Science.gov

Sample records for affect nutrient cycling

  1. Nutrient cycling.

    PubMed

    Bormann, F H; Likens, G E

    1967-01-27

    The small-watershed approach to problems of nutrient cycling has these advantages. (i) The small watershed is a natural unit of suitable size for intensive study of nutrient cycling at the ecosystem level. (ii) It provides a means of reducing to a minimum, or virtually eliminating, the effect of the difficult-to-measure variables of geologic input and nutrient losses in deep seepage. Control of these variables makes possible accurate measurement of nutrient input and output (erosion) and therefore establishes the relationship of the smaller ecosystem to the larger biospheric cycles. (iii) The small-watershed approach provides a method whereby such important parameters as nutrient release from minerals (weathering) and annual nutrient budgets may be calculated. (iv) It provides a means of studying the interrelationships between the biota and the hydrologic cycle, various nutrient cycles, and energy flow in a single system. (v) Finally, with the small-watershed system we can test the effect of various land-management practices or environmental pollutants on nutrient cycling in natural systems. PMID:17737551

  2. Nutrient Cycling Study

    SciTech Connect

    Peter A. Pryfogle

    2005-09-01

    The particular goal of this study is to develop measurement techniques for understanding how consortia of organisms from geothermal facilities utilize sulfur and iron for metabolic activity; and in turn, what role that activity plays in initiating or promoting the development of a biofilm on plant substrates. Sulfur cycling is of interest because sulfur is produced in the resource. Iron is found in some of the steel formulations used in plant components and is also added as chemical treatment for reducing sulfide emissions from the plants. This report describes the set-up and operation of a bioreactor for evaluating the response of colonies of geothermal organisms to changes in nutrient and environmental conditions. Data from initial experiments are presented and plans for future testing is discussed.

  3. Nutrient Cycling in Piermont Marsh

    NASA Astrophysics Data System (ADS)

    Diaz, K.; Reyes, N.; Gribbin, S.; Newton, R.; Laporte, N.; Trivino, G.; Ortega, J.; McKee, K.; Sambrotto, R.

    2011-12-01

    We investigate the cycling of nutrients through a brackish tidal wetland about 40 km north of Manhattan in the Hudson River estuary. As part of a long-term ecological study of Piermont Marsh, a NOAA reference wetland managed by the NY State DEC, we are measuring dissolved inorganic nutrients on the Marsh surface and its drainage channels. The marsh occupies 400 acres along the southwest corner of Haverstraw Bay with approximately 2 km frontage to the estuary. It is supplied with nutrient-rich water and drained primarily along several tidal creeks and the hundreds of rivulets that feed them. During most tidal cycles the silty berm bounding the marsh is not topped. Human influence in the marsh's surrounding area has had profound effects, one of the most fundamental of which has been the shift from native grass species, predominantly Spartina alterniflora, to an invasive genotype of common reed, Phragmites australis. Along with this shift there have been changes in the root bed, the effective marsh interior and berm heights, the hydroperiod and, as a result, the ability of the marsh to be utilized by various types of Hudson estuary fish. The vegetative shift is believed to be anthropogenic, but the connection is not well understood, and it is not known what role biogeochemical perturbations are playing. We present two field seasons of nitrate, phosphate and silicate measurements from Sparkill Creek, a freshwater stream draining the surrounding highlands constitutes the northern boundary, two tidally driven creeks transect the Marsh from West to East: the Crumkill and an unnamed creek we have dubbed the "Tidal", Ludlow Ditch, a no-longer-maintained drainage channel grading gently from the northern part of the marsh to the South terminates in a wide tidal outlet that is its southern boundary. Net tidal cycle fluxes and fluxes resulting from runoff events are presented. Deviations from Redfield ratios and limiting nutrients are analyzed. Piermont Marsh data is compared

  4. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    USGS Publications Warehouse

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  5. Hydromorphological control of nutrient cycling in complex river floodplain systems

    NASA Astrophysics Data System (ADS)

    Hein, T.; Bondar-Kunze, E.; Felkl, M.; Habersack, H.; Mair, M.; Pinay, G.; Tritthart, M.; Welti, N.

    2009-04-01

    Riparian zones and floodplains are key components within river ecosystems controlling nutrient cycling by promoting transformation processes and thus, act as biogeochemical hot spots. The intensity of these processes depends on the exchange conditions (the connectivity) with the main channel and the morphological setting of the water bodies. At the landscape scale, three interrelated principles of hydromorphological dynamics can be formulated regarding the cycling and transfer of carbon and nutrients in large rivers ecosystems: a) The mode of carbon and nutrient delivery affects ecosystem functioning; b) Increasing residence time and contact area impact nutrient transformation; c) Floods and droughts are natural events that strongly influence pathways of carbon and nutrient cycling. These three principles of hydromorphological dynamics control the nutrient uptake and retention and are linked over different temporal and spatial scales. All three factors can be strongly affected by natural disturbances or anthropogenic impacts, through a change in either the water regime or the geomorphologic setting of the river valley. Any change in natural water regimes will affect the biogeochemistry of riparian zones and floodplains as well as their ability to cycle and mitigate nutrient fluxes originating from upstream and/or upslope. Especially these areas have been altered by river regulation and land use changes over the last 200 years leading to the deterioration of the functioning of these compartments within the riverine landscape. The resulting deficits have prompted rehabilitation and restoration measures aiming to increase the spatial heterogeneity, the complexity, of these ecosystems. Yet, a more integrated approach is needed considering the present status of nutrient dynamics and the effects of restoration measures at different scales. The present paper analyses the effects of river side-arm restoration on ecosystem functions within the side-arm and highlights

  6. The influence of the forest canopy on nutrient cycling.

    PubMed

    Prescott, Cindy E

    2002-11-01

    Rates of key soil processes involved in recycling of nutrients in forests are governed by temperature and moisture conditions and by the chemical and physical nature of the litter. The forest canopy influences all of these factors and thus has a large influence on nutrient cycling. The increased availability of nutrients in soil in clearcuts illustrates how the canopy retains nutrients (especially N) on site, both by storing nutrients in foliage and through the steady input of available C in litter. The idea that faster decomposition is responsible for the flush of nitrate in clearcuts has not been supported by experimental evidence. Soil N availability increases in canopy gaps as small as 0.1 ha, so natural disturbances or partial harvesting practices that increase the complexity of the canopy by creating gaps will similarly increase the spatial variability in soil N cycling and availability within the forest. Canopy characteristics affect the amount and composition of leaf litter produced, which largely determines the amount of nutrients to be recycled and the resulting nutrient availability. Although effects of tree species on soil nutrient availability were thought to be brought about largely through differences in the decomposition rate of their foliar litter, recent studies indicate that the effect of tree species can be better predicted from the mass and nutrient content of litter produced, hence total nutrient return, than from litter decay rate. The greater canopy complexity in mixed species forests creates similar heterogeneity in nutritional characteristics of the forest floor. Site differences in slope position, parent material and soil texture lead to variation in species composition and productivity of forests, and thus in the nature and amount of litter produced. Through this positive feedback, the canopy accentuates inherent differences in site fertility. PMID:12414379

  7. Nutrients affecting brain composition and behavior

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.

    1987-01-01

    This review examines the changes in brain composition and in various brain functions, including behavior, that can follow the ingestion of particular foods or nutrients. It details those that are best understood: the increases in serotonin, catecholamine, or acetylcholine synthesis that can occur subsequent to food-induced increases in brain levels of tryptophan, tyrosine, or choline; it also discusses the various processes that must intervene between the mouth and the synapse, so to speak, in order for a nutrient to affect neurotransmission, and it speculates as to additional brain chemicals that may ultimately be found to be affected by changes in the availability of their nutrient precursors. Because the brain chemicals best known to be nutrient dependent overlap with those thought to underlie the actions of most of the drugs used to treat psychiatric diseases, knowledge of this dependence may help the psychiatrist to understand some of the pathologic processes occurring in his/her patients, particularly those with appetitive symptoms. At the very least, such knowledge should provide the psychiatrist with objective criteria for judging when to take seriously assertions that particular foods or nutrients do indeed affect behavior (e.g., in hyperactive children). If the food can be shown to alter neurotransmitter release, it may be behaviorally-active; however, if it lacks a discernible neurochemical effect, the likelihood that it really alters behavior is small.

  8. From the cell cycle to population cycles in phytoplankton-nutrient interactions

    SciTech Connect

    Pascual, M.; Caswell, H.

    1997-04-01

    The internal demographic structure of a population influences its dynamics and its response to the environment. Most models for phytoplankton ignore internal structure and group all cells in a single variable such as total biomass or density. However, a cell does have a life history, the cell division cycle. We investigate the significance of the cell cycle to phytoplankton population dynamics in a variable nutrient environment, using chemostate models. Following the transition point hypothesis, nutrient uptake affects cell development only within a limited segment of the cell cycle. Simulation results demonstrate oscillations in cell numbers and population structure generated by this interaction. When nutrient input is varied periodically, the population displays an aperiodic response with frequencies different from that of the forcing. These results also hold for a model that includes nutrient storage by the cells. These dynamics differ from those of traditional chemostate models and from cell cycle models driven by light cycles. Resource control of cell cycle progression may explain the time delays previously postulated to explain oscillatory transients in chemostate experiments. 78 refs., 22 figs.

  9. Cycling and loss of nutrients in pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pastures are fundamentally different than croplands. When cropland is harvested, large amounts of plant nutrients are removed so relatively large rates of nutrients are often needed. In pasture, most of the nutrients harvested by livestock are returned. The proportion of nutrients returned by livest...

  10. Effect of soil in nutrient cycle assessment at dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne

    2016-04-01

    Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.

  11. Affective cycling in thyroid disease

    SciTech Connect

    Tapp, A.

    1988-05-01

    Depression in an elderly man with primary recurrent unipolar depression responded to radioactive iodine treatment of a thyrotoxic nodule, without the addition of psychotropic medications. Two months later, manic symptoms developed concomitant with the termination of the hyperthyroid state secondary to the radioactive iodine treatment. Clinical implications of these findings in relation to the possible mechanism of action of thyroid hormones on affective cycling are discussed.

  12. Closed-Cycle Nutrient Supply For Hydroponics

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.

    1991-01-01

    Hydroponic system controls composition and feed rate of nutrient solution and recovers and recycles excess solution. Uses air pressure on bladders to transfer aqueous nutrient solution. Measures and adjusts composition of solution before it goes to hydroponic chamber. Eventually returns excess solution to one of tanks. Designed to operate in microgravity, also adaptable to hydroponic plant-growing systems on Earth.

  13. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  14. Measuring Nitrification: A Laboratory Approach to Nutrient Cycling.

    ERIC Educational Resources Information Center

    Hicks, David J.

    1990-01-01

    Presented is an approach to the study of nutrient cycling in the school laboratory. Discussed are obtaining, processing, and incubating samples; extraction of ions from soil; procedures for nitrate and ammonium analysis; data analysis; an example of results; and other aspects of the nitrogen cycle. (CW)

  15. Closing Domestic Nutrient Cycles Using Microalgae.

    PubMed

    Vasconcelos Fernandes, Tânia; Shrestha, Rabin; Sui, Yixing; Papini, Gustavo; Zeeman, Grietje; Vet, Louise E M; Wijffels, Rene H; Lamers, Packo

    2015-10-20

    This study demonstrates that microalgae can effectively recover all P and N from anaerobically treated black water (toilet wastewater). Thus, enabling the removal of nutrients from the black water and the generation of a valuable algae product in one step. Screening experiments with green microalgae and cyanobacteria showed that all tested green microalgae species successfully grew on anaerobically treated black water. In a subsequent controlled experiment in flat-panel photobioreactors, Chlorella sorokiniana was able to remove 100% of the phosphorus and nitrogen from the medium. Phosphorus was depleted within 4 days while nitrogen took 12 days to reach depletion. The phosphorus and nitrogen removal rates during the initial linear growth phase were 17 and 122 mg·L(-1)·d(-1), respectively. After this initial phase, the phosphorus was depleted. The nitrogen removal rate continued to decrease in the second phase, resulting in an overall removal rate of 80 mg·L(-1)·d(-1). The biomass concentration at the end of the experiment was 11.5 g·L(-1), with a P content of approximately 1% and a N content of 7.6%. This high algal biomass concentration, together with a relatively short P recovery time, is a promising finding for future post-treatment of black water while gaining valuable algal biomass for further application. PMID:26389714

  16. Interacting Physical and Biological Processes Affecting Nutrient Transport Through Human Dominated Landscapes

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.

    2015-12-01

    Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.

  17. Effects of mountain agriculture on nutrient cycling at upstream watersheds

    NASA Astrophysics Data System (ADS)

    Lin, T.-C.; Shaner, P. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.

    2015-05-01

    The expansion of agriculture to rugged mountains can exacerbate negative impacts of agriculture activities on ecosystem function. In this study, we monitored streamwater chemistry of four watersheds with varying proportions of agricultural lands (0.4, 3, 17, 22%) and rainfall chemistry of two of the four watersheds at Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportions of agricultural lands, the higher the ion concentrations, which is evident for fertilizer-associated ions (NO3-, K+) but not for ions that are rich in soils (SO42-, Ca2+, Mg2+), suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. The watershed with the highest proportion of agricultural lands had higher concentrations of ions in rainfall and lower nutrient retention capacity (i.e. higher output-input ratio of ions) compared to the relatively pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. Furthermore, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater by more than 70%, indicating that specific landscape configurations help mitigate nutrient enrichment to aquatic systems. We estimated that agricultural lands at our study site contributed approximately 400 kg ha-1 yr-1 of NO3-N and 260 kg ha-1 yr-1 of PO4-P output via streamwater, an order of magnitude greater than previously reported around the globe and can only be matched by areas under intense fertilizer use. Furthermore, we re-constructed watershed nutrient fluxes to show that excessive leaching of N and P, and additional loss of N to the atmosphere via volatilization and denitrification, can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of agriculture activities

  18. Impacts of climate change on nutrient cycling in semi-arid and arid ecosystems

    SciTech Connect

    Belnap, J.

    1995-09-01

    Effective precipitation is a major factor in determining nutrient pathways in different ecosystems. Soil flora and fauna play a critical role in nutrient cycles of all ecosystems. Temperature, timing, and amounts of precipitation affect population composition, activity levels, biomass, and recovery rates from disturbance. Changes in these variables can result in very different inputs and outputs for different nutrients. As a result, areas with less effective precipitation have very different nutrient cycles than more mesic zones. Climate change, therefore, can profoundly affect the nutrient cycles of ecosystems. Nitrogen cycles may be especially sensitive to changes in temperature and to timing and amounts of precipitation. Rainfall contains varying amounts of nitrogen compounds. Changes in amounts of rainfall will change amounts of nitrogen available to these systems. Because rainfall is limited in semi-arid and regions, these systems tend to be more dependent on microbial populations for nitrogen input. Consequently, understanding the effects of climate change on these organisms is critical in understanding the overall effect on ecosystems.

  19. Macroalgae, nutrient cycles, and pollutants in the lagoon of Venice

    SciTech Connect

    Sfriso, A.; Pavoni, B.; Marcomini, A.; Orio, A.A. )

    1992-12-01

    The Lagoon of Venice is a wide, shallow coastal basin that extends for about 50 km along the northwest coast of the Adriatic Sea. The lagoon has been substantially modified through the actions of man over the last century through the artificial control of the hydraulic dynamics of the lagoon including the construction of channels to facilitate navigation. The lagoon is subjected to considerable pollutant loading through the drainage of land under cultivation, municipal sewage, and industrial effluents. In this paper are reported the results of observations designed to document recent changes in macroalgal species composition, seasonal cycles of primary producers and nutrient levels, and the effects of the macroalgal community on concentrations of organic and inorganic pollutants. The dominant macroalgae in the lagoon was Ulva rigida, and the levels of plant nutrients and pollutants were influenced by the seasonal cycles of the macroalgal community. 44 refs., 11 figs., 2 tabs.

  20. Environmental factors affecting pregnancy: endocrine disrupters, nutrients and metabolic pathways.

    PubMed

    Bazer, Fuller W; Wu, Guoyao; Johnson, Gregory A; Wang, Xiaoqiu

    2014-12-01

    Uterine adenogenesis, a unique post-natal event in mammals, is vulnerable to endocrine disruption by estrogens and progestins resulting in infertility or reduced prolificacy. The absence of uterine glands results in insufficient transport of nutrients into the uterine lumen to support conceptus development. Arginine, a component of histotroph, is substrate for production of nitric oxide, polyamines and agmatine and, with secreted phosphoprotein 1, it affects cytoskeletal organization of trophectoderm. Arginine is critical for development of the conceptus, pregnancy recognition signaling, implantation and placentation. Conceptuses of ungulates and cetaceans convert glucose to fructose which is metabolized via multiple pathways to support growth and development. However, high fructose corn syrup in soft drinks and foods may increase risks for metabolic disorders and increase insulin resistance in adults. Understanding endocrine disrupters and dietary substances, and novel pathways for nutrient metabolism during pregnancy can improve survival and growth, and prevent chronic metabolic diseases in offspring. PMID:25224489

  1. Warming alters coupled carbon and nutrient cycles in experimental streams.

    PubMed

    Williamson, Tanner J; Cross, Wyatt F; Benstead, Jonathan P; Gíslason, Gísli M; Hood, James M; Huryn, Alexander D; Johnson, Philip W; Welter, Jill R

    2016-06-01

    Although much effort has been devoted to quantifying how warming alters carbon cycling across diverse ecosystems, less is known about how these changes are linked to the cycling of bioavailable nitrogen and phosphorus. In freshwater ecosystems, benthic biofilms (i.e. thin films of algae, bacteria, fungi, and detrital matter) act as biogeochemical hotspots by controlling important fluxes of energy and material. Understanding how biofilms respond to warming is thus critical for predicting responses of coupled elemental cycles in freshwater systems. We developed biofilm communities in experimental streamside channels along a gradient of mean water temperatures (7.5-23.6 °C), while closely maintaining natural diel and seasonal temperature variation with a common water and propagule source. Both structural (i.e. biomass, stoichiometry, assemblage structure) and functional (i.e. metabolism, N2 -fixation, nutrient uptake) attributes of biofilms were measured on multiple dates to link changes in carbon flow explicitly to the dynamics of nitrogen and phosphorus. Temperature had strong positive effects on biofilm biomass (2.8- to 24-fold variation) and net ecosystem productivity (44- to 317-fold variation), despite extremely low concentrations of limiting dissolved nitrogen. Temperature had surprisingly minimal effects on biofilm stoichiometry: carbon:nitrogen (C:N) ratios were temperature-invariant, while carbon:phosphorus (C:P) ratios declined slightly with increasing temperature. Biofilm communities were dominated by cyanobacteria at all temperatures (>91% of total biovolume) and N2 -fixation rates increased up to 120-fold between the coldest and warmest treatments. Although ammonium-N uptake increased with temperature (2.8- to 6.8-fold variation), the much higher N2 -fixation rates supplied the majority of N to the ecosystem at higher temperatures. Our results demonstrate that temperature can alter how carbon is cycled and coupled to nitrogen and phosphorus. The

  2. Consequences of warming and resource quality on the stoichiometry and nutrient cycling of a stream shredder.

    PubMed

    Mas-Martí, Esther; Romaní, Anna M; Muñoz, Isabel

    2015-01-01

    As a result of climate change, streams are warming and their runoff has been decreasing in most temperate areas. These changes can affect consumers directly by increasing their metabolic rates and modifying their physiology and indirectly by changing the quality of the resources on which organisms depend. In this study, a common stream detritivore (Echinogammarus berilloni Catta) was reared at two temperatures (15 and 20°C) and fed Populus nigra L. leaves that had been conditioned either in an intermittent or permanent reach to evaluate the effects of resource quality and increased temperatures on detritivore performance, stoichiometry and nutrient cycling. The lower quality (i.e., lower protein, soluble carbohydrates and higher C:P and N:P ratios) of leaves conditioned in pools resulted in compensatory feeding and lower nutrient retention capacity by E. berilloni. This effect was especially marked for phosphorus, which was unexpected based on predictions of ecological stoichiometry. When individuals were fed pool-conditioned leaves at warmer temperatures, their growth rates were higher, but consumers exhibited less efficient assimilation and higher mortality. Furthermore, the shifts to lower C:P ratios and higher lipid concentrations in shredder body tissues suggest that structural molecules such as phospholipids are preserved over other energetic C-rich macromolecules such as carbohydrates. These effects on consumer physiology and metabolism were further translated into feces and excreta nutrient ratios. Overall, our results show that the effects of reduced leaf quality on detritivore nutrient retention were more severe at higher temperatures because the shredders were not able to offset their increased metabolism with increased consumption or more efficient digestion when fed pool-conditioned leaves. Consequently, the synergistic effects of impaired food quality and increased temperatures might not only affect the physiology and survival of detritivores but

  3. Consequences of Warming and Resource Quality on the Stoichiometry and Nutrient Cycling of a Stream Shredder

    PubMed Central

    Mas-Martí, Esther; Romaní, Anna M.; Muñoz, Isabel

    2015-01-01

    As a result of climate change, streams are warming and their runoff has been decreasing in most temperate areas. These changes can affect consumers directly by increasing their metabolic rates and modifying their physiology and indirectly by changing the quality of the resources on which organisms depend. In this study, a common stream detritivore (Echinogammarus berilloni Catta) was reared at two temperatures (15 and 20°C) and fed Populus nigra L. leaves that had been conditioned either in an intermittent or permanent reach to evaluate the effects of resource quality and increased temperatures on detritivore performance, stoichiometry and nutrient cycling. The lower quality (i.e., lower protein, soluble carbohydrates and higher C:P and N:P ratios) of leaves conditioned in pools resulted in compensatory feeding and lower nutrient retention capacity by E. berilloni. This effect was especially marked for phosphorus, which was unexpected based on predictions of ecological stoichiometry. When individuals were fed pool-conditioned leaves at warmer temperatures, their growth rates were higher, but consumers exhibited less efficient assimilation and higher mortality. Furthermore, the shifts to lower C:P ratios and higher lipid concentrations in shredder body tissues suggest that structural molecules such as phospholipids are preserved over other energetic C-rich macromolecules such as carbohydrates. These effects on consumer physiology and metabolism were further translated into feces and excreta nutrient ratios. Overall, our results show that the effects of reduced leaf quality on detritivore nutrient retention were more severe at higher temperatures because the shredders were not able to offset their increased metabolism with increased consumption or more efficient digestion when fed pool-conditioned leaves. Consequently, the synergistic effects of impaired food quality and increased temperatures might not only affect the physiology and survival of detritivores but

  4. The biogeochemical role of baleen whales and krill in Southern Ocean nutrient cycling.

    PubMed

    Ratnarajah, Lavenia; Bowie, Andrew R; Lannuzel, Delphine; Meiners, Klaus M; Nicol, Stephen

    2014-01-01

    The availability of micronutrients is a key factor that affects primary productivity in High Nutrient Low Chlorophyll (HNLC) regions of the Southern Ocean. Nutrient supply is governed by a range of physical, chemical and biological processes, and there are significant feedbacks within the ecosystem. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but data on their contribution are scarce. We analysed the concentration of iron, cadmium, manganese, cobalt, copper, zinc, phosphorus and carbon in baleen whale faeces and muscle, and krill tissue using inductively coupled plasma mass spectrometry. Metal concentrations in krill tissue were between 20 thousand and 4.8 million times higher than typical Southern Ocean HNLC seawater concentrations, while whale faecal matter was between 276 thousand and 10 million times higher. These findings suggest that krill act as a mechanism for concentrating and retaining elements in the surface layer, which are subsequently released back into the ocean, once eaten by whales, through defecation. Trace metal to carbon ratios were also higher in whale faeces compared to whale muscle indicating that whales are concentrating carbon and actively defecating trace elements. Consequently, recovery of the great whales may facilitate the recycling of nutrients via defecation, which may affect productivity in HNLC areas. PMID:25469984

  5. The Biogeochemical Role of Baleen Whales and Krill in Southern Ocean Nutrient Cycling

    PubMed Central

    Ratnarajah, Lavenia; Bowie, Andrew R.; Lannuzel, Delphine; Meiners, Klaus M.; Nicol, Stephen

    2014-01-01

    The availability of micronutrients is a key factor that affects primary productivity in High Nutrient Low Chlorophyll (HNLC) regions of the Southern Ocean. Nutrient supply is governed by a range of physical, chemical and biological processes, and there are significant feedbacks within the ecosystem. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but data on their contribution are scarce. We analysed the concentration of iron, cadmium, manganese, cobalt, copper, zinc, phosphorus and carbon in baleen whale faeces and muscle, and krill tissue using inductively coupled plasma mass spectrometry. Metal concentrations in krill tissue were between 20 thousand and 4.8 million times higher than typical Southern Ocean HNLC seawater concentrations, while whale faecal matter was between 276 thousand and 10 million times higher. These findings suggest that krill act as a mechanism for concentrating and retaining elements in the surface layer, which are subsequently released back into the ocean, once eaten by whales, through defecation. Trace metal to carbon ratios were also higher in whale faeces compared to whale muscle indicating that whales are concentrating carbon and actively defecating trace elements. Consequently, recovery of the great whales may facilitate the recycling of nutrients via defecation, which may affect productivity in HNLC areas. PMID:25469984

  6. Modeling energy flow and nutrient cycling in natural semiarid grassland ecosystems with the aid of thematic mapper data

    NASA Technical Reports Server (NTRS)

    Lewis, James K.

    1987-01-01

    Energy flow and nutrient cycling were modeled as affected by herbivory on selected intensive sites along gradients of precipitation and soils, validating the model output by monitoring selected parameters with data derived from the Thematic Mapper (TM). Herbivore production was modeled along the gradient of soils and herbivory, and validated with data derived from TM in a spatial data base.

  7. A Simple Heuristic Model of Nutrient Cycling in an Estuary

    NASA Astrophysics Data System (ADS)

    Kimmerer, W. J.; Smith, S. V.; Hollibaugh, J. T.

    1993-08-01

    Three decades of discussion and study have not resolved the apparent discrepancy between N-limitation of primary production and the ability of marine ecosystems to fix N. We use a simple model as a heuristic tool to examine controls on nutrient cycling in a shallow estuary, with Tomales Bay, California as the prototype. The model is a steady-state, one-box model with inputs and losses of nutrients and organic matter, and terms representing N-fixation and denitrification. The physical description of the system is deliberately kept simple to permit a focus on the key biogeochemical reactions. Growth of autotrophs in the model can be limited either by dissolved inorganic nitrogen (DIN) or dissolved inorganic phosphorus (DIP). Nitrogen-fixation is controlled by the availability of DIP or limited by excess amounts of DIN. Model results demonstrate that, for a system with a long residence time, autotroph biomass and total organic matter are controlled primarily by the rate of delivery of P to the system, either as DIP or in organic matter. Increasing the delivery rate of DIN raises autotroph biomass slightly but has little effect on total organic matter. This is because the rates of input of P as DIP or organic matter control the N-fixation rate, and denitrification limits the build-up of DIN in the system. Thus, denitrification and N-fixation act as opposing negative feedbacks, insuring that the supply of N remains roughly commensurate with that of P. When exchange with the ocean is increased, reducing residence time, the relative importance of DIN input increases relative to that of DIP.

  8. Nutrient cycling, connectivity, and free-floating plant abundance in backwater lakes of the Upper Mississippi River

    USGS Publications Warehouse

    Houser, Jeff N.; Giblin, Shawn M.; James, William F.; Langrehr, H.A.; Rogala, James T.; Sullivan, John F.; Gray, Brian R.

    2013-01-01

    River eutrophication may cause the formation of dense surface mats of free floating plants (FFP; e.g., duckweeds and filamentous algae) which may adversely affect the ecosystem. We investigated associations among hydraulic connectivity to the channel, nutrient cycling, FFP, submersed aquatic vegetation (SAV), and dissolved oxygen concentration (DO) in ten backwater lakes of the Upper Mississippi River (UMR) that varied in connectivity to the channel. Greater connectivity was associated with higher water column nitrate (NO3-N) concentration, higher rates of sediment phosphorus (P) release, and higher rates of NO3-N flux to the sediments. Rates of sediment P and N (as NH4-N) release were similar to those of eutrophic lakes. Water column nutrient concentrations were high, and FFP tissue was nutrient rich suggesting that the eutrophic condition of the UMR often facilitated abundant FFP. However, tissue nutrient concentrations, and the associations between FFP biomass and water column nutrient concentrations, suggested that nutrients constrained FFP abundance at some sites. FFP abundance was positively associated with SAV abundance and negatively associated with dissolved oxygen concentration. These results illustrate important connections among hydraulic connectivity, nutrient cycling, FFP, SAV, and DO in the backwaters of a large, floodplain river.

  9. Maternal nutrient restriction affects properties of skeletal muscle in offspring

    PubMed Central

    Zhu, Mei J; Ford, Stephen P; Means, Warrie J; Hess, Bret W; Nathanielsz, Peter W; Du, Min

    2006-01-01

    Maternal nutrient restriction (NR) affects fetal development with long-term consequences on postnatal health of offspring, including predisposition to obesity and diabetes. Most studies have been conducted in fetuses in late gestation, and little information is available on the persistent impact of NR from early to mid-gestation on properties of offspring skeletal muscle, which was the aim of this study. Pregnant ewes were subjected to 50% NR from day 28–78 of gestation and allowed to deliver. The longissimus dorsi muscle was sampled from 8-month-old offspring. Maternal NR during early to mid-gestation decreased the number of myofibres in the offspring and increased the ratio of myosin IIb to other isoforms by 17.6 ± 4.9% (P < 0.05) compared with offspring of ad libitum fed ewes. Activity of carnitine palmitoyltransferase-1, a key enzyme controlling fatty acid oxidation, was reduced by 24.7 ± 4.5% (P < 0.05) in skeletal muscle of offspring of NR ewes and would contribute to increased fat accumulation observed in offspring of NR ewes. Intramuscular triglyceride content (IMTG) was increased in skeletal muscle of NR lambs, a finding which may be linked to predisposition to diabetes in offspring of NR mothers, since enhanced IMTG predisposes to insulin resistance in skeletal muscle. Proteomic analysis by two-dimensional gel electrophoresis demonstrated downregulation of several catabolic enzymes in 8-month-old offspring of NR ewes. These data demonstrate that the early to mid-gestation period is important for skeletal muscle development. Impaired muscle development during this stage of gestation affects the number and composition of fibres in offspring which may lead to long-term physiological consequences, including predisposition to obesity and diabetes. PMID:16763001

  10. Nutrient Exchange through Hyphae in Intercropping Systems Affects Yields

    ERIC Educational Resources Information Center

    Thun, Tim Von

    2013-01-01

    Arbuscular mycorrhizae fungi (AMF) play a large role in the current understanding of the soil ecosystem. They increase nutrient and water uptake, improve soil structure, and form complex hyphal networks that transfer nutrients between plants within an ecosystem. Factors such as species present, the physiological balance between the plants in the…

  11. Nutrient transport as affected by rate of overland flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is currently available concerning the effects of varying flow rate on nutrient transport by overland flow. The objective of this study was to measure the effects of overland flow rate on nutrient transport following the application of beef cattle or swine manure to plots containin...

  12. Agricultural Nutrient Cycling at the Strawberry Creek Watershed: Insights Into Processes Using Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Thuss, E.; English, M. C.; Spoelstra, J.

    2009-05-01

    When nitrogen availability exceeds biological demand, excess nitrogen, especially nitrate, may subsequently pollute ground and surface water. Agricultural practices in Southern Ontario typically supplement soils with organic and inorganic nutrients to aid in crop development, and employ various management techniques to limit nutrient loss. Excess nitrogen has several potential fates, which are controlled by the net effects of numerous nitrogen cycling reactions in the soil that are often difficult to measure directly. Nitrogen cycling in soils is controlled in large part by soil moisture, as it affects microbial activity and soil redox conditions. Stable isotope geochemistry is a powerful tool that provides information on nitrogen sources and processes. This study uses crop nitrogen and carbon isotope ratios to provide insights into the net effects of soil nitrogen cycling and nitrogen fate. This research was conducted at the Strawberry Creek Watershed (SCW), an agricultural research watershed located between Kitchener-Waterloo and Guelph, Ontario. The SCW exhibits elevated nitrate concentrations in groundwater, tile discharge, and the stream itself. Previous isotopic work revealed that this nitrate is largely derived from chemical fertilizer and manure applications. Field-scale hydrological processes lead to areas where the fate of applied nitrogen differs, which has an isotopic effect on the residual nitrogen that is available to plants. Results of this study indicate significant patterns in the isotopic signature of plant tissue, in both temporal and spatial scales. At the plot-scale where soil conditions are similar, there is little to no variation in foliar isotope values, but at the field-scale there appears to be a significant amount of variability related to soil moisture and nitrogen loss. This relationship can potentially provide insight into ideal conditions for nitrogen uptake efficiency. Reducing agricultural nitrogen leaching to ground and surface

  13. Effects of global climate change and organic pollution on nutrient cycling in marine sediments

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Valdemarsen, T.; Holmer, M.

    2015-01-01

    Increasing ocean temperature due to climate change is an important anthropogenic driver of ecological change in coastal systems, where sediments play a major role in nutrient cycling. Our ability to predict ecological consequences of climate change is enhanced by simulating real scenarios especially when the interactions among drivers may not be just additive. Based on predicted climate change scenarios, we tested the effect of temperature and organic pollution on nutrient release from coastal sediments to the water column in a mesocosm experiment. PO43- release rates from sediments followed the same trends as organic matter mineralization rates, and increased linearly with temperature and were significantly higher under organic pollution than under non-polluted conditions. NH4+ release only increased significantly when the temperature rise was above 6 °C, and was significantly higher in organic polluted compared to non-polluted sediments. Nutrient release to the water column was only a fraction from the mineralized organic matter, suggesting PO43- retention and NH4+ oxidation in the sediment. Bioturbation and bioirrigation appeared to be key processes responsible of this behaviour. Considering that the primary production of most marine basins is N-limited, the excess release of NH4+ at temperature rise >6 ° could enhance water column primary productivity, which may lead to the deterioration of the environmental quality. Climate change effects are expected to be accelerated in areas affected by organic pollution.

  14. Effects of temperature and organic pollution on nutrient cycling in marine sediments

    NASA Astrophysics Data System (ADS)

    Sanz-Lazaro, C.; Valdemarsen, T.; Holmer, M.

    2015-08-01

    Increasing ocean temperature due to climate change is an important anthropogenic driver of ecological change in coastal systems. In these systems sediments play a major role in nutrient cycling. Our ability to predict ecological consequences of climate change is enhanced by simulating real scenarios. Based on predicted climate change scenarios, we tested the effect of temperature and organic pollution on nutrient release from coastal sediments to the water column in a mesocosm experiment. PO43- release rates from sediments followed the same trends as organic matter mineralization rates, increased linearly with temperature and were significantly higher under organic pollution than under nonpolluted conditions. NH4+ release only increased significantly when the temperature rise was above 6 °C, and it was significantly higher in organic polluted compared to nonpolluted sediments. Nutrient release to the water column was only a fraction from the mineralized organic matter, suggesting PO43- retention and NH4+ oxidation in the sediment. Bioturbation and bioirrigation appeared to be key processes responsible for this behavior. Considering that the primary production of most marine basins is N-limited, the excess release of NH4+ at a temperature rise > 6 °C could enhance water column primary productivity, which may lead to the deterioration of the environmental quality. Climate change effects are expected to be accelerated in areas affected by organic pollution.

  15. Nutrient enrichment affects the mechanical resistance of aquatic plants.

    PubMed

    Lamberti-Raverot, Barbara; Puijalon, Sara

    2012-10-01

    For many plant species, nutrient availability induces important anatomical responses, particularly the production of low-density tissues to the detriment of supporting tissues. Due to the contrasting biomechanical properties of plant tissues, these anatomical responses may induce important modifications in the biomechanical properties of plant organs. The aim of this study was to determine the effects of nutrient enrichment on the anatomical traits of two freshwater plant species and its consequences on plant biomechanical performance. Two plant species were grown under controlled conditions in low versus high nutrient levels. The anatomical and biomechanical traits of the plant stems were measured. Both species produced tissues with lower densities under nutrient-rich conditions, accompanied by modifications in the structure of the aerenchyma for one species. As expected, nutrient enrichment also led to important modifications in the biomechanical properties of the stem for both species. In particular, mechanical resistance (breaking force and strength) and stiffness of stems were significantly reduced under nutrient rich conditions. The production of weaker stem tissues as a result of nutrient enrichment may increase the risk of plants to mechanical failure, thus challenging plant maintenance in mechanically stressful or disturbed habitats. PMID:23028018

  16. Filter-feeding, food utilization, and nutrient remineralization by Corbicula fluminea (bivalvia) and its contribution to nutrient cycling in a North Carolina River

    SciTech Connect

    Lauritsen, D.D.

    1985-01-01

    The introduced Asiatic clam Corbicula fluminea is quite prolific, and since it is a filter-feeder, it can be expected to influence the cycling of nutrients within its habitat as a result of its feeding and excretory activities. Factors affecting filtration rates, food utilization, and excretion of metabolic wastes (ammonia and phosphate) were determined by laboratory experiments, and these physiological processes were then extrapolated to field estimates of Corbicula found in the upper Chowan River, N.C., to obtain an estimate of the potential impact the clams can have on nutrient cycling in the river. Clam filtration rates of four different /sup 14/C-labeled algae species (two greens, a blue-green, and a diatom) were similar, although partitioning of the ingested isotope showed significant differences between the algal foods. The diatom species was the most efficiently utilized by the clams, with more than 80% of the isotope ingested recovered in clam tissues. Corbicula freshly collected from the Chowan River excreted substantially more ammonia than phosphate, and rates of excretion of both nutrients were highest in summer. Clam excretion rates were much higher than sediment fluxes, and as a source of recycled nutrients, these clams could provide about one third of the nitrogen and phosphate requirements of the phytoplankton in the upper Chowan.

  17. Nutrient cycling in an agroforestry alley cropping system receiving poultry litter or nitrogen fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal utilization of animal manures as a plant nutrient source should also prevent adverse impacts on water quality. The objective of this study was to evaluate long-term poultry litter and N fertilizer application on nutrient cycling following establishment of an alley cropping system with easter...

  18. Exploring the Sulfur Nutrient Cycle Using the Winogradsky Column

    ERIC Educational Resources Information Center

    Rogan, Brian; Lemke, Michael; Levandowsky, Michael; Gorrell, Thomas

    2005-01-01

    The Winogradsky column demonstrates how the metabolic diversity of prokaryotes transforms sulfur to different forms with varying redox states and hence, supplies nutrients and/or energy to the organism. The Winogardsky column is an excellent way to show that not all bacteria are pathogens and they have an important role in the geochemical cycling…

  19. Enhancing Nutrient Cycling by Coupling Cover Crops with Manure Injection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coupling winter small grain cover crops (CC) with liquid manure injection may increase manure nutrient capture. The objectives of this research were to quantify manure injection effects using target manure N rates of 112, 224, and 336 kg N ha-1 on CC plant density, fall and spring shoot biomass, N, ...

