsevier Ltd. All rights reserved.
Recent advances in coronal heating
De Moortel, Ineke; Browning, Philippa
2015-01-01
The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This ‘coronal heating problem’ requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue. PMID:25897095
High- β equilibrium and ballooning stability of the low aspect ratio CNT stellarator
Hammond, K. C.; Lazerson, S. A.; Volpe, F. A.
2017-04-07
In the paper, the existence and ballooning-stability of low aspect ratio stellarator equilibria is predicted for the Columbia Neutral Torus (CNT) with the aid of 3D numerical tools. In addition to having a low aspect ratio, CNT is characterized by a low magnetic field and small plasma volume. Also, highly overdense plasmas were recently heated in CNT by means of microwaves. These characteristics suggest that CNT might attain relatively high values of plasma beta and thus be of use in the experimental study of stellarator stability to high-beta instabilities such as ballooning modes. As a first step in that direction,more » here the ballooning stability limit is found numerically. Depending on the particular magnetic configuration we expect volume-averaged β limits in the range 0.9%–3.0%, and possibly higher, and observe indications of a second region of ballooning stability. As the aspect ratio is reduced, stability is found to increase in some configurations and decrease in others. Energy-balance estimates using stellarator scaling laws indicate that the lower β limit may be attainable with overdense heating at powers of 40 to 100 kW. The present study serves the additional purpose of testing VMEC and other stellarator codes at high values of β and at low aspect ratios. For this reason, the study was carried out both for free boundary, for maximum fidelity to experiment, as well as with a fixed boundary, as a numerical test.« less
Démares, Fabien J; Yusuf, Abdullahi A; Nicolson, Susan W; Pirk, Christian W W
2017-05-01
The influence of pheromones on insect physiology and behavior has been thoroughly reported for numerous aspects, such as attraction, gland development, aggregation, mate and kin recognition. Brood pheromone (BP) is released by honey bee larvae to indicate their protein requirements to the colony. Although BP is known to modulate pollen and protein consumption, which in turn can affect physiological and morphological parameters, such as hypopharyngeal gland (HPG) development and ovarian activation, few studies have focused on the effect of BP on nutritional balance. In this study, we exposed newly emerged worker bees for 14 d and found that BP exposure increased protein intake during the first few days, with a peak in consumption at day four following exposure. BP exposure decreased survival of caged honey bees, but did not affect either the size of the HPG acini or ovarian activation stage. The uncoupling of the BP releaser effect, facilitated by working under controlled conditions, and the presence of larvae as stimulating cues are discussed.
Temperature modelling and prediction for activated sludge systems.
Lippi, S; Rosso, D; Lubello, C; Canziani, R; Stenstrom, M K
2009-01-01
Temperature is an important factor affecting biomass activity, which is critical to maintain efficient biological wastewater treatment, and also physiochemical properties of mixed liquor as dissolved oxygen saturation and settling velocity. Controlling temperature is not normally possible for treatment systems but incorporating factors impacting temperature in the design process, such as aeration system, surface to volume ratio, and tank geometry can reduce the range of temperature extremes and improve the overall process performance. Determining how much these design or up-grade options affect the tank temperature requires a temperature model that can be used with existing design methodologies. This paper presents a new steady state temperature model developed by incorporating the best aspects of previously published models, introducing new functions for selected heat exchange paths and improving the method for predicting the effects of covering aeration tanks. Numerical improvements with embedded reference data provide simpler formulation, faster execution, easier sensitivity analyses, using an ordinary spreadsheet. The paper presents several cases to validate the model.
Implementing Subduction Models in the New Mantle Convection Code Aspect
NASA Astrophysics Data System (ADS)
Arredondo, Katrina; Billen, Magali
2014-05-01
The geodynamic community has utilized various numerical modeling codes as scientific questions arise and computer processing power increases. Citcom, a widely used mantle convection code, has limitations and vulnerabilities such as temperature overshoots of hundreds or thousands degrees Kelvin (i.e., Kommu et al., 2013). Recently Aspect intended as a more powerful cousin, is in active development with additions such as Adaptable Mesh Refinement (AMR) and improved solvers (Kronbichler et al., 2012). The validity and ease of use of Aspect is important to its survival and role as a possible upgrade and replacement to Citcom. Development of publishable models illustrates the capacity of Aspect. We present work on the addition of non-linear solvers and stress-dependent rheology to Aspect. With a solid foundational knowledge of C++, these additions were easily added into Aspect and tested against CitcomS. Time-dependent subduction models akin to those in Billen and Hirth (2007) are built and compared in CitcomS and Aspect. Comparison with CitcomS assists in Aspect development and showcases its flexibility, usability and capabilities. References: Billen, M. I., and G. Hirth, 2007. Rheologic controls on slab dynamics. Geochemistry, Geophysics, Geosystems. Kommu, R., E. Heien, L. H. Kellogg, W. Bangerth, T. Heister, E. Studley, 2013. The Overshoot Phenomenon in Geodynamics Codes. American Geophysical Union Fall Meeting. M. Kronbichler, T. Heister, W. Bangerth, 2012, High Accuracy Mantle Convection Simulation through Modern Numerical Methods, Geophys. J. Int.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke Chen; Hsu-Cheng Chang
An air pollutant (CO) distribution in a typical street canyon is simulated to evaluate pedestrian exposure. In this study, we consider factors those may affect the pollutant distribution in a typical street canyon. The considered factors include aspect ratio of a street canyon, atmospheric stability, traffic load and turbulent buoyancy effect. A two-dimensional domain that includes suburban roughness and urban street canyon is considered. The factors such as atmospheric stability, traffic load and turbulent buoyancy are imposed through the associated boundary conditions. With numerical simulation, the critical aspect ration of a street canyon the includes two vortices and results inmore » pollutant accumulation are found. The buoyant effect is found to raise the same pollutant concentration up to the position higher than the results come out from the case without buoyancy. The pedestrian exposure to the street air pollutant under various traffic loads and atmospheric stability are evaluated. This study conclude that the local building regulations that specify the building height/street width ratio will not cause significant pedestrian exposure to the street air pollution in most of traffic loads and atmospheric stability conditions.« less
Research on numerical algorithms for large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1982-01-01
Numerical algorithms for large space structures were investigated with particular emphasis on decoupling method for analysis and design. Numerous aspects of the analysis of large systems ranging from the algebraic theory to lambda matrices to identification algorithms were considered. A general treatment of the algebraic theory of lambda matrices is presented and the theory is applied to second order lambda matrices.
Elosua, Paula; Mujika, Josu
2015-10-13
The Reasoning Test Battery (BPR) is an instrument built on theories of the hierarchical organization of cognitive abilities and therefore consists of different tasks related with abstract, numerical, verbal, practical, spatial and mechanical reasoning. It was originally created in Belgium and later adapted to Portuguese. There are three forms of the battery consisting of different items and scales which cover an age range from 9 to 22. This paper focuses on the adaptation of the BPR to Spanish, and analyzes different aspects of its internal structure: (a) exploratory item factor analysis was applied to assess the presence of a dominant factor for each partial scale; (b) the general underlined model was evaluated through confirmatory factor analysis, and (c) factorial invariance across gender was studied. The sample consisted of 2624 Spanish students. The results concluded the presence of a general factor beyond the scales, with equivalent values for men and women, and gender differences in the factorial structure which affect the numerical reasoning, abstract reasoning and mechanical reasoning scales.
The influence of pore geometry and orientation on the strength and stiffness of porous rock
NASA Astrophysics Data System (ADS)
Griffiths, Luke; Heap, Michael J.; Xu, Tao; Chen, Chong-feng; Baud, Patrick
2017-03-01
The geometry of voids in porous rock falls between two end-members: very low aspect ratio (the ratio of the minor to the major axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock under uniaxial compression. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of ∼2.4 and ∼1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. The influence of pore aspect ratio on strength and Young's modulus depends on the pore angle. At low angles (∼0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles (∼40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles (∼20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. These simulations also highlight that the influence of pore angle on compressive strength and Young's modulus decreases as the pore aspect ratio approaches unity. We find that the analytical solution for the stress concentration around a single elliptical pore, and its contribution to elasticity, are in excellent qualitative agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. We conclude that the alignment of grains or platy minerals such as clays exerts a greater influence on strength anisotropy in porous sandstones than pore geometry. Finally, we show that the strength anisotropy that arises as a result of preferentially aligned elliptical pores is of a similar magnitude to that generated by bedding in porous sandstones and foliation in low-porosity metamorphic rocks. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.
Numerical simulation of multicellular natural convection in air-filled vertical cavities
NASA Astrophysics Data System (ADS)
Kunaeva, A. I.; Ivanov, N. G.
2017-11-01
The paper deals with 2D laminar natural convection in vertical air-filled cavities of aspect ratio 20, 30 and 40 with differentially heated sidewalls. The airflow and heat transfer were simulated numerically with an in-house Navier-Stokes code SINF. The focus is on the appearance of stationary vortex structures, “cat’s eyes”, and their transition to unsteady regime in the Rayleigh number range from 4.8×103 to 1.3×104. The dependence of the predicted flow features and the local and integral heat transfer on the aspect ratio value is analysed.
Neuroanatomical Correlates of Intelligence in Healthy Young Adults: The Role of Basal Ganglia Volume
Rhein, Cosima; Mühle, Christiane; Richter-Schmidinger, Tanja; Alexopoulos, Panagiotis; Doerfler, Arnd; Kornhuber, Johannes
2014-01-01
Background In neuropsychiatric diseases with basal ganglia involvement, higher cognitive functions are often impaired. In this exploratory study, we examined healthy young adults to gain detailed insight into the relationship between basal ganglia volume and cognitive abilities under non-pathological conditions. Methodology/Principal Findings We investigated 137 healthy adults that were between the ages of 21 and 35 years with similar educational backgrounds. Magnetic resonance imaging (MRI) was performed, and volumes of basal ganglia nuclei in both hemispheres were calculated using FreeSurfer software. The cognitive assessment consisted of verbal, numeric and figural aspects of intelligence for either the fluid or the crystallised intelligence factor using the intelligence test Intelligenz-Struktur-Test (I-S-T 2000 R). Our data revealed significant correlations of the caudate nucleus and pallidum volumes with figural and numeric aspects of intelligence, but not with verbal intelligence. Interestingly, figural intelligence associations were dependent on sex and intelligence factor; in females, the pallidum volumes were correlated with crystallised figural intelligence (r = 0.372, p = 0.01), whereas in males, the caudate volumes were correlated with fluid figural intelligence (r = 0.507, p = 0.01). Numeric intelligence was correlated with right-lateralised caudate nucleus volumes for both females and males, but only for crystallised intelligence (r = 0.306, p = 0.04 and r = 0.459, p = 0.04, respectively). The associations were not mediated by prefrontal cortical subfield volumes when controlling with partial correlation analyses. Conclusions/Significance The findings of our exploratory analysis indicate that figural and numeric intelligence aspects, but not verbal aspects, are strongly associated with basal ganglia volumes. Unlike numeric intelligence, the type of figural intelligence appears to be related to distinct basal ganglia nuclei in a sex-specific manner. Subcortical brain structures thus may contribute substantially to cognitive performance. PMID:24699871
Figurate Numbers in the Classroom.
ERIC Educational Resources Information Center
Norman, F. Alexander
1991-01-01
A series of activities involving figurate numbers that allow students at various levels to integrate numerical, geometric, arithmetic, patterning, measuring, and problem-solving skills are presented. A discussion of the geometric and numerical aspects of figurate numbers is included. Appended are IBM Logo procedures that will create pentagonal…
Numerical simulation of h-adaptive immersed boundary method for freely falling disks
NASA Astrophysics Data System (ADS)
Zhang, Pan; Xia, Zhenhua; Cai, Qingdong
2018-05-01
In this work, a freely falling disk with aspect ratio 1/10 is directly simulated by using an adaptive numerical model implemented on a parallel computation framework JASMIN. The adaptive numerical model is a combination of the h-adaptive mesh refinement technique and the implicit immersed boundary method (IBM). Our numerical results agree well with the experimental results in all of the six degrees of freedom of the disk. Furthermore, very similar vortex structures observed in the experiment were also obtained.
A parametric numerical study of mixing in a cylindrical duct
NASA Astrophysics Data System (ADS)
Oechsle, V. L.; Mongia, H. C.; Holderman, J. D.
1992-07-01
The interaction is described of some of the important parameters affecting the mixing process in a quick mixing region of a rich burn/quick mix/lean burn (RQL) combustor. The performance of the quick mixing region is significantly affected by the geometric designs of both the mixing domain and the jet inlet orifices. Several of the important geometric parameters and operating conditions affecting the mixing process were analytically studied. Parameters such as jet-to-mainstream momentum flux ratio (J), mass flow ratio (MR), orifice geometry, orifice orientation, and number of orifices/row (equally spaced around the circumferential direction were analyzed. Three different sets of orifice shapes were studied: (1) square, (2) elongated slots, and (3) equilateral triangles. Based on the analytical results, the best mixing configuration depends significantly on the penetration depth of the jet to prevent the hot mainstream flow from being entrained behind the orifice. The structure in a circular mixing section is highly weighted toward the outer wall and any mixing structure affecting this area significantly affects the overall results. The increase in the number of orifices per row increases the mixing at higher J conditions. Higher slot slant angles and aspect ratios are generally the best mixing configurations at higher momentum flux ratio (J) conditions. However, the square and triangular shaped orifices were more effective mixing configurations at lower J conditions.
Effects of Buoyancy on the Flowfields of Lean Premixed Turbulent V-Flames
NASA Technical Reports Server (NTRS)
Cheng, R. K.; Greenberg, P.; Bedat, B.; Yegian, D. T.
1999-01-01
Open laboratory turbulent flames used for investigating fundament flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in these open flames, the effects of buoyancy are usually not included in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with mean and fluctuating pressure fields. Changes in flow pattern alter the mean aerodynamic stretch and in turn affect turbulence fluctuation intensities both upstream and downstream of the flame zone. Consequently, flame stabilization, reaction rates, and turbulent flame processes are all affected. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, flame geometry, means of flame stabilization, flame shape, enclosure size, mixture conditions, and flow conditions.
NASA Astrophysics Data System (ADS)
Zhang, Di; Cheng, Liang; An, Hongwei; Zhao, Ming
2017-04-01
With the aid of direct numerical simulation, this paper presents a detailed investigation on the flow around a finite square cylinder at a fixed aspect ratio (AR) of 4 and six Reynolds numbers (Re = 50, 100, 150, 250, 500, and 1000). It is found that the mean streamwise vortex structure is also affected by Re, apart from the AR value. Three types of mean streamwise vortices have been identified and analyzed in detail, namely, "Quadrupole Type" at Re = 50 and Re = 100, "Six-Vortices Type" at Re = 150 and Re = 250, and "Dipole Type" at Re = 500 and Re = 1000. It is the first time that the "Six-Vortices Type" mean streamwise vortices are reported, which is considered as a transitional structure between the other two types. Besides, three kinds of spanwise vortex-shedding models have been observed in this study, namely, "Hairpin Vortex Model" at Re = 150, "C and Reverse-C and Hairpin Vortex Model (Symmetric Shedding)" at Re = 250, and "C and Reverse-C and Hairpin Vortex Model (Symmetric/Antisymmetric Shedding)" at Re = 500 and Re = 1000. The newly proposed "C and Reverse-C and Hairpin Vortex Model" shares some similarities with "Wang's Model" [H. F. Wang and Y. Zhou, "The finite-length square cylinder near wake," J. Fluid Mech. 638, 453-490 (2009)] but differs in aspects such as the absence of the connection line near the free-end and the "C-Shape" vortex structure in the early stage of the formation of the spanwise vortex.
Modeling of Turbulent Natural Convection in Enclosed Tall Cavities
NASA Astrophysics Data System (ADS)
Goloviznin, V. M.; Korotkin, I. A.; Finogenov, S. A.
2017-12-01
It was shown in our previous work (J. Appl. Mech. Tech. Phys 57 (7), 1159-1171 (2016)) that the eddy-resolving parameter-free CABARET scheme as applied to two-and three-dimensional de Vahl Davis benchmark tests (thermal convection in a square cavity) yields numerical results on coarse (20 × 20 and 20 × 20 × 20) grids that agree surprisingly well with experimental data and highly accurate computations for Rayleigh numbers of up to 1014. In the present paper, the sensitivity of this phenomenon to the cavity shape (varying from cubical to highly elongated) is analyzed. Box-shaped computational domains with aspect ratios of 1: 4, 1: 10, and 1: 28.6 are considered. The results produced by the CABARET scheme are compared with experimental data (aspect ratio of 1: 28.6), DNS results (aspect ratio of 1: 4), and an empirical formula (aspect ratio of 1: 10). In all the cases, the CABARET-based integral parameters of the cavity flow agree well with the other authors' results. Notably coarse grids with mesh refinement toward the walls are used in the CABARET calculations. It is shown that acceptable numerical accuracy on extremely coarse grids is achieved for an aspect ratio of up to 1: 10. For higher aspect ratios, the number of grid cells required for achieving prescribed accuracy grows significantly.
Magnetic Force Switches for Magnetic Fluid Micromixing
NASA Astrophysics Data System (ADS)
Wei, Zung-Hang; Lee, Chiun-Peng; Lai, Mei-Feng
2010-01-01
A magnetic fluid micromixer with energy-saving magnetic force switches that can manipulate the magnetic fluid flow is proposed. The micromixer of high mixing efficiency uses single-domain micro magnets that have strong magnetic anisotropy to produce the magnetic force for the mixing. By altering the magnetization directions of the magnets that have different aspect ratios and coercivities, open and closed magnetic fluxes can be produced around each magnet cluster. For open magnetic flux, the mixing efficiency is numerically found to increase with the saturation magnetization of the magnets. On the contrary, the magnet clusters barely affects the mixing efficiency in the case of closed magnetic flux. Due to the different magnetic forces produced in open and closed magnetic fluxes, the magnetic fluid mixing can be switched on and off.
A qualitative investigation of exercising with MS and the impact on the spousal relationship.
Horton, Sean; MacDonald, Dany J; Erickson, Karl; Dionigi, Rylee A
2015-01-01
Multiple Sclerosis is an autoimmune disease that affects more than 2.3 million people around the world. Symptoms are numerous and varied, often having a profound effect on activities of daily living. While for many years individuals with MS were told to avoid exercise for fear of worsening their symptoms, recent research has emphasized the multi-faceted benefits associated with regular physical activity. Given the strain that MS can put on family and interpersonal relationships, the intention of this study was to investigate the exercise experiences of individuals with MS and the extent to which these experiences affect, or are affected by, their spousal relationship. In-depth qualitative interviews were conducted with 10 individuals, five with MS, along with each of their spouses, in order to gain a comprehensive understanding of living and exercising with the disease. An inductive approach was used to analyze the interview data. The results displayed the important physical, psychological, and social benefits of involvement in an exercise program. Spouses help to counteract barriers and facilitate exercise, and are well aware of the integral role they play in their partner's health and well-being. Spouses also valued the increased independence they gained, in the form of reduced care-giving responsibilities and enhanced social opportunities, as a result of the improved physical function of their partner. These findings contrast the severe strain on spousal relationships that is often reported in studies on people living with MS. Rather than an inexorable downward decline in physical ability that is common with MS, participants spoke of a positive reversal in physical function, which has had far-reaching implications for multiple aspects of their lives, including their psychological outlook, their sense of independence, overcoming isolation, and their relationship with their spouse, all of which are identified in the literature as notable aspects of life affected by the disease.
ERIC Educational Resources Information Center
Clary, Renee; Wandersee, James
2011-01-01
It is relatively easy to incorporate plants into a curriculum and extend their use beyond the botany unit into other scientific arenas. There are numerous web-based resources for teachers, including the Human Flower Project (HFP) website, which offers numerous vignettes on all aspects of flowering plants. In addition to botany and invasive plant…
Computerized Numerical Control Test Item Bank.
ERIC Educational Resources Information Center
Reneau, Fred; And Others
This guide contains 285 test items for use in teaching a course in computerized numerical control. All test items were reviewed, revised, and validated by incumbent workers and subject matter instructors. Items are provided for assessing student achievement in such aspects of programming and planning, setting up, and operating machines with…
Interpretation of Statistical Data: The Importance of Affective Expressions
ERIC Educational Resources Information Center
Queiroz, Tamires; Monteiro, Carlos; Carvalho, Liliane; François, Karen
2017-01-01
In recent years, research on teaching and learning of statistics emphasized that the interpretation of data is a complex process that involves cognitive and technical aspects. However, it is a human activity that involves also contextual and affective aspects. This view is in line with research on affectivity and cognition. While the affective…
NASA Astrophysics Data System (ADS)
Pendota, Premchand
Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.
NASA Astrophysics Data System (ADS)
Olivares, Gonzalo; Sepúlveda, H. H.; Yannicelli, B.
2015-06-01
The infectious Salmon Anemia virus (ISAv) is a pathogen that mainly affects the Atlantic Salmon (Salmo salar). It was detected in Norway in 1984 and in June 2007 appeared in Chile, producing a drop of more than 30% in the country's production level. It is expected that with certain regularity, outbreaks will continue to appear in Chile without the need of reintroducing the virus from foreign countries. We present a numerical study of the influence of winds and tides in the dispersion of lagrangian particles to simulate the transport of ISAv in the Aysen region, in southern Chile. This study combines the use of numerical models of the ocean and atmosphere, lagrangian tracking and biological aspects of ISAv infections. As in previous results, a wider dispersion of ISAv was observed during spring tides. Temporal changes in wind significantly modified the transport of viral particles from an infected center. Under similar forcing conditions, the areas of risk associated to culture sites separated by a few kilometers could be very different. Our main results remark the importance of the use of a detailed knowledge of hydrographic and atmospheric circulation in the definition of boundaries for sanitary management areas. We suggest that a methodology similar to the one presented in this study should be considered to define sanitary strategies to minimize the occurrence of native outbreaks of ISAv.
Reciprocal Modulation of Cognitive and Emotional Aspects in Pianistic Performances
Higuchi, Marcia K. Kodama; Fornari, José; Del Ben, Cristina M.; Graeff, Frederico G.; Leite, João Pereira
2011-01-01
Background High level piano performance requires complex integration of perceptual, motor, cognitive and emotive skills. Observations in psychology and neuroscience studies have suggested reciprocal inhibitory modulation of the cognition by emotion and emotion by cognition. However, it is still unclear how cognitive states may influence the pianistic performance. The aim of the present study is to verify the influence of cognitive and affective attention in the piano performances. Methods and Findings Nine pianists were instructed to play the same piece of music, firstly focusing only on cognitive aspects of musical structure (cognitive performances), and secondly, paying attention solely on affective aspects (affective performances). Audio files from pianistic performances were examined using a computational model that retrieves nine specific musical features (descriptors) – loudness, articulation, brightness, harmonic complexity, event detection, key clarity, mode detection, pulse clarity and repetition. In addition, the number of volunteers' errors in the recording sessions was counted. Comments from pianists about their thoughts during performances were also evaluated. The analyses of audio files throughout musical descriptors indicated that the affective performances have more: agogics, legatos, pianos phrasing, and less perception of event density when compared to the cognitive ones. Error analysis demonstrated that volunteers misplayed more left hand notes in the cognitive performances than in the affective ones. Volunteers also played more wrong notes in affective than in cognitive performances. These results correspond to the volunteers' comments that in the affective performances, the cognitive aspects of piano execution are inhibited, whereas in the cognitive performances, the expressiveness is inhibited. Conclusions Therefore, the present results indicate that attention to the emotional aspects of performance enhances expressiveness, but constrains cognitive and motor skills in the piano execution. In contrast, attention to the cognitive aspects may constrain the expressivity and automatism of piano performances. PMID:21931716
NASA Astrophysics Data System (ADS)
Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio
2014-05-01
The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple installations. The neural network is trained using the results from a CFD model (FEFLOW) applied to the installation at Politecnico di Torino (Italy) under several operating conditions.
NASA Astrophysics Data System (ADS)
Rakshit, Suman; Khare, Swanand R.; Datta, Biswa Nath
2018-07-01
One of the most important yet difficult aspect of the Finite Element Model Updating Problem is to preserve the finite element inherited structures in the updated model. Finite element matrices are in general symmetric, positive definite (or semi-definite) and banded (tridiagonal, diagonal, penta-diagonal, etc.). Though a large number of papers have been published in recent years on various aspects of solutions of this problem, papers dealing with structure preservation almost do not exist. A novel optimization based approach that preserves the symmetric tridiagonal structures of the stiffness and damping matrices is proposed in this paper. An analytical expression for the global minimum solution of the associated optimization problem along with the results of numerical experiments obtained by both the analytical expressions and by an appropriate numerical optimization algorithm are presented. The results of numerical experiments support the validity of the proposed method.
Numerical simulations of sessile droplet evaporating on heated substrate
NASA Astrophysics Data System (ADS)
Chen, Xue; Chen, Paul G.; Ouazzani, Jalil; Liu, Qiusheng
2017-04-01
Motivated by the space project EFILE, a 2D axisymmetric numerical model in the framework of ALE method is developed to investigate the coupled physical mechanism during the evaporation of a pinned drop that partially wets on a heated substrate. The model accounts for mass transport in surrounding air, Marangoni convection inside the drop and heat conduction in the substrate as well as moving interface. Numerical results predict simple scaling laws for the evaporation rate which scales linearly with drop radius but follows a power-law with substrate temperature. It is highlighted that thermal effect of the substrate has a great impact on the temperature profile at the drop surface, which leads to a multicellular thermocapillary flow pattern. In particular, the structure of the multicellular flow behavior induced within a heated drop is mainly controlled by a geometric parameter (aspect ratio). A relationship between the number of thermal cells and the aspect ratio is proposed.
Some Aspects of Nonlinear Dynamics and CFD
NASA Technical Reports Server (NTRS)
Yee, Helen C.; Merriam, Marshal (Technical Monitor)
1996-01-01
The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with examples of spurious behavior observed in CFD computations.
Encountering Heidi: meeting others as a central aspect of the river experience
Lilian Jonas; Kevin Larkin
2000-01-01
Over the past few decades, numerous studies have investigated relationships between encounters and the backcountry recreation experience. Although academics and professionals may recognize that meeting others in backcountry areas could result in positive interactions that are beneficial to the experience, research directed at the positive aspects of intergroup...
ERIC Educational Resources Information Center
Nielsen, Kjetil L.; Hansen, Gabrielle; Stav, John B.
2013-01-01
In this article, we describe and discuss the most significant teacher-centric aspects of student response systems (SRS) that we have found to negatively affect students' experience of using SRS in lecture settings. By doing so, we hope to increase teachers' awareness of how they use SRS and how seemingly trivial choices or aspects when using SRS…
Numerical ability predicts mortgage default
Gerardi, Kristopher; Goette, Lorenz; Meier, Stephan
2013-01-01
Unprecedented levels of US subprime mortgage defaults precipitated a severe global financial crisis in late 2008, plunging much of the industrialized world into a deep recession. However, the fundamental reasons for why US mortgages defaulted at such spectacular rates remain largely unknown. This paper presents empirical evidence showing that the ability to perform basic mathematical calculations is negatively associated with the propensity to default on one’s mortgage. We measure several aspects of financial literacy and cognitive ability in a survey of subprime mortgage borrowers who took out loans in 2006 and 2007, and match them to objective, detailed administrative data on mortgage characteristics and payment histories. The relationship between numerical ability and mortgage default is robust to controlling for a broad set of sociodemographic variables, and is not driven by other aspects of cognitive ability. We find no support for the hypothesis that numerical ability impacts mortgage outcomes through the choice of the mortgage contract. Rather, our results suggest that individuals with limited numerical ability default on their mortgage due to behavior unrelated to the initial choice of their mortgage. PMID:23798401
Numerical ability predicts mortgage default.
Gerardi, Kristopher; Goette, Lorenz; Meier, Stephan
2013-07-09
Unprecedented levels of US subprime mortgage defaults precipitated a severe global financial crisis in late 2008, plunging much of the industrialized world into a deep recession. However, the fundamental reasons for why US mortgages defaulted at such spectacular rates remain largely unknown. This paper presents empirical evidence showing that the ability to perform basic mathematical calculations is negatively associated with the propensity to default on one's mortgage. We measure several aspects of financial literacy and cognitive ability in a survey of subprime mortgage borrowers who took out loans in 2006 and 2007, and match them to objective, detailed administrative data on mortgage characteristics and payment histories. The relationship between numerical ability and mortgage default is robust to controlling for a broad set of sociodemographic variables, and is not driven by other aspects of cognitive ability. We find no support for the hypothesis that numerical ability impacts mortgage outcomes through the choice of the mortgage contract. Rather, our results suggest that individuals with limited numerical ability default on their mortgage due to behavior unrelated to the initial choice of their mortgage.
Renner, Simone; Dobenecker, Britta; Blutke, Andreas; Zöls, Susanne; Wanke, Rüdiger; Ritzmann, Mathias; Wolf, Eckhard
2016-07-01
The prevalence of diabetes mellitus, which currently affects 387 million people worldwide, is permanently rising in both adults and adolescents. Despite numerous treatment options, diabetes mellitus is a progressive disease with severe comorbidities, such as nephropathy, neuropathy, and retinopathy, as well as cardiovascular disease. Therefore, animal models predictive of the efficacy and safety of novel compounds in humans are of great value to address the unmet need for improved therapeutics. Although rodent models provide important mechanistic insights, their predictive value for therapeutic outcomes in humans is limited. In recent years, the pig has gained importance for biomedical research because of its close similarity to human anatomy, physiology, size, and, in contrast to non-human primates, better ethical acceptance. In this review, anatomic, biochemical, physiological, and morphologic aspects relevant to diabetes research will be compared between different animal species, that is, mouse, rat, rabbit, pig, and non-human primates. The value of the pig as a model organism for diabetes research will be highlighted, and (dis)advantages of the currently available approaches for the generation of pig models exhibiting characteristics of metabolic syndrome or type 2 diabetes mellitus will be discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Freires, Irlan Almeida; de Alencar, Severino Matias; Rosalen, Pedro Luiz
2016-03-03
Propolis is a complex resinous mixture collected by bees, with high medicinal, historical and economic value. The nutraceutical and pharmacological benefits of propolis have been extensively explored in several fields of medicine as an important resource for prevention and treatment of oral and systemic diseases. A relatively new type of propolis, named red propolis (in Brazil, Brazilian Red Propolis - BRP), has been arousing attention for the promising pharmacological properties of some of its isolated compounds (vestitol, neovestitol, quercetin, medicarpin, formononetin, etc). Due to a distinct chemical composition, BRP and its isolated compounds (mainly isoflavones) affect a wide range of biological targets and could have an impact against numerous diseases as an antimicrobial, anti-inflammatory and immunomodulatory, antioxidant and antiproliferative agent. In this review, we comprehensively address the main aspects related to BRP bioprospection, chemistry and therapeutic potential. Further information is provided on mechanisms of action discovered thus far as well as clinical use in humans and regulatory aspects. As of now, BRP and its isolated molecules remain a fascinating topic for further research and application in biomedical areas and dentistry. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Guangquan; Field, Malcolm S.
2014-03-01
Documenting and understanding water balances in a karst watershed in which groundwater and surface water resources are strongly interconnected are important aspects for managing regional water resources. Assessing water balances in karst watersheds can be difficult, however, because karst watersheds are so very strongly affected by groundwater flows through solution conduits that are often connected to one or more sinkholes. In this paper we develop a mathematical model to approximate sinkhole porosity from discharge at a downstream spring. The model represents a combination of a traditional linear reservoir model with turbulent hydrodynamics in the solution conduit connecting the downstream spring with the upstream sinkhole, which allows for the simulation of spring discharges and estimation of sinkhole porosity. Noting that spring discharge is an integral of all aspects of water storage and flow, it is mainly dependent on the behavior of the karst aquifer as a whole and can be adequately simulated using the analytical model described in this paper. The model is advantageous in that it obviates the need for a sophisticated numerical model that is much more costly to calibrate and operate. The model is demonstrated using the St. Marks River Watershed in northwestern Florida.
Circadian rhythms accelerate wound healing in female Siberian hamsters
Cable, Erin J.; Onishi, Kenneth G.; Prendergast, Brian J.
2017-01-01
Circadian rhythms (CRs) provide temporal regulation and coordination of numerous physiological traits, including immune function. CRs in multiple aspects of immune function are absent in rodents that have been rendered circadian-arrhythmic through various methods. In Siberian hamsters, circadian arrhythmia can be induced by disruptive light treatments (DPS). Here we examined CRs in wound healing, and the effects of circadian disruption on wound healing in DPS-arrhythmic hamsters. Circadian entrained/rhythmic (RHYTH) and behaviorally-arrhythmic (ARR) female hamsters were administered a cutaneous wound either 3 h after light onset (ZT03) or 2 h after dark onset (ZT18); wound size was quantified daily using image analyses. Among RHYTH hamsters, ZT03 wounds healed faster than ZT18 wounds, whereas in ARR hamsters, circadian phase did not affect wound healing. In addition, wounds healed slower in ARR hamsters. The results document a clear CR in wound healing, and indicate that the mere presence of organismal circadian organization enhances this aspect of immune function. Faster wound healing in CR-competent hamsters may be mediated by CR-driven coordination of the temporal order of mechanisms (inflammation, leukocyte trafficking, tissue remodeling) underlying cutaneous wound healing. PMID:27998755
[Precipitation pulses and ecosystem responses in arid and semiarid regions: a review].
Zhao, Wen-Zhi; Liu, Hu
2011-01-01
Precipitation events in arid/semi-arid environment are usually occurred in "pulses", with highly variable arrival time, duration, and intensity. These discrete and largely unpredictable features may lead to the pulsed availability of soil water and nutrients in space and time. Resources pulses can affect the life history traits and behaviors at individual level, numerous responses at population level, and indirect effects at community level. This paper reviewed the most recent research advances in the related fields from the aspects of the effects of resources pulses and the responses of ecosystems. It was emphasized that the following issues are still open, e.g., the effects of the pulsed features of resources availability on ecosystems, the discrepancy among the effects of resources pulses in different ecosystems, the eco-hydrological mechanisms that determine the persistence of pulsed resources effects, and the effects of the pulsed resources availability on ecosystem processes. Given the potential global climate and precipitation pattern change, an important research direction in the future is to determine how the resources pulses affect the ecosystem responses at different scales under different climate scenarios.
Does performance management affect nurses' well-being?
Decramer, Adelien; Audenaert, Mieke; Van Waeyenberg, Thomas; Claeys, Tine; Claes, Claudia; Vandevelde, Stijn; van Loon, Jos; Crucke, Saskia
2015-04-01
This article focuses on employee performance-management practices in the healthcare sector. We specifically aim to contribute to a better understanding of the impact of employee performance-management practices on affective well-being of nurses in hospitals. Theory suggests that the features of employee-performance management (planning and evaluation of individual performances) predict affective well-being (in this study: job satisfaction and affective commitment). Performance-management planning and evaluation and affective well-being were drawn from a survey of nurses at a Flemish hospital. Separate estimations were performed for different aspects of affective well-being. Performance planning has a negative effect on job satisfaction of nurses. Both vertical alignment and satisfaction with the employee performance-management system increase the affective well-being of nurses; however, the impact of vertical alignment differs for different aspects of affective well-being (i.e. job satisfaction and affective commitment). Performance-management planning and evaluation of nurses are associated with attitudinal outcomes. The results indicate that employee performance-management features have different impacts on different aspects of well-being. Copyright © 2014 Elsevier Ltd. All rights reserved.
Non-lane-discipline-based car-following model under honk environment
NASA Astrophysics Data System (ADS)
Rong, Ying; Wen, Huiying
2018-04-01
This study proposed a non-lane-discipline-based car-following model by synthetically considering the visual angles and the timid/aggressive characteristics of drivers under honk environment. We firstly derived the neutral stability condition by the linear stability theory. It showed that the parameters related to visual angles and driving characteristics of drivers under honk environment all have significant impact on the stability of non-lane-discipline traffic flow. For better understanding the inner mechanism among these factors, we further analyzed how each parameter affects the traffic flow and gained further insight into how the visual angles information influences other parameters and then influences the non-lane-discipline traffic flow under honk environment. And the results showed that the other aspects such as driving characteristics of drivers or honk effect are all interacted with the "Visual-Angle Factor". And the effect of visual angle is not just to say simply it has larger stable region or not as the existing studies. Finally, to verify the proposed model, we carried out the numerical simulation under the periodic boundary condition. And the results of numerical simulation are agreed well with the theoretical findings.
NASA Astrophysics Data System (ADS)
Tan, Wee Choon; Iwai, Hiroshi; Kishimoto, Masashi; Brus, Grzegorz; Szmyd, Janusz S.; Yoshida, Hideo
2018-04-01
Planar solid oxide fuel cells (SOFCs) with decomposed ammonia are numerically studied to investigate the effect of the cell aspect ratio. The ammonia decomposer is assumed to be located next to the SOFCs, and the heat required for the endothermic decomposition reaction is supplied by the thermal radiation from the SOFCs. Cells with aspect ratios (ratios of the streamwise length to the spanwise width) between 0.130 and 7.68 are provided with the reactants at a constant mass flow rate. A parametric study is conducted by varying the cell temperature and fuel utility factor to investigate their effects on the cell performance in terms of the voltage efficiency. The effect of the heat supply to the ammonia decomposer is also studied. The developed model shows good agreement, in terms of the current-voltage curve, with the experimental data obtained from a short stack without parameter tuning. The simulation study reveals that the cell with the highest aspect ratio achieves the highest performance under furnace operation. On the other hand, the 0.750 aspect ratio cell with the highest voltage efficiency of 0.67 is capable of thermally sustaining the ammonia decomposers at a fuel utility of 0.80 using the thermal radiation from both sidewalls.
A review of quasi-coherent structures in a numerically simulated turbulent boundary layer
NASA Technical Reports Server (NTRS)
Robinson, S. K.; Kline, S. J.; Spalart, P. R.
1989-01-01
Preliminary results of a comprehensive study of the structural aspects of a numerically simulated number turbulent boundary layer are presented. A direct Navier-Stokes simulation of a flat-plate, zero pressure gradient boundary layer at Re0 = 670 was used. Most of the known nonrandom, coherent features of turbulent boundary layers are confirmed in the simulation, and several new aspects of their spatial character are reported. The spatial relationships between many of the various structures are described, forming the basis for a more complete kinematical picture of boundary layer physics than has been previously known. In particular, the importance of vortex structures of various forms to the generation of Reynolds shear stress is investigated.
Comparing Happiness and Hypomania Risk: A Study of Extraversion and Neuroticism Aspects
Kirkland, Tabitha; Gruber, June; Cunningham, William A.
2015-01-01
Positive affect has long been considered a hallmark of subjective happiness. Yet, high levels of positive affect have also been linked with hypomania risk: a set of cognitive, affective, and behavioral characteristics that constitute a dispositional risk for future episodes of hypomania and mania. At a personality level, two powerful predictors of affective experience are extraversion and neuroticism: extraversion has been linked to positive affect, and neuroticism to negative affect. As such, a single personality trait – extraversion – has been linked to both beneficial and harmful outcomes associated with positivity. It is clear that positive affect, in different forms, has divergent consequences for well-being, but previous research has struggled to articulate the nature of these differences. We suggest that the relationship between affect and well-being needs to be situated within the psychological context of the individual – both in terms of more specific forms of extraversion and neuroticism, but also in terms of interactions among personality aspects. Consistent with this idea, we found that two aspects of extraversion (enthusiasm and assertiveness) differentially predicted subjective happiness from hypomania risk and two aspects of neuroticism (volatility and withdrawal) interacted to predict hypomania risk: the highest levels of hypomania risk were associated with the combination of high volatility and low withdrawal. These findings underscore the importance of examining personality at the right level of resolution to understand well-being and dysfunction. PMID:26161562
Age-dependent salt hypertension in Dahl rats: fifty years of research.
Zicha, J; Dobešová, Z; Vokurková, M; Rauchová, H; Hojná, S; Kadlecová, M; Behuliak, M; Vaněčková, I; Kuneš, J
2012-01-01
Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals.
Behavioral aspects of children's sports.
Pratt, Helen D; Patel, Dilip R; Greydanus, Donald E
2003-08-01
This article considers some of the numerous behavioral aspects that are related to children's sports. The pediatrician, during various encounters with the athlete and his or her parents in the office, or on the field, can positively influence the sport participation experience of the athlete, by screening and identifying potential problem areas as well as providing anticipatory guidance on various issues.
Corroborating the Role of L[subscript 1] Awareness in FL Pedagogy
ERIC Educational Resources Information Center
Paradowski, Michal B.
2008-01-01
Underlying the mainstream of current SLA research is the Ansatz that some level of attention to the formal aspects of language is necessary for acquisition to take place. It is self-evident and commonsensical that focusing on specific linguistic aspects helps the learner to acquire and internalise them. Numerous recent studies investigated the…
Lost Boys: A Qualitative Study of Disengaged First-Year Men at the University of Pennsylvania
ERIC Educational Resources Information Center
Herring, April L.
2013-01-01
The virtue of student engagement in all aspects of college life has been studied extensively throughout higher education. Research demonstrates that engagement in academics and the social aspects of college lead to retention and persistence. Beyond persistence, engagement has been linked to numerous other desirable effects of college. This…
ERIC Educational Resources Information Center
Wayman, Ian; Kyobe, Michael
2012-01-01
As students in computing disciplines are introduced to modern information technologies, numerous unethical practices also escalate. With the increase in stringent legislations on use of IT, users of technology could easily be held liable for violation of this legislation. There is however lack of understanding of social aspects of computing, and…
Pfabigan, Daniela Melitta; Alexopoulos, Johanna; Bauer, Herbert; Lamm, Claus; Sailer, Uta
2011-01-01
This study investigated the relationship between feedback processing and antisocial personality traits measured by the PSSI questionnaire (Kuhl and Kazén, 1997) in a healthy undergraduate sample. While event-related potentials [feedback related negativity (FRN), P300] were recorded, participants encountered expected and unexpected feedback during a gambling task. As recent findings suggest learning problems and deficiencies during feedback processing in clinical populations of antisocial individuals, we performed two experiments with different healthy participants in which feedback about monetary gains or losses consisted either of social-emotional (facial emotion displays) or non-social cues (numerical stimuli). Since the FRN and P300 are both sensitive to different aspects of feedback processing we hypothesized that they might help to differentiate between individuals scoring high and low on an antisocial trait measure. In line with previous evidence FRN amplitudes were enhanced after negative and after unexpected feedback stimuli. Crucially, participants scoring high on antisocial traits displayed larger FRN amplitudes than those scoring low only in response to expected and unexpected negative numerical feedback, but not in response to social-emotional feedback - irrespective of expectancy. P300 amplitudes were not modulated by antisocial traits at all, but by subjective reward probabilities. The present findings indicate that individuals scoring high on antisociality attribute higher motivational salience to monetary compared to emotional-social feedback which is reflected in FRN amplitude enhancement. Contrary to recent findings, however, no processing deficiencies concerning social-emotional feedback stimuli were apparent in those individuals. This indicates that stimulus salience is an important aspect in learning and feedback processes in individuals with antisocial traits which has potential implications for therapeutic interventions in clinical populations.
Effect of Manganese on some aspects of carbohydrate metabolism in rats. [None
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, R.; Mushtaq, M.; Seth, P.K.
1980-10-01
Numerous biochemical and toxicological studies have indicated that chronic exposure to manganese leads to neurological abnormalities. Increasing use of manganese compounds as antiknocks in gasoline and diesel fuel has aroused a great concern over the toxicological potential of this metal and stressed the need for understanding the mechanism of its poisoning. Reports of alerations in the levels of biogenic amines have helped in understanding the basis of neurological disorders. However, little is known about the mechanism by which manganese exposure leads to hypoglycemia in workers. This study deals with the influence of manganese exposure on metabolism of glucose, the chiefmore » fuel of the brain, and some enzymes involved in its oxidation. These studies will provide an assessment of the extent to which manganese affects the various processes controlling carbohydrate metabolism.« less
Flow and Noise from Septa Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Bridges, J. E.
2017-01-01
Flow and noise fields are explored for the concept of distributed propulsion. A model-scale experiment is performed with an 8:1 aspect ratio rectangular nozzle that is divided into six passages by five septa. The septa geometries are created by placing plastic inserts within the nozzle. It is found that the noise radiation from the septa nozzle can be significantly lower than that from the baseline rectangular nozzle. The reduction of noise is inferred to be due to the introduction of streamwise vortices in the flow. The streamwise vortices are produced by secondary flow within each passage. Thus, the geometry of the internal passages of the septa nozzle can have a large influence. The flow evolution is profoundly affected by slight changes in the geometry. These conclusions are reached by mostly experimental results of the flowfield aided by brief numerical simulations.
[Prevalence of pleural malignant mesothelioma in Poland in 1980-1993].
Szeszenia-Dabrowska, N; Szymczak, W; Wilczyńska, U
1996-01-01
Malignant pleural mesothelioma is subject of special interest for environmental epidemiologists due to its proven cause-effect relationship with the exposure to asbestos dust, particularly crocidolite. The paper discusses the prevalence trends and geographical distribution of pleural mesothelioma in Poland based on the death rate analysis. In 1993 the crude death rate for that neoplasm was found to be 4.48 per 1 million for men and 3.14 per 1 million for women. While interpreting the numerical data, such aspects were considered as the problems with histopathological diagnosis of pleural mesothelioma; the long latency period of 30-40 years; and consequently, the possibility that for the male population the results may have been affected by other causes of death owing to its relatively short average lifespan. The volume and types of asbestos used in Poland were also taken into account.
Progress towards large gain-length products on the Li-like recombination scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitoun, P.; Jamelot, G.; Carillon, A.
1995-05-01
Investigating possibilities of attaining large gain-length products on the recombination scheme using lithium-like ions, we have examined two approaches aimed at overcoming the problem of plasma non-uniformity susceptible to destroy gain by a number of processes. In the first approach we studied amplification on the transitions 5f-3d and 4f-3d in Li-like Al{sup 10+} plasma column produced by smoothing optics using lens arrays. Employing this device resulted in the gain holding up significantly longer than when no smoothing optics was used. Second, we have investigated numerically and experimentally the 5g-4f transition in Li-like S{sup 13+}, as the gain should be barelymore » affected by the plasma nonuniformities. Encouraging results were obtained and their various aspects are discussed.« less
A three-dimensional model of co-rotating streams in the solar wind. 2: Hydrodynamic streams
NASA Technical Reports Server (NTRS)
Pizzo, V. J.
1979-01-01
Theoretical aspects of corotating solar wind dynamics on a global scale are explored by means of numerical simulations executed with a nonlinear, inviscid, adiabatic, single-fluid, three-dimensional (3-D) hydrodynamic formulation. A simple, hypothetical 3-D stream structure is defined on a source surface located at 35 solar radius and carefully documents its evolution to 1 AU under the influence of solar rotation. By manipulating the structure of this prototype configuration at the source surface, it is possible to elucidate the factors most strongly affecting stream evolution: (1) the intrinsic correlations among density, temperature, and velocity existing near the source; (2) the amplitude of the stream; (3) the longitudinal breadth of the stream; (4) the latitudinal breadth of the stream; and (5) the heliographic latitude of the centroid of the stream.
[Physical activity during the transition period between occupation and retirement].
Strobl, H; Brehm, W; Tittlbach, S
2010-10-01
During the transition period between occupation and retirement, different mental challenges may arise as a consequence of the numerous changes and necessary reorientation to the following phase of life. Personal well-being is a precondition to cope with these challenges. Interviews with physically active people in the transition period between occupation and retirement, concerning the importance of physical activity in coping with mental challenges, were conducted. Physical activity is meant to affect well-being and the physical condition in a positive way. In addition, it should foster social contacts and make it easier to manage everyday life. Moreover, it is a measure of personal success during advanced age. Because of its influence on various physical, mental, and social aspects, physical activity can help a person to cope with mental challenges in the transition period between occupation and retirement.
On the use of the line integral in the numerical treatment of conservative problems
NASA Astrophysics Data System (ADS)
Brugnano, Luigi; Iavernaro, Felice
2016-06-01
We sketch out the use of the line integral as a tool to devise numerical methods suitable for conservative and, in particular, Hamiltonian problems. The monograph [3] presents the fundamental theory on line integral methods and this short note aims at exploring some aspects and results emerging from their study.
ERIC Educational Resources Information Center
Simon, T. J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn, D. M.; Zackai, E. H.; Ross, J. L.
2008-01-01
Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor…
Ways of encoding somatic information and their effects on retrospective symptom reporting.
Walentynowicz, Marta; Van Diest, Ilse; Raes, Filip; Van den Bergh, Omer
2017-05-01
Retrospective symptom reports tend to overestimate actual symptom intensity. This study explored how focusing on sensory-perceptual or on affective-motivational aspects of a somatic experience influenced retrospective symptom reports in high and low habitual symptom reporters (HSR). We hypothesized that a focus on affective-motivational aspects of somatic episodes contributes to retrospective overestimation compared to a focus on sensory-perceptual aspects. Dyspnoea (rebreathing) and pain (cold pain) were induced during two experimental sessions in healthy women: 21 high and 24 low HSR, selected using cut-off scores on a symptom checklist. Within-subject manipulation of sensory and affective processing focus (PF) took place at the encoding phase before symptom induction. Dyspnoea and pain ratings were collected immediately after the symptom inductions and after 2 weeks. Breathing behaviour was recorded during dyspnoea trials, while affective state and symptom measures were collected after each trial. Compared to pain, dyspnoea induction was perceived as more unpleasant, arousing, and threatening (ps < .001). Affective PF led to higher arousal (p < .01) and threat ratings (p = .01) than sensory PF. Affective PF also led to an increase in retrospective dyspnoea ratings over the course of 2 weeks (p = .039), which was not observed for pain, nor for dyspnoea after sensory PF. The effects of PF on symptom ratings were independent of the HSR levels. The PF during symptom encoding may explain previously observed bias in retrospective symptom reporting. The results are relevant to understand the mechanisms underlying symptom overreporting. Statement of contribution What is already known on this subject? Retrospective symptom ratings are often biased when compared to the momentary assessments. Attending to either sensory or affective aspects of the somatic experience is one of the factors affecting self-reported symptoms. What does this study add? Focusing on affective aspects elicited by the somatic experience led to an increase in retrospective symptom ratings over time. This is particularly so for more aversive somatic experiences. Directing the processing focus to sensory aspects during symptom encoding can attenuate bias in retrospective symptom reporting. © 2017 The British Psychological Society.
Dopamine Precursor Depletion Influences Pain Affect Rather than Pain Sensation
Schulz, Enrico; Baumkötter, Jochen; Ploner, Markus
2014-01-01
Pain is a multidimensional experience, which includes sensory, cognitive, and affective aspects. Converging lines of evidence indicate that dopaminergic neurotransmission plays an important role in human pain perception. However, the precise effects of dopamine on different aspects of pain perception remain to be elucidated. To address this question, we experimentally decreased dopaminergic neurotransmission in 22 healthy human subjects using Acute Phenylalanine and Tyrosine Depletion (APTD). During APTD and a control condition we applied brief painful laser stimuli to the hand, assessed different aspects of pain perception, and recorded electroencephalographic responses. APTD-induced decreases of cerebral dopaminergic activity did not influence sensory aspects of pain perception. In contrast, APTD yielded increases of pain unpleasantness. The increases of unpleasantness ratings positively correlated with effectiveness of APTD. Our finding of an influence of dopaminergic neurotransmission on affective but not sensory aspects of phasic pain suggests that analgesic effects of dopamine might be mediated by indirect effects on pain affect rather than by direct effects on ascending nociceptive signals. These findings contribute to our understanding of the complex relationship between dopamine and pain perception, which may play a role in various clinical pain states. PMID:24760082
Salinity Improves Performance and Alters Distribution of Soybean Aphids.
Eichele-Nelson, Jaclyn; DeSutter, Thomas; Wick, Abbey F; Harmon, Erin L; Harmon, Jason P
2018-05-24
We know numerous abiotic factors strongly influence crop plants. Yet we often know much less about abiotic effects on closely interacting organisms including herbivorous insects. This lack of a whole-system perspective may lead to underestimating the threats from changing factors. High soil salinity is a specific example that we know threatens crop plants in many places, but we need to know much more about how other organisms are also affected. We investigated how salinity affects the soybean aphid (SBA; Aphis glycines Matsumura; Hemiptera: Aphididae) on soybean plants (Glycine max [L.] Merr.; Fabales: Fabaceae) grown across a range of saline conditions. We performed four complementary greenhouse experiments to understand different aspects of how salinity might affect SBA. We found that as salinity increased both population size and fecundity of SBA increased across electrical conductivity values ranging from 0.84 to 8.07 dS m-1. Tracking individual aphids we also found they lived longer and produced more offspring in high saline conditions compared to the control. Moreover, we found that salinity influenced aphid distribution such that when given the chance aphids accumulated more on high-salinity plants. These results suggest that SBA could become a larger problem in areas with higher salinity and that those aphids may exacerbate the negative effects of salinity for soybean production.
Sanders, Caroline; Edwards, Zoe; Keegan, Kimberley
2017-05-01
Adopting an interprofessional team approach to care of the child with rare conditions that can affect sex development (DSD) has been advocated by a consensus document within the last decade. In the United Kingdom, the approach appears orientated towards an interprofessional model with the integration of separate professions working in single consultations with families working collaboratively to focus on care using a person and family-centred lens. This concurrent mixed-methods UK study using questionnaires, observation, and interviews aimed to examine professionals', patients', and parents' expectations and interactions during DSD clinic. In adapting a model of patient and family-centred care, we were able to analyse the dimensions of care at the micro-, meso-, and macro-level. The micro captured the unique nature of the bio-psychosocial aspects of DSD, professional capabilities, and communication. The meso examined shared learning and objective setting as well as aspects of knowledge translation. The macro focused on the operational aspects and the emancipatory knowing embedded within DSD care. Complete data from participants (n = 105) were analysed from 47 outpatient clinical consultations and are reported as numerical data, tables, and participants' voices. Interestingly, all participants identified topics or concerns that were absent in the dialogues during consultation. Our findings informed the adaptation of a patient-focused model, thereby supporting the development of the concept of patient-centeredness, integration, and collaboration. This framework may serve as a platform, embedding existing evaluative tools and acknowledging the patient and professional partnership necessary in DSD care.
Pitching effect on transonic wing stall of a blended flying wing with low aspect ratio
NASA Astrophysics Data System (ADS)
Tao, Yang; Zhao, Zhongliang; Wu, Junqiang; Fan, Zhaolin; Zhang, Yi
2018-05-01
Numerical simulation of the pitching effect on transonic wing stall of a blended flying wing with low aspect ratio was performed using improved delayed detached eddy simulation (IDDES). To capture the discontinuity caused by shock wave, a second-order upwind scheme with Roe’s flux-difference splitting is introduced into the inviscid flux. The artificial dissipation is also turned off in the region where the upwind scheme is applied. To reveal the pitching effect, the implicit approximate-factorization method with sub-iterations and second-order temporal accuracy is employed to avoid the time integration of the unsteady Navier-Stokes equations solved by finite volume method at Arbitrary Lagrange-Euler (ALE) form. The leading edge vortex (LEV) development and LEV circulation of pitch-up wings at a free-stream Mach number M = 0.9 and a Reynolds number Re = 9.6 × 106 is studied. The Q-criterion is used to capture the LEV structure from shear layer. The result shows that a shock wave/vortex interaction is responsible for the vortex breakdown which eventually causes the wing stall. The balance of the vortex strength and axial flow, and the shock strength, is examined to provide an explanation of the sensitivity of the breakdown location. Pitching motion has great influence on shock wave and shock wave/vortex interactions, which can significantly affect the vortex breakdown behavior and wing stall onset of low aspect ratio blended flying wing.
Piantadosi, Patrick T; Floresco, Stan B
2014-01-01
Inhibitory gamma-aminobutyric acid (GABA) transmission within the prefrontal cortex (PFC) regulates numerous functions, and perturbations in GABAergic transmission within this region have been proposed to contribute to some of the cognitive and behavioral abnormalities associated with disorders such as schizophrenia. These abnormalities include deficits in emotional regulation and aberrant attributions of affective salience. Yet, how PFC GABA regulates these types of emotional processes are unclear. To address this issue, we investigated the contribution of PFC GABA transmission to different aspects of Pavlovian emotional learning in rats using translational discriminative fear conditioning and latent inhibition (LI) assays. Reducing prelimbic PFC GABAA transmission via infusions of the antagonist bicuculline before the acquisition or expression of fear conditioning eliminated the ability to discriminate between an aversive conditioned stimulus (CS+) paired with footshock vs a neutral CS–, resembling similar deficits observed in schizophrenic patients. In a separate experiment, blockade of PFC GABAA receptors before CS preexposure (PE) and conditioning did not affect subsequent expression of LI, but did enhance fear in rats that were not preexposed to the CS. In contrast, PFC GABA-blockade before a fear expression test disrupted the recall of learned irrelevance and abolished LI. These data suggest that normal PFC GABA transmission is critical for regulating and mitigating multiple aspects of aversive learning, including discrimination between fear vs safety signals and recall of information about the irrelevance of stimuli. Furthermore, they suggest that similar deficits in emotional regulation observed in schizophrenia may be driven in part by deficient PFC GABA activity. PMID:24784549
Piantadosi, Patrick T; Floresco, Stan B
2014-09-01
Inhibitory gamma-aminobutyric acid (GABA) transmission within the prefrontal cortex (PFC) regulates numerous functions, and perturbations in GABAergic transmission within this region have been proposed to contribute to some of the cognitive and behavioral abnormalities associated with disorders such as schizophrenia. These abnormalities include deficits in emotional regulation and aberrant attributions of affective salience. Yet, how PFC GABA regulates these types of emotional processes are unclear. To address this issue, we investigated the contribution of PFC GABA transmission to different aspects of Pavlovian emotional learning in rats using translational discriminative fear conditioning and latent inhibition (LI) assays. Reducing prelimbic PFC GABAA transmission via infusions of the antagonist bicuculline before the acquisition or expression of fear conditioning eliminated the ability to discriminate between an aversive conditioned stimulus (CS+) paired with footshock vs a neutral CS-, resembling similar deficits observed in schizophrenic patients. In a separate experiment, blockade of PFC GABAA receptors before CS preexposure (PE) and conditioning did not affect subsequent expression of LI, but did enhance fear in rats that were not preexposed to the CS. In contrast, PFC GABA-blockade before a fear expression test disrupted the recall of learned irrelevance and abolished LI. These data suggest that normal PFC GABA transmission is critical for regulating and mitigating multiple aspects of aversive learning, including discrimination between fear vs safety signals and recall of information about the irrelevance of stimuli. Furthermore, they suggest that similar deficits in emotional regulation observed in schizophrenia may be driven in part by deficient PFC GABA activity.
Some Legal Aspects of Campus Housing.
ERIC Educational Resources Information Center
Moore, Donald R.
Legal aspects and implications affecting college and university housing administration are unpredictable, unsettled, and subject to change. The complete practical guide to the everyday legal answers for campus housing simply does not exist. This document presents some specific legal considerations involved in housing that may affect the management…
Error and Uncertainty Quantification in the Numerical Simulation of Complex Fluid Flows
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2010-01-01
The failure of numerical simulation to predict physical reality is often a direct consequence of the compounding effects of numerical error arising from finite-dimensional approximation and physical model uncertainty resulting from inexact knowledge and/or statistical representation. In this topical lecture, we briefly review systematic theories for quantifying numerical errors and restricted forms of model uncertainty occurring in simulations of fluid flow. A goal of this lecture is to elucidate both positive and negative aspects of applying these theories to practical fluid flow problems. Finite-element and finite-volume calculations of subsonic and hypersonic fluid flow are presented to contrast the differing roles of numerical error and model uncertainty. for these problems.
Effect of location in the canopy on the colour development of three apple cultivars during growth.
Unuk, Tatjana; Tijskens, L M M Pol; Germšek, Blaž; Zadravec, Peter; Vogrin, Andrej; Hribar, Janez; Simčič, Marjan; Tojnko, Stanislav
2012-09-01
Homogeneity in appearance is one of the quality aspects asked for in the supply chain. Decreasing the biological variation in batches of harvested apples (cultivars Braeburn, Fuji and Gala) becomes increasingly important. Skin colour is one of the aspects that determine both optimal harvest and stage of development. Skin colour is affected by location in the canopy. The rules of development of biological variation are now established and will be used on skin colour data. The Minolta colour aspects a*, b* and L* measured before commercial harvest change in a sigmoidal fashion and can be analysed including the biological variation, with a logistic model in indexed nonlinear regression, obtaining explained parts of above 90%. The mechanism of colour change is not affected by state of development or location in the canopy. The location in the canopy affects the intensity of both red and green colouring compounds. The variation in colouration is not affected by the location in the canopy. The red-coloured apple cultivar (Gala) depends more on the location in the canopy than the less-coloured cultivars (Fuji and Braeburn). The colour development in Fuji apples is considerably slower, with a much larger variation in stage of development. The location in the canopy affects all aspects of biological variation (biological shift factor and asymptotic starting level of colouration) for all three colour aspects L*, a* and b*, but only the mean value, not the standard deviation. The biological shift factors per colour aspects are linearly related. Once induced, variation remains constant during development. Copyright © 2012 Society of Chemical Industry.
Literature Review of Nanosprings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Reuben James
2016-08-22
Nanosprings are helical structures grown on the nanoscale. Numerous choices exist for composition and coating which give them a wide range of possible uses. They compare favorably in some aspects to other nanostructures and unfavorably in other aspects. This paper reviews the available literature, discusses techniques for formation and coating, and explores a variety of potential applications that may be developed in the near future.
Incidental captures of birds in small mammal traps: a cautionary note for interdisciplinary studies.
David L. Waldien; Miranda M. Cooley; Jennifer Weikel; John P. Hayes; Chris C. Maguire; Tom Manning; Thomas J. Maier
2004-01-01
Although benefits of interdisciplinary studies are numerous, potential exists for data acquisition for some aspects of such studies to impact data acquisition for other aspects. This may be particularly true in studies involving both trapping of small mammals and assessment of bird populations. We summarize the incidence of birds captured during 8 research projects in...
Turbulent thermal superstructures in Rayleigh-Bénard convection
NASA Astrophysics Data System (ADS)
Stevens, Richard J. A. M.; Blass, Alexander; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef
2018-04-01
We report the observation of superstructures, i.e., very large-scale and long living coherent structures in highly turbulent Rayleigh-Bénard convection up to Rayleigh Ra=109 . We perform direct numerical simulations in horizontally periodic domains with aspect ratios up to Γ =128 . In the considered Ra number regime the thermal superstructures have a horizontal extend of six to seven times the height of the domain and their size is independent of Ra. Many laboratory experiments and numerical simulations have focused on small aspect ratio cells in order to achieve the highest possible Ra. However, here we show that for very high Ra integral quantities such as the Nusselt number and volume averaged Reynolds number only converge to the large aspect ratio limit around Γ ≈4 , while horizontally averaged statistics such as standard deviation and kurtosis converge around Γ ≈8 , the integral scale converges around Γ ≈32 , and the peak position of the temperature variance and turbulent kinetic energy spectra only converge around Γ ≈64 .
NASA Astrophysics Data System (ADS)
Gallice, A.
2015-12-01
Stream temperature controls important aspects of the riverine habitat, such as the rate of spawning or death of many fish species, or the concentration of numerous dissolved substances. In the current context of accelerating climate change, the future evolution of stream temperature is regarded as uncertain, particularly in the Alps. This uncertainty fostered the development of many prediction models, which are usually classified in two categories: mechanistic models and statistical models. Based on the numerical resolution of physical conservation laws, mechanistic models are generally considered to provide more reliable long-term estimates than regression models. However, despite their physical basis, these models are observed to differ quite significantly in some aspects of their implementation, notably (1) the routing of water in the river channel and (2) the estimation of the temperature of groundwater discharging into the stream. For each one of these two aspects, we considered several of the standard modeling approaches reported in the literature and implemented them in a new modular framework. The latter is based on the spatially-distributed snow model Alpine3D, which is essentially used in the framework to compute the amount of water infiltrating in the upper soil layer. Starting from there, different methods can be selected for the computation of the water and energy fluxes in the hillslopes and in the river network. We relied on this framework to compare the various methodologies for river channel routing and groundwater temperature modeling. We notably assessed the impact of each these approaches on the long-term stream temperature predictions of the model under a typical climate change scenario. The case study was conducted over a high Alpine catchment in Switzerland, whose hydrological and thermal regimes are expected to be markedly affected by climate change. The results show that the various modeling approaches lead to significant differences in the model predictions, and that these differences may be larger than the uncertainties in future air temperature. It is also shown that the temperature of groundwater discharging into the stream has a marked impact on the modeled stream temperature at the catchment outlet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orús, Román, E-mail: roman.orus@uni-mainz.de
This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems aremore » also discussed. - Highlights: • A practical introduction to selected aspects of tensor network methods is presented. • We provide analytical examples of MPS and 2d PEPS. • We provide basic aspects on several numerical methods for MPS and 2d PEPS. • We discuss a number of applications of tensor network methods from a broad perspective.« less
A detailed model for simulation of catchment scale subsurface hydrologic processes
NASA Technical Reports Server (NTRS)
Paniconi, Claudio; Wood, Eric F.
1993-01-01
A catchment scale numerical model is developed based on the three-dimensional transient Richards equation describing fluid flow in variably saturated porous media. The model is designed to take advantage of digital elevation data bases and of information extracted from these data bases by topographic analysis. The practical application of the model is demonstrated in simulations of a small subcatchment of the Konza Prairie reserve near Manhattan, Kansas. In a preliminary investigation of computational issues related to model resolution, we obtain satisfactory numerical results using large aspect ratios, suggesting that horizontal grid dimensions may not be unreasonably constrained by the typically much smaller vertical length scale of a catchment and by vertical discretization requirements. Additional tests are needed to examine the effects of numerical constraints and parameter heterogeneity in determining acceptable grid aspect ratios. In other simulations we attempt to match the observed streamflow response of the catchment, and we point out the small contribution of the streamflow component to the overall water balance of the catchment.
Multiple secondary islands formation in nonlinear evolution of double tearing mode simulations
NASA Astrophysics Data System (ADS)
Guo, W.; Ma, J.; Yu, Z.
2017-03-01
A new numerical code solving the conservative perturbed resistive magnetohydrodynamic (MHD) model is developed. Numerical tests of the ideal Kelvin-Helmholtz instability and the resistive double tearing mode (DTM) show its capability in solving linear and nonlinear MHD instabilities. The nonlinear DTM evolution in 2D geometry is numerically investigated with low guiding field B z 0 , short half-distance y 0 between the equilibrium current sheets, and small resistivity η. The interaction of islands on the two initial current sheets may generate an unstable flow driven current sheet with a high length-to-thickness aspect ratio (α), and multiple secondary islands can form. In general, the length-to-thickness aspect ratio α and the number of secondary islands increase with decreasing guide field B z 0 , decreasing half-distance y 0 , and increasing Lundquist number of the flow driven current sheet S L although the dependence may be non-monotonic. The reconnection rate dependence on S L , B z 0 , and y 0 is also investigated.
NASA Astrophysics Data System (ADS)
Duanmu, Yu; Zou, Lu; Wan, De-cheng
2017-12-01
This paper aimed at describing numerical simulations of vortex-induced vibrations (VIVs) of a long flexible riser with different length-to-diameter ratio (aspect ratio) in uniform and shear currents. Three aspect ratios were simulated: L/D = 500, 750 and 1 000. The simulation was carried out by the in-house computational fluid dynamics (CFD) solver viv-FOAM-SJTU developed by the authors, which was coupled with the strip method and developed on the OpenFOAM platform. Moreover, the radial basis function (RBF) dynamic grid technique is applied to the viv-FOAM-SJTU solver to simulate the VIV in both in-line (IL) and cross-flow (CF) directions of flexible riser with high aspect ratio. The validation of the benchmark case has been completed. With the same parameters, the aspect ratio shows a significant influence on VIV of a long flexible riser. The increase of aspect ratio exerted a strong effect on the IL equilibrium position of the riser while producing little effect on the curvature of riser. With the aspect ratio rose from 500 to 1 000, the maximum IL mean displacement increased from 3 times the diameter to 8 times the diameter. On the other hand, the vibration mode of the riser would increase with the increase of aspect ratio. When the aspect ratio was 500, the CF vibration was shown as a standing wave with a 3rd order single mode. When the aspect ratio was 1 000, the modal weights of the 5th and 6th modes are high, serving as the dominant modes. The effect of the flow profile on the oscillating mode becomes more and more apparent when the aspect ratio is high, and the dominant mode of riser in shear flow is usually higher than that in uniform flow. When the aspect ratio was 750, the CF oscillations in both uniform flow and shear flow showed multi-mode vibration of the 4th and 5th mode. While, the dominant mode in uniform flow is the 4th order, and the dominant mode in shear flow is the 5th order.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar
2017-01-01
Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD researchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where simplex elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identifies the reason behind the difficulties in use of such high-aspect ratio simplex elements is formulated using two different approaches and presented here. Drawing insights from the analysis, a potential solution to avoid that pitfall is also provided as part of this work. Furthermore, through the use of numerical simulations of practical viscous problems involving high-Reynolds number flows, how the gradient evaluation procedures of the CESE framework can be effectively used to produce accurate and stable results on such high-aspect ratio simplex meshes is also showcased.
Yassin, Mohamed F; Ohba, Masaake
2012-09-01
To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.
NASA Technical Reports Server (NTRS)
Kuhlman, John M.; Liaw, Paul; Cerney, Michael J.
1988-01-01
A numerical design study was conducted to assess the drag reduction potential of winglets installed on a series of low aspect ratio wings at a design point of M=0.8, C sub L=0.3. Wing-winglet and wing-alone design geometries were obtained for wings of aspect ratios between 1.75 and 2.67, having leading edge sweep angles between 45 and 60 deg. Winglet length was fixed at 15% of wing semispan. To assess the relative performance between wing-winglet and wing-alone configurations, the PPW nonlinear extended small disturbance potential flow code was utilized. This model has proven to yield plausible transonic flow field simulations for the series of low aspect ratio configurations selected. Predicted decreases in pressure drag coefficient for the wing-winglet configurations relative to the corresponding wing-alone planform are about 15% at the design point. Predicted decreases in wing-winglet total drag coefficient are about 12%, relative to the corresponding wing-alone design. Longer winglets (25% of the wing semispan) yielded decreases in the pressure drag of up to 22% and total drag of up to 16.4%. These predicted drag coefficient reductions are comparable to reductions already demonstrated by actual winglet designs installed on higher aspect ratio transport type aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassemi, S.A.
1988-04-01
High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.
NASA Technical Reports Server (NTRS)
Kassemi, Siavash A.
1988-01-01
High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.
ERIC Educational Resources Information Center
Kresse, William J.
2017-01-01
Corruption in higher education is an emerging topic in the field of education research. (Osipian 2008). Different aspects of such corruption have been addressed in numerous papers by various researchers. These papers indicate different aspects of the problem. Many of the papers evidence the global nature of this problem by highlighting corruption…
Understanding the Emotional Aspects of Escalation of Commitment: The Role of Negative Affect
ERIC Educational Resources Information Center
Wong, Kin Fai Ellick; Yik, Michelle; Kwong, Jessica Y. Y.
2006-01-01
Despite the importance of understanding the emotional aspects of organizational decision making, prior research has paid scant attention to the role of emotion in escalation of commitment. This article attempts to fill this gap by examining the relationship between negative affect and escalation of commitment. Results showed that regardless of…
Developing Connections for Affective Regulation: Age-Related Changes in Emotional Brain Connectivity
ERIC Educational Resources Information Center
Perlman, Susan B.; Pelphrey, Kevin A.
2011-01-01
The regulation of affective arousal is a critical aspect of children's social and cognitive development. However, few studies have examined the brain mechanisms involved in the development of this aspect of "hot" executive functioning. This process has been conceptualized as involving prefrontal control of the amygdala. Here, using functional…
Clients' interpretation of risks provided in genetic counseling.
Wertz, D C; Sorenson, J R; Heeren, T C
1986-01-01
Clients in 544 genetic counseling sessions who were given numeric risks of having a child with a birth defect between 0% and 50% were asked to interpret these numeric risks on a five-point scale, ranging from very low to very high. Whereas clients' modal interpretation varied directly with numeric risks between 0% and 15%, the modal category of client risk interpretation remained "moderate" at risks between 15% and 50%. Uncertainty about normalcy of the next child increased as numeric risk increased, and few clients were willing to indicate that the child would probably or definitely be affected regardless of the numeric risk. Characteristics associated with clients' "pessimistic" interpretations of risk, identified by stepwise linear regression, included increased numeric risk, discussion in depth during the counseling session of whether they would have a child, have a living affected child, discussion of the effects of an affected child on relationships with client's other children, and seriousness of the disorder in question (causes intellectual impairment). Client interpretations are discussed in terms of recent developments in cognitive theory, including heuristics that influence judgments about risks, and implications for genetic counseling. PMID:3752089
NASA Astrophysics Data System (ADS)
Vijayashree, M.; Uthayakumar, R.
2017-09-01
Lead time is one of the major limits that affect planning at every stage of the supply chain system. In this paper, we study a continuous review inventory model. This paper investigates the ordering cost reductions are dependent on lead time. This study addressed two-echelon supply chain problem consisting of a single vendor and a single buyer. The main contribution of this study is that the integrated total cost of the single vendor and the single buyer integrated system is analyzed by adopting two different (linear and logarithmic) types ordering cost reductions act dependent on lead time. In both cases, we develop effective solution procedures for finding the optimal solution and then illustrative numerical examples are given to illustrate the results. The solution procedure is to determine the optimal solutions of order quantity, ordering cost, lead time and the number of deliveries from the single vendor and the single buyer in one production run, so that the integrated total cost incurred has the minimum value. Ordering cost reduction is the main aspect of the proposed model. A numerical example is given to validate the model. Numerical example solved by using Matlab software. The mathematical model is solved analytically by minimizing the integrated total cost. Furthermore, the sensitivity analysis is included and the numerical examples are given to illustrate the results. The results obtained in this paper are illustrated with the help of numerical examples. The sensitivity of the proposed model has been checked with respect to the various major parameters of the system. Results reveal that the proposed integrated inventory model is more applicable for the supply chain manufacturing system. For each case, an algorithm procedure of finding the optimal solution is developed. Finally, the graphical representation is presented to illustrate the proposed model and also include the computer flowchart in each model.
Hay, Mark E.
2012-01-01
Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized. PMID:21141035
Online Social Networking and Mental Health
2014-01-01
Abstract During the past decade, online social networking has caused profound changes in the way people communicate and interact. It is unclear, however, whether some of these changes may affect certain normal aspects of human behavior and cause psychiatric disorders. Several studies have indicated that the prolonged use of social networking sites (SNS), such as Facebook, may be related to signs and symptoms of depression. In addition, some authors have indicated that certain SNS activities might be associated with low self-esteem, especially in children and adolescents. Other studies have presented opposite results in terms of positive impact of social networking on self-esteem. The relationship between SNS use and mental problems to this day remains controversial, and research on this issue is faced with numerous challenges. This concise review focuses on the recent findings regarding the suggested connection between SNS and mental health issues such as depressive symptoms, changes in self-esteem, and Internet addiction. PMID:25192305
Parker, Richard
2015-01-01
As the world enjoys the promise of biomedical advances against HIV, numerous challenges remain. Some of these are connected to politics, others are connected to resource constraints. Other barriers are linked to the need to ensure that the concepts used to think about HIV remain current. Terms such as “MSM” (men who have sex with men) and “community” require critical interrogation at a moment when their political origins seem forgotten. Likewise, struggles between groups most affected by HIV and scientists and policymakers (an enduring feature of the epidemic) remain a key aspect of the response. The dangers of co-option and distraction remain real. In this context, it is vital to promote community ownership, political commitment, solidarity, and respect for differences, not as competing values, but as part of the ultimate solution to HIV. PMID:26066963
Effects of Buoyancy on the Flowfields of Lean Premixed Turbulent V-Flames
NASA Technical Reports Server (NTRS)
Cheng, R. K.; Bedat, B.; Yegian, D. T.; Greenberg, P.
1999-01-01
Open laboratory turbulent flames used for investigating fundamental flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in open flames, buoyancy effects are usually not considered in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with the mean and the fluctuating pressure fields. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, and flame geometry.
Garand, Linda; Lingler, Jennifer H.; Conner, Kyaien O.; Dew, Mary Amanda
2010-01-01
Health care professionals use diagnostic labels to classify individuals for both treatment and research purposes. Despite their clear benefits, diagnostic labels also serve as cues that activate stigma and stereotypes. Stigma associated with the diagnostic labels of dementia and mild cognitive impairment (MCI) can have a significant and negative impact on interpersonal relationships, interactions with the health care community, attitudes about service utilization, and participation in clinical research. The impact of stigma also extends to the family caregivers of individuals bearing such labels. In this article, we use examples from our investigations of individuals with dementia or MCI and their family caregivers to examine the impact of labeling and stigma on clinical research participation. We also discuss how stigma can affect numerous aspects of the nursing research process. Strategies are presented for addressing stigma-related barriers to participation in clinical research on dementia and MCI. PMID:20077972
Groundwater recharge with reclaimed municipal wastewater: health and regulatory considerations.
Asano, Takashi; Cotruvo, Joseph A
2004-04-01
Groundwater recharge with reclaimed municipal wastewater presents a wide spectrum of technical and health challenges that must be carefully evaluated prior to undertaking a project. This review will provide a discussion of groundwater recharge and its management with special reference to health and regulatory aspects of groundwater recharge with reclaimed municipal wastewater. At present, some uncertainties with respect to health risk considerations have limited expanding use of reclaimed municipal wastewater for groundwater recharge, especially when a large portion of the groundwater contains reclaimed wastewater that may affect the domestic water supply. The proposed State of California criteria for groundwater recharge are discussed as an illustration of a cautious approach. In addition, a summary is provided of the methodology used in developing the World Health Organization's Guidelines for Drinking Water Quality to illustrate how numerical guideline values are generated for contaminants that may be applicable to groundwater recharge.
Psoriatic arthritis: an update.
López-Ferrer, A; Laiz-Alonso, A
2014-12-01
Advances in our understanding of the pathogenesis of psoriatic arthritis and clinical aspects of the disease justify the present review. Studies have identified common inflammatory pathways related to the innate immune response, such as the IL-12/IL-23 axis, along with numerous genes that affect susceptibility to both diseases and influence phenotypic development. Interest has grown in biomarkers that can be used for early diagnosis or prognosis or to predict joint destruction and the response to treatment. Recent reports describe important differences between the effects of disease-modifying antirheumatic drugs and biologics on the process of new bone formation. Other issues that have been discussed include the need for reliable screening methods, particularly for early detection of oligoarticular arthritis, and for protocols to guide referral to specialists, especially in newly created multidisciplinary practices. Copyright © 2013 Elsevier España, S.L.U. y AEDV. All rights reserved.
NASA Technical Reports Server (NTRS)
Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.
1993-01-01
A numerical study was performed to investigate 3D shock-wave/boundary-layer interactions on a flat plate with bleed through one or more circular holes that vent into a plenum. This study was focused on how bleed-hole geometry and pressure ratio across bleed holes affect the bleed rate and the physics of the flow in the vicinity of the holes. The aspects of the bleed-hole geometry investigated include angle of bleed hole and the number of bleed holes. The plenum/freestream pressure ratios investigated range from 0.3 to 1.7. This study is based on the ensemble-averaged, 'full compressible' Navier-Stokes (N-S) equations closed by the Baldwin-Lomax algebraic turbulence model. Solutions to the ensemble-averaged N-S equations were obtained by an implicit finite-volume method using the partially-split, two-factored algorithm of Steger on an overlapping Chimera grid.