  20. Including Life Cycle Assessment for decision-making in controlling wastewater nutrient removal systems.

    PubMed

    Corominas, Lluís; Larsen, Henrik F; Flores-Alsina, Xavier; Vanrolleghem, Peter A

    2013-10-15

    This paper focuses on the use of Life Cycle Assessment (LCA) to evaluate the performance of seventeen control strategies in wastewater treatment plants (WWTPs). It tackles the importance of using site-specific factors for nutrient enrichment when decision-makers have to select best operating strategies. Therefore, the LCA evaluation is repeated for three different scenarios depending on the limitation of nitrogen (N), phosphorus (P), or both, when evaluating the nutrient enrichment impact in water bodies. The LCA results indicate that for treated effluent discharged into N-deficient aquatic systems (e.g. open coastal areas) the most eco-friendly strategies differ from the ones dealing with discharging into P-deficient (e.g. lakes and rivers) and N&P-deficient systems (e.g. coastal zones). More particularly, the results suggest that strategies that promote increased nutrient removal and/or energy savings present an environmental benefit for N&P and P-deficient systems. This is not the case when addressing N-deficient systems for which the use of chemicals (even for improving N removal efficiencies) is not always beneficial for the environment. A sensitivity analysis on using weighting of the impact categories is conducted to assess how value choices (policy decisions) may affect the management of WWTPs. For the scenarios with only N-limitation, the LCA-based ranking of the control strategies is sensitive to the choice of weighting factors, whereas this is not the case for N&P or P-deficient aquatic systems. PMID:23856224

  1. Factors affecting plant growth in membrane nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.

    1990-01-01

    The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.

  2. Source and Cycling of Trace Metals and Nutrients in a Microbial Coalbed Methane System

    NASA Astrophysics Data System (ADS)

    Earll, M. M.; Barnhart, E. P.; Ritter, D.; Vinson, D. S.; Orem, W. H.; Vengosh, A.; McIntosh, J. C.

    2015-12-01

    The source and cycling of trace metals and nutrients in coalbed methane (CBM) systems are controlled by both geochemical processes, such as dissolution or precipitation, and biological mediation by microbial communities. CBM production by the microbes is influenced by trace metals and macronutrients such as nitrogen (N) and phosphate (P). Previous studies have shown the importance of these nutrients to both enhance and inhibit methane production; however, it's not clear whether they are sourced from coal via in-situ biodegradation of organic matter or transported into the seams with groundwater recharge. To address this knowledge gap, trace metal and nutrient geochemistry and the organic content of solid coal and associated groundwater will be investigated across a hydrologic gradient in CBM wells in the Powder River Basin, MT. Sequential dissolution experiments (chemical extraction of organic and inorganic constituents) using 8 core samples of coal and sandstone will provide insight into the presence of trace metals and nutrients in coalbeds, the associated minerals present, and their mobilization. If significant concentrations of N, P, and trace metals are present in core samples, in-situ sourcing of nutrients by microbes is highly probable. The biogeochemical evolution of groundwater, as it relates to trace metal and nutrient cycling by microbial consortia, will be investigated by targeting core-associated coal seams from shallow wells in recharge areas to depths of at least 165 m and across a 28 m vertical profile that include overburden, coal, and underburden. If microbial-limiting trace metals and nutrients are transported into coal seams with groundwater recharge, we would expect to see higher concentrations of trace metals and nutrients in recharge areas compared to deeper coalbeds. The results of this study will provide novel understanding of where trace metals and nutrients are sourced and how they are cycled in CBM systems.

  3. Temporal variation in the importance of a dominant consumer to stream nutrient cycling

    DOE PAGESBeta

    Griffiths, Natalie A.; Hill, Walter

    2014-01-01

    Animal excretion can be a significant nutrient flux within ecosystems, where it supports primary production and facilitates microbial decomposition of organic matter. The effects of excretory products on nutrient cycling have been documented for various species and ecosystems, but temporal variation in these processes is poorly understood. We examined variation in excretion rates of a dominant grazing snail, Elimia clavaeformis, and its contribution to nutrient cycling, over the course of 14 months in a well-studied, low-nutrient stream (Walker Branch, east Tennessee, USA). Biomass-specific excretion rates of ammonium varied over twofold during the study, coinciding with seasonal changes in food availabilitymore » (measured as gross primary production) and water temperature (multiple linear regression, R2 = 0.57, P = 0.053). The contribution of ammonium excretion to nutrient cycling varied with seasonal changes in both biological (that is, nutrient uptake rate) and physical (that is, stream flow) variables. On average, ammonium excretion accounted for 58% of stream water ammonium concentrations, 26% of whole-stream nitrogen demand, and 66% of autotrophic nitrogen uptake. Phosphorus excretion by Elimia was contrastingly low throughout the year, supplying only 1% of total dissolved phosphorus concentrations. The high average N:P ratio (89:1) of snail excretion likely exacerbated phosphorus limitation in Walker Branch. To fully characterize animal excretion rates and effects on ecosystem processes, multiple measurements through time are necessary, especially in ecosystems that experience strong seasonality.« less

  4. Temporal variation in the importance of a dominant consumer to stream nutrient cycling

    SciTech Connect

    Griffiths, Natalie A.; Hill, Walter

    2014-01-01

    Animal excretion can be a significant nutrient flux within ecosystems, where it supports primary production and facilitates microbial decomposition of organic matter. The effects of excretory products on nutrient cycling have been documented for various species and ecosystems, but temporal variation in these processes is poorly understood. We examined variation in excretion rates of a dominant grazing snail, Elimia clavaeformis, and its contribution to nutrient cycling, over the course of 14 months in a well-studied, low-nutrient stream (Walker Branch, east Tennessee, USA). Biomass-specific excretion rates of ammonium varied over twofold during the study, coinciding with seasonal changes in food availability (measured as gross primary production) and water temperature (multiple linear regression, R2 = 0.57, P = 0.053). The contribution of ammonium excretion to nutrient cycling varied with seasonal changes in both biological (that is, nutrient uptake rate) and physical (that is, stream flow) variables. On average, ammonium excretion accounted for 58% of stream water ammonium concentrations, 26% of whole-stream nitrogen demand, and 66% of autotrophic nitrogen uptake. Phosphorus excretion by Elimia was contrastingly low throughout the year, supplying only 1% of total dissolved phosphorus concentrations. The high average N:P ratio (89:1) of snail excretion likely exacerbated phosphorus limitation in Walker Branch. To fully characterize animal excretion rates and effects on ecosystem processes, multiple measurements through time are necessary, especially in ecosystems that experience strong seasonality.

  5. RANGELAND WATERSHED WATER BUDGET AND GRAZING CATTLE WASTE NUTRIENT CYCLING

    EPA Science Inventory

    This research project was designed to determine baseline data concerning the source, movement, concentration and factors affecting nonpoint pollutants in runoff from a representative 60-hectare, tallgrass prairie watershed grazed by cattle in North Central Oklahoma. Measurements ...

  6. Microbial respiration and organic carbon indicate nutrient cycling recovery in reclaimed soils

    SciTech Connect

    Ingram, L.J.; Schuman, G.E.; Stahl, P.D.; Spackman, L.K.

    2005-12-01

    Soil quality and the ability of soil to sustain nutrient cycling in drastically disturbed ecosystems will influence the establishment and maintenance of a permanent and stable plant community. We undertook research to evaluate a recently developed method to assess soil quality and nutrient cycling potential in a series of reclaimed soils. The method involves correlating the 3-d flush of microbial respiration after a soil is rewetted against a range of soil biological parameters. Soils were sampled from a number of reclaimed coal mines, a reclaimed uranium mine, and native, undisturbed prairie. All sites were located in semiarid Wyoming.

  7. Controls over fungal communities and consequences for nutrient cycling

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Majumder, P.; Bent, E.; Borneman, J.; Allison, S. D.; Hanson, C. A.

    2007-12-01

    effects of N fertilization on fungal community composition. We observed that N fertilization decreased the richness of fungal taxa by 22%. Helotiales and Saccharomycetales tended to increase under N fertilization, whereas Polyporales did not change significantly. Together, these results indicate that shifts in the community composition of fungi under anthropogenic N deposition could lead to changes in nutrient dynamics.

  8. Sources and cycling of major ions and nutrients in Devils Lake, North Dakota

    USGS Publications Warehouse

    Lent, R.M.

    1994-01-01

    Devils Lake is a saline lake in a large, closed drainage basin in northeastern North Dakota. Previous studies determined that major-ion and nutrient concentrations in Devils Lake are strongly affected by microbially mediated sulfate reduction and dissolution of sulfate and carbonate minerals in the bottom sediments. These studies documented substantial spatial variability in the magnitude of calculated benthic fluxes coincident with the horizontal salinity gradient in Devils Lake. The purpose of the present study is to evaluate seasonal variability in benthic-flux rates, and to understand the effect of these fluxes on the major- chemistries in Devils Lake between May and October 1991. During the study period, the water column was well mixed, and specific conductance, pH, and temperature did not vary with depth. Dissolved oxygen was enriched near the lake surface due to photosynthesis. Major-ion concentrations and nutrient concentrations did not vary with depth. Because the water-quality data were obtained during open-water periods, the vertical profiles reflect well-mixed conditions. However, the first and last profiles for the study period did document near-bottom maxima of major cations. Secchi-disk depth varied from 0.82 meter on May 7, 1991, to 2.13 meters on June 5, 1991. The mean Secchi-disk depth during the study period was 1.24 meters. Seasonal variations in Secchi-disk depths were attributed to variations in primary productivity and phytoplankton communities. Nutrient cycles in Devils Lake were evaluated using gross primary productivity rate data, sediment trap data, and major-ion and nutrient benthic-flux rate data. Gross primary productivity rate was smallest in May (0.076 gram of carbon per square meter per day) and largest in September (1.8 grams of carbon per square meter per day). Average gross primary productivity for the study period was 0.87 gram of carbon per square meter per day. Average gross primary productivity is consistent with historic

  9. Irrigated small-grain residue management effects on soil chemical and physical properties and nutrient cycling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of straw removal from irrigated wheat and barley fields cropped to wheat and barley on soil properties and nutrient cycling is a concern due to its potential impact on the sustainability of agricultural production. Increasing demand of straw for animal bedding and the potential developm...

  10. Effects of Nutrient Enrichment on Microbial Communities and Carbon Cycling in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Neubauer, S. C.; Richardson, C. J.

    2013-12-01

    Soil microbial communities are responsible for catalyzing biogeochemical transformations underlying critical wetland functions, including cycling of carbon (C) and nutrients, and emissions of greenhouse gasses (GHG). Alteration of nutrient availability in wetland soils may commonly occur as the result of anthropogenic impacts including runoff from human land uses in uplands, alteration of hydrology, and atmospheric deposition. However, the impacts of altered nutrient availability on microbial communities and carbon cycling in wetland soils are poorly understood. To assess these impacts, soil microbial communities and carbon cycling were determined in replicate experimental nutrient addition plots (control, +N, +P, +NP) across several wetland types, including pocosin peat bogs (NC), freshwater tidal marshes (GA), and tidal salt marshes (SC). Microbial communities were determined by pyrosequencing (Roche 454) extracted soil DNA, targeting both bacteria (16S rDNA) and fungi (LSU) at a depth of ca. 1000 sequences per plot. Wetland carbon cycling was evaluated using static chambers to determine soil GHG fluxes, and plant inclusion chambers were used to determine ecosystem C cycling. Soil bacterial communities responded to nutrient addition treatments in freshwater and tidal marshes, while fungal communities did not respond to treatments in any of our sites. We also compared microbial communities to continuous biogeochemical variables in soil, and found that bacterial community composition was correlated only with the content and availability of soil phosphorus, while fungi responded to phosphorus stoichiometry and soil pH. Surprisingly, we did not find a significant effect of our nutrient addition treatments on most metrics of carbon cycling. However, we did find that several metrics of soil carbon cycling appeared much more related to soil phosphorus than to nitrogen or soil carbon pools. Finally, while overall microbial community composition was weakly correlated with

  11. Antarctic Zone nutrient conditions during the last two glacial cycles

    NASA Astrophysics Data System (ADS)

    Studer, Anja S.; Sigman, Daniel M.; Martínez-García, Alfredo; Benz, Verena; Winckler, Gisela; Kuhn, Gerhard; Esper, Oliver; Lamy, Frank; Jaccard, Samuel L.; Wacker, Lukas; Oleynik, Sergey; Gersonde, Rainer; Haug, Gerald H.

    2015-07-01

    In a sediment core from the Pacific sector of the Antarctic Zone (AZ) of the Southern Ocean, we report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and two distinct diatom assemblages (pennate and centric rich). These data indicate tight coupling between the degree of nitrate consumption and Antarctic climate across the last two glacial cycles, with δ15Ndb (and thus the degree of nitrate consumption) increasing at each major Antarctic cooling event. Coupled with evidence from opal- and barium-based proxies for reduced export production during ice ages, the δ15Ndb increases point to ice age reductions in the supply of deep ocean-sourced nitrate to the AZ surface. The two diatom assemblages and species abundance data indicate that the δ15Ndb changes are not the result of changing species composition. The pennate and centric assemblage δ15Ndb records indicate similar changes but with a significant decline in their difference during peak ice ages. A tentative seasonality-based interpretation of the centric-to-pennate δ15Ndb difference suggests that late summer surface waters became nitrate free during the peak glacials.

  12. Nutrient concentrations of runoff as affected by the diameter of unconsolidated material from feedlot surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cattle feedlots contain unconsolidated material that accumulates on the feedlot surface during a feeding cycle. This study was conducted to measure the effects of varying diameters of unconsolidated surface material and varying flow rates on nutrient concentrations in runoff. Unconsolidated sur...

  13. Investigating the Effect of Livestock Grazing and Associated Plant Community Shifts on Carbon and Nutrient Cycling in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Hewins, D. B.; Chuan, S.; Stolnikova, E.; Bork, E. W.; Carlyle, C. N.; Chang, S. X.

    2015-12-01

    Grassland ecosystems are ubiquitous across the globe covering an estimated 40 % of Earth's terrestrial landmass. These ecosystems are widely valued for providing forage for domestic livestock and a suite of important ecosystem goods and services including carbon (C) storage. Despite storing more than 30 % of soil C globally, the effect of both livestock grazing and the associated change in plant community structure in response to grazing on C and nutrient cycling remains uncertain. To gain a quantitative understanding of the direct and indirect effects of livestock grazing on C and nutrient cycling, we established study sites at 15 existing site localities with paired long-term grazing (ca. 30 y) and non-grazed treatments (totaling 30 unique plant communities). Our sites were distributed widely across Alberta in three distinct grassland bioclimatic zones allowing us to make comparisons across the broad range of climate variability typical of western Canadian grasslands. In each plant community we decomposed 5 common plant species that are known to increase or decrease in response to grazing pressure, a unique plant community sample, and a cellulose paper control. We measured mass loss, initial lignin, C and N concentrations at 0, 1, 3, 6 and 12 months of field incubation. In addition we assayed hydrolytic and oxidative extracellular enzymes associated with for C (n= 5 hydrolytic; phenoloxidase and peroxidase) and nutrients (i.e. N and P; n=1 ea.) cycling from each litter sample at each collection. Our results suggest that by changing the plant community structure, grazing can affect rates of decomposition and associated biogeochemical cycling by changing plant species and associated litter inputs. Moreover, measures of microbial function are controlled by site-specific conditions (e.g. temperature and precipitation), litter chemistry over the course of our incubation.

  14. Nutrient Enrichment and Food Web Composition Affect Ecosystem Metabolism in an Experimental Seagrass Habitat

    PubMed Central

    Spivak, Amanda C.; Canuel, Elizabeth A.; Duffy, J. Emmett; Richardson, J. Paul

    2009-01-01

    Background Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these interactions are poorly understood. Methodology/Principal Findings Using an experimental seagrass mesocosm system, we factorially manipulated water column nutrient concentrations, food chain length, and diversity of crustacean grazers to address two questions: (1) Does food web composition modulate the effects of nutrient enrichment on plant and grazer biomasses and stoichiometry? (2) Do ecosystem fluxes of dissolved oxygen and nutrients more closely reflect above-ground biomass and community structure or sediment processes? Nutrient enrichment and grazer presence generally had strong effects on biomass accumulation, stoichiometry, and ecosystem fluxes, whereas predator effects were weaker or absent. Nutrient enrichment had little effect on producer biomass or net ecosystem production but strongly increased seagrass nutrient content, ecosystem flux rates, and grazer secondary production, suggesting that enhanced production was efficiently transferred from producers to herbivores. Gross ecosystem production (oxygen evolution) correlated positively with above-ground plant biomass, whereas inorganic nutrient fluxes were unrelated to plant or grazer biomasses, suggesting dominance by sediment microbial processes. Finally, grazer richness significantly stabilized ecosystem processes, as predators decreased ecosystem production and respiration only in the zero- and one- species grazer treatments. Conclusions/Significance Overall, our results indicate that consumer presence and species composition strongly influence ecosystem responses to nutrient enrichment, and that increasing

  15. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance.

    PubMed

    Yang, Jia; Xu, Ming; Zhang, Xuezhi; Hu, Qiang; Sommerfeld, Milton; Chen, Yongsheng

    2011-01-01

    This research examines the life-cycle water and nutrients usage of microalgae-based biodiesel production. The influence of water types, operation with and without recycling, algal species, geographic distributions are analyzed. The results confirm the competitiveness of microalgae-based biofuels and highlight the necessity of recycling harvested water and using sea/wastewater as water source. To generate 1 kg biodiesel, 3726 kg water, 0.33 kg nitrogen, and 0.71 kg phosphate are required if freshwater used without recycling. Recycling harvest water reduces the water and nutrients usage by 84% and 55%. Using sea/wastewater decreases 90% water requirement and eliminates the need of all the nutrients except phosphate. The variation in microalgae species and geographic distribution are analyzed to reflect microalgae biofuel development in the US. The impacts of current federal and state renewable energy programs are also discussed to suggest suitable microalgae biofuel implementation pathways and identify potential bottlenecks. PMID:20675125

  16. Effects of mountain tea plantations on nutrient cycling at upstream watersheds

    NASA Astrophysics Data System (ADS)

    Lin, T.-C.; Shaner, P.-J. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.

    2015-11-01

    The expansion of agriculture to rugged mountains can exacerbate negative impacts of agricultural activities on ecosystem function. In this study, we monitored streamwater and rainfall chemistry of mountain watersheds at the Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportion of tea plantation cover, the higher the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater of the four mountain watersheds examined; on the other hand, the concentrations of the ions that are rich in soils (SO42-, Ca2+, Mg2+) did not increase with the proportion of tea plantation cover, suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. Of the two watersheds for which rainfall chemistry was available, the one with higher proportion of tea plantation cover had higher concentrations of ions in rainfall and retained less nitrogen in proportion to input compared to the more pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. As expected, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of NO3- in streamwater by more than 70 %, indicating that such a landscape configuration helps mitigate nutrient enrichment in aquatic systems even for watersheds with steep topography. We estimated that tea plantation at our study site contributed approximately 450 kg ha-1 yr-1 of NO3-N via streamwater, an order of magnitude greater than previously reported for agricultural lands around the globe, which can only be matched by areas under intense fertilizer use. Furthermore, we constructed watershed N fluxes to show that excessive leaching of N, and additional loss to the atmosphere via volatilization and denitrification can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of

  17. A mesocosm experiment of suspended particulate matter dynamics in nutrient- and biomass-affected waters.

    PubMed

    Tang, Fiona H M; Maggi, Federico

    2016-02-01

    An experimental study was conducted to test the hypothesis that the biomass growing after an increase in available nutrient in an aquatic ecosystem affects the flocculation dynamics of suspended particulate matter (SPM). The experiment was carried out in a settling column equipped with a turbulence generating system, a water quality monitoring system, and an automated μPIV system to acquire micro photographs of SPM. Three SPM types were tested combinatorially at five turbulence shear rates, three nutrient concentrations, and three mineral concentrations. Analyses of experimental data showed that nutrient availability together with the presence of biomass increased the SPM size by about 60% at low shear as compared to nutrient- and biomass-free conditions; a lower increase was observed at higher shears. In contrast, only 2% lower fractal (capacity) dimension and nearly invariant settling velocity were observed than in nutrient- and biomass-free conditions. Likewise, SPM size and capacity dimension were found to be insensitive to the SPM concentration. Although limited to nearly homogeneous mineral mixes (kaolinite), these experimental findings not only reject the hypothesis that SPM in natural waters can be dealt with as purely mineral systems in all instances, but also anticipate that SPM dynamics in natural waters increasingly exposed to the threat of anthropogenic nutrient discharge would lead to an increased advective flow of adsorbed chemicals and organic carbon. PMID:26641013

  18. Solubility and Plant Availability of Nutrients as Affected by Soil Drainage Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn growth is affected due to oxygen deficiency and root death in a perched water table (PWT). The study objective was to evaluate a surface application of FGD gypsum (FGDG) and glyphosate (GLY) on nutrient uptake in corn with different drainage conditions. The experiment was conducted in greenhous...

  19. Providing lipid-based nutrient supplements does not affect developmental milestones among Malawian children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to assess whether using lipid-based nutrient supplements (LNS) to complement the diets of infants and young children affected when they achieved selected developmental milestones. In rural Malawi, 840 6-month-old healthy infants were enrolled to a randomised trial. Control particip...

  20. Testate amoebae and nutrient cycling: peering into the black box of soil ecology.

    PubMed

    Wilkinson, David M

    2008-11-01

    In some areas of ecology and evolution, such as the behavioural ecology of many well-studied bird species, it is increasingly difficult to make surprising new discoveries. However, this is not the case in many areas of soil and/or microbial ecology. Two recent studies suggest that the testate amoebae, a microbial group unfamiliar to most biologists, might play a much larger role in soil nutrient cycling than has hitherto been suspected. PMID:18824273

  1. Nutrient-driven O-GlcNAc cycling - think globally but act locally.

    PubMed

    Harwood, Katryn R; Hanover, John A

    2014-05-01

    Proper cellular functioning requires that cellular machinery behave in a spatiotemporally regulated manner in response to global changes in nutrient availability. Mounting evidence suggests that one way this is achieved is through the establishment of physically defined gradients of O-GlcNAcylation (O-linked addition of N-acetylglucosamine to serine and threonine residues) and O-GlcNAc turnover. Because O-GlcNAcylation levels are dependent on the nutrient-responsive hexosamine signaling pathway, this modification is uniquely poised to inform upon the nutritive state of an organism. The enzymes responsible for O-GlcNAc addition and removal are encoded by a single pair of genes: both the O-GlcNAc transferase (OGT) and the O-GlcNAcase (OGA, also known as MGEA5) genes are alternatively spliced, producing protein variants that are targeted to discrete cellular locations where they must selectively recognize hundreds of protein substrates. Recent reports suggest that in addition to their catalytic functions, OGT and OGA use their multifunctional domains to anchor O-GlcNAc cycling to discrete intracellular sites, thus allowing them to establish gradients of deacetylase, kinase and phosphatase signaling activities. The localized signaling gradients established by targeted O-GlcNAc cycling influence many important cellular processes, including lipid droplet remodeling, mitochondrial functioning, epigenetic control of gene expression and proteostasis. As such, the tethering of the enzymes of O-GlcNAc cycling appears to play a role in ensuring proper spatiotemporal responses to global alterations in nutrient supply. PMID:24762810

  2. Nutrient Availability and Carbon Cycling in a Subarctic Wetland - a Pulse Labeling Experiment

    NASA Astrophysics Data System (ADS)

    Lund, M.; Mastepanov, M.; Christensen, T. R.; Ström, L.

    2008-12-01

    Northern wetlands are important ecosystems in the context of biospheric feedbacks to climate change, due to the large storage of organic C in their soils. Nitrogen deposition and increased nutrient availability in soils following climate warming may cause changes in these ecosystems affecting greenhouse gas exchange. We have studied C cycling under controlled laboratory conditions using whole ecosystem monoliths with intact surface vegetation from a fertilization experiment in a north Swedish subarctic wetland. The experimental site has been fertilized with N and P since 2006, and during autumn 2007, three monoliths from fertilized plots and three monoliths from control plots were collected. The monoliths were installed in a growth chamber where temperature and radiation could be controlled to simulate natural conditions. The monoliths were isolated from the surroundings using transparent chambers connected to tubing with a constant inflow of atmospheric air. The outflowing air from all six chambers and a reference chamber were analyzed for CO2 and CH4. Each monolith was exposed to 14CO2 during an hour under daytime irradiation conditions allowing vegetation to assimilate labeled CO2. During more than 70 days after labeling, we monitored the amount of 14CO2 and 14CH4 in outflowing air, as well as the amount of 14C in soil water. Above and belowground plant biomass were analyzed for 14C after the experiment was terminated. We hypothesize that fertilization will lower 14C root to shoot ratio compared to control. This in turn will lead to decreased 14C root exudation rates in fertilized monoliths, which may lower substrate availability for methanogenesis. The results from this experiment will be presented and discussed at the conference.

  3. Nutrient cycles in agricultural systems at sub-catchment scale within the UK and China

    NASA Astrophysics Data System (ADS)

    Bellarby, Jessica; Surridge, Ben; Haygarth, Philip M.; Lai, Xin; Zhang, Guilong; Song, Xiaolong; Zhou, Jianbin; Meng, Fanqiao; Shen, Jianbo; Rahn, Clive; Smith, Laurence; Burke, Sean

    2015-04-01

    Diffuse water pollution from agriculture (DWPA) represents a significant challenge in both the UK and China. The UK has developed policies and practices which seek to mitigate DWPA, yet the risks and adverse impacts of DWPA remain widespread. In contrast, China's past priorities have largely focussed on food security, with an emphasis on increasing food production through high fertiliser application rates with little attention being paid to enhanced nutrient export from land to water and to air. This has contributed to severe environmental problems which are only now beginning to be recognised and addressed. We have prepared nutrient balances (phosphorus and nitrogen) in contrasting agricultural production systems at sub-catchment scale within China and the UK. These draw from a variety of sources ranging from general yearly statistics collected by the respective government to farm surveys. Our aim is to use the resulting nutrient balances to underpin the sharing of knowledge and innovation to mitigate DWPA in both nations. In the UK, the case studies focus on the three Demonstration Test Catchment locations, covering a range of livestock and arable production systems across England. Here, the high frequency monitoring of phosphorus river loads enables the cross-validation of the simple nutrient budget approaches applied in this study. In China, our case studies span kiwi orchard, fruit and vegetable solar greenhouse systems, double cropped rice-wheat and wheat-maize production systems. Substantial differences in nutrient stocks and flows exist between individual production systems both across and within the two countries. These differences will be expressed along the source-mobilisation-delivery-impact continuum that underpins our budgets for both phosphorus and nitrogen. We will present the phosphorus cycles of some case studies and highlight their challenges and relevance at sub-catchment scale. Based on our nutrient budgets, general recommendations can be

  4. A biogeochemical model for phosphorus and nitrogen cycling in the Eastern Mediterranean Sea. Part 2. Response of nutrient cycles and primary production to anthropogenic forcing: 1950-2000

    NASA Astrophysics Data System (ADS)

    Powley, H. R.; Krom, M. D.; Emeis, K.-C.; Van Cappellen, P.

    2014-11-01

    Anthropogenic inputs of nutrient phosphorus (P) and nitrogen (N) to the Eastern Mediterranean Sea (EMS) increased significantly after 1950. Nonetheless, the EMS remained ultra-oligotrophic, with eutrophication only affecting a restricted number of nearshore areas. To better understand this apparent contradiction, we reconstructed the external inputs of reactive P and N to the EMS for the period 1950 to 2000. Although the inputs associated with atmospheric deposition and river discharge more than doubled, the inflow of surface water from the Western Mediterranean Sea (WMS) remained the dominant source of nutrient P and N to the EMS during the second half of the 20th century. The combined external input of reactive P rose by 24% from 1950 to 1985, followed by a slight decline. In contrast, the external reactive N input increased continuously from 1950 to 2000, with a 62% higher input in 2000 compared to 1950. When imposing the reconstructed inputs to the dynamic model of P and N cycling in the EMS developed in the companion paper, a maximum increase of primary production of only 16% is predicted. According to the model, integrated over the period 1950-2000, outflow of Levantine Intermediate Water (LIW) to the WMS exported the equivalent of about one third of the P supplied in excess of the 1950 input, while another one third was translocated to the Eastern Mediterranean Deep Water (EMDW). Together, both mechanisms efficiently counteracted enhanced P input to the EMS, by drawing nutrient P away from primary producers in the surface waters. Furthermore, between 1950 and 2000, inorganic and organic dissolved N:P ratios increased in all water masses. Thus, the EMS became even more P limited because of anthropogenic nutrient inputs. A model simulation incorporating the circulation changes accompanying the Eastern Mediterranean Transient (EMT) between 1987 and 2000 yielded a 4% increase of EMS primary productivity relative to the baseline scenario.

  5. Life cycle assessment of manure management and nutrient recycling from a Chinese pig farm.

    PubMed

    Luo, Yiming; Stichnothe, Heinz; Schuchardt, Frank; Li, Guoxue; Huaitalla, Roxana Mendoza; Xu, Wen

    2014-01-01

    Driven by the growing numbers of intensified pig farms around cities in China, there are problems of nutrient surplus and shortage of arable land for utilising the manure. Hence, sustainable livestock systems with effective manure management are needed. The objective of this study is to compare the existing manure treatment of a typical pig farm in Beijing area (separate collection of faeces; 'Gan qing fen' system) with an alternative system and to identify the nutrients flow of the whole farm in order to quantify environmental burdens and to estimate the arable land required for sustainable nutrients recycling. Life cycle assessment is used for this purpose. Acidification potential (AP), eutrophication potential (EP) and global warming potential (GWP) are analysed in detail; the functional unit is the annual production of the pig farm. The results show that the cropland area demand for sustainable land application of the effluent can be reduced from 238 to 139 ha with the alternative system. It is possible to transfer 29% of total nitrogen, 87% of phosphorus, 34% of potassium and 75% of magnesium to the compost, and to reduce the total AP, EP and GWP of manure management on the farm by 64.1%, 96.7% and 22%, respectively, compared with the current system. Besides an effective manure management system, a full inventory of the regional nutrients flow is needed for sustainable development of livestock systems around big cities in China. PMID:24293069

  6. Life-Cycle Assessment of Advanced Nutrient Removal Technologies for Wastewater Treatment.

    PubMed

    Rahman, Sheikh M; Eckelman, Matthew J; Onnis-Hayden, Annalisa; Gu, April Z

    2016-03-15

    Advanced nutrient removal processes, while improving the water quality of the receiving water body, can also produce indirect environmental and health impacts associated with increases in usage of energy, chemicals, and other material resources. The present study evaluated three levels of treatment for nutrient removal (N and P) using 27 representative treatment process configurations. Impacts were assessed across multiple environmental and health impacts using life-cycle assessment (LCA) following the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) impact-assessment method. Results show that advanced technologies that achieve high-level nutrient removal significantly decreased local eutrophication potential, while chemicals and electricity use for these advanced treatments, particularly multistage enhanced tertiary processes and reverse osmosis, simultaneously increased eutrophication indirectly and contributed to other potential environmental and health impacts including human and ecotoxicity, global warming potential, ozone depletion, and acidification. Average eutrophication potential can be reduced by about 70% when Level 2 (TN = 3 mg/L; TP = 0.1 mg/L) treatments are employed instead of Level 1 (TN = 8 mg/L; TP = 1 mg/L), but the implementation of more advanced tertiary processes for Level 3 (TN = 1 mg/L; TP = 0.01 mg/L) treatment may only lead to an additional 15% net reduction in life-cycle eutrophication potential. PMID:26871301

  7. Productivity and nutrient cycling in salt marshes: Contribution to ecosystem health

    NASA Astrophysics Data System (ADS)

    Sousa, Ana I.; Lillebø, Ana I.; Pardal, Miguel A.; Caçador, Isabel

    2010-05-01

    This study aimed to assess the contribution of different salt marsh halophytes ( Spartina maritima, Scirpus maritimus, Halimione portulacoides, Sarcocornia fruticosa, and Sarcocornia perennis) to nutrient cycling and sequestration in warm-temperate salt marshes. Carbon, nitrogen and phosphorus concentration in plant organs and rhizosediment, as well as plant biomass were monitored every two months during one year. Results show that the C retained in the rhizosediment does not seem to be species or site specific. However, some halophytes seem to have a higher contribution to retain C from external sources, namely S. perennis and S. maritima. Regarding N, halophytes colonizing the upper and middle marsh areas had the highest NBPP (net belowground primary production) as well as the retention of N in the rhizosediment. Yet, excluding S. maritimus, all halophytes seem to contribute to the retention of N from external sources. The P retained in the rhizosediment does not seem to be species or site specific. Still, only S. maritima colonizing the lower marsh areas, which also had comparatively lower NBPP, seem to have a higher contribution to retain P from external sources. Additionally, it seems that there is no relation between plants sequestration capacity for nutrients and plant photosynthetic pathway. This work shows that nutrient cycling and accumulation processes by salt marsh halophytes contribute to reduce eutrophication (N and P retention) and also to reduce atmospheric CO 2 (C retention), highlighting salt marsh ecosystems services and the crucial role of halophytes in maintaining ecosystem functions and health.

  8. Exploring the effects of black mangrove (Avicennia germinans) expansions on nutrient cycling in smooth cordgrass (Spartina alterniflora) marsh sediments of southern Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Henry, K. M.; Twilley, R. R.

    2011-12-01

    Located at the northernmost extent of mangroves in the Gulf of Mexico, coastal Louisiana (LA) provides an excellent opportunity to study the effects of a climate-induced vegetation shift on nutrient cycling within an ecosystem. Climate throughout the Gulf Coast region is experiencing a general warming trend and scientists predict both hotter summers (+1.5 to 4 °C) and warmer winters (+1.5 to 5.5 °C) by 2100. Over the last two decades, mild winter temperatures have facilitated the expansion of black mangrove trees (Avicennia germinans) into the smooth cordgrass (Spartina alterniflora) along parts of the LA coast. Due to differences in morphology and physiology between these two species, the expansion of Avicennia has the potential to greatly alter sediment biogeochemistry, especially nutrient cycling. With such an extensive history of coastal nutrient enrichment and eutrophication in the Mississippi River delta, it is important to understand how nutrient cycling, retention, and removal in this region will be affected by this climate-induced vegetation expansion. We examined the effect of this species shift on porewater salinity, sulfide, and dissolved inorganic nutrient concentrations (nitrite, nitrate, ammonium, and phosphate) as well as sediment oxidation-reduction potential, bulk density, and nutrient content (carbon, nitrogen, phosphorus). We also measured net dinitrogen (N2:Ar), oxygen, and dissolved inorganic nutrient fluxes on intact, non-vegetated sediment cores collected from both Spartina and Avicennia habitats. Spartina sediments were more reducing, with higher concentrations of sulfides and ammonium. We found no significant difference between Spartina and Avicennia sediment dinitrogen, oxygen, or dissolved inorganic nutrient fluxes. Net dinitrogen fluxes for both habitat types were predominately positive, indicating higher rates of denitrification than nitrogen fixation at these sites. Sediments were primarily a nitrate sink, but functioned as both a

  9. Carbon, nutrient and trace metal cycling in sandy sediments: A comparison of high-energy beaches and backbarrier tidal flats

    NASA Astrophysics Data System (ADS)

    Reckhardt, Anja; Beck, Melanie; Seidel, Michael; Riedel, Thomas; Wehrmann, Achim; Bartholomä, Alexander; Schnetger, Bernhard; Dittmar, Thorsten; Brumsack, Hans-Jürgen

    2015-06-01

    In order to evaluate the importance of coastal sandy sediments and their contribution to carbon, nutrient and metal cycling we investigated two beach sites on Spiekeroog Island, southern North Sea, Germany, and a tidal flat margin, located in Spiekeroog's backbarrier area. We also analyzed seawater and fresh groundwater on Spiekeroog Island, to better define endmember concentrations, which influence our study sites. Intertidal sandy flats and beaches are characterized by pore water advection. Seawater enters the sediment during flood and pore water drains out during ebb and at low tide. This pore water circulation leads to continuous supply of fresh organic substrate to the sediments. Remineralization products of microbial degradation processes, i.e. nutrients, and dissolved trace metals from the reduction of particulate metal oxides, are enriched in the pore water compared to open seawater concentrations. The spatial distribution of dissolved organic carbon (DOC), nutrients (PO43-, NO3-, NO2-, NH4+, Si(OH)4 and total alkalinity), trace metals (dissolved Fe and Mn) as well as sulfate suggests that the exposed beach sites are subject to relatively fast pore water advection, which leads to organic matter and oxygen replenishment. Frequent pore water exchange further leads to comparatively low nutrient concentrations. Sulfate reduction does not appear to play a major role during organic matter degradation. High nitrate concentrations indicate that redox conditions are oxic within the duneward freshwater influenced section, while ammonification, denitrification, manganese and iron reduction seem to prevail in the ammonium-dominated seawater circulation zone. In contrast, the sheltered tidal flat margin site exhibits a different sedimentology (coarser beach sands versus finer tidal flat sands) and nutrients, dissolved manganese and DOC accumulate in the pore water. Ammonium is the dominant pore water nitrogen species and intense sulfate reduction leads to the formation

  10. Changing nutrient stoichiometry affects phytoplankton production, DOP accumulation and dinitrogen fixation - a mesocosm experiment in the eastern tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Löscher, C. R.; Neulinger, S. C.; Reichel, A. F.; Loginova, A.; Borchard, C.; Schmitz, R. A.; Hauss, H.; Kiko, R.; Riebesell, U.

    2016-02-01

    Ocean deoxygenation due to climate change may alter redox-sensitive nutrient cycles in the marine environment. The productive eastern tropical North Atlantic (ETNA) upwelling region may be particularly affected when the relatively moderate oxygen minimum zone (OMZ) deoxygenates further and microbially driven nitrogen (N) loss processes are promoted. Consequently, water masses with a low nitrogen to phosphorus (N : P) ratio could reach the euphotic layer, possibly influencing primary production in those waters. Previous mesocosm studies in the oligotrophic Atlantic Ocean identified nitrate availability as a control of primary production, while a possible co-limitation of nitrate and phosphate could not be ruled out. To better understand the impact of changing N : P ratios on primary production and N2 fixation in the ETNA surface ocean, we conducted land-based mesocosm experiments with natural plankton communities and applied a broad range of N : P ratios (2.67-48). Silicic acid was supplied at 15 µmol L-1 in all mesocosms. We monitored nutrient drawdown, biomass accumulation and nitrogen fixation in response to variable nutrient stoichiometry. Our results confirmed nitrate to be the key factor determining primary production. We found that excess phosphate was channeled through particulate organic matter (POP) into the dissolved organic matter (DOP) pool. In mesocosms with low inorganic phosphate availability, DOP was utilized while N2 fixation increased, suggesting a link between those two processes. Interestingly this observation was most pronounced in mesocosms where nitrate was still available, indicating that bioavailable N does not necessarily suppress N2 fixation. We observed a shift from a mixed cyanobacteria-proteobacteria dominated active diazotrophic community towards a diatom-diazotrophic association of the Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in nutrient stoichiometry in the ETNA might lead to a general shift within

  11. The role of submerged macrophytes and macroalgae in nutrient cycling: A budget approach

    NASA Astrophysics Data System (ADS)

    Human, Lucienne R. D.; Snow, Gavin C.; Adams, Janine B.; Bate, Guy C.; Yang, Sheng-Chi

    2015-03-01

    This study used a budget approach to determine the effect of submerged macrophytes and macroalgae on the storage of N and P in an estuary. Above and below ground tissue content of nitrogen and phosphorus were determined for the various macrophyte species. The mouth of the estuary was artificially breached in February 2011 with a volume of 0.3 × 106 m3 and closed a week later. A 1:100 year flood with volume close to 3 × 106 m3 breached the mouth naturally in June 2011 flushing water and sediment out of the estuary. In order to track the change in the nutrient acquisition of the submerged macrophytes and macroalgae over a closed-mouth state, the nutrient budget was constructed for the period February 2011 to July 2011, from the time the mouth closed until it opened again. Relative to other inputs the sediment contributed 30% of the TN and 40% TP toward the nutrient budget, while the submerged macrophytes and macroalgae stored 20-30 % TN and 30-38 % TP. The river and precipitation contributed less than 3% of the TN and TP input. It was previously thought that the sediments of South African temporarily open/closed estuaries did not have the necessary organic stock to fuel primary production. However this research showed this to be incorrect. Submerged macrophytes and macroalgae significantly influenced nutrient cycling and this is the first detailed account of incorporating vegetation into a nutrient budget without relying solely on C:N:P ratios.