NASA Astrophysics Data System (ADS)
Taylor, Gabriel James
The failure of electrical cables exposed to severe thermal fire conditions are a safety concern for operating commercial nuclear power plants (NPPs). The Nuclear Regulatory Commission (NRC) has promoted the use of risk-informed and performance-based methods for fire protection which resulted in a need to develop realistic methods to quantify the risk of fire to NPP safety. Recent electrical cable testing has been conducted to provide empirical data on the failure modes and likelihood of fire-induced damage. This thesis evaluated numerous aspects of the data. Circuit characteristics affecting fire-induced electrical cable failure modes have been evaluated. In addition, thermal failure temperatures corresponding to cable functional failures have been evaluated to develop realistic single point thermal failure thresholds and probability distributions for specific cable insulation types. Finally, the data was used to evaluate the prediction capabilities of a one-dimension conductive heat transfer model used to predict cable failure.
Online social networking and mental health.
Pantic, Igor
2014-10-01
During the past decade, online social networking has caused profound changes in the way people communicate and interact. It is unclear, however, whether some of these changes may affect certain normal aspects of human behavior and cause psychiatric disorders. Several studies have indicated that the prolonged use of social networking sites (SNS), such as Facebook, may be related to signs and symptoms of depression. In addition, some authors have indicated that certain SNS activities might be associated with low self-esteem, especially in children and adolescents. Other studies have presented opposite results in terms of positive impact of social networking on self-esteem. The relationship between SNS use and mental problems to this day remains controversial, and research on this issue is faced with numerous challenges. This concise review focuses on the recent findings regarding the suggested connection between SNS and mental health issues such as depressive symptoms, changes in self-esteem, and Internet addiction.
Adult age differences in task switching.
Kray, J; Lindenberger, U
2000-03-01
Age differences in 2 components of task-set switching speed were investigated in 118 adults aged 20 to 80 years using task-set homogeneous (e.g., AAAA ...) and task-set heterogeneous (e.g., AABBAABB ... ) blocks. General switch costs were defined as latency differences between heterogeneous and homogeneous blocks. whereas specific switch costs were defined as differences between switch and nonswitch trials within heterogeneous blocks. Both types of costs generalized over verbal, figural, and numeric stimulus materials; were more highly correlated to fluid than to crystallized abilities; and were not eliminated after 6 sessions of practice, indicating that they reflect basic and domain-general aspects of cognitive control. Most important, age-associated increments in costs were significantly greater for general than for specific switch costs, suggesting that the ability to efficiently maintain and coordinate 2 alternating task sets in working memory instead of 1 is more negatively affected by advancing age than the ability to execute the task switch itself.
Femtopulse laser-based mask repair in the DUV wavelength regime
NASA Astrophysics Data System (ADS)
Ghadiali, Firoz; Tolani, Vikram; Nagpal, Rajesh; Robinson, Tod; LeClaire, Jeff; Bozak, Ron; Lee, David A.; White, Roy
2006-05-01
Deep ultraviolet (DUV) femtosecond-pulsed laser ablation has numerous highly desirable properties for subtractive photomask defect repair. These qualities include high removal rates, resolution better than the focused spot size, minimized redeposition of the ablated material (rollup and splatter), and a negligible heat affected zone. The optical properties of the photomask result in a broad repair process window because the absorber film (whether Cr or MoSi) and the transmissive substrate allow for a high degree of material removal selectivity. Repair results and process parameters from such a system are examined in light of theoretical considerations. In addition, the practical aspects of the operation of this system in a production mask house environment are reviewed from the standpoint of repair quality, capability, availability, and throughput. Focus is given to the benefit received by the mask shop, and to the technical performance of the system.
Magendie and Luschka: Holes in the 4th ventricle.
Engelhardt, Eliasz
2016-01-01
Cerebrospinal fluid (CSF) is a complex liquid formed mainly by the choroid plexuses. After filling the ventricular system where it circulates, CSF flows out to the subarachnoid spaces through openings in the 4 th ventricle. Following numerous studies on CSF pathways, these openings were first discovered in the 19 th century by two notable researchers, François Magendie and Hubert von Luschka, who described the median and lateral openings subsequently named after them. Even after the studies of Axel Key and Gustav Magnus Retzius confirming these openings, their existence was questioned by many anatomists, yet acknowledged by others. Finally gaining the acceptance of all, recognition of the holes endures to the present day. Interest in these openings may be attributed to the several congenital or acquired pathological conditions that may affect them, usually associated with hydrocephalus. We report some historical aspects of these apertures and their discoverers.
Review of progress in magnetic particle inspection
NASA Astrophysics Data System (ADS)
Eisenmann, David J.; Enyart, Darrel; Lo, Chester; Brasche, Lisa
2014-02-01
Magnetic particle inspection (MPI) has been widely utilized for decades, and sees considerable use in the aerospace industry with a majority of the steel parts being inspected with MPI at some point in the lifecycle. Typical aircraft locations inspected are landing gear, engine components, attachment hardware, and doors. In spite of its numerous applications the method remains poorly understood, and there are many aspects of that method which would benefit from in-depth study. This shortcoming is due to the fact that MPI combines the complicated nature of electromagnetics, metallurgical material effects, fluid-particle motion dynamics, and physiological human factors into a single inspection. To promote understanding of the intricate method issues that affect sensitivity, or to assist with the revision of industry specifications and standards, research studies will be prioritized through the guidance of a panel of industry experts, using an approach which has worked successfully in the past to guide fluorescent penetrant inspection (FPI) research efforts.
Numerical orbit generators of artificial earth satellites
NASA Astrophysics Data System (ADS)
Kugar, H. K.; Dasilva, W. C. C.
1984-04-01
A numerical orbit integrator containing updatings and improvements relative to the previous ones that are being utilized by the Departmento de Mecanica Espacial e Controle (DMC), of INPE, besides incorporating newer modellings resulting from the skill acquired along the time is presented. Flexibility and modularity were taken into account in order to allow future extensions and modifications. Characteristics of numerical accuracy, processing quickness, memory saving as well as utilization aspects were also considered. User's handbook, whole program listing and qualitative analysis of accuracy, processing time and orbit perturbation effects were included as well.
Computational aspects of pseudospectral Laguerre approximations
NASA Technical Reports Server (NTRS)
Funaro, Daniele
1989-01-01
Pseudospectral approximations in unbounded domains by Laguerre polynomials lead to ill-conditioned algorithms. Introduced are a scaling function and appropriate numerical procedures in order to limit these unpleasant phenomena.
Effects of spanwise flexibility on the performance of flapping flyers in forward flight.
Kodali, Deepa; Medina, Cory; Kang, Chang-Kwon; Aono, Hikaru
2017-11-01
Flying animals possess flexible wings that deform during flight. The chordwise flexibility alters the wing shape, affecting the effective angle of attack and hence the surrounding aerodynamics. However, the effects of spanwise flexibility on the locomotion are inadequately understood. Here, we present a two-way coupled aeroelastic model of a plunging spanwise flexible wing. The aerodynamics is modelled with a two-dimensional, unsteady, incompressible potential flow model, evaluated at each spanwise location of the wing. The two-way coupling is realized by considering the transverse displacement as the effective plunge under the dynamic balance of wing inertia, elastic restoring force and aerodynamic force. The thrust is a result of the competition between the enhancement due to wing deformation and induced drag. The results for a purely plunging spanwise flexible wing agree well with experimental and high-fidelity numerical results from the literature. Our analysis suggests that the wing aspect ratio of the abstracted passerine and goose models corresponds to the optimal aeroelastic response, generating the highest thrust while minimizing the power required to flap the wings. At these optimal aspect ratios, the flapping frequency is near the first spanwise natural frequency of the wing, suggesting that these birds may benefit from the resonance to generate thrust. © 2017 The Author(s).
Why epilepsy challenges social life.
Steiger, Bettina K; Jokeit, Hennric
2017-01-01
Social bonds are at the center of our daily living and are an essential determinant of our quality of life. In people with epilepsy, numerous factors can impede cognitive and affective functions necessary for smooth social interactions. Psychological and psychiatric complications are common in epilepsy and may hinder the processing of social information. In addition, neuropsychological deficits such as slowed processing speed, memory loss or attentional difficulties may interfere with enjoyable reciprocity of social interactions. We consider societal, psychological, and neuropsychological aspects of social life with particular emphasis on socio-cognitive functions in temporal lobe epilepsy. Deficits in emotion recognition and theory of mind, two main aspects of social cognition, are frequently observed in individuals with mesial temporal lobe epilepsy. Results from behavioural studies targeting these functions will be presented with a focus on their relevance for patients' daily life. Furthermore, we will broach the issue of pitfalls in current diagnostic tools and potential directions for future research. By giving a broad overview of individual and interpersonal determinants of social functioning in epilepsy, we hope to provide a basis for future research to establish social cognition as a key component in the comprehensive assessment and care of those with epilepsy. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Asteroid Secular Dynamics: Ceres’ Fingerprint Identified
NASA Astrophysics Data System (ADS)
Novaković, Bojan; Maurel, Clara; Tsirvoulis, Georgios; Knežević, Zoran
2015-07-01
Here we report on the significant role of a so far overlooked dynamical aspect, namely, a secular resonance between the dwarf planet Ceres and other asteroids. We demonstrate that this type of secular resonance can be the dominant dynamical factor in certain regions of the main asteroid belt. Specifically, we performed a dynamical analysis of the asteroids belonging to the (1726) Hoffmeister family. To identify which dynamical mechanisms are actually at work in this part of the main asteroid belt, i.e., to isolate the main perturber(s), we study the evolution of this family in time. The study is accomplished using numerical integrations of test particles performed within different dynamical models. The obtained results reveal that the post-impact evolution of the Hoffmeister asteroid family is a direct consequence of the nodal secular resonance with Ceres. This leads us to the conclusion that similar effects must exist in other parts of the asteroid belt. In this respect, the obtained results shed light on an important and entirely new aspect of the long-term dynamics of small bodies. Ceres’ fingerprint in asteroid dynamics, expressed through the discovered secular resonance effect, completely changes our understanding of the way in which perturbations by Ceres-like objects affect the orbits of nearby bodies.
Interactions of attention, emotion and motivation.
Raymond, Jane
2009-01-01
Although successful visually guided action begins with sensory processes and ends with motor control, the intervening processes related to the appropriate selection of information for processing are especially critical because of the brain's limited capacity to handle information. Three important mechanisms--attention, emotion and motivation--contribute to the prioritization and selection of information. In this chapter, the interplay between these systems is discussed with emphasis placed on interactions between attention (or immediate task relevance of stimuli) and emotion (or affective evaluation of stimuli), and between attention and motivation (or the predicted value of stimuli). Although numerous studies have shown that emotional stimuli modulate mechanisms of selective attention in humans, little work has been directed at exploring whether such interactions can be reciprocal, that is, whether attention can influence emotional response. Recent work on this question (showing that distracting information is typically devalued upon later encounters) is reviewed in the first half of the chapter. In the second half, some recent experiments exploring how prior value-prediction learning (i.e., learning to associate potential outcomes, good or bad, with specific stimuli) plays a role in visual selection and conscious perception. The results indicate that some aspects of motivation act on selection independently of traditionally defined attention and other aspects interact with it.
A Numerical Study on the Effects of Street‒canyon Aspect‒ratio on Reactive Pollutant Dispersion
NASA Astrophysics Data System (ADS)
Park, S. J.; Kim, J.
2014-12-01
In this study, the effects of street‒canyon aspect‒ratio on reactive pollutant dispersion were investigated using the coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons with different aspect ratios and flow regimes were classified according to the building height. For each flow regime, dispersion characteristics were investigated in views of reactive pollutant concentration and VOCs‒NOX ratio. Finally, the relations between pollutant concentration and aspect ratio in urban street canyons were investigated. In the case of H/S = 1.0 (H is building height and S is street width), one clockwise‒rotating vortex appeared vertically and the reverse and outward flows were dominant near the street bottom. In the case of H/S = 2.0, two counter‒rotating vortices appeared vertically in the street canyon. The primary (secondary) vortex rotating clockwise (counterclockwise) was formed in upper (lower) layer. The flow patterns affected the reactive pollutant concentration in street canyons. As building height increased, mean concentration of NO decreased when one vortex was generated in street canyons and increased when two vortexes appeared in street canyons. O3 concentration showed almost contrasted tendency with those of NO because O3 was depleted by the NO titration.
Conflicts in maintaining biodiversity at multiple scales.
Lankau, Richard A
2011-05-01
Biodiversity consists of multiple scales, including functional diversity in ecological traits, species diversity and genetic diversity within species, and is declining across the globe, largely in response to human activities. While species extinctions are the most obvious aspect of this, there has also been a more insidious loss of genetic diversity within species. While a vast literature concerns each of these scales of biodiversity, less is known about how different scales affect one another. In particular, genetic and species diversity may influence each other in numerous ways, both positively and negatively. However, we know little about the mechanism behind these patterns. In this issue of Molecular Ecology, Nestmann et al. (2011) experimentally explore the effect of species and functional diversity and composition of grassland plant communities on the genetic structure of one of the component species. Increasing species richness led to greater changes in the genetic composition of the focal populations over 4 years, primarily because of genetic drift in smaller population sizes. However, there were also genetic changes in response to particular plant functional groups, indicating selective differences driven by plant community composition. These results suggest that different levels of biodiversity can trade-off in communities, which may prove a challenge for conservation biologists seeking to preserve all aspects of biodiversity.
Austin, Jehannine C.; Hippman, Catriona; Honer, William G.
2013-01-01
Studies show that individuals with psychotic illnesses and their families want information about psychosis risks for other relatives. However, deriving accurate numeric probabilities for psychosis risk is challenging, and people have difficulty interpreting probabilistic information, thus some have suggested that clinicians should use risk descriptors, such as ‘moderate’ or ‘quite high’, rather than numbers. Little is known about how individuals with psychosis and their family members use quantitative and qualitative descriptors of risk in the specific context of chance for an individual to develop psychosis. We explored numeric and descriptive estimations of psychosis risk among individuals with psychotic disorders and unaffected first-degree relatives. In an online survey, respondents numerically and descriptively estimated risk for an individual to develop psychosis in scenarios where they had: A) no affected family members; and B) an affected sibling. 219 affected individuals and 211 first-degree relatives participated. Affected individuals estimated significantly higher risks than relatives. Participants attributed all descriptors between “very low” and “very high” to probabilities of 1%, 10%, 25% and 50%+. For a given numeric probability, different risk descriptors were attributed in different scenarios. Clinically, brief interventions around risk (using either probabilities or descriptors alone) are vulnerable to miscommunication and potentially profoundly negative consequences –interventions around risk are best suited to in-depth discussion. PMID:22421074
Austin, Jehannine C; Hippman, Catriona; Honer, William G
2012-03-30
Studies show that individuals with psychotic illnesses and their families want information about psychosis risks for other relatives. However, deriving accurate numeric probabilities for psychosis risk is challenging, and people have difficulty interpreting probabilistic information; thus, some have suggested that clinicians should use risk descriptors, such as "moderate" or "quite high", rather than numbers. Little is known about how individuals with psychosis and their family members use quantitative and qualitative descriptors of risk in the specific context of chance for an individual to develop psychosis. We explored numeric and descriptive estimations of psychosis risk among individuals with psychotic disorders and unaffected first-degree relatives. In an online survey, respondents numerically and descriptively estimated risk for an individual to develop psychosis in scenarios where they had: A) no affected family members; and B) an affected sibling. Participants comprised 219 affected individuals and 211 first-degree relatives participated. Affected individuals estimated significantly higher risks than relatives. Participants attributed all descriptors between "very low" and "very high" to probabilities of 1%, 10%, 25% and 50%+. For a given numeric probability, different risk descriptors were attributed in different scenarios. Clinically, brief interventions around risk (using either probabilities or descriptors alone) are vulnerable to miscommunication and potentially negative consequences-interventions around risk are best suited to in-depth discussion. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten
2015-03-01
Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.
A review of numerical techniques approaching microstructures of crystalline rocks
NASA Astrophysics Data System (ADS)
Zhang, Yahui; Wong, Louis Ngai Yuen
2018-06-01
The macro-mechanical behavior of crystalline rocks including strength, deformability and failure pattern are dominantly influenced by their grain-scale structures. Numerical technique is commonly used to assist understanding the complicated mechanisms from a microscopic perspective. Each numerical method has its respective strengths and limitations. This review paper elucidates how numerical techniques take geometrical aspects of the grain into consideration. Four categories of numerical methods are examined: particle-based methods, block-based methods, grain-based methods, and node-based methods. Focusing on the grain-scale characters, specific relevant issues including increasing complexity of micro-structure, deformation and breakage of model elements, fracturing and fragmentation process are described in more detail. Therefore, the intrinsic capabilities and limitations of different numerical approaches in terms of accounting for the micro-mechanics of crystalline rocks and their phenomenal mechanical behavior are explicitly presented.
Effect of topography on microclimate in southwestern Wisconsin.
Richard S. Sartz
1972-01-01
Ridge and coulee terrain has little effect on point rainfall, but snowpack accumulation is affected by degree of slope and aspect. North slopes accumulate about 50% more snow. Soil water depletion is little affected by aspect. South slopes receive more insulation than north slopes, but temperature differences are slight and may result more from wind differences than...
Human-Computer Interaction: A Review of the Research on Its Affective and Social Aspects.
ERIC Educational Resources Information Center
Deaudelin, Colette; Dussault, Marc; Brodeur, Monique
2003-01-01
Discusses a review of 34 qualitative and non-qualitative studies related to affective and social aspects of student-computer interactions. Highlights include the nature of the human-computer interaction (HCI); the interface, comparing graphic and text types; and the relation between variables linked to HCI, mainly trust, locus of control,…
ERIC Educational Resources Information Center
Sarabi, M. K.; Gafoor, K. Abdul
2017-01-01
Aspects that influences mathematics learning is widely studied and language factors have been identified as a key backer to difficulties in learning Mathematics. It is evidenced that not only cognitive factors but also affective factors have vital role in learning mathematics. Such affective beliefs sources from various aspects of mathematics…
[Aspects of post-tramatic stress disorder after a traffic acident].
Noll-Hussong, M; Herberger, S; Grauer, M T; Otti, A; Gündel, H
2013-09-01
Post-traumatic stress disorder (PTSD) occurs most frequently in the general population after traffic accidents and affects up to 15 % of those involved. Mental and physical comorbidity, preliminary damage or injury can herald the development of PTSD, but the scope of social support after the accident plays a crucial role in whether and to what extent potential PTSD develops. Against this background, preventive and injury reduction aspects of the interaction between insurance companies and their customers are conceivable, which could also positively affect health economic and aspects of job or customer satisfaction.
[Nutritional content, functional properties and conservation of edible flowers. Review].
Lara-Cortés, Estrella; Osorio-Díaz, Perla; Jiménez-Aparicio, Antonio; Bautista-Bañios, Silvia
2013-09-01
The floriphagia that is the consumption of flowers as a food, is an old practice not widespread among consumers until some decades ago. Edible flowers contribute to increasing the appearance of food. They can provide biologically active substances including vitamin A, C, riboflavins, niacin, minerals such as calcium, phosphorous, iron and potassium that are eventually beneficial to consumers' health. This review includes some examples of edible flowers including roses, violets and nasturtium among others, uses and applications, sensorial characteristics and nutritional values that lead them to be considered as functional food: An important factor that affects the quality of edible flowers is the form in which they are preserved since it may affect their sensorial and nutritional characteristics. However, not all flowers can be eaten as food since there are some of them that can be toxic or even mortal. Finally, although the consumption of flowers is an ancient practice, there is little regulation in this regard. Of the review on edible flowers, it is concluded that there are still numerous aspects about them to evaluate such as nutritional and functional characteristics, conservation and regulation with the aim to extend its consumption.
The role of the leptin in reproduction.
Cervero, Ana; Domínguez, Francisco; Horcajadas, José A; Quiñonero, Alicia; Pellicer, Antonio; Simón, Carlos
2006-06-01
Since its discovery in 1994, leptin has appeared to be a pleiotrophic hormone, governing energy homeostasis and affecting many tissues in the body. Numerous pieces of evidence have accumulated showing that leptin potentially plays an important role in the control of the reproductive function. This review presents the major concepts for the role of leptin in the modulation of reproductive function. As a marker of the nutritional status, leptin affects the hypothalamo-pituitary-gonadal axis, regulating gonadotrophin-releasing hormone and luteinising hormone secretion, and appears to be a permissive factor in the onset of the puberty. This protein and its receptor have been found in the reproductive tissues, indicating that this system could be also implicated in several processes such as embryo development, implantation and pregnancy. Moreover, disorders of the leptin system have been related to some reproductive pathologies such as pre-eclampsia and polycystic ovary syndrome. However, controversy surrounds several aspects of the action of leptin in reproduction that require a deeper investigation of this system. Results to date suggest that this system could be implicated in important reproductive processes such as embryonic development and implantation. Moreover, understanding the role of leptin might be useful for new treatments in reproductive pathologies.
Cryptic etiopathological conditions of equine nervous system with special emphasis on viral diseases
Kumar, Rakesh; Patil, Rajendra D.
2017-01-01
The importance of horse (Equus caballus) to equine practitioners and researchers cannot be ignored. An unevenly distributed population of equids harbors numerous diseases, which can affect horses of any age and breed. Among these, the affections of nervous system are potent reason for death and euthanasia in equids. Many episodes associated with the emergence of equine encephalitic conditions have also pose a threat to human population as well, which signifies their pathogenic zoonotic potential. Intensification of most of the arboviruses is associated with sophisticated interaction between vectors and hosts, which supports their transmission. The alphaviruses, bunyaviruses, and flaviviruses are the major implicated groups of viruses involved with equines/humans epizootic/epidemic. In recent years, many outbreaks of deadly zoonotic diseases such as Nipah virus, Hendra virus, and Japanese encephalitis in many parts of the globe addresses their alarming significance. The equine encephalitic viruses differ in their global distribution, transmission and main vector species involved, as discussed in this article. The current review summarizes the status, pathogenesis, pathology, and impact of equine neuro-invasive conditions of viral origin. A greater understanding of these aspects might be able to provide development of advances in neuro-protective strategies in equine population. PMID:29391683
Measures of fine motor skills in people with tremor disorders: appraisal and interpretation.
Norman, Kathleen E; Héroux, Martin E
2013-01-01
People with Parkinson's disease, essential tremor, or other movement disorders involving tremor have changes in fine motor skills that are among the hallmarks of these diseases. Numerous measurement tools have been created and other methods devised to measure such changes in fine motor skills. Measurement tools may focus on specific features - e.g., motor skills or dexterity, slowness in movement execution associated with parkinsonian bradykinesia, or magnitude of tremor. Less obviously, some tools may be better suited than others for specific goals such as detecting subtle dysfunction early in disease, revealing aspects of brain function affected by disease, or tracking changes expected from treatment or disease progression. The purpose of this review is to describe and appraise selected measurement tools of fine motor skills appropriate for people with tremor disorders. In this context, we consider the tools' content - i.e., what movement features they focus on. In addition, we consider how measurement tools of fine motor skills relate to measures of a person's disease state or a person's function. These considerations affect how one should select and interpret the results of these tools in laboratory and clinical contexts.
Role of Hydrodynamic and Mineralogical Heterogeneities on Reactive Transport Processes.
NASA Astrophysics Data System (ADS)
Luquot, L.; Garcia-Rios, M.; soler Sagarra, J.; Gouze, P.; Martinez-Perez, L.; Carrera, J.
2017-12-01
Predicting reactive transport at large scale, i.e., Darcy- and field- scale, is still challenging considering the number of heterogeneities that may be present from nm- to pore-scale. It is well documented that conventional continuum-scale approaches oversimplify and/or ignore many important aspects of rock structure, chemical reactions, fluid displacement and transport, which, as a consequence, results in uncertainties when applied to field-scale operations. The changes in flow and reactive transport across the different spatial and temporal scales are of central concern in many geological applications such as groundwater systems, geo-energy, rock building heritage and geological storage... In this presentation, we will discuss some laboratory and numerical results on how local heterogeneities (structural, hydrodynamic and mineralogical) can affect the localization and the rate of the reaction processes. Different flow through laboratory experiments using various rock samples will be presented, from simple monomineral rocks such as limestone samples, and more complex rocks composed of different minerals with a large range of kinetic reactions. A new numerical approach based on multirate water mixing approach will be presented and applied to one of the laboratory experiment in order to analyze and distinguish the effect of the mineralogy distribution and the hydrodynamic heterogeneity on the total reaction rate.
Carbon dioxide and climate: a second assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
For over a century, concern has been expressed that increases in atmospheric carbon dioxide (CO/sub 2/) concentration could affect global climate by changing the heat balance of the atmosphere and Earth. Observations reveal steadily increasing concentrations of CO/sub 2/, and experiments with numerical climate models indicate that continued increase would eventually produce significant climatic change. Comprehensive assessment of the issue will require projection of future CO/sub 2/ emissions and study of the disposition of this excess carbon in the atmosphere, ocean, and biota; the effect on climate; and the implications for human welfare. This study focuses on one aspect, estimationmore » of the effect on climate of assumed future increases in atmospheric CO/sub 2/. Conclusions are drawn principally from present-day numerical models of the climate system. To address the significant role of the oceans, the study also makes use of observations of the distributions of anthropogenic tracers other than CO/sub 2/. The rapid scientific developments in these areas suggest that periodic reassessments will be warranted. The starting point for the study was a similar 1979 review by a Climate Research Board panel chaired by the late Jule G. Charney. The present study has not found any new results that necessitate substantial revision of the conclusions of the Charney report.« less
Khoushab, Feisal; Yamabhai, Montarop
2010-01-01
Two centuries after the discovery of chitin, it is widely accepted that this biopolymer is an important biomaterial in many aspects. Numerous studies on chitin have focused on its biomedical applications. In this review, various aspects of chitin research including sources, structure, biosynthesis, chitinolytic enzyme, chitin binding protein, genetic engineering approach to produce chitin, chitin and evolution, and a wide range of applications in bio- and nanotechnology will be dealt with. PMID:20714419
NASA Astrophysics Data System (ADS)
Yu, Jie; Liu, Yikan; Yamamoto, Masahiro
2018-04-01
In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Hölder stability with either partial boundary or interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.
The NASTRAN theoretical manual
NASA Technical Reports Server (NTRS)
1981-01-01
Designed to accommodate additions and modifications, this commentary on NASTRAN describes the problem solving capabilities of the program in a narrative fashion and presents developments of the analytical and numerical procedures that underlie the program. Seventeen major sections and numerous subsections cover; the organizational aspects of the program, utility matrix routines, static structural analysis, heat transfer, dynamic structural analysis, computer graphics, special structural modeling techniques, error analysis, interaction between structures and fluids, and aeroelastic analysis.
Investigations of Flow Over a Hemisphere Using Numerical Simulations (Postprint)
2015-06-22
ranging from missile defense, remote sensing , and imaging . An important aspect of these applications is determining the effective beam-on-target...Stokes (URANS), detached eddy simulation (DES), and hybrid RANS/LES. The numerical results were compared with the experiment conducted at Auburn...turret. Using the DES and hybrid RANS/LES turbulence models, Loci-Chem was able to capture the unsteady flow structures, such as the shear layer
Regularization in Orbital Mechanics; Theory and Practice
NASA Astrophysics Data System (ADS)
Roa, Javier
2017-09-01
Regularized equations of motion can improve numerical integration for the propagation of orbits, and simplify the treatment of mission design problems. This monograph discusses standard techniques and recent research in the area. While each scheme is derived analytically, its accuracy is investigated numerically. Algebraic and topological aspects of the formulations are studied, as well as their application to practical scenarios such as spacecraft relative motion and new low-thrust trajectories.
NASA Astrophysics Data System (ADS)
Sigurdson, J.; Tagerud, J.
1986-05-01
A UNIDO publication about machine tools with automatic control discusses the following: (1) numerical control (NC) machine tool perspectives, definition of NC, flexible manufacturing systems, robots and their industrial application, research and development, and sensors; (2) experience in developing a capability in NC machine tools; (3) policy issues; (4) procedures for retrieval of relevant documentation from data bases. Diagrams, statistics, bibliography are included.
AI/OR computational model for integrating qualitative and quantitative design methods
NASA Technical Reports Server (NTRS)
Agogino, Alice M.; Bradley, Stephen R.; Cagan, Jonathan; Jain, Pramod; Michelena, Nestor
1990-01-01
A theoretical framework for integrating qualitative and numerical computational methods for optimally-directed design is described. The theory is presented as a computational model and features of implementations are summarized where appropriate. To demonstrate the versatility of the methodology we focus on four seemingly disparate aspects of the design process and their interaction: (1) conceptual design, (2) qualitative optimal design, (3) design innovation, and (4) numerical global optimization.
NASA Astrophysics Data System (ADS)
Rigola, J.; Aljure, D.; Lehmkuhl, O.; Pérez-Segarra, C. D.; Oliva, A.
2015-08-01
The aim of this paper is to carry out a group of numerical experiments over the fluid flow through a valve reed, using the CFD&HT code TermoFluids, an unstructured and parallel object-oriented CFD code for accurate and reliable solving of industrial flows. Turbulent flow and its solution is a very complex problem due to there is a non-lineal interaction between viscous and inertial effects further complicated by their rotational nature, together with the three-dimensionality inherent in these types of flow and the non-steady state solutions. In this work, different meshes, geometrical conditions and LES turbulence models (WALE, VMS, QR and SIGMA) are tested and results compared. On the other hand, the fluid flow boundary conditions are obtained by means of the numerical simulation model of hermetic reciprocating compressors tool, NEST-compressor code. The numerical results presented are based on a specific geometry, where the valve gap opening percentage is 11% of hole diameter and Reynolds numbers given by the one-dimensional model is 4.22 × 105, with density meshes of approximately 8 million CVs. Geometrical aspects related with the orifice's shape and its influence on fluid flow behaviour and pressure drop are analysed in detail, furthermore, flow results for different valve openings are also studied.
Numerical simulation of the tip vortex off a low-aspect-ratio wing at transonic speed
NASA Technical Reports Server (NTRS)
Mansour, N. N.
1984-01-01
The viscous transonic flow around a low aspect ratio wing was computed by an implicit, three dimensional, thin-layer Navier-Stokes solver. The grid around the geometry of interest is obtained numerically as a solution to a Dirichlet problem for the cube. A low aspect ratio wing with large sweep, twist, taper, and camber is the chosen geometry. The topology chosen to wrap the mesh around the wing with good tip resolution is a C-O type mesh. The flow around the wing was computed for a free stream Mach number of 0.82 at an angle of attack of 5 deg. At this Mach number, an oblique shock forms on the upper surface of the wing, and a tip vortex and three dimensional flow separation off the wind surface are observed. Particle path lines indicate that the three dimensional flow separation on the wing surface is part of the roots of the tip vortex formation. The lifting of the tip vortex before the wing trailing edge is observed by following the trajectory of particles release around the wing tip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, Ch.; Mailhe, P.; Sontheimer, F.
2007-07-01
Fuel performance is a key factor for minimizing operating costs in nuclear plants. One of the important aspects of fuel performance is fuel rod design, based upon reliable tools able to verify the safety of current fuel solutions, prevent potential issues in new core managements and guide the invention of tomorrow's fuels. AREVA is developing its future global fuel rod code COPERNIC3, which is able to calculate the thermal-mechanical behavior of advanced fuel rods in nuclear plants. Some of the best practices to achieve this goal are described, by reviewing the three pillars of a fuel rod code: the database,more » the modelling and the computer and numerical aspects. At first, the COPERNIC3 database content is described, accompanied by the tools developed to effectively exploit the data. Then is given an overview of the main modelling aspects, by emphasizing the thermal, fission gas release and mechanical sub-models. In the last part, numerical solutions are detailed in order to increase the computational performance of the code, with a presentation of software configuration management solutions. (authors)« less
NASA Astrophysics Data System (ADS)
Jiang, J.; Kaloti, A. P.; Levinson, H. R.; Nguyen, N.; Puckett, E. G.; Lokavarapu, H. V.
2016-12-01
We present the results of three standard benchmarks for the new active tracer particle algorithm in ASPECT. The three benchmarks are SolKz, SolCx, and SolVI (also known as the 'inclusion benchmark') first proposed by Duretz, May, Gerya, and Tackley (G Cubed, 2011) and in subsequent work by Theilman, May, and Kaus (Pure and Applied Geophysics, 2014). Each of the three benchmarks compares the accuracy of the numerical solution to a steady (time-independent) solution of the incompressible Stokes equations with a known exact solution. These benchmarks are specifically designed to test the accuracy and effectiveness of the numerical method when the viscosity varies up to six orders of magnitude. ASPECT has been shown to converge to the exact solution of each of these benchmarks at the correct design rate when all of the flow variables, including the density and viscosity, are discretized on the underlying finite element grid (Krobichler, Heister, and Bangerth, GJI, 2012). In our work we discretize the density and viscosity by initially placing the true values of the density and viscosity at the intial particle positions. At each time step, including the initialization step, the density and viscosity are interpolated from the particles onto the finite element grid. The resulting Stokes system is solved for the velocity and pressure, and the particle positions are advanced in time according to this new, numerical, velocity field. Note that this procedure effectively changes a steady solution of the Stokes equaton (i.e., one that is independent of time) to a solution of the Stokes equations that is time dependent. Furthermore, the accuracy of the active tracer particle algorithm now also depends on the accuracy of the interpolation algorithm and of the numerical method one uses to advance the particle positions in time. Finally, we will present new interpolation algorithms designed to increase the overall accuracy of the active tracer algorithms in ASPECT and interpolation algotithms designed to conserve properties, such as mass density, that are being carried by the particles.
Circumbinary discs: Numerical and physical behaviour
NASA Astrophysics Data System (ADS)
Thun, Daniel; Kley, Wilhelm; Picogna, Giovanni
2017-08-01
Aims: Discs around a central binary system play an important role in star and planet formation and in the evolution of galactic discs. These circumbinary discs are strongly disturbed by the time varying potential of the binary system and display a complex dynamical evolution that is not well understood. Our goal is to investigate the impact of disc and binary parameters on the dynamical aspects of the disc. Methods: We study the evolution of circumbinary discs under the gravitational influence of the binary using two-dimensional hydrodynamical simulations. To distinguish between physical and numerical effects we apply three hydrodynamical codes. First we analyse in detail numerical issues concerning the conditions at the boundaries and grid resolution. We then perform a series of simulations with different binary parameters (eccentricity, mass ratio) and disc parameters (viscosity, aspect ratio) starting from a reference model with Kepler-16 parameters. Results: Concerning the numerical aspects we find that the length of the inner grid radius and the binary semi-major axis must be comparable, with free outflow conditions applied such that mass can flow onto the central binary. A closed inner boundary leads to unstable evolutions. We find that the inner disc turns eccentric and precesses for all investigated physical parameters. The precession rate is slow with periods (Tprec) starting at around 500 binary orbits (Tbin) for high viscosity and a high aspect ratio H/R where the inner hole is smaller and more circular. Reducing α and H/R increases the gap size and Tprec reaches 2500 Tbin. For varying binary mass ratios qbin the gap size remains constant, whereas Tprec decreases with increasing qbin. For varying binary eccentricities ebin we find two separate branches in the gap size and eccentricity diagram. The bifurcation occurs at around ecrit ≈ 0.18 where the gap is smallest with the shortest Tprec. For ebin lower and higher than ecrit, the gap size and Tprec increase. Circular binaries create the most eccentric discs. Movies associated to Figs. 1 and 8 are available at http://www.aanda.org
NASA Technical Reports Server (NTRS)
Goldberg, Louis F.
1992-01-01
Aspects of the information propagation modeling behavior of integral machine computer simulation programs are investigated in terms of a transmission line. In particular, the effects of pressure-linking and temporal integration algorithms on the amplitude ratio and phase angle predictions are compared against experimental and closed-form analytic data. It is concluded that the discretized, first order conservation balances may not be adequate for modeling information propagation effects at characteristic numbers less than about 24. An entropy transport equation suitable for generalized use in Stirling machine simulation is developed. The equation is evaluated by including it in a simulation of an incompressible oscillating flow apparatus designed to demonstrate the effect of flow oscillations on the enhancement of thermal diffusion. Numerical false diffusion is found to be a major factor inhibiting validation of the simulation predictions with experimental and closed-form analytic data. A generalized false diffusion correction algorithm is developed which allows the numerical results to match their analytic counterparts. Under these conditions, the simulation yields entropy predictions which satisfy Clausius' inequality.
Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.
2015-01-01
Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228
Response of hyporheic zones to transient forcing
NASA Astrophysics Data System (ADS)
Singh, T.; Wu, L.; Gomez-Velez, J. D.; Krause, S.; Hannah, D. M.; Lewandowski, J.; Nuetzmann, G.
2017-12-01
Exchange of water, solutes, and energy between river channels and hyporheic zones (HZs) modulates biogeochemical cycling, regulates stream temperature and impacts ecological structure and function. Numerical modelling of HZ processes is required as field observations are challenging for transient flow. To gain a deeper mechanistic understanding of the effects of transient discharge on hyporheic exchange, we performed a systematic analysis using numerical experiments. In this case, we vary (i) the characteristics of time-varying flood events; (ii) river bedform geometry; (iii) river hydraulic geometry; and (iv) the magnitude and direction of groundwater fluxes (neutral, gaining and losing conditions). We conceptualize the stream bed as a two-dimensional system. Whereby the flow is driven by a dynamically changing head distribution at the water-sediment interface and is modulated by steady groundwater flow. Our model estimates both net values for a single bedform and spatial distributions of (i) the flow field; (ii) mean residence times; and (iii) the concentration of a conservative tracer. A detailed sensitivity analysis was performed by changing channel slope, flood characteristics, groundwater upwelling/downwelling fluxes and biogeochemical time-scales in different bedforms such as ripples, dunes and alternating bars. Results show that change of parameters can have a substantial impact on exchange fluxes which can lead to the expansion, contraction, emergence and/or dissipation of HZs . Our results also reveal that groundwater fluxes have different impacts on HZs during flood events, depending on the channel slope and bedform topography. It is found that topographies with smaller aspect ratios and shallower slopes are more affected by groundwater upwelling/downwelling fluxes during flood events. The analysis of biogeochemical transformations shows that discharge events can potentially affects the efficiencies of nitrate removal. Taking into consideration multiple morphological characteristics along with hydrological controls are important to improve model conceptualizations at the reach and watershed scale.
Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir
2009-11-01
Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.
Genetics of Parenting: The Power of the Dark Side
ERIC Educational Resources Information Center
Oliver, Bonamy R.; Trzaskowski, Maciej; Plomin, Robert
2014-01-01
Reviews of behavioral genetic studies note that "control" aspects of parenting yield low estimates of heritability, while "affective" aspects (parental feelings) yield moderate estimates. Research to date has not specifically considered whether positive and negative aspects of parenting--for both feelings and control--may…
USSR Report World Economy and International Relations No. 9, September 1983.
1984-01-04
analysis of the recent struggle for detente and new international economic order in their numerous intertwxnxng aspects. On the firm basis of Marxist...Further, the losses are usually calculated on the basis of an analysis of some single aspect of the economic interaction of the West and the...suppositions based on an analysis of the trends of economic and social development of individual countries and regions may be found in Western
Experiments on two- and three-dimensional vortex flows in lid-driven cavities
NASA Astrophysics Data System (ADS)
Siegmann-Hegerfeld, Tanja; Albensoeder, Stefan; Kuhlmann, Hendrik C.
2009-11-01
Vortex flows in one-sided lid-driven cavities with different cross-sectional aspect ratios (γ = 0.26 up to γ = 6.3) are investigated experimentally. In all cases the spanwise aspect ratio λ>>γ is very large and much larger than most previous experiments. Flow-structure visualizations will be presented together with quantitative LDA and PIV measurements. The experimental results are in good agreement with the critical data from numerical stability analyses and with nonlinear simulations. Experimentally, we find four different three-dimensional instabilities. Particular attention is paid to the so-called C4 mode which arises at large cross-sectional aspect ratios. When the spanwise aspect ratio is small the first bifurcation of the C4 mode is strongly imperfect.
Solar Power Satellite Microwave Transmission and Reception
NASA Technical Reports Server (NTRS)
Dietz, R. H.
1980-01-01
Numerous analytical and experimental investigations related to SPS microwave power transmission and reception are reported. Aspects discussed include system performance, phase control, power amplifiers, radiating elements, rectenna, solid state configurations, and planned program activities.
Patient satisfaction with the service at Menopause Clinic, Maharaj Nakorn Chiang Mai Hospital.
Chaovisitsaree, Somsak; Sribanditmongkol, Narisa; Chandrawongse, Waraporn; Noi-um, Supranee; Sangchun, Kullaya
2010-09-01
To evaluate patient satisfaction of service at the Menopause Clinic and to identify factors affecting patient satisfaction. Cross sectional descriptive study was conducted at the Menopause Clinic, Maharaj Nakorn Chiang Mai hospital. Three hundred twenty six subjects were included. The questionnaire consists of two parts, demographic and patient satisfaction. The patient satisfaction was evaluated in five aspects. The overall patient satisfaction level was good (mean 4.2 +/- 0.71). The satisfactions about service behavior quality of care and health information were in excellent level (mean 4.29 +/- 0.69, 4.25 +/- 0.65, and 4.26 +/- 0.69, respectively). The satisfaction about clinic facilities/conveniences and medical expense were in good level (mean 3.83 +/- 0.79 and 3.87 +/- 0.75). There are three variables that could affect patient satisfaction: Occupation and level of education affected satisfaction in medical expense aspect (p < 0.001 and p < 0.05) and number of visits affected the clinic facilities/convenience aspect (p < 0.05). Some patient characteristics affected the patient satisfaction. However, system and structure of service in different setting hospitals are of concerned.
Discovering Socio-Cultural Aspects of Science through Artworks
ERIC Educational Resources Information Center
Güney, Burcu Gülay; Seker, Hayati
2017-01-01
Scientific literacy is one of the primary purposes of science education which briefly focuses on using and interpreting scientific explanations, understanding science within its culture. However, science curricula emphasize science with its cognitive aspects and underestimate affective and aesthetic aspects of science. Science education needs to…
Numeracy moderates the influence of task-irrelevant affect on probability weighting.
Traczyk, Jakub; Fulawka, Kamil
2016-06-01
Statistical numeracy, defined as the ability to understand and process statistical and probability information, plays a significant role in superior decision making. However, recent research has demonstrated that statistical numeracy goes beyond simple comprehension of numbers and mathematical operations. On the contrary to previous studies that were focused on emotions integral to risky prospects, we hypothesized that highly numerate individuals would exhibit more linear probability weighting because they would be less biased by incidental and decision-irrelevant affect. Participants were instructed to make a series of insurance decisions preceded by negative (i.e., fear-inducing) or neutral stimuli. We found that incidental negative affect increased the curvature of the probability weighting function (PWF). Interestingly, this effect was significant only for less numerate individuals, while probability weighting in more numerate people was not altered by decision-irrelevant affect. We propose two candidate mechanisms for the observed effect. Copyright © 2016 Elsevier B.V. All rights reserved.
3D nozzle flow simulations including state-to-state kinetics calculation
NASA Astrophysics Data System (ADS)
Cutrone, L.; Tuttafesta, M.; Capitelli, M.; Schettino, A.; Pascazio, G.; Colonna, G.
2014-12-01
In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma. In this paper, we present an optimized methodology to approach plasma numerical simulation by state-to-state kinetics calculations in a fully 3D Navier-Stokes CFD solver. Numerical simulations of an expanding flow are presented aimed at comparing the behavior of state-to-state chemical kinetics models with respect to the macroscopic thermochemical non-equilibrium models that are usually used in the numerical computation of high temperature hypersonic flows. The comparison is focused both on the differences in the numerical results and on the computational effort associated with each approach.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar
2017-01-01
Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD re-searchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions and also cause numerical instability. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where triangular/tetrahedral elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identities the reason behind the difficulties in use of such high-aspect ratio triangular/tetrahedral elements is presented here. As will be shown, it turns out that the degree of accuracy deterioration of gradient computation involving a triangular element is hinged on the value of its shape factor Gamma def = sq sin Alpha1 + sq sin Alpha2 + sq sin Alpha3, where Alpha1; Alpha2 and Alpha3 are the internal angles of the element. In fact, it is shown that the degree of accuracy deterioration increases monotonically as the value of Gamma decreases monotonically from its maximal value 9/4 (attained by an equilateral triangle only) to a value much less than 1 (associated with a highly obtuse triangle). By taking advantage of the fact that a high-aspect ratio triangle is not necessarily highly obtuse, and in fact it can have a shape factor whose value is close to the maximal value 9/4, a potential solution to avoid accuracy deterioration of gradient computation associated with a high-aspect ratio triangular grid is given. Also a brief discussion on the extension of the current mathematical framework to the tetrahedral-grid case along with some of the practical results of this extension is also provided. Furthermore, through the use of numerical simulations of practical viscous problems involving high-Reynolds number flows, the effectiveness of the gradient evaluation procedures within the CESE framework (that have their basis on the analysis presented here) to produce accurate and stable results on such high-aspect ratio meshes is also showcased.
25 CFR 87.9 - Programming aspects of plans.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Programming aspects of plans. 87.9 Section 87.9 Indians... JUDGMENT FUNDS § 87.9 Programming aspects of plans. In assessing any tribal programming proposal the... such reservation residents; the nature of recent programming affecting the subject tribe or group and...
25 CFR 87.9 - Programming aspects of plans.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Programming aspects of plans. 87.9 Section 87.9 Indians... JUDGMENT FUNDS § 87.9 Programming aspects of plans. In assessing any tribal programming proposal the... such reservation residents; the nature of recent programming affecting the subject tribe or group and...
25 CFR 87.9 - Programming aspects of plans.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Programming aspects of plans. 87.9 Section 87.9 Indians... JUDGMENT FUNDS § 87.9 Programming aspects of plans. In assessing any tribal programming proposal the... such reservation residents; the nature of recent programming affecting the subject tribe or group and...
25 CFR 87.9 - Programming aspects of plans.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Programming aspects of plans. 87.9 Section 87.9 Indians... JUDGMENT FUNDS § 87.9 Programming aspects of plans. In assessing any tribal programming proposal the... such reservation residents; the nature of recent programming affecting the subject tribe or group and...
25 CFR 87.9 - Programming aspects of plans.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Programming aspects of plans. 87.9 Section 87.9 Indians... JUDGMENT FUNDS § 87.9 Programming aspects of plans. In assessing any tribal programming proposal the... such reservation residents; the nature of recent programming affecting the subject tribe or group and...
Evaluation of WYDOT's research center and research program.
DOT National Transportation Integrated Search
2008-03-01
This study examined multiple aspects of the Wyoming Department of Transportations Research Program. It provides numerous observations of : the overall program and the research investment portfolio as well as guidance for developing a strategic res...
Helicity in supercritical temporal mixing layers
NASA Technical Reports Server (NTRS)
Bellan, J.; Okong'o, N.
2003-01-01
Databases of transitional states obtained from Direct Numerical Simulations (DNS) of temporal, supercritical mixing layers for two species systems, 02/H2 and C7Hle/N2, are analyzed to elucidate species-specific turbulence aspects.
The Biosphere: A Decadal Vision
NASA Technical Reports Server (NTRS)
Peterson, David L.; Curran, Paul J.; Mlynzcak, Marty; Miller, Richard
2003-01-01
This paper focuses on biosphere-climate interactions including the influences of human activities. Recognizing this is only one aspect of biospheric processes, this places an emphasis of those biogeochemical processes that have a profound effect on numerous other aspects of the biosphere and the services it provides, services which are critical to sustaining life on Earth. And, the paper will focus on the various scientific aspects of assessing the availability of fresh water, including its sensitivity to climate variance and land use changes. Finally, this paper hopes to emphasize the potential role that greatly expanded space observations and interactive modeling can play in developing our understanding of Earth and its the living systems.
Gyre formation within embayments of a large lake (Lake Geneva, Switzerland)
NASA Astrophysics Data System (ADS)
Razmi, A.; Barry, D.; Bouffard, D.; Le Dantec, N.; Lemmin, U.; Wuest, A.
2013-12-01
Numerical simulations were carried out to examine gyre formation within open, wide lacustrine embayments. The present study was motivated by observed differences in gyre formation within two open and wide embayments (located at Vidy and Morges in Lake Geneva, Switzerland). These two embayments are located within about 3 km of each other on the northern shore of Lake Geneva, and are subjected to similar pelagic currents. Vidy is deeper and has a greater aspect ratio than Morges. The flow field in the embayments was modeled using a previously validated 3D hydrodynamic model (Delft3D-FLOW). The model solved the Reynolds-Averaged Navier-Stokes equations, combined with a k-ɛ turbulence closure in σ (lakebed-following) coordinates. Our study focused on the influence of the embayment geometry on the (uniform) longshore (pelagic) current, specifically the occurrence and magnitude of circulation within the embayment. We built a set of numerical experiments using synthetic embayments, and systematically examined embayment geometry, thereby capturing the differences between the Vidy and Morges embayments. The numerical experiments considered single rectilinear embayments with different aspect ratios (i.e., 1-6), depth, shore-parallel flow rates, and embayment corner angle between 0°-50°. The circulation magnitude changes abruptly for an angle of about 40°. Embayments with angles greater than 40° have much greater circulation then those with lesser angles, other factors remaining the same. Of the factors considered (i.e., aspect ratio, offshore current velocity, corner angle, bottom slope, and viscosity), bottom slope and the viscosity have almost no impact on embayment circulation. For uniform offshore current patterns, gyres form in embayments with large aspect ratios (up to ~3). For the Vidy and Morges embayments, the results showed that gyre formation is more likely in Morges due to its smaller aspect ratio, a finding that is supported by field data gathered in drifter studies. For example, simultaneous drifter releases in 2011 showed parallel-to-shore currents in the Vidy embayment and a gyre in Morges. KEYWORDS: Hydrodynamics; Open Embayment; Flow Separation; Gyre; Topography; Lake Geneva.
The session of the two dreams.
Giannoni, Massimo
2009-02-01
Through the discussion of the clinical material the author tries to show how numerous aspects of traditional Jungian analysis are close to several theoretical and clinical developments of Relational Psychoanalysis. A short introduction about relational psychoanalysis is given. The relational aspects of Jungian theory and praxis are underlined. If we refer to these theoretical constructs, it becomes possible to work in an original way and think of the clinical setting as different from the classical Freudian one, without abandoning Jungian tradition.
Science and society test VIII: The arms race revisited
NASA Astrophysics Data System (ADS)
Hafemeister, David W.
1983-03-01
Approximate numerical estimates are developed in order to quantify a variety of aspects of the arms race. The results of these calculations are consistent with either direct observations or with more sophisticated calculations. This paper will cover some of the following aspects of the arms race: (1) the electromagnetic pulse (EMP); (2) spy satellites; (3) ICBM accuracy; (4) NAVSTAR global positioning satellites; (5) particle and laser beam weapons; (6) the neutron bomb; and (7) war games.
Rinaldi, Luca; Vecchi, Tomaso; Fantino, Micaela; Merabet, Lotfi B; Cattaneo, Zaira
2015-10-01
Recent evidence suggests that in representing numbers blind individuals might be affected differently by proprioceptive cues (e.g., hand positions, head turns) than are sighted individuals. In this study, we asked a group of early blind and sighted individuals to perform a numerical bisection task while executing hand movements in left or right peripersonal space and with either hand. We found that in bisecting ascending numerical intervals, the hemi-space in which the hand was moved (but not the moved hand itself) influenced the bisection bias similarly in both early blind and sighted participants. However, when numerical intervals were presented in descending order, the moved hand (and not the hemi-space in which it was moved) affected the bisection bias in all participants. Overall, our data show that the operation to be performed on the mental number line affects the activated spatial reference frame, regardless of participants' previous visual experience. In particular, both sighted and early blind individuals' representation of numerical magnitude is mainly rooted in world-centered coordinates when numerical information is given in canonical orientation (i.e., from small to large), whereas hand-centered coordinates become more relevant when the scanning of the mental number line proceeds in non-canonical direction. Copyright © 2015 Elsevier Ltd. All rights reserved.
The effect of hand movements on numerical bisection judgments in early blind and sighted individuals
Rinaldi, Luca; Vecchi, Tomaso; Fantino, Micaela; Merabet, Lotfi B.; Cattaneo, Zaira
2017-01-01
Recent evidence suggests that in representing numbers blind individuals might be affected differently by proprioceptive cues (e.g., hand positions, head turns) than are sighted individuals. In this study, we asked a group of early blind and sighted individuals to perform a numerical bisection task while executing hand movements in left or right peripersonal space and with either hand. We found that in bisecting ascending numerical intervals, the hemi-space in which the hand was moved (but not the moved hand itself) influenced the bisection bias similarly in both early blind and sighted participants. However, when numerical intervals were presented in descending order, the moved hand (and not the hemi-space in which it was moved) affected the bisection bias in all participants. Overall, our data show that the operation to be performed on the mental number line affects the activated spatial reference frame, regardless of participants’ previous visual experience. In particular, both sighted and early blind individuals’ representation of numerical magnitude is mainly rooted in world-centered coordinates when numerical information is given in canonical orientation (i.e. from small to large), whereas hand-centered coordinates become more relevant when the scanning of the mental number line proceeds in non-canonical direction. PMID:26184675
The affective dimension of response elicitation data: a projective measure.
Tibon, S; Blumberg, H H
2000-03-01
In this research, the Rorschach Affective Ratio, a measure for frequency of response elicitation, was used to examine the affective dimension of response elicitation data. The purpose of this study was to apply the Rorschach Affective Ratio to an examination of the psychodynamic roots of political behavior. This measure compares the number of responses to colored cards, considered as emotional stimuli, with those revealed by the other (black and white) cards of the test. Israeli undergraduates (N = 26) completed a questionnaire composed of 20 questions about peace. Participants who were more supportive of the peace process in the Middle East were found to have a lower Affective Ratio than those who were less supportive. This result suggests that measurable affective aspects may be as important as cognitive aspects of response elicitation in understanding an individual's political attitudes.
Numerical Simulations of Asymmetric Mixing in Planar Shear Flows.
1985-08-23
S. Oran 202 767-296 10oe44 00. FORM 1473,84 MAR 83 APR edition may be used until exhausted All other editions are obsolete SECURITY CLASSIFICATION OF...first is developing the numerical model that was used in these studies. In particular, we are concerned with the treatment of inflow and outflow...boundary conditions suitable for both compressible and incompressible flows. The second aspect is using this model to describe shear flows in a splitter
Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows
NASA Technical Reports Server (NTRS)
LaGraff, John E. (Editor); Ashpis, David E.
2004-01-01
This Minnowbrook IV 2003 workshop on Transition and Unsteady Aspects of Turbomachinery Flows includes the following topics: 1) Current Issues in Unsteady Turbomachinery Flows; 2) Global Instability and Control of Low-Pressure Turbine Flows; 3) Influence of End Wall Leakage on Secondary Flow Development in Axial Turbines; 4) Active and Passive Flow Control on Low Pressure Turbine Airfoils; 5) Experimental and Numerical Investigation of Transitional Flows as Affected by Passing Wakes; 6) Effects of Freestream Turbulence on Turbine Blade Heat Transfer; 7) Bypass Transition Via Continuous Modes and Unsteady Effects on Film Cooling; 8) High Frequency Surface Heat Flux Imaging of Bypass Transition; 9) Skin Friction and Heat Flux Oscillations in Upstream Moving Wave Packets; 10) Transition Mechanisms and Use of Surface Roughness to Enhance the Benefits of Wake Passing in LP Turbines; 11) Transient Growth Approach to Roughness-Induced Transition; 12) Roughness- and Freestream-Turbulence-Induced Transient Growth as a Bypass Transition Mechanism; 13) Receptivity Calculations as a Means to Predicting Transition; 14) On Streamwise Vortices in a Curved Wall Jet and Their Effect on the Mean Flow; 15) Plasma Actuators for Separation Control of Low Pressure Turbine Blades; 16) Boundary-Layer Separation Control Under Low-Pressure-Turbine Conditions Using Glow-Discharge Plasma Actuators; 17) Control of Separation for Low Pressure Turbine Blades: Numerical Simulation; 18) Effects of Elevated Free-Stream Turbulence on Active Control of a Separation Bubble; 19) Wakes, Calming and Transition Under Strong Adverse Pressure Gradients; 20) Transitional Bubble in Periodic Flow Phase Shift; 21) Modelling Spots: The Calmed Region, Pressure Gradient Effects and Background; 22) Modeling of Unsteady Transitional Flow on Axial Compressor Blades; 23) Challenges in Predicting Component Efficiencies in Turbomachines With Low Reynolds Number Blading; 24) Observations on the Causal Relationship Between Blade Count and Developing Rotating Stall in a Four Stage Axial Compressor; 25) Experimental and Numerical Study of Non-Linear Interactions in Transonic Nozzle Flow; 26) Clocking Effects on a Modern Stage and One-Half Transonic Turbine; 27) DNS and LES of Transition on Turbine Blades; 28) The Use of Cellular Automata in Modeling the Transition; 29) Predicting Unsteady Buffet Onset Using RANS Solutions; 30) Transition Modelling With the SST Turbulence Model and an Intermittency Transport; and 31) Equation Workshop Summary Transcript
Do Mitochondrial Replacement Techniques Affect Qualitative or Numerical Identity?
Liao, S Matthew
2017-01-01
Mitochondrial replacement techniques (MRTs), known in the popular media as 'three-parent' or 'three-person' IVFs, have the potential to enable women with mitochondrial diseases to have children who are genetically related to them but without such diseases. In the debate regarding whether MRTs should be made available, an issue that has garnered considerable attention is whether MRTs affect the characteristics of an existing individual or whether they result in the creation of a new individual, given that MRTs involve the genetic manipulation of the germline. In other words, do MRTs affect the qualitative identity or the numerical identity of the resulting child? For instance, a group of panelists on behalf of the UK Human Fertilisation and Embryology Authority (HFEA) has claimed that MRTs affect only the qualitative identity of the resulting child, while the Working Group of the Nuffield Council on Bioethics (NCOB) has argued that MRTs would create a numerically distinct individual. In this article, I shall argue that MRTs do create a new and numerically distinct individual. Since my explanation is different from the NCOB's explanation, I shall also offer reasons why my explanation is preferable to the NCOB's explanation. © 2016 John Wiley & Sons Ltd.
Numerical and experimental modelling of the radial compressor stage
NASA Astrophysics Data System (ADS)
Syka, Tomáš; Matas, Richard; LuÅáček, Ondřej
2016-06-01
This article deals with the description of the numerical and experimental model of the new compressor stage designed for process centrifugal compressors. It's the first member of the new stages family developed to achieve the state of the art thermodynamic parameters. This stage (named RTK01) is designed for high flow coefficient with 3D shaped impeller blades. Some interesting findings were gained during its development. The article is focused mainly on some interesting aspects of the development methodology and numerical simulations improvement, not on the specific stage properties. Conditions and experimental equipment, measured results and their comparison with ANSYS CFX and NUMECA FINE/Turbo CFD simulations are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keren, Y.; Bemporad, G.A.; Rubin, H.
This paper concerns an experimental evaluation of the basic aspects of operation of the advanced solar pond (ASP). Experiments wee carried out in a laboratory test section in order to assess the feasibility of the density gradient maintenance in stratified flowing layers. The density stratification was caused by a non uniform distribution of temperatures in the flow field. Results of the experiments are reported and analyzed in the paper. Experimental data were used in order to calibrate the numerical model able to simulate heat and momentum transfer in the ASP. The numerical results confirmed the validity of the numerical modelmore » adopted, and proved the latter applicability for the simulation of the ASP performance.« less
Elements of orbit-determination theory - Textbook
NASA Technical Reports Server (NTRS)
Solloway, C. B.
1971-01-01
Text applies to solution of various optimization problems. Concepts are logically introduced and refinements and complexities for computerized numerical solutions are avoided. Specific topics and essential equivalence of several different approaches to various aspects of the problem are given.
NASA Technical Reports Server (NTRS)
Ahmadi, A. R.
1981-01-01
A low frequency unsteady lifting-line theory is developed for a harmonically oscillating wing of large aspect ratio. The wing is assumed to be chordwise rigid but completely flexible in the span direction. The theory is developed by use of the method of matched asymptotic expansions which reduces the problem from a singular integral equation to quadrature. The wing displacements are prescribed and the pressure field, airloads, and unsteady induced downwash are obtained in closed form. The influence of reduced frequency, aspect ratio, planform shape, and mode of oscillation on wing aerodynamics is demonstrated through numerical examples. Compared with lifting-surface theory, computation time is reduced significantly. Using the present theory, the energetic quantities associated with the propulsive performance of a finite wing oscillating in combined pitch and heave are obtained in closed form. Numerical examples are presented for an elliptic wing.
Jump conditions in transonic equilibria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guazzotto, L.; Betti, R.; Jardin, S. C.
2013-04-15
In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that 'standard' (low-{beta}, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-{beta}, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches aremore » described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large {beta}, while they agree with the results obtained with the old implementation of FLOW in lower-{beta} equilibria.« less
Thermally induced rarefied gas flow in a three-dimensional enclosure with square cross-section
NASA Astrophysics Data System (ADS)
Zhu, Lianhua; Yang, Xiaofan; Guo, Zhaoli
2017-12-01
Rarefied gas flow in a three-dimensional enclosure induced by nonuniform temperature distribution is numerically investigated. The enclosure has a square channel-like geometry with alternatively heated closed ends and lateral walls with a linear temperature distribution. A recently proposed implicit discrete velocity method with a memory reduction technique is used to numerically simulate the problem based on the nonlinear Shakhov kinetic equation. The Knudsen number dependencies of the vortices pattern, slip velocity at the planar walls and edges, and heat transfer are investigated. The influences of the temperature ratio imposed at the ends of the enclosure and the geometric aspect ratio are also evaluated. The overall flow pattern shows similarities with those observed in two-dimensional configurations in literature. However, features due to the three-dimensionality are observed with vortices that are not identified in previous studies on similar two-dimensional enclosures at high Knudsen and small aspect ratios.
Atomically flat superconducting nanofilms: multiband properties and mean-field theory
NASA Astrophysics Data System (ADS)
Shanenko, A. A.; Aguiar, J. Albino; Vagov, A.; Croitoru, M. D.; Milošević, M. V.
2015-05-01
Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.
Fielding-Smith, Sarah F.; Hayward, Mark; Strauss, Clara; Fowler, David; Paulik, Georgie; Thomas, Neil
2015-01-01
A primary goal of cognitive behavior therapy for psychosis (CBTp) is to reduce distress and disability, not to change the positive symptoms of psychosis, such as hearing voices. Despite demonstrated associations between beliefs about voices and distress, the effects of CBTp on reducing voice distress are disappointing. Research has begun to explore the role that the psychological construct of “self” (which includes numerous facets such as self-reflection, self-schema and self-concept) might play in causing and maintaining distress and disability in voice hearers. However, attempts to clarify and integrate these different perspectives within the voice hearing literature, or to explore their clinical implications, are still in their infancy. This paper outlines how the self has been conceptualised in the psychosis and CBT literatures, followed by a review of the evidence regarding the proposed role of this construct in the etiology of and adaptation to voice hearing experiences. We go on to discuss some of the specific intervention methods that aim to target these aspects of self-experience and end by identifying key research questions in this area. Notably, we suggest that interventions specifically targeting aspects of self-experience, including self-affection, self-reflection, self-schema and self-concept, may be sufficient to reduce distress and disruption in the context of hearing voices, a suggestion that now requires further empirical investigation. PMID:26300821
ERIC Educational Resources Information Center
Boticki, I.; Katic, M.; Martin,S.
2013-01-01
This paper explores the educational benefits of introducing the aspect-oriented programming paradigm into a programming course in a study on a sample of 75 undergraduate software engineering students. It discusses how using the aspect-oriented paradigm, in addition to the object-oriented programming paradigm, affects students' programs, their exam…
NASA Astrophysics Data System (ADS)
Blakely, Christopher D.
This dissertation thesis has three main goals: (1) To explore the anatomy of meshless collocation approximation methods that have recently gained attention in the numerical analysis community; (2) Numerically demonstrate why the meshless collocation method should clearly become an attractive alternative to standard finite-element methods due to the simplicity of its implementation and its high-order convergence properties; (3) Propose a meshless collocation method for large scale computational geophysical fluid dynamics models. We provide numerical verification and validation of the meshless collocation scheme applied to the rotational shallow-water equations on the sphere and demonstrate computationally that the proposed model can compete with existing high performance methods for approximating the shallow-water equations such as the SEAM (spectral-element atmospheric model) developed at NCAR. A detailed analysis of the parallel implementation of the model, along with the introduction of parallel algorithmic routines for the high-performance simulation of the model will be given. We analyze the programming and computational aspects of the model using Fortran 90 and the message passing interface (mpi) library along with software and hardware specifications and performance tests. Details from many aspects of the implementation in regards to performance, optimization, and stabilization will be given. In order to verify the mathematical correctness of the algorithms presented and to validate the performance of the meshless collocation shallow-water model, we conclude the thesis with numerical experiments on some standardized test cases for the shallow-water equations on the sphere using the proposed method.
Novak, Colleen M; Burghardt, Paul R; Levine, James A
2012-03-01
Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems-including those related to the stress response, mood, and reward, and those responsive to growth factors-that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Levine, James A.
2015-01-01
Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems—including those related to the stress response, mood, and reward, and those responsive to growth factors—that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. PMID:22230703
Clarifying the Relation Between Extraversion and Positive Affect.
Smillie, Luke D; DeYoung, Colin G; Hall, Phillip J
2015-10-01
This article clarifies two sources of ambiguity surrounding the relation between extraversion and positive affect. First, positive affect is defined differently across major models of the structure of affect. Second, no previous research has examined potentially diverging associations of lower-order aspects of extraversion (i.e., assertiveness and enthusiasm) with positive affect. Australian (Study 1: N = 437, 78% female, Mage = 20.41) and American (Study 2: N = 262, 39% female, Mage = 33.86) participants completed multiple measures of extraversion and positive affect. Correlations were employed to examine relations among these measures. In both studies, extraversion was most clearly associated with positive affect as conceptualized within a major factor model of affect-specifically, as positive activation (Watson & Tellegen, 1985)-rather than the valence-based conceptualization of positive affect provided by a circumplex model of affect (Russell, 1980). This was also the case for the assertiveness and enthusiasm aspects of extraversion. Our findings clarify the nature of the positive affective component of extraversion, which is best described in terms of both positive valence and high activation. © 2014 Wiley Periodicals, Inc.
The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory
Bosbach, Wolfram A.
2015-01-01
Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials. PMID:26569603
The sensitivity of precipitation simulations to the soot aerosol presence
NASA Astrophysics Data System (ADS)
Palamarchuk, Iuliia; Ivanov, Sergiy; Mahura, Alexander; Ruban, Igor
2016-04-01
The role of aerosols in nonlinear feedbacks on atmospheric processes is in a focus of many researches. Particularly, the importance of black carbon particles for evolution of physical weather including precipitation formation and release is investigated by numerical modelling as well as observation networks. However, certain discrepancies between results obtained by different methods are remained. The increasing of complexity in numerical weather modelling systems leads to enlarging a volume of output data and promises to reveal new aspects in complexity of interactions and feedbacks. The Harmonie-38h1.2 model with the AROME physical package is used to study changes in precipitation life-cycle under black carbon polluted conditions. A model configuration includes a radar data assimilation procedure on a high resolution domain covering the Scandinavia region. Model results show that precipitation rate and distribution as well as other variables of atmospheric dynamics and physics over the domain are sensitive to aerosol concentrations. The attention should also be paid to numerical aspects, such as a list of observation types involved in assimilation. The use of high resolution radar information allows to include mesoscale features in initial conditions and to decrease the growth rate of a model error with the lead time.
Impact of vegetation on stability of slopes subjected to rainfall - numerical aspect
NASA Astrophysics Data System (ADS)
Switala, Barbara Maria; Tamagnini, Roberto; Sudan Acharya, Madhu; Wu, Wei
2015-04-01
Recent years brought a significant development of soil bioengineering methods, considered as an ecological and economically effective measure for slope stabilization. This work aims to show the advantages of the soil bioengineering solutions for a slope subjected to a heavy rainfall, with the help of a numerical model, which integrates most of the significant plant and slope features. There are basically two different ways in which vegetation can affect stability of a slope: root reinforcement (mechanical impact) and root water uptake (evapotranspiration). In the numerical model, the first factor is modelled using the Cam-Clay model extended for unsaturated conditions by Tamagnini (2004). The original formulation of a constitutive model is modified by introducing an additional constitutive parameter, which causes an expansion of the yield surface as a consequence of an increase in root mass in a representative soil element. The second factor is the root water uptake, which is defined as a volumetric sink term in the continuity equation of groundwater flow. Water removal from the soil mass causes an increase in suction in the vicinity of the root zone, which leads to an increase in the soil cohesion and provides additional strength to the soil-root composite. The developed numerical model takes into account the above mentioned effects of plants and thus considers the multi-phase nature of the soil-plant-water relationship. Using the developed method, stability of some vegetated and non-vegetated slopes subjected to rainfall are investigated. The performance of each slope is evaluated by the time at which slope failure occurs. Different slope geometries and soil mechanical and hydrological properties are considered. Comparison of the results obtained from the analyses of vegetated and non-vegetated slopes leads to the conclusion, that the use of soil bioengineering methods for slope stabilization can be effective and can significantly delay the occurrence of a rainfall induced landslide. On the contrary, vegetation removal can have serious consequences, especially on steep and forested slopes.
ERIC Educational Resources Information Center
Scott, George A.
2009-01-01
Since the Workforce Investment Act's (WIA) enactment in 1998, GAO has issued numerous reports that included recommendations regarding many aspects of WIA. These aspects include performance measures and accountability, funding formulas and spending, one-stop centers, and training, as well as services provided to specific populations, such as…
Deep-water measurements of container ship radiated noise signatures and directionality.
Gassmann, Martin; Wiggins, Sean M; Hildebrand, John A
2017-09-01
Underwater radiated noise from merchant ships was measured opportunistically from multiple spatial aspects to estimate signature source levels and directionality. Transiting ships were tracked via the Automatic Identification System in a shipping lane while acoustic pressure was measured at the ships' keel and beam aspects. Port and starboard beam aspects were 15°, 30°, and 45° in compliance with ship noise measurements standards [ANSI/ASA S12.64 (2009) and ISO 17208-1 (2016)]. Additional recordings were made at a 10° starboard aspect. Source levels were derived with a spherical propagation (surface-affected) or a modified Lloyd's mirror model to account for interference from surface reflections (surface-corrected). Ship source depths were estimated from spectral differences between measurements at different beam aspects. Results were exemplified with a 4870 and a 10 036 twenty-foot equivalent unit container ship at 40%-56% and 87% of service speeds, respectively. For the larger ship, opportunistic ANSI/ISO broadband levels were 195 (surface-affected) and 209 (surface-corrected) dB re 1 μPa 2 1 m. Directionality at a propeller blade rate of 8 Hz exhibited asymmetries in stern-bow (<6 dB) and port-starboard (<9 dB) direction. Previously reported broadband levels at 10° aspect from McKenna, Ross, Wiggins, and Hildebrand [(2012b). J. Acoust. Soc. Am. 131, 92-103] may be ∼12 dB lower than respective surface-affected ANSI/ISO standard derived levels.
Aspects of manual wheelchair configuration affecting mobility: a review.
Medola, Fausto Orsi; Elui, Valeria Meirelles Carril; Santana, Carla da Silva; Fortulan, Carlos Alberto
2014-02-01
Many aspects relating to equipment configuration affect users' actions in a manual wheelchair, determining the overall mobility performance. Since the equipment components and configuration determine both stability and mobility efficiency, configuring the wheelchair with the most appropriate set-up for individual users' needs is a difficult task. Several studies have shown the importance of seat/backrest assembly and the relative position of the rear wheels to the user in terms of the kinetics and kinematics of manual propulsion. More recently, new studies have brought to light evidence on the inertial properties of different wheelchair configurations. Further new studies have highlighted the handrim as a key component of wheelchair assembly, since it is the interface through which the user drives the chair. In light of the new evidence on wheelchair mechanics and propulsion kinetics and kinematics, this article presents a review of the most important aspects of wheelchair configuration that affect the users' actions and mobility.
Aspects of Manual Wheelchair Configuration Affecting Mobility: A Review
Medola, Fausto Orsi; Elui, Valeria Meirelles Carril; Santana, Carla da Silva; Fortulan, Carlos Alberto
2014-01-01
Many aspects relating to equipment configuration affect users’ actions in a manual wheelchair, determining the overall mobility performance. Since the equipment components and configuration determine both stability and mobility efficiency, configuring the wheelchair with the most appropriate set-up for individual users’ needs is a difficult task. Several studies have shown the importance of seat/backrest assembly and the relative position of the rear wheels to the user in terms of the kinetics and kinematics of manual propulsion. More recently, new studies have brought to light evidence on the inertial properties of different wheelchair configurations. Further new studies have highlighted the handrim as a key component of wheelchair assembly, since it is the interface through which the user drives the chair. In light of the new evidence on wheelchair mechanics and propulsion kinetics and kinematics, this article presents a review of the most important aspects of wheelchair configuration that affect the users’ actions and mobility. PMID:24648656
A study on evacuation time from lecture halls in Faculty of Engineering, Universiti Putra Malaysia
NASA Astrophysics Data System (ADS)
Othman, W. N. A. W.; Tohir, M. Z. M.
2018-04-01
An evacuation situation in any building involves many risks. The geometry of building and high potential of occupant load may affect the efficiency of evacuation process. Although fire safety rules and regulations exist, they remain insufficient to guarantee the safety of all building occupants and do not prevent the dramatic events to be repeated. The main objective of this project is to investigate the relationship between the movement time, travel speed and occupant density during a series of evacuation drills specifically for lecture halls. Generally, this study emphasizes on the movement of crowd within a limited space and includes the aspects of human behaviour. A series of trial evacuations were conducted in selected lecture halls at Faculty of Engineering, Universiti Putra Malaysia with the aim of collecting actual data for numerical analysis. The numerical data obtained during trial evacuations were used to determine the evacuation time, crowd movement and behaviour during evacuation process particularly for lecture halls. The evacuation time and number of occupants exiting from each exit were recorded. Video camera was used to record and observe the movement behaviour of occupants during evacuations. EvacuatioNZ was used to simulate the trials evacuations of DK 5 and the results predicted were compared with experimental data. EvacuatioNZ was also used to predict the evacuation time and the flow of occupants exiting from each door for DK 4 and DK 8.
Estimation of Thermoelectric Generator Performance by Finite Element Modeling
NASA Astrophysics Data System (ADS)
Ziolkowski, P.; Poinas, P.; Leszczynski, J.; Karpinski, G.; Müller, E.
2010-09-01
Prediction of thermoelectric performance parameters by numerical methods is an inherent part of thermoelectric generator (TEG) development and allows for time- and cost-saving assessment of material combinations and variations of crucial design parameters (e.g., shape, pellet length, and thermal coupling). Considering the complexity of a TEG system and its numerous affecting factors, the clarity and the flexibility of a mathematical treatment comes to the fore. Comfortable tools are provided by commercial finite element modeling (FEM) software offering powerful geometry interfaces, mesh generators, solvers, and postprocessing options. We describe the level of development and the simulation results of a three dimensional (3D) TEG FEM. Using ANSYS 11.0, we implemented and simulated a TEG module geometry under various conditions. Comparative analytical one dimensional (1D) results and a direct comparison with inhouse-developed TEG simulation software show the consistency of results. Several pellet aspect ratios and contact property configurations (thermal/electrical interface resistance) were evaluated for their impact on the TEG performance as well as parasitic effects such as convection, radiation, and conductive heat bypass. The scenarios considered revealed the highest efficiency decay for convectionally loaded setups (up to 4.8%pts), followed by the impacts of contact resistances (up to 4.8%pts), by radiation (up to 0.56%pts), and by thermal conduction of a solid filling material within the voids of the module construction (up to 0.14%pts).
Brink, Mark; Schreckenberg, Dirk; Vienneau, Danielle; Cajochen, Christian; Wunderli, Jean-Marc; Probst-Hensch, Nicole; Röösli, Martin
2016-11-23
The type of noise annoyance scale and aspects of its presentation such as response format or location within a questionnaire and other contextual factors may affect self-reported noise annoyance. By means of a balanced experimental design, the effect of type of annoyance question and corresponding scale (5-point verbal vs. 11-point numerical ICBEN (International Commission on Biological Effects of Noise) scale), presentation order of scale points (ascending vs. descending), question location (early vs. late within the questionnaire), and survey season (autumn vs. spring) on reported road traffic noise annoyance was investigated in a postal survey with a stratified random sample of 2386 Swiss residents. Our results showed that early appearance of annoyance questions was significantly associated with higher annoyance scores. Questionnaires filled out in autumn were associated with a significantly higher annoyance rating than in the springtime. No effect was found for the order of response alternatives. Standardized average annoyance scores were slightly higher using the 11-point numerical scale whereas the percentage of highly annoyed respondents was higher based on the 5-point scale, using common cutoff points. In conclusion, placement and presentation of annoyance questions within a questionnaire, as well as the time of the year a survey is carried out, have small but demonstrable effects on the degree of self-reported noise annoyance.
PROCESS SIMULATION OF COLD PRESSING OF ARMSTRONG CP-Ti POWDERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S; Gorti, Sarma B; Peter, William H
A computational methodology is presented for the process simulation of cold pressing of Armstrong CP-Ti Powders. The computational model was implemented in the commercial finite element program ABAQUSTM. Since the powder deformation and consolidation is governed by specific pressure-dependent constitutive equations, several solution algorithms were developed for the ABAQUS user material subroutine, UMAT. The solution algorithms were developed for computing the plastic strain increments based on an implicit integration of the nonlinear yield function, flow rule, and hardening equations that describe the evolution of the state variables. Since ABAQUS requires the use of a full Newton-Raphson algorithm for the stress-strainmore » equations, an algorithm for obtaining the tangent/linearization moduli, which is consistent with the return-mapping algorithm, also was developed. Numerical simulation results are presented for the cold compaction of the Ti powders. Several simulations were conducted for cylindrical samples with different aspect ratios. The numerical simulation results showed that for the disk samples, the minimum von Mises stress was approximately half than its maximum value. The hydrostatic stress distribution exhibits a variation smaller than that of the von Mises stress. It was found that for the disk and cylinder samples the minimum hydrostatic stresses were approximately 23 and 50% less than its maximum value, respectively. It was also found that the minimum density was noticeably affected by the sample height.« less
Brink, Mark; Schreckenberg, Dirk; Vienneau, Danielle; Cajochen, Christian; Wunderli, Jean-Marc; Probst-Hensch, Nicole; Röösli, Martin
2016-01-01
The type of noise annoyance scale and aspects of its presentation such as response format or location within a questionnaire and other contextual factors may affect self-reported noise annoyance. By means of a balanced experimental design, the effect of type of annoyance question and corresponding scale (5-point verbal vs. 11-point numerical ICBEN (International Commission on Biological Effects of Noise) scale), presentation order of scale points (ascending vs. descending), question location (early vs. late within the questionnaire), and survey season (autumn vs. spring) on reported road traffic noise annoyance was investigated in a postal survey with a stratified random sample of 2386 Swiss residents. Our results showed that early appearance of annoyance questions was significantly associated with higher annoyance scores. Questionnaires filled out in autumn were associated with a significantly higher annoyance rating than in the springtime. No effect was found for the order of response alternatives. Standardized average annoyance scores were slightly higher using the 11-point numerical scale whereas the percentage of highly annoyed respondents was higher based on the 5-point scale, using common cutoff points. In conclusion, placement and presentation of annoyance questions within a questionnaire, as well as the time of the year a survey is carried out, have small but demonstrable effects on the degree of self-reported noise annoyance. PMID:27886110
Computational model of mesenchymal migration in 3D under chemotaxis.
Ribeiro, F O; Gómez-Benito, M J; Folgado, J; Fernandes, P R; García-Aznar, J M
2017-01-01
Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell-matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices - collagen and fibrin - and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL -1 a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency.
Computing generalized Langevin equations and generalized Fokker-Planck equations.
Darve, Eric; Solomon, Jose; Kia, Amirali
2009-07-07
The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.