  12. A mechanistic soil biogeochemistry model with explicit representation of microbial and macrofaunal activities and nutrient cycles

    NASA Astrophysics Data System (ADS)

    Fatichi, Simone; Manzoni, Stefano; Or, Dani; Paschalis, Athanasios

    2016-04-01

    The potential of a given ecosystem to store and release carbon is inherently linked to soil biogeochemical processes. These processes are deeply connected to the water, energy, and vegetation dynamics above and belowground. Recently, it has been advocated that a mechanistic representation of soil biogeochemistry require: (i) partitioning of soil organic carbon (SOC) pools according to their functional role; (ii) an explicit representation of microbial dynamics; (iii) coupling of carbon and nutrient cycles. While some of these components have been introduced in specialized models, they have been rarely implemented in terrestrial biosphere models and tested in real cases. In this study, we combine a new soil biogeochemistry model with an existing model of land-surface hydrology and vegetation dynamics (T&C). Specifically the soil biogeochemistry component explicitly separates different litter pools and distinguishes SOC in particulate, dissolved and mineral associated fractions. Extracellular enzymes and microbial pools are explicitly represented differentiating the functional roles of bacteria, saprotrophic and mycorrhizal fungi. Microbial activity depends on temperature, soil moisture and litter or SOC stoichiometry. The activity of macrofauna is also modeled. Nutrient dynamics include the cycles of nitrogen, phosphorous and potassium. The model accounts for feedbacks between nutrient limitations and plant growth as well as for plant stoichiometric flexibility. In turn, litter input is a function of the simulated vegetation dynamics. Root exudation and export to mycorrhiza are computed based on a nutrient uptake cost function. The combined model is tested to reproduce respiration dynamics and nitrogen cycle in few sites where data were available to test plausibility of results across a range of different metrics. For instance in a Swiss grassland ecosystem, fine root, bacteria, fungal and macrofaunal respiration account for 40%, 23%, 33% and 4% of total belowground

  13. Misreporting of dietary intake affects estimated nutrient intakes in low-income Spanish-speaking women.

    PubMed

    Banna, Jinan C; Fialkowski, Marie K; Townsend, Marilyn S

    2015-07-01

    Misreporting of dietary intake affects the validity of data collected and conclusions drawn in studies exploring diet and health outcomes. One consequence of misreporting is biological implausibility. Little is known regarding how accounting for biological implausibility of reported intake affects nutrient intake estimates in Hispanics, a rapidly growing demographic in the United States. Our study explores the effect of accounting for plausibility on nutrient intake estimates in a sample of Mexican-American women in northern California in 2008. Nutrient intakes are compared with Dietary Reference Intake recommendations, and intakes of Mexican-American women in a national survey are presented as a reference. Eighty-two women provided three 24-hour recalls. Reported energy intakes were classified as biologically plausible or implausible using the reported energy intakes to total energy expenditure cutoff of <0.76 or >1.24, with low-active physical activity levels used to estimate total energy expenditure. Differences in the means of nutrient intakes between implausible (n=36) and plausible (n=46) reporters of energy intake were examined by bivariate linear regression. Estimated energy, protein, cholesterol, dietary fiber, and vitamin E intakes were significantly higher in plausible reporters than implausible. There was a significant difference between the proportions of plausible vs implausible reporters meeting recommendations for several nutrients, with a larger proportion of plausible reporters meeting recommendations. Further research related to misreporting in Hispanic populations is warranted to explore the causes and effects of misreporting in studies measuring dietary intake, as well as actions to be taken to prevent or account for this issue. PMID:25132121

  14. Misreporting of Dietary Intake Affects Estimated Nutrient Intakes in Low-Income Spanish-Speaking Women

    PubMed Central

    Banna, Jinan C.; Fialkowski, Marie K.; Townsend, Marilyn S.

    2015-01-01

    Misreporting of dietary intake affects the validity of data collected and conclusions drawn in studies exploring diet and health outcomes. One consequence of misreporting is biological implausibility. Little is known regarding how accounting for biological implausibility of reported intake affects nutrient intake estimates in Hispanics, a rapidly growing demographic in the United States. Our study explores the effect of accounting for plausibility on nutrient intake estimates in a sample of Mexican-American women in northern California in 2008. Nutrient intakes are compared with Dietary Reference Intake recommendations, and intakes of Mexican-American women in a national survey are presented as a reference. Eighty-two women provided three 24-hour recalls. Reported energy intakes were classified as biologically plausible or implausible using the reported energy intakes to total energy expenditure cutoff of <0.76 or >1.24, with low-active physical activity levels used to estimate total energy expenditure. Differences in the means of nutrient intakes between implausible (n=36) and plausible (n=46) reporters of energy intake were examined by bivariate linear regression. Estimated energy, protein, cholesterol, dietary fiber, and vitamin E intakes were significantly higher in plausible reporters than implausible. There was a significant difference between the proportions of plausible vs implausible reporters meeting recommendations for several nutrients, with a larger proportion of plausible reporters meeting recommendations. Further research related to misreporting in Hispanic populations is warranted to explore the causes and effects of misreporting in studies measuring dietary intake, as well as actions to be taken to prevent or account for this issue. PMID:25132121

  15. Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands

    NASA Astrophysics Data System (ADS)

    Laiho, Raija; Vasander, Harri; Penttilä, Timo; Laine, Jukka

    2003-06-01

    If boreal peatlands face drought more often due to climatic warming, the responses of vegetation may drastically change the functions of the ecosystem. We assessed the effects of water-level drawdown on plant-mediated organic matter (OM) and nutrient fluxes in a chronosequence of undrained and drained, originally sparsely treed fens. The chronosequence mimicked the reduced growing season moisture predicted by current climate change scenarios. In a pristine state, OM and nutrient fluxes were characterized by annual cycling through graminoids and mosses. Water-level drawdown initiated a "forest succession," in which the OM and nutrient cycles shifted from being dominated by graminoids and mosses to dominance by arboreal vegetation in two decades. Simultaneously, the quantity and tissue type composition of annual litterfall, as well as the quantity and allocation of annual nutrient uptake, changed radically. The changes may have contrasting but as yet unexplored implications for the carbon and nutrient balances of these sites.

  16. Nutrient cycling in a tropical seasonal rain forest of Xishuangbanna, Southwest China. Part 1: tree species: nutrient distribution and uptake.

    PubMed

    Shanmughavel, P; Sha, L; Zheng, Z; Cao, M

    2001-12-01

    Tropical rain forests are characterized by large numbers of the species with diverse growth habits. The objective of the present study was to determine the distribution of nutrient content in the major trees of the tropical rain forests in Xishuangbanna. This will improve the understanding of the nutrient losses from such sites that result from harvesting and flow of nutrients within the ecosystem and lead to the development of effective and rational forest management strategies. Based on the results in this study, the distribution of nutrients among biomass components of trees varied: The ordering of major elements concentrations was K > N > Mg > Ca > P in branch, stem and root tissues but was N > K > Mg > Ca > P in leaves. The maximum amount of all nutrients per ha occurred in the stems followed by branches, roots and leaves. Of the total uptake of 6167.7 kg ha(-1) of all nutrients, the contribution of various nutrients was found to be N (2010.6 t ha(-1)), P (196.3 t ha(-1)), K (2123.8 kg ha(-1)), Ca (832 kg ha(-1)) and Mg (1005 kg ha(-1)). However, comparing the nutrient uptake of other tropical and sub tropical forests, the results indicated that rates for the Xishuangbanna forests were 20-35% lower than previously reported values. PMID:11601539

  17. Density outbursts in a food web model with a closed nutrient cycle

    NASA Astrophysics Data System (ADS)

    Szwabiński, Janusz

    2013-09-01

    A spatial three level food web model with a closed nutrient cycle is presented and analyzed via Monte Carlo simulations. The food web consists of three trophic levels. The basal level species (called resources, R) corresponds to primary producers in real ecosystems. The species at an intermediate level (consumers, C) relates to herbivores. It feeds on the resources. The consumers themselves constitute food for the top level species (predators, P), which corresponds to carnivores. The remains of the consumers and predators (detritus, D) provide nutrient for the resources. The time evolution of the model reveals two asymptotic states: an absorbing one with all species being extinct, and a coexisting one, in which concentrations of all species are non-zero. There are two possible ways for the system to reach the absorbing state. In some cases the densities increase very quickly at the beginning of a simulation and then decline slowly and almost monotonically. In others, well pronounced peaks in the R, C and D densities appear regularly before the extinction. Those peaks correspond to density outbursts (waves) traveling through the system. We investigate the mechanisms leading to the waves. In particular, we show that the percolation of the detritus (i.e. the accumulation of nutrients) is necessary for the emergence of the waves. Moreover, our results corroborate the hypothesis that top-level predators play an essential role in maintaining the stability of a food web (top-down control).

  18. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests.

    PubMed

    Metcalfe, Daniel B; Asner, Gregory P; Martin, Roberta E; Silva Espejo, Javier E; Huasco, Walter Huaraca; Farfán Amézquita, Felix F; Carranza-Jimenez, Loreli; Galiano Cabrera, Darcy F; Baca, Liliana Durand; Sinca, Felipe; Huaraca Quispe, Lidia P; Taype, Ivonne Alzamora; Mora, Luzmila Eguiluz; Dávila, Angela Rozas; Solórzano, Marlene Mamani; Puma Vilca, Beisit L; Laupa Román, Judith M; Guerra Bustios, Patricia C; Revilla, Norma Salinas; Tupayachi, Raul; Girardin, Cécile A J; Doughty, Christopher E; Malhi, Yadvinder

    2014-03-01

    The functional role of herbivores in tropical rainforests remains poorly understood. We quantified the magnitude of, and underlying controls on, carbon, nitrogen and phosphorus cycled by invertebrate herbivory along a 2800 m elevational gradient in the tropical Andes spanning 12°C mean annual temperature. We find, firstly, that leaf area loss is greater at warmer sites with lower foliar phosphorus, and secondly, that the estimated herbivore-mediated flux of foliar nitrogen and phosphorus from plants to soil via leaf area loss is similar to, or greater than, other major sources of these nutrients in tropical forests. Finally, we estimate that herbivores consume a significant portion of plant carbon, potentially causing major shifts in the pattern of plant and soil carbon cycling. We conclude that future shifts in herbivore abundance and activity as a result of environmental change could have major impacts on soil fertility and ecosystem carbon sequestration in tropical forests. PMID:24372865

  19. [Nutrient cycling in Castanea mollissima B1 forest at the Miyun reservoir watershed, Beijing].

    PubMed

    Liu, Shihai; Yu, Xinxiao; Hu, Chunhong; Gao, Guoxiong

    2003-10-01

    Studies on the nutrient cycling in Castanea mollissima B1 forest at the Miyun reservoir watershed, Beijing, showed that the total biomass of the Castanea mollissima B1 stands at age 22 was 38,638 kg.hm-2, and the biomass of their stem, branch, leaf, blossom, chestnut, seed capsule and root was 20,160, 8,430, 1429, 873, 1024, 800 and 5,922 kg.hm-2, occupying 52.18%, 21.82%, 3.70%, 2.26%, 2.65%, 2.07%, 15.33% of the total biomass, respectively. The annual average growth amount of stem, branch, and root was 916, 383, and 269 kg.hm-2, respectively, and the total annual average growth amount was 5,694 kg.hm-2. The nutrient contents in different organs of Castanea mollissima B1 stands showed that the N content sequence was leaf > blossom > chestnut > seed capsule > branch > stem, P content sequence was leaf > blossom > branch > stem > seed capsule > chestnut, K content sequence was chestnut > blossom > leaf > chestnut > branch > stem, Ca content sequence leaf > seed capsule > branch > stem > blossom > chestnut, and Mg content sequence was leaf > blossom > branch > chestnut > seed capsule > stem. The storage of N, P, K, Ca and Mg in Castanea mollissima B1 forest was 89.47, 17.34, 74.68, 105.49 and 28.40 kg.hm-2, respectively. The nutrient annual assimilation was 79.17 kg.hm-2, the total annual returning amount 106.55 kg.hm-2, and the annual retention amount was 11.25 kg.hm-2. Among of the total returning, atmospheric dry and wet deposition was 38.36 kg.hm-2, and the litter returning was 58.08 kg.hm-2. The nutrient input was a little more than the output. The storage of the five nutrient elements in 0(-)-30 cm soil layer was 206,427.59 kg.hm-2, and their storage amount in stands only occupied about 0.15% of the total storage in soil. The absorption coefficient of the stands was N > P > K > Ca > Mg, the utilization coefficient was K > N > Mg > P > Ca, and the cycling coefficient was K > N > P > Mg > Ca. The turnover period of the N, P, K, Ca and Mg was 4.34, 7.51, 3.31, 12

  20. Evergreen shrub traits and peatland carbon cycling under high nutrient load

    NASA Astrophysics Data System (ADS)

    Larmola, Tuula; Bui, Vi; Bubier, Jill L.; Wang, Meng; Murphy, Meaghan; Moore, Tim R.

    2016-04-01

    The reactive nitrogen (N) assimilated by plants is usually invested in chlorophyll to improve light harvesting capacity and in soluble proteins such as Rubisco to enhance carbon (C) assimilation. We studied the effects of simulated atmospheric N deposition on different traits of two evergreen shrubs Chamaedaphne calyculata and Rhododendron groenlandicum in a nutrient-poor Mer Bleue Bog, Canada that has been fertilized with N as NO3 and NH4 (2-8 times ambient annual wet deposition) with or without phosphorus (P) and potassium (K) for 7-12 years. We examined how nutrient addition influences the plant performance at leaf and canopy level and linked the trait responses with ecosystem C cycling. At the leaf level, we measured physiological and biochemical traits: CO2 exchange and chlorophyll fluorescence, an indicator of plant stress in terms of light harvesting capacity; and to study changes in photosynthetic nutrient use efficiency, we also determined the foliar chlorophyll, N, and P contents. At the canopy level, we examined morphological and phenological traits: growth responses and leaf longevity during two growing seasons. Regardless of treatment, the majority of leaves showed no signs of stress in terms of light harvesting capacity. The plants were N saturated: with increasing foliar N content, the higher proportion of N was not used in photosynthesis. Foliar net CO2 assimilation rates did not differ significantly among treatments, but the additions of N, P, and K together resulted in higher respiration rates. The analysis of the leaf and canopy traits showed that the two shrubs had different strategies: C. calyculata was more responsive to nutrient additions, more deciduous-like, whereas R. groenlandicum maintained evergreen features under nutrient load, shedding its leaves even later in the season. In all, simulated atmospheric N deposition did not benefit the photosynthetic apparatus of the dominant shrubs, but resulted in higher foliar respiration

  1. Metaproteogenomics reveals the soil microbial communities active in nutrient cycling processes under different tree species

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina Maria; Masse, Jacynthe; Zühlke, Daniela; Riedel, Katharina; Zechmeister-Boltenstern, Sophie; Prescott, Cindy E.; Grayston, Sue

    2016-04-01

    Tree species exert strong effects on microbial communities in litter and soil and may alter rates of soil processes fundamental to nutrient cycling and carbon fluxes (Prescott and Grayston 2013). However, the influence of tree species on decomposition processes are still contradictory and poorly understood. An understanding of the mechanisms underlying plant influences on soil processes is important for our ability to predict ecosystem response to altered global/environmental conditions. In order to link microbial community structure and function to forest-floor nutrient cycling processes, we sampled forest floors under western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii) and Sitka spruce (Picea sitchensis) grown in nutrient-poor sites in common garden experiments on Vancouver island (Canada). We measured forest-floor total N, total C, initial NH4+ and NO3‑ concentrations, DOC, Cmic and Nmic. Gross rates of ammonification and NH4+ consumption were measured using the 15N pool-dilution method. Organic carbon quality was assessed through FTIR analyses. Microbial community structure was analysed by a metaproteogenomic approach using 16S and ITS amplification and sequencing with MiSeq platform. Proteins were extracted and peptides characterized via LC-MS/MS on a Velos Orbitrap to assess the active microbial community. Different microbial communities were active under the three tree species and variation in process rates were observed and will be discussed. This research provides new insights on microbial processes during organic matter decomposition. The metaproteogenomic approach enables us to investigate these changes with respect to possible effects on soil C-storage at even finer taxonomic resolution.

  2. How life affects the geochemical cycle of carbon

    NASA Technical Reports Server (NTRS)

    Walker, James C. G.

    1992-01-01

    Developing a quantitative understanding of the biogeochemical cycles of carbon as they have worked throughout Earth history on various time scales, how they have been affected by biological evolution, and how changes in the carbon content of ocean and atmosphere may have affected climate and the evolution of life are the goals of the research. Theoretical simulations were developed that can be tuned to reproduce such data as exist and, once tuned, can be used to predict properties that have not yet been observed. This is an ongoing process, in which models and results are refined as new data and interpretations become available and as understanding of the global system improves. Results of the research are described in several papers which were published or submitted for publication. These papers are summarized. Future research plans are presented.

  3. Effects of Litter and Nutrient Additions on Soil Carbon Cycling in a Tropical Forest

    NASA Astrophysics Data System (ADS)

    Cusack, D. F.; Halterman, S.; Turner, B. L.; Tanner, E.; Wright, S. J.

    2014-12-01

    Soil carbon (C) dynamics present one of the largest sources of uncertainty in global C cycle models, with tropical forest soils containing some of the largest terrestrial C stocks. Drastic changes in soil C storage and loss are likely to occur if global change alters plant net primary production (NPP) and/or nutrient availability in these ecosystems. We assessed the effects of litter removal and addition, as well as fertilization with nitrogen (N), phosphorus (P), and/or potassium (K), on soil C stocks in a tropical seasonal forest in Panama after ten and sixteen years, respectively. We used a density fractionation scheme to assess manipulation effects on rapidly and slowly cycling pools of C. Soil samples were collected in the wet and dry seasons from 0-5 cm and 5-10 cm depths in 15- 45x45 m plots with litter removal, 2x litter addition, and control (n=5), and from 32- 40x40 m fertilization plots with factorial additions of N, P, and K. We hypothesized that litter addition would increase all soil C fractions, but that the magnitude of the effect on rapidly-cycling C would be dampened by a fertilization effect. Results for the dry season show that the "free light" C fraction, or rapidly cycling soil C pool, was significantly different among the three litter treatments, comprising 5.1 ± 0.9 % of total soil mass in the litter addition plots, 2.7 ± 0.3 % in control plots, and 1.0 ± 0.1 % in litter removal plots at the 0-5cm depth (means ± one standard error, p < 0.05). Bulk soil C results are similar to observed changes in the rapidly cycling C pool for the litter addition and removal. Fertilization treatments on average diminished this C pool size relative to control plots, although there was substantial variability among fertilization treatments. In particular, addition of N and P together did not significantly alter rapidly cycling C pool sizes (4.1 ± 1.2 % of total soil mass) relative to controls (3.5 ± 0.4 %), whereas addition of P alone resulted in

  4. A Metagenomic Perspective on Changes to Nutrient-cycling Genes Following Forest-to-agriculture Conversion in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Womack, A. M.; Rodrigues, J.; Nüsslein, K.; Bohannan, B. J. M.

    2014-12-01

    Forest-to-agriculture conversion has been shown to alter nutrient cycling and the community composition of soil microorganisms. However, few studies have looked simultaneously at how the abundance, composition, and diversity of microbial genes involved in nutrient cycling change with conversion. We used shotgun metagenomic sequencing to analyze soil from primary rainforest and converted cattle pasture sampled at the Fazenda Nova Vida in Rondônia, Brazil. The diversity, richness, and evenness of nutrient cycling genes were significantly higher in the pasture, and the composition of nutrient cycling communities differed significantly between land use types. These results largely mirror taxonomic shifts following Amazon rainforest conversion, which tends to increase diversity, richness, and evenness of soil microbial communities. The abundance of genes related to N cycling and methane flux differed between land use types. Methanotrophy genes decreased in abundance in the pasture, whereas methanogenesis genes were not significantly different between land use types. These changes could underlie the commonly observed shift from methane sink to source following forest-to-agriculture conversion. Multiple genes in the nitrogen cycle also differed with land use, including genes related to N-fixation and ammonification. Metagenomics provides a unique perspective on the consequences of land use change on microbial community structure and function.

  5. Growing Rocks: Implications of Lithification for Microbial Communities and Nutrient Cycling

    NASA Astrophysics Data System (ADS)

    Corman, J. R.; Poret-Peterson, A. T.; Elser, J. J.

    2014-12-01

    Lithifying microbial communities ("microbialites") have left their signature on Earth's rock record for over 3.4 billion years and are regarded as important players in paleo-biogeochemical cycles. In this project, we study extant microbialites to understand the interactions between lithification and resource availability. All microbes need nutrients and energy for growth; indeed, nutrients are often a factor limiting microbial growth. We hypothesize that calcium carbonate deposition can sequester bioavailable phosphorus (P) and expect the growth of microbialites to be P-limited. To test our hypothesis, we first compared nutrient limitation in lithifying and non-lithifying microbial communities in Río Mesquites, Cuatro Ciénegas. Then, we experimentally manipulated calcification rates in the Río Mesquites microbialites. Our results suggest that lithifying microbialites are indeed P-limited, while non-lithifying, benthic microbial communities tend towards co-limitation by nitrogen (N) and P. Indeed, in microbialites, photosynthesis and aerobic respiration responded positively to P additions (P<0.05). Organic carbon (OC) additions caused shifts in bacterial community composition based on analysis of 16S rRNA genes. Unexpectedly, calcification rates increased with OC additions (P<0.05), but not with P additions, suggesting that sulfate reduction may be an important pathway for calcification. Experimental reductions in calcification rates caused changes to microbial biomass OC and P concentrations (P<0.01 and P<0.001, respectively), although shifts depended on whether calcification was decreased abiotically or biotically. These results show that resource availability does influence microbialite formation and that lithification may promote phosphorus limitation; however, further investigation is required to understand the mechanism by which the later occurs.

  6. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark.

    PubMed

    ten Hoeve, Marieke; Hutchings, Nicholas J; Peters, Gregory M; Svanström, Magdalena; Jensen, Lars S; Bruun, Sander

    2014-01-01

    Animal slurry management is associated with a range of impacts on fossil resource use and the environment. The impacts are greatest when large amounts of nutrient-rich slurry from livestock production cannot be adequately utilised on adjacent land. To facilitate nutrient redistribution, a range of different technologies are available. This study comprised a life cycle assessment of the environmental impacts from handling 1000 kg of pig slurry ex-animal. Application of untreated pig slurry onto adjacent land was compared with using four different treatment technologies to enable nutrient redistribution before land application: (a) separation by mechanical screw press, (b) screw press separation with composting of the solid fraction, (c) separation by decanter centrifuge, and (d) decanter centrifuge separation with ammonia stripping of the liquid fraction. Emissions were determined based on a combination of values derived from the literature and simulations with the Farm-N model for Danish agricultural and climatic conditions. The environmental impact categories assessed were climate change, freshwater eutrophication, marine eutrophication, terrestrial acidification, natural resource use, and soil carbon, nitrogen and phosphorus storage. In all separation scenarios, the liquid fraction was applied to land on the pig-producing (donor) farm and the solid fraction transported to a recipient farm and utilised for crop production. Separation, especially by centrifuge, was found to result in a lower environmental impact potential than application of untreated slurry to adjacent land. Composting and ammonia stripping either slightly increased or slightly decreased the environmental impact potential, depending on the impact category considered. The relative ranking of scenarios did not change after a sensitivity analysis in which coefficients for field emissions of nitrous oxide, ammonia and phosphorus were varied within the range cited in the literature. Therefore, the best

  7. Dynamics of nutrient cycling and related benthic nutrient and oxygen fluxes during a spring phytoplankton bloom in South San Francisco Bay (USA)

    USGS Publications Warehouse

    Grenz, C.; Cloern, J.E.; Hager, S.W.; Cole, B.E.

    2000-01-01

    Benthic oxygen uptake and nutrient releases of N, P and Si were measured weekly at 2 sites in South San Francisco Bay around the 1996 spring bloom. Exchanges across the sediment-water interface were estimated from whole core incubations performed in the laboratory at in situ temperature and in dark. Fluxes changed significantly on a weekly time scale. Over a period of 15 wk the fluxes of dissolved inorganic N, P and Si ranged from -40 to +200, 0 to 13 and from 30 to 400 ??mol m-2 h-1 respectively. Sediment oxygen demand increased from 10 before to 64 mg O2 m-2 h-1 just after the bloom period. During the bloom, nutrient fluxes represented about 20, 16 and 9% of the Si, P and N requirements for primary production. Before and after the bloom period, Si fluxes contributed up to 30 and > 100% of this requirement and P and N fluxes up to 15 and 50% respectively. Simple empirical models explain most of the spatial-temporal variability of benthic fluxes of Si, P and NH4 (but not NO3) from 3 predictor variables: sediment porosity, nutrient concentration in bottom waters and chlorophyll content of surficial sediments. These models show that algal blooms influence benthic-pelagic nutrient exchange through 2 processes: (1) depletion of nutrients from the water column (which enhances gradient-driven transports across the sediment-water interface) and (2) sedimentation of labile phytodetritus (which promotes remineralization in or on the surficial sediments). Rates and patterns of nutrient cycling were very different at the shallow and deep study sites, illustrating the challenge of extrapolating measurements of coupled algae-nutrient dynamics to whole ecosystems.

  8. Microbial Carbon Cycling in Permafrost-Affected Soils

    SciTech Connect

    Vishnivetskaya, T.; Liebner, Susanne; Wilhelm, Ronald; Wagner, Dirk

    2011-01-01

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  9. Effect of cycle changes on simultaneous biological nutrient removal in a sequencing batch reactor (SBR).

    PubMed

    Coma, M; Puig, S; Monclús, H; Balaguer, M D; Colprim, J

    2010-03-01

    The destabilization of a microbial population is sometimes hard to solve when different biological reactions are coupled in the same reactor as in sequencing batch reactors (SBRs). This paper will try to guide through practical experiences the recovery of simultaneous nitrogen and phosphorus removal in an SBR after increasing the demand of wastewater treatment by taking advantage of its flexibility. The results demonstrate that the length of phases and the optimization of influent distribution are key factors in stabilizing the system for long-term periods with high nutrient removal (88%, 93% and 99% of carbon, nitrogen and phosphorus, respectively). In order to recover a biological nutrient removal (BNR) system, different interactions such as simultaneous nitrification and denitrification and also phosphorus removal must be taken into account. As a general conclusion, it can be stated there is no such thing as a perfect SBR operation, and that much will depend on the state of the BNR system. Hence, the SBR operating strategy must be based on a dynamic cycle definition in line with process efficiency. PMID:20426270

  10. Biogeochemical processes and nutrient cycling within an artificial reef off Southern Portugal.

    PubMed

    Falcão, M; Santos, M N; Vicente, M; Monteiro, C C

    2007-06-01

    This study (2002/2004) examines the effect of artificial reef (AR) structures off the southern coast of Portugal on biogeochemical process and nutrient cycling. Organic and inorganic carbon, nitrogen, phosphorus and chlorophyll a were determined monthly in sediment cores and settled particles for a two-year period. Ammonium, nitrates, phosphates, silicates, total organic nitrogen and phosphorus, chlorophyll a and phaeopigments were also determined monthly in water samples within AR and control sites. Results of the two-year study showed that: (i) there was a significant exponential fit between organic carbon and chlorophyll a (r2=0.91; p<0.01) in reef sediment suggesting an increase of benthic productivity; (ii) organic carbon and nitrogen content in settled particles within AR environment was about four times higher two years after reef deployment; (iii) nutrients and chlorophyll a in the water column were higher at AR than control site. Two years after AR deployment, dissolved organic and inorganic compounds in near bottom water were 30-60% higher, emphasizing benthic remineralization processes at AR's organically rich sediment. Marked chemical changes in the ecosystem were observed during the two-year study period, reinforcing the importance of these structures for sandy coastal areas rehabilitation through trophic chain pull-out. PMID:17239434

  11. Impact of proliferation strategies on food web viability in a model with closed nutrient cycle

    NASA Astrophysics Data System (ADS)

    Szwabiński, Janusz

    2012-11-01

    A food web model with a closed nutrient cycle is presented and analyzed via Monte Carlo simulations. The model consists of three trophic levels, each of which is populated by animals of one distinct species. While the species at the intermediate level feeds on the basal species, and is eaten by the predators living at the highest level, the basal species itself uses the detritus of animals from higher levels as the food resource. The individual organisms remain localized, but the species can invade new lattice areas via proliferation. The impact of different proliferation strategies on the viability of the system is investigated. From the phase diagrams generated in the simulations it follows that in general a strategy with the intermediate level species searching for food is the best for the survival of the system. The results indicate that both the intermediate and top level species play a critical role in maintaining the structure of the system.

  12. Chemical tools to explore nutrient-driven O-GlcNAc cycling.

    PubMed

    Kim, Eun J; Bond, Michelle R; Love, Dona C; Hanover, John A

    2014-01-01

    Posttranslational modifications (PTM) including glycosylation, phosphorylation, acetylation, methylation and ubiquitination dynamically alter the proteome. The evolutionarily conserved enzymes O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and O-GlcNAcase are responsible for the addition and removal, respectively, of the nutrient-sensitive PTM of protein serine and threonine residues with O-GlcNAc. Indeed, the O-GlcNAc modification acts at every step in the "central dogma" of molecular biology and alters signaling pathways leading to amplified or blunted biological responses. The cellular roles of OGT and the dynamic PTM O-GlcNAc have been clarified with recently developed chemical tools including high-throughput assays, structural and mechanistic studies and potent enzyme inhibitors. These evolving chemical tools complement genetic and biochemical approaches for exposing the underlying biological information conferred by O-GlcNAc cycling. PMID:25039763

  13. Common genetic polymorphisms affect the human requirement for the nutrient choline

    PubMed Central

    da Costa, Kerry-Ann; Kozyreva, Olga G.; Song, Jiannan; Galanko, Joseph A.; Fischer, Leslie M.; Zeisel, Steven H.

    2006-01-01

    Humans eating diets deficient in the essential nutrient choline can develop organ dysfunction. We hypothesized that common single nucleotide polymorphisms (SNPs) in genes involved in choline metabolism influence the dietary requirement of this nutrient. Fifty-seven humans were fed a low choline diet until they developed organ dysfunction or for up to 42 days. We tested DNA SNPs for allelic association with susceptibility to developing organ dysfunction associated with choline deficiency. We identified an SNP in the promoter region of the phosphatidylethanolamine N-methyltransferase gene (PEMT; −744 G→C; rs12325817) for which 18 of 23 carriers of the C allele (78%) developed organ dysfunction when fed a low choline diet (odds ratio 25, P=0.002). The first of two SNPs in the coding region of the choline dehydrogenase gene (CHDH; +318 A→C; rs9001) had a protective effect on susceptibility to choline deficiency, while a second CHDH variant (+432 G→T; rs12676) was associated with increased susceptibility to choline deficiency. A SNP in the PEMT coding region (+5465 G→A; rs7946) and a betaine:homocysteine methyl-transferase (BHMT) SNP (+742 G→A; rs3733890) were not associated with susceptibility to choline deficiency. Identification of common polymorphisms that affect dietary requirements for choline could enable us to identify individuals for whom we need to assure adequate dietary choline intake.—da Costa, K.-A., Kozyreva, O. G., Song, J., Galanko, J. A., Fischer, L. M., Zeisel, S. H. Common genetic polymorphisms affect the human requirement for the nutrient choline. PMID:16816108

  14. Nutrient supplementation may adversely affect maternal oral health--a randomised controlled trial in rural Malawi.

    PubMed

    Harjunmaa, Ulla; Järnstedt, Jorma; Dewey, Kathryn G; Ashorn, Ulla; Maleta, Kenneth; Vosti, Stephen A; Ashorn, Per

    2016-01-01

    Nutritional supplementation during pregnancy is increasingly recommended especially in low-resource settings, but its oral health impacts have not been studied. Our aim was to examine whether supplementation with multiple micronutrients (MMN) or small-quantity lipid-based nutrient supplements affects dental caries development or periodontal health in a rural Malawian population. The study was embedded in a controlled iLiNS-DYAD trial that enrolled 1391 pregnant women <20 gestation weeks. Women were provided with one daily iron-folic acid capsule (IFA), one capsule with 18 micronutrients (MMN) or one sachet of lipid-based nutrient supplements (LNS) containing protein, carbohydrates, essential fatty acids and 21 micronutrients. Oral examination of 1024 participants was conducted and panoramic X-ray taken within 6 weeks after delivery. The supplement groups were similar at baseline in average socio-economic, nutritional and health status. At the end of the intervention, the prevalence of caries was 56.7%, 69.1% and 63.3% (P = 0.004), and periodontitis 34.9%, 29.8% and 31.2% (P = 0.338) in the IFA, MMN and LNS groups, respectively. Compared with the IFA group, women in the MMN group had 0.60 (0.18-1.02) and in the LNS group 0.59 (0.17-1.01) higher mean number of caries lesions. In the absence of baseline oral health data, firm conclusions on causality cannot be drawn. However, although not confirmatory, the findings are consistent with a possibility that provision of MMN or LNS may have increased the caries incidence in this target population. Because of the potential public health impacts, further research on the association between gestational nutrient interventions and oral health in low-income settings is needed. PMID:26194850

  15. Terrestrial carbon cycle affected by non-uniform climate warming

    NASA Astrophysics Data System (ADS)

    Xia, Jianyang; Chen, Jiquan; Piao, Shilong; Ciais, Philippe; Luo, Yiqi; Wan, Shiqiang

    2014-03-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30° and 90° N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research.

  16. Nutrient Deprivation Affects Salmonella Invasion and Its Interaction with the Gastrointestinal Microbiota.

    PubMed

    Yurist-Doutsch, Sophie; Arrieta, Marie-Claire; Tupin, Audrey; Valdez, Yanet; Antunes, L Caetano M; Yen, Ryan; Finlay, B Brett

    2016-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a foodborne enteric pathogen and a major cause of gastroenteritis in humans. It is known that molecules derived from the human fecal microbiota downregulate S. Typhimurium virulence gene expression and induce a starvation-like response. In this study, S. Typhimurium was cultured in minimal media to mimic starvation conditions such as that experienced by S. Typhimurium in the human intestinal tract, and the pathogen's virulence in vitro and in vivo was measured. S. Typhimurium cultured in minimal media displayed a reduced ability to invade human epithelial cells in a manner that was at least partially independent of the Salmonella Pathogenicity Island 1 (SPI-1) type III secretion system. Nutrient deprivation did not, however, alter the ability of S. Typhimurium to replicate and survive inside epithelial cells. In a murine model of S. Typhimurium-induced gastroenteritis, prior cultivation in minimal media did not alter the pathogen's ability to colonize mice, nor did it affect levels of gastrointestinal inflammation. Upon examining the post-infection fecal gastrointestinal microbiota, we found that specifically in the 129Sv/ImJ murine strain S. Typhimurium cultured in minimal media induced differential microbiota compositional shifts compared to that of S. Typhimurium cultured in rich media. Together these findings demonstrate that S. Typhimurium remains a potent pathogen even in the face of nutritional deprivation, but nevertheless that nutrient deprivation encountered in this environment elicits significant changes in the bacterium genetic programme, as well as its capacity to alter host microbiota composition. PMID:27437699

  17. Toxic metal interactions affect the bioaccumulation and dietary intake of macro- and micro-nutrients.

    PubMed

    Khan, Anwarzeb; Khan, Sardar; Alam, Mehboob; Khan, Muhammad Amjad; Aamir, Muhammad; Qamar, Zahir; Ur Rehman, Zahir; Perveen, Sajida

    2016-03-01

    The present study was conducted to evaluate the effects of heavy metals (cadmium (Cd), lead (Pb) and Cd-Pb mix) on bioaccumulation of different nutrients. Three plant species including potato, tomato and lettuce were grown in pots containing soil contaminated with Cd, Pb and Cd-Pb mix at four different levels. The edible portions of each plant were analysed for Cd, Pb and different macro- and micro-nutrients including protein, vitamin C, nitrogen (N), phosphorous (P), potassium (K), iron (Fe), manganese (Mn), calcium (Ca) and magnesium (Mg). Results indicated significant variations in selected elemental concentrations in all the three plants grown in different treatments. The projected daily dietary intake values of selected metals were significant (P < 0.001) for Fe, Mn, Ca and Mg but not significant for protein, vitamin C, N and P. The elemental contribution to Recommended Dietary Allowance (RDA) was significant for Mn. Similarly, Fe and Mg also showed substantial contribution to RDA, while Ca, N, P, K, protein and vitamin C showed the minimal contribution for different age groups. This study suggests that vegetables cultivated on Cd and Pb contaminated soil may significantly affect their quality, and the consumption of such vegetables may result in substantial negative effects on nutritional composition of the consumer body. Long term and continuous use of contaminated vegetables may result in malnutrition. PMID:26714294

  18. Nutrient cycling in the Atlantic basin: The evolution of nitrate isotope signatures in water masses

    NASA Astrophysics Data System (ADS)

    Tuerena, R. E.; Ganeshram, R. S.; Geibert, W.; Fallick, A. E.; Dougans, J.; Tait, A.; Henley, S. F.; Woodward, E. M. S.

    2015-10-01

    A basin-wide transect of nitrate isotopes (δ15NNO3, δ18ONO3), across the UK GEOTRACES 40°S transect in the South Atlantic is presented. This data set is used to investigate Atlantic nutrient cycling and the communication pathways of nitrogen cycling processes in the global ocean. Intermediate waters formed in the subantarctic are enriched in δ15NNO3 and δ18ONO3 from partial utilization of nitrate by phytoplankton and distant denitrification processes, transporting heavy isotope signatures to the subtropical Atlantic. Water mass modification through the Atlantic is investigated by comparing data from 40°S (South Atlantic) and 30°N (North Atlantic). This reveals that nitrate in the upper intermediate waters is regenerated as it transits through the subtropical Atlantic, as evidenced by decreases in δ18ONO3. We document diazotrophy-producing high N:P particle ratios (18-21:1) for remineralization, which is further confirmed by a decrease in δ15NNO3 through the subtropical Atlantic. These modifications influence the isotopic signatures of the North Atlantic Deep Water (NADW) which is subsequently exported from the Atlantic to the Southern Ocean. This study reveals the dominance of recycling processes and diazotrophy on nitrate cycling in the Atlantic. These processes provide a source of low δ15NNO3 to the Southern Ocean via the NADW, to counteract enrichment in δ15NNO3 from water column denitrification in the Indo/Pacific basins. We hence identify the Southern Ocean as a key hub through which denitrification and N2 fixation communicate in the ocean through deepwater masses. Therefore, the balancing of the oceanic N budget and isotopic signatures require time scales of oceanic mixing.

  19. Resource quality affects carbon cycling in deep-sea sediments.

    PubMed

    Mayor, Daniel J; Thornton, Barry; Hay, Steve; Zuur, Alain F; Nicol, Graeme W; McWilliam, Jenna M; Witte, Ursula F M

    2012-09-01

    Deep-sea sediments cover ~70% of Earth's surface and represent the largest interface between the biological and geological cycles of carbon. Diatoms and zooplankton faecal pellets naturally transport organic material from the upper ocean down to the deep seabed, but how these qualitatively different substrates affect the fate of carbon in this permanently cold environment remains unknown. We added equal quantities of (13)C-labelled diatoms and faecal pellets to a cold water (-0.7 °C) sediment community retrieved from 1080 m in the Faroe-Shetland Channel, Northeast Atlantic, and quantified carbon mineralization and uptake by the resident bacteria and macrofauna over a 6-day period. High-quality, diatom-derived carbon was mineralized >300% faster than that from low-quality faecal pellets, demonstrating that qualitative differences in organic matter drive major changes in the residence time of carbon at the deep seabed. Benthic bacteria dominated biological carbon processing in our experiments, yet showed no evidence of resource quality-limited growth; they displayed lower growth efficiencies when respiring diatoms. These effects were consistent in contrasting months. We contend that respiration and growth in the resident sediment microbial communities were substrate and temperature limited, respectively. Our study has important implications for how future changes in the biochemical makeup of exported organic matter will affect the balance between mineralization and sequestration of organic carbon in the largest ecosystem on Earth. PMID:22378534

  20. Simulated effects of sulfur deposition on nutrient cycling in class I wilderness areas.

    PubMed

    Elliott, Katherine J; Vose, James M; Knoepp, Jennifer D; Johnson, Dale W; Swank, Wayne T; Jackson, William

    2008-01-01

    We predicted the effects of sulfate (SO(4)) deposition on wilderness areas designated as Class I air quality areas in western North Carolina using a nutrient cycling model (NuCM). We used three S deposition simulations: current, 50% decrease, and 100% increase. We measured vegetation, forest floor, and root biomass and collected soil, soil solution, and stream water samples for chemical analyses. We used the closest climate stations and atmospheric deposition stations to parameterize NuCM. The areas were: Joyce Kilmer (JK), Shining Rock (SR), and Linville Gorge (LG). They differ in soil acidity and nutrients, and soil solution and stream chemistry. Shining Rock and LG have lower soil solution base cation and higher acidic ion concentrations than JK. For SR and LG, the soil solution Ca/Al molar ratios are currently 0.3 in the rooting zone (A horizon), indicating Al toxicity. At SR, the simulated Ca/Al ratio increased to slightly above 1.5 after the 30-yr simulation regardless of S deposition reduction. At LG, Ca/Al ratios ranged from 1.6 to 2.4 toward the end of the simulation period, the 100% increase scenario had the lower value. Low Ca/Al ratios suggest that forests at SR and LG are significantly stressed under current conditions. Our results also suggest that SO(4) retention is low, perhaps contributing to their high degree of acidification. Their soils are acidic, low in weatherable minerals, and even with large reductions in SO(4) and associated acid deposition, it may take decades before these systems recover from depletion of exchangeable Ca, Mg, and K. PMID:18574173

  1. Factors affecting stream nutrient loads: A synthesis of regional SPARROW model results for the continental United States

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Schwarz, Gregory E.; Crawford, Charles G.

    2011-01-01

    We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models - 6 for total nitrogen and 6 for total phosphorus - all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  2. Factors Affecting Stream Nutrient Loads: A Synthesis of Regional SPARROW Model Results for the Continental United States1

    PubMed Central

    Preston, Stephen D; Alexander, Richard B; Schwarz, Gregory E; Crawford, Charles G

    2011-01-01

    Abstract We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models – 6 for total nitrogen and 6 for total phosphorus – all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. PMID:22457574

  3. The Biogeochemical Role of Antarctic Krill and Baleen Whales in Southern Ocean Nutrient Cycling.

    NASA Astrophysics Data System (ADS)

    Ratnarajah, L.

    2015-12-01

    Iron limits primary productivity in large areas of the Southern Ocean. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but evidence on their contribution is scarce. We analysed the concentration of iron in Antarctic krill and baleen whale faeces and muscle. Iron concentrations in Antarctic krill were over 1 million times higher, and whale faecal matter were almost 10 million times higher than typical Southern Ocean High Nutrient Low Chlorophyll seawater concentrations. This suggests that Antarctic krill act as a reservoir of in in Southern Ocean surface waters, and that baleen whales play an important role in converting this fixed iron into a liquid form in their faeces. We developed an exploratory model to examine potential contribution of blue, fin and humpback whales to the Southern Ocean iron cycle to explore the effect of the recovery of great whales to historical levels. Our results suggest that pre-exploitation populations of blue whales and, to a lesser extent fin and humpback whales, could have contributed to the more effective recycling of iron in surface waters, resulting in enhanced phytoplankton production. This enhanced primary productivity is estimated to be: 8.3 x 10-5 to 15 g C m-2 yr-1 (blue whales), 7 x 10-5 to 9 g C m-2 yr-1 (fin whales), and 10-5 to 1.7 g C m-2 yr-1 (humpback whales). To put these into perspective, current estimates of primary production in the Southern Ocean from remotely sensed ocean colour are in the order of 57 g C m-2 yr-1 (south of 50°). The high degree of uncertainty around the magnitude of these increases in primary productivity is mainly due to our limited quantitative understanding of key biogeochemical processes including iron content in krill, krill consumption rates by whales, persistence of iron in the photic zone, bioavailability of retained iron, and carbon-to-iron ratio of phytoplankton

  4. Gopher mounds decrease nutrient cycling rates and increase adjacent vegetation in volcanic primary succession.

    PubMed

    Yurkewycz, Raymond P; Bishop, John G; Crisafulli, Charles M; Harrison, John A; Gill, Richard A

    2014-12-01

    Fossorial mammals may affect nutrient dynamics and vegetation in recently initiated primary successional ecosystems differently than in more developed systems because of strong C and N limitation to primary productivity and microbial communities. We investigated northern pocket gopher (Thomomys talpoides) effects on soil nutrient dynamics, soil physical properties, and plant communities on surfaces created by Mount St. Helens' 1980 eruption. For comparison to later successional systems, we summarized published studies on gopher effects on soil C and N and plant communities. In 2010, 18 years after gopher colonization, we found that gophers were active in ~2.5% of the study area and formed ~328 mounds ha(-1). Mounds exhibited decreased species density compared to undisturbed areas, while plant abundance on mound margins increased 77%. Plant burial increased total soil carbon (TC) by 13% and nitrogen (TN) by 11%, compared to undisturbed soils. Mound crusts decreased water infiltration, likely explaining the lack of detectable increases in rates of NO3-N, NH4-N or PO4-P leaching out of the rooting zone or in CO2 flux rates. We concluded that plant burial and reduced infiltration on gopher mounds may accelerate soil carbon accumulation, facilitate vegetation development at mound edges through resource concentration and competitive release, and increase small-scale heterogeneity of soils and communities across substantial sections of the primary successional landscape. Our review indicated that increases in TC, TN and plant density at mound margins contrasted with later successional systems, likely due to differences in physical effects and microbial resources between primary successional and older systems. PMID:25260998

  5. Fluctuations in Species-Level Protein Expression Occur during Element and Nutrient Cycling in the Subsurface

    PubMed Central

    Wilkins, Michael J.; Wrighton, Kelly C.; Nicora, Carrie D.; Williams, Kenneth H.; McCue, Lee Ann; Handley, Kim M.; Miller, Chris S.; Giloteaux, Ludovic; Montgomery, Alison P.; Lovley, Derek R.; Banfield, Jillian F.; Long, Philip E.; Lipton, Mary S.

    2013-01-01

    While microbial activities in environmental systems play a key role in the utilization and cycling of essential elements and compounds, microbial activity and growth frequently fluctuates in response to environmental stimuli and perturbations. To investigate these fluctuations within a saturated aquifer system, we monitored a carbon-stimulated in situ Geobacter population while iron reduction was occurring, using 16S rRNA abundances and high-resolution tandem mass spectrometry proteome measurements. Following carbon amendment, 16S rRNA analysis of temporally separated samples revealed the rapid enrichment of Geobacter-like environmental strains with strong similarity to G. bemidjiensis. Tandem mass spectrometry proteomics measurements suggest high carbon flux through Geobacter respiratory pathways, and the synthesis of anapleurotic four carbon compounds from acetyl-CoA via pyruvate ferredoxin oxidoreductase activity. Across a 40-day period where Fe(III) reduction was occurring, fluctuations in protein expression reflected changes in anabolic versus catabolic reactions, with increased levels of biosynthesis occurring soon after acetate arrival in the aquifer. In addition, localized shifts in nutrient limitation were inferred based on expression of nitrogenase enzymes and phosphate uptake proteins. These temporal data offer the first example of differing microbial protein expression associated with changing geochemical conditions in a subsurface environment. PMID:23472107

  6. Fluctuations in species-level protein expression occur during element and nutrient cycling in the subsurface.

    PubMed

    Wilkins, Michael J; Wrighton, Kelly C; Nicora, Carrie D; Williams, Kenneth H; McCue, Lee Ann; Handley, Kim M; Miller, Chris S; Giloteaux, Ludovic; Montgomery, Alison P; Lovley, Derek R; Banfield, Jillian F; Long, Philip E; Lipton, Mary S

    2013-01-01

    While microbial activities in environmental systems play a key role in the utilization and cycling of essential elements and compounds, microbial activity and growth frequently fluctuates in response to environmental stimuli and perturbations. To investigate these fluctuations within a saturated aquifer system, we monitored a carbon-stimulated in situ Geobacter population while iron reduction was occurring, using 16S rRNA abundances and high-resolution tandem mass spectrometry proteome measurements. Following carbon amendment, 16S rRNA analysis of temporally separated samples revealed the rapid enrichment of Geobacter-like environmental strains with strong similarity to G. bemidjiensis. Tandem mass spectrometry proteomics measurements suggest high carbon flux through Geobacter respiratory pathways, and the synthesis of anapleurotic four carbon compounds from acetyl-CoA via pyruvate ferredoxin oxidoreductase activity. Across a 40-day period where Fe(III) reduction was occurring, fluctuations in protein expression reflected changes in anabolic versus catabolic reactions, with increased levels of biosynthesis occurring soon after acetate arrival in the aquifer. In addition, localized shifts in nutrient limitation were inferred based on expression of nitrogenase enzymes and phosphate uptake proteins. These temporal data offer the first example of differing microbial protein expression associated with changing geochemical conditions in a subsurface environment. PMID:23472107

  7. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles.

    PubMed

    Finzi, Adrien C; Abramoff, Rose Z; Spiller, Kimberly S; Brzostek, Edward R; Darby, Bridget A; Kramer, Mark A; Phillips, Richard P

    2015-05-01

    While there is an emerging view that roots and their associated microbes actively alter resource availability and soil organic matter (SOM) decomposition, the ecosystem consequences of such rhizosphere effects have rarely been quantified. Using a meta-analysis, we show that multiple indices of microbially mediated C and nitrogen (N) cycling, including SOM decomposition, are significantly enhanced in the rhizospheres of diverse vegetation types. Then, using a numerical model that combines rhizosphere effect sizes with fine root morphology and depth distributions, we show that root-accelerated mineralization and priming can account for up to one-third of the total C and N mineralized in temperate forest soils. Finally, using a stoichiometrically constrained microbial decomposition model, we show that these effects can be induced by relatively modest fluxes of root-derived C, on the order of 4% and 6% of gross and net primary production, respectively. Collectively, our results indicate that rhizosphere processes are a widespread, quantitatively important driver of SOM decomposition and nutrient release at the ecosystem scale, with potential consequences for global C stocks and vegetation feedbacks to climate. PMID:25421798

  8. Fluctuations in Species-Level Protein Expression Occur during Element and Nutrient Cycling in the Subsurface

    SciTech Connect

    Wilkins, Michael J.; Wrighton, Kelly C.; Nicora, Carrie D.; Williams, Kenneth H.; McCue, Lee Ann; Handley, Kim M.; Miller, C. S.; Giloteaux, L.; Montgomery, A. P.; Lovley, Derek R.; Banfield, Jillian F.; Long, Philip E.; Lipton, Mary S.

    2013-03-05

    While microbial activities in environmental systems play a key role in the utilization and cycling of essential elements and compounds, microbial activity and growth frequently fluctuates in response to environmental stimuli and perturbations. To investigate these fluctuations within a saturated aquifer system, we monitored a carbon-stimulated in situ Geobacter population while iron reduction was occurring, using 16S rRNA abundances and high-resolution tandem mass spectrometry proteome measurements. Following carbon amendment, 16S rRNA analysis of temporally separated samples revealed the rapid enrichment of Geobacter-like environmental strains with strong similarity to G. bemidjiensis. Tandem mass spectrometry proteomics measurements suggest high carbon flux through Geobacter respiratory pathways, and the synthesis of anapleurotic four carbon compounds from acetyl-CoA via pyruvate ferredoxin oxidoreductase activity. Across a 40-day period where Fe(III) reduction was occurring, fluctuations in protein expression reflected changes in anabolic versus catabolic reactions, with increased levels of biosynthesis occurring soon after acetate arrival in the aquifer. In addition, localized shifts in nutrient limitation were inferred based on expression of nitrogenase enzymes and phosphate uptake proteins. These temporal data offer the first example of differing microbial protein expression associated with changing geochemical conditions in a subsurface environment.

  9. Peaks of solar cycles affect the gender ratio.

    PubMed

    Davis, George E; Lowell, Walter E

    2008-12-01

    In this study, we report that the gender ratio (GR) at death [where GR=(N(males)/N(males)+N(females))] of those born (and likely conceived) in solar cycle peaks (about a 3-year period occurring on average every approximately 11 years), is inversely related to mean male age at death; e.g., the higher the GR(at death) the lower the mean lifespan, while the GR(at death) of those born in non-peak years has no relation to mean male lifespan. Although changes in the GR are small and may be of little clinical significance, the GR is a sensitive indicator of environmental effects, and therefore is pertinent to epigenetics. This paper supports the hypothesis that solar radiation, probably in the ultraviolet spectrum, by some manner interacts with chromosomal DNA (genes) and produces the genetic variety that not only fosters adaptation, but also produces the diseases that reduce lifespan. This paper also proposes that sunlight is more effective in modifying genomes at the time of conception than later in gestation or infancy. Referring to the work of others, this study also reveals that geographic latitude also affects the GR, suggesting that the variation in light is probably as important as the intensity of light in modifying genomes. This study finds that men sustain more genetic variation, producing 28% more disease than women, as well as a 2% decrease in GR from birth to death, and a shorter life (in Maine) by 7 years. PMID:18755551

  10. A single-nucleotide variation in a p53-binding site affects nutrient-sensitive human SIRT1 expression

    PubMed Central

    Naqvi, Asma; Hoffman, Timothy A.; DeRicco, Jeremy; Kumar, Ajay; Kim, Cuk-Seong; Jung, Saet-Byel; Yamamori, Tohru; Kim, Young-Rae; Mehdi, Fardeen; Kumar, Santosh; Rankinen, Tuomo; Ravussin, Eric; Irani, Kaikobad

    2010-01-01

    The SIRTUIN1 (SIRT1) deacetylase responds to changes in nutrient availability and regulates mammalian physiology and metabolism. Human and mouse SIRT1 are transcriptionally repressed by p53 via p53 response elements in their proximal promoters. Here, we identify a novel p53-binding sequence in the distal human SIRT1 promoter that is required for nutrient-sensitive SIRT1 transcription. In addition, we show that a common single-nucleotide (C/T) variation in this sequence affects nutrient deprivation-induced SIRT1 transcription, and calorie restriction-induced SIRT1 expression. The p53-binding sequence lies in a region of the SIRT1 promoter that also binds the transcriptional repressor Hypermethylated-In-Cancer-1 (HIC1). Nutrient deprivation increases occupancy by p53, while decreasing occupancy by HIC1, of this region of the promoter. HIC1 and p53 compete with each other for promoter occupancy. In comparison with the T variation, the C variation disrupts the mirror image symmetry of the p53-binding sequence, resulting in decreased binding to p53, decreased nutrient sensitivity of the promoter and impaired calorie restriction-stimulated tissue expression of SIRT1 and SIRT1 target genes AMPKα2 and PGC-1β. Thus, a common SNP in a novel p53-binding sequence in the human SIRT1 promoter affects nutrient-sensitive SIRT1 expression, and could have a significant impact on calorie restriction-induced, SIRT1-mediated, changes in human metabolism and physiology. PMID:20693263

  11. Nutrient Deprivation Affects Salmonella Invasion and Its Interaction with the Gastrointestinal Microbiota

    PubMed Central

    Yurist-Doutsch, Sophie; Arrieta, Marie-Claire; Tupin, Audrey; Valdez, Yanet; Antunes, L. Caetano M.; Yen, Ryan; Finlay, B. Brett

    2016-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a foodborne enteric pathogen and a major cause of gastroenteritis in humans. It is known that molecules derived from the human fecal microbiota downregulate S. Typhimurium virulence gene expression and induce a starvation-like response. In this study, S. Typhimurium was cultured in minimal media to mimic starvation conditions such as that experienced by S. Typhimurium in the human intestinal tract, and the pathogen’s virulence in vitro and in vivo was measured. S. Typhimurium cultured in minimal media displayed a reduced ability to invade human epithelial cells in a manner that was at least partially independent of the Salmonella Pathogenicity Island 1 (SPI-1) type III secretion system. Nutrient deprivation did not, however, alter the ability of S. Typhimurium to replicate and survive inside epithelial cells. In a murine model of S. Typhimurium-induced gastroenteritis, prior cultivation in minimal media did not alter the pathogen’s ability to colonize mice, nor did it affect levels of gastrointestinal inflammation. Upon examining the post-infection fecal gastrointestinal microbiota, we found that specifically in the 129Sv/ImJ murine strain S. Typhimurium cultured in minimal media induced differential microbiota compositional shifts compared to that of S. Typhimurium cultured in rich media. Together these findings demonstrate that S. Typhimurium remains a potent pathogen even in the face of nutritional deprivation, but nevertheless that nutrient deprivation encountered in this environment elicits significant changes in the bacterium genetic programme, as well as its capacity to alter host microbiota composition. PMID:27437699

  12. Identifying the impacts of land use on water and nutrient cycling in the South-West Mau, Kenya

    NASA Astrophysics Data System (ADS)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Rufino, Mariana

    2016-04-01

    The Mau Forest is the largest closed canopy forest system and indigenous montane forest in Kenya, covering approximately 400,000 ha. It is the source of twelve major rivers in the Rift Valley and Western Kenya and one of Kenya's five 'water towers' that provide around 10 million people with fresh water. Significant areas have been affected by deforestation and land use changes in the past decades, resulting in a loss of approx. 25% of the forest area. Recent changes in downstream water supply are discussed to be attributed to land use change, though compelling scientific evidence is still lacking. The study area is located in the South-West Mau as a part of the Sondu River basin that drains into Lake Victoria. This area has suffered a forest loss of 25% through conversion of natural forest to smallholder agriculture and tea/tree plantations. A nested catchment approach has been applied, whereby automatic measurement equipment for monitoring discharge, turbidity, nitrate, total and dissolved organic carbon, electrical conductivity and water temperature at a 10 minute interval has been set up at the outlets of three sub-catchments of 27 - 36 km² and the outlet of the 1023 km² major catchment. The dominant land use in the sub-catchments is either natural forest, tea/tree plantation or smallholder agriculture. The river data is complemented by six precipitation gauging stations and three climate stations, that all measure at the same interval. Installed during October 2014, the systems have collected high resolution data for one and a half year now. The high resolution dataset is being analysed for patterns in stream flow and water quality during dry and wet seasons as well as diurnal cycling of nitrate. The results of the different sub-catchments are compared to identify the role of land use in water and nutrient cycling. First results of the high temporal resolution data already indicate that the different types of land use affect the stream nitrate concentration

  13. Deposit-Feeding Sea Cucumbers Enhance Mineralization and Nutrient Cycling in Organically-Enriched Coastal Sediments

    PubMed Central

    MacTavish, Thomas; Stenton-Dozey, Jeanie; Vopel, Kay; Savage, Candida

    2012-01-01

    Background Bioturbators affect multiple biogeochemical interactions and have been suggested as suitable candidates to mitigate organic matter loading in marine sediments. However, predicting the effects of bioturbators at an ecosystem level can be difficult due to their complex positive and negative interactions with the microbial community. Methodology/Principal Findings We quantified the effects of deposit-feeding sea cucumbers on benthic algal biomass (microphytobenthos, MPB), bacterial abundance, and the sediment–seawater exchange of dissolved oxygen and nutrients. The sea cucumbers increased the efflux of inorganic nitrogen (ammonium, NH4+) from organically enriched sediments, which stimulated algal productivity. Grazing by the sea cucumbers on MPB (evidenced by pheopigments), however, caused a net negative effect on primary producer biomass and total oxygen production. Further, there was an increased abundance of bacteria in sediment with sea cucumbers, suggesting facilitation. The sea cucumbers increased the ratio of oxygen consumption to production in surface sediment by shifting the microbial balance from producers to decomposers. This shift explains the increased efflux of inorganic nitrogen and concordant reduction in organic matter content in sediment with bioturbators. Conclusions/Significance Our study demonstrates the functional role and potential of sea cucumbers to ameliorate some of the adverse effects of organic matter enrichment in coastal ecosystems. PMID:23209636

  14. Dairy cattle diets, manure chemistry, and soil nutrient cycles: how do they relate?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While most milk leaves the farm as a desirable end product, manure has different fates – both desirable and undesirable. The desirable outcomes are those in which nutrients stay on the farm to help produce more feed and milk; and the undesirable outcomes are those in which nutrients enter the enviro...

  15. Incorporating redox processes improves prediction of carbon and nutrient cycling and greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Tang, Guoping; Zheng, Jianqiu; Yang, Ziming; Graham, David; Gu, Baohua; Mayes, Melanie; Painter, Scott; Thornton, Peter

    2016-04-01

    Among the coupled thermal, hydrological, geochemical, and biological processes, redox processes play major roles in carbon and nutrient cycling and greenhouse gas (GHG) emission. Increasingly, mechanistic representation of redox processes is acknowledged as necessary for accurate prediction of GHG emission in the assessment of land-atmosphere interactions. Simple organic substrates, Fe reduction, microbial reactions, and the Windermere Humic Aqueous Model (WHAM) were added to a reaction network used in the land component of an Earth system model. In conjunction with this amended reaction network, various temperature response functions used in ecosystem models were assessed for their ability to describe experimental observations from incubation tests with arctic soils. Incorporation of Fe reduction reactions improves the prediction of the lag time between CO2 and CH4 accumulation. The inclusion of the WHAM model enables us to approximately simulate the initial pH drop due to organic acid accumulation and then a pH increase due to Fe reduction without parameter adjustment. The CLM4.0, CENTURY, and Ratkowsky temperature response functions better described the observations than the Q10 method, Arrhenius equation, and ROTH-C. As electron acceptors between O2 and CO2 (e.g., Fe(III), SO42‑) are often involved, our results support inclusion of these redox reactions for accurate prediction of CH4 production and consumption. Ongoing work includes improving the parameterization of organic matter decomposition to produce simple organic substrates, examining the influence of redox potential on methanogenesis under thermodynamically favorable conditions, and refining temperature response representation near the freezing point by additional model-experiment iterations. We will use the model to describe observed GHG emission at arctic and tropical sites.

  16. Effects of Desert Dust on Nutrient Cycling in the San Juan Mountains, Colorado

    NASA Astrophysics Data System (ADS)

    Neff, J. C.; Farmer, L.; Painter, T. H.; Landry, C.; Reynolds, R.

    2005-12-01

    The San Juan Mountains of southwestern Colorado lie downwind from several major deserts and experience several dust-deposition events each year. These events appear related to storms that erode soils in the deserts of the western US and then deposit atmospheric dust from these soils during or after snowfall during large late winter and spring deposition events. To evaluate the biogeochemical implications of eolian deposition, we collected dust from distinct layers deposited into the seasonal snowpack. We also sampled soils and lake sediments in a high-elevation catchment in the San Juan Mountains. Atmospheric dust was characterized by measurements of chemical composition, Sr isotopic content and analysis of the organic and inorganic constituents of deposited eolian material. The origins of snowpack dust in the San Juans were analyzed using atmospheric tracer transport modeling. These analyses suggest that many dust events originate in southern Utah and northern Arizona, areas that have undergone substantial land use change through the 20th century and that experience severe wind erosion of soils during periodic severe droughts. Analyses of 87Sr/86Sr isotope ratios dust, soils, bedrock, and sediments suggest that eolian dust may compose as much as 90% of the near-surface soil (top 5 cm). In alpine lake sediments, Sr isotopes suggest a relatively recent (20th century) increase in the fraction of sediments derived from dust (relative to bedrock) and a similarly large contribution of dust to surface sediments. Sediment chemistry in two small alpine tarns show changes in Ca, Mg, Al, and Fe concentrations that imply increasing dust (vs. bedrock) contributions to lake sediments over the past 100-200 years. Increasing loading of Ca, Mg and P to alpine basins may have implications for alpine and sub-alpine biogeochemical cycling including water quality and plant nutrient use.

  17. Biomass production, nutrient cycling, and carbon fixation by Salicornia brachiata Roxb.: A promising halophyte for coastal saline soil rehabilitation.

    PubMed

    Rathore, Aditya P; Chaudhary, Doongar R; Jha, Bhavanath

    2016-08-01

    In order to increase our understanding of the interaction of soil-halophyte (Salicornia brachiata) relations and phytoremediation, we investigated the aboveground biomass, carbon fixation, and nutrient composition (N, P, K, Na, Ca, and Mg) of S. brachiata using six sampling sites with varying characteristics over one growing season in intertidal marshes. Simultaneously, soil characteristics and nutrient concentrations were also estimated. There was a significant variation in soil characteristics and nutrient contents spatially (except pH) as well as temporally. Nutrient contents in aboveground biomass of S. brachiata were also significantly differed spatially (except C and Cl) as well as temporally. Aboveground biomass of S. brachiata ranged from 2.51 to 6.07 t/ha at maturity and it was positively correlated with soil electrical conductivity and available Na, whereas negatively with soil pH. The K/Na ratio in plant was below one, showing tolerance to salinity. The aboveground C fixation values ranged from 0.77 to 1.93 C t/ha at all six sampling sites. This study provides new understandings into nutrient cycling-C fixation potential of highly salt-tolerant halophyte S. brachiata growing on intertidal soils of India. S. brachiata have a potential for amelioration of the salinity due to higher Na bioaccumulation factor. PMID:26852782

  18. Soil pH, soil type and replant disease affect growth and nutrient absorption in apple rootstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rootstocks are the foundation of a healthy and productive orchard. They are the interface between the scion and the soil, providing anchorage, water, nutrients, and disease protection that ultimately affect the productivity and sustainability of the orchard. Recent advances in the science of genet...

  19. Nutrient transport in runoff as affected by diet, tillage and manure application rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Including distillers grains in feedlot finishing diets may increase feedlot profitability. However the nutrient content of by-products are concentrated about three during the distillation process. Manure can be applied to meet single or multiple year crop nutrient requirements. The water quality eff...

  20. Nutrient loads and sediment losses in sprinkler irrigation runoff affected by compost and manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High water application rates beneath the outer spans of center pivot sprinkler systems can cause runoff, erosion, and nutrient losses, particularly from sloping fields. This study determined runoff, sediment losses, and loads of nutrients (dissolved organic C, Nitrate-N, ammonium-N, total phosphoru...

  1. Management practices affect soil nutrients and bacterial populations in backgrounding beef feedlot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminants associated with manure in animal production sites are of significant concern. Unless properly managed, high soil nutrient concentrations in feedlots can deteriorate soil and water quality. This three year study tested a nutrient management strategy with three sequentially imposed manage...

  2. The light: nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process.

    PubMed

    Sterner, R W; Elser, J J; Fee, E J; Guildford, S J; Chrzanowski, T H

    1997-12-01

    The amounts of solar energy and materials are two of the chief factors determining ecosystem structure and process. Here, we examine the relative balance of light and phosphorus in a set of freshwater pelagic ecosystems. We calculated a ratio of light: phosphorus by putting mixed-layer mean light in the numerator and total P concentration in the denominator. This light: phosphorus ratio was a good predictor of the C:P ratio of particulate matter (seston), with a positive correlation demonstrated between these two ratios. We argue that the balance between light and nutrients controls "nutrient use efficiency" at the base of the food web in lakes. Thus, when light energy is high relative to nutrient availability, the base of the food web is carbon rich and phosphorus poor. In the opposite case, where light is relatively less available compared to nutrients, the base of the food web is relatively P rich. The significance of this relationship lies in the fact that the composition of sestonic material is known to influence a large number of ecosystem processes such as secondary production, nutrient cycling, and (we hypothesize) the relative strength of microbial versus grazing processes. Using the central result of increased C:P ratio with an increased light: phosphorus ratio, we make specific predictions of how ecosystem structure and process should vary with light and nutrient balance. Among these predictions, we suggest that lake ecosystems with low light: phosphorus ratios should have several trophic levels simultaneously carbon or energy limited, while ecosystems with high light: phosphorus ratios should have several trophic levels simultaneously limited by phosphorus. Our results provide an alternative perspective to the question of what determines nutrient use efficiency in ecosystems. PMID:18811330

  3. Nutrient demand interacts with forage family to affect digestion responses in dairy cows.

    PubMed

    Kammes, K L; Allen, M S

    2012-06-01

    Effects of forage family on dry matter intake (DMI), milk production, ruminal pool sizes, digestion and passage kinetics, and chewing activity and the relationship of these effects with preliminary DMI (pDMI), an index of nutrient demand, were evaluated using 13 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 18-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 19.6 to 29.5 kg/d (mean=25.9 kg/d) and 3.5% fat-corrected milk yield ranged from 24.3 to 60.3 kg/d (mean=42.1 kg/d). Experimental treatments were diets containing either a) alfalfa silage (AL) or b) orchardgrass silage (OG) as the sole forage. Alfalfa and orchardgrass contained 42.3 and 58.2% neutral detergent fiber (NDF) and 22.5 and 11.4% crude protein, respectively. Forage:concentrate ratios were 60:40 and 43:57 for AL and OG, respectively; both diets contained approximately 25% forage NDF and 30% total NDF. Preliminary DMI was determined during the last 4 d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of forage family and their interaction with pDMI were tested by ANOVA. Forage family and its interaction with pDMI did not affect feed intake, milk yield, or milk composition. The AL diet increased indigestible NDF (iNDF) intake and decreased potentially digestible NDF (pdNDF) intake compared with OG. The AL diet increased ruminal pH, digestion rates of pdNDF and starch, and passage rates of pdNDF and iNDF compared with OG, which affected ruminal digestibility. Passage rate of iNDF was related to pDMI; AL increased iNDF passage rate and OG decreased it as pDMI increased. The AL diet decreased ruminal pool sizes of pdNDF, starch, organic matter, dry matter, and rumen digesta wet weight and volume compared with OG. The AL diet decreased ruminating time per unit of forage NDF consumed compared with OG, indicating that alfalfa provided less physically effective

  4. Does gender or the menstrual cycle affect colonic transit?

    PubMed

    Hinds, J P; Stoney, B; Wald, A

    1989-02-01

    Controversy exists as to whether slowing of colonic transit occurs in the high progesterone luteal phase of the menstrual cycle. To clarify this issue, colonic transit studies using radiopaque markers were performed on 10 women in the follicular phase, 10 women in the luteal phase of the menstrual cycle, and five women on oral contraceptives, and the results were compared with transit times in 11 male controls. No significant differences in colonic transit were found between either phase of the menstrual cycle. Colonic transit in women was slower than in men, but this was not statistically significant. In the clinical setting, therefore, colonic transit studies can be performed throughout the menstrual cycle or when taking oral contraceptives. In addition, a single standard for normal values can be used for both men and women. PMID:2916519

  5. Effects of the herbicide hexazinone on nutrient cycling in a low-pH blueberry soil.

    PubMed

    Vienneau, D M; Sullivan, C A; House, S K; Stratton, G W

    2004-04-01

    The herbicide hexazinone was applied as the commercial formulation Velpar L at field-rate (FR) concentrations of FR (14.77 microg ai g(-1)), FRx5 (73.85 microg ai g(-1)), FRx10 (147.70 microg ai g(-1)), FRx50 (738.50 microg ai g(-1)), and FRx100 (1477.00 microg ai g(-1)) to acidic soil, pH 4.12, taken from a lowbush blueberry field. Hexazinone was tested for inhibitory effects on various transformations of the nitrogen cycle and soil respiration. Nitrogen fixation was unaffected by hexazinone levels up to FRx100 following a 4-week incubation period. Ammonification was initially inhibited by all levels of hexazinone, but after 4 weeks, ammonification in all treatment systems was equal to or greater than the control. Nitrification was more sensitive to hexazinone; however, application at a field-rate level caused no inhibition. Inhibitory effects were noted above FR after a 2-month endpoint analysis and above FRx5 after a 6-month endpoint analysis. Hexazinone concentrations up to and including FRx100 stimulated denitrification. Soil respiration was also stimulated over a 3-week period when applied at a level up to 100 times the recommended field rate. In general, it was found that when applied at the recommended field application rate, hexazinone does not adversely affect the nitrogen cycle or soil respiration in acidic lowbush blueberry soils. PMID:15037997

  6. Post-transcriptional RNA Regulons Affecting Cell Cycle and Proliferation

    PubMed Central

    Blackinton, Jeff G.

    2014-01-01

    The cellular growth cycle is initiated and maintained by punctual, yet agile, regulatory events involving modifications of cell cycle proteins as well as coordinated gene expression to support cyclic checkpoint decisions. Recent evidence indicates that post-transcriptional partitioning of messenger RNA subsets by RNA-binding proteins help physically localize, temporally coordinate, and efficiently translate cell cycle proteins. This dynamic organization of mRNAs encoding cell cycle components contributes to the overall economy of the cell cycle consistent with the post-transcriptional RNA regulon model of gene expression. This review examines several recent studies demonstrating the coordination of mRNA subsets encoding cell cycle proteins during nuclear export and subsequent coupling to protein synthesis, and discusses evidence for mRNA coordination of p53 targets and the DNA damage response pathway. We consider how these observations may connect to upstream and downstream post-transcriptional coordination and coupling of splicing, export, localization, and translation. Published examples from yeast, nematode, insect, and mammalian systems are discussed, and we consider genetic evidence supporting the conclusion that dysregulation of RNA regulons may promote pathogenic states of growth such as carcinogenesis. PMID:24882724

  7. Organic productivity, nutrient cycling and small watershed hydrology of natural forests and monoculture plantations in Chikmagalur district, Karnataka

    SciTech Connect

    Swamy, H.R.

    1992-12-31

    Tree measurement in representative, undisturbed 1 ha plots of pre-montane Shola, high-altitude evergreen, semi-evergreen and moist deciduous forests have thrown light on the understanding of forest structure. Standing biomass and productivity were estimated and found to be similar to those of other tropical rain forests. Measurement in a 58-year-old teak, a 22-year-old Eucalyptus and a 13-year-old Acacia plantation showed that teak was the most naturalized and Acacia most productive; Eucalyptus performed poorly among the monocultures. Soil studies indicated that topsoils were less acidic than the deeper horizons, and that high rainfall areas had more acidic soils. Cation exchange capacities were lower in grasslands and in monocultures than in natural forests. They also decreased down through the soil profiles indicating ion-exchange chiefly on organic sites. N was higher and more easily available in high rainfall areas. Irrespective of higher organic C in these sites, the C/N ratios in plantations and drier areas were still higher, indicating a faster eluviation of N, K, P, Ca and Mg levels were higher in the low rainfall areas. Micro-nutrient deficiencies were not indicated anywhere. Nutrient cycling was studied by litter dynamics, live tissue analysis and assessment of standing biomass. Nutrient cycling was more efficient in plantations and in Shola than in natural forests. Although nutrient capital of Eucalyptus plantation was only 29% of that in natural forests, it was found to be the most efficient nutrient utilizer. The hydrology of a small watershed harbouring a semi-evergreen forest indicating that surface run-off depends not only on precipitation but also on its distribution, indicating significant subsurface underflow.

  8. The role of oyster restoration and aquaculture in nutrient cycling within a Rhode Island estuary

    EPA Science Inventory

    Coastal ecosystems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for other organisms. Oyster aquaculture and restoration are hypothesized to mitigate excessive nitrogen (N) loads via benthic denitrification. However, this has not been exam...

  9. Hot moments in spawning aggregations: implications for ecosystem-scale nutrient cycling

    NASA Astrophysics Data System (ADS)

    Archer, Stephanie K.; Allgeier, Jacob E.; Semmens, Brice X.; Heppell, Scott A.; Pattengill-Semmens, Christy V.; Rosemond, Amy D.; Bush, Phillippe G.; McCoy, Croy M.; Johnson, Bradley C.; Layman, Craig A.

    2015-03-01

    Biogeochemical hot moments occur when a temporary increase in availability of one or more limiting reactants results in elevated rates of biogeochemical reactions. Many marine fish form transient spawning aggregations, temporarily increasing their local abundance and thus nutrients supplied via excretion at the aggregation site. In this way, nutrients released by aggregating fish could create a biogeochemical hot moment. Using a combination of empirical and modeling approaches, we estimate nitrogen and phosphorus supplied by aggregating Nassau grouper ( Epinephelus striatus). Data suggest aggregating grouper supply up to an order-of-magnitude more nitrogen and phosphorus than daily consumer-derived nutrient supply on coral reefs without aggregating fish. Comparing current and historic aggregation-level excretion estimates shows that overfishing reduced nutrients supplied by aggregating fish by up to 87 %. Our study illustrates a previously unrecognized ecosystem viewpoint regarding fish spawning aggregations and provides an additional perspective on the repercussions of their overexploitation.