NASA Technical Reports Server (NTRS)
Fridlind, Ann; Seifert, Axel; Ackerman, Andrew; Jensen, Eric
2004-01-01
Numerical models that resolve cloud particles into discrete mass size distributions on an Eulerian grid provide a uniquely powerful means of studying the closely coupled interaction of aerosols, cloud microphysics, and transport that determine cloud properties and evolution. However, such models require many experimentally derived paramaterizations in order to properly represent the complex interactions of droplets within turbulent flow. Many of these parameterizations remain poorly quantified, and the numerical methods of solving the equations for temporal evolution of the mass size distribution can also vary considerably in terms of efficiency and accuracy. In this work, we compare results from two size-resolved microphysics models that employ various widely-used parameterizations and numerical solution methods for several aspects of stochastic collection.
Not all Anchors Weigh Equally.
Greenstein, Michael; Velazquez, Alexandra
2017-11-01
The anchoring bias is a reliable effect wherein a person's judgments are affected by initially presented information, but it is unknown specifically why this effect occurs. Research examining this bias suggests that elements of both numeric and semantic priming may be involved. To examine this, the present research used a phenomenon wherein people treat numeric information presented differently in Arabic numeral or verbal formats. We presented participants with one of many forms of an anchor that represented the same value (e.g., twelve hundred or 1,200). Thus, we could examine how a concept's meaning and its absolute numeric value affect anchoring. Experiments 1 and 2 showed that people respond to Arabic and verbal anchors differently. Experiment 3 showed that these differences occurred largely because people tend to think of numbers in digit format. This suggests that one's conceptual understanding of the anchored information matters more than its strict numeric value.
Pache, Eckhard
2008-12-01
The REACH regulation from 2006 shall overcome the deficiencies of the previously existing inconsistent legal system of chemicals and build an efficient and innovative regulation for industrial chemicals in the EU. For this purpose, the REACH regulation is not inventing a completely new legislation for chemical substances, but refers to the existing rules, regulates and structures them in a new manner and complements them. With REACH a consistent control system for chemicals in Europe has been created, which basically is managed and coordinated by the newly established European Chemicals Agency (ECHA). In the first phases of the REACH system, information about chemicals is generated and afterwards evaluated. Then this information is used in a process of authorization and restriction, to ensure adequate proliferation and safe exposure to chemical substances. Numerous duties to furnish information complement the readjustment's procedural steps, particularly with regard to the supply chain and down to the consumer. It is mainly affected by the abrogation of the determination between new and existing substances, the principle of substitution and is based on the idea that industry itself is best suited to ensure that the substances it manufactures and places on the market in the EU do not adversely affect human health or the environment.
[Progress on metaplasticity and its role in learning and memory].
Wang, Shao-Li; Lu, Wei
2016-08-25
Long-term potentiation (LTP) and long-term depression (LTD) are two major forms of synaptic plasticity that are widely considered as important cellular models of learning and memory. Metaplasticity is defined as the plasticity of synaptic plasticity and thus is an advanced form of plasticity. The history of synaptic activity can affect the subsequent synaptic plasticity induction. Therefore, it is important to study metaplasticity to explore new mechanisms underlying various brain functions including learning and memory. Since the concept of metaplasticity was proposed, it has aroused widespread concerns and attracted numerous researchers to dig more details on this topic. These new-found experimental phenomena and cellular mechanisms have established the basis of theoretical studies on metaplasticity. In recent years, researchers have found that metaplasticity can not only affect the synaptic plasticity, but also regulate the neural network to encode specific content and enhance the learning and memory. These findings have greatly enriched our knowledge on plasticity and opened a new route to study the mechanism of learning and memory. In this review, we discuss the recent progress on metaplasticity on following three aspects: (1) the molecular mechanisms of metaplasticity; (2) the role of metaplasticity in learning and memory; and (3) the outlook of future study on metaplasticity.
REVIEWS OF TOPICAL PROBLEMS: Physical aspects of cryobiology
NASA Astrophysics Data System (ADS)
Zhmakin, A. I.
2008-03-01
Physical phenomena during biological freezing and thawing processes at the molecular, cellular, tissue, and organ levels are examined. The basics of cryosurgery and cryopreservation of cells and tissues are presented. Existing cryobiological models, including numerical ones, are reviewed.
DOT National Transportation Integrated Search
2002-11-01
The catalog documents the seismic performance of bridges and ancillary components in the presence of liquefaction-induced ground displacements. Data pertaining to seismological, geotechnical, and structural aspects of numerous case studies are presen...
3PE: A Tool for Estimating Groundwater Flow Vectors
Evaluation of hydraulic gradients and the associated groundwater flow rates and directions is a fundamental aspect of hydrogeologic characterization. Many methods, ranging in complexity from simple three-point solution techniques to complex numerical models of groundwater flow, ...
Uniformity of LED light illumination in application to direct imaging lithography
NASA Astrophysics Data System (ADS)
Huang, Ting-Ming; Chang, Shenq-Tsong; Tsay, Ho-Lin; Hsu, Ming-Ying; Chen, Fong-Zhi
2016-09-01
Direct imaging has widely applied in lithography for a long time because of its simplicity and easy-maintenance. Although this method has limitation of lithography resolution, it is still adopted in industries. Uniformity of UV irradiance for a designed area is an important requirement. While mercury lamps were used as the light source in the early stage, LEDs have drawn a lot of attention for consideration from several aspects. Although LED has better and better performance, arrays of LEDs are required to obtain desired irradiance because of limitation of brightness for a single LED. Several effects are considered that affect the uniformity of UV irradiance such as alignment of optics, temperature of each LED, performance of each LED due to production uniformity, and pointing of LED module. Effects of these factors are considered to study the uniformity of LED Light Illumination. Numerical analysis is performed by assuming a serious of control factors to have a better understanding of each factor.
Recommendations for the Diagnosis and Management of Asbestos-Related Pleural and Pulmonary Disease.
Diego Roza, Carmen; Cruz Carmona, M Jesús; Fernández Álvarez, Ramón; Ferrer Sancho, Jaume; Marín Martínez, Belén; Martínez González, Cristina; Rodríguez Portal, José Antonio; Romero Valero, Fernando; Villena Garrido, Victoria
2017-08-01
Asbestos is the term used for a set of mineral silicates that tend to break up into fibers. Its use has been associated with numerous diseases affecting the lung and pleura in particular, all of which are characterized by their long period of latency. Asbestos, moreover, has been recognized by the WHO as a Group IA carcinogen since 1987 and its use was banned in Spain in 2002. The publication in 2013 of the 3rd edition of the specific asbestos health monitoring protocol, together with the development of new diagnostic techniques, prompted the SEPAR EROM group to sponsor publication of guidelines, which review the clinical, radiological and functional aspects of the different asbestos-related diseases. Recommendations have also been made for the diagnosis and follow-up of exposed patients. These recommendations were drawn up in accordance with the GRADE classification system. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
[Treating COPD in chronic patients in a primary-care setting].
Llauger Roselló, Maria Antònia; Pou, Maria Antònia; Domínguez, Leandra; Freixas, Montse; Valverde, Pepi; Valero, Carles
2011-11-01
The aging of the populations in Western countries entails an increase in chronic diseases, which becomes evident with the triad of age, comorbidities and polymedication. chronic obstructive pulmonary disease represents one of the most important causes of morbidity and mortality, with a prevalence in Spain of 10.2% in the population aged 40 to 80. In recent years, it has come to be defined not only as an obstructive pulmonary disease, but also as a systemic disease. Some aspects stand out in its management: smoking, the main risk factor, even though avoidable, is an important health problem; very important levels of underdiagnosis and little diagnostic accuracy, with inadequate use of spirometry; chronic patient profile; exacerbations that affect survival and cause repeated hospitalizations; mobilization of numerous health-care resources; need to propose integral care (health-care education, rehabilitation, promotion of self-care and patient involvement in decision-making). Copyright © 2011 SEPAR. Published by Elsevier Espana. All rights reserved.
Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
Wani, Revati; Murray, Brion W
2017-01-01
Reversible cysteine oxidation is an emerging class of protein post-translational modification (PTM) that regulates catalytic activity, modulates conformation, impacts protein-protein interactions, and affects subcellular trafficking of numerous proteins. Redox PTMs encompass a broad array of cysteine oxidation reactions with different half-lives, topographies, and reactivities such as S-glutathionylation and sulfoxidation. Recent studies from our group underscore the lesser known effect of redox protein modifications on drug binding. To date, biological studies to understand mechanistic and functional aspects of redox regulation are technically challenging. A prominent issue is the lack of tools for labeling proteins oxidized to select chemotype/oxidant species in cells. Predictive computational tools and curated databases of oxidized proteins are facilitating structural and functional insights into regulation of the network of oxidized proteins or redox proteome. In this chapter, we discuss analytical platforms for studying protein oxidation, suggest computational tools currently available in the field to determine redox sensitive proteins, and begin to illuminate roles of cysteine redox PTMs in drug pharmacology.
Century-scale Methylome Stability in a Recently Diverged Arabidopsis thaliana Lineage
Müller, Jonas; Stegle, Oliver; Meyer, Rhonda C.; Wang, George; Schneeberger, Korbinian; Fitz, Joffrey; Altmann, Thomas; Bergelson, Joy; Borgwardt, Karsten; Weigel, Detlef
2015-01-01
There has been much excitement about the possibility that exposure to specific environments can induce an ecological memory in the form of whole-sale, genome-wide epigenetic changes that are maintained over many generations. In the model plant Arabidopsis thaliana, numerous heritable DNA methylation differences have been identified in greenhouse-grown isogenic lines, but it remains unknown how natural, highly variable environments affect the rate and spectrum of such changes. Here we present detailed methylome analyses in a geographically dispersed A. thaliana population that constitutes a collection of near-isogenic lines, diverged for at least a century from a common ancestor. Methylome variation largely reflected genetic distance, and was in many aspects similar to that of lines raised in uniform conditions. Thus, even when plants are grown in varying and diverse natural sites, genome-wide epigenetic variation accumulates mostly in a clock-like manner, and epigenetic divergence thus parallels the pattern of genome-wide DNA sequence divergence. PMID:25569172
NASA Astrophysics Data System (ADS)
Rong, Ying; Wen, Huiying
2018-05-01
In this paper, the appearing probability of truck is introduced and an extended car-following model is presented to analyze the traffic flow based on the consideration of driver's characteristics, under honk environment. The stability condition of this proposed model is obtained through linear stability analysis. In order to study the evolution properties of traffic wave near the critical point, the mKdV equation is derived by the reductive perturbation method. The results show that the traffic flow will become more disorder for the larger appearing probability of truck. Besides, the appearance of leading truck affects not only the stability of traffic flow, but also the effect of other aspects on traffic flow, such as: driver's reaction and honk effect. The effects of them on traffic flow are closely correlated with the appearing probability of truck. Finally, the numerical simulations under the periodic boundary condition are carried out to verify the proposed model. And they are consistent with the theoretical findings.
Pathomechanisms of polycystic ovary syndrome: Multidimensional approaches.
Sagvekar, Pooja; Dadachanji, Roshan; Patil, Krutika; Mukherjee, Srabani
2018-03-01
Polycystic ovary syndrome is a complex endocrine disorder affecting numerous women of reproductive age across the globe. Characterized mainly by irregular menses, hirsutism, skewed LH: FSH ratios and bulky polycystic ovaries, this multifactorial endocrinopathy results in unfavorable reproductive and metabolic sequelae, including anovulatory infertility, type 2 diabetes, metabolic syndrome and cardiovascular disease in later years. Increasing evidence has shown that the manifestation of polycystic ovary syndrome (PCOS) is attributable to a cumulative impact of altered genetic, epigenetic and protein profiles which bring about a systemic dysfunction. While genetic approaches help ascertain role of causal variants in its etiology, tissue-specific epigenetic patterns help in deciphering the auxiliary role of environmental, nutritional and behavioral factors. Proteomics is advantageous, linking both genotype and phenotype and contributing to biomarker discovery. Investigating molecular mechanism underlying PCOS is imperative in order to gain insight into the pathophysiology of PCOS and formulate novel diagnostic and treatment strategies. In this review we have summarized these three aspects, which have been successfully utilized to delineate the pathomechanisms of PCOS.
NASA Astrophysics Data System (ADS)
Barbulescu, M.; Erdélyi, R.
2018-06-01
Recent observations have shown that bulk flow motions in structured solar plasmas, most evidently in coronal mass ejections (CMEs), may lead to the formation of Kelvin-Helmholtz instabilities (KHIs). Analytical models are thus essential in understanding both how the flows affect the propagation of magnetohydrodynamic (MHD) waves, and what the critical flow speed is for the formation of the KHI. We investigate both these aspects in a novel way: in a steady magnetic slab embedded in an asymmetric environment. The exterior of the slab is defined as having different equilibrium values of the background density, pressure, and temperature on either side. A steady flow and constant magnetic field are present in the slab interior. Approximate solutions to the dispersion relation are obtained analytically and classified with respect to mode and speed. General solutions and the KHI thresholds are obtained numerically. It is shown that, generally, both the KHI critical value and the cut-off speeds for magnetoacoustic waves are lowered by the external asymmetry.
Nutrition for synchronized swimming: a review.
Lundy, Bronwen
2011-10-01
Synchronized swimming enjoys worldwide popularity and has been part of the formal Olympic program since 1984. Despite this, relatively little research has been conducted on participant nutrition practices and requirements, and there are significant gaps in the knowledge base despite the numerous areas in which nutrition could affect performance and safety. This review aimed to summarize current findings and identify areas requiring further research. Uniform physique in team or duet events may be more important than absolute values for muscularity or body fat, but a lean and athletic appearance remains key. Synchronized swimmers appear to have an increased risk of developing eating disorders, and there is evidence of delayed menarche, menstrual dysfunction, and lower bone density relative to population norms. Dietary practices remain relatively unknown, but micronutrient status for iron and magnesium may be compromised. More research is required across all aspects of nutrition status, anthropometry, and physiology, and both sports nutrition and sports medicine support may be required to reduce risks for participants.
Bastide, Pauline; Darido, Charbel; Pannequin, Julie; Kist, Ralf; Robine, Sylvie; Marty-Double, Christiane; Bibeau, Frédéric; Scherer, Gerd; Joubert, Dominique; Hollande, Frédéric; Blache, Philippe; Jay, Philippe
2007-01-01
The HMG-box transcription factor Sox9 is expressed in the intestinal epithelium, specifically, in stem/progenitor cells and in Paneth cells. Sox9 expression requires an active β-catenin–Tcf complex, the transcriptional effector of the Wnt pathway. This pathway is critical for numerous aspects of the intestinal epithelium physiopathology, but processes that specify the cell response to such multipotential signals still remain to be identified. We inactivated the Sox9 gene in the intestinal epithelium to analyze its physiological function. Sox9 inactivation affected differentiation throughout the intestinal epithelium, with a disappearance of Paneth cells and a decrease of the goblet cell lineage. Additionally, the morphology of the colon epithelium was severely altered. We detected general hyperplasia and local crypt dysplasia in the intestine, and Wnt pathway target genes were up-regulated. These results highlight the central position of Sox9 as both a transcriptional target and a regulator of the Wnt pathway in the regulation of intestinal epithelium homeostasis. PMID:17698607
Emergency Medicine Management of Sickle Cell Disease Complications: An Evidence-Based Update.
Simon, Erica; Long, Brit; Koyfman, Alex
2016-10-01
Sickle cell disease (SCD) affects approximately 100,000 individuals in the United States. Due to alterations in the structural conformation of hemoglobin molecules under deoxygenated conditions, patients with SCD are predisposed to numerous sequelae, many of which require acute intervention. Our aim was to provide emergency physicians with an evidence-based update regarding the diagnosis and management of SCD complications. SCD patients experience significant morbidity and mortality secondary to cerebrovascular accident, acute chest syndrome, acute vaso-occlusive pain crises, SCD-related multi-organ failure, cholecystitis, acute intrahepatic cholestasis, acute sickle hepatic crisis, acute hepatic sequestration, priapism, and renal disease. Emergency physicians must recognize acute manifestations of SCD in order to deliver timely management and determine patient disposition. A comprehensive review of the emergency department management of acute SCD complications is provided. Comprehensive understanding of these aspects of SCD can assist physicians in expediting patient evaluation and treatment, thus decreasing the morbidity and mortality associated with this hemoglobinopathy. Copyright © 2016 Elsevier Inc. All rights reserved.
Developing strategies for AIDS prevention research with black and Hispanic drug users.
Schilling, R F; Schinke, S P; Nichols, S E; Zayas, L H; Miller, S O; Orlandi, M A; Botvin, G J
1989-01-01
More than 8 of 10 intravenous drug users infected with the human immunodeficiency virus (HIV) are black or Hispanic. Recognizing that sociocultural factors affect HIV transmission, public health officials have called for interventions designed for ethnic-racial minority groups. Considered in this paper are the nature and extent of AIDS among ethnic-racial minorities and the cultural aspects of drug use and sexual behavior related to HIV transmission. That drug users and their associates are practicing safer needle use is evident; that they are changing their sexual behavior is less so. Calling for rapid advances in knowledge and expanded efforts in intervention, Federal agencies have instituted numerous programs to support innovative research and demonstration projects in ethnic-racial minority communities. Needed are studies that (a) describe the phenomena of drug use and sexual behavior among ethnic-racial minority populations, (b) establish the efficacy of culturally specific AIDS prevention strategies in drug treatment and community settings, and (c) demonstrate new ways of recruiting, treating, and reducing relapse among drug users. PMID:2493660
Current situation and future usage of anticancer drug databases.
Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei
2016-07-01
Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.
NASA Technical Reports Server (NTRS)
Shen, Hayley H.
1991-01-01
Liquid fuel combustion process is greatly affected by the rate of droplet evaporation. The heat and mass exchanges between gas and liquid couple the dynamics of both phases in all aspects: mass, momentum, and energy. Correct prediction of the evaporation rate is therefore a key issue in engineering design of liquid combustion devices. Current analytical tools for characterizing the behavior of these devices are based on results from a single isolated droplet. Numerous experimental studies have challenged the applicability of these results in a dense spray. To account for the droplets' interaction in a dense spray, a number of theories have been developed in the past decade. Herein, two tasks are examined. One was to study how to implement the existing theoretical results, and the other was to explore the possibility of experimental verifications. The current theoretical results of group evaporation are given for a monodispersed cluster subject to adiabatic conditions. The time evolution of the fluid mechanic and thermodynamic behavior in this cluster is derived. The results given are not in the form of a subscale model for CFD codes.
Copy Number Variations Detection: Unravelling the Problem in Tangible Aspects.
do Nascimento, Francisco; Guimaraes, Katia S
2017-01-01
In the midst of the important genomic variants associated to the susceptibility and resistance to complex diseases, Copy Number Variations (CNV) has emerged as a prevalent class of structural variation. Following the flood of next-generation sequencing data, numerous tools publicly available have been developed to provide computational strategies to identify CNV at improved accuracy. This review goes beyond scrutinizing the main approaches widely used for structural variants detection in general, including Split-Read, Paired-End Mapping, Read-Depth, and Assembly-based. In this paper, (1) we characterize the relevant technical details around the detection of CNV, which can affect the estimation of breakpoints and number of copies, (2) we pinpoint the most important insights related to GC-content and mappability biases, and (3) we discuss the paramount caveats in the tools evaluation process. The points brought out in this study emphasize common assumptions, a variety of possible limitations, valuable insights, and directions for desirable contributions to the state-of-the-art in CNV detection tools.
Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.
O'Neil, Rochelle L; Skeel, Reid L; Ustinova, Ksenia I
2013-01-01
Virtual reality games and simulations have been utilized successfully for motor rehabilitation of individuals with traumatic brain injury (TBI). Little is known, however, how TBI-related cognitive decline affects learning of motor tasks in virtual environments. To fill this gap, we examined learning within a virtual reality game involving various reaching motions in 14 patients with TBI and 15 healthy individuals with different cognitive abilities. All participants practiced ten 90-second gaming trials to assess various aspects of motor learning. Cognitive abilities were assessed with a battery of tests including measures of memory, executive functioning, and visuospatial ability. Overall, participants with TBI showed both reduced performance and a slower learning rate in the virtual reality game compared to healthy individuals. Numerous correlations between overall performance and several of the cognitive ability domains were revealed for both the patient and control groups, with the best predictor being overall cognitive ability. The results may provide a starting point for rehabilitation programs regarding which cognitive domains interact with motor learning.
A guide to diagnosis and treatment of Leigh syndrome.
Baertling, Fabian; Rodenburg, Richard J; Schaper, Jörg; Smeitink, Jan A; Koopman, Werner J H; Mayatepek, Ertan; Morava, Eva; Distelmaier, Felix
2014-03-01
Leigh syndrome is a devastating neurodegenerative disease, typically manifesting in infancy or early childhood. However, also late-onset cases have been reported. Since its first description by Denis Archibald Leigh in 1951, it has evolved from a postmortem diagnosis, strictly defined by histopathological observations, to a clinical entity with indicative laboratory and radiological findings. Hallmarks of the disease are symmetrical lesions in the basal ganglia or brain stem on MRI, and a clinical course with rapid deterioration of cognitive and motor functions. Examinations of fresh muscle tissue or cultured fibroblasts are important tools to establish a biochemical and genetic diagnosis. Numerous causative mutations in mitochondrial and nuclear genes, encoding components of the oxidative phosphorylation system have been described in the past years. Moreover, dysfunctions in pyruvate dehydrogenase complex or coenzyme Q10 metabolism may be associated with Leigh syndrome. To date, there is no cure for affected patients, and treatment options are mostly unsatisfactory. Here, we review the most important clinical aspects of Leigh syndrome, and discuss diagnostic steps as well as treatment options.
Selmants, Paul C; Zavaleta, Erika S; Wolf, Amelia A
2014-01-01
Numerous experiments have demonstrated that diverse plant communities use nitrogen (N) more completely and efficiently, with implications for how species conservation efforts might influence N cycling and retention in terrestrial ecosystems. However, most such experiments have randomly manipulated species richness and minimized environmental heterogeneity, two design aspects that may reduce applicability to real ecosystems. Here we present results from an experiment directly comparing how realistic and randomized plant species losses affect plant N use across a gradient of soil depth in a native-dominated serpentine grassland in California. We found that the strength of the species richness effect on plant N use did not increase with soil depth in either the realistic or randomized species loss scenarios, indicating that the increased vertical heterogeneity conferred by deeper soils did not lead to greater complementarity among species in this ecosystem. Realistic species losses significantly reduced plant N uptake and altered N-use efficiency, while randomized species losses had no effect on plant N use. Increasing soil depth positively affected plant N uptake in both loss order scenarios but had a weaker effect on plant N use than did realistic species losses. Our results illustrate that realistic species losses can have functional consequences that differ distinctly from randomized losses, and that species diversity effects can be independent of and outweigh those of environmental heterogeneity on ecosystem functioning. Our findings also support the value of conservation efforts aimed at maintaining biodiversity to help buffer ecosystems against increasing anthropogenic N loading.
Conduction at the onset of chaos
NASA Astrophysics Data System (ADS)
Baldovin, Fulvio
2017-02-01
After a general discussion of the thermodynamics of conductive processes, we introduce specific observables enabling the connection of the diffusive transport properties with the microscopic dynamics. We solve the case of Brownian particles, both analytically and numerically, and address then whether aspects of the classic Onsager's picture generalize to the non-local non-reversible dynamics described by logistic map iterates. While in the chaotic case numerical evidence of a monotonic relaxation is found, at the onset of chaos complex relaxation patterns emerge.
Does age or gender influence quality of life in children with atopic dermatitis?
Hon, K L E; Leung, T F; Wong, K Y; Chow, C M; Chuh, A; Ng, P C
2008-11-01
Quality of life (QoL) is impaired in children with atopic dermatitis (AD) but the various aspects of QoL may not be equally affected. Aim. To evaluate if age and gender affect some aspects of QoL in children with AD. The Children's Dermatology Life Quality Index (CDLQI) was used for all children with AD seen at a paediatric dermatology clinic over a 3-year period. Disease severity was assessed using the SCORing Atopic Dermatitis (SCORAD) and Nottingham Eczema Severity Score (NESS) tools. We reviewed CDLQI in 133 children (70 male and 63 female; age range 5-16 years) with AD. Itch, sleep disturbance, treatment and swimming/sports were the four aspects of QoL issues that were most commonly affected, in 50%, 47%, 38% and 29% of patients, respectively. Problems with interpersonal issues (friendship, school/holidays, and teasing/bullying) occurred in only a minority of children (
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my
This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, anmore » advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.« less
NASA Astrophysics Data System (ADS)
Kaufman, G.; Crawford, T. N.
2016-12-01
To protect the integrity of US waters, the Clean Water Act calls for the development of water quality standards. One key component of standards is limits for pollutants, known as water quality criteria. A cornerstone of deriving water quality criteria is determining how nutrients and other chemicals affect the goals for a waterbody set by a state or tribe, known as designated uses. By establishing a quantifiable and predictable relationship between nutrients and nutrient sensitive organisms and processes, known as assessment endpoints, researchers can help policy makers to address the consequences of pollution in a risk-based, understandable way tied to the goals for a waterbody. Furthermore, public buy-in and effectiveness of criteria can be enhanced by using endpoints to show the connection between nutrient pollution and the uses of waters that are important to the public. This talk will communicate the work done by the US Environmental Protection Agency in cooperation with state, federal, and academic partners to explore the connections between biological and ecological responses and nutrient pollution to derive numeric nutrient criteria in estuarine and coastal waters. The presentation will examine the variety of endpoints that have been used in the work of various research efforts and assessment frameworks. Examples will also be given of numeric nutrient criteria development using assessment endpoints and some of the key decisions that were made during endpoint selection and criteria development will be discussed. Aspects of those decisions that will be presented include development of selection factors for endpoints, data considerations when selecting endpoints, and spatial and temporal representation of endpoints for criteria development. Promising endpoints and future research needs will also be highlighted.
NASA Astrophysics Data System (ADS)
Kaufman, G.; Crawford, T. N.
2016-02-01
To protect the integrity of US waters, the Clean Water Act calls for the development of water quality standards. One key component of standards is limits for pollutants, known as water quality criteria. A cornerstone of deriving water quality criteria is determining how nutrients and other chemicals affect the goals for a waterbody set by a state or tribe, known as designated uses. By establishing a quantifiable and predictable relationship between nutrients and nutrient sensitive organisms and processes, known as assessment endpoints, researchers can help policy makers to address the consequences of pollution in a risk-based, understandable way tied to the goals for a waterbody. Furthermore, public buy-in and effectiveness of criteria can be enhanced by using endpoints to show the connection between nutrient pollution and the uses of waters that are important to the public. This talk will communicate the work done by the US Environmental Protection Agency in cooperation with state, federal, and academic partners to explore the connections between biological and ecological responses and nutrient pollution to derive numeric nutrient criteria in estuarine and coastal waters. The presentation will examine the variety of endpoints that have been used in the work of various research efforts and assessment frameworks. Examples will also be given of numeric nutrient criteria development using assessment endpoints and some of the key decisions that were made during endpoint selection and criteria development will be discussed. Aspects of those decisions that will be presented include development of selection factors for endpoints, data considerations when selecting endpoints, and spatial and temporal representation of endpoints for criteria development. Promising endpoints and future research needs will also be highlighted.
ERIC Educational Resources Information Center
Athanasopoulos, Panos; Bylund, Emanuel
2013-01-01
In this article, we explore whether cross-linguistic differences in grammatical aspect encoding may give rise to differences in memory and cognition. We compared native speakers of two languages that encode aspect differently (English and Swedish) in four tasks that examined verbal descriptions of stimuli, online triads matching, and memory-based…
The Role of Leadership in the Development of the Creative School in Palestine
ERIC Educational Resources Information Center
Sabbah, Suheir Sulieman
2017-01-01
The world faces a great developmental revolution in all scientific fields which in its turn affects different aspects of life, such as: the medical, engineering and educational fields, etc. The educational school's aspect in particular will be the topic of this research. It tries to assist in developing the different aspects of the educational…
ROBOTIC SURGERY: BIOETHICAL ASPECTS
SIQUEIRA-BATISTA, Rodrigo; SOUZA, Camila Ribeiro; MAIA, Polyana Mendes; SIQUEIRA, Sávio Lana
2016-01-01
ABSTRACT Introduction: The use of robots in surgery has been increasingly common today, allowing the emergence of numerous bioethical issues in this area. Objective: To present review of the ethical aspects of robot use in surgery. Method: Search in Pubmed, SciELO and Lilacs crossing the headings "bioethics", "surgery", "ethics", "laparoscopy" and "robotic". Results: Of the citations obtained, were selected 17 articles, which were used for the preparation of the article. It contains brief presentation on robotics, its inclusion in health and bioethical aspects, and the use of robots in surgery. Conclusion: Robotic surgery is a reality today in many hospitals, which makes essential bioethical reflection on the relationship between health professionals, automata and patients. PMID:28076489
NASA Astrophysics Data System (ADS)
Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.
2018-05-01
The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.
NASA Astrophysics Data System (ADS)
Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.
2018-02-01
The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, J. R.; Hnat, B.; Thyagaraja, A.
2013-05-15
Following recent observations suggesting the presence of the geodesic acoustic mode (GAM) in ohmically heated discharges in the Mega Amp Spherical Tokamak (MAST) [J. R. Robinson et al., Plasma Phys. Controlled Fusion 54, 105007 (2012)], the behaviour of the GAM is studied numerically using the two fluid, global code CENTORI [P. J. Knight et al. Comput. Phys. Commun. 183, 2346 (2012)]. We examine mode localisation and effects of magnetic geometry, given by aspect ratio, elongation, and safety factor, on the observed frequency of the mode. An excellent agreement between simulations and experimental data is found for simulation plasma parameters matchedmore » to those of MAST. Increasing aspect ratio yields good agreement between the GAM frequency found in the simulations and an analytical result obtained for elongated large aspect ratio plasmas.« less
Are Arabic and Verbal Numbers Processed in Different Ways?
ERIC Educational Resources Information Center
Kadosh, Roi Cohen; Henik, Avishai; Rubinsten, Orly
2008-01-01
Four experiments were conducted in order to examine effects of notation--Arabic and verbal numbers--on relevant and irrelevant numerical processing. In Experiment 1, notation interacted with the numerical distance effect, and irrelevant physical size affected numerical processing (i.e., size congruity effect) for both notations but to a lesser…
Li, Qinghe; Xu, Jun; Li, Huiqing; Wang, Saixiao; Yan, Xiu; Xin, Zhiming; Jiang, Zeping; Wang, Linlong; Jia, Zhiqing
2013-01-01
The formation of many nebkha dunes relies on the layering of clonal plants. The microenvironmental conditions of such phytogenic nebkha are heterogeneous depending on the aspect and slope. Exploring the effects of aspect on clonal reproduction and biomass allocation can be useful in understanding the ecological adaptation of species. We hypothesized that on the windward side layering propagation would be promoted, that biomass allocation to leaves and stems of ramets would increase, and that the effects of aspect would be greater in the layering with larger biomass. To test these hypotheses, we surveyed the depth of germination points of axillary buds, the rate of ramet sprouting, the density of adventitious root formation points, and the biomass of modules sprouting from layering located on the NE, SE, SW and NW, aspects of Nitraria tangutorum nebkhas. The windward side was located on the NW and SW aspects. The results indicated that conditions of the NW aspect were more conducive to clonal reproduction and had the highest rate of ramet sprouting and the highest density of adventitious formation points. For the modules sprouting from layering on the SW aspect, biomass allocation to leaves and stems was greatest with biomass allocation to adventitious roots being lowest. This result supported our hypothesis. Contrary to our hypothesis, the effects of aspect were greater in layering of smaller biomass. These results support the hypothesis that aspect does affect layering propagation capacity and biomass allocation in this species. Additionally, clonal reproduction and biomass allocation of modules sprouting from layering with smaller biomass was more affected by aspect. These results suggest that the clonal growth of N. tangutorum responses to the microenvironmental heterogeneity that results from aspect of the nebkha. PMID:24205391
Li, Qinghe; Xu, Jun; Li, Huiqing; Wang, Saixiao; Yan, Xiu; Xin, Zhiming; Jiang, Zeping; Wang, Linlong; Jia, Zhiqing
2013-01-01
The formation of many nebkha dunes relies on the layering of clonal plants. The microenvironmental conditions of such phytogenic nebkha are heterogeneous depending on the aspect and slope. Exploring the effects of aspect on clonal reproduction and biomass allocation can be useful in understanding the ecological adaptation of species. We hypothesized that on the windward side layering propagation would be promoted, that biomass allocation to leaves and stems of ramets would increase, and that the effects of aspect would be greater in the layering with larger biomass. To test these hypotheses, we surveyed the depth of germination points of axillary buds, the rate of ramet sprouting, the density of adventitious root formation points, and the biomass of modules sprouting from layering located on the NE, SE, SW and NW, aspects of Nitraria tangutorum nebkhas. The windward side was located on the NW and SW aspects. The results indicated that conditions of the NW aspect were more conducive to clonal reproduction and had the highest rate of ramet sprouting and the highest density of adventitious formation points. For the modules sprouting from layering on the SW aspect, biomass allocation to leaves and stems was greatest with biomass allocation to adventitious roots being lowest. This result supported our hypothesis. Contrary to our hypothesis, the effects of aspect were greater in layering of smaller biomass. These results support the hypothesis that aspect does affect layering propagation capacity and biomass allocation in this species. Additionally, clonal reproduction and biomass allocation of modules sprouting from layering with smaller biomass was more affected by aspect. These results suggest that the clonal growth of N. tangutorum responses to the microenvironmental heterogeneity that results from aspect of the nebkha.
Numerical analysis of dense narrow backfills for increasing lateral passive resistance.
DOT National Transportation Integrated Search
2010-08-01
Previously, full-scale lateral load tests conducted on pile caps with different aspect ratios showed that placement : of a narrow, dense backfill zone against the cap could substantially increase the passive resistance. The objective : of this study ...
MINE DESIGN, OPERATIONS & CLOSURE CONFERENCE 2005
A one-day short course will instill the usefulness of environmental modeling with respect to understanding mining-related impacts. It will focus on the development aspects of modeling rather than the numerical computations. The course will encompass the basics of sensitivity anal...
Digital image analysis techniques for fiber and soil mixtures.
DOT National Transportation Integrated Search
1999-05-01
The objective of image processing is to visually enhance, quantify, and/or statistically evaluate some aspect of an image not readily apparent in its original form. Processed digital image data can be analyzed in numerous ways. In order to summarize ...
Explorations of Affection and Aggression.
ERIC Educational Resources Information Center
Shuntich, Richard J.; Shapiro, Richard
Considerable effort has been devoted to investigating various aspects of love and affection, but there have been few studies about direct expressions of affection. Relationships between gender composition of a dyad and the affection/aggression expressed by the dyad were examined as was the possibility of increasing the amount of affectionate…
SToRM: A numerical model for environmental surface flows
Simoes, Francisco J.
2009-01-01
SToRM (System for Transport and River Modeling) is a numerical model developed to simulate free surface flows in complex environmental domains. It is based on the depth-averaged St. Venant equations, which are discretized using unstructured upwind finite volume methods, and contains both steady and unsteady solution techniques. This article provides a brief description of the numerical approach selected to discretize the governing equations in space and time, including important aspects of solving natural environmental flows, such as the wetting and drying algorithm. The presentation is illustrated with several application examples, covering both laboratory and natural river flow cases, which show the model’s ability to solve complex flow phenomena.
Factors affecting construction performance: exploratory factor analysis
NASA Astrophysics Data System (ADS)
Soewin, E.; Chinda, T.
2018-04-01
The present work attempts to develop a multidimensional performance evaluation framework for a construction company by considering all relevant measures of performance. Based on the previous studies, this study hypothesizes nine key factors, with a total of 57 associated items. The hypothesized factors, with their associated items, are then used to develop questionnaire survey to gather data. The exploratory factor analysis (EFA) was applied to the collected data which gave rise 10 factors with 57 items affecting construction performance. The findings further reveal that the items constituting ten key performance factors (KPIs) namely; 1) Time, 2) Cost, 3) Quality, 4) Safety & Health, 5) Internal Stakeholder, 6) External Stakeholder, 7) Client Satisfaction, 8) Financial Performance, 9) Environment, and 10) Information, Technology & Innovation. The analysis helps to develop multi-dimensional performance evaluation framework for an effective measurement of the construction performance. The 10 key performance factors can be broadly categorized into economic aspect, social aspect, environmental aspect, and technology aspects. It is important to understand a multi-dimension performance evaluation framework by including all key factors affecting the construction performance of a company, so that the management level can effectively plan to implement an effective performance development plan to match with the mission and vision of the company.
Multiscale Pores in TBCs for Lower Thermal Conductivity
NASA Astrophysics Data System (ADS)
Zhang, Wei-Wei; Li, Guang-Rong; Zhang, Qiang; Yang, Guan-Jun
2017-08-01
The morphology and pattern (including orientation and aspect ratio) of pores in thermal barrier coatings (TBCs) significantly affect their thermal insulation performance. In this work, finite element analysis was used to comprehensively understand the thermal insulation effect of pores and correlate the effective thermal conductivity with the structure. The results indicated that intersplat pores, and in particular their aspect ratio, dominantly affect the heat transfer in the top coat. The effective thermal conductivity decreased as a function of aspect ratio, since a larger aspect ratio often corresponds to a greater proportion of effective length of the pores. However, in conventional plasma-sprayed TBCs, intersplat pores often fail to maximize thermal insulation due to their distinct lower aspect ratios. Therefore, considering this effect of aspect ratio, a new structure design with multiscale pores is proposed and a corresponding structural model developed to correlate the thermal properties with this pore-rich structure. The predictions of the model are well consistent with experimental data. This study provides comprehensive understanding of the effect of pores on the thermal insulation performance, shedding light on the possibility of structural tailoring to obtain advanced TBCs with lower thermal conductivity.
Moeller, Korbinian; Martignon, Laura; Wessolowski, Silvia; Engel, Joachim; Nuerk, Hans-Christoph
2011-01-01
Children typically learn basic numerical and arithmetic principles using finger-based representations. However, whether or not reliance on finger-based representations is beneficial or detrimental is the subject of an ongoing debate between researchers in neurocognition and mathematics education. From the neurocognitive perspective, finger counting provides multisensory input, which conveys both cardinal and ordinal aspects of numbers. Recent data indicate that children with good finger-based numerical representations show better arithmetic skills and that training finger gnosis, or “finger sense,” enhances mathematical skills. Therefore neurocognitive researchers conclude that elaborate finger-based numerical representations are beneficial for later numerical development. However, research in mathematics education recommends fostering mentally based numerical representations so as to induce children to abandon finger counting. More precisely, mathematics education recommends first using finger counting, then concrete structured representations and, finally, mental representations of numbers to perform numerical operations. Taken together, these results reveal an important debate between neurocognitive and mathematics education research concerning the benefits and detriments of finger-based strategies for numerical development. In the present review, the rationale of both lines of evidence will be discussed. PMID:22144969
High-Order Numerical Simulations of Wind Turbine Wakes
NASA Astrophysics Data System (ADS)
Kleusberg, E.; Mikkelsen, R. F.; Schlatter, P.; Ivanell, S.; Henningson, D. S.
2017-05-01
Previous attempts to describe the structure of wind turbine wakes and their mutual interaction were mostly limited to large-eddy and Reynolds-averaged Navier-Stokes simulations using finite-volume solvers. We employ the higher-order spectral-element code Nek5000 to study the influence of numerical aspects on the prediction of the wind turbine wake structure and the wake interaction between two turbines. The spectral-element method enables an accurate representation of the vortical structures, with lower numerical dissipation than the more commonly used finite-volume codes. The wind-turbine blades are modeled as body forces using the actuator-line method (ACL) in the incompressible Navier-Stokes equations. Both tower and nacelle are represented with appropriate body forces. An inflow boundary condition is used which emulates homogeneous isotropic turbulence of wind-tunnel flows. We validate the implementation with results from experimental campaigns undertaken at the Norwegian University of Science and Technology (NTNU Blind Tests), investigate parametric influences and compare computational aspects with existing numerical simulations. In general the results show good agreement between the experiments and the numerical simulations both for a single-turbine setup as well as a two-turbine setup where the turbines are offset in the spanwise direction. A shift in the wake center caused by the tower wake is detected similar to experiments. The additional velocity deficit caused by the tower agrees well with the experimental data. The wake is captured well by Nek5000 in comparison with experiments both for the single wind turbine and in the two-turbine setup. The blade loading however shows large discrepancies for the high-turbulence, two-turbine case. While the experiments predicted higher thrust for the downstream turbine than for the upstream turbine, the opposite case was observed in Nek5000.