  10. Upland disturbance affects headwater stream nutrients and suspended sediments during baseflow and stormflow

    SciTech Connect

    Houser, Jeffrey N

    2006-01-01

    Because catchment characteristics determine sediment and nutrient inputs to streams, upland disturbance can affect stream chemistry. Catchments at the Fort Benning Military Installation (near Columbus, Georgia) experience a range of upland disturbance intensities due to spatial variability in the intensity of military training. We used this disturbance gradient to investigate the effects of upland soil and vegetation disturbance on stream chemistry. During baseflow, mean total suspended sediment (TSS) concentration and mean inorganic suspended sediment (ISS) concentration increased with catchment disturbance intensity (TSS: R 2 = 0.7, p = 0.005, range = 4.0-10.1 mg L-1; ISS: R 2 = 0.71, p = 0.004, range = 2.04-7.3 mg L-1); dissolved organic carbon (DOC) concentration (R 2 = 0.79, p = 0.001, range = 1.5-4.1 mg L-1) and soluble reactive phosphorus (SRP) concentration (R 2 = 0.75, p = 0.008, range = 1.9-6.2 {micro}g L-1) decreased with increasing disturbance intensity; and ammonia (NH4 +), nitrate (NO3 -), and dissolved inorganic nitrogen (DIN) concentrations were unrelated to disturbance intensity. The increase in TSS and ISS during storms was positively correlated with disturbance (R 2 = 0.78 and 0.78, p = 0.01 and 0.01, respectively); mean maximum change in SRP during storms increased with disturbance (r = 0.7, p = 0.04); and mean maximum change in NO3 - during storms was marginally correlated with disturbance (r = 0.58, p = 0.06). Soil characteristics were significant predictors of baseflow DOC, SRP, and Ca2+, but were not correlated with suspended sediment fractions, any nitrogen species, or pH. Despite the largely intact riparian zones of these headwater streams, upland soil and vegetation disturbances had clear effects on stream chemistry during baseflow and stormflow conditions.

  11. Interpreting Environmental Change and Nutrient Cycling Using Major Element and Strontium Isotope Ratios in Tree Rings

    NASA Astrophysics Data System (ADS)

    Ash, A. W.; Blum, J. D.; Eagar, C.; Fahey, T. J.

    2003-12-01

    In northeastern US forest ecosystems affected by acid deposition, calcium and other base cations have been leached from the soil exchange complex thereby increasing the possibility that calcium could become a limiting nutrient and negatively affect ecosystem health. Three of the most significant contributions of calcium to the soil exchange complex are atmospheric deposition, silicate mineral weathering, and non-silicate weathering. Strontium isotope and Ca/Sr ratios can be used to identify the relative inputs from these sources and determine whether they have changed over time. Strontium isotopic compositions and Ca/Sr ratios of tree rings hold promise for interpreting and understanding changes in calcium sources and availability in forest ecosystems. However, before tree rings can be used as a reliable archive for environmental perturbations several important issues must be resolved. These include 1) the degree of differential uptake of Ca and Sr by different tree species, and 2) the degree of translocation of Ca and Sr between growth rings. A manipulation experiment at the Hubbard Brook Experimental Forest (HBEF), NH was conducted, in which wollastonite pellets were applied to an experimental watershed. The wollastonite, with Ca/Sr and 87Sr/86Sr ratios distinct from sources to the soil exchange complex, serves as an environmental tracer. By monitoring the uptake of wollastonite into foliage we demonstrate that the degree of fractionation between Ca and Sr is small and that Ca/Sr ratios provide a good monitor of Ca sources to trees. Uptake into roots of selected species suggests there is not significant physiological discrimination against strontium assimilation in favor of calcium. We also explored the degree of mobility of Ca and Sr once it is incorporated into growth increments by determining the presence of the tracer in older growth increments. We developed a multi-step chemical leaching procedure to isolate a reservoir of Ca in wood that represents Ca

  12. CO₂ and inorganic nutrient enrichment affect the performance of a calcifying green alga and its noncalcifying epiphyte.

    PubMed

    Hofmann, Laurie C; Bischof, Kai; Baggini, Cecilia; Johnson, Andrew; Koop-Jakobsen, Ketil; Teichberg, Mirta

    2015-04-01

    Ocean acidification studies in the past decade have greatly improved our knowledge of how calcifying organisms respond to increased surface ocean CO2 levels. It has become evident that, for many organisms, nutrient availability is an important factor that influences their physiological responses and competitive interactions with other species. Therefore, we tested how simulated ocean acidification and eutrophication (nitrate and phosphate enrichment) interact to affect the physiology and ecology of a calcifying chlorophyte macroalga (Halimeda opuntia (L.) J.V. Lamouroux) and its common noncalcifying epiphyte (Dictyota sp.) in a 4-week fully crossed multifactorial experiment. Inorganic nutrient enrichment (+NP) had a strong influence on all responses measured with the exception of net calcification. Elevated CO2 alone significantly decreased electron transport rates of the photosynthetic apparatus and resulted in phosphorus limitation in both species, but had no effect on oxygen production or respiration. The combination of CO2 and +NP significantly increased electron transport rates in both species. While +NP alone stimulated H. opuntia growth rates, Dictyota growth was significantly stimulated by nutrient enrichment only at elevated CO2, which led to the highest biomass ratios of Dictyota to Halimeda. Our results suggest that inorganic nutrient enrichment alone stimulates several aspects of H. opuntia physiology, but nutrient enrichment at a CO2 concentration predicted for the end of the century benefits Dictyota sp. and hinders its calcifying basibiont H. opuntia. PMID:25648647

  13. Dairy manure and plant nutrient management issues affecting water quality and the dairy industry.

    PubMed

    Lanyon, L E

    1994-07-01

    Specific requirements for dairy manure management to protect water quality from nutrient pollution depend on the organization of individual farms. Further, the management requirements and options are different for point (farmstead) and nonpoint (field-applied) sources of pollution from farms. A formal management process can guide decisions about existing crop nutrient utilization potential, provide a framework for tracking nutrients supplied to crops, and identify future requirements for dairy manure management to protect water quality. Farm managers can use the process to plan daily activities, to assess annual nutrient management performance, and to chart future requirements as herd size increases. Agronomic measures of nutrient balance and tracking of inputs and outputs for various farm management units can provide the quantitative basis for management to allocate better manure to fields, to modify dairy rations, or to develop alternatives to on-farm manure application. Changes in agricultural production since World War II have contributed to a shift from land-based dairy production to a reliance on capital factors of production supplied by the dairy industry. Meanwhile, management of dairy manure to meet increasingly stringent water quality protection requirements is still a land-based activity. Involving the dairy industry and off-farm stakeholders as participants in the management process for field, farm, and regional dairy production can be the basis for decision-making to reconcile the sometimes conflicting demands of production and water quality protection. PMID:7929961

  14. Changing nutrient stoichiometry affects phytoplankton production, DOP build up and dinitrogen fixation - a mesocosm experiment in the eastern tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Löscher, C. R.; Neulinger, S. C.; Reichel, A. F.; Loginova, A.; Borchard, C.; Schmitz, R. A.; Hauss, H.; Kiko, R.; Riebesell, U.

    2015-07-01

    Ocean deoxygenation due to climate change may alter redox-sensitive nutrient cycles in the marine environment. The productive eastern tropical North Atlantic (ETNA) upwelling region may be particularly affected when the relatively moderate oxygen minimum zone (OMZ) deoxygenates further and microbially-driven nitrogen (N) loss processes are promoted. Consequently, water masses with a low N : P ratio could reach the euphotic layer, possibly influencing primary production in those waters. Previous mesocosm studies in the oligotrophic Atlantic Ocean identified N availability as controlling of primary production, while a possible co-limitation of nitrate and phosphate (P) could not be ruled out. To better understand the impact of changing N : P ratios on primary production and on N2 fixation in the ETNA surface ocean, we conducted land-based mesocosm experiments with natural plankton communities and applied a broad range of N : P ratios (2.67-48). Silicate was supplied at 15 μmol L-1 in all mesocosms. We monitored nutrient drawdown, bloom formation, biomass build up and diazotrophic feedback in response to variable nutrient stoichiometry. Our results confirmed N to be limiting to primary production. We found that excess P was channeled through particulate organic matter (POP) into the dissolved organic matter (DOP) pool. In mesocosms with low P availability, DOP was utilized while N2 fixation increased, suggesting a link between those two processes. Interestingly this observation was most pronounced in mesocosms where inorganic N was still available, indicating that bioavailable N does not necessarily has to have a negative impact on N2 fixation. We observed a shift from a mixed cyanobacterial/proteobacterial dominated active diazotrophic community towards diazotrophic diatom symbionts of the Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in nutrient stoichiometry in the ETNA might lead to a general shift within the diazotrophic community

  15. Nutrient demand interacts with legume maturity to affect rumen pool sizes in dairy cows.

    PubMed

    Kammes, K L; Ying, Y; Allen, M S

    2012-05-01

    Effects of legume maturity on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, and digestion and passage kinetics, and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 16 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 17-d treatment periods. During the preliminary period, the pDMI of individual cows ranged from 22.9 to 30.0 kg/d (mean=25.9 kg/d) and the 3.5% fat-corrected milk yield ranged from 34.1 to 68.2 kg/d (mean=43.7 kg/d). Experimental treatments were diets containing alfalfa silage harvested either a) early-cut, less mature (EC) or b) late-cut, more mature (LC) as the sole forage. Early- and late-cut alfalfa contained 40.8 and 53.1% neutral detergent fiber (NDF) and 23.7 and 18.1% crude protein, respectively. Forage:concentrate ratios were 53:47 and 42:58 for EC and LC, respectively; both diets contained approximately 22% forage NDF and 27% total NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of alfalfa maturity and their interaction with pDMI were tested by ANOVA. Alfalfa maturity and its interaction with pDMI did not affect milk yield but EC increased DMI compared with LC; thus, EC had lower efficiency of milk production than LC. The EC diet decreased milk fat concentration more per kilogram of pDMI increase than the LC diet, but milk fat yield was not affected. The lower concentration and faster passage rate of indigestible NDF for EC resulted in lower rumen pools of indigestible NDF, total NDF, and dry matter than did LC, which EC increased at a slower rate than did LC as pDMI increased. The EC diet decreased starch intake and increased ruminal pH compared with the LC diet. The rate of ruminal starch digestion was related to level of intake, but this did not affect ruminal or postruminal starch

  16. Response of N cycling to nutrient inputs in forest soils across a 1000-3000 m elevation gradient in the Ecuadorian Andes.

    PubMed

    Baldos, Angelica P; Corre, Marife D; Veldkamp, Edzo

    2015-03-01

    Large areas in the tropics receive elevated atmospheric nutrient inputs. Presently, little is known on how nitrogen (N) cycling in tropical montane forest soils will respond to such increased nutrient inputs. We assessed how gross rates of mineral N production (N mineralization and nitrification) and microbial N retention (NH4+ and NO3- immobilization and dissimilatory NO3- reduction to NH4+ [DNRA]) change with elevated N and phosphorus (P) inputs in montane forest soils at 1000-, 2000-, and 3000-m elevations in south Ecuador. At each elevation, four replicate plots (20 x 20 m each) of control, N (added at 50 kg N x ha(-1) x yr(-1)), P (added at 10 kg P x ha(-1) x yr(-1)), and combined N+P additions have been established since 2008. We measured gross N cycling rates in 2010 and 2011, using 15N pool dilution techniques with in situ incubation of intact soil cores taken from the top 5 cm of soil. In control plots, gross soil-N cycling rates decreased.with increase in elevation, and microbial N retention was tightly coupled with mineral N production. At 1000 m and 2000 m, four-year N and combined N + P additions increased gross mineral N production but decreased NH4+ and NO3- immobilization and DNRA compared to the control. At 3000 m, four-year N and combined N + P additions increased gross N mineralization rates and decreased DNRA compared to the control; although NH4+ and NO3- immobilization in the N and N + P plots were not different' from the control, these were lower than their respective mineral N production. At all elevations, decreased microbial N retention was accompanied by decreased microbial biomass C and C:N ratio. P addition did not affect any of the soil-N cycling processes. Our results signified that four years of N addition, at a rate expected to occur at these sites, uncoupled the soil-N cycling processes, as indicated by decreased microbial N retention. This fast response of soil-N cycling processes across elevations implies that greater attention

  17. THE EFFECT OF WINDTHROW DISTURBANCE AND SALVAGE LOGGING ON NUTRIENT CYCLING IN A CONIFEROUS FOREST ECOSYSTEM

    EPA Science Inventory

    It is expected that nitrogen availability will be lower in logged areas relative to areas of intact forest and areas of blowdown forest; this nutrient may be a factor limiting forest growth. Furthermore, the results of this study are expected to help elucidate the controls on...

  18. Scaling up food production in the Upper Mississippi river basin: modeling impacts on water quality and nutrient cycling

    NASA Astrophysics Data System (ADS)

    Bowen, E. E.; Martin, P. A.; Schuble, T. J.; Yan, E.; Demissie, Y.

    2010-12-01

    Agricultural production imposes significant environmental stress on the landscape, both in the intensity and extent of agricultural activities. Among the most significant impacts, agriculture dominates the natural reactive nitrogen cycle, with excess reactive nitrogen leading to the degraded quality of inland and coastal waters. In the U.S., policymakers and stakeholders nationwide continue to debate strategies for decreasing environmental degradation from agricultural lands. Such strategies aim to optimize the balance among competing demands for food, fuel and ecosystem services. One such strategy increasingly discussed in the national debate is that of localizing food production around urban areas, developing what some have recently called “foodsheds”. However, the environmental impacts of localizing food production around population centers are not well-understood given the hard-to-generalize variety seen in management practices currently employed among local farms marketing food crops directly to consumers. As a first, landscape level study of potential impacts from scaling up this type of agriculture, we use the USDA Soil and Water Assessment Tool (SWAT) model to quantify environmental impacts from developing foodsheds for all population centers in the Upper Mississippi river basin. Specifically, we focus on nutrient cycling and water quality impacts determining direct greenhouse gas emissions and changes to nutrient runoff from increased food production in this watershed. We investigate a variety of scenarios in which food production is scaled up to the regional level using different types of farm management practices, ranging from conventional production of fruits and vegetables, to production of these products from small-scale, diversified systems integrating conservation easements. In addition to impacts on nutrient cycling and water quality, we also characterize relative levels of productivity in conjunction with overall demand for food associated

  19. Runoff nutrient and suspended sediment fluxes, cycling, and management in southern Kaneohe Bay, Hawaii

    NASA Astrophysics Data System (ADS)

    Ringuet, S.; Young, C. W.; Hoover, D. J.; de Carlo, E. H.; MacKenzie, F. T.

    2003-12-01

    Urban runoff and its impact on water quality in Hawaii, especially after heavy rainfall, is highly dynamic. In the past, water quality was determined through "grab samples" that were merely snapshots in time of an ever-changing environment. In contrast, continuous measurements of water quality can capture data that reflect the effects of significant storm runoff events unobtainable using even frequent manual sampling. Continuous multiparameter monitoring facilitates investigation of the both the magnitude and persistence of impacts of storm runoff on coastal waters, which can eventually be related to the health of coral reef ecosystems. Taking advantage of recent technological developments in oceanographic instrumentation, our study assembled an instrument package dubbed Coral Reef Instrumented Monitoring Platform (CRIMP). CRIMP was designed to include probes that measure physical and biological parameters (temperature, salinity, pH, dissolved oxygen, turbidity, and chlorophyll-a), nutrient analyzers (nitrate and phosphate), and a particle analyzer based on laser in-situ scattering and transmissometry. Various components of the CRIMP were previously used in conjunction with grab samples with the objective of elucidating the water quality of southern Kaneohe Bay and its relationship to physical, biological, and chemical processes operating in the bay, and to coral reef ecosystems. All instruments are now being combined on the CRIMP, and will allow us to study in near real time changes in fluvial inputs to the bay during storm runoff conditions and their impact on bay water quality and the coral reef ecosystem. In this presentation we discuss effects of freshwater delivery on adjacent coastal waters during high rainfall episodes (May 2002 and Feb 2003) that result in large runoff events and increased nutrient loading to coastal waters. Dissolved inorganic nitrogen to phosphorus ratios (DIN:DIP) in the Bay normally range from 2 to 4, suggesting a nitrogen

  20. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  1. Runoff nutrient transport as affected by land application method, swine growth stage, and runoff rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to measure the effects of slurry application method, swine growth stage, and flow rate on runoff nutrient transport. Swine slurry was obtained from production units containing grower pigs, finisher pigs, or sows and gilts. The swine slurry was applied using broadcast, disk, ...

  2. Runoff nutrient loads as affected by residue cover, manure application rate, and flow rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure is applied to cropland areas with varying surface cover to meet single- or multiple-year crop nutrient requirements. The objectives of this field study were to (1) examine runoff water quality characteristics following land application of manure to sites with and without wheat residue, (2) co...

  3. Carrot, Corn, Lettuce and Soybean Nutrient Contents are Affected by Biochar

    EPA Science Inventory

    Biochar, the carbon-rich material remaining after pyrolysis of cellulosic and manure feedstocks, has the potential as a soil amendment to sequester carbon and to improve soil water-holding and nutrient properties- thereby enhancing plant growth. However, biochar produced from so...

  4. Relationships Among Watershed Condition, Nutrients, and Algae in New England Streams Affected by Urbanization

    EPA Science Inventory

    We examined algal metrics as indicators of altered watershed land cover and nutrients to inform their potential use in monitoring programs. Multiple regression models, in which impervious cover explained the most variation, indicated concentrations <0.202 mg/l NO3 and <0.015 mg/l...

  5. Nutrient Transport in Runoff from Feedlots as Affected by Wet Distiller's Grain Diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Distiller's byproducts can serve as valuable sources of protein and energy for beef cattle. When the characteristics of materials entering and exiting the plant are compared, the nutrients in distiller's byproducts are concentrated about three times. The objectives of this study were to: a) measure ...

  6. Evaluation of Physicochemical Deterioration and Lipid Oxidation of Beef Muscle Affected by Freeze-thaw Cycles.

    PubMed

    Rahman, M H; Hossain, M M; Rahman, S M E; Amin, M R; Oh, Deog-Hwan

    2015-01-01

    This study was performed to explore the deterioration of physicochemical quality of beef hind limb during frozen storage at -20℃, affected by repeated freeze-thaw cycles. The effects of three successive freeze-thaw cycles on beef hind limb were investigated comparing with unfrozen beef muscle for 80 d by keeping at -20±1℃. The freeze-thaw cycles were subjected to three thawing methods and carried out to select the best one on the basis of deterioration of physicochemical properties of beef. As the number of repeated freeze-thaw cycles increased, drip loss decreased and water holding capacity (WHC) increased (p<0.05) till two cycles and then decreased. Cooking loss increased in cycle one and three but decreased in cycle two. Moreover, drip loss, WHC and cooking loss affected (p<0.05) by thawing methods within the cycles. However, pH value decreased (p<0.05), but peroxide value (p<0.05), free fatty acids value (p<0.05) and TBARS value increased (p<0.05) significantly as the number of repeated freeze-thaw cycles increased. Moreover, significant (p<0.05) interactive effects were found among the thawing methods and repeated cycles. As a result, freeze-thaw cycles affected the physicochemical quality of beef muscle, causing the degradation of its quality. PMID:26877637

  7. Evaluation of Physicochemical Deterioration and Lipid Oxidation of Beef Muscle Affected by Freeze-thaw Cycles

    PubMed Central

    Rahman, M. H.; Hossain, M. M.; Rahman, S. M. E.; Amin, M. R.; Oh, Deog-Hwan

    2015-01-01

    This study was performed to explore the deterioration of physicochemical quality of beef hind limb during frozen storage at −20℃, affected by repeated freeze-thaw cycles. The effects of three successive freeze-thaw cycles on beef hind limb were investigated comparing with unfrozen beef muscle for 80 d by keeping at −20±1℃. The freeze-thaw cycles were subjected to three thawing methods and carried out to select the best one on the basis of deterioration of physicochemical properties of beef. As the number of repeated freeze-thaw cycles increased, drip loss decreased and water holding capacity (WHC) increased (p<0.05) till two cycles and then decreased. Cooking loss increased in cycle one and three but decreased in cycle two. Moreover, drip loss, WHC and cooking loss affected (p<0.05) by thawing methods within the cycles. However, pH value decreased (p<0.05), but peroxide value (p<0.05), free fatty acids value (p<0.05) and TBARS value increased (p<0.05) significantly as the number of repeated freeze-thaw cycles increased. Moreover, significant (p<0.05) interactive effects were found among the thawing methods and repeated cycles. As a result, freeze-thaw cycles affected the physicochemical quality of beef muscle, causing the degradation of its quality. PMID:26877637

  8. Preliminary Research on the Potential Effects of Gulf Stream Energy Turbines on Rates of Productivity and Nutrient Cycling in Pelagic Sargassum Communities

    NASA Astrophysics Data System (ADS)

    Dubbs, L. L.; Piehler, M.

    2014-12-01

    Sargassum is an important and protected genus of pelagic macroalgae that serves as habitat for numerous bacteria, fungi, invertebrates, fish, and sea turtles. Sargassum and its associated communities are also a significant source of carbon, nitrogen, and phosphorus to the otherwise deficient oligotrophic pelagic waters of the Atlantic Ocean. The densest concentration of pelagic Sargassum, primarily comprised of Sargassum natans and S. fluitans, is found in the North Atlantic Central Gyre of the Sargasso Sea, but large quantities are also found in the waters of the continental shelf of the southeastern United States and especially the western edge of the Florida Current/Gulf Stream, including off the coast of North Carolina. This western edge of the Gulf Stream off the North Carolina coast is also of interest for renewable current energy exploration and development because of the constant flow of the Gulf Stream current in close proximity to land at this location, which presents a potential source of substantial baseload power for the east coast of the United States. Marine hydrokinetic turbines placed in the Gulf Stream will likely be placed at depths of 30 to 50 m below the surface of the water, far removed from buoyant Sargassum that floats at the surface of the water and associated fish assemblages that extend to a depth of 3 m. Nonetheless, Gulf Stream turbines may influence the functional roles of Sargassum and its epibionts because the wakes generated by turbines will change turbulence conditions in the water column, which are in turn likely to affect nutrient cycling and productivity. Our research begins to examine how alterations of the Sargassum environment presented by increased turbulence will affect the productivity, nitrogen fixation, and organic matter fluxes of Sargassum macroalgae and their associated epibiotic communities. We have conducted field and laboratory experiments aimed at quantifying the influence of increased turbulence on the

  9. Understanding the Red Sea nutrient cycle - a first look into nitrogen fixation in the Red Sea

    NASA Astrophysics Data System (ADS)

    Mohamed, Roslinda; Arrieta, Jesus; Alam, Intikhab; Duarte, Carlos

    2016-04-01

    The Red Sea is an elongated and semi-enclosed system bordered by Africa and Saudi Arabia. Positioned in an arid, tropical zone, the system receives high solar irradiance and heat flux, extensive evaporation, low rainfall and therefore high salinity. These harsh environmental conditions has set the Red Sea to be one of the fastest warming and saltiest ecosystem in the world. Although nutrients are known to be at very low concentrations, the ultimately limiting nutrient in the system is still undefined. Therefore, like most other oligotrophic systems, we regard the Red Sea as being nitrogen-limited and we foresee nitrogen fixation as the most probable bottleneck in the Red Sea nitrogen budget. On the basis of metagenomes from pelagic microbial communities along the Red Sea, we looked into the distribution of nitrogenase, an enzyme involved in nitrogen fixation, in this system and provide a first insight into the microbial community that is involved in the process. The implications of this study will not only help improve our understanding of the Red Sea nutrient regime, but may also hint on future ocean responses to rising climates.

  10. Anaerobic digestion technologies for closing the domestic water, carbon and nutrient cycles.

    PubMed

    Hammes, F; Kalogo, Y; Verstraete, W

    2000-01-01

    Sustainable wastewater treatment requires that household wastewater is collected and treated separately from industrial wastewater and rainwater run-offs. This separate treatment is, however, still inadequate, as more than 70% of the nutrients and much of the chemical oxygen demand (COD) and potential pathogens of a domestic sewage system are confined to the few litres of black water (faeces, urine and toilet water). Whilst grey water can easily be filter treated and re-used for secondary household purposes, black water requires more intensive treatment due to its high COD and microbial (pathogens) content. Recently developed vacuum/dry toilets produce a nutrient rich semi-solid waste stream, which, with proper treatment, offers the possibility of nutrient, carbon, water and energy recovery. This study investigates the terrestrial applicability of Life Support System (LSS) concepts as a framework for future domestic waste management. The possibilities of treating black water together with other types of human-generated solid waste (biowastes/mixed wastes) in an anaerobic reactor system at thermophilic conditions, as well as some post treatment alternatives for product recovery and re-use, are considered. Energy can partially be recovered in the form of biogas produced during anaerobic digestion. The system is investigated in the form of theoretical mass balances, together with an assessment of the current feasibility of this technology and other post-treatment alternatives. PMID:11381993

  11. Menstrual cycle phase affects discrimination of infant cuteness.

    PubMed

    Lobmaier, Janek S; Probst, Fabian; Perrett, David I; Heinrichs, Markus

    2015-04-01

    Recent studies have shown that women are more sensitive than men to subtle cuteness differences in infant faces. It has been suggested that raised levels in estradiol and progesterone may be responsible for this advantage. We compared young women's sensitivity to computer-manipulated baby faces varying in cuteness. Thirty-six women were tested once during ovulation and once during the luteal phase of their menstrual cycle. In a two alternative forced-choice experiment, participants chose the baby which they thought was cuter (Task 1), younger (Task 2), or the baby that they would prefer to babysit (Task 3). Saliva samples to assess levels of estradiol, progesterone and testosterone were collected at each test session. During ovulation, women were more likely to choose the cuter baby than during the luteal phase, in all three tasks. These results suggest that cuteness discrimination may be driven by cyclic hormonal shifts. However none of the measured hormones were related to increased cuteness sensitivity. We speculate that other hormones than the ones measured here might be responsible for the increased sensitivity to subtle cuteness differences during ovulation. PMID:25683277

  12. Response of benthic metabolism and nutrient cycling to reductions in wastewater loading to Boston Harbor, USA

    NASA Astrophysics Data System (ADS)

    Tucker, Jane; Giblin, Anne E.; Hopkinson, Charles S.; Kelsey, Samuel W.; Howes, Brian L.

    2014-12-01

    We describe the long-term response of benthic metabolism in depositional sediments of Boston Harbor, MA, to large reductions in organic matter and nutrient loading. Although Boston Harbor received very high loadings of nutrients and solids it differs from many eutrophic estuaries in that severe hypoxia was prevented by strong tidal flushing. Our study was conducted for 9 years during which a series of improvements to sewage treatment were implemented, followed by 10 years after the culminating step in the clean-up, which was to divert all wastewater effluent offshore. Counter to expectations, sediment oxygen demand and nutrient effluxes initially increased at some stations, reaching some of the highest rates recorded in the literature, and were spatially and temporally quite variable. Early increases were attributed to macrofaunal effects, as sediments at some sites were rapidly colonized by tube-building amphipods, Ampelisca spp., which dominated a dense macrofaunal mat community. As reductions in loading progressed, however, mean rates in oxygen uptake and release of ammonium, nitrate, and phosphate all decreased. At the point of outfall diversion, rates and variability had already decreased substantially. By the end of the study, average oxygen uptake had decreased from 74 to 41 mmol m-2 d-1 and spatial and temporal variability had decreased. Similarly, nutrient fluxes were less than half the rates measured at the start of the project and also less variable. Other evidence of improved conditions included a decrease in the carbon content of sediments at most stations and higher Eh values at all stations, illustrating less reducing conditions. Denitrification also showed an overall decrease from the beginning to the end of the 19-year study, but was highest during the intermediate phases of the cleanup, reaching 9 mmol N m-2 d-1. At the end of the study denitrification averaged for all sites was 2.2 mmol N m-2 d-1, but when compared to current loadings, had become

  13. EFFECTS OF LAND USE CHANGES ON THE FUNCTIONING OF SOILS AND WATERSHEDS OF CENTRAL BRAZIL SAVANNAS: PHASE 2, IMPACTS ON NUTRIENT AND CARBON CYCLES AND TRACE GAS EXCHANGE

    EPA Science Inventory

    This research is funded through an interagency agreement with NASA. The research in this project is contributing to assessments of the effects of land use in central Brazil on: 1) the stocks and cycling rates of carbon and nutrient cycling; 2) the function and structure of soil ...

  14. Hydroperiod affects nutrient accumulation in tree islands of the Florida Everglades: a stable isotope study

    NASA Astrophysics Data System (ADS)

    Wang, X.; Sternberg, L. O.; Engel, V.; Ross, M. S.

    2009-12-01

    Tree islands are important and unique components of wetland ecosystems. In many cases they are the end product of self organizing vegetation systems, which are often characterized by uneven soil nutrient distributions. Tree islands in the Everglades are phosphorus rich in contrast to the phosphorus-poor surrounding vegetation matrix. Everglades tree islands occur in the ridge-slough habitat of Shark River Slough, which is characterized by deep organic soils, multi-year hydroperiods, and maximum water depths of ~ 1 m. Tree islands are also found in the drier marl prairie habitat of the Everglades, characterized by marl soils, shallow water (< 0.5 m) and short (< 180 day) hydroperiods. In this study we used stable isotopes to investigate dry season water limitation and soil and foliar nutrient status in upland hammock communities of 18 different tree islands located in the Shark River Slough and adjacent prairie landscapes. We observed that prairie tree islands suffer greater drought stress during the dry season than slough tree islands by examining shifts in foliar δ13C values. We also found that slough tree islands have higher soil total phosphorus concentration and lower foliar N/P ratio than prairie tree islands. Foliar δ15N values, which often increase with greater P availability, was also found to be higher in slough tree islands than in prairie tree islands. Both the elemental N and P and foliar δ15N results indicate that the upland hammock plant communities in slough tree islands have higher amount of P available than those in prairie tree islands. Our findings are consistent with the transpiration driven nutrient harvesting chemohydrodynamic model. Tree islands without drought stress hypothetically transpire more and harvest more P than tree islands that have drought stress during the dry season. These findings suggest that hydroperiod is important to nutrient accumulation of tree island habitats and to the self-organization of the Everglades landscape.

  15. Effects of microbial transformation on dissolved organic matter in the east Taiwan Strait and implications for carbon and nutrient cycling

    NASA Astrophysics Data System (ADS)

    Yang, Liyang; Chen, Chen-Tung Arthur; Lui, Hon-Kit; Zhuang, Wan-E.; Wang, Bing-Jye

    2016-10-01

    Dissolved inorganic and organic carbons (DIC and DOC) provide two of the largest pools of carbon in the ocean. However, limited information is available concerning the relationship between DIC and different constituents of dissolved organic matter (DOM), such as fluorescent compounds. This study investigates the dynamics of DOM and their implications for carbon and nutrient cycling in the east Taiwan Strait, using DOC, absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). The study area was dominated by the waters from the South China Sea during the sampling period in summer 2013. The dynamics of DOM were influenced strongly by microbial activities, as indicated by the close correlations (the absolute value of r: 0.75-0.97, p < 0.001) between apparent oxygen utilization (AOU) and DOM parameters, including DOC, the absorption coefficient at 280 nm, the fluorescence intensity of protein-like component C3, and the humification index HIX. The contribution of DOC degradation to the net increase in DIC was approximately 15% and 21% in the north and the south of the east Taiwan Strait, respectively. The DIC was correlated negatively with protein-like fluorescence, revealing the production of DIC by the microbial degradation of labile components. The DIC was correlated positively with humic-like fluorescence and HIX, suggesting that the storage of carbon by produced refractory humic substances could not compensate for the release of DIC in the deeper waters. The correlations of nutrients with DOM parameters were similar to those of DIC, further indicating the profound impacts of the dynamics of labile DOM on nutrient cycling.

  16. Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management.

    PubMed

    Ishii, Stephanie K L; Boyer, Treavor H

    2015-08-01

    Alternative approaches to wastewater management including urine source separation have the potential to simultaneously improve multiple aspects of wastewater treatment, including reduced use of potable water for waste conveyance and improved contaminant removal, especially nutrients. In order to pursue such radical changes, system-level evaluations of urine source separation in community contexts are required. The focus of this life cycle assessment (LCA) is managing nutrients from urine produced in a residential setting with urine source separation and struvite precipitation, as compared with a centralized wastewater treatment approach. The life cycle impacts evaluated in this study pertain to construction of the urine source separation system and operation of drinking water treatment, decentralized urine treatment, and centralized wastewater treatment. System boundaries include fertilizer offsets resulting from the production of urine based struvite fertilizer. As calculated by the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI), urine source separation with MgO addition for subsequent struvite precipitation with high P recovery (Scenario B) has the smallest environmental cost relative to existing centralized wastewater treatment (Scenario A) and urine source separation with MgO and Na3PO4 addition for subsequent struvite precipitation with concurrent high P and N recovery (Scenario C). Preliminary economic evaluations show that the three urine management scenarios are relatively equal on a monetary basis (<13% difference). The impacts of each urine management scenario are most sensitive to the assumed urine composition, the selected urine storage time, and the assumed electricity required to treat influent urine and toilet water used to convey urine at the centralized wastewater treatment plant. The importance of full nutrient recovery from urine in combination with the substantial chemical inputs required for N recovery

  17. Breaking the cycle: extending the persistent pain cycle diagram using an affective pictorial metaphor.

    PubMed

    Stones, Catherine; Cole, Frances

    2014-01-01

    The persistent pain cycle diagram is a common feature of pain management literature. but how is it designed and is it fulfilling its potential in terms of providing information to motivate behavioral change? This article examines on-line persistent pain diagrams and critically discusses their purpose and design approach. By using broad information design theories by Karabeg and particular approaches to dialogic visual communications in business, this article argues the need for motivational as well as cognitive diagrams. It also outlines the design of a new persistent pain cycle that is currently being used with chronic pain patients in NHS Bradford, UK. This new cycle adopts and then visually extends an established verbal metaphor within acceptance and commitment therapy (ACT) in an attempt to increase the motivational aspects of the vicious circle diagram format. PMID:23356651

  18. Red waters of Myrionecta rubra are biogeochemical hotspots for the Columbia River estuary with impacts on primary/secondary productions and nutrient cycles

    SciTech Connect

    Herfort, Lydie; Peterson, Tawnya D.; Prahl, Fredrick G.; McCue, Lee Ann; Needoba, Joe A.; Crump, Byron C.; Roegner, G. Curtis; Campbell, Victoria; Zuber, Peter A.

    2012-02-29

    The localized impact of blooms of the mixotrophic ciliate Myrionecta rubra in the Columbia River estuary during 2007-2010 was evaluated with biogeochemical, light microscopy, physiological and molecular data. M. rubra affected surrounding estuarine nutrient cycles, as indicated by high and low concentrations of organic nutrients and inorganic nitrogen, respectively, associated with red waters. M. rubra blooms also altered the energy transfer pattern in patches of the estuarine water that contain the ciliate by creating areas characterized by high primary production and elevated levels of fresh autochthonous particulate organic matter, therefore shifting the trophic status in emergent red water areas of the estuary from net heterotrophy towards autotrophy. The pelagic estuarine bacterial community structure was unaffected by M. rubra abundance, but red waters of the ciliate do offer a possible link between autotrophic and heterotrophic processes since they were associated with elevated dissolved organic matter and enhanced microbial secondary production. Taken together these findings suggest that M. rubra red waters are biogeochemical hotspots of the Columbia River estuary.

  19. Land Use Change Impacts on Water, Salt, and Nutrient Cycles: Case Study Semiarid Southern High Plains, Texas, USA (Invited)

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Reedy, R. C.; Gates, J. B.

    2009-12-01

    Land use change can have large scale impacts on the salt and nutrient cycles by changing partitioning of water at the land surface, applying irrigation and fertilizers to the system, and transporting salts and nutrients to underlying aquifers. The objective of this study was to evaluate impacts of land-use change on salt and nutrient cycles by quantifying water fluxes and salt and nutrient inventories under natural ecosystems (3 boreholes) and rain-fed agroecosystem (19 boreholes) and irrigated agroecosystem (13 boreholes) in the Southern High Plains, Texas. Salt and nutrient inventories were estimated by measuring water-extractable anion concentrations in sampled boreholes and water fluxes were estimated using the chloride mass balance approach. Large salt inventories accumulated under natural ecosystems from bulk precipitation since the Pleistocene (median chloride: 2,200 kg/ha/m; perchlorate: 46 g/ha/m; sulfate: 5,600 kg/ha/m). Conversion of natural ecosystems to rainfed agroecosystems flushed these pre-existing salt reservoirs towards and into the underlying Ogallala aquifer as a result of increased recharge rates (median of 19 profiles: 24 mm/yr). The flushed zone of rain-fed profiles are characterized by extremely low inventories of salts (chloride: 15 kg/ha/m; perchlorate: 6.3 g/ha/m; sulfate, 750 kg/ha/m). Cultivation also resulted in mineralization and nitrification of soil organic nitrogen, creating nitrate reservoirs at the leading edge of the front that represent 74% of profile nitrate-N and that are being mobilized into the aquifer. Irrigation has the greatest impact on nonpoint source contaminants by adding salts and nutrients to the system. Chloride inventories under irrigated agroecosystems (median 1,600 kg/ha/m) are similar to those under natural ecosystems (median 2,200 kg/ha/m) but accumulated over decades rather than millennia typical of natural ecosystems. Peak Cl concentrations in profiles represent evapoconcentration factors of 12-42 relative

  20. Land use and nutrient inputs affect priming in Andosols of Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Kuzyakov, Yakov

    2015-04-01

    Organic C and nutrients additions in soil can accelerate mineralisation of soil organic matter i.e. priming effects. However, only very few studies have been conducted to investigate the priming effects phenomenon in tropical Andosols. Nutrients (N, P, N+P) and 14C labelled glucose were added to Andosols from six natural and intensively used ecosystems at Mt. Kilimanjaro i.e. (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) Chagga homegardens. Carbon-dioxide emissions were monitored over a 60 days incubation period. Mineralisation of glucose to 14CO2 was highest in coffee plantation and lowest in Chagga homegarden soils. Maximal and minimal mineralisation rates immediately after glucose additions were observed in lower montane forest with N+P fertilisation (9.1% ± 0.83 d -1) and in savannah with N fertilisation (0.9% ± 0.17 d -1), respectively. Glucose and nutrient additions accelerated native soil organic matter mineralisation i.e. positive priming. Chagga homegarden soils had the lowest 14CO2 emissions and incorporated the highest percent of glucose into microbial biomass. 50-60% of the 14C input was retained in soil. We attribute this mainly to the high surface area of non-crystalline constituents i.e. allophanes, present in Andosols and having very high sorption capacity for organic C. The allophanic nature of Andosols of Mt. Kilimanjaro especially under traditional Chagga homegarden agroforestry system shows great potential for providing essential environmental services, notably C sequestration. Key words: Priming Effects, Andosols, Land Use Changes, Mt. Kilimanjaro, Allophanes, Tropical Agroforestry

  1. Climate driven changes in hydrology, nutrient cycling, and food web dynamics in surface waters of the Arctic Coastal Plain, Alaska

    NASA Astrophysics Data System (ADS)

    Koch, J. C.; Wipfli, M.; Schmutz, J.; Gurney, K.

    2011-12-01

    Arctic ecosystems are changing rapidly as a result of a warming climate. While many areas of the arctic are expected to dry as a result of warming, the Arctic Coastal Plain (ACP) of Alaska, which extends from the Brooks Range north to the Beaufort Sea will likely become wetter, because subsurface hydrologic fluxes are constrained by thick, continuous permafrost. This landscape is characterized by large, oriented lakes and many smaller ponds that form in the low centers and troughs/edges of frost polygons. This region provides important breeding habitat for many migratory birds including loons, arctic terns, eiders, shorebirds, and white-fronted geese, among others. Increased hydrologic fluxes may provide a bottom-up control on the success of these species by altering the availability of food resources including invertebrates and fish. This work aimed to 1) characterize surface water fluxes and nutrient availability in the small streams and lake types of two study regions in the ACP, 2) predict how increased hydrological fluxes will affect the lakes, streams, and water chemistry, and 3) use nutrient additions to simulate likely changes in lake chemistry and invertebrate availability. Initial observations suggest that increasing wetland areas and availability of nutrients will result in increased invertebrate abundance, while the potential for drainage and terrestrialization of larger lakes may reduce fish abundance and overwintering habitat. These changes will likely have positive implications for insectivores and negative implications for piscivorous waterfowl.

  2. Dynamic water quality modelling and uncertainty analysis of phytoplankton and nutrient cycles for the upper South Saskatchewan River.

    PubMed

    Akomeah, Eric; Chun, Kwok Pan; Lindenschmidt, Karl-Erich

    2015-11-01

    The surface water quality of the upper South Saskatchewan River was modelled using Water Quality Analysis Simulation Program (WASP) 7.52. Model calibration and validation were based on samples taken from four long-term water quality stations during the period 2007-2009. Parametric sensitivities in winter and summer were examined using root mean square error (RMSE) and relative entropy. The calibration and validation results show good agreement between model prediction and observed data. The two sensitivity methods confirmed pronounced parametric sensitivity to model state variables in summer compared to winter. Of the 24 parameters examined, dissolved oxygen (DO) and ammonia (NH3-N) are the most influenced variables in summer. Instream kinetic processes including nitrification, nutrient uptake by algae and algae respiration induce a higher sensitivity on DO in summer than in winter. Moreover, in summer, soluble reactive phosphorus (SRP) and chlorophyll-a (Chla) variables are more sensitive to algal processes (nutrient uptake and algae death). In winter however, there exists some degree of sensitivity of algal processes (algae respiration and nutrient uptake) to DO and NH3-N. Results of this study provide information on the state of the river water quality which impacts Lake Diefenbaker and the need for additional continuous monitoring in the river. The results of the sensitivity analysis also provide guidance on most sensitive parameters and kinetic processes that affect eutrophication for preliminary surface water quality modelling studies in cold regions. PMID:26199003

  3. Coupling hydrological and impact assessment models to explore nutrient cycling in freshwater systems

    NASA Astrophysics Data System (ADS)

    Bouwman, Lex; van Beek, Rens; Beusen, Arthur; Mogollón, José; Middelburg, Jack

    2016-04-01

    The IMAGE-Global Nutrient Model (GNM) is a new globally distributed, spatially explicit model in which the hydrology model PCR-GLOBWB is coupled to the integrated assessment model IMAGE to simulate nitrogen (N) and phosphorus (P) delivery, and then with a spiraling ecological approach to simulating instream biogeochemistry. Routing the water with dissolved and suspended N and P from upstream grid cells occurs simultaneous with N and P delivery to water bodies within grid cells from diffuse and point sources (wastewater). IMAGE-GNM describes the following diffuse sources associated with the water flow: surface runoff, shallow and deep groundwater, riparian zones. Depending on the landscape features, all these flows may be present within one grid cell. Furthermore, diffuse N and P inputs occur through allochtonous organic matter inputs via litterfall in (temporarily) inundated river floodplains, and atmospheric deposition. In the spiraling concept, the residence time of the water and nutrient uptake velocity determine N and P retention in water bodies. Validation of model results with observations yields acceptable agreement given the global scale of the uncalibrated model. Sensitivity analysis shows shifts in the importance of the different sources, with decreasing importance of natural sources and increasing influence of wastewater and agriculture. IMAGE-GNM can be employed to study the interaction between society and the environment over prolonged time periods. Here we show results for the full 20th century.

  4. Combined use of stable isotopes and hydrologic modeling to better understand nutrient sources and cycling in highly altered systems (Invited)

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Guerin, M.; Stringfellow, W. T.; Silva, S. R.; Harter, T.; Parker, A.

    2013-12-01

    The Sacramento and San Joaquin Rivers provide the majority of freshwater for the San Francisco Bay Delta. Both rivers are important sources of drinking and irrigation water for California, and play critical roles in the health of California fisheries. Understanding the factors controlling water quality and primary productivity in these rivers and the Delta is essential for making sound economic and environmental water management decisions. However, these highly altered surface water systems present many challenges for water quality monitoring studies due to factors such as multiple potential nutrient and contaminant inputs, dynamic source water inputs, and changing flow regimes controlled by both natural and engineered conditions. The watersheds for both rivers contain areas of intensive agriculture along with many other land uses, and the Sacramento River receives significant amounts of treated wastewater from the large population around the City of Sacramento. We have used a multi-isotope approach combined with mass balance and hydrodynamic modeling in order to better understand the dominant nutrient sources for each of these rivers, and to track nutrient sources and cycling within the complex Delta region around the confluence of the rivers. High nitrate concentrations within the San Joaquin River fuel summer algal blooms, contributing to low dissolved oxygen conditions. High δ15N-NO3 values combined with the high nitrate concentrations suggest that animal manure is a significant source of nitrate to the San Joaquin River. In contrast, the Sacramento River has lower nitrate concentrations but elevated ammonium concentrations from wastewater discharge. Downstream nitrification of the ammonium can be clearly traced using δ15N-NH4. Flow conditions for these rivers and the Delta have strong seasonal and inter-annual variations, resulting in significant changes in nutrient delivery and cycling. Isotopic measurements and estimates of source water contributions

  5. Groundwater Availability Alters Soil-plant Nutrient Cycling in a Stand of Invasive, N-fixing Phreatophytes

    NASA Astrophysics Data System (ADS)

    Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.

    2013-12-01

    N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact

  6. Ocean nutrients

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.; Hurd, Catriona L.

    Nutrients provide the chemical life-support system for phytoplankton in the ocean. Together with the carbon fixed during photosynthesis, nutrients provide the other elements, such as N and P, needed to synthesize macromolecules to build cellular constituents such as ribosomes. The makeup of these various biochemicals, such as proteins, pigments, and nucleic acids, together determine the elemental stoichiometry of an individual phytoplankton cell. The stoichiometry of different phytoplankton species or groups will vary depending on the proportions of distinct cellular machinery, such as for growth or resource acquisition, they require for their life strategies. The uptake of nutrients by phytoplankton helps to set the primary productivity, and drives the biological pump, of the global ocean. In the case of nitrogen, the supply of nutrients is categorized as either new or regenerated. The supply of new nitrogen, such as nitrate upwelled from the ocean' interior or biological nitrogen fixation, is equal to the vertical export of particular organic matter from the upper ocean on a timescale of years. Nutrients such as silica can also play a structural role in some phytoplankton groups, such as diatoms, where they are used to synthesize a siliceous frustule that offers some mechanical protection from grazers. In this chapter, we also explore nutrient uptake kinetics, patterns in nutrient distributions in space and time, the biogeochemical cycle of nitrogen, the atmospheric supply of nutrients, departures from the Redfield ratio, and whether nutrient distributions and cycling will be altered in the future

  7. Testing an agent-based model of bacterial cell motility: How nutrient concentration affects speed distribution

    NASA Astrophysics Data System (ADS)

    Garcia, V.; Birbaumer, M.; Schweitzer, F.

    2011-08-01

    We revisit a recently proposed agent-based model of active biological motion and compare its predictions with own experimental findings for the speed distribution of bacterial cells, Salmonella typhimurium. Agents move according to a stochastic dynamics and use energy stored in an internal depot for metabolism and active motion. We discuss different assumptions of how the conversion from internal to kinetic energy d( v) may depend on the actual speed, to conclude that d 2 v ξ with either ξ = 2 or 1 < ξ < 2 are promising hypotheses. To test these, we compare the model's prediction with the speed distribution of bacteria which were obtained in media of different nutrient concentration and at different times. We find that both hypotheses are in line with the experimental observations, with ξ between 1.67 and 2.0. Regarding the influence of a higher nutrient concentration, we conclude that the take-up of energy by bacterial cells is indeed increased. But this energy is not used to increase the speed, with 40 μm/s as the most probable value of the speed distribution, but is rather spend on metabolism and growth.

  8. Biochar amendment affects leaching potential of copper and nutrient release behavior in contaminated sandy soils.

    PubMed

    Bakshi, Santanu; He, Zhenli L; Harris, Willie G

    2014-11-01

    Copper (Cu) contamination to soil and water is a worldwide concern. Biochar has been suggested to remediate degraded soils. In this study, column leaching and chemical characterization were conducted to assess effects of biochar amendment on Cu immobilization and subsequent nutrient release in Cu-contaminated Alfisol and Spodosol. The results indicate that biochar is effective in binding Cu (30 and 41%, respectively, for Alfisol with and without spiked Cu; 36 and 43% for Spodosol) and reducing Cu leaching loss (from ∼47 to 10% for the Cu-spiked Alfisol and from 48 to 9% for the Cu-spiked Spodosol). Copper was likely retained on biochar surfaces through complexation, as suggested by Fourier-transform infrared spectra. Biochar amendment converts a portion of Cu from available pool to more stable forms, thus resulting in decreased activities of free Cu and increased activity of organic Cu complexes in leachate. Reduction of >0.45-μm solids and nanoparticles concentrations in leachate was also observed. In addition, biochar application rate was correlated negatively with P, Ca, Mg, Zn, Mn, and NH-N concentration ( < 0.05) but positively with K and Na concentration ( < 0.05) in leachates. These results documented the potential of biochar as an effective amendment for Cu immobilization and mitigation of leaching risk for some nutrients. PMID:25602206

  9. NUTRIENT TRANSPORT IN HUMAN ANNULUS FIBROSUS IS AFFECTED BY COMPRESSIVE STRAIN AND ANISOTROPY

    PubMed Central

    Jackson, Alicia R.; Yuan, Tai-Yi; Huang, Chun-Yuh; Brown, Mark D.; Gu, Wei Yong

    2012-01-01

    The avascular intervertebral disc (IVD) receives nutrition via transport from surrounding vasculature; poor nutrition is believed to be a main cause of disc degeneration. In this study, we investigated the effects of mechanical deformation and anisotropy on the transport of two important nutrients – oxygen and glucose – in human annulus fibrosus (AF). The diffusivities of oxygen and glucose were measured under three levels of uniaxial confined compression – 0%, 10%, and 20% – and in three directions – axial, circumferential, and radial. The glucose partition coefficient was also measured at three compression levels. Results for glucose and oxygen diffusivity in AF ranged from 4.46×10−7 to 9.77×10−6 cm2/s and were comparable to previous studies; the glucose partition coefficient ranged from 0.71 to 0.82 and was also similar to previous results. Transport properties were found to decrease with increasing deformation, likely caused by fluid exudation during tissue compression and reduction in pore size. Furthermore, diffusivity in the radial direction was lower than in the axial or circumferential directions, indicating that nutrient transport in human AF is anisotropic. This behavior is likely a consequence of the layered structure and unique collagen architecture of AF tissue. These findings are important for better understanding nutritional supply in IVD and related disc degeneration. PMID:22669503

  10. Sea level impact on nutrient cycling in coastal upwelling areas during deglaciation: Evidence from nitrogen isotopes

    NASA Astrophysics Data System (ADS)

    Bertrand, Philippe; Pedersen, Thomas F.; Martinez, Philippe; Calvert, Stephen; Shimmield, Graham

    2000-03-01

    A common feature in δ15N profiles downcore in continental margin sediments is that the heaviest δ15N values are frequently observed during the deglaciation (i.e., between 12,000 calendar years BP and the climatic optimum at 6000 yrs BP), not at the warmest stage. Using a conceptual model across the northwestern Africa margin, a region of pronounced modern upwelling, as well as data from a core in the area, we show that this feature can be explained as a consequence of postglacial sea level rise. The model is based on a simplified twodimensional physical circulation scheme orthogonal to the margin and uses the topographic profile at the latitude of the core as well as a simplified biological model for nitrate utilization and nitrogen isotope fractionation. Shore-parallel influences are ignored. The most recently published age model of sea level rise for the last deglaciation is used [Bard et al., 1996]. The trangression causes a progressive increase in the area of shallow regions where large amounts of nutrients are recycled relative to deep regions, to which a significant portion of the nutrients is exported. This causes first an increase and then a decrease in the δ15N of the organic matter accumulating at a fixed point on the upper slope. Although the deglacial δ15N maximum is more pronounced in areas where there is not a marked oxygen minimum layer [Holmes et al., 1997; this paper], it does exist in areas where an oxygen minimum layer is present in the water column [Altabet et al., 1995; Ganeshram et al., 1995]. In such areas, the major δ15N contrast between glacial and interglacial episodes is explained by higher denitrification during interglacial stages, but it is probable that transgressing sea level contributes to this effect. The model has implications for the changes of vertical oceanic nutrient fractionation [Boyle, 1988] and the respiratory dissolution of deep carbonates [Archer and Maier-Reimer, 1994] and hence could have important potential

  11. The Seasonal Cycles of Temperature, Salinity, Nutrients and Suspended Sediment in the Southern North Sea in 1988 and 1989

    NASA Astrophysics Data System (ADS)

    Prandle, D.; Hydes, D. J.; Jarvis, J.; McManus, J.

    1997-11-01

    Simple statistical analyses are used to summarize the large data set available from the 15 consecutive monthly surveys of the U.K. North Sea Project (NSP). The seasonal cycles of temperature, salinity, phosphate, nitrate, nitrite, silicate, ammonium and suspended particulate matter (SPM) are approximated by a mean value plus a year-long cosine wave. The mean concentrations, with standard deviationcgiven in parentheses, for each of these water quality parameters covering the whole area throughout the 15-month period are: salinity 34·26 (±0·74), ammonia 1·3 (±1·0) μM, nitrate 4·9 (±6·0) μM, nitrite 0·4 (±0·5) μM, phosphate 0·5 (0·3) μM, silicate 2·5 (±2·5) μM and suspended sediment 2·6 (±3·5) mg l-1. This approximate seasonal cycle accounts for most of the variance in temperature and nutrients. The spatially-averaged seasonal amplitudes for both nitrate and silicate are approximately equal to their mean values-this is consistent with these being limiting nutrients. Salinity shows little seasonality. Spatial distributions are shown of the mean values, the seasonal amplitudes and the percentage variances accounted for by a combination of these mean values and seasonal amplitudes. Correlations between the determinands are calculated; these confirm the similarity in the spatial distributions for the nutrients, especially between nitrate, phosphate and silicate. Maximum concentrations are confined to the coastal regions, except for ammonium and nitrite for which they occur offshore. Spatial distributions of the anomalous (non-seasonal) components can be interpreted to indicate the effect of specific riverine and oceanic exchanges. Correlations between nitrate, nitrite and ammonium correspond to the interconversion of these compounds. The oceanic/riverine inflow rates of phosphate, nitrate and silicate are shown to be insufficient to support their seasonal variability, suggesting that internal recycling is required to maintain the seasonal cycle.

  12. Response of Soil Biogeochemistry to Freeze-thaw Cycles: Impacts on Greenhouse Gas Emission and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2014-12-01

    Freeze-thaw is an abiotic stress applied to soils and is a natural process at medium to high latitudes. Freezing and thawing processes influence not only the physical properties of soil, but also the metabolic activity of soil microorganisms. Fungi and bacteria play a crucial role in soil organic matter degradation and the production of greenhouse gases (GHG) such as CO2, CH4 and N2O. Production and consumption of these atmospheric trace gases are the result of biological processes such as photosynthesis, aerobic respiration (CO2), methanogenesis, methanotrophy (CH4), nitrification and denitrification (N2O). To enhance our understanding of the effects of freeze-thaw cycles on soil biogeochemical transformations and fluxes, a highly instrumented soil column experiment was designed to realistically simulate freeze-thaw dynamics under controlled conditions. Pore waters collected periodically from different depths of the column and solid-phase analyses on core material obtained at the initial and end of the experiment highlighted striking geochemical cycling. CO2, CH4 and N2O production at different depths within the column were quantified from dissolved gas concentrations in pore water. Subsequent emissions from the soil surface were determined by direct measurement in the head space. Pulsed CO2 emission to the headspace was observed at the onset of thawing, however, the magnitude of the pulse decreased with each subsequent freeze-thaw cycle indicating depletion of a "freeze-thaw accessible" carbon pool. Pulsed CO2 emission was due to a combination of physical release of gases dissolved in porewater and entrapped below the frozen zone and changing microbial respiration in response to electron acceptor variability (O2, NO3-, SO42-). In this presentation, we focus on soil-specific physical, chemical, microbial factors (e.g. redox conditions, respiration, fermentation) and the mechanisms that drive GHG emission and nutrient cycling in soils under freeze-thaw cycles.

  13. Nutrient Cycling in the Bank Hyporheic Zone of the Regulated Lower Colorado River, Austin, Texas

    NASA Astrophysics Data System (ADS)

    Briody, A.; Cardenas, M.

    2013-12-01

    Periodic releases from an upstream dam cause rapid stage fluctuations in the Colorado River near Austin, Texas. These daily pulses modulate fluid exchange and residence times in the hyporheic region, where biogeochemical reactions have been found to be more pronounced. We have installed two transects of wells perpendicular to the river in order to further examine the reactions occurring in this zone of surface-water and groundwater exchange. One well transect records physical water level fluctuations and allows us to map hydraulic head gradients and fluid movement. The second transect allows for water sample collection at three discrete depths. Samples were collected on a regular (approximately hourly) basis from 12 wells for at least 24-hours and were analyzed for nutrients, carbon, major ions, and stable isotopes. The results will provide a detailed picture of biogeochemical processes in hyporheic zones driven by upstream dam operations.

  14. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  15. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the worl&dacute;s land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation

  16. The Northeast Monsoon's Impact on Mixing, Phytoplankton Biomass and Nutrient Cycling in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Wiggert, J. D.; Jones, B. H.; Dickey, T. D.; Brink, K. H.; Weller, R. A.; Marra, J.; Codispoti, L. A.

    2000-01-01

    In the northern Arabian Sea, atmospheric conditions during the Northeast (winter) Monsoon lead to deep convective mixing. Due to the proximity of the permanent pyncnocline to the sea surface, this mixing does not penetrate below 125 m. However, a strong nitracline is also present and the deep convection results in significant nitrate flux into the surface waters. This leads to nitrate concentrations over the upper 100 m that exceed 4 micrometers toward the end of the Monsoon. During the 1994/1995 US JGOFS/Arabian Sea expedition, the mean areal gross primary production over two successive Northeast Monsoons was determined to be 1.35gC/sq m/d. Thus, despite the deep penetrative convection, high rates of primary productivity were maintained. An interdisciplinary model was developed to elucidate the biogeochemical processes involved in supporting the elevated productivity. This model consists of a 1-D mixed-layer model coupled to a set of equations that tracked phytoplankton growth and the concentration of the two major nutrients (nitrate and ammonium). Zooplankton grazing was parameterized by rate constant determined by shipboard experiments. Model boundary conditions consist of meteorological time-series measured from the surface buoy that was part of the ONR Arabian Sea Experiment's central mooring. Our numerical experiments show that elevated surface evaporation, and the associated salinization of the mixed layer, strongly contributes to the frequency and penetration depth of the observed convective mixing. Cooler surface temperatures, increased nitrate entrainment, reduced water column stratification, and lower near-surface chlorophyll a concentrations all result from this enhanced mixing. The model also captured a dependence on regenerated nitrogen observed in nutrient uptake experiments performed during the Northeast Monsoon. Our numerical experiments also indicate that variability in mean pycnocline depth causes up to a 25% reduction in areal chlorophyll a

  17. Nutrient distributions during an annual cycle across a warmcore eddy from the E. Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Krom, M. D.; Brenner, S.; Kress, N.; Neori, A.; Gordon, L. I.

    1993-04-01

    A detailed description of the physical, chemical and biological structure of the Cyprus eddy is given from cruises carried out in February, May, September and November 1989. The chemical data support the suggestion ( BRENNERet al., Dynamics of Atmospheres and Oceans, 15, 457-477, 1991) that this eddy forms essentially in situ by the injection of 250-300 m of Levantine Intermediate Water into the upper layers of the water column. The nitrate vs temperature profile is characteristic of this longitude and not of one transported rapidly from farther west. The silicate vs depth profile at the boundary can be superimposed on that from the core if its is displaced downward by 250 m. The depth of the nitrate maximum in the core also is displaced downward by 250-300 m relative to the boundary. There was no evidence of a different origin of the core water based on nutrient profiles on Sigma-T surfaces. These data suggest that the Cyprus eddy is similar in many respects to a mid-ocean eddy, not a ring. There was enhanced productivity in the core of the eddy in winter. This bloom occurred simultaneously with deep (> 350 m) mixing of the water column, and possibly in part as the result of algal growth at unusually low light levels. There was no evidence of enhanced productivity at the boundary of the eddy, suggesting that the upwelling of nutrients was weak and that the enhanced productivity observed in the boundary of rings is more related to the strong temperature front or entrainment of shelf waters. It is cautioned that several important physical and biological features of this eddy would not have been seen using satellite imagery.

  18. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo.

    PubMed

    Paoli, Gary D; Curran, Lisa M; Slik, J W F

    2008-03-01

    Studies on the relationship between soil fertility and aboveground biomass in lowland tropical forests have yielded conflicting results, reporting positive, negative and no effect of soil nutrients on aboveground biomass. Here, we quantify the impact of soil variation on the stand structure of mature Bornean forest throughout a lowland watershed (8-196 m a.s.l.) with uniform climate and heterogeneous soils. Categorical and bivariate methods were used to quantify the effects of (1) parent material differing in nutrient content (alluvium > sedimentary > granite) and (2) 27 soil parameters on tree density, size distribution, basal area and aboveground biomass. Trees > or =10 cm (diameter at breast height, dbh) were enumerated in 30 (0.16 ha) plots (sample area = 4.8 ha). Six soil samples (0-20 cm) per plot were analyzed for physiochemical properties. Aboveground biomass was estimated using allometric equations. Across all plots, stem density averaged 521 +/- 13 stems ha(-1), basal area 39.6 +/- 1.4 m(2) ha(-1) and aboveground biomass 518 +/- 28 Mg ha(-1) (mean +/- SE). Adjusted forest-wide aboveground biomass to account for apparent overestimation of large tree density (based on 69 0.3-ha transects; sample area = 20.7 ha) was 430 +/- 25 Mg ha(-1). Stand structure did not vary significantly among substrates, but it did show a clear trend toward larger stature on nutrient-rich alluvium, with a higher density and larger maximum size of emergent trees. Across all plots, surface soil phosphorus (P), potassium, magnesium and percentage sand content were significantly related to stem density and/or aboveground biomass (R (Pearson) = 0.368-0.416). In multiple linear regression, extractable P and percentage sand combined explained 31% of the aboveground biomass variance. Regression analyses on size classes showed that the abundance of emergent trees >120 cm dbh was positively related to soil P and exchangeable bases, whereas trees 60-90 cm dbh were negatively related to these

  19. Impact of repeated dry-wet cycles on soil greenhouse gas emissions, extracellular enzyme activity and nutrient cycling in a temperate forest

    NASA Astrophysics Data System (ADS)

    Leitner, Sonja; Zimmermann, Michael; Bockholt, Jan; Schartner, Markus; Brugner, Paul; Holtermann, Christian; Zechmeister-Boltenstern, Sophie

    2014-05-01

    Climate change research predicts that both frequency and intensity of weather extremes such as long drought periods and heavy rainfall events will increase in mid Europe over the next decades. Soil moisture is one of the major factors controlling microbial soil processes, and it has been widely agreed that feedback effects between altered precipitation and changed soil fluxes of the greenhouse gases CO2, CH4 and N2O could intensify climate change. In a field experiment in an Austrian beech forest, we established a precipitation manipulation experiment, which will be conducted for 3 years. We use roofs to exclude rainfall from reaching the forest soil and simulate drought periods, and a sprinkler system to simulate heavy rainfall events. We applied repeated dry-wet cycles in two intensities: one treatment received 6 cycles of 1 month drought followed by 75mm irrigation within 2 hours, and a parallel treatment received 3 cycles of 2 months drought followed by 150mm irrigation within 3 hours. We took soil samples 1 day before, 1 day after and 1 week after rewetting events and analyzed them for soil nutrients and extracellular enzyme activities. Soil fluxes of CO2, N2O and CH4 were constantly monitored with an automated flux chamber system, and environmental parameters were recorded via dataloggers. In addition, we determined fluxes and nutrient concentrations of bulk precipitation, throughfall, stemflow, litter percolate and soil water. Next we plan to analyze soil microbial community composition via PLFAs to investigate microbial stress resistance and resilience, and we will use ultrasonication to measure soil aggregate stability and protection of soil organic matter in stressed and control plots. The results of the first year show that experimental rainfall manipulation has influenced soil extracellular enzymes. Potential phenoloxidase activity was significantly reduced in stressed treatments compared to control plots. All measured hydrolytic enzymes (cellulase

  20. Long-term changes of the annual cycles of meteorological, hydrographic, nutrient and phytoplankton time series at Helgoland and at LV ELBE 1 in the German Bight

    NASA Astrophysics Data System (ADS)

    Radach, Günther; Berg, Joachim; Hagmeier, Erik

    1990-04-01

    Long-term series of meteorological standard observations at LV ELBE 1, together with those of temperature, salinity, plant nutrients and phytoplankton biomass at Helgoland Reede in the German Bight, are investigated with respect to the changes of the annual cycles during the 23 years from 1962 to 1984. Most meteorological and oceanographic parameters exhibit unchanged annual cycles within natural variability, except for the air and sea surface temperatures which show an overall increase of about 1°C per 23 years. Conspicuous changes in the annual cycles are observed for the nutrients phosphate, nitrate, nitrite (all strongly increasing) and silicate (decreasing). Phytoplankton biomass increased as a result of the extreme increase of flagellates, although diatoms decreased slightly. This and the shifting and shortening of the nutrient depletion phases are indicative of a strong change in the ecosystem. The changes seem mainly to be because of anthropogenic eutrophication, over-riding possible influences of large-scale climatic changes.

  1. Fate of Compost Nutrients as Affected by Co-Composting of Chicken and Swine Manures

    NASA Astrophysics Data System (ADS)

    Ogunwande, Gbolabo A.; Ogunjimi, Lawrence A. O.; Osunade, James A.

    2014-04-01

    Passive aeration co-composting using four mixtures of chicken manure and swine manure at 1:0, 1:1, 3:7 and 0:1 with sawdust and rice husk was carried out to study the effects of co-composting on the physicochemical properties of the organic materials. The experiment, which lasted 66 days, was carried out in bins equipped with inverted T aeration pipes. The results showed that nutrient losses decreased as the proportion of chicken manure in the mixtures decreased for saw dust and rice husk treatments. This indicates better nutrientst conservation during composting in swine than chicken manure. Manure mixtures with rice husk had higher pile temperatures (> 55°C), total carbon and total nitrogen losses, while manure mixtures with saw dust had higher total phosphorus loss and carbon to nitrogen ratio. Composts with rice husk demonstrated the ability to reach maturity faster by the rate of drop of the carbon to nitrogen ratio.

  2. Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle

    NASA Astrophysics Data System (ADS)

    Ding, T. P.; Tian, S. H.; Sun, L.; Wu, L. H.; Zhou, J. X.; Chen, Z. Y.

    2008-12-01

    solutions. The calculated silicon isotope fractionation factor between the silicon instantaneously absorbed by rice roots and the silicon in nutrient solution vary from 0.9983 at start to 0.9995 at harvest, similar to those reported for bamboo, banana and diatoms in direction and extent. In the maturity stage, the δ30Si value of rice organs decreased from -1.33‰ in roots to -1.98‰ in stem, and then increased through -0.16‰ in leaves and 1.24‰ in husks, to 2.21‰ in grains. This trend is similar to those observed in the field grown rice and bamboo. These quantitative data provide us a solid base for understanding the mechanisms of silicon absorption, transportation and precipitation in rice plants and the role of rice growth in the continental Si cycle.

  3. Nutrient availability affects pigment production but not growth in lichens of biological soil crusts

    USGS Publications Warehouse

    Bowker, M.A.; Koch, G.W.; Belnap, J.; Johnson, N.C.

    2008-01-01

    Recent research suggests that micronutrients such as Mn may limit growth of slow-growing biological soil crusts (BSCs) in some of the drylands of the world. These soil surface communities contribute strongly to arid ecosystem function and are easily degraded, creating a need for new restoration tools. The possibility that Mn fertilization could be used as a restoration tool for BSCs has not been tested previously. We used microcosms in a controlled greenhouse setting to investigate the hypothesis that Mn may limit photosynthesis and consequently growth in Collema tenax, a dominant N-fixing lichen found in BSCs worldwide. We found no evidence to support our hypothesis; furthermore, addition of other nutrients (primarily P, K, and Zn) had a suppressive effect on gross photosynthesis (P = 0.05). We also monitored the growth and physiological status of our microcosms and found that other nutrients increased the production of scytonemin, an important sunscreen pigment, but only when not added with Mn (P = 0.01). A structural equation model indicated that this effect was independent of any photosynthesis-related variable. We propose two alternative hypotheses to account for this pattern: (1) Mn suppresses processes needed to produce scytonemin; and (2) Mn is required to suppress scytonemin production at low light, when it is an unnecessary photosynthate sink. Although Mn fertilization does not appear likely to increase photosynthesis or growth of Collema, it could have a role in survivorship during environmentally stressful periods due to modification of scytonemin production. Thus, Mn enrichment should be studied further for its potential to facilitate BSC rehabilitation. ?? 2008 Elsevier Ltd.

  4. Folate and nutrients involved in the 1-carbon cycle in the pretreatment of patients for colorectal cancer.

    PubMed

    Ferrari, Ariana; de Carvalho, Aline Martins; Steluti, Josiane; Teixeira, Juliana; Marchioni, Dirce Maria Lobo; Aguiar, Samuel

    2015-06-01

    To assess the ingestion of folate and nutrients involved in the 1-carbon cycle in non-treated patients with colorectal adenocarcinoma in a reference center for oncology in southeastern Brazil. In total, 195 new cases with colorectal adenocarcinoma completed a clinical evaluation questionnaire and a Food Frequency Questionnaire (FFQ). Blood samples from 161 patients were drawn for the assessment of serum folate. A moderate correlation was found between serum concentrations of folate, folate intake and the dietary folate equivalent (DFE) of synthetic supplements. Mulatto or black male patients with a primary educational level had a higher intake of dietary folate. Of patients obtaining folate from the diet alone or from dietary supplements, 11.00% and 0.10%, respectively, had intake below the recommended level. Of the patients using dietary supplements, 35% to 50% showed high levels of folic acid intake. There was a prevalence of inadequacy for vitamins B2, B6 and B12, ranging from 12.10% to 20.18%, while 13.76% to 22.55% of patients were likely to have adequate choline intake. The considerable percentage of patients with folate intake above the recommended levels deserves attention because of the harmful effects that this nutrient may have in the presence of established neoplastic lesions. PMID:26043032

  5. The role of the Everglades Mangrove Ecotone Region (EMER) in regulating nutrient cycling and wetland productivity in South Florida

    USGS Publications Warehouse

    Rivera-Monroy, Victor H.; Twilley, Robert R.; Davis, Stephen E., III; Childers, Daniel L.; Simard, Marc; Chambers, Randolph; Jaffe, Rudolf; Boyer, Joseph N.; Rudnick, David T.; Zhang, Keqi; Castañeda-Moya, Edward; Ewe, Sharon M.L.; Price, Rene M.; Coronado-Molina, Carlos; Ross, Michael; Smith, Thomas J., III; Michot, Beatrice; Meselhe, Ehab; Nuttle, William; Troxler, Tiffany G.; Noe, Gregory B.

    2011-01-01

    The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height -1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50 years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (~1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50 years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER.

  6. The role of the everglades mangrove ecotone region (EMER) in regulating nutrient cycling and wetland productivity in South Florida

    USGS Publications Warehouse

    Rivera-Monroy, V. H.; Twilley, R.R.; Davis, S.E.; Childers, D.L.; Simard, M.; Chambers, R.; Jaffe, R.; Boyer, J.N.; Rudnick, D.T.; Zhang, K.; Castaneda-Moya, E.; Ewe, S.M.L.; Price, R.M.; Coronado-Molina, C.; Ross, M.; Smith, T.J.; Michot, B.; Meselhe, E.; Nuttle, W.; Troxler, T.G.; Noe, G.B.

    2011-01-01

    The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height <3 m cover 49% of the EMER, particularly in the SE region. These scrub/dwarf mangroves are the result of a combination of low soil phosphorus (P < 59 ??g P g dw-1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (???1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER. Copyright ?? 2011 Taylor & Francis Group, LLC.

  7. Nutrient losses in runoff from feedlot surfaces as affected by unconsolidated surface materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cattle feedlots contain unconsolidated surface materials (USM) (loose manure pack) that accumulate within feedlot pens during a feeding cycle. The effects of varying amounts of USM on feedlot runoff water quality are not well defined. The objectives of this field investigation were to: a) compa...

  8. Do breakfast skipping and breakfast type affect energy intake, nutrient intake, nutrient adequacy, and diet quality in young adults? NHANES 1999-2002

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to assess the impact of breakfast skipping and type of breakfast consumed on energy/nutrient intake, nutrient adequacy, and diet quality using a cross-sectional design. The setting was The National Health and Nutrition Examination Survey (NHANES), 1999-2002. The sub...

  9. High levels of inorganic nutrients affect fertilization kinetics, early development and settlement of the scleractinian coral Platygyra acuta

    NASA Astrophysics Data System (ADS)

    Lam, E. K. Y.; Chui, A. P. Y.; Kwok, C. K.; Ip, A. H. P.; Chan, S. W.; Leung, H. N.; Yeung, L. C.; Ang, P. O.

    2015-09-01

    Dose-response experiments were conducted to investigate the effects of ammonia nitrogen (NH3/NH4 +) and orthophosphate (PO4 3-) on four stages of larval development in Platygyra acuta, including fertilization, embryonic development and the survival, motility, and settlement of planula larvae. Fertilization success was reduced significantly under 200 μM NH3/NH4 + or PO4 3-. These high doses of NH3/NH4 + and PO4 - affected egg viability (or sperm viability and polyspermic block simultaneously) and polyspermic block, respectively. These results provide the first evidence to indicate the mechanisms of how inorganic nutrients might affect coral fertilization processes. For embryonic development, NH3/NH4 + at 25-200 μM caused delay in cell division after 2-h exposure and NH3/NH4 + at 100-200 μM resulted in larval death after 72 h. However, no significant differences were observed in the mobility and survivorship of either planula or competent larvae under different levels of NH3/NH4 + or PO4 3-. There was a significant (~30 %) drop in the settlement of competent larvae under the combined effect of 100 μM NH3/NH4 + and PO4 3-. The effects of elevated nutrients appeared to become more significant only on gametes or larvae undergoing active cellular activities at fertilization, early development, and settlement.

  10. Benthic biogeochemical cycling, nutrient stoichiometry, and carbon and nitrogen mass balances in a eutrophic freshwater bay

    USGS Publications Warehouse

    Klump, J.V.; Fitzgerald, S.A.; Waplesa, J.T.

    2009-01-01

    Green Bay, while representing only ,7% of the surface area and ??1.4% of the volume of Lake Michigan, contains one-third of the watershed of the lake, and receives approximately one-third of the total nutrient loading to the Lake Michigan basin, largely from the Fox River at the southern end of the bay. With a history of eutrophic conditions dating back nearly a century, the southern portion of the bay behaves as an efficient nutrient and sediment trap, sequestering much of the annual carbon and nitrogen input within sediments accumulating at up to 1 cm per year. Depositional fluxes of organic matter varied from ??0.1 mol C m-2 yr-1 to >10 mol C m-2 yr-1 and were both fairly uniform in stoichiometric composition and relatively labile. Estimates of benthic recycling derived from pore-water concentration gradients, whole-sediment incubation experiments, and deposition-burial models of early diagenesis yielded an estimated 40% of the carbon and 50% of the nitrogen recycled back into the overlying water. Remineralization was relatively rapid with ??50% of the carbon remineralized within <15 yr of deposition, and a mean residence time for metabolizable carbon and nitrogen in the sediments of 20 yr. On average, organic carbon regeneration occurred as 75% CO2, 15% CH4, and 10% dissolved organic carbon (DOC). Carbon and nitrogen budgets for the southern bay were based upon direct measurements of inputs and burial and upon estimates of export and production derived stoichiometrically from a coupled phosphorus budget. Loadings of organic carbon from rivers were ??3.7 mol m-2 yr-1, 80% in the form of DOC and 20% as particulate organic carbon. These inputs were lost through export to northern Green Bay and Lake Michigan (39%), through sediment burial (26%), and net CO2 release to the atmosphere (35%). Total carbon input, including new production, was 4.54 mol m-2 C yr-1, equivalent to ??10% of the gross annual primary production. Nitrogen budget terms were less well quantified

  11. Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling.

    PubMed

    Chin, Jason P; McGrath, John W; Quinn, John P

    2016-04-01

    Phosphorus cycling in the biosphere has traditionally been thought to involve almost exclusively transformations of the element in its pentavalent oxidation state. Recent evidence, however, suggests that a significant fraction of environmental phosphorus may exist in a more reduced form. Most abundant of these reduced phosphorus compounds are the phosphonates, with their direct carbon-phosphorus bonds, and striking progress has recently been made in elucidating the biochemistry of microbial phosphonate transformations. These advances are now presented in the context of their contribution to our understanding of phosphorus biogeochemistry and of such diverse fields as the productivity of the oceans, marine methanogenesis and the discovery of novel microbial antimetabolites. PMID:26836350

  12. Factors affecting population of filamentous bacteria in wastewater treatment plants with nutrients removal.

    PubMed

    Miłobędzka, Aleksandra; Witeska, Anna; Muszyński, Adam

    2016-01-01

    Filamentous population in activated sludge and key operational parameters of full-scale municipal wastewater treatment plants (WWTPs) with bulking problems representative for Poland were investigated with quantitative fluorescence in situ hybridization. Statistical analyses revealed few relationships between operational parameters and biovolume of filamentous bacteria. Sludge age was not only positively correlated with abundance of Chloroflexi (parametric correlation and principal component analysis (PCA)), but also differentiated Microthrix population (analysis of variance (ANOVA)). Phylum Chloroflexi and pH presented a negative relation during the study (PCA). ANOVA showed that pH of influent and sludge volume index (SVI) differentiated abundance of types 0803 and 1851 of Chloroflexi and candidate division TM7. SVI increased along with higher abundance of Microthrix (positive parametric and non-parametric correlations and positive relation in PCA). Biovolumes of morphotypes 0803 and 1851 of Chloroflexi were differentiated by organic matter in influent, also by nutrients in the case of Chloroflexi type 1851. Chemical and biological oxygen demands (COD and BOD5, respectively) were negatively correlated with Microthrix. COD also differentiated the abundance of Haliscomenobacter hydrossis. Results of the study can be used to prevent WWTPs from excessive proliferation of filamentous bacteria and operational problems caused by them--bulking and foaming of activated sludge. PMID:26901721

  13. Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases.