Personality and the perception of health and happiness.
Cloninger, C Robert; Zohar, Ada H
2011-01-01
Health is a state of physical, mental, and social well-being. Personality traits measure individual differences in adaptive functioning and mental health, but little is known about how well personality accounts for health's affective aspects (i.e., "happiness") and its non-affective aspects (i.e., "wellness") in the general population. 1102 volunteer representatives of the Sharon area of Israel completed the Temperament and Character Inventory (TCI), the Positive and Negative Affect Scale (PANAS), the Satisfaction with Life Scale (SWLS), the Multidimensional Scale of Perceived Social Support (PSS), and the subjective health assessment of the General Health Questionnaire (GHQ). Multidimensional personality profiles were used to evaluate the linear and non-linear effects of interactions among dimensions on different aspects of well-being. Self-directedness was strongly associated with all aspects of well-being regardless of interactions with other dimensions. Cooperativeness was strongly associated with perceived social support, and weakly with other aspects of well-being, particularly when Self-directedness was low. Self-transcendence was strongly associated with positive emotions when the influence of the other character dimensions was taken into account. Personality explained nearly half the variance in happiness and more than one-third of the variance in wellness. Our data are cross-sectional and self-reported, so they are subject to personal perceptual bias. The emotional, social, and physical aspects of well-being are interdependent, but specific configurations of TCI Self-directedness, Cooperativeness, and Self-transcendence influence them differentially. Interactions among different combinations of character traits have strong effects on the perception of both wellness and happiness. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McCarthy, S.; Rachinskii, D.
2011-01-01
We describe two Euler type numerical schemes obtained by discretisation of a stochastic differential equation which contains the Preisach memory operator. Equations of this type are of interest in areas such as macroeconomics and terrestrial hydrology where deterministic models containing the Preisach operator have been developed but do not fully encapsulate stochastic aspects of the area. A simple price dynamics model is presented as one motivating example for our studies. Some numerical evidence is given that the two numerical schemes converge to the same limit as the time step decreases. We show that the Preisach term introduces a damping effect which increases on the parts of the trajectory demonstrating a stronger upwards or downwards trend. The results are preliminary to a broader programme of research of stochastic differential equations with the Preisach hysteresis operator.
Miles, Anne; Rodrigues, Vania; Sevdalis, Nick
2013-11-01
To examine the impact of numeric risk information about false negative (FN) and false positive (FP) rates in faecal occult blood testing (FOBt) on attitudes towards screening. 95 people aged 45-59, living in England, read 6 hypothetical vignettes presented online about the use of FOB testing to detect bowel cancer, in which information about FN and FP rates was systematically varied. Both verbal and numeric FN risk information reduced people's interest in screening compared with no FN information. Numeric FN risk information reduced people's perceptions of screening effectiveness and lowered perceived trust in the results of screening compared with both verbal FN information and no FN information. FP information did not affect attitudes towards FOB testing. There was limited evidence that FN information reduced interest and perceptions of screening effectiveness more in educated groups. Numeric FN risk information decreased people's perceptions of screening effectiveness and trust in the results of screening but did not affect people's interest in screening anymore than verbal FN risk information. Numeric FN information could be added to patient information without affecting interest in screening, although this needs to be replicated in a larger, more representative sample. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Micro-structure and motion of two-dimensional dense short spherocylinder liquids
NASA Astrophysics Data System (ADS)
Wang, Wen; Lin, Jyun-Ting; Su, Yen-Shuo; I, Lin
2018-03-01
We numerically investigate the micro-structure and motion of 2D liquids composed of dense short spherocylinders, by reducing the shape aspect ratio from 3. It is found that reducing shape aspect ratio from 3 causes a smooth transition from heterogeneous structures composed of crystalline ordered domains with good tetratic alignment order to those with good hexagonal bond-orientational order at an aspect ratio equaling 1.35. In the intermediate regime, both structural orders are strongly deteriorated, and the translational hopping rate reaches a maximum due to the poor particle interlocking of the disordered structure. Shortening rod length allows easier rotation, induces monotonic increase of rotational hopping rates, and resumes the separation of rotational and translational hopping time scales at the small aspect ratio end, after the crossover of their rates in the intermediate regime. At the large shape aspect ratio end, the poor local tetratic order has the same positive effects on facilitating local rotational and translational hopping. In contrast, at the small shape aspect ratio end, the poor local bond orientational order has the opposite effects on facilitating local rotational and translational hopping.
On virial analysis at low aspect ratio
Bongard, Michael W.; Barr, Jayson L.; Fonck, Raymond J.; ...
2016-07-28
The validity of virial analysis to infer global MHD equilibrium poloidal beta β p and internal inductance ℓ i from external magnetics measurements is examined for low aspect ratio configurations with A < 2. Numerical equilibrium studies at varied aspect ratio are utilized to validate the technique at finite aspect ratio. The effect of applying high-A approximations to low-A experimental data is quantified and demonstrates significant over-estimation of stored energy (factors of 2–10) in spherical tokamak geometry. Experimental approximations to equilibrium-dependent volume integral terms in the analysis are evaluated at low-A. Highly paramagnetic configurations are found to be inadequately representedmore » through the virial mean radius parameter R T. Alternate formulations for inferring β p and ℓ i that are independent of R T to avoid this difficulty are presented for the static isotropic limit. Lastly, these formulations are suitable for fast estimation of tokamak stored energy components at low aspect ratio using virial analysis.« less
DOT National Transportation Integrated Search
2006-03-01
All aviation accidents are tragic, but few are more avoidable than aircraft-assisted suicide. Aircraft-assisted suicide may precipitate as a result of clinical depression, marital or financial difficulties, or numerous other problems. While aircraft-...
Building a reference inventory of Great Lakes aquatic fauna
Despite the existence of numerous publications and web-pages that address aspects of species composition and distribution in the Great Lakes, there is at present no single resource that brings all this information together. This poster describes our progress towards generating a ...
OVERVIEW OF WATER MICROBIOLOGY AS IT RELATES TO PUBLIC HEALTH
One of the most important aspects of water microbiology is that we acquire numerous diseases from microorganisms found in water. Some of these diseases represent intoxications. One category of intoxication comes from drinking water which contains toxins produced by cyanobacteria ...
Aerodynamic Design of Axial Flow Compressors
NASA Technical Reports Server (NTRS)
Bullock, R. O. (Editor); Johnsen, I. A.
1965-01-01
An overview of 'Aerodynamic systems design of axial flow compressors' is presented. Numerous chapters cover topics such as compressor design, ptotential and viscous flow in two dimensional cascades, compressor stall and blade vibration, and compressor flow theory. Theoretical aspects of flow are also covered.
Workplace Math I: Easing into Math.
ERIC Educational Resources Information Center
Wilson, Nancy; Goschen, Claire
This basic skills learning module includes instruction in performing basic computations, using general numerical concepts such as whole numbers, fractions, decimals, averages, ratios, proportions, percentages, and equivalents in practical situations. The problems are relevant to all aspects of the printing and manufacturing industry, with emphasis…
Spatial patterns in community response to aircraft noise associated with non-noise factors
NASA Astrophysics Data System (ADS)
Hall, F. L.; Taylor, S. M.; Birnie, S. E.
1980-08-01
Non-noise aspects of airport operations may affect individuals' responses to aircraft noise. Fear of crashes, other forms of pollution, and proximity to the flight path are three such non-noise aspects which have spatial patterns that are closely related to the pattern of noise contours around an airport. If these variables affect response to aircraft noise, they may therefore confound attempts to understand relationships between noise level and community response. Analyses based on data from 673 individuals around Toronto International Airport suggest that these factors do affect annoyance responses, but do not affect reported activity interference. Hence it may prove fruitful, in aggregate analyses of community response data, to control for these variables in order to better understand the noise-annoyance relationships.
The physics of proton therapy.
Newhauser, Wayne D; Zhang, Rui
2015-04-21
The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy.
Newhauser, Wayne D; Zhang, Rui
2015-01-01
The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy. PMID:25803097
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi; Di Marco, Emanuele; Lykken, Joe
2014-10-17
In this technical note we present technical details on various aspects of the framework introduced in arXiv:1401.2077 aimed at extracting effective Higgs couplings in themore » $$h\\to 4\\ell$$ `golden channel'. Since it is the primary feature of the framework, we focus in particular on the convolution integral which takes us from `truth' level to `detector' level and the numerical and analytic techniques used to obtain it. We also briefly discuss other aspects of the framework.« less
3D numerical simulations of multiphase continental rifting
NASA Astrophysics Data System (ADS)
Naliboff, J.; Glerum, A.; Brune, S.
2017-12-01
Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and 3D simulations. Our presentation will focus on both the numerical assumptions required to produce these results and variations in 3D rifted margin architecture arising from a transition from slow to rapid rates of extension.
NASA Astrophysics Data System (ADS)
Lin, Jianzhong; Xia, Yi; Ku, Xiaoke
2014-10-01
Numerical simulations of polyalphaolefins-Al2O3 nanofluids containing cylindrical nanoparticles in a laminar pipe flow are performed by solving the Navier-Stokes equation with term of cylindrical nanoparticles, the general dynamic equation for cylindrical nanoparticles, and equation for nanoparticle orientation. The distributions of particle number and volume concentration, the friction factor, and heat transfer are obtained and analyzed. The results show that distributions of nanoparticle number and volume concentration are non-uniform across the section, with larger and smaller values in the region near the pipe center and near the wall, respectively. The non-uniformity becomes significant with the increase in the axial distance from the inlet. The friction factor decreases with increasing Reynolds number. The relationships between the friction factor and the nanoparticle volume concentration as well as particle aspect ratio are dependent on the Reynolds number. The Nusselt number of nanofluids, directly proportional to the Reynolds number, particle volume concentration, and particle aspect ratio, is higher near the pipe entrance than at the downstream locations. The rate of increase in Nusselt number at lower particle volume concentration is more than that at higher concentration. Finally, the expressions of friction factor and Nusselt number as a function of particle volume concentration, particle aspect ratio, and Reynolds number are derived based on the numerical data.
Basic numerical capacities and prevalence of developmental dyscalculia: the Havana Survey.
Reigosa-Crespo, Vivian; Valdés-Sosa, Mitchell; Butterworth, Brian; Estévez, Nancy; Rodríguez, Marisol; Santos, Elsa; Torres, Paul; Suárez, Ramón; Lage, Agustín
2012-01-01
The association of enumeration and number comparison capacities with arithmetical competence was examined in a large sample of children from 2nd to 9th grades. It was found that efficiency on numerical capacities predicted separately more than 25% of the variance in the individual differences on a timed arithmetical test, and this occurred for both younger and older learners. These capacities were also significant predictors of individual variations in an untimed curriculum-based math achievement test and on the teacher scores of math performance over developmental time. Based on these findings, these numerical capacities were used for estimating the prevalence and gender ratio of basic numerical deficits and developmental dyscalculia (DD) over the grade range defined above (N = 11,652 children). The extent to which DD affects the population with poor ability on calculation was also examined. For this purpose, the prevalence and gender ratio of arithmetical dysfluency (AD) were estimated in the same cohort. The estimated prevalence of DD was 3.4%, and the male:female ratio was 4:1. However, the prevalence of AD was almost 3 times as high (9.35%), and no gender differences were found (male:female ratio = 1.07:1). Basic numerical deficits affect 4.54% of school-age population and affect more boys than girls (2.4:1). The differences between the corresponding estimates were highly significant (α < .01). Based on these contrastive findings, it is concluded that DD, defined as a defective sense of numerosity, could be a distinctive disorder that affects only a portion of children with AD.
Seismogenic width controls aspect ratios of earthquake ruptures
NASA Astrophysics Data System (ADS)
Weng, Huihui; Yang, Hongfeng
2017-03-01
We investigate the effect of seismogenic width on aspect ratios of earthquake ruptures by using numerical simulations of strike-slip faulting and an energy balance criterion near rupture tips. If the seismogenic width is smaller than a critical value, then ruptures cannot break the entire fault, regardless of the size of the nucleation zone. The seismic moments of these self-arresting ruptures increase with the nucleation size, forming nucleation-related events. The aspect ratios increase with the seismogenic width but are smaller than 8. In contrast, ruptures become breakaway and tend to have high aspect ratios (>8) if the seismogenic width is sufficiently large. But the critical nucleation size is larger than the theoretical estimate for an unbounded fault. The eventual seismic moments of breakaway ruptures do not depend on the nucleation size. Our results suggest that estimating final earthquake magnitude from the nucleation phase may only be plausible on faults with small seismogenic width.
Numerical investigation of the thermal behavior of heated natural composite materials
NASA Astrophysics Data System (ADS)
Qasim, S. M.; Mohammed, F. Abbas; Hashim, R.
2015-11-01
In the present work numerical investigation was carried out for laminar natural convection heat transfer from natural composite material (NCM). Three types of natural materials such as seed dates, egg shells, and feathers are mixed separately with polyester resin. Natural materials are added with different volume fraction (10%, 20%, and 30%) are heated with different heat flux (1078W/m2, 928W/m2, 750W/m2, 608W/m2, and 457W/m2) at (vertical, inclined, and horizontal) position. Continuity and Navier-Stocks equations are solved numerically in three dimensions using ANSYS FLUENT package 12.1 software commercial program. Numerical results showed the temperature distribution was affected for all types at volume fraction 30% and heat flux is 1078 W/m2, for different position. So, shows that the plumes and temperature behavior are affected by the air and the distance from heat source. Numerical results showed acceptable agreement with the experimental previous results.
NASA Astrophysics Data System (ADS)
Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.
2015-11-01
The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.
Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods
NASA Technical Reports Server (NTRS)
Atkins, Harold L.; Pampell, Alyssa
2011-01-01
A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.
ERIC Educational Resources Information Center
Hurdle, Zachariah B.
2017-01-01
The purpose of the dissertation is to investigate three particular aspects that may affect the transition between a third grade Montessori system and a fourth grade non-Montessori system, specifically within the context of teaching and learning mathematics. These aspects are 1) the change in pacing and structure of the classroom, 2) the removal of…
Synesthesia and number cognition in children.
Green, Jennifer A K; Goswami, Usha
2008-01-01
Grapheme-color synesthesia, when achromatic digits evoke an experience of a specific color (photisms), has been shown to be consistent, involuntary, and linked with number concept in adults, yet there have been no comparable investigations with children. We present a systematic study of grapheme-color synesthesia in children aged between 7 and 15 years. Here we show that such children (but not children with phoneme-color synesthesia) experience involuntary difficulties in numerical tasks when digits are presented in colors incongruent with their photisms. Synesthesia in children may thus have important consequences for certain aspects of numerical cognition.
A projection method for low speed flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colella, P.; Pao, K.
The authors propose a decomposition applicable to low speed, inviscid flows of all Mach numbers less than 1. By using the Hodge decomposition, they may write the velocity field as the sum of a divergence-free vector field and a gradient of a scalar function. Evolution equations for these parts are presented. A numerical procedure based on this decomposition is designed, using projection methods for solving the incompressible variables and a backward-Euler method for solving the potential variables. Numerical experiments are included to illustrate various aspects of the algorithm.
Legendre modified moments for Euler's constant
NASA Astrophysics Data System (ADS)
Prévost, Marc
2008-10-01
Polynomial moments are often used for the computation of Gauss quadrature to stabilize the numerical calculation of the orthogonal polynomials, see [W. Gautschi, Computational aspects of orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials-Theory and Practice, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 294. Kluwer, Dordrecht, 1990, pp. 181-216 [6]; W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48(4) (1986) 369-382 [5]; W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3(3) (1982) 289-317 [4
Full velocity difference model for a car-following theory.
Jiang, R; Wu, Q; Zhu, Z
2001-07-01
In this paper, we present a full velocity difference model for a car-following theory based on the previous models in the literature. To our knowledge, the model is an improvement over the previous ones theoretically, because it considers more aspects in car-following process than others. This point is verified by numerical simulation. Then we investigate the property of the model using both analytic and numerical methods, and find that the model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion.
Numerical solutions for patterns statistics on Markov chains.
Nuel, Gregory
2006-01-01
We propose here a review of the methods available to compute pattern statistics on text generated by a Markov source. Theoretical, but also numerical aspects are detailed for a wide range of techniques (exact, Gaussian, large deviations, binomial and compound Poisson). The SPatt package (Statistics for Pattern, free software available at http://stat.genopole.cnrs.fr/spatt) implementing all these methods is then used to compare all these approaches in terms of computational time and reliability in the most complete pattern statistics benchmark available at the present time.
Numerical simulation of a hovering rotor using embedded grids
NASA Technical Reports Server (NTRS)
Duque, Earl-Peter N.; Srinivasan, Ganapathi R.
1992-01-01
The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Grosch, C. E.
1984-01-01
A compact finite-difference approximation to the unsteady Navier-Stokes equations in velocity-vorticity variables is used to numerically simulate a number of flows. These include two-dimensional laminar flow of a vortex evolving over a flat plate with an embedded cavity, the unsteady flow over an elliptic cylinder, and aspects of the transient dynamics of the flow over a rearward facing step. The methodology required to extend the two-dimensional formulation to three-dimensions is presented.
Advances in the computation of transonic separated flows over finite wings
NASA Technical Reports Server (NTRS)
Kaynak, Unver; Flores, Jolen
1989-01-01
Problems encountered in numerical simulations of transonic wind-tunnel experiments with low-aspect-ratio wings are surveyed and illustrated. The focus is on the zonal Euler/Navier-Stokes program developed by Holst et al. (1985) and its application to shock-induced separation. The physical basis and numerical implementation of the method are reviewed, and results are presented from studies of the effects of artificial dissipation, boundary conditions, grid refinement, the turbulence model, and geometry representation on the simulation accuracy. Extensive graphs and diagrams and typical flow visualizations are provided.
Approximate Micromechanics Treatise of Composite Impact
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Handler, Louis M.
2005-01-01
A formalism is described for micromechanic impact of composites. The formalism consists of numerous equations which describe all aspects of impact from impactor and composite conditions to impact contact, damage progression, and penetration or containment. The formalism is based on through-the-thickness displacement increments simulation which makes it convenient to track local damage in terms of microfailure modes and their respective characteristics. A flow chart is provided to cast the formalism (numerous equations) into a computer code for embedment in composite mechanic codes and/or finite element composite structural analysis.
Explicit finite-difference simulation of optical integrated devices on massive parallel computers.
Sterkenburgh, T; Michels, R M; Dress, P; Franke, H
1997-02-20
An explicit method for the numerical simulation of optical integrated circuits by means of the finite-difference time-domain (FDTD) method is presented. This method, based on an explicit solution of Maxwell's equations, is well established in microwave technology. Although the simulation areas are small, we verified the behavior of three interesting problems, especially nonparaxial problems, with typical aspects of integrated optical devices. Because numerical losses are within acceptable limits, we suggest the use of the FDTD method to achieve promising quantitative simulation results.
Youth reports of parents' romantic relationship quality: Links to physical health.
Abbas, Tazeen; Zilioli, Samuele; Tobin, Erin T; Imami, Ledina; Kane, Heidi S; Saleh, Daniel J; Slatcher, Richard B
2016-09-01
Prior work has shown that negative aspects (e.g., conflict) of marriage or marriage-like relationships are associated with poor health of offspring, but much less is known about the effects of positive aspects (e.g., affection) of parental romantic relationships. This study investigated links between conflict and affection within parents' romantic relationships and the health of youth with asthma. Eighty youths with asthma aged 10-17 answered daily questions over a 4-day period about conflict and affection within their parents' romantic relationship, as well as their own daily mood, asthma symptoms, and expiratory peak flow. Multiple regression analyses revealed that romantic affection-but not conflict-was directly associated with higher expiratory peak flow. Further, there was a significant indirect effect of romantic affection via youth positive affect on lower asthma symptoms. These results are the first to our knowledge to demonstrate that youth-reported positive characteristics of parents' romantic relationships are associated with better health among youth with asthma. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Metacognition and Successful Learning Strategies in Higher Education
ERIC Educational Resources Information Center
Railean, Elena, Ed.; Alev Elçi, Ed.; Elçi, Atilla, Ed.
2017-01-01
Metacognition plays an important role in numerous aspects of higher educational learning strategies. When properly integrated in the educational system, schools are better equipped to build more efficient and successful learning strategies for students in higher education. "Metacognition and Successful Learning Strategies in Higher…
Disintegration of fluids under supercritical conditions from mixing layer studies
NASA Technical Reports Server (NTRS)
Okong'o, N.; Bellan, J.
2003-01-01
Databases of transitional states obtained from Direct Numerical simulations (DNS) of temporal, supercritical mixing layers for two species systems, O2/H2 and C7H16/N2, are analyzed to elucidate species-specific turbulence aspects and features of fluid disintegration.
The Leafhoppers: Anatomy, Physiology and Behavior of Feeding and Its Sensory Mediation
USDA-ARS?s Scientific Manuscript database
The present book contains chapters summarizing all major aspects of the biology of leafhoppers (family Cicadellidae), among the most numerous and important insect pests in the world. Major chapter topics discussed include internal and external morphology, physiology, behavior, reproduction, taxonom...
Investigating Variation, Teacher's Edition. Probing the Natural World/3.
ERIC Educational Resources Information Center
Florida State Univ., Tallahassee. Dept. of Science Education.
The teacher's edition for the unit entitled "Investigating Variation" in Intermediate Science Curriculum Study Level III, provides numerous suggestions for teaching specific activities included in the unit. The unit is aimed at selected aspects of measurement and analysis. The chapters included are "The Road…
Combustion Fundamentals Research
NASA Technical Reports Server (NTRS)
1984-01-01
The various physical processes that occur in the gas turbine combustor and the development of analytical models that accurately describe these processes are discussed. Aspects covered include fuel sprays; fluid mixing; combustion dynamics; radiation and chemistry and numeric techniques which can be applied to highly turbulent, recirculating, reacting flow fields.
DOT National Transportation Integrated Search
2000-03-26
This study compared the effect of alternative graphic or : numeric cockpit display formats on the tactical aspects of : vertical navigation (VNAV). Display formats included: : a) a moving map with altitude range arc, b) the same : format, supplemente...
The Mathematics of Medical Imaging in the Classroom.
ERIC Educational Resources Information Center
Funkhouser, Charles P.; Jafari, Farhad; Eubank, William B.
2002-01-01
Presents an integrated exposition of aspects of secondary school mathematics and a medical science specialty. Reviews clinical medical practice and theoretical and empirical literature in mathematics education and radiology to develop and pilot model integrative classroom topics and activities. Suggests mathematical applications in numeration and…
Ye, Jingfei; Gao, Zhishan; Wang, Shuai; Cheng, Jinlong; Wang, Wei; Sun, Wenqing
2014-10-01
Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.
Membrane triangles with corner drilling freedoms. III - Implementation and performance evaluation
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Alexander, Scott
1992-01-01
This paper completes a three-part series on the formulation of 3-node, 9-dof membrane triangles with corner drilling freedoms based on parametrized variational principles. The first four sections cover element implementation details including determination of optimal parameters and treatment of distributed loads. Then three elements of this type, labeled ALL, FF and EFF-ANDES, are tested on standard plane stress problems. ALL represents numerically integrated versions of Allman's 1988 triangle; FF is based on the free formulation triangle presented by Bergan and Felippa in 1985; and EFF-ANDES represent two different formulations of the optimal triangle derived in Parts I and II. The numerical studies indicate that the ALL, FF and EFF-ANDES elements are comparable in accuracy for elements of unitary aspect ratios. The ALL elements are found to stiffen rapidly in inplane bending for high aspect ratios, whereas the FF and EFF elements maintain accuracy. The EFF and ANDES implementations have a moderate edge in formation speed over the FF.
From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts.
Nagler, Christina; Haug, Joachim T
2015-01-01
Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparisons between stellar models and reliability of the theoretical models
NASA Astrophysics Data System (ADS)
Lebreton, Yveline; Montalbán, Josefina
2010-07-01
The high quality of the asteroseismic data provided by space missions such as CoRoT (Michel et al. in The CoRoT Mission, ESA Spec. Publ. vol. 1306, p. 39, 2006) or expected from new operating missions such as Kepler (Christensen-Dalsgaard et al. in Commun. Asteroseismol. 150:350, 2007) requires the capacity of stellar evolution codes to provide accurate models whose numerical precision is better than the expected observational errors (i.e. below 0.1 μHz on the frequencies in the case of CoRoT). We present a review of some thorough comparisons of stellar models produced by different evolution codes, involved in the CoRoT/ESTA activities (Monteiro in Evolution and Seismic Tools for Stellar Astrophysics, 2009). We examine the numerical aspects of the computations as well as the effects of different implementations of the same physics on the global quantities, physical structure and oscillations properties of the stellar models. We also discuss a few aspects of the input physics.
Grissmann, Sebastian; Zander, Thorsten O; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter
2017-01-01
Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios.
Grissmann, Sebastian; Zander, Thorsten O.; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter
2017-01-01
Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios. PMID:28769776
Farrar, Stephanie; Stopa, Lusia; Turner, Hannah
2015-03-01
Cognitive behavioural models of eating disorders highlight low self-esteem as a maintaining factor. This study explored the impact of positive and negative self-imagery on aspects of the working self (implicit and explicit self-esteem and self-concept clarity) in individuals with high body dissatisfaction (an important aspect of eating disorders). The impact of these images on state body satisfaction and affect was also explored. A group of participants with high body dissatisfaction completed measures of explicit self-esteem, self-concept clarity, state body satisfaction and affect prior to completing a negative (n = 33) or positive (n = 33) self-imagery retrieval task. Following this they completed the baseline measures and a measure of implicit self-esteem. Holding a negative self-image in mind had a negative effect on explicit self-esteem, whilst holding a positive self-image had a beneficial effect. There were no effects of imagery on implicit self-esteem. Holding a negative image in mind led to a significant reduction in self-concept clarity; however, positive self-imagery did not affect self-concept clarity. Holding a negative self-image in mind led to a decrease in body satisfaction and state affect. The opposite was found for the positive self-imagery group. Implicit self-esteem was not measured at baseline. Imagery techniques which promote positive self-images may help improve aspects of the working self, body satisfaction and affect in individuals with high levels of body dissatisfaction. As such, these imagery techniques warrant further investigation in a clinical population. Copyright © 2014 Elsevier Ltd. All rights reserved.
Numerical simulation of the cavitation characteristics of a mixed-flow pump
NASA Astrophysics Data System (ADS)
Chen, T.; Li, S. R.; Li, W. Z.; Liu, Y. L.; Wu, D. Z.; Wang, L. Q.
2013-12-01
As a kind of general equipment for fluid transportation, pumps were widely used in industry which includes many applications of high pressure, temperature and toxic fluids transportations. Performances of pumps affect the safety and reliability of the whole special equipment system. Cavitation in pumps cause the loss of performance and erosion of the blade, which could affect the running stability and reliability of the pump system. In this paper, a kind of numerical method for cavitaion performance prediction was presented. In order to investigate the accuracy of the method, CFD flow analysis and cavitation performance predictions of a mixed-flow pump were carried out. The numerical results were compared with the test results.
Adapting dairy farms to climate change
USDA-ARS?s Scientific Manuscript database
Climate change is projected to affect many aspects of dairy production. These aspects include the growing season length, crop growth processes, harvest timing and losses, heat stress on cattle, nutrient emissions and losses, and ultimately farm profitability. To assess the sensitivity of dairy farms...
NASA Astrophysics Data System (ADS)
Kobler, Johannes; Zehetgruber, Bernhard; Jandl, Robert; Dirnböck, Thomas; Schindlbacher, Andreas
2017-04-01
Own to the complexity of landscape morphology, mountainous landscapes are characterized by substantial changes of site parameters (i.e. elevation, slope, aspect) within short distances. As these site parameters affect the spatial-temporal dynamics of landscape climate and therefore the spatial patterns of forest carbon (C) distribution, they pose a substantial impact on landscape-related soil C dynamics. Aspect and elevation form natural temperature gradients and thereby can be used as a surrogate to infer to potential climate change effects on forest C. We aimed at studying how slope aspect affected soil respiration, soil C stocks, tree increment and litter production along two elevation gradients in the Zöbelboden catchment, northern limestone Alps, Austria during 2015 and 2016. A preliminary assessment showed that soil respiration was significantly higher at the west facing slope across all elevations. Soil temperature was only slightly higher at the west facing slope, and warmer soil only partly explained the large difference in soil respiration between east and west facing slopes. Aspect had no clear effect on soil moisture, which seemed to be strongly affected by stocking density at the different forest sites. The dense grassy ground vegetation at some of the sites further seems to play a key role in determining soil respiration rates and litter input. A detailed analysis and C-budgets along the elevation gradients will be presented at the conference.
The Moral Development of the Child: An Integrated Model
Ma, Hing Keung
2013-01-01
Previous theories of moral development such as those by Piaget and Kohlberg usually focused on the cognitive or rational aspect, and seldom included the affective aspect in their construction. The characteristics of the stages of moral development in the present paper are elaborated with special reference to psychological needs, altruism and human relationships, and justice reasoning. The three stages are: (1) Physical Survival, Selfishness, and Obedience, (2) Love Needs, Reciprocal Altruism, and Instrumental Purpose; and (3) Belongingness Needs, Primary Group Altruism, and Mutual Interpersonal Expectations. At Stage 1, a deep and profound attachment to parents, empathy toward the significant others, and obedience to authorities all contribute to the physical survival of a person at this stage. People at Stage 2 are self-protective, dominant, exploitative, and opportunistic. The need to love and to be loved is gratified on the basis of reciprocal altruism. People at Stage 3 have a strong desire to gratify their belongingness needs to a primary group. They are willing to sacrifice for the benefits of the group at great cost. While the psychological needs and altruism are related to the affective aspect of moral development, the justice reasoning is related to the cognitive aspect. The proposed theoretical model attempts to integrate the affective and cognitive aspects of moral development, and prototypic responses to questions related to hypothetical moral dilemmas are presented to substantiate the proposed stage structures. It is hypothesized that the sequence of these three stages is invariant of person and culture. PMID:24350226
The moral development of the child: an integrated model.
Ma, Hing Keung
2013-01-01
Previous theories of moral development such as those by Piaget and Kohlberg usually focused on the cognitive or rational aspect, and seldom included the affective aspect in their construction. The characteristics of the stages of moral development in the present paper are elaborated with special reference to psychological needs, altruism and human relationships, and justice reasoning. The three stages are: (1) Physical Survival, Selfishness, and Obedience, (2) Love Needs, Reciprocal Altruism, and Instrumental Purpose; and (3) Belongingness Needs, Primary Group Altruism, and Mutual Interpersonal Expectations. At Stage 1, a deep and profound attachment to parents, empathy toward the significant others, and obedience to authorities all contribute to the physical survival of a person at this stage. People at Stage 2 are self-protective, dominant, exploitative, and opportunistic. The need to love and to be loved is gratified on the basis of reciprocal altruism. People at Stage 3 have a strong desire to gratify their belongingness needs to a primary group. They are willing to sacrifice for the benefits of the group at great cost. While the psychological needs and altruism are related to the affective aspect of moral development, the justice reasoning is related to the cognitive aspect. The proposed theoretical model attempts to integrate the affective and cognitive aspects of moral development, and prototypic responses to questions related to hypothetical moral dilemmas are presented to substantiate the proposed stage structures. It is hypothesized that the sequence of these three stages is invariant of person and culture.
Extended model of restricted beam for FSO links
NASA Astrophysics Data System (ADS)
Poliak, Juraj; Wilfert, Otakar
2012-10-01
Modern wireless optical communication systems in many aspects overcome wire or radio communications. Their advantages are license-free operation and broad bandwidth that they offer. The medium in free-space optical (FSO) links is the atmosphere. Operation of outdoor FSO links struggles with many atmospheric phenomena that deteriorate phase and amplitude of the transmitted optical beam. This beam originates in the transmitter and is affected by its individual parts, especially by the lens socket and the transmitter aperture, where attenuation and diffraction effects take place. Both of these phenomena unfavourable influence the beam and cause degradation of link availability, or its total malfunction. Therefore, both of these phenomena should be modelled and simulated, so that one can judge the link function prior to the realization of the system. Not only the link availability and reliability are concerned, but also economic aspects. In addition, the transmitted beam is not, generally speaking, circularly symmetrical, what makes the link simulation more difficult. In a comprehensive model, it is necessary to take into account the ellipticity of the beam that is restricted by circularly symmetrical aperture where then the attenuation and diffraction occur. General model is too computationally extensive; therefore simplification of the calculations by means of analytical and numerical approaches will be discussed. Presented model is not only simulated using computer, but also experimentally proven. One can then deduce the ability of the model to describe the reality and to estimate how far can one go with approximations, i.e. limitations of the model are discussed.
Arnold, Jeffrey
2018-05-14
Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided. About the speaker: Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2½ years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.
What Role for Emotions in Cooperating Robots? - The Case of RH3-Y
NASA Astrophysics Data System (ADS)
Dessimoz, Jean-Daniel; Gauthey, Pierre-François
The paper reviews key aspects of emotions in the context of cooperating robots (mostly, robots cooperating with humans), and gives numerous concrete examples from RH-Y robots. Emotions have been first systematically studied in relation to human expressions, and then the shift has come towards a machine-based replication. Emotions appear to result from changes, from convergence or deviation between status and goals; they trigger appropriate activities, are commonly represented in 2D or 3D affect space, and can be made visible by facial expressions. While specific devices are sometimes created, emotive expressions seem to be conveniently rendered by a set of facial images or more simply by some icons; they can also possibly be parameterized in a few dimensions for continuous modulation. In fact however, internal forces for activities and changes may be expressed in many ways other than faces: screens, panels, and operational behaviors. Relying on emotions ensures useful aspects, such as experience reuse, legibility or communication. But it also includes limits such as due to the nature of robots, of interactive media, and even of the very domain of emotions. For our goal, the design of effective and efficient, cooperating robots, in domestic applications, communication and interaction play key roles; best practices become evident after experimental verification; and our experience gained so far, over 10 years and more, points at a variety of successful strategic attitudes and expression modes, much beyond classic human emotions and facial or iconic images.
Tse, Maric T; Piantadosi, Patrick T; Floresco, Stan B
2015-06-01
Cognitive dysfunction in schizophrenia is one of the most pervasive and debilitating aspects of the disorder. Among the numerous neural abnormalities that may contribute to schizophrenia symptoms, perturbations in markers for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), particularly within the frontal lobes, are some of the most reliable alterations observed at postmortem examination. However, how prefrontal GABA dysfunction contributes to cognitive impairment in schizophrenia remains unclear. We provide an overview of postmortem GABAergic perturbations in the brain affected by schizophrenia and describe circumstantial evidence linking these alterations to cognitive dysfunction. In addition, we conduct a survey of studies using neurodevelopmental, genetic, and pharmacologic rodent models that induce schizophrenia-like cognitive impairments, highlighting the convergence of these mechanistically distinct approaches to prefrontal GABAergic disruption. We review preclinical studies that have directly targeted prefrontal cortical GABAergic transmission using local application of GABAA receptor antagonists. These studies have provided an important link between GABA transmission and cognitive dysfunction in schizophrenia because they show that reducing prefrontal inhibitory transmission induces various cognitive, emotional, and dopaminergic abnormalities that resemble aspects of the disorder. These converging clinical and preclinical findings provide strong support for the idea that perturbations in GABA signaling drive certain forms of cognitive dysfunction in schizophrenia. Future studies using this approach will yield information to refine further a putative "GABA hypothesis" of schizophrenia. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2005-01-01
Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.
Numerical Relativity Simulations for Black Hole Merger Astrophysics
NASA Technical Reports Server (NTRS)
Baker, John G.
2010-01-01
Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.
Numerical-experimental investigation of PE/EVA foam injection molded parts
NASA Astrophysics Data System (ADS)
Spina, Roberto
The main objective of the presented work is to propose a robust framework to test foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of a new foam material based on numerical and experimental results. The research purpose is to assess parameters influencing several aspects, such as foam morphology and compression behavior, using useful suggestions from finite element analysis. The investigated polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the numerical models and the parameters of the injection molding process.
Molsher, Robyn; Newsome, Alan E; Newsome, Thomas M; Dickman, Christopher R
2017-01-01
Apex predators are subject to lethal control in many parts of the world to minimize their impacts on human industries and livelihoods. Diverse communities of smaller predators-mesopredators-often remain after apex predator removal. Despite concern that these mesopredators may be 'released' in the absence of the apex predator and exert negative effects on each other and on co-occurring prey, these interactions have been little studied. Here, we investigate the potential effects of competition and intraguild predation between red foxes (Vulpes vulpes) and feral cats (Felis catus) in south-eastern Australia where the apex predator, the dingo (Canis dingo), has been extirpated by humans. We predicted that the larger fox would dominate the cat in encounters, and used a fox-removal experiment to assess whether foxes affect cat abundance, diet, home-range and habitat use. Our results provide little indication that intraguild predation occurred or that cats responded numerically to the fox removal, but suggest that the fox affects some aspects of cat resource use. In particular, where foxes were removed cats increased their consumption of invertebrates and carrion, decreased their home range size and foraged more in open habitats. Fox control takes place over large areas of Australia to protect threatened native species and agricultural interests. Our results suggest that fox control programmes could lead to changes in the way that cats interact with co-occurring prey, and that some prey may become more vulnerable to cat predation in open habitats after foxes have been removed. Moreover, with intensive and more sustained fox control it is possible that cats could respond numerically and alter their behaviour in different ways to those documented herein. Such outcomes need to be considered when estimating the indirect impacts of fox control. We conclude that novel approaches are urgently required to control invasive mesopredators at the same time, especially in areas where apex predators are absent.
Molsher, Robyn; Newsome, Thomas M.; Dickman, Christopher R.
2017-01-01
Apex predators are subject to lethal control in many parts of the world to minimize their impacts on human industries and livelihoods. Diverse communities of smaller predators—mesopredators—often remain after apex predator removal. Despite concern that these mesopredators may be 'released' in the absence of the apex predator and exert negative effects on each other and on co-occurring prey, these interactions have been little studied. Here, we investigate the potential effects of competition and intraguild predation between red foxes (Vulpes vulpes) and feral cats (Felis catus) in south-eastern Australia where the apex predator, the dingo (Canis dingo), has been extirpated by humans. We predicted that the larger fox would dominate the cat in encounters, and used a fox-removal experiment to assess whether foxes affect cat abundance, diet, home-range and habitat use. Our results provide little indication that intraguild predation occurred or that cats responded numerically to the fox removal, but suggest that the fox affects some aspects of cat resource use. In particular, where foxes were removed cats increased their consumption of invertebrates and carrion, decreased their home range size and foraged more in open habitats. Fox control takes place over large areas of Australia to protect threatened native species and agricultural interests. Our results suggest that fox control programmes could lead to changes in the way that cats interact with co-occurring prey, and that some prey may become more vulnerable to cat predation in open habitats after foxes have been removed. Moreover, with intensive and more sustained fox control it is possible that cats could respond numerically and alter their behaviour in different ways to those documented herein. Such outcomes need to be considered when estimating the indirect impacts of fox control. We conclude that novel approaches are urgently required to control invasive mesopredators at the same time, especially in areas where apex predators are absent. PMID:28068378
Aerodynamic effects of trees on pollutant concentration in street canyons.