    PubMed

    Carter, Laura J; Williams, Mike; Böttcher, Christine; Kookana, Rai S

    2015-10-20

    The detection of a range of active pharmaceutical ingredients (APIs) in the soil environment has led to a number of publications demonstrating uptake by crops, however very few studies have explored the potential for impacts on plant development as a result of API uptake. This study investigated the effect of carbamazepine and verapamil (0.005-10 mg/kg) on a range of plant responses in zucchini (Cucurbita pepo). Uptake increased in a dose-dependent manner, with maximum leaf concentrations of 821.9 and 2.2 mg/kg for carbamazepine and verapamil, respectively. Increased carbamazepine uptake by zucchini resulted in a decrease in above (<60%) and below (<30%) ground biomass compared to the controls (p < 0.05). At soil concentrations >4 mg/kg the mature leaves suffered from burnt edges and white spots as well as a reduction in photosynthetic pigments but no such effects were seen for verapamil. For both APIs, further investigations revealed significant differences in the concentrations of selected plant hormones (auxins, cytokinins, abscisic acid and jasmonates), and in the nutrient composition of the leaves in comparison to the controls (p < 0.05). This is some of the first research to demonstrate that the exposure of plants to APIs is likely to cause impacts on plant development with unknown implications. PMID:26418514

  14. THE LBA PROJECT: NUTRIENT CYCLES AND TRACE GAS EXCHANGE IN SAVANNAS OF CENTRAL BRAZIL

    EPA Science Inventory

    The Cerrado of central Brazil is one of the largest savannah regions on Earth. The stressors affecting ecosystems in this region, including deforestation, fire, soil degradation, unwise agricultural practices, climate change, and urbanization, are all experienced in many U. S. ec...

  15. Some Contributions of Resistant Compounds to Soil Organic Matter Formation and Nutrient Cycling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some biomolecules in soil organic matter (SOM) are intrinsically more resistant to microbial decomposition than are other SOM components. Their resistance can be altered by soil properties and by land management, which can affect the formation and stability of SOM and in turn soil processes. Selecte...

  16. Shade, irrigation, and nutrients affect flavanoid concentration and yield in American Skullcap.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    American skullcap (Scutellaria lateriflora L.) is valued for its sedative properties that are associated with flavonoids. Information on how growing conditions affect flavonoid content is lacking. A 2x2x3 factorial experiment was conducted in a randomized complete block design (r = 4) with a split ...

  17. Processes Affecting Nutrients and Other Chemicals in Shallow Ground Waters of the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Nolan, B. T.

    2001-05-01

    Principal components analysis (PCA) was performed with water-quality data from studies conducted during 1993-1995 to explore processes influencing concentrations of selected nutrients, major ions, and trace elements in shallow ground waters of the southeastern United States. Results indicate that nitrate reduction is an important attenuation process in selected areas of the Southeast. A "nitrate-reduction" component explains 23% of the total variance in the data and indicates that nitrate and dissolved oxygen are inversely related to ammonium, iron, manganese, and dissolved organic carbon. Additional components extracted by PCA include "calcite dissolution" (18% of variance explained) and "phosphate dissolution" (9% of variance explained). Reducing conditions in ground waters of the region influence nitrate behavior through bacterially mediated reduction in the presence of organic matter, and by inhibition of nitrate formation in anoxic ground water beneath forested areas. Component scores are consistent with observed water-quality conditions in the region. For example, median nitrate concentration in ground-water samples from the Albemarle-Pamlico Coastal Plain is <0.05 mg/L, median dissolved organic carbon concentration is 4.2 mg/L, and median dissolved oxygen (DO) concentration is 2.1 mg/L, consistent with denitrification. Nitrate reduction, however, does not occur uniformly throughout the Southeast. Median DO concentrations in ground-water samples from the Apalachicola-Chattahoochee-Flint River Basin are 6.2-7.1 mg/L, and median nitrate concentrations are 0.61-2.2 mg/L, inconsistent with denitrification. Similarly, median DO concentration in samples from the Georgia-Florida Coastal Plain is 6.0 mg/L and median nitrate concentration is 5.8 mg/L.

  18. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.

    PubMed

    Åkerström, Anette M; Mortensen, Leiv M; Rusten, Bjørn; Gislerød, Hans Ragnar

    2014-11-01

    The use of microalgae for biomass production and nutrient removal from the reject water produced in the dewatering process of anaerobically digested sludge, sludge liquor, was investigated. The sludge liquor was characterized by a high content of total suspended solids (1590 mg L(-1)), a high nitrogen concentration (1210 mg L(-1)), and a low phosphorus concentration (28 mg L(-1)). Chlorella sp. was grown in sludge liquor diluted with wastewater treatment plant effluent water to different concentrations (12, 25, 40, 50, 70, and 100%) using batch mode. The environmental conditions were 25 °C, a continuous lightning of 115 μmol m(-2) s(-1), and a CO2 concentration of 3.0%. The highest biomass production (0.42-0.45 g dry weight L(-1) Day(-1)) was achieved at 40-50% sludge liquor, which was comparable to the production of the control culture grown with an artificial fertilizer. The biomass production was 0.12 and 0.26 g dry weight L(-1) Day(-1) at 12% and 100% sludge liquor, respectively. The percentage of nitrogen in the algal biomass increased from 3.6% in 12% sludge liquor and reached a saturation of ∼10% in concentrations with 50% sludge liquor and higher. The phosphorus content in the biomass increased linearly from 0.2 to 1.5% with increasing sludge liquor concentrations. The highest nitrogen removal rates by algal biosynthesis were 33.6-42.6 mg TN L(-1) Day(-1) at 40-70% sludge liquor, while the highest phosphorus removal rates were 3.1-4.1 mg TP L(-1) Day(-1) at 50-100% sludge liquor. PMID:24935023

  19. Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status

    USGS Publications Warehouse

    Dauer, Jenny M.; Perakis, Steven S.

    2014-01-01

    Calcium oxalate (Ca oxalate) is an insoluble biomineral that forms in plants and fungi, and occurs in soils across many types of ecosystems. Assessing how Ca oxalate may shape ecosystem Ca cycling requires information on the distribution of Ca oxalate among plant biomass, detritus, and mineral soil, and how it varies with ecosystem Ca status. We compared two Douglas-fir forests of contrasting ecosystem Ca availability, and found that Ca oxalate was partitioned similarly among plant biomass, detritus and mineral soil major ecosystem compartments at both sites, and total pools of Ca oxalate were greater in the high-Ca forest. However, the proportional importance of Ca oxalate was greater in the low-Ca than high-Ca forest (18% versus 4% of actively cycling ecosystem Ca, respectively). And calcium oxalate in mineral soil, which is of particular interest as a potential long-term Ca reservoir, was a larger portion of total available Ca (exchangeable Ca plus Ca oxalate Ca) in the low-Ca site than the high-Ca site (9% versus 1% of available soil Ca, respectively). Calcium oxalate was the dominant form of Ca returned from plants to soil as leaf litterfall at the high-Ca site, yet calcium oxalate disappeared rapidly from decomposing litter (0.28 yr−1 or faster) at both sites. We conclude that accumulation of Ca oxalate in forest ecosystems appears most closely related to overall Ca supply for live biomass pools, and that the accumulation of Ca oxalate in forest floor and mineral soil is limited by rapid microbial degradation of putatively unavailable Ca oxalate.

  20. Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia (L.) J.V. Lamouroux to low pH.

    PubMed

    Hofmann, Laurie C; Heiden, Jasmin; Bischof, Kai; Teichberg, Mirta

    2014-01-01

    Atmospheric carbon dioxide emissions cause a decrease in the pH and aragonite saturation state of surface ocean water. As a result, calcifying organisms are expected to suffer under future ocean conditions, but their physiological responses may depend on their nutrient status. Because many coral reefs experience high inorganic nutrient loads or seasonal changes in nutrient availability, reef organisms in localized areas will have to cope with elevated carbon dioxide and changes in inorganic nutrients. Halimeda opuntia is a dominant calcifying primary producer on coral reefs that contributes to coral reef accretion. Therefore, we investigated the carbon and nutrient balance of H. opuntia exposed to elevated carbon dioxide and inorganic nutrients. We measured tissue nitrogen, phosphorus and carbon content as well as the activity of enzymes involved in inorganic carbon uptake and nitrogen assimilation (external carbonic anhydrase and nitrate reductase, respectively). Inorganic carbon content was lower in algae exposed to high CO₂, but calcification rates were not significantly affected by CO₂ or inorganic nutrients. Organic carbon was positively correlated to external carbonic anhydrase activity, while inorganic carbon showed the opposite correlation. Carbon dioxide had a significant effect on tissue nitrogen and organic carbon content, while inorganic nutrients affected tissue phosphorus and N:P ratios. Nitrate reductase activity was highest in algae grown under elevated CO₂ and inorganic nutrient conditions and lowest when phosphate was limiting. In general, we found that enzymatic responses were strongly influenced by nutrient availability, indicating its important role in dictating the local responses of the calcifying primary producer H. opuntia to ocean acidification. PMID:24158465

  1. Environmental impacts of innovative dairy farming systems aiming at improved internal nutrient cycling: A multi-scale assessment.

    PubMed

    de Vries, W; Kros, J; Dolman, M A; Vellinga, Th V; de Boer, H C; Gerritsen, A L; Sonneveld, M P W; Bouma, J

    2015-12-01

    Several dairy farms in the Netherlands aim at reducing environmental impacts by improving the internal nutrient cycle (INC) on their farm by optimizing the use of available on-farm resources. This study evaluates the environmental performance of selected INC farms in the Northern Friesian Woodlands in comparison to regular benchmark farms using a Life Cycle Assessment. Regular farms were selected on the basis of comparability in terms of milk production per farm and per hectare, soil type and drainage conditions. In addition, the environmental impacts of INC farming at landscape level were evaluated with the integrated modelling system INITIATOR, using spatially explicit input data on animal numbers, land use, agricultural management, meteorology and soil, assuming that all farms practised the principle of INC farming. Impact categories used at both farm and landscape levels were global warming potential, acidification potential and eutrophication potential. Additional farm level indicators were land occupation and non-renewable energy use, and furthermore all farm level indicators were also expressed per kg fat and protein corrected milk. Results showed that both on-farm and off-farm non-renewable energy use was significantly lower at INC farms as compared with regular farms. Although nearly all other environmental impacts were numerically lower, both on-farm and off-farm, differences were not statistically significant. Nitrogen losses to air and water decreased by on average 5 to 10% when INC farming would be implemented for the whole region. The impact of INC farming on the global warming potential and eutrophication potential was, however, almost negligible (<2%) at regional level. This was due to a negligible impact on the methane emissions and on the surplus and thereby on the soil accumulation and losses of phosphorus to water at INC farms, illustrating the focus of these farms on closing the nitrogen cycle. PMID:26231773

  2. The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Bullen, T.D.; Fitzpatrick, J.

    2012-01-01

    Biotic/abiotic interactions between soil mineral nutrients and annual grassland vegetation are characterized for five soils in a marine terrace chronosequence near Santa Cruz, California. A Mediterranean climate, with wet winters and dry summers, controls the annual cycle of plant growth and litter decomposition, resulting in net above-ground productivities of 280-600gm -2yr -1. The biotic/abiotic (A/B) interface separates seasonally reversible nutrient gradients, reflecting biological cycling in the shallower soils, from downward chemical weathering gradients in the deeper soils. The A/B interface is pedologically defined by argillic clay horizons centered at soil depths of about one meter which intensify with soil age. Below these horizons, elevated solute Na/Ca, Mg/Ca and Sr/Ca ratios reflect plagioclase and smectite weathering along pore water flow paths. Above the A/B interface, lower cation ratios denote temporal variability due to seasonal plant nutrient uptake and litter leaching. Potassium and Ca exhibit no seasonal variability beneath the A/B interface, indicating closed nutrient cycling within the root zone, whereas Mg variability below the A/B interface denotes downward leakage resulting from higher inputs of marine aerosols and lower plant nutrient requirements.The fraction of a mineral nutrient annually cycled through the plants, compared to that lost from pore water discharge, is defined their respective fluxes F j,plants=q j,plants/(q j,plants+q j,discharge) with average values for K and Ca (F K,plants=0.99; F Ca,plants=0.93) much higher than for Mg and Na (F Mg,plants 0.64; F Na,plants=0.28). The discrimination against Rb and Sr by plants is described by fractionation factors (K Sr/Ca=0.86; K Rb/K=0.83) which are used in Rayleigh fractionation-mixing calculations to fit seasonal patterns in solute K and Ca cycling. K Rb/K and K24Mg/22Mg values (derived from isotope data in the literature) fall within fractionation envelopes bounded by inputs from

  3. Factors affecting the sorption of cesium in a nutrient-poor boreal bog.

    PubMed

    Lusa, M; Bomberg, M; Virtanen, S; Lempinen, J; Aromaa, H; Knuutinen, J; Lehto, J

    2015-09-01

    (135)Cs is among the most important radionuclides in the long-term safety assessments of spent nuclear fuel, due to its long half-life of 2.3 My and large inventory in spent nuclear fuel. Batch sorption experiments were conducted to evaluate the sorption behavior of radiocesium ((134)Cs) in the surface moss, peat, gyttja, and clay layers of 7-m-deep profiles taken from a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of radiocesium increased as a function of sampling depth. The highest Kd values, with a geometric mean of 3200 L/kg dry weight (DW), were observed in the bottom clay layer and the lowest in the 0.5-1.0 m peat layer (50 L/kg DW). The maximum sorption in all studied layers was observed at a pH between 7 and 9.5. The in situ Kd values of (133)Cs in surface Sphagnum moss, peat and gyttja samples were one order of magnitude higher than the Kd values obtained using the batch method. The highest in situ Kd values (9040 L/kg DW) were recorded for the surface moss layer. The sterilization of fresh surface moss, peat, gyttja and clay samples decreased the sorption of radiocesium by 38%, although the difference was not statistically significant. However, bacteria belonging to the genera Pseudomonas, Paenibacillus, Rhodococcus and Burkholderia isolated from the bog were found to remove radiocesium from the solution under laboratory conditions. The highest biosorption was observed for Paenibacillus sp. V0-1-LW and Pseudomonas sp. PS-0-L isolates. When isolated bacteria were added to sterilized bog samples, the removal of radiocesium from the solution increased by an average of 50% compared to the removal recorded for pure sterilized peat. Our results demonstrate that the sorption of radiocesium in the bog environment is dependent on pH and the type of the bog layer and that common environmental bacteria prevailing in the bog can remove cesium from the solution phase. PMID:26010098

  4. Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: density-dependent effects on organic matter remineralization and nutrient cycling

    EPA Science Inventory

    We investigated the effect of the thalassinid mud shrimp Upogebia pugettensis on organic matter and nutrient cycling on Idaho Flat, an intertidal flat in the Yaquina River estuary, Oregon. Field studies were conducted to measure carbon and nitrogen remineralization rates and bent...

  5. Effect of different agronomic practises on greenhouse gas emissions, especially N2O and nutrient cycling

    NASA Astrophysics Data System (ADS)

    Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles

    2014-05-01

    In order to achieve a reduction of greenhouse gas emissions, management practises need to be adapted by implementing sustainable land use. At first, reliable field data are required to assess the effect of different farming practises on greenhouse gas budgets. The conducted field experiment covers and compares two main aspects of agricultural management, namely an organic farming system and an integrated farming system, implementing additionally the effects of diverse tillage systems and fertilisation practises. Furthermore, the analysis of the alterable biological, physical and chemical soil properties enables a link between the impact of different management systems on greenhouse gas emissions and the monitored cycle of matter, especially the nitrogen cycle. Measurements were carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then, parcels in a field (each around 0,2-0,4 ha) with a particular interior plot set-up have been conducted. So the 20 years impacts of different tillage and fertilisation practises on soil properties including trace gases were examined. Fluxes of CH4, N2O and CO2 are monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (per point: 4 chambers, each covering 0,4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit (Flessa et al. 2002). Each chamber is sampled 3-4 times in 24 hours. The main outcomes are the analysis of temporal and spatial dynamics of greenhouse gas fluxes as influenced by management practice events (fertilisation and tillage) and weather effects (drying-rewetting, freezing-thawing, intense rainfall and dry periods

  6. Global terrestrial ecosystem models of productivity and nutrient cycling and vegetation response to climate

    SciTech Connect

    Kercher, J.R.; Chambers, J.Q.; Axelrod, M.C. )

    1993-06-01

    We are developing two global terrestrial ecosystem models (TERRA and HABITAT) to be coupled to atmospheric and oceanic models in an Earth System Model. TERRA is a model of ecosystem productivity and biogeochemical cycling covering the Earth's land surface as a grid of independent, local models. HABITAT is being designed as a gridded, dynamic model of vegetation response to climate. The TERRA grid cell models are calibrated to 17 vegetation types. The parameter for maximum gross primary productivity was found to average (2.4 +/- 1.4 s.d.) x 10[sup 4] g m[sup [minus]2] y[sup [minus]1] across the 17 types. Maximum rate of nitrogen uptake by vegetation averaged 13 +/- 3 g m[sup [minus]2] y[sup [minus]1] for all forest types, 9 +/- 3 for all woodland and savanna types, and 5 +/- 2 for all grassland, tundra, and shrubland types. Preliminary analysis for designing HABITAT suggests that total annual precipitation and average monthly temperature do not resolve vegetation types. This result emphasizes the need for constructing a set of climatic variables that simplify the biological response.

  7. Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease.

    PubMed

    Uranga, José Antonio; López-Miranda, Visitación; Lombó, Felipe; Abalo, Raquel

    2016-08-01

    Inflammatory bowel diseases (ulcerative colitis; Crohn's disease) are debilitating relapsing inflammatory disorders affecting the gastrointestinal tract, with deleterious effect on quality of life, and increasing incidence and prevalence. Mucosal inflammation, due to altered microbiota, increased intestinal permeability and immune system dysfunction underlies the symptoms and may be caused in susceptible individuals by different factors (or a combination of them), including dietary habits and components. In this review we describe the influence of the Western diet, obesity, and different nutraceuticals/functional foods (bioactive peptides, phytochemicals, omega 3-polyunsaturated fatty acids, vitamin D, probiotics and prebiotics) on the course of IBD, and provide some hints that could be useful for nutritional guidance. Hopefully, research will soon offer enough reliable data to slow down the spread of the disease and to make diet a cornerstone in IBD therapy. PMID:27267792

  8. Lichens and weathering: importance for soil formation, nutrient cycling and adaptation to environmental change

    NASA Astrophysics Data System (ADS)

    Purvis, O. W.; Convey, P.; Flowerdew, M. J.; Peat, H. J.; Najorka, J.

    2012-04-01

    Lichens comprise ca. 6% of the Earth's terrestrial vegetation, and are dominant in certain polar ecosystems, being primary colonists of rocks where they play a major role in the biogeochemical cycling of elements and contribute to soil formation. We present an historical overview of studies in the Antarctic, leading to recent collection opportunities on Signy Island providing new material to investigate how biodiversity has responded to regional and rapid environmental change. Mountainous, with an ice cap, glaciers, rugged topography, and a complex geology and pedology, Signy Island includes a wide range of terrestrial habitats. A small, inconspicuous lichen, Acarospora cf. badiofusca, was discovered colonizing iron-stained quartz mica schists on the lower slope of Manhaul Rocks, a recently exposed nunatak on the McLeod Glacier, Signy Island, maritime Antarctic. Thallus colour ranged from rust to paler orange and green. Many lichens are colourful, mostly due to the presence of secondary metabolites which are of fungal origin. In some cases colour may reflect chemical coordination reactions involving lichen biomass components and dissolved cations which can lead to metal complex and mineral formation. By far the greatest research effort into characterizing elements and minerals associated with lichens concerns those occurring beneath them, research driven partly from a desire to understand weathering processes. This study, for the first time in the maritime Antarctic, addressed the hypothesis that colour reflects element localization, and examined substance localization within lichen tissues and considered responses to stress. Methods utilised include macrophotography, X-Ray Diffraction with a position sensitive detector (PSD), Scanning Electron Microscopy in back-scattered and ED modes and electron probe microanalysis for the elements Fe, C and Si and by using a third generation variable pressure secondary detector employed as a panchromatic cathodoluminescence

  9. Low-intensity cycling affects the muscle activation pattern of consequent countermovement jumps.

    PubMed

    Marquez, Gonzalo J; Mon, Javier; Acero, Rafael M; Sanchez, Jose A; Fernandez-del-Olmo, Miguel

    2009-08-01

    Players (eg, basketball, soccer, and football) often use a static bicycle during a game to maintain warming. However, the effectiveness of this procedure has not been addressed in the literature. Thus, it remains unknown whether low-intensity cycling movement can affect explosive movement performance. In this study, 10 male subjects performed countermovement jumps before and after a 15-minutes cycling bout at 35% of their maximal power output. Three sessions were tested for 3 different cadences of cycling: freely chosen cadence, 20% lower than freely chosen cadence (FCC-20%), and 20% higher than freely chosen cadence (FCC+20%). Jump height, kinematics, and electromyogram were recorded simultaneously during the countermovement jumps. The results showed a significant decreasing in the height of countermovement jump after cycling at freely chosen cadence and FCC-20% (p = 0.03 and p = 0.04, respectively), but not for FCC+20% cadences. The electromyographic parameters suggest that changes in the countermovement jump after cycling can be attributed to alteration of the pattern of activation and may be modulated by the preceding cycling cadence. Our study indicates that to avoid a possible negative effect of the cycling in the subsequent explosive movements, a cadence 20% higher than the preferred cadence must be used. PMID:19620918

  10. Nanosilver and Nano Zero-Valent Iron Exposure Affects Nutrient Exchange Across the Sediment-Water Interface.

    PubMed

    Buchkowski, Robert W; Williams, Clayton J; Kelly, Joel; Veinot, Jonathan G C; Xenopoulos, Marguerite A

    2016-01-01

    To examine how nanoparticles influence biogeochemical cycles in streams, we studied the acute impact of nanosilver (nAg) and nanoparticulate zero-valent iron (nZVI) exposure on nutrient and oxygen exchange across the sediment-water interface of two streams (agricultural canal and wetland) that differed in their water quality and sediment characteristics. At the agricultural site, nAg increased oxygen consumption and decreased N2 flux rates from that observed in control incubations. nZVI caused sediment-water systems from both streams to go hypoxic within 1.5 h of exposure. N2 flux rates were at least an order of magnitude higher in nZVI treatments as compared to control. Water column nitrate and nitrite concentrations were not impacted by nZVI exposure but total dissolved phosphorus concentrations were higher in cores treated with nZVI. nAg and nZVI exposure to surface water ecosystems can disrupt ecological function across the sediment-water interface. PMID:26611367

  11. Genomic Copy Number Variation Affecting Genes Involved in the Cell Cycle Pathway: Implications for Somatic Mosaicism

    PubMed Central

    Iourov, Ivan Y.; Vorsanova, Svetlana G.; Zelenova, Maria A.; Korostelev, Sergei A.; Yurov, Yuri B.

    2015-01-01

    Somatic genome variations (mosaicism) seem to represent a common mechanism for human intercellular/interindividual diversity in health and disease. However, origins and mechanisms of somatic mosaicism remain a matter of conjecture. Recently, it has been hypothesized that zygotic genomic variation naturally occurring in humans is likely to predispose to nonheritable genetic changes (aneuploidy) acquired during the lifetime through affecting cell cycle regulation, genome stability maintenance, and related pathways. Here, we have evaluated genomic copy number variation (CNV) in genes implicated in the cell cycle pathway (according to Kyoto Encyclopedia of Genes and Genomes/KEGG) within a cohort of patients with intellectual disability, autism, and/or epilepsy, in which the phenotype was not associated with genomic rearrangements altering this pathway. Benign CNVs affecting 20 genes of the cell cycle pathway were detected in 161 out of 255 patients (71.6%). Among them, 62 individuals exhibited >2 CNVs affecting the cell cycle pathway. Taking into account the number of individuals demonstrating CNV of these genes, a support for this hypothesis appears to be presented. Accordingly, we speculate that further studies of CNV burden across the genes implicated in related pathways might clarify whether zygotic genomic variation generates somatic mosaicism in health and disease. PMID:26421275

  12. Scrapie affects the maturation cycle and immune complex trapping by follicular dendritic cells in mice.

    PubMed

    McGovern, Gillian; Mabbott, Neil; Jeffrey, Martin

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrP(d)) accumulations in the brain and lymphoreticular system (LRS). Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrP(d) accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs) and tingible body macrophages (TBMs). Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs) of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrP(d) plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrP(d) accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrP(d). Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrP(d) accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function. PMID:19997557

  13. Dietary potassium diformate did not affect growth and survival but did reduce nutrient digestibility of Pacific white shrimp cultured under clean water conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effect of a dietary supplement potassium diformate (PDF) on growth performance, survival and nutrient digestibility of Pacific white shrimp cultured under clean water conditions. We found that weight gain was not significantly (P>0.05) affected by the different levels of ...

  14. Adaptive contraction of diet breadth affects sexual maturation and specific nutrient consumption in an extreme generalist omnivore.

    PubMed

    Jensen, K; Schal, C; Silverman, J

    2015-04-01

    Animals balance their intake of specific nutrients, but little is known about how they do so when foraging in an environment with toxic resources and whether toxic foods promote adaptations that affect life history traits. In German cockroach (Blattella germanica) populations, glucose aversion has evolved in response to glucose-containing insecticidal baits. We restricted newly eclosed glucose-averse (GA) and wild-type (WT) female cockroaches to nutritionally defined diets varying in protein-to-carbohydrate (P : C) ratio (3 : 1, 1 : 1, or 1 : 3) or gave them free choice of the 3 : 1 and 1 : 3 diets, with either glucose or fructose as the sole carbohydrate source. We measured consumption of each diet over 6 days and then dissected the females to measure the length of basal oocytes in their ovaries. Our results showed significantly lower consumption by GA compared to WT cockroaches when restricted to glucose-containing diets, but also lower fructose intake by GA compared to WT cockroaches when restricted to high fructose diets or given choice of fructose-containing diets. Protein intake was regulated tightly regardless of carbohydrate intake, except by GA cockroaches restricted to glucose-containing diets. Oocyte growth was completely suppressed in GA females restricted to glucose-containing diets, but also significantly slower in GA than in WT females restricted to fructose-containing diets. Our findings suggest that GA cockroaches have adapted to reduced diet breadth through endocrine adjustments which reduce requirements for energetic fuels. Our study illustrates how an evolutionary change in the chemosensory system may affect the evolution of other traits that govern animal life histories. PMID:25765134

  15. The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California

    USGS Publications Warehouse

    White, Art F.; Schulz, Marjorie S.; Vivit, Davison V.; Bullen, Tomas D.; Fitzpatrick, John A.

    2012-01-01

    The fraction of a mineral nutrient annually cycled through the plants, compared to that lost from pore water discharge, is defined their respective fluxes Fj,plants = qj,plants/(qj,plants + qj,discharge) with average values for K and Ca (FK,plants = 0.99; FCa,plants = 0.93) much higher than for Mg and Na (FMg,plants 0.64; FNa,plants = 0.28). The discrimination against Rb and Sr by plants is described by fractionation factors (KSr/Ca = 0.86; KRb/K = 0.83) which are used in Rayleigh fractionation-mixing calculations to fit seasonal patterns in solute K and Ca cycling. KRb/K and K24Mg/22Mg values (derived from isotope data in the literature) fall within fractionation envelopes bounded by inputs from rainfall and mineral weathering. KSr/Ca and K44Ca/40Ca fractionation factors fall outside these envelopes indicating that Ca nutrient cycling is closed to these external inputs. Small net positive K and Ca fluxes (6–14 mol m-2 yr-1), based on annual mass balances, indicate that the soils are accumulating mineral nutrients, probably as a result of long-term environmental disequilibrium.

  16. Menstrual cycle phase does not affect sympathetic neural activity in women with postural orthostatic tachycardia syndrome

    PubMed Central

    Stickford, Abigail SL; VanGundy, Tiffany B; Levine, Benjamin D; Fu, Qi

    2015-01-01

    Abstract Patients with the postural orthostatic tachycardia syndrome (POTS) are primarily premenopausal women, which may be attributed to female sex hormones. We tested the hypothesis that hormonal fluctuations of the menstrual cycle alter sympathetic neural activity and orthostatic tolerance in POTS women. Ten POTS women were studied during the early follicular (EF) and mid-luteal (ML) phases of the menstrual cycle. Haemodynamics and muscle sympathetic nerve activity (MSNA) were measured when supine, during 60 deg upright tilt for 45 min or until presyncope, and during the cold pressor test (CPT) and Valsalva manoeuvres. Blood pressure and total peripheral resistance were higher during rest and tilting in the ML than EF phase; however, heart rate, stroke volume and cardiac output were similar between phases. There were no mean ± SD differences in MSNA burst frequency (8 ± 8 EF phase vs. 10 ± 10 bursts min–1 ML phase at rest; 34 ± 15 EF phase vs. 36 ± 16 bursts min–1 ML phase at 5 min tilt), burst incidence or total activity, nor any differences in the cardiovagal and sympathetic baroreflex sensitivities between phases under any condition. The incidence of presyncope was also the same between phases. There were no differences in haemodynamic or sympathetic responses to CPT or Valsalva. These results suggest that the menstrual cycle does not affect sympathetic neural activity but modulates blood pressure and vasoconstriction in POTS women during tilting. Thus, factors other than sympathetic neural activity are probably responsible for the symptoms of orthostatic intolerance across the menstrual cycle in women with POTS. Key points Women with the postural orthostatic tachycardia syndrome (POTS) report fluctuations in orthostatic tolerance throughout the menstrual cycle. The mechanism(s) underlying blood pressure control across the menstrual cycle in women with POTS are unknown. The findings of the present study indicate that the menstrual

  17. Timing of initiation of macronuclear DNA synthesis is set during the preceding cell cycle in Paramecium tetraurelia: analysis of the effects of abrupt changes in nutrient level

    SciTech Connect

    Ching, A.S.L.; Berger, J.D.

    1986-11-01

    In many eukaryotic organisms, initiation of DNA synthesis is associated with a major control point within the cell cycle and reflects the commitment of the cell to the DNA replication-division portion of the cell cycle. In paramecium, the timing of DNA synthesis initiation is established prior to fission during the preceding cell cycle. DNA synthesis normally starts at 0.25 in the cell cycle. When dividing cells are subjected to abrupt nutrient shift-up by transfer from a chemostat culture to medium with excess food, or shift-down from a well-fed culture to exhausted medium, DNA synthesis initiation in the post-shift cell cycle occurs at 0.25 of the parental cell cycle and not at either 0.25 in the post-shift cell cycle or at 0.25 in the equilibrium cell cycle produced under the post-shift conditions. The long delay prior to initiation of DNA synthesis following nutritional shift-up is not a consequence of continued slow growth because the rate of protein synthesis increases rapidly to the normal level after shift-up. Analysis of the relation between increase in cell mass and initiation of DNA synthesis following nutritional shifts indicates that increase in cell mass, per se, is neither a necessary nor a sufficient condition for initiation of DNA synthesis, in spite of the strong association between accumulation of cell mass and initiation of DNA synthesis in cells growing under steady-state conditions.

  18. Anthropogenic influences on the input and biogeochemical cycling of nutrients and mercury in Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Naftz, D.; Angeroth, C.; Kenney, T.; Waddell, B.; Darnall, N.; Silva, S.; Perschon, C.; Whitehead, J.

    2008-01-01

    Despite the ecological and economic importance of Great Salt Lake (GSL), little is known about the input and biogeochemical cycling of nutrients and trace elements in the lake. In response to increasing public concern regarding anthropogenic inputs to the GSL ecosystem, the US Geological Survey (USGS) and US Fish and Wildlife Service (USFWS) initiated coordinated studies to quantify and evaluate the significance of nutrient and Hg inputs into GSL. A 6??? decrease in ??15N observed in brine shrimp (Artemia franciscana) samples collected from GSL during summer time periods is likely due to the consumption of cyanobacteria produced in freshwater bays entering the lake. Supporting data collected from the outflow of Farmington Bay indicates decreasing trends in ??15N in particulate organic matter (POM) during the mid-summer time period, reflective of increasing proportions of cyanobacteria in algae exported to GSL on a seasonal basis. The C:N molar ratio of POM in outflow from Farmington Bay decreases during the summer period, supportive of the increased activity of N fixation indicated by decreasing ??15N in brine shrimp and POM. Although N fixation is only taking place in the relatively freshwater inflows to GSL, data indicate that influx of fresh water influences large areas of the lake. Separation of GSL into two distinct hydrologic and geochemical systems from the construction of a railroad causeway in the late 1950s has created a persistent and widespread anoxic layer in the southern part of GSL. This anoxic layer, referred to as the deep brine layer (DBL), has high rates of SO42 - reduction, likely increasing the Hg methylation capacity. High concentrations of methyl mercury (CH3Hg) (median concentration = 24 ng/L) were observed in the DBL with a significant proportion (31-60%) of total Hg in the CH3Hg form. Hydroacoustic and sediment-trap evidence indicate that turbulence introduced by internal waves generated during sustained wind events can temporarily mix the

  19. Leucine aminopeptidase, beta-glucosidase and alkaline phosphatase activity rates and their significance in nutrient cycles in some coastal Mediterranean sites.

    PubMed

    Caruso, Gabriella

    2010-01-01

    In aquatic microbial ecology, knowledge of the processes involved in the turnover of organic matter is of utmost importance to understand ecosystem functioning. Microorganisms are major players in the cycling of nutrients (nitrogen, phosphorus) and carbon, thanks to their enzymatic activities (leucine aminopeptidase, LAP, alkaline phosphatase, AP, and beta-glucosidase, beta-GLU) on organic polymers (proteins, organic phosphates and polysaccharides, respectively). Estimates of the decomposition rates of organic polymers are performed using fluorogenic compounds, whose hydrolysis rate allow us to obtain information on the "potential" metabolic activity of the prokaryotic community. This paper refers the enzyme patterns measured during recent oceanographic cruises performed in some coastal Mediterranean sites, not yet fully investigated in terms of microbial biogeochemical processes. Mean enzyme activity rates ranged from 5.24 to 5558.1 nM/h, from 12.68 to 244.73 nM/h and from 0.006 to 9.51 nM/h for LAP, AP and beta-GLU, respectively. The highest LAP and AP activity rates were measured in the Gulf of Milazzo (Tyrrhenian Sea) and in the Straits of Messina, in association with the lowest bacterioplankton abundance; in contrast, the lowest ones were found in the northern Adriatic Sea. beta-GLU was more active in the Straits of Messina. Activity rates were analysed in relation to the main environmental variables. Along the northern Adriatic coastal side affected by the Po river, significant inverse relationships linked LAP and AP with salinity, pointing out that fluvial inputs provided organic substrates for microbial metabolism. Both in the Gulf of Manfredonia and in the Straits of Messina, LAP and AP levels were inversely related with the concentration of nitrate and inorganic phosphorus, respectively. In the Gulf of Milazzo, high cell-specific AP measured in spite of phosphorus availability suggested the role of this enzyme not only in phosphorus, but also in carbon

  20. Leucine Aminopeptidase, β-Glucosidase and Alkaline Phosphatase Activity Rates and Their Significance in Nutrient Cycles in Some Coastal Mediterranean Sites

    PubMed Central

    Caruso, Gabriella

    2010-01-01

    In aquatic microbial ecology, knowledge of the processes involved in the turnover of organic matter is of utmost importance to understand ecosystem functioning. Microorganisms are major players in the cycling of nutrients (nitrogen, phosphorus) and carbon, thanks to their enzymatic activities (leucine aminopeptidase, LAP, alkaline phosphatase, AP, and β-glucosidase, β-GLU) on organic polymers (proteins, organic phosphates and polysaccharides, respectively). Estimates of the decomposition rates of organic polymers are performed using fluorogenic compounds, whose hydrolysis rate allow us to obtain information on the “potential” metabolic activity of the prokaryotic community. This paper refers the enzyme patterns measured during recent oceanographic cruises performed in some coastal Mediterranean sites, not yet fully investigated in terms of microbial biogeochemical processes. Mean enzyme activity rates ranged from 5.24 to 5558.1 nM/h, from 12.68 to 244.73 nM/h and from 0.006 to 9.51 nM/h for LAP, AP and β-GLU, respectively. The highest LAP and AP activity rates were measured in the Gulf of Milazzo (Tyrrhenian Sea) and in the Straits of Messina, in association with the lowest bacterioplankton abundance; in contrast, the lowest ones were found in the northern Adriatic Sea. β-GLU was more active in the Straits of Messina. Activity rates were analysed in relation to the main environmental variables. Along the northern Adriatic coastal side affected by the Po river, significant inverse relationships linked LAP and AP with salinity, pointing out that fluvial inputs provided organic substrates for microbial metabolism. Both in the Gulf of Manfredonia and in the Straits of Messina, LAP and AP levels were inversely related with the concentration of nitrate and inorganic phosphorus, respectively. In the Gulf of Milazzo, high cell-specific AP measured in spite of phosphorus availability suggested the role of this enzyme not only in phosphorus, but also in carbon

  1. Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model

    SciTech Connect

    Khangaonkar, Tarang; Sackmann, Brandon; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-08-14

    Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite-Volume Coastal Ocean Model framework and the Integrated Compartment Model (CE-QUAL-ICM) water quality kinetics. Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5–20 m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan de Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. Finally, by late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific

  2. Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model

    NASA Astrophysics Data System (ADS)

    Khangaonkar, Tarang; Sackmann, Brandon; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-09-01

    Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite-Volume Coastal Ocean Model framework and the Integrated Compartment Model (CE-QUAL-ICM) water quality kinetics. Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5-20 m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan de Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. By late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific Ocean.

  3. A mesocosm study of the effects of wet-dry cycles on nutrient release from constructed wetlands in agricultural landscapes.