Buccolieri, Riccardo; Gromke, Christof; Di Sabatino, Silvana; Ruck, Bodo
2009-09-15
This paper deals with aerodynamic effects of avenue-like tree planting on flow and traffic-originated pollutant dispersion in urban street canyons by means of wind tunnel experiments and numerical simulations. Several parameters affecting pedestrian level concentration are investigated, namely plant morphology, positioning and arrangement. We extend our previous work in this novel aspect of research to new configurations which comprise tree planting of different crown porosity and stand density, planted in two rows within a canyon of street width to building height ratio W/H=2 with perpendicular approaching wind. Sulfur hexafluoride was used as tracer gas to model the traffic emissions. Complementary to wind tunnel experiments, 3D numerical simulations were performed with the Computational Fluid Dynamics (CFD) code FLUENT using a Reynolds Stress turbulence closure for flow and the advection-diffusion method for concentration calculations. In the presence of trees, both measurements and simulations showed considerable larger pollutant concentrations near the leeward wall and slightly lower concentrations near the windward wall in comparison with the tree-less case. Tree stand density and crown porosity were found to be of minor importance in affecting pollutant concentration. On the other hand, the analysis indicated that W/H is a more crucial parameter. The larger the value of W/H the smaller is the effect of trees on pedestrian level concentration regardless of tree morphology and arrangement. A preliminary analysis of approaching flow velocities showed that at low wind speed the effect of trees on concentrations is worst than at higher speed. The investigations carried out in this work allowed us to set up an appropriate CFD modelling methodology for the study of the aerodynamic effects of tree planting in street canyons. The results obtained can be used by city planners for the design of tree planting in the urban environment with regard to air quality issues.
Impact of wildfire and slope aspect on soil temperature in a mountainous environment
Ebel, Brian A.
2012-01-01
Soil temperature changes after landscape disturbance impact hydrology, ecology, and geomorphology. This study used field measurements to examine wildfire and aspect effects on soil temperatures. Combustion of the litter and duff layers on north-facing slopes removed pre-fire aspect-driven soil temperature controls.Wildfire is one of the most significant disturbances in mountainous landscapes and can affect soil temperature, which can in turn impact ecologic and geomorphologic processes. This study measured the temperature in near-surface soil (i.e., top 30 cm) during the first summer after a wildfire. In mountainous environments, aspect can also affect soil temperature, so north- vs. south-facing aspects were compared using a fully factorial experimental design to explore the effects of both wildfire and aspect on soil temperature. The data showed major wildfire impacts on soil temperatures on north-facing aspects (unburned ∼4–5°C cooler, on average) but little impact on south-facing aspects. Differences in soil temperatures between north-facing and south-facing unburned aspects (north ∼5°C cooler, on average) were also observed. The data led to the conclusion that, for this field site during the summer period, the forest canopy and litter and duff layers on north-facing slopes (when unburned) substantially decreased mean soil temperatures and temperature variability. The sparse trees on south-facing slopes caused little to no difference in soil temperatures following wildfire in south-facing soils for unburned compared with burned conditions. The results indicate that wildfire can reduce or even remove aspect impacts on soil temperature by combusting the forest canopy and litter and duff layers, which then homogenizes soil temperatures across the landscape.
ERIC Educational Resources Information Center
Morgan, Margaret K., Ed.; And Others
Ten papers dealing with various aspects of cognitive and affective dimensions of the allied health student are presented. They are: "A Review of Research on Cognitive and Affective Dimensions of Education for the Health Related Professions" by Margaret K. Morgan, "Methodological Problems in the Study of Affective and Cognitive…
A Study on Students' Affective Factors in Junior High School English Teaching
ERIC Educational Resources Information Center
Zhu, Biyi; Zhou, Yaping
2012-01-01
Affect is considered as aspects of emotion, feeling, mood or attitude which condition behaviors in second language acquisition. Positive affect is good for studying while negative affect will inevitably hinder learners' learning process. As we know, students in junior high school are special groups as they are experiencing great changes both in…
Ansari, Daniel; Dhital, Bibek
2006-11-01
Numerical magnitude processing is an essential everyday skill. Functional brain imaging studies with human adults have repeatedly revealed that bilateral regions of the intraparietal sulcus are correlated with various numerical and mathematical skills. Surprisingly little, however, is known about the development of these brain representations. In the present study, we used functional neuroimaging to compare the neural correlates of nonsymbolic magnitude judgments between children and adults. Although behavioral performance was similar across groups, in comparison to the group of children the adult participants exhibited greater effects of numerical distance on the left intraparietal sulcus. Our findings are the first to reveal that even the most basic aspects of numerical cognition are subject to age-related changes in functional neuroanatomy. We propose that developmental impairments of number may be associated with atypical specialization of cortical regions underlying magnitude processing.
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2017-01-01
In this paper, we discuss some aspects of numerical modeling of electromagnetic scattering by discrete random medium by using numerically exact solutions of the macroscopic Maxwell equations. Typical examples of such media are clouds of interstellar dust, clouds of interplanetary dust in the Solar system, dusty atmospheres of comets, particulate planetary rings, clouds in planetary atmospheres, aerosol particles with numerous inclusions and so on. Our study is based on the results of extensive computations of different characteristics of electromagnetic scattering obtained by using the superposition T-matrix method which represents a direct computer solver of the macroscopic Maxwell equations for an arbitrary multisphere configuration. As a result, in particular, we clarify the range of applicability of the low-density theories of radiative transfer and coherent backscattering as well as of widely used effective-medium approximations.
Contribution of the Recent AUSM Schemes to the Overflow Code: Implementation and Validation
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Buning, Pieter G.
2000-01-01
We shall present results of a recent collaborative effort between the authors attempting to implement the numerical flux scheme, AUSM+ and its new developments, into a widely used NASA code, OVERFLOW. This paper is intended to give a thorough and systematic documentation about the solutions of default test cases using the AUSNI+ scheme. Hence we will address various aspects of numerical solutions, such as accuracy, convergence rate, and effects of turbulence models, over a variety of geometries, speed regimes. We will briefly describe the numerical schemes employed in the calculations, including the capability of solving for low-speed flows and multiphase flows by employing the concept of numerical speed of sound. As a bonus, this low Mach number formulations also enhances convergence to steady solutions for flows even at transonic speed. Calculations for complex 3D turbulent flows were performed with several turbulence models and the results display excellent agreements with measured data.
A numerical study of transient heat and mass transfer in crystal growth
NASA Technical Reports Server (NTRS)
Han, Samuel Bang-Moo
1987-01-01
A numerical analysis of transient heat and solute transport across a rectangular cavity is performed. Five nonlinear partial differential equations which govern the conservation of mass, momentum, energy and solute concentration related to crystal growth in solution, are simultaneously integrated by a numerical method based on the SIMPLE algorithm. Numerical results showed that the flow, temperature and solute fields are dependent on thermal and solutal Grashoff number, Prandtl number, Schmidt number and aspect ratio. The average Nusselt and Sherwood numbers evaluated at the center of the cavity decrease markedly when the solutal buoyancy force acts in the opposite direction to the thermal buoyancy force. When the solutal and thermal buoyancy forces act in the same direction, however, Sherwood number increases significantly and yet Nusselt number decreases. Overall effects of convection on the crystal growth are seen to be an enhancement of growth rate as expected but with highly nonuniform spatial growth variations.
Kodama, Yoshimi; Fukahori, Hiroki; Sato, Kana; Nishida, Tomoko
2016-10-01
To determine if nurse managers' leadership style is related to Japanese staff nurses' affective commitment to their hospital. In Western countries, nurse managers' transformational leadership style has been found to increase staff nurses' affective commitment to their hospital. However, there are few studies examining this relationship in the context of acute care hospitals in Japan. Staff nurses completed measures of their nurse managers' perceived leadership style and factors related to their own affective commitment. The association between affective commitment and perception of leadership style was assessed with multiple logistic regression. Of 736 questionnaires distributed, 579 (78.9%) were returned, and data from 396 (53.8%) fully completed questionnaires were analysed. The intellectual stimulation aspect of transformational leadership positively increased staff nurses' affective commitment (odds ratio: 2.23). Nurse managers' transactional and laissez-faire leadership styles were not related to affective commitment among staff nurses. The intellectual stimulation aspect of transformational leadership may increase the retention of staff nurses through enhanced affective commitment. To increase staff nurses' affective commitment to their hospital, we suggest that hospital administrators equip nurse managers with intellectual stimulation skills. © 2016 John Wiley & Sons Ltd.
Analysis of Indonesian educational system standard with KSIM cross-impact method
NASA Astrophysics Data System (ADS)
Arridjal, F.; Aldila, D.; Bustamam, A.
2017-07-01
The Result of The Programme of International Student Assessment (PISA) on 2012 shows that Indonesia is on 64'th position from 65 countries in Mathematics Mean Score. The 2013 Learning Curve Mapping, Indonesia is included in the 10th category of countries with the lowest performance on cognitive skills aspect, i.e. 37'th position from 40 countries. Competency is built by 3 aspects, one of them is cognitive aspect. The low result of mapping on cognitive aspect, describe the low of graduate competences as an output of Indonesia National Education System (INES). INES adopting a concept Eight Educational System Standards (EESS), one of them is graduate competency standard which connected directly with Indonesia's students. This research aims is to model INES by using KSIM cross-impact. Linear regression models of EESS constructed using the accreditation national data of Senior High Schools in Indonesia. The results then interpreted as impact value on the construction of KSIM cross-impact INES. The construction is used to analyze the interaction of EESS and doing numerical simulation for possible public policy in the education sector, i.e. stimulate the growth of education staff standard, content, process and infrastructure. All simulations of public policy has been done with 2 methods i.e with a multiplier impact method and with constant intervention method. From numerical simulation result, it is shown that stimulate the growth standard of content in the construction KSIM cross-impact EESS is the best option for public policy to maximize the growth of graduate competency standard.
Rigon, Arianna; Turkstra, Lyn S; Mutlu, Bilge; Duff, Melissa C
2018-05-01
To examine the relationship between facial-affect recognition and different aspects of self- and proxy-reported social-communication impairment following moderate-severe traumatic brain injury (TBI). Forty-six adults with chronic TBI (>6 months postinjury) and 42 healthy comparison (HC) adults were administered the La Trobe Communication Questionnaire (LCQ) Self and Other forms to assess different aspects of communication competence and the Emotion Recognition Test (ERT) to measure their ability to recognize facial affects. Individuals with TBI underperformed HC adults in the ERT and self-reported, as well as were reported by close others, as having more communication problems than did HC adults. TBI group ERT scores were significantly and negatively correlated with LCQ-Other (but not LCQ-Self) scores (i.e., participants with lower emotion-recognition scores were rated by close others as having more communication problems). Multivariate regression analysis revealed that adults with higher ERT scores self-reported more problems with disinhibition-impulsivity and partner sensitivity and had fewer other-reported problems with disinhibition-impulsivity and conversational effectiveness. Our findings support growing evidence that emotion-recognition deficits play a role in specific aspects of social-communication outcomes after TBI and should be considered in treatment planning. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA
2006-10-24
Various aspects and applications of microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having exergetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
Indigenous Footprints on Health Curriculum
ERIC Educational Resources Information Center
Andersen, Clair
2009-01-01
There are numerous aspects to becoming an effective, culturally competent health practitioner, among these is the need to "become knowledgeable about the historical and sociopolitical backgrounds of clients" (Bemak et al., 2003, p. 26). It has been established that culturally sensitive empathy has the potential to contribute greatly to…
Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA
2010-01-26
Various aspects and applications or microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
Wegeng, Robert S.; TeGrotenhuis, Ward E.; Whyatt, Greg A.
2007-09-18
Various aspects and applications of microsystem process networks are described. The design of many types of Microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
A CBO Study: The Economics of Climate Change: A Primer
2003-04-01
issues related to climate change , focusing primarily on its economic aspects. The study draws from numerous published sources to summarize the current...state of climate science and provide a conceptual framework for addressing climate change as an economic problem. It also examines public policy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Marika
2014-08-11
The 2014 annual tutorial for the Community Earth System Model (CESM) was held on August 11-August 15, 2014 at the National Center for Atmospheric Research in Boulder, CO. It included lectures and practical sessions on numerous aspects of the CESM model. The proceedings submitted here include a description of the tutorial.
Hepatitis E Virus: Foodborne, Waterborne and Zoonotic Transmission
Yugo, Danielle M.; Meng, Xiang-Jin
2013-01-01
Hepatitis E virus (HEV) is responsible for epidemics and endemics of acute hepatitis in humans, mainly through waterborne, foodborne, and zoonotic transmission routes. HEV is a single-stranded, positive-sense RNA virus classified in the family Hepeviridae and encompasses four known Genotypes (1–4), at least two new putative genotypes of mammalian HEV, and one floating genus of avian HEV. Genotypes 1 and 2 HEVs only affect humans, while Genotypes 3 and 4 are zoonotic and responsible for sporadic and autochthonous infections in both humans and several other animal species worldwide. HEV has an ever-expanding host range and has been identified in numerous animal species. Swine serve as a reservoir species for HEV transmission to humans; however, it is likely that other animal species may also act as reservoirs. HEV poses an important public health concern with cases of the disease definitively linked to handling of infected pigs, consumption of raw and undercooked animal meats, and animal manure contamination of drinking or irrigation water. Infectious HEV has been identified in numerous sources of concern including animal feces, sewage water, inadequately-treated water, contaminated shellfish and produce, as well as animal meats. Many aspects of HEV pathogenesis, replication, and immunological responses remain unknown, as HEV is an extremely understudied but important human pathogen. This article reviews the current understanding of HEV transmission routes with emphasis on food and environmental sources and the prevalence of HEV in animal species with zoonotic potential in humans. PMID:24071919
Intracellular signaling by phospholipase D as a therapeutic target.
Steed, P M; Chow, A H
2001-09-01
The pharmaceutical industry has recently focused on intracellular signaling as a means to integrate the multiple facets of complex disease states, such as inflammation, because these pathways respond to numerous extracellular signals and coordinate a collection of cell responses contributing to pathology. One critical aspect of intracellular signaling is regulation of key cell functions by lipid mediators, in particular the generation of a key mediator, phosphatidic acid (PA) via the hydrolysis of phosphatidylcholine by phospholipase D (PLD). Research in this field has intensified, due in part to the recent cloning and partial characterization of the two PLD isoforms in mammalian cells, and this work has contributed significantly to our understanding of events downstream of PA generation. It is these effector functions of PLD activity that make this pathway attractive as a therapeutic target while the biochemical properties of the PLD isozymes make them amenable to small molecule intervention. Recent studies indicate that PA, and its immediate metabolites diacylglycerol and lyso-PA, affect numerous cellular pathways including ligand-mediated secretion, cytoskeletal reorganisations, respiratory burst, prostaglandin release, cell migration, cytokine release, and mitogenesis. This review summarises the data implicating signaling via PLD in these cell functions, obtained from: (i) molecular analyses of PLD/effector interactions, (ii) correlation between PA production and cell responses, (iii) experimental manipulation of PA levels, (iv) inhibition of PLD regulators, and (v) direct inhibition of PA production. The utility of targeting PLD signaling for the treatment of acute/chronic inflammation and other indications is discussed in light of these data.
Theory of mind, social development, and psychosis.
Casacchia, Massimo; Mazza, Monica; Roncone, Rita
2004-06-01
The difficulty in interpreting other people's mental states found in children with autism and in people affected by schizophrenia may be explained in terms of a unique mental process called Theory of Mind. The paper discusses the main operational issues of such a peculiar aspect of social cognition, the Theory of Mind, and its implication in schizophrenia, including a review of its related neural structures. Theory of Mind abilities may be a relevant aspect of social interaction involving people affected by schizophrenia, and they need to be further investigated in clinical research.
Lennox-Gastaut syndrome: impact on the caregivers and families of patients.
Gibson, Patricia A
2014-01-01
Lennox-Gastaut syndrome (LGS) has a major impact on the health-related quality of life (HRQL) of the affected children as well as their caregivers. The primary caregiver in the family is generally the mother, with support from the father and siblings. The burden of care and the effects of the disease on the child necessitate adjustments in virtually all aspects of the lives of their family. These adjustments inevitably affect the physical, emotional, social, and financial health of the whole family. Numerous sources of support for families can help to ease the burden of care. Improvements in the treatment of LGS, in addition to helping the child with LGS, would likely help improve the HRQL of the family members. This pilot parent survey was designed to explore the impact of epilepsy on caregiver HRQL. Parents of children with epilepsy who had contacted the Epilepsy Information Service at the Wake Forest University School of Medicine, Winston-Salem, NC, USA, were sent questionnaires comprising open- and closed-ended questions. A total of 200 surveys were distributed, with a return rate of 48%. The results revealed that 74% of the parents believed that having a child with epilepsy brought them and their partner closer together. However, when the parents were asked to explain the manner in which epilepsy affected their families, answers included continuous stress, major financial distress, and lack of time to spend with other children. Information and resources for the families of children with LGS could help improve the HRQL of both the patients and their relatives.
Wood, Alison; Runciman, Ross; Wylie, Kevan R.; McManus, Ross
2012-01-01
Numerous studies have now demonstrated that many older women retain an interest in their sexual lives. Yet, how many old age psychiatrists commonly check with older women about whether the depression they are treating, or the SSRIs (Selective Serotonin Re-uptake Inhibitors) they have prescribed, have adversely affected their patient’s sexual lives? We consider the latest evidence regarding cultural, social and medical influences on older women’s sexual lives and some specific issues which affect lesbian and transsexual people. We examine how mental illness and psychotropic medication in particular can adversely affect older women’s sexual functioning and at how difficult it often proves to be for women to seek help. We also focus on why doctors and in particular psychiatrists may not take a sexual history, look for sexual side effects or refer for appropriate treatment, especially when interviewing older women patients. Most published information about psychiatric training and sexual issues focuses on the younger male patient. We therefore aimed to provide a broad-ranging review of the literature regarding female sexual functioning in old age, the difficulties that can arise and the role that old age psychiatrists have an opportunity to fulfil, in this often neglected aspect of their patients’ treatment. From our review it was clear that, in the light of the increasing cultural acceptability of discussions regarding sexuality and older women, the training of student doctors and trainee psychiatrists needs to reflect this change so that old age psychiatrists can enhance the quality of their patient care. PMID:23185718
Three Essays on Bureaucracy at American Research Universities
ERIC Educational Resources Information Center
Taggart, Gabel
2017-01-01
The three essays in this dissertation each examine how aspects of contemporary administrative structure within American research universities affect faculty outcomes. Specific aspects of administrative structure tested in this dissertation include the introduction of new administrative roles, administrative intensity (i.e., relative size of…
Elsman, Ellen Bernadette Maria; van Rens, Gerardus Hermanus Maria Bartholomeus; van Nispen, Ruth Marie Antoinette
2017-12-01
While the impact of visual impairments on specific aspects of young adults' lives is well recognised, a systematic understanding of its impact on all life aspects is lacking. This study aims to provide an overview of life aspects affected by visual impairment in young adults (aged 18-25 years) using a concept-mapping approach. Visually impaired young adults (n = 22) and rehabilitation professionals (n = 16) participated in online concept-mapping workshops (brainstorm procedure), to explore how having a visual impairment influences the lives of young adults. Statements were categorised based on similarity and importance. Using multidimensional scaling, concept maps were produced and interpreted. A total of 59 and 260 statements were generated by young adults and professionals, respectively, resulting in 99 individual statements after checking and deduplication. The combined concept map revealed 11 clusters: work, study, information and regulations, social skills, living independently, computer, social relationships, sport and activities, mobility, leisure time, and hobby. The concept maps provided useful insight into activities influenced by visual impairments in young adults, which can be used by rehabilitation centres to improve their services. This might help in goal setting, rehabilitation referral and successful transition to adult life, ultimately increasing participation and quality of life. Implications for rehabilitation Having a visual impairment affects various life-aspects related to participation, including activities related to work, study, social skills and relationships, activities of daily living, leisure time and mobility. Concept-mapping helped to identify the life aspects affected by low vision, and quantify these aspects in terms of importance according to young adults and low vision rehabilitation professionals. Low vision rehabilitation centres should focus on all life aspects found in this study when identifying the needs of young adults, as this might aid goal setting and rehabilitation referral, ultimately leading to more successful transitions, better participation and quality of life.
On the role of entailment patterns and scalar implicatures in the processing of numerals
Panizza, Daniele; Chierchia, Gennaro; Clifton, Charles
2009-01-01
There has been much debate, in both the linguistics and the psycholinguistics literature, concerning numbers and the interpretation of number denoting determiners ('numerals'). Such debate concerns, in particular, the nature and distribution of upper-bounded ('at-least') interpretations vs. lower-bounded ('exact') construals. In the present paper we show that the interpretation and processing of numerals are affected by the entailment properties of the context in which they occur. Experiment 1 established off-line preferences using a questionnaire. Experiment 2 investigated the processing issue through an eye tracking experiment using a silent reading task. Our results show that the upper-bounded interpretation of numerals occurs more often in an upward entailing context than in a downward entailing context. Reading times of the numeral itself were longer when it was embedded in an upward entailing context than when it was not, indicating that processing resources were required when the context triggered an upper-bounded interpretation. However, reading of a following context that required an upper-bounded interpretation triggered more regressions towards the numeral when it had occurred in a downward entailing context than in an upward entailing one. Such findings show that speakers' interpretation and processing of numerals is systematically affected by the polarity of the sentence in which they occur, and support the hypothesis that the upper-bounded interpretation of numerals is due to a scalar implicature. PMID:20161494
ERIC Educational Resources Information Center
Malmivuori, Marja-Liisa
2006-01-01
This paper presents affect as an essential aspect of students' self-reflection and self-regulation. The introduced concepts of self-system and self-system process stress the importance of self-appraisals of personal competence and agency in affective responses and self-regulation in problem solving. Students are viewed as agents who constantly…
Helseth, Sarah A; Waschbusch, Daniel A; King, Sara; Willoughby, Michael T
2015-11-01
Callous/unemotional traits (CU) moderate children's conduct problems (CP) in numerous domains, including social functioning. The present study examined whether CU traits also moderate the aggressiveness of children's social information processing (SIP) and responses to varying intensities of peer provocation. Sixty elementary school-age children (46 males) were grouped into those without CP or CU (controls, n = 32), those with CP but not CU (CP-only; n = 14), and those with both CP and CU (CPCU, n = 14). Participants completed a task that measured two aspects of SIP (response generation and hostile attribution bias) and a computerized reaction time task (CRTT) that measured behavior, affect, and communication before and after provocation under instrumental and hostile aggressive conditions. Children with CPCU generated more aggressive responses than controls on measures of SIP. On the CRTT, all children exhibited reactive aggression following high provocation, but only children with CPCU exhibited proactive aggression, and reactive aggression following low provocation; no differences in affect were found. In a series of exploratory analyses, CPCU children communicated antisocially, while CP-only communicated prosocially. Finally, children with CPCU did not seem to hold a grudge following the final instance of provocation, instead gradually returning to baseline like their non-CU peers. These distinct social cognitive and behavioral profiles hint at different etiologies of CP and CPCU, underscoring the variability of aggression in these populations.
How services for children with disabilities in Serbia affect the quality of life of their families.
Ignjatovic, Tamara Dzamonja; Milanovic, Marko; Zegarac, Nevenka
2017-09-01
Families that have children with disabilities face numerous difficulties related to the lack of services support, social isolation and poverty in Serbia. Mostly due to the prolonged effect of social and economic crisis, there are insufficient adequate and diverse community-based services for those families. The aim of the study was to examine the effect of newly introduced services on the quality of families' life. A pretest/posttest study was conducted at the beginning of service and one year later to evaluate the effect of services measured by Family Quality of Life Scale (Hoffman et al., 2006). The sample consists of 153 families of children with disabilities from 35 different places in Serbia. The results show that the services generally improved the families' quality of life, particularly in the aspects targeted by services, but also had significant positive effect on family interaction and parenting. The services had the highest impact on the families that perceived the lowest life quality before using them. The life quality was improved, regardless of the type of services, but the effectiveness is affected by the severity of child disability. The results might be useful for further steps in developing and evaluating individually and flexible tailored service that support families' needs and suits them the best. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pourvali, Katayoun; Abbasi, Mehrnaz; Mottaghi, Azadeh
2016-01-01
Diabetes Mellitus (DM) is a chronic heterogeneous disorder and oxidative stress is a key participant in the development and progression of it and its complications. Anti-oxidant status can affect vulnerability to oxidative damage, onset and progression of diabetes and diabetes complications. Superoxide dismutase 2 (SOD2) is one of the major antioxidant defense systems against free radicals. SOD2 is encoded by the nuclear SOD2 gene located on the human chromosome 6q25 and the Ala16Val polymorphism has been identified in exon 2 of the human SOD2 gene. Ala16Val (rs4880) is the most commonly studied SOD2 single nucleotide polymorphism (SNP) in SOD2 gene. This SNP changes the amino acid at position 16 from valine (Val) to alanine (Ala), which has been shown to cause a conformational change in the target sequence of manganese superoxide dismutase (MnSOD) and also affects MnSOD activity in mitochondria. Ala16Val SNP and changes in the activity of the SOD2 antioxidant enzyme have been associated with altered progression and risk of different diseases. Association of this SNP with diabetes and some of its complications have been studied in numerous studies. This review evaluated how rs4880, oxidative stress and antioxidant status are associated with diabetes and its complications although some aspects of this line still remain unclear. PMID:27141263
Characterization and recycling of cadmium from waste nickel-cadmium batteries.
Huang, Kui; Li, Jia; Xu, Zhenming
2010-11-01
A severe threat was posed due to improper and inefficient recycling of waste batteries in China. The present work considered the fundamental aspects of the recycling of cadmium from waste nickel-cadmium batteries by means of vacuum metallurgy separation in scale-up. In the first stage of this work, the characterization of waste nickel-cadmium batteries was carried out. Five types of batteries from different brands and models were selected and their components were characterized in relation to their elemental chemical composition and main phase. In the second stage of this work, the parameters affecting the recycling of cadmium by means of vacuum metallurgy separation were investigated and a L(16) (4(4)) orthogonal design was applied to optimize the parameters. With the thermodynamics theory and numerical analysis, it can be seen that the orthogonal design is an effective tool for investigating the parameters affecting the recycling of cadmium. The optimum operating parameters for the recycling of cadmium obtained by orthogonal design and verification test were 1073 K (temperature), 2.5h (heating time), 2 wt.% (the addition of carbon powder), and 30 mm (the loaded height), respectively, with recycling efficiency approaching 99.98%. The XRD and ICP-AES analyzed results show that the condensed product was characterized as metallic cadmium, and cadmium purity was 99.99% under the optimum condition. Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
CFD simulation of coaxial injectors
NASA Technical Reports Server (NTRS)
Landrum, D. Brian
1993-01-01
The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial injectors. The following sections will discuss the physical aspects of injectors, the CFD code employed, and preliminary results of a simulation of a single coaxial injector for which experimental data is available. It is hoped that this work will lay the foundation for the development of a unique and useful tool to support the SSME program.
2014-01-01
Background mRNA translation involves simultaneous movement of multiple ribosomes on the mRNA and is also subject to regulatory mechanisms at different stages. Translation can be described by various codon-based models, including ODE, TASEP, and Petri net models. Although such models have been extensively used, the overlap and differences between these models and the implications of the assumptions of each model has not been systematically elucidated. The selection of the most appropriate modelling framework, and the most appropriate way to develop coarse-grained/fine-grained models in different contexts is not clear. Results We systematically analyze and compare how different modelling methodologies can be used to describe translation. We define various statistically equivalent codon-based simulation algorithms and analyze the importance of the update rule in determining the steady state, an aspect often neglected. Then a novel probabilistic Boolean network (PBN) model is proposed for modelling translation, which enjoys an exact numerical solution. This solution matches those of numerical simulation from other methods and acts as a complementary tool to analytical approximations and simulations. The advantages and limitations of various codon-based models are compared, and illustrated by examples with real biological complexities such as slow codons, premature termination and feedback regulation. Our studies reveal that while different models gives broadly similiar trends in many cases, important differences also arise and can be clearly seen, in the dependence of the translation rate on different parameters. Furthermore, the update rule affects the steady state solution. Conclusions The codon-based models are based on different levels of abstraction. Our analysis suggests that a multiple model approach to understanding translation allows one to ascertain which aspects of the conclusions are robust with respect to the choice of modelling methodology, and when (and why) important differences may arise. This approach also allows for an optimal use of analysis tools, which is especially important when additional complexities or regulatory mechanisms are included. This approach can provide a robust platform for dissecting translation, and results in an improved predictive framework for applications in systems and synthetic biology. PMID:24576337
ERIC Educational Resources Information Center
Trujillo, Gloriana; Tanner, Kimberly D.
2014-01-01
Conceptual learning is a uniquely human behavior that engages all aspects of individuals: cognitive, metacognitive, and affective. The affective domain is key in learning. In this paper, that authors have explored three affective constructs that may be important for understanding biology student learning: self-efficacy--the set of beliefs that one…
Drama and the Representation of Affect--Structures of Feeling and Signs of Learning
ERIC Educational Resources Information Center
Franks, Anton
2014-01-01
The way in which school students represent affective aspects of human relationships in drama and what this reveals about learning in drama is the focus of this paper. Such an enquiry traverses the borders between affect, intellect, and physicality. Affect and its representation in drama have been themes in the history of drama and theatre and is a…
The Semantic Morphological Category of Noun Number in Structurally Different Languages
ERIC Educational Resources Information Center
Mingazova, Nailya G.; Subich, Vitaly G.; Shangaraeva, Liya
2016-01-01
The article represents structural semantic analysis of the grammatical number of nouns in the Indo-European (English, German), Semitic (Arabic, Hebrew), and Altai (Tatar, Japanese) languages. The category of number comprises numerous phenomena, including some transitive and historical aspects, which complicate and enrich the system of language.…
Reports 2. The Yugoslav Serbo-Croatian-English Contrastive Project.
ERIC Educational Resources Information Center
Filipovic, Rudolf, Ed.
The second volume in this series contains seven articles dealing with various aspects of Serbo-Croatian-English contrastive analysis. They are: "Derivation in Serbo-Croatian and English," by Zeljko Bujas; "Predicative Patterns for English Adjectives and Their Contrastive Correspondents in Serbo-Croatian," by Vladimir Ivir; "Numeratives and…
Numeracy and Australian Teachers
ERIC Educational Resources Information Center
Forgasz, Helen; Leder, Gilah
2016-01-01
Australian teachers, recruited via Facebook, completed an online survey about aspects of numeracy. The survey was designed to explore views on numeracy and capacity to respond to numeracy tasks. In this paper, we focus primarily on responses to two numeracy tasks--one numerical, the other requiring critical evaluation. On the first item, 40%…
The Soil Stack: An Interactive Computer Program Describing Basic Soil Science and Soil Degradation.
ERIC Educational Resources Information Center
Cattle, S. R.; And Others
1995-01-01
A computer program dealing with numerous aspects of soil degradation has a target audience of high school and university students (16-20 year olds), and is presented in a series of cards grouped together as stacks. Describes use of the software in Australia. (LZ)
Sardinha, T Cristina; Corman, Marvin L
2002-12-01
Technologic advances have contributed to numerous diverse approaches to the management of hemorrhoid disease over the past centuries. Better understanding of the pathophysiology and anatomy of the anal canal has also added to the increased success in the treatment of hemorrhoids. This article reviews the clinical and pathological aspects of hemorrhoid disease, emphasizing new therapeutic modalities.
ERIC Educational Resources Information Center
Snell, Joel
2017-01-01
There are numerous aspects to being non-Caucasian that may not be known by Whites. Persons of color suggest folks who are African, South Americans, Native Americans, Biracial, Asians and others. The question is what do these individuals feel relative to their color and facial characteristics. Eugene Robinson suggest that the future favorable color…
Predicting Observer Training Satisfaction and Certification
ERIC Educational Resources Information Center
Bell, Courtney A.; Jones, Nathan D.; Lewis, Jennifer M.; Liu, Shuangshuang
2013-01-01
The last decade produced numerous studies that show that students learn more from high-quality teachers than they do from lower quality teachers. If instruction is to improve through the use of more rigorous teacher evaluation systems, the implementation of these systems must provide consistent and interpretable information about which aspects of…
Abstract Numeric Relations and the Visual Structure of Algebra
ERIC Educational Resources Information Center
Landy, David; Brookes, David; Smout, Ryan
2014-01-01
Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition,…
What is the E.Q. (Environmental Quality) of Your School?
ERIC Educational Resources Information Center
1971
Designed for elementary school use, this manual provides teachers with numerous experiments and activities to help children understand and evaluate the surrounding environment. Activities are planned to explore many aspects of the environmental problem. Suggestions for involvement in language arts, social studies, and mathematics are included…
Novel technologies in rumen microbiology: What have we learned?
USDA-ARS?s Scientific Manuscript database
Beginning in the 1950s, rumen microbiology enjoyed a golden age in which the secrets of the rumen began to be teased out through the isolation of numerous new microbial species and the discovery of such important concepts as interspecies hydrogen transfer and the quantitative aspects of bacterial gr...
Experiential Learning in Hospitality Management Education
ERIC Educational Resources Information Center
Brennen, Paul George
2017-01-01
The research study recognized that, although the knowledge obtained from academic textbooks and traditional classes are important to post-secondary hospitality management curriculum as they provide numerous insights and perspectives of different methods to manage a particular avenue within the hospitality industry; it is not the only aspect of the…
Grading as a Sadomasochistic Activity or an Erotic Benevolent Activity?
ERIC Educational Resources Information Center
Tjarks, Larry D.
Numerous research studies have been conducted concerning the negative aspects of grading: the low correlations between academic success (high grades) and later vocational or professional success, possible sadomasochistic motives of teachers in awarding grades, and grade assignment resulting from the teacher's sense of duty or responsibility to…
The Classical Performing Arts of India.
ERIC Educational Resources Information Center
Curtiss, Marie Joy
A monograph of the numerous activities that have contributed to the current renaissance of India's classical performing arts covers the theoretical aspects, musical instruments, the main schools of classical dance, and drama. Besides the basic research described, the total project produced a set of 300 slides with annotated listing, picturing the…
End-to-end 9-D polarized bunch transport in eRHIC energy-recovery recirculator, some aspects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meot, F.; Meot, F.; Brooks, S.
2015-05-03
This paper is a brief overview of some of the numerous beam and spin dynamics investigations undertaken in the framework of the design of the FFAG based electron energy recovery re-circulator ring of the eRHIC electron-ion collider project
Two Aspects of the Therapeutic Alliance: Differential Relations with Depressive Symptom Change
ERIC Educational Resources Information Center
Webb, Christian A.; Derubeis, Robert J.; Amsterdam, Jay D.; Shelton, Richard C.; Hollon, Steven D.; Dimidjian, Sona
2011-01-01
Objective: The therapeutic alliance has been linked to symptom change in numerous investigations. Although the alliance is commonly conceptualized as a multidimensional construct, few studies have examined its components separately. The current study explored which components of the alliance are most highly associated with depressive symptom…
Revealing Educationally Critical Aspects of Rate
ERIC Educational Resources Information Center
Herbert, Sandra; Pierce, Robyn
2012-01-01
Rate (of change) is an important but complicated mathematical concept describing a ratio comparing two different numeric, measurable quantities. Research referring to students' difficulties with this concept spans more than 20 years. It suggests that problems experienced by some calculus students are likely a result of pre-existing limited or…
A School Reentry Program for Chronically Ill Children.
ERIC Educational Resources Information Center
Worchel-Prevatt, Frances F.; Heffer, Robert W.; Prevatt, Bruce C.; Miner, Jennifer; Young-Saleme, Tammi; Horgan, Daniel; Lopez, Molly A.; Frankel, Lawrence; Rae, William A.
1998-01-01
Describes a school reintegration program aimed at overcoming the numerous psychological, physical, environmental, and family-based deterrents to school reentry for chronically ill children. The program uses a systems approach to children's mental health with an emphasis on multiple aspects of the child's environment (i.e., family, medical…
FACTS FOR PROSPECTIVE FARMERS.
ERIC Educational Resources Information Center
MYERS, KENNETH H.
WRITTEN PRIMARILY FOR THE PERSON WITH LITTLE OR NO FARMING KNOWLEDGE OR EXPERIENCE WHO EXPECTS FARMING TO PROVIDE THE MAJOR PART OF HIS AND HIS FAMILY'S INCOME, THIS PUBLICATION BRIEFLY EXPLORES NUMEROUS ASPECTS OF OPERATING A FAMILY-MANAGED COMMERCIAL FARM. IN DESCRIBING WHAT FARMING IS LIKE TODAY, THE FOLLOWING POINTS ARE COVERED--IMPORTANT…
Editorial Comment: Stewardship and the Global Estate
ERIC Educational Resources Information Center
Biology and Human Affairs, 1972
1972-01-01
A review of two collections of papers (Ehrlich, Holdren, and Holm: Man and the Ecosphere''; Murdoch: Environment - Resources, Pollution and Society'') dealing with numerous aspects of environment-man interactions, and a book (Potter: Bioethics) concerned with the need to develop a clear ethical relationship with biology and the environment. (AL)
Multifaceted NOS Instruction: Contextualizing Nature of Science with Documentary Films
ERIC Educational Resources Information Center
Bloom, Mark; Binns, Ian C.; Koehler, Catherine
2015-01-01
This research focuses on inservice science teachers' conceptions of nature of science (NOS) before and after a two-week intensive summer professional development (PD). The PD combined traditional explicit NOS instruction, numerous interactive interventions that highlighted NOS aspects, along with documentary films that portrayed NOS in context of…
Contextual Fear Conditioning in Zebrafish
ERIC Educational Resources Information Center
Kenney, Justin W.; Scott, Ian C.; Josselyn, Sheena A.; Frankland, Paul W.
2017-01-01
Zebrafish are a genetically tractable vertebrate that hold considerable promise for elucidating the molecular basis of behavior. Although numerous recent advances have been made in the ability to precisely manipulate the zebrafish genome, much less is known about many aspects of learning and memory in adult fish. Here, we describe the development…
Kanasi: A Brief Grammar Sketch.
ERIC Educational Resources Information Center
Pappenhagen, Ronald W.
An outline of the grammar of Kanasi, a non-Austronesian language in the Indo-Pacific family of the Daga branch and spoken in Papua New Guinea, includes analysis of noun phrases (numerals and descriptive modifiers, genitive constructions, and adpositions); verbs (affixes; tense, aspect, and moods; and causation); predicate nominals; existential,…
An Approach to Theory-Based Youth Programming
ERIC Educational Resources Information Center
Duerden, Mat D.; Gillard, Ann
2011-01-01
A key but often overlooked aspect of intentional, out-of-school-time programming is the integration of a guiding theoretical framework. The incorporation of theory in programming can provide practitioners valuable insights into essential processes and principles of successful programs. While numerous theories exist that relate to youth development…
ERIC Educational Resources Information Center
Docheff, Dennis M.; Gerdes, Dan
2015-01-01
This article challenges coaches to address the more personal, human elements of coaching--the HEART of coaching. While there is much research on numerous aspects of coaching, this article provides ideas that make a lasting impact on the hearts of athletes. Using HEART as an acronym, five elements of effective coaching are presented: Humility,…
Natural Number Bias in Operations with Missing Numbers
ERIC Educational Resources Information Center
Christou, Konstantinos P.
2015-01-01
This study investigates the hypothesis that there is a natural number bias that influences how students understand the effects of arithmetical operations involving both Arabic numerals and numbers that are represented by symbols for missing numbers. It also investigates whether this bias correlates with other aspects of students' understanding of…
Research in nonlinear structural and solid mechanics
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)
1980-01-01
Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.
NASA Astrophysics Data System (ADS)
Price, A.; Giardino, J. R.; Marcantonio, F.
2015-12-01
The alpine critical zone is affected by various inputs, storages, pathways, and outputs. Unfortunately, many of these processes distribute the pollutants beyond the immediate area and into the surrounding biological and anthropogenic communities. Years of mining and improper disposal of the tailings and acid-mine drainage have degraded the quality of surface water within the San Juan Mountains. However, mining may not be the only factor significantly affecting the surface water quality in this high-elevation environment. As a high elevation system, this area is a fragile ecosystem with inputs ranging from local mining to atmospheric transport and deposition. Studies from around the world have shown atmospheric transport and deposition affect high-elevation systems. Thus, a significant question arises: does elevation or aspect affect the volume and rate of atmospheric deposition of pollutants? We assume atmospheric deposition occurs on the slopes in addition to in streams, lakes, and ponds. Deposition on slopes can be transported to nearby surface waters and increase the impact of the atmospheric pollutants along with residence time. Atmospheric deposition data were collected for aluminum, iron, manganese, nitrate, phosphate, and sulfate. Water chemistry data were collected for the same constituents as the atmospheric deposition with the addition of temperature, dissolved oxygen, pH, and specific conductance. Deposition samples were collected on a five-day sampling regime during two summers. Water quality samples were collected in-stream adjacent to the deposition-ample collectors. Collection sites were located on opposite sides of Red Mountain at five equal elevations providing two different aspects. The north side is drained by Red Mountain Creek and the south side is drained by Mineral Creek. Differences in atmospheric deposition and water quality at different elevations and aspects suggest there is a relationship between aspect and elevation on atmospheric pollution deposition. It is suggested that degradation of water quality in the San Juan Mountains is affected by atmospheric deposition along with the damage sustained from local mining activities. These results facilitate a better understanding of this high-elevation critical-zone system.
... a certain eye disease that affects the retina (retinitis pigmentosa). Some people also use it for preventing numerous ... prematurity. An eye disease that affects the retina (retinitis pigmentosa). Most research shows that taking lutein by mouth ...
Aspects of the color flavor locking phase of QCD in the Nambu Jona-Lasinio approximation
NASA Astrophysics Data System (ADS)
Casalbuoni, R.; Gatto, R.; Nardulli, G.; Ruggieri, M.
2003-08-01
We study two aspects of the color flavor locked phase of QCD in the Nambu Jona-Lasinio approximation. The first one is the issue of the dependence on μ of the ultraviolet cutoff in the gap equation, which is solved by allowing for a running coupling constant. The second one is the dependence of the gap on the strange quark mass; using high density effective theory we perform an expansion in the parameter (ms/μ)2 after checking that its numerical validity is already very good at first order.
Numerical Ergonomics Analysis in Operation Environment of CNC Machine
NASA Astrophysics Data System (ADS)
Wong, S. F.; Yang, Z. X.
2010-05-01
The performance of operator will be affected by different operation environments [1]. Moreover, poor operation environment may cause health problems of the operator [2]. Physical and psychological considerations are two main factors that will affect the performance of operator under different conditions of operation environment. In this paper, applying scientific and systematic methods find out the pivot elements in the field of physical and psychological factors. There are five main factors including light, temperature, noise, air flow and space that are analyzed. A numerical ergonomics model has been built up regarding the analysis results which can support to advance the design of operation environment. Moreover, the output of numerical ergonomic model can provide the safe, comfortable, more productive conditions for the operator.
ERIC Educational Resources Information Center
Legenbauer, Tanja; Vocks, Silja; Betz, Sabrina; Puigcerver, Maria Jose Baguena; Benecke, Andrea; Troje, Nikolaus F.; Ruddel, Heinz
2011-01-01
Various components of body image were measured to assess body image disturbances in patients with obesity. To overcome limitations of previous studies, a photo distortion technique and a biological motion distortion device were included to assess static and dynamic aspects of body image. Questionnaires assessed cognitive-affective aspects, bodily…
Youth Reports of Parents’ Romantic Relationship Quality: Links to Physical Health
Abbas, Tazeen; Zilioli, Samuele; Tobin, Erin T.; Imami, Ledina; Kane, Heidi S.; Saleh, Daniel J.; Slatcher, Richard B.
2016-01-01
Objective Prior work has shown that negative aspects (e.g., conflict) of marriage or marriage-like relationships are associated with poor health of offspring, but much less is known about the effects of positive aspects (e.g., affection) of parental romantic relationships. This study investigated links between conflict and affection within parents’ romantic relationships and the health of youth with asthma. Method Eighty youths with asthma aged 10-17 answered daily questions over a 4-day period about conflict and affection within their parents’ romantic relationship, as well as their own daily mood, asthma symptoms, and expiratory peak flow. Results Multiple regression analyses revealed that romantic affection—but not conflict—was directly associated with higher expiratory peak flow. Further, there was a significant indirect effect of romantic affection via youth positive affect on lower asthma symptoms. Conclusion These results are the first to our knowledge to demonstrate that youth-reported positive characteristics of parents’ romantic relationships are associated with better health among youth with asthma. PMID:26998733
Respiratory complaints in Chinese: cultural and diagnostic specificities.
Han, Jiangna; Zhu, Yuanjue; Li, Shunwei; Chen, Xiansheng; Put, Claudia; Van de Woestijne, Karel P; Van den Bergh, Omer
2005-06-01
We investigated the qualitative components of a wide range of Chinese descriptors of dyspnea and associated symptoms, and their relevance for clinical diagnosis. Sixty-one spontaneously reported descriptors were elicited in Chinese patients to make a symptom checklist, which was administered to new groups of patients with different cardiopulmonary diseases, to patients with medically unexplained dyspnea and to healthy subjects. Test-retest reliability was satisfactory for most of the descriptors. A principal component analysis on 61 descriptors yielded the following eight factors: dyspnea-effort of breathing; dyspnea-affective aspect; wheezing; anxiety; tingling; palpitation; coughing and sputum; and dying experience. Although the descriptors of dyspnea-effort of breathing resembled Western wordings and were shared by patients with a variety of diseases, the descriptors of dyspnea-affective aspect appeared to be more culturally specific and were primarily linked to the diagnosis of medically unexplained dyspnea, whereas wheezing was specifically linked to asthma. Three factors of breathlessness were found in Chinese. The descriptors of dyspnea-effort of breathing and wheezing appear to be similar to Western descriptors, whereas the dyspnea-affective aspect seems to bear cultural specificity.
Metacognition, Positioning and Emotions in Mathematical Activities
ERIC Educational Resources Information Center
Daher, Wajeeh; Anabousy, Ahlam; Jabarin, Roqaya
2018-01-01
Researchers of mathematics education have been paying attention to the affective aspect of learning mathematics for more than one decade. Different theoretical frameworks have been suggested to analyze this aspect, where we utilize in the present research the discursive framework of Evans, Morgan and Tsatsaroni. This framework enables to link…
Research and Clinical Center for Child Development Annual Report, 1984-1985.
ERIC Educational Resources Information Center
Miyake, Kazuo, Ed.
The seven articles in this annual report concern aspects of attachment, social interaction among parents and children, temperament, affective behavior, and/or research methodology. Aspects of attachment and temperament are addressed in Kazuo Miyake's study of the "Relation of Temperamental Disposition to Classification of Attachment,"…
Games, Gaming, and Gamification: Some Aspects of Motivation
ERIC Educational Resources Information Center
Hanson-Smith, Elizabeth
2016-01-01
Unsupported claims have been made for the use of games in education and the gamification (game-like aspects, such as scores and point goals) of various learning elements. This brief article examines what may be the motivational basis of gaming and how it can affect students' behavior and ultimate success.
The Arts in Turkish Preschool Education
ERIC Educational Resources Information Center
Acer, Dilek
2015-01-01
One of the most important factors determining a nation's level of development in the modern world is preschool education. When preschool education is perceived as an entity that affects every aspect of childhood development, this fact is undeniable. Several aspects of preschool education, including art education, play a significant role in a…
Cytokine antibody array analysis in brain and periphery of scrapie-infected Tg338 mice
USDA-ARS?s Scientific Manuscript database
Scrapie is a naturally occurring transmissible spongiform encephalopathy (TSE) that affects sheep and goats. While a change in prion protein conformation has been established as an important aspect of disease, other aspects of TSE pathogenesis are not fully understood. The preset study used protei...
The Mathematics Values in Classroom Inventory: Development and Initial Validation
ERIC Educational Resources Information Center
Tapsir, Ruzela; Nik Azis, Nik Pa
2017-01-01
Value has been identified as an essential aspect towards the quality in mathematics education at various levels of the system, institutional, curriculum, education management, and classroom interactions. However, few studies were focused on values, its development, measurement, and impact in education as compared to other affective aspects such as…
Predictors of Student Persistence: Student Satisfaction and Aspects of the Residential Environment
ERIC Educational Resources Information Center
Nayor, Gregory J.
2009-01-01
Research in higher education over the past several decades has extensively examined the extent to which various aspects of the college environment affect student persistence (Astin, 1962, 1993; Bean, 1980; Pascarella & Terenzini, 2005; Tinto, 1975, 1988, 1993). Furthermore, researchers have noted the importance of the residential living…
Teachers’ perceptions of aspects affecting seminar learning: a qualitative study
2013-01-01
Background Many medical schools have embraced small group learning methods in their undergraduate curricula. Given increasing financial constraints on universities, active learning groups like seminars (with 25 students a group) are gaining popularity. To enhance the understanding of seminar learning and to determine how seminar learning can be optimised it is important to investigate stakeholders’ views. In this study, we qualitatively explored the views of teachers on aspects affecting seminar learning. Methods Twenty-four teachers with experience in facilitating seminars in a three-year bachelor curriculum participated in semi-structured focus group interviews. Three focus groups met twice with an interval of two weeks led by one moderator. Sessions were audio taped, transcribed verbatim and independently coded by two researchers using thematic analysis. An iterative process of data reduction resulted in emerging aspects that influence seminar learning. Results Teachers identified seven key aspects affecting seminar learning: the seminar teacher, students, preparation, group functioning, seminar goals and content, course coherence and schedule and facilities. Important components of these aspects were: the teachers’ role in developing seminars (‘ownership’), the amount and quality of preparation materials, a non-threatening learning climate, continuity of group composition, suitability of subjects for seminar teaching, the number and quality of seminar questions, and alignment of different course activities. Conclusions The results of this study contribute to the unravelling of the ‘the black box’ of seminar learning. Suggestions for ways to optimise active learning in seminars are made regarding curriculum development, seminar content, quality assurance and faculty development. PMID:23399475
NASA Astrophysics Data System (ADS)
Patyk, Radoslaw; Kukielka, Leon; Kaldunski, Pawel; Bohdal, Lukasz; Chodor, Jaroslaw; Kulakowska, Agnieszka; Kukielka, Krzysztof; Nagnajewicz, Slawomir
2018-05-01
The paper presents the results of experimental researches and numerical simulations of the duplex burnishing process. During duplex burnishing process the treatment is carry out in two stages. In the first stage - on the semi-fabrication surface, the regular asperities are embossed with triangular, symmetrical, periodic outline. In the second stage the asperities are burnished (smooth burnishing) till the needed asperities equalized, resulting in a smooth and strengthened surface layer. The implementation of such technology results in receiving of a new surface layer characterized by favorable functional properties, particularly increased resistance to fatigue wear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haslinger, Jaroslav, E-mail: hasling@karlin.mff.cuni.cz; Stebel, Jan, E-mail: stebel@math.cas.cz
2011-04-15
We study the shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to the optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by the generalized Navier-Stokes system with nontrivial boundary conditions. This paper deals with numerical aspects of the problem.
Simulation of Atmospheric-Entry Capsules in the Subsonic Regime
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Childs, Robert E.; Garcia, Joseph A.
2015-01-01
The accuracy of Computational Fluid Dynamics predictions of subsonic capsule aerodynamics is examined by comparison against recent NASA wind-tunnel data at high-Reynolds-number flight conditions. Several aspects of numerical and physical modeling are considered, including inviscid numerical scheme, mesh adaptation, rough-wall modeling, rotation and curvature corrections for eddy-viscosity models, and Detached-Eddy Simulations of the unsteady wake. All of these are considered in isolation against relevant data where possible. The results indicate that an improved predictive capability is developed by considering physics-based approaches and validating the results against flight-relevant experimental data.
The stability issues in problems of mathematical modeling
NASA Astrophysics Data System (ADS)
Mokin, A. Yu.; Savenkova, N. P.; Udovichenko, N. S.
2018-03-01
In the paper it is briefly considered various aspects of stability concepts, which are used in physics, mathematics and numerical methods of solution. The interrelation between these concepts is described, the questions of preliminary stability research before the numerical solution of the problem and the correctness of the mathematical statement of the physical problem are discussed. Examples of concrete mathematical statements of individual physical problems are given: a nonlocal problem for the heat equation, the Korteweg-de Fries equation with boundary conditions at infinity, the sine-Gordon equation, the problem of propagation of femtosecond light pulses in an area with a cubic nonlinearity.
A Comparison of Metamodeling Techniques via Numerical Experiments
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.
2016-01-01
This paper presents a comparative analysis of a few metamodeling techniques using numerical experiments for the single input-single output case. These experiments enable comparing the models' predictions with the phenomenon they are aiming to describe as more data is made available. These techniques include (i) prediction intervals associated with a least squares parameter estimate, (ii) Bayesian credible intervals, (iii) Gaussian process models, and (iv) interval predictor models. Aspects being compared are computational complexity, accuracy (i.e., the degree to which the resulting prediction conforms to the actual Data Generating Mechanism), reliability (i.e., the probability that new observations will fall inside the predicted interval), sensitivity to outliers, extrapolation properties, ease of use, and asymptotic behavior. The numerical experiments describe typical application scenarios that challenge the underlying assumptions supporting most metamodeling techniques.
A time-implicit numerical method and benchmarks for the relativistic Vlasov–Ampere equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrie, Michael; Shadwick, B. A.
2016-01-04
Here, we present a time-implicit numerical method to solve the relativistic Vlasov–Ampere system of equations on a two dimensional phase space grid. The time-splitting algorithm we use allows the generalization of the work presented here to higher dimensions keeping the linear aspect of the resulting discrete set of equations. The implicit method is benchmarked against linear theory results for the relativistic Landau damping for which analytical expressions using the Maxwell-Juttner distribution function are derived. We note that, independently from the shape of the distribution function, the relativistic treatment features collective behaviors that do not exist in the non relativistic case.more » The numerical study of the relativistic two-stream instability completes the set of benchmarking tests.« less
Number games, magnitude representation, and basic number skills in preschoolers.
Whyte, Jemma Catherine; Bull, Rebecca
2008-03-01
The effect of 3 intervention board games (linear number, linear color, and nonlinear number) on young children's (mean age = 3.8 years) counting abilities, number naming, magnitude comprehension, accuracy in number-to-position estimation tasks, and best-fit numerical magnitude representations was examined. Pre- and posttest performance was compared following four 25-min intervention sessions. The linear number board game significantly improved children's performance in all posttest measures and facilitated a shift from a logarithmic to a linear representation of numerical magnitude, emphasizing the importance of spatial cues in estimation. Exposure to the number card games involving nonsymbolic magnitude judgments and association of symbolic and nonsymbolic quantities, but without any linear spatial cues, improved some aspects of children's basic number skills but not numerical estimation precision.
Affective and Social Factors in a Project-Based Writing Course
ERIC Educational Resources Information Center
Kathpalia, Sujata Surinder; Heah, Carmel
2011-01-01
Much of the work in academic writing has focused on the cognitive rather than the affective and social aspects involved in project-based writing. Emphasis in past research has been on skills and processes of writing rather than on affective factors such as motivation, attitudes, feelings or social factors involving intrapersonal and interpersonal…
Does Inquiry Based Learning Affect Students' Beliefs and Attitudes towards Mathematics?
ERIC Educational Resources Information Center
McGregor, Darren
2014-01-01
Ill-structured tasks presented in an inquiry learning environment have the potential to affect students' beliefs and attitudes towards mathematics. This empirical research followed a Design Experiment approach to explore how aspects of using ill-structured tasks may have affected students' beliefs and attitudes. Results showed this task type and…
ERIC Educational Resources Information Center
Metzger, Kelsey J.; Smith, Brittany A.; Brown, Ethan; Soneral, Paula A. G.
2018-01-01
This study describes the development and implementation of an iterative diagnostic and intervention routine designed to elicit and quantitatively describe aspects of student metacognition, affect, and study habits in a first-year undergraduate biology course. The Student Metacognition, Affect, and Study Habits (SMASH) inventory is a…
Matteson, Kristen A.; Clark, Melissa A.
2010-01-01
Objectives: (1) To explore the effects on women's lives by heavy or irregular menstrual bleeding; (2) To examine whether aspects of women's lives most affected by heavy or irregular menstrual bleeding were adequately addressed by questions that are frequently used in clinical encounters and available questionnaires. Methods: We conducted four focus group sessions with a total of 25 English-speaking women who had reported abnormal uterine bleeding. Discussions included open-ended questions that pertained to bleeding, aspects of life affected by bleeding, and questions frequently used in clinical settings about bleeding and quality of life. Results: We identified five themes that reflected how women's lives were affected by heavy or irregular menstrual bleeding: irritation/inconvenience, bleeding-associated pain, self-consciousness about odor, social embarrassment, and ritual like behavior. Although women responded that the frequently used questions about bleeding and quality of life were important, they felt that the questions failed to go into enough depth to adequately characterize their experiences. Conclusions: Based on the themes identified in our focus group sessions, clinicians and researchers may need to change the questions used to capture “patient experience” with abnormal uterine bleeding more accurately. PMID:20437305
Climate change and mental health: a causal pathways framework.
Berry, Helen Louise; Bowen, Kathryn; Kjellstrom, Tord
2010-04-01
Climate change will bring more frequent, long lasting and severe adverse weather events and these changes will affect mental health. We propose an explanatory framework to enhance consideration of how these effects may operate and to encourage debate about this important aspect of the health impacts of climate change. Literature review. Climate change may affect mental health directly by exposing people to trauma. It may also affect mental health indirectly, by affecting (1) physical health (for example, extreme heat exposure causes heat exhaustion in vulnerable people, and associated mental health consequences) and (2) community wellbeing. Within community, wellbeing is a sub-process in which climate change erodes physical environments which, in turn, damage social environments. Vulnerable people and places, especially in low-income countries, will be particularly badly affected. Different aspects of climate change may affect mental health through direct and indirect pathways, leading to serious mental health problems, possibly including increased suicide mortality. We propose that it is helpful to integrate these pathways in an explanatory framework, which may assist in developing public health policy, practice and research.
An experience sampling study of learning, affect, and the demands control support model.
Daniels, Kevin; Boocock, Grahame; Glover, Jane; Holland, Julie; Hartley, Ruth
2009-07-01
The demands control support model (R. A. Karasek & T. Theorell, 1990) indicates that job control and social support enable workers to engage in problem solving. In turn, problem solving is thought to influence learning and well-being (e.g., anxious affect, activated pleasant affect). Two samples (N = 78, N = 106) provided data up to 4 times per day for up to 5 working days. The extent to which job control was used for problem solving was assessed by measuring the extent to which participants changed aspects of their work activities to solve problems. The extent to which social support was used to solve problems was assessed by measuring the extent to which participants discussed problems to solve problems. Learning mediated the relationship between changing aspects of work activities to solve problems and activated pleasant affect. Learning also mediated the relationship between discussing problems to solve problems and activated pleasant affect. The findings indicated that how individuals use control and support to respond to problem-solving demands is associated with organizational and individual phenomena, such as learning and affective well-being.
NASA Astrophysics Data System (ADS)
Konig, Christof S.
Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as well as the strength of offshore winds during nine out of the twelve months each year. Additionally, I identify regions where landfast ice appearance has been increasing or decreasing over the observed time span.
Ferrante, Michele; Blackwell, Kim T.; Migliore, Michele; Ascoli, Giorgio A.
2012-01-01
The identification and characterization of potential pharmacological targets in neurology and psychiatry is a fundamental problem at the intersection between medicinal chemistry and the neurosciences. Exciting new techniques in proteomics and genomics have fostered rapid progress, opening numerous questions as to the functional consequences of ligand binding at the systems level. Psycho- and neuro-active drugs typically work in nerve cells by affecting one or more aspects of electrophysiological activity. Thus, an integrated understanding of neuropharmacological agents requires bridging the gap between their molecular mechanisms and the biophysical determinants of neuronal function. Computational neuroscience and bioinformatics can play a major role in this functional connection. Robust quantitative models exist describing all major active membrane properties under endogenous and exogenous chemical control. These include voltage-dependent ionic channels (sodium, potassium, calcium, etc.), synaptic receptor channels (e.g. glutamatergic, GABAergic, cholinergic), and G protein coupled signaling pathways (protein kinases, phosphatases, and other enzymatic cascades). This brief review of neuromolecular medicine from the computational perspective provides compelling examples of how simulations can elucidate, explain, and predict the effect of chemical agonists, antagonists, and modulators in the nervous system. PMID:18855673
Iwanowicz, L.R.; Blazer, V.S.
2011-01-01
Simply and perhaps intuitively defined, endocrine disruption is the abnormal modulation of normal hormonal physiology by exogenous chemicals. In fish, endocrine disruption of the reproductive system has been observed worldwide in numerous species and is known to affect both males and females. Observations of biologically relevant endocrine disruption most commonly occurs near waste water treatment plant outfalls, pulp and paper mills, and areas of high organic loading sometimes associated with agricultural practices. Estrogenic endocrine disrupting chemicals (EEDCs) have received an overwhelmingly disproportionate amount of scientific attention compared to other EDCs in recent years. In male fishes, exposure to EEDCs can lead to the induction of testicular oocytes (intersex), measurable plasma vitellogenin protein, altered sex steroid profiles, abnormal spawning behavior, skewed population sex ratios, and lessened reproductive success. Interestingly, contemporary research purports that EDCs modulate aspects of non-reproductive physiology including immune function. Here we present an overview of endocrine disruption in fishes associated with estrogenic compounds, implications of this phenomenon, and examples of EDC related research findings by our group in the Potomac River Watershed, USA.
Comparative DMFT study of the eg-orbital Hubbard model in thin films
NASA Astrophysics Data System (ADS)
Rüegg, Andreas; Hung, Hsiang-Hsuan; Gull, Emanuel; Fiete, Gregory A.
2014-02-01
Heterostructures of transition-metal oxides have emerged as a new route to engineer electronic systems with desired functionalities. Motivated by these developments, we study a two-orbital Hubbard model in a thin-film geometry confined along the cubic [001] direction using the dynamical mean-field theory. We contrast the results of two approximate impurity solvers (exact diagonalization and one-crossing approximation) to the results of the numerically exact continuous-time quantum Monte Carlo solver. Consistent with earlier studies, we find that the one-crossing approximation performs well in the insulating regime, while the advantage of the exact-diagonalization-based solver is more pronounced in the metallic regime. We then investigate various aspects of strongly correlated eg-orbital systems in thin-film geometries. In particular, we show how the interfacial orbital polarization dies off quickly a few layers from the interface and how the film thickness affects the location of the interaction-driven Mott transition. In addition, we explore the changes in the electronic structure with varying carrier concentration and identify large variations of the orbital polarization in the strongly correlated regime.
Behavioral and Environmental Modification of the Genetic Influence on Body Mass Index: A Twin Study.
Horn, Erin E; Turkheimer, Eric; Strachan, Eric; Duncan, Glen E
2015-07-01
Body mass index (BMI) has a strong genetic basis, with a heritability around 0.75, but is also influenced by numerous behavioral and environmental factors. Aspects of the built environment (e.g., environmental walkability) are hypothesized to influence obesity by directly affecting BMI, by facilitating or inhibiting behaviors such as physical activity that are related to BMI, or by suppressing genetic tendencies toward higher BMI. The present study investigated relative influences of physical activity and walkability on variance in BMI using 5079 same-sex adult twin pairs (70 % monozygotic, 65 % female). High activity and walkability levels independently suppressed genetic variance in BMI. Estimating their effects simultaneously, however, suggested that the walkability effect was mediated by activity. The suppressive effect of activity on variance in BMI was present even with a tendency for low-BMI individuals to select into environments that require higher activity levels. Overall, our results point to community- or macro-level interventions that facilitate individual-level behaviors as a plausible approach to addressing the obesity epidemic among US adults.
Behavioral and environmental modification of the genetic influence on body mass index: A twin study
Horn, Erin E.; Turkheimer, Eric; Strachan, Eric; Duncan, Glen E.
2015-01-01
Body mass index (BMI) has a strong genetic basis, with a heritability around 0.75, but is also influenced by numerous behavioral and environmental factors. Aspects of the built environment (e.g., environmental walkability) are hypothesized to influence obesity by directly affecting BMI, by facilitating or inhibiting behaviors such as physical activity that are related to BMI, or by suppressing genetic tendencies toward higher BMI. The present study investigated relative influences of physical activity and walkability on variance in BMI using 5,079 same-sex adult twin pairs (70% monozygotic, 65% female). High activity and walkability levels independently suppressed genetic variance in BMI. Estimating their effects simultaneously, however, suggested that the walkability effect was mediated by activity. The suppressive effect of activity on variance in BMI was present even with a tendency for low-BMI individuals to select into environments that require higher activity levels. Overall, our results point to community- or macro-level interventions that facilitate individual-level behaviors as a plausible approach to addressing the obesity epidemic among U.S. adults. PMID:25894925
Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation.
Higham, Timothy E; Rogers, Sean M; Langerhans, R Brian; Jamniczky, Heather A; Lauder, George V; Stewart, William J; Martin, Christopher H; Reznick, David N
2016-09-14
Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator-prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. © 2016 The Author(s).
Comparison of three methods for wind turbine capacity factor estimation.
Ditkovich, Y; Kuperman, A
2014-01-01
Three approaches to calculating capacity factor of fixed speed wind turbines are reviewed and compared using a case study. The first "quasiexact" approach utilizes discrete wind raw data (in the histogram form) and manufacturer-provided turbine power curve (also in discrete form) to numerically calculate the capacity factor. On the other hand, the second "analytic" approach employs a continuous probability distribution function, fitted to the wind data as well as continuous turbine power curve, resulting from double polynomial fitting of manufacturer-provided power curve data. The latter approach, while being an approximation, can be solved analytically thus providing a valuable insight into aspects, affecting the capacity factor. Moreover, several other merits of wind turbine performance may be derived based on the analytical approach. The third "approximate" approach, valid in case of Rayleigh winds only, employs a nonlinear approximation of the capacity factor versus average wind speed curve, only requiring rated power and rotor diameter of the turbine. It is shown that the results obtained by employing the three approaches are very close, enforcing the validity of the analytically derived approximations, which may be used for wind turbine performance evaluation.
Geometric modelling of the contact point between the bushing and sprocket in chain drives
NASA Astrophysics Data System (ADS)
Saulescu, R.; Velicu, R.; Lates, M.
2017-02-01
An important problem of the bush chains dynamics is represented by the calculus of the normal and transversal forces on all the contacts; these forces are producing vibrations in the chain and due to this, the chain is affected by the wear. One aspect of that dynamics is referring directly on the sprockets geometry and on the bushing and sprocket contact. The paper presents a calculus method for the contact angle between the bushing and the sprocket; this angle is a variable one depending on the bushing’s number being in contact (i) and on the specific elongation of the chain (x) due to the functioning of it. Based on the presented calculus model, a comparative analysis is proposed for these factors by using sprockets with different teeth numbers and different specific elongations of the chain. The results of the numerical simulations allow the dissemination of recommendations regarding the contact angle’s evolution, from the beginning to the end of the contact and regarding the influence of the chain’s specific elongations on the out of use of it.
The basic reproduction number as a predictor for epidemic outbreaks in temporal networks.
Holme, Petter; Masuda, Naoki
2015-01-01
The basic reproduction number R0--the number of individuals directly infected by an infectious person in an otherwise susceptible population--is arguably the most widely used estimator of how severe an epidemic outbreak can be. This severity can be more directly measured as the fraction of people infected once the outbreak is over, Ω. In traditional mathematical epidemiology and common formulations of static network epidemiology, there is a deterministic relationship between R0 and Ω. However, if one considers disease spreading on a temporal contact network--where one knows when contacts happen, not only between whom--then larger R0 does not necessarily imply larger Ω. In this paper, we numerically investigate the relationship between R0 and Ω for a set of empirical temporal networks of human contacts. Among 31 explanatory descriptors of temporal network structure, we identify those that make R0 an imperfect predictor of Ω. We find that descriptors related to both temporal and topological aspects affect the relationship between R0 and Ω, but in different ways.
Disability pension in Malmöhus county: aspects on long-term financial effects.
Månsson, N O; Råstam, L; Adolfsson, A
1998-06-01
The purpose of this study was to estimate the financial costs of disability pension in order to compare the financial burden and the numerical distribution of disability pension by main diagnostic groups. During three months all new disability pensions (n = 944) granted in Malmöhus county were registered. During a follow-up of approximately two and a half years, 40 subjects died and 15 pensions expired. The predominating diagnoses were musculoskeletal diseases, mental disorders including alcohol dependence, cardiovascular and neurological diseases. To analyse whether these proportions changed when the extent of the pension, age at pension and the retirement allowance were considered, the present value of the total retirement allowances was calculated. The ranking of the four predominating diagnosis categories was not affected by the extent of the pension or the age at which the pension was granted. Thus, musculoskeletal diseases still predominated, although the proportion decreased. Among unemployed subjects, mental disorders made the largest contribution to the total expenditure. The results gained may be used in further research where alternatives to disability pension for different groups of patients and/or diagnoses are investigated.
The epidemiology of adult obstructive sleep apnea.
Punjabi, Naresh M
2008-02-15
Obstructive sleep apnea is a chronic condition characterized by frequent episodes of upper airway collapse during sleep. Its effect on nocturnal sleep quality and ensuing daytime fatigue and sleepiness are widely acknowledged. Increasingly, obstructive sleep apnea is also being recognized as an independent risk factor for several clinical consequences, including systemic hypertension, cardiovascular disease, stroke, and abnormal glucose metabolism. Estimates of disease prevalence are in the range of 3% to 7%, with certain subgroups of the population bearing higher risk. Factors that increase vulnerability for the disorder include age, male sex, obesity, family history, menopause, craniofacial abnormalities, and certain health behaviors such as cigarette smoking and alcohol use. Despite the numerous advancements in our understanding of the pathogenesis and clinical consequences of the disorder, a majority of those affected remain undiagnosed. Simple queries of the patient or bed-partner for the symptoms and signs of the disorder, namely, loud snoring, observed apneas, and daytime sleepiness, would help identify those in need of further diagnostic evaluation. The primary objective of this article is to review some of the epidemiologic aspects of obstructive sleep apnea in adults.
Parry, Luke A; Smithwick, Fiann; Nordén, Klara K; Saitta, Evan T; Lozano-Fernandez, Jesus; Tanner, Alastair R; Caron, Jean-Bernard; Edgecombe, Gregory D; Briggs, Derek E G; Vinther, Jakob
2018-01-01
Exceptionally preserved fossils are the product of complex interplays of biological and geological processes including burial, autolysis and microbial decay, authigenic mineralization, diagenesis, metamorphism, and finally weathering and exhumation. Determining which tissues are preserved and how biases affect their preservation pathways is important for interpreting fossils in phylogenetic, ecological, and evolutionary frameworks. Although laboratory decay experiments reveal important aspects of fossilization, applying the results directly to the interpretation of exceptionally preserved fossils may overlook the impact of other key processes that remove or preserve morphological information. Investigations of fossils preserving non-biomineralized tissues suggest that certain structures that are decay resistant (e.g., the notochord) are rarely preserved (even where carbonaceous components survive), and decay-prone structures (e.g., nervous systems) can fossilize, albeit rarely. As we review here, decay resistance is an imperfect indicator of fossilization potential, and a suite of biological and geological processes account for the features preserved in exceptional fossils. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.
Recent developments of coumarin-containing derivatives and their anti-tubercular activity.
Hu, Yuan-Qiang; Xu, Zhi; Zhang, Shu; Wu, Xiang; Ding, Jun-Wei; Lv, Zao-Sheng; Feng, Lian-Shun
2017-08-18
Tuberculosis (TB) is a lift-threatening chronic deadliest infectious disease caused predominantly by Mycobacterium tuberculosis (MTB) which affects primarily the lungs (pulmonary TB) apart from other vital organs. The emergence of drug-resistant TB (DR-TB), multidrug-resistant TB (MDR-TB), extensively drug-resistant TB (XDR-TB) and the recently cases of totally drug resistant (TDR) towards currently accessible standard drugs was increased up to alarming level in the recent decades. In pursuit of searching new anti-TB agents, numerous of derivatives have been synthesized and screened for their anti-TB activity. Coumarins are one of the most important classes of natural products that exhibited various biological activities, and their derivatives regarded as a new class of effective anti-TB candidates owing to their potential anti-TB activity. Thus, coumarin skeleton has attracted great interest in the development of new anti-TB agents. This review outlines the advances in the application of coumarin-containing derivatives as anti-TB agents and the critical aspects of design and structure-activity relationship of these derivatives. Published by Elsevier Masson SAS.
Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation
Rogers, Sean M.; Langerhans, R. Brian; Jamniczky, Heather A.; Lauder, George V.; Stewart, William J.; Martin, Christopher H.; Reznick, David N.
2016-01-01
Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator–prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. PMID:27629033
Numerical and experimental approaches to study soil transport and clogging in granular filters
NASA Astrophysics Data System (ADS)
Kanarska, Y.; Smith, J. J.; Ezzedine, S. M.; Lomov, I.; Glascoe, L. G.
2012-12-01
Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. Numerical modeling has proved to be a cost-effective tool for improving our understanding of physical processes. Traditionally, the consideration of flow and particle transport in porous media has focused on treating the media as continuum. Practical models typically address flow and transport based on the Darcy's law as a function of a pressure gradient and a medium-dependent permeability parameter. Additional macroscopic constitutes describe porosity, and permeability changes during the migration of a suspension through porous media. However, most of them rely on empirical correlations, which often need to be recalibrated for each application. Grain-scale modeling can be used to gain insight into scale dependence of continuum macroscale parameters. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration in the filter layers of gravity dam. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. It is believed that the agreement between simulations and experimental data demonstrates the applicability of the proposed approach for prediction of the soil transport and clogging in embankment dams. To get more precise understanding of the soil transport in granular filters we investigated sensitivity of particle clogging mechanisms to various aspects such as particle size ration, the amplitude of hydraulic gradient, particle concentration and contact properties. By averaging the results derived from the grain-scale simulations, we investigated how those factors affect the semi-empirical multiphase model parameters in the large-scale simulation tool. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Department of Homeland Security Science and Technology Directorate provided funding for this research.
Numerical modelling of river morphodynamics: Latest developments and remaining challenges
NASA Astrophysics Data System (ADS)
Siviglia, Annunziato; Crosato, Alessandra
2016-07-01
Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.
Affecting Factors on Local Waste Management in Penyangkringan Village, Weleri: an Identification
NASA Astrophysics Data System (ADS)
Puspita Adriyanti, Nadia; Candra Dewi, Ova; Gamal, Ahmad; Joko Romadhon, Mohammad; Raditya
2018-03-01
Villages in Indonesia usually does not have proper waste management and it is affecting the environmental and social condition in those places. Local governments have been trying to implement many kinds of solid waste management systems and yet many of them does not bear fruit. We argue that the failure of the waste management implementation in Indonesian villages is due to several aspects: the geographic condition of the villages, the social conditions, and the availability of facilities and infrastructures in those villages. Waste management should be modeled in accordance to those three aspects.
Harnessing Photovoice for tuberculosis advocacy in Karachi, Pakistan.
Mohammed, Shama; Sajun, Sana Zehra; Khan, Faisal S
2015-06-01
In Pakistan, despite publically available free testing and treatment throughout the country, there were an estimated 58,000 deaths due to tuberculosis in 2010. Understanding the experiences of people affected by TB is essential in addressing barriers to effective treatment. The Indus Hospital used Photovoice to understand the experiences of people affected by TB in Karachi. Two hundred and thirty photographs and stories were collected from 55 people affected by TB. Five major themes and 12 sub-themes emerged from the data: the physical aspects of TB (weakness and the side effects of the medication), the social aspects of TB (loneliness, stigma, and the fear/guilt of infecting family members), the socio-economic aspects of TB (financial difficulties/poverty and poor living conditions), supportive factors during treatment (support from family and friends, support from welfare organizations, prayer, visiting peaceful places), and recovery (happiness about getting better). The photographs, stories, and a Call for Action were shared at a Gallery event with patients, practitioners, and policy-makers. This study provides a look at the complexities surrounding TB and emphasizes the need for holistic interventions for TB that address all aspects of the disease, including its social determinants. It also highlights the potential of Photovoice as an effective means to bring much-needed attention to this disease. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A numerical calculation method of environmental impacts for the deep sea mining industry - a review.
Ma, Wenbin; van Rhee, Cees; Schott, Dingena
2018-03-01
Since the gradual decrease of mineral resources on-land, deep sea mining (DSM) is becoming an urgent and important emerging activity in the world. However, until now there has been no commercial scale DSM project in progress. Together with the reasons of technological feasibility and economic profitability, the environmental impact is one of the major parameters hindering its industrialization. Most of the DSM environmental impact research focuses on only one particular aspect ignoring that all the DSM environmental impacts are related to each other. The objective of this work is to propose a framework for the numerical calculation methods of the integrated DSM environmental impacts through a literature review. This paper covers three parts: (i) definition and importance description of different DSM environmental impacts; (ii) description of the existing numerical calculation methods for different environmental impacts; (iii) selection of a numerical calculation method based on the selected criteria. The research conducted in this paper provides a clear numerical calculation framework for DSM environmental impact and could be helpful to speed up the industrialization process of the DSM industry.
Fuchs, Lynn S; Geary, David C; Compton, Donald L; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Bryant, Joan D; Schatschneider, Christopher
2010-11-01
The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (N = 280; mean age = 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations, and word problems in fall and then reassessed on procedural calculations and word problems in spring. Development was indexed by latent change scores, and the interplay between numerical and domain-general abilities was analyzed by multiple regression. Results suggest that the development of different types of formal school mathematics depends on different constellations of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both aspects of basic numerical cognition were uniquely predictive of procedural calculations and word problems development. Yet, for procedural calculations development, the additional amount of variance explained by the set of domain-general abilities was not significant, and only counting span was uniquely predictive. By contrast, for word problems development, the set of domain-general abilities did provide additional explanatory value, accounting for about the same amount of variance as the basic numerical cognition variables. Language, attentive behavior, nonverbal problem solving, and listening span were uniquely predictive.
Fuchs, Lynn S.; Geary, David C.; Compton, Donald L.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Bryant, Joan D.; Schatschneider, Christopher
2010-01-01
The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (n=280; 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations (PCs), and word problems (WPs) in fall and then reassessed on PCs and WPs in spring. Development was indexed via latent change scores, and the interplay between numerical and domain-general abilities was analyzed via multiple regression. Results suggest that the development of different types of formal school mathematics depends on different constellations of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both aspects of basic numerical cognition were uniquely predictive of PC and WP development. Yet, for PC development, the additional amount of variance explained by the set of domain-general abilities was not significant, and only counting span was uniquely predictive. By contrast, for WP development, the set of domain- general abilities did provide additional explanatory value, accounting for about the same amount of variance as the basic numerical cognition variables. Language, attentive behavior, nonverbal problem solving, and listening span were uniquely predictive. PMID:20822213
Resident Evaluation of a Required Telepsychiatry Clinical Experience.
Teshima, John; Hodgins, Michael; Boydell, Katherine M; Pignatiello, Antonio
2016-04-01
The authors explored resident experiences of telepsychiatry clinical training. This paper describes an analysis of evaluation forms completed by psychiatry residents following a required training experience in telepsychiatry. Retrospective numeric and narrative data were collected from 2005 to 2012. Using a five-point Likert-type scale (1 = strongly disagree and 5 = strongly agree), residents ranked the session based on the following characteristics: the overall experience, interest in participating in telepsychiatry in the future, understanding service provision to underserved areas, telepsychiatry as mode of service delivery, and the unique aspects of telepsychiatry work. The authors also conducted a content analysis of narrative comments in response to open-ended questions about the positive and negative aspects of the training experience. In all, 88% of residents completed (n = 335) an anonymous evaluation following their participation in telepsychiatry consultation sessions. Numeric results were mostly positive and indicated that the experience was interesting and enjoyable, enhanced interest in participating in telepsychiatry in the future, and increased understanding of providing psychiatric services to underserved communities. Narrative data demonstrated that the most valuable aspects of training included the knowledge acquired in terms of establishing rapport and engaging with patients, using the technology, working collaboratively, identifying different approaches used, and awareness of the complexity of cases. Resident desire for more training of this nature was prevalent, specifically a wish for more detail, additional time for discussion and debriefing, and further explanation of the unique aspects of telepsychiatry as mode of delivery. More evaluation of telepsychiatry training, elective or required, is needed. The context of this training offered potential side benefits of learning about interprofessional and collaborative care for the underserved.