    PubMed

    Smith, Allyson S; Jacinthe, Pierre-Andre

    2014-01-01

    Given the projection that wet-dry periods will be more frequent in the US Midwest, a study was conducted to understand the impact of these hydro-climatic alterations on nutrient dynamics in wetlands constructed on former croplands in the region. Soil cores were collected from two constructed wetlands and a wooded riparian area (surface: 0-20 cm; subsurface: 40-60 cm) downslope from an agricultural field. Cores were either kept moist or subjected to a 5-week drying treatment, after which all cores were flooded for 36 days. Initial nitrate flux was significantly (p < 0.001) higher in the dry than in the moist treatment (44.5 vs. 1.9 mg N m(-2) per day), likely due to mineralization of organic matter. The NO3(-) released was rapidly denitrified (N2O flux: 18.9 mg N m(-2) per day), except in the subsurface soil cores in which processing of available N (N2O flux: 0.33 mg N m(-2) per day) was limited by low microbial activity (4 times lower CO2 production rate). The dry treatment also resulted in significantly (p < 0.01) higher inorganic P (Pi) flux (3.1 versus 1 mg P m(-2) per day in moist cores), with water-extractable soil P being the best predictor (r(2): 0.93, p < 0.03) of that flux. Despite a decline in redox potential (as low as -36.4 mv) and progressive increase in pore-water dissolved Fe, no relationship between floodwater Pi and dissolved Fe was observed, suggesting either limited contribution of reductive dissolution to Pi dynamics or rapid adsorption of the Pi released within the cores. Compared to the moist cores, geochemical modeling showed a consistent shift toward greater solubility of the calcium-phosphate minerals controlling pore-water Pi concentration in the dry treatment cores. These results suggest that dissolution of Ca-phosphate minerals could be a key factor controlling Pi mobility in constructed wetlands subjected to wet-dry cycles. PMID:24270400

  4. Microbial H2 cycling does not affect δ2H values of ground water

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Bradley, P.M.

    2000-01-01

    Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H(2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water &delta2H values. The range of &delta2H observed in monitoring wells sampled (-27.8 ‰c to -15.5 ‰c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than isotopic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbially cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (>0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.

  5. Factors affecting gestation length and estrus cycle characteristics in Spanish donkey breeds reared in southern Spain.

    PubMed

    Galisteo, J; Perez-Marin, C C

    2010-08-01

    This paper investigated gestation length and estrus cycle characteristics in three different Spanish donkey breeds (Andalusian, Zamorano-Leones, and Catalonian) kept on farm conditions in southern Spain, using data for ten consecutive breeding seasons. Gestation length was measured in 58 pregnancies. Ovarian ultrasonography was used to detect the ovulation, in order to ascertain true gestation length (ovulation-parturition). Pregnancy was diagnosed approximately 14-18 d after ovulation and confirmed on approximately day 60. Average gestation length was 362 +/-15.3 (SD) d, and no significant differences were observed between the three different breeds. Breeding season had a significant effect (P < 0.01), with longer gestation lengths when jennies were covered during the early period. Breed, age of jenny, year of birth, foal gender, month of breeding, and type of gestation had no significant effect on gestation length. After parturition, foal-heat was detected in 53.8% of the postpartum cycles studied (n = 78), and ovulation occurred on day 13.2 +/- 2.7. The duration of foal-heat was 4.7 +/-1.7 d, with a pregnancy rate of 40.5%. When subsequent estrus cycles were analyzed, the interovulatory interval (n = 68) and estrus duration (n = 258) were extended to a mean 23.8 +/- 3.5 and 5.7 +/- 2.2 d, respectively. Both variables were influenced by the year of study (P < 0.03 and P < 0.001), whereas month and season of ovulation (P < 0.005 and P < 0.009, respectively) affected only interovulatory intervals. Estrus duration was significantly longer than that observed at the foal-heat (P < 0.006), and the pregnancy rate was 65.8%. This study provides reference values for true gestation length and estrus cycle characteristics in Spanish jennies. Breeding season affected gestation length in farm conditions. Also, seasonal influence was observed on the length of the estrus cycle (i.e., interovulatory interval), although foal-heat was not affected by environmental factors. PMID

  6. Nutrient losses from fall- and winter-applied manure: effects of timing and soil temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil temperature is a major environmental factor that affects meltwater and precipitation infiltration and nutrient cycling. The objective of this study was to determine nutrient losses in runoff and leachate from fall- and winter-applied dairy manure as affected by soil temperature at the time of a...

  7. 5-ASA Affects Cell Cycle Progression in Colorectal Cells by Reversibly Activating a Replication Checkpoint

    PubMed Central

    LUCIANI, M. GLORIA; CAMPREGHER, CHRISTOPH; FORTUNE, JOHN M.; KUNKEL, THOMAS A.; GASCHE, CHRISTOPH

    2007-01-01

    Background & Aims Individuals with inflammatory bowel disease are at risk of developing colorectal cancer (CRC). Epidemiologic, animal, and laboratory studies suggest that 5-amino-salicylic acid (5-ASA) protects from the development of CRC by altering cell cycle progression and by inducing apoptosis. Our previous results indicate that 5-ASA improves replication fidelity in colorectal cells, an effect that is active in reducing mutations. In this study, we hypothesized that 5-ASA restrains cell cycle progression by activating checkpoint pathways in colorectal cell lines, which would prevent tumor development and improve genomic stability. Methods CRC cells with different genetic backgrounds such as HT29, HCT116, HCT116p53−/−, HCT116+chr3, and LoVo were treated with 5-ASA for 2–96 hours. Cell cycle progression, phosphorylation, and DNA binding of cell cycle checkpoint proteins were analyzed. Results We found that 5-ASA at concentrations between 10 and 40 mmol/L affects cell cycle progression by inducing cells to accumulate in the S phase. This effect was independent of the hMLH1, hMSH2, and p53 status because it was observed to a similar extent in all cell lines under investigation. Moreover, wash-out experiments demonstrated reversibility within 48 hours. Although p53 did not have a causative role, p53 Ser15 was strongly phosphorylated. Proteins involved in the ATM-and-Rad3-related kinase (ATR)-dependent S-phase checkpoint response (Chk1 and Rad17) were also phosphorylated but not ataxia telengectasia mutated kinase. Conclusions Our data demonstrate that 5-ASA causes cells to reversibly accumulate in S phase and activate an ATR-dependent checkpoint. The activation of replication checkpoint may slow down DNA replication and improve DNA replication fidelity, which increases the maintenance of genomic stability and counteracts carcinogenesis. PMID:17241873

  8. Change in photoperiodic cycle affects life span in a prosimian primate (Microcebus murinus).

    PubMed

    Perret, M

    1997-04-01

    The lesser mouse lemur, a small prosimian primate, exhibits seasonal rhythms strictly controlled by photoperiodic variations. Exposure to day lengths shorter than 12 h results in complete sexual rest, fattening, lethargy, and reduced behavioral activities; whereas exposure to day lengths greater than 12 h induces sexual activity, an increase in behavioral activities, and high hormonal levels. The objective of this study was to test whether long-term acceleration of seasonal rhythms may affect survival and longevity of this primate. In captivity, acceleration of seasonal rhythms was obtained by exposing the animals to an accelerated photoperiodic regimen consisting of 5 months of long photoperiod followed by 3 months of short photoperiod. The age-specific survival rate in animals exposed from birth to accelerated photoperiodic conditions (n = 89) was compared to the age-specific survival rate of animals maintained under a natural photoperiod (n = 68). Independent of sexes, the mean life span (45.5 +/- 2.1 months) and maximal survival (79.3 +/- 3.3 months) were significantly (p < .01) shortened in mouse lemurs exposed to the accelerated photoperiodic cycle compared to those in animals living under annual photoperiod (63.2 +/- 2.5 and 98 +/- 3.9 months for mean life span and maximal survival, respectively). This reduction of about 30% of life span was not accompanied by a desynchronization of biological rhythms under photoperiodic control and was not related to an increase in reproduction or in duration of time spent in active conditions. However, when the number of seasonal cycles experienced by 1 individual is considered rather than chronological age, the mean life span was 5 seasonal cycles and maximum survival reached 9-10 cycles, independent of sex or of photoperiodic regimen. These results suggest that in mouse lemurs, as in other seasonal mammals, longevity may depend on the expression of a fixed number of seasonal cycles rather than on a fixed biological age

  9. Transient Rapid Changes in Nutrient Cycling at the Onset of Terrestrial Colonization by Rooted Plants in the Devonian Caithness Flagstone Group, Orkney Islands

    NASA Astrophysics Data System (ADS)

    Filippelli, G. M.; Beshears, M.; Whiteside, J. H.

    2012-12-01

    these events is transient—barring other changes in erosion, the release/retention fluxes of these elements tends toward a steady state. Nevertheless, these results support a flush of the bio-limiting nutrient P into the ocean at the onset of terrestrial colonization by rooting plants which might have temporarily increased global marine productivity, thus impacting carbon cycling and climate.; Modeled transformations in terrestrial P cycling during incipient soil development

  10. Factors Affecting Spatial and Temporal Variability in Nutrient and Pesticide Concentrations in the Surficial Aquifer on the Delmarva Peninsula

    USGS Publications Warehouse

    Debrewer, Linda M.; Ator, Scott W.; Denver, Judith M.

    2007-01-01

    Water quality in the unconfined, unconsolidated surficial aquifer on the Delmarva Peninsula is influenced by the availability of soluble ions from natural and human sources, and by geochemical factors that affect the mobility and fate of these ions within the aquifer. Ground-water samples were collected from 60 wells completed in the surficial aquifer of the peninsula in 2001 and analyzed for major ions, nutrients, and selected pesticides and degradation products. Analytical results were compared to similar data from a subset of sampled wells in 1988, as well as to land use, soils, geology, depth, and other potential explanatory variables to demonstrate the effects of natural and human factors on water quality in the unconfined surficial aquifer. This study was conducted as part of the National Water-Quality Assessment Program of the U.S. Geological Survey, which is designed (in part) to describe the status and trends in ground-water quality and to provide an understanding of natural and human factors that affect ground-water chemistry in different parts of the United States. Results of this study may be useful for water-resources managers tasked with addressing water-quality issues of local and regional importance because the surficial aquifer on the Delmarva Peninsula is a major source of water for domestic and public supply and provides the majority of flow in local streams. Human impacts are apparent in ground-water quality throughout the surficial aquifer. The surficial aquifer on the Delmarva Peninsula is generally sandy and very permeable with well-oxygenated ground water. Dissolved constituents found throughout various depths of the unconfined aquifer are likely derived from the predominantly agricultural practices on the peninsula, although effects of road salt, mineral dissolution, and other natural and human influences are also apparent in some areas. Nitrate occurred at concentrations exceeding natural levels in many areas, and commonly exceeded 10

  11. Peatland simulator connecting drainage, nutrient cycling, forest growth, economy and GHG efflux in boreal and tropical peatlands

    NASA Astrophysics Data System (ADS)

    Lauren, Ari; Hökkä, Hannu; Launiainen, Samuli; Palviainen, Marjo; Lehtonen, Aleksi

    2016-04-01

    Forest growth in peatlands is nutrient limited; principal source of nutrients is the decomposition of organic matter. Excess water decreases O2 diffusion and slows down the nutrient release. Drainage increases organic matter decomposition, CO2 efflux, and nutrient supply, and enhances the growth of forest. Profitability depends on costs, gained extra yield and its allocation into timber assortments, and the rate of interest. We built peatland simulator Susi to define and parameterize these interrelations. We applied Susi-simulator to compute water and nutrient processes, forest growth, and CO2 efflux of forested drained peatland. The simulator computes daily water fluxes and storages in two dimensions for a peatland forest strip located between drainage ditches. The CO2 efflux is made proportional to peat bulk density, soil temperature and O2 availability. Nutrient (N, P, K) release depends on decomposition and peat nutrient content. Growth limiting nutrient is detected by comparing the need and supply of nutrients. Increased supply of growth limiting nutrient is used to quantify the forest growth response to improved drainage. The extra yield is allocated into pulpwood and sawlogs based on volume of growing stock. The net present values of ditch cleaning operation and the gained extra yield are computed under different rates of interest to assess the profitability of the ditch cleaning. The hydrological sub-models of Susi-simulator were first parameterized using daily water flux data from Hyytiälä SMEAR II-site, after which the predictions were tested against independent hydrologic data from two drained peatland forests in Southern Finland. After verification of the hydrologic model, the CO2 efflux, nutrient release and forest growth proportionality hypothesis was tested and model performance validated against long-term forest growth and groundwater level data from 69 forested peatland sample plots in Central Finland. The results showed a clear relation between

  12. Increased Intake of Foods with High Nutrient Density Can Help to Break the Intergenerational Cycle of Malnutrition and Obesity

    PubMed Central

    Troesch, Barbara; Biesalski, Hans K.; Bos, Rolf; Buskens, Erik; Calder, Philip C.; Saris, Wim H. M.; Spieldenner, Jörg; Verkade, Henkjan J.; Weber, Peter; Eggersdorfer, Manfred

    2015-01-01

    A workshop held at the University Medical Center in Groningen, The Netherlands, aimed at discussing the nutritional situation of the population in general and the role diet plays during critical windows in the life course, during which the body is programmed for the development of non-communicable diseases (NCDs). NCDs are increasingly prevalent as our society ages, and nutrition is well known to play an important role in determining the risk and the time of onset of many common NCDs. Even in affluent countries, people have difficulties to achieve adequate intakes for a range of nutrients: Economic constraints as well as modern lifestyles lead people to consume diets with a positive energy balance, but low in micronutrients, resulting in increasing prevalence of obesity and suboptimal nutritional status. Information about nutrient density, which refers to the content of micronutrients relative to energy in food or diets, can help identify foods that have a low calorie to nutrient ratio. It thus allows the consumption of diets that cover nutritional needs without increasing the risk of becoming obese. Given the impact a nutrient dense, low energy diet can have on health, researchers, food industry and governments jointly should develop options for affordable, appealing nutrient-rich food products, which, in combination with physical activity, allow for optimal health throughout the life-course. PMID:26197337

  13. The effects of weed-crop competition on nutrient uptake as affected by crop rotation and fertilizers.

    PubMed

    Mohammaddoust-E-Chamanabad, Hamid Reza; Asghari, Ali; Tulikov, Aleksander Mikhailovic

    2007-11-15

    A field study at the Agricultural University of Timiriazev, Moscow, was conducted to determine the effect of crop rotation and Long-term fertilizer application on differences in the competitive ability of spring barley and weeds to nutrient uptake in 2004 and 2005. Spring barley was cultivated in continuous and in crop rotation with winter rye, potato, clover, flax and fallow, with and without NPK application since 1912. Spring barley, especially in no fertilizer plots grown in crop rotation has greater dry mass than spring barley grown in continuous. While dry weed mass markedly decreased in crop rotation. Decrease dry weeds mass was greater when NPK had applied. The statistical analyses show that when spring barley grew in competition with weeds in the no fertilizer plots, crop rotation significantly increased nutrient content in spring barley, but when fertilizer applied the content of N, P2O5 and K2O in barley did not change. Lowest weeds nutrient content observed where soil fertility was increased by crop rotation and NPK application. Crop rotation significantly increased total nutrient uptake of soils by spring barley, but decreased total nutrient uptake by weeds. PMID:19090292

  14. Comparison of two methods for estimating discharge and nutrient loads from Tidally affected reaches of the Myakka and Peace Rivers, West-Central Florida

    USGS Publications Warehouse

    Levesque, V.A.; Hammett, K.M.

    1997-01-01

    The Myakka and Peace River Basins constitute more than 60 percent of the total inflow area and contribute more than half the total tributary inflow to the Charlotte Harbor estuarine system. Water discharge and nutrient enrichment have been identified as significant concerns in the estuary, and consequently, it is important to accurately estimate the magnitude of discharges and nutrient loads transported by inflows from both rivers. Two methods for estimating discharge and nutrient loads from tidally affected reaches of the Myakka and Peace Rivers were compared. The first method was a tidal-estimation method, in which discharge and nutrient loads were estimated based on stage, water-velocity, discharge, and water-quality data collected near the mouths of the rivers. The second method was a traditional basin-ratio method in which discharge and nutrient loads at the mouths were estimated from discharge and loads measured at upstream stations. Stage and water-velocity data were collected near the river mouths by submersible instruments, deployed in situ, and discharge measurements were made with an acoustic Doppler current profiler. The data collected near the mouths of the Myakka River and Peace River were filtered, using a low-pass filter, to remove daily mixed-tide effects with periods less than about 2 days. The filtered data from near the river mouths were used to calculate daily mean discharge and nutrient loads. These tidal-estimation-method values were then compared to the basin-ratio-method values. Four separate 30-day periods of differing streamflow conditions were chosen for monitoring and comparison. Discharge and nutrient load estimates computed from the tidal-estimation and basin-ratio methods were most similar during high-flow periods. However, during high flow, the values computed from the tidal-estimation method for the Myakka and Peace Rivers were consistently lower than the values computed from the basin-ratio method. There were substantial

  15. Exploring the nutrient inputs and cycles in Tampa Bay and coastal watersheds using MODIS images and data mining

    NASA Astrophysics Data System (ADS)

    Chang, Ni-Bin; Xuan, Zhemin

    2011-09-01

    Excessive nutrients, which may be represented as Total Nitrogen (TN) and Total Phosphorus (TP) levels, in natural water systems have proven to cause high levels of algae production. The process of phytoplankton growth which consumes the excess TN and TP in a water body can also be related to the changing water quality levels, such as Dissolved Oxygen (DO), chlorophyll-a, and turbidity, associated with their changes in absorbance of natural radiation. This paper explores spatiotemporal nutrient patterns in Tampa Bay, Florida with the aid of Moderate Resolution Imaging Spectroradiometer or MODIS images and Genetic Programming (GP) models that are deigned to link those relevant water quality parameters in aquatic environments.

  16. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling.

    PubMed

    Green, Dannielle Senga; Boots, Bas; Sigwart, Julia; Jiang, Shan; Rocha, Carlos

    2016-01-01

    Effects of microplastic pollution on benthic organisms and ecosystem services provided by sedimentary habitats are largely unknown. An outdoor mesocosm experiment was done to realistically assess the effects of three different types of microplastic pollution (one biodegradable type; polylactic acid and two conventional types; polyethylene and polyvinylchloride) at increasing concentrations (0.02, 0.2 and 2% of wet sediment weight) on the health and biological activity of lugworms, Arenicola marina (Linnaeus, 1758), and on nitrogen cycling and primary productivity of the sediment they inhabit. After 31 days, A. marina produced less casts in sediments containing microplastics. Metabolic rates of A. marina increased, while microalgal biomass decreased at high concentrations, compared to sediments with low concentrations or without microplastics. Responses were strongest to polyvinylchloride, emphasising that different materials may have differential effects. Each material needs to be carefully evaluated in order to assess their risks as microplastic pollution. Overall, both conventional and biodegradable microplastics in sandy sediments can affect the health and behaviour of lugworms and directly or indirectly reduce primary productivity of these habitats. PMID:26552519

  17. Menstrual cycle and sex affect hemodynamic responses to combined orthostatic and heat stress.

    PubMed

    Meendering, Jessica R; Torgrimson, Britta N; Houghton, Belinda L; Halliwill, John R; Minson, Christopher T

    2005-08-01

    Women have decreased orthostatic tolerance compared with men, and anecdotal evidence suggests women are more susceptible to orthostatic intolerance in warm environments. Because estrogen and progesterone affect numerous physiological variables that may alter orthostatic tolerance, the purpose of our study was to compare orthostatic tolerance across the menstrual cycle phases in women during combined orthostatic and heat stress and to compare these data with those of men. Eight normally menstruating women and eight males (22 +/- 4.0 and 23 +/- 3.5 yr, respectively) completed the protocol. Women were studied during their early follicular (EF), ovulatory (OV), and midluteal (ML) phases. Men were studied twice within 2-4 wk. Heart rate, cardiac output, blood pressure, core temperature (T(c)), and cutaneous vascular conductance (CVC) were measured during three head-up tilt tests, consisting of two tilts in the thermoneutral condition and one tilt after a 0.5 degrees C rise in T(c). There was no difference in orthostatic tolerance across the menstrual cycle phases, despite higher CVC in the ML phase after heating (EF, 42.3 +/- 4.8; OV, 40.1 +/- 3.7; ML, 57.5 +/- 4.5; P < 0.05). Orthostatic tolerance in the heat was greater in men than women (P < 0.05). These data suggest that although many physiological variables associated with blood pressure regulation fluctuate during the menstrual cycle, orthostatic tolerance in the heat remains unchanged. Additionally, our data support a clear sex difference in orthostatic tolerance and extend upon previous data to show that the sex difference in the heat is not attributable to fluctuating hormone profiles during the menstrual cycle. PMID:15778279

  18. The Potato Systems Planner: Integrating Cropping System Impacts on Crop Yield and Quality, Soil Biology, Nutrient Cycling, Diseases, and Economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Finding and developing profitable cropping systems is a high priority for the potato industry. Consequently, an interdisciplinary team of ARS scientists from the New England Plant, Soil, & Water Laboratory evaluated 14 different rotations for their impacts on crop yield and quality, nutrient availa...

  19. Sediment resuspension by coastal waters: a potential mechanism for nutrient re-cycling on the ocean's margins

    NASA Astrophysics Data System (ADS)

    Fanning, Kent A.; Carder, Kendall L.; Betzer, Peter R.

    1982-08-01

    Nutrient profiles from the continental shelf of the northeastern Gulf of Mexico indicated considerable near-bottom enrichment in silica and nitrate above coarse sediments east of the Mississippi delta. In contrast, near-bottom water of the carbonate-rich West Florida Shelf showed no such enrichmmets. Storm-related suspension apparently produced the enrichments because, in near-bottom waters south of Mobile Bay, silica, nitrate plus nitrite, and suspended load increased subbtantially as a winter storm front passed. Also, laboratory simulation of resuspension by stirring the supernatant seawater over a clay-rich core produced similar increase in silica and nitrate plus nitrite, with ammonia being the apparent precursor to the nitrate and nitrite. Most of the nutrient increase appeared to come from previously deposited sediments in the early stages of resuspension. Using the ratios of nutrients released to sediments resuspended, calculations indicate that resuspension of as little as 1 mm of shelf sediment could intermittenly augment overlying productivity by as much as 100 to 200%. Thus, resuspension may accelerate nutrient recycling on continental margins.

  20. Nutrient demand interacts with legume particle length to affect digestion responses and rumen pool sizes in dairy cows.

    PubMed

    Kammes, K L; Ying, Y; Allen, M S

    2012-05-01

    Effects of legume particle length on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, and digestion and passage kinetics, and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 13 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 19-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 22.8 to 32.4 kg/d (mean=26.5 kg/d) and 3.5% fat-corrected milk yield ranged from 22.9 to 62.4 kg/d (mean=35.1 kg/d). Experimental treatments were diets containing alfalfa silage chopped to (1) 19 mm (long cut, LC) or (2) 10 mm (short cut, SC) theoretical length of cut as the sole forage. Alfalfa silages contained approximately 43% neutral detergent fiber (NDF); diets contained approximately 47% forage and 20% forage NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4 d of the preliminary period, when cows were fed a common diet, and used as a covariate. Main effects of legume particle length and their interaction with pDMI were tested by ANOVA. Alfalfa particle length and its interaction with pDMI did not affect milk yield or rumen pH. The LC diet decreased milk fat concentration more per kilogram of pDMI increase than the SC diet and increased yields of milk fat and fat-corrected milk less per kilogram of pDMI increase than the SC diet, resulting in a greater benefit for LC at low pDMI and for SC at high pDMI. The LC diet tended to decrease DMI compared with the SC diet. Ruminal digestion and passage rates of feed fractions did not differ between LC and SC and were not related to level of intake. The LC diet tended to decrease the rate of ruminal turnover for NDF but increased NDF rumen pools at a slower rate than the SC diet as pDMI increased. This indicated that the faster NDF turnover rate did not counterbalance the higher DMI for SC, resulting in larger NDF rumen pools for SC than LC. As p

  1. Ready To Eat Cereal (RTEC) Consumption Positively Affects Total Daily Nutrient Intakes in Hispanic Children and Adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To examine the impact of breakfast meal pattern on nutrient intake status of Hispanic children and adolescents (N=3220), we compared breakfast skippers (S), RTEC, and other breakfast consumers using 24-hour recall data from the 1999-2002 National Health and Nutrition Examination Survey. Our data ind...

  2. Composting of biochars improves their sorption properties, retains nutrients during composting and affects greenhouse gas emissions after soil application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar application to soils has been suggested to elevate nutrient sorption, improve soil fertility and reduce net greenhouse gas (GHG) emissions. We examined the impact of composting biochar together with a biologically active substrate (i.e., livestock manure-straw mixture). We hypothesized that ...

  3. A nutritional profile of the social wasp Polistes metricus: differences in nutrient levels between castes and changes within castes during the annual life cycle.

    PubMed

    Judd, Timothy M; Magnus, Roxane M; Fasnacht, Matthew P

    2010-01-01

    In wasps, nutrition plays a vital role for colony cohesion and caste determination. However, there is no baseline data set for the nutritional levels of wasps during the different stages of the colony cycle. Here we examined the levels of carbohydrates, lipids, protein, Ca, Cu, Fe, K, Mg, Mn, Na, and Zn in the wasp Polistes metricus at different stages of the wasp's lifecycle. Individuals were collected at the following stages (1) spring gynes, (2) foundress colonies, (3) early worker colonies, (4) late worker colonies, (5) emerging reproductives (gynes and males), (6) early fall reproductives, and (7) late fall reproductives. All eggs, larvae, pupae and adults were analyzed for their nutritional content to determine if there were any differences between the nutrient levels in the different castes and how these nutrients changed within a caste during its lifetime. The results show there are differences in macro and micronutrient levels between the reproductive females and workers during development. Gynes showed changes in nutrient levels during their lifetime especially as they changed roles from a solitary individual to a nesting queen. Males also showed distinct nutritional changes during their lifetime. The implications for these nutritional differences are discussed. PMID:19781547

  4. Dietary antioxidants and flight exercise in female birds affect allocation of nutrients to eggs: how carry-over effects work.

    PubMed

    Skrip, Megan M; Seeram, Navindra P; Yuan, Tao; Ma, Hang; McWilliams, Scott R

    2016-09-01

    Physiological challenges during one part of the annual cycle can carry over and affect performance at a subsequent phase, and antioxidants could be one mediator of trade-offs between phases. We performed a controlled experiment with zebra finches to examine how songbirds use nutrition to manage trade-offs in antioxidant allocation between endurance flight and subsequent reproduction. Our treatment groups included (1) a non-supplemented, non-exercised group (control group) fed a standard diet with no exercise beyond that experienced during normal activity in an aviary; (2) a supplemented non-exercised group fed a water- and lipid-soluble antioxidant-supplemented diet with no exercise; (3) a non-supplemented exercised group fed a standard diet and trained to perform daily endurance flight for 6 weeks; and (4) a supplemented exercised group fed an antioxidant-supplemented diet and trained to perform daily flight for 6 weeks. After flight training, birds were paired within treatment groups for breeding. We analyzed eggs for lutein and vitamin E concentrations and the plasma of parents throughout the experiment for non-enzymatic antioxidant capacity and oxidative damage. Exercised birds had higher oxidative damage levels than non-exercised birds after flight training, despite supplementation with dietary antioxidants. Supplementation with water-soluble antioxidants decreased the deposition of lipid-soluble antioxidants into eggs and decreased yolk size. Flight exercise also lowered deposition of lutein, but not vitamin E, to eggs. These findings have important implications for future studies of wild birds during migration and other oxidative challenges. PMID:27582563

  5. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007-2010.

    PubMed

    Cifelli, Christopher J; Houchins, Jenny A; Demmer, Elieke; Fulgoni, Victor L

    2016-01-01

    Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 for persons two years and older (n = 17,387) were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i) plant-based foods; (ii) protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy); and (iii) milk, cheese and yogurt. Scenarios (i) and (ii) had commensurate reductions in animal product intake. In both children (2-18 years) and adults (≥19 years), the percent not meeting the Estimated Average Requirement (EAR) decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that increasing plant

  6. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007–2010

    PubMed Central

    Cifelli, Christopher J.; Houchins, Jenny A.; Demmer, Elieke; Fulgoni, Victor L.

    2016-01-01

    Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES) 2007–2010 for persons two years and older (n = 17,387) were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i) plant-based foods; (ii) protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy); and (iii) milk, cheese and yogurt. Scenarios (i) and (ii) had commensurate reductions in animal product intake. In both children (2–18 years) and adults (≥19 years), the percent not meeting the Estimated Average Requirement (EAR) decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that increasing plant

  7. Aquaporin-1 plays important role in proliferation by affecting cell cycle progression.

    PubMed

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Toledo-Aral, Juan José; Echevarría, Miriam

    2016-01-01

    Aquaporin-1 (AQP1) has been associated with tumor development. Here, we investigated how AQP1 may affect cell proliferation. The proliferative rate of adult carotid body (CB) cells, known to proliferate under chronic hypoxia, was analyzed in wild-type (AQP1(+/+) ) and knock out (AQP1(-/-) ) mice, maintained in normoxia or exposed to hypoxia while BrdU was administered. Fewer numbers of total BrdU(+) and TH-BrdU(+) cells were observed in AQP1(-/-) mice, indicating a role for AQP1 in CB proliferation. Then, by flow cytometry, cell cycle state and proliferation of cells overexpressing AQP1 were compared to those of wild-type cells. In the AQP1-overexpressing cells, we observed higher cell proliferation and percentages of cells in phases S and G2/M and fewer apoptotic cells after nocodazole treatment were detected by annexin V staining. Also in these cells, proteomic assays showed higher expression of cyclin D1 and E1 and microarray analysis revealed changes in many cell proliferation-related molecules, including, Zeb 2, Jun, NF-kβ, Cxcl9, Cxcl10, TNF, and the TNF receptor. Overall, our results indicate that the presence of AQP1 modifies the expression of key cell cycle proteins apparently related to increases in cell proliferation. This contributes to explaining the presence of AQP1 in many different tumors. PMID:26081645

  8. Sex hormones affect language lateralisation but not cognitive control in normally cycling women.

    PubMed

    Hodgetts, Sophie; Weis, Susanne; Hausmann, Markus

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". Natural fluctuations of sex hormones during the menstrual cycle have been shown to modulate language lateralisation. Using the dichotic listening (DL) paradigm, a well-established measurement of language lateralisation, several studies revealed that the left hemispheric language dominance was stronger when levels of estradiol were high. A recent study (Hjelmervik et al., 2012) showed, however, that high levels of follicular estradiol increased lateralisation only in a condition that required participants to cognitively control (top-down) the stimulus-driven (bottom-up) response. This finding suggested that sex hormones modulate lateralisation only if cognitive control demands are high. The present study investigated language lateralisation in 73 normally cycling women under three attention conditions that differed in cognitive control demands. Saliva estradiol and progesterone levels were determined by luminescence immunoassays. Women were allocated to a high or low estradiol group. The results showed a reduced language lateralisation when estradiol and progesterone levels were high. The effect was independent of the attention condition indicating that estradiol marginally affected cognitive control. The findings might suggest that high levels of estradiol especially reduce the stimulus-driven (bottom-up) aspect of lateralisation rather than top-down cognitive control. PMID:26145565

  9. Assessment of Water and Nitrate-N deep percolation fluxes in soil as affected by irrigation and nutrient management practices

    NASA Astrophysics Data System (ADS)

    Tsehaye, Habte; Ceglie, Francesco; Mimiola, Giancarlo; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Many farming practices can result in contamination of groundwater, due to the downward migration of fertilizers and pesticides through the soil profile. The detrimental effects of this contamination are not limited to deterioration of chemical and physical properties of soils and waters, but also constitute a real risk to human and ecosystem health. Groundwater contamination may come from a very large array of chemicals. Nevertheless, on a global scale the main cause of pollution is a high nitrate concentration in the aquifer water. Nitrate concentrations of groundwater have constantly increased during the last decades, and the widespread use of commercial N fertilizers has been implicated as the main causative factor. It is often claimed that nutrient management in organic farming is more environmentally sustainable than its conventional counterpart. It is commonly presumed that organic agriculture causes only minimal environmental pollution. There is scientific evidence that organic management may enhance some soil physical and biological properties. In particular, soil fertility management strategies can affect soil properties and the related hydrological processes. It is thus crucial to quantify and predict management effects on soil properties in order to evaluate the effects of soil type, natural processes such as decomposition of organic matter, irrigation applications and preferential flow on the deep percolation fluxes of water and nitrates to the groundwater. In this study, we measured the water fluxes and the quality of water percolating below the root zone, underlying organic agriculture systems in greenhouse. Specifically, the aim was to examine the effects of application time and type of organic matter in the soil on the nitrate-N deep percolation fluxes under the following three organic soil fertility strategies in greenhouse tomato experiment: i. Organic input Substitution (which will be hereafter denoted SUBST) is represented as typical

  10. Composting of waste paint sludge containing melamine resin as affected by nutrients and gypsum addition and microbial inoculation.

    PubMed

    Tian, Yongqiang; Chen, Liming; Gao, Lihong; Michel, Frederick C; Wan, Caixia; Li, Yebo; Dick, Warren A

    2012-03-01

    Melamine formaldehyde resins have hard and durable properties and are found in many products, including automobile paints. These resins contain high concentrations of nitrogen and, if properly composted, can yield valuable products. We evaluated the effects of starter compost, nutrients, gypsum and microbial inoculation on composting of paint sludge containing melamine resin. A bench-scale composting experiment was conducted at 55 °C for 91 days and then at 30 °C for an additional 56 days. After 91 days, the composts were inoculated with a mixed population of melamine-degrading microorganisms. Melamine resin degradation after the entire 147 days of composting varied between 73 and 95% for the treatments with inoculation of microorganisms compared to 55-74% for the treatments without inoculation. Degradation was also enhanced by nutrients and gypsum additions. Our results infer that large scale composting of melamine resins in paint sludge is possible. PMID:22243857

  11. Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability

    USGS Publications Warehouse

    Lorenzen, B.; Brix, H.; Mendelssohn, I.A.; McKee, K.L.; Miao, S.L.

    2001-01-01

    The effects of phosphorus (P) and oxygen availability on growth, biomass allocation and nutrient use efficiency in Cladium jamaicense Crantz and Typha domingensis Pers. were studied in a growth facility equipped with steady-state hydroponic rhizotrons. The treatments included four P concentrations (10, 40, 80 and 500 ??g I-1) and two oxygen concentration (8.0 and <0.5 mg O2 I-1) in the culture solutions. In Cladium, no clear relationship was found between P availability and growth rate (19-37 mg g-1 d-1), the above to below ground biomass ratio (A/B) (mean = 4.6), or nitrogen use efficiency (NUE) (mean = 72 g dry weight g-1 N). However, the ratio between root supported tissue (leaves, rhizomes and ramets) and root biomass (S/R) (5.6-8) increased with P availability. In contrast, the growth rate (48-89 mg g-1 d-1) and the biomass ratios A/B (2.4-6.1) and S/R (5.4-10.3) of Typha increased with P availability, while NUE (71-30 g dry weight g-1 N) decreased. The proportion of root laterals was similar in the two species, but Typha had thinner root laterals (diameter = 186 ??m) than Cladium (diameter = 438 ??m) indicating a larger root surface area in Typha. The two species had a similar P use efficiency (PUE) at 10 ??g PI-1 (mean = 1134 g dry weight g-1 P) and at 40 and 80 ??g PI-1 (mean = 482 dry weight g-1 P) but the N/P ratio indicated imbalances in nutrient uptake at a higher P concentration (40 ??g PI-1) in Typha than in Cladium (10 ??g PI-1). The two species had similar root specific P accumulation rate at the two lowest P levels, whereas Typha had 3-13-fold higher P uptake rates at the two highest P levels, indicating a higher nutrient uptake capacity in Typha. The experimental oxygen concentration in the rhizosphere had only limited effect on the growth of the two species and had little effect on biomass partitioning and nutrient use efficiency. The aerenchyma in these species was probably sufficient to maintain adequate root oxygenation under partially oxygen

  12. Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects

    PubMed Central

    2012-01-01

    Background Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects. Results Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity. Conclusions Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration. PMID:23006315

  13. Martian base agriculture: The effect of low gravity on water flow, nutrient cycles, and microbial biomass dynamics

    NASA Astrophysics Data System (ADS)

    Maggi, Federico; Pallud, Céline

    2010-11-01

    The latest advances in bioregenerative strategies for long-term life support in extraterrestrial outposts such as on Mars have indicated soil-based cropping as an effective approach for waste decomposition, carbon sequestration, oxygen production, and water biofiltration as compared to hydroponics and aeroponics cropping. However, it is still unknown if cropping using soil systems could be sustainable in a Martian greenhouse under a gravity of 0.38 g. The most challenging aspects are linked to the gravity-induced soil water flow; because water is crucial in driving nutrient and oxygen transport in both liquid and gaseous phases, a gravitational acceleration lower than g = 9.806 m s -2 could lead to suffocation of microorganisms and roots, with concomitant emissions of toxic gases. The effect of Martian gravity on soil processes was investigated using a highly mechanistic model previously tested for terrestrial crops that couples soil hydraulics and nutrient biogeochemistry. Net leaching of NO3- solute, gaseous fluxes of NH 3, CO 2, N 2O, NO and N 2, depth concentrations of O 2, CO 2 and dissolved organic carbon (DOC), and pH in the root zone were calculated for a bioregenerative cropping unit under gravitational acceleration of Earth and for its homologous on Mars, but under 0.38 g. The two cropping units were treated with the same fertilizer type and rate, and with the same irrigation regime, but under different initial soil moisture content. Martian gravity reduced water and solute leaching by about 90% compared to Earth. This higher water holding capacity in soil under Martian gravity led to moisture content and nutrient concentrations that favoured the metabolism of various microbial functional groups, whose density increased by 5-10% on Mars as compared to Earth. Denitrification rates became substantially more important than on Earth and ultimately resulted in 60%, 200% and 1200% higher emissions of NO, N 2O and N 2 gases, respectively. Similarly, O 2 and DOC

  14. Integration of soil microbial processes in a reactive transport model for simulating effects of root-controlled water flow on carbon and nutrient cycling

    NASA Astrophysics Data System (ADS)

    Espeleta, J. F.; Cardon, Z. G.; Mayer, K. U.; Rastetter, E. B.; Neumann, R. B.

    2013-12-01

    The rhizosphere is a hotbed of microbial activity in terrestrial ecosystems, and numerous models of rhizosphere dynamics have been focused in two main arenas: (1) water flow and nutrient transport around roots, and (2) carbon and nutrient exchanges between roots and microbes. However, coupling of microbial processes with physical flow (water and nutrients) in soils around plant roots is key to understanding how water, carbon and nutrient cycles interact at different scales. In order to explore how spatial distribution and timing of water flow directed by plant roots shapes rhizosphere biogeochemical function, we have developed a mechanistic model that combines a microbial food web with dynamic water flow and associated solute transport (advection, diffusion and cation exchange). We used the flexibility of a previously developed code, MIN3P (a multicomponent reactive transport model developed for variably saturated porous media) and incorporated microbial processes of carbon and nitrogen uptake, assimilation and secretion; microbial growth and death; exo-enzyme production; protozoal grazing, and soil organic matter decomposition within a soil matrix. We focused our attention at the mm-spatial scale, exploring the interaction of temporal oscillations in the magnitude and direction of water flow with soil C and N gradients. In this first modeling step, we prescribed dynamic soil water content representative of the transpiration stream (soil water loss) and hydraulic redistribution (soil water gain), as well as the flux of carbon into the soil. Although we are still in the process of building explicit root and plant behavior into the model, our preliminary results suggest that the diel pulsing of water out/into the soil can potentially change patterns of microbial C/N limitation and soil N availability. We are currently expanding our model to include the effect of plant root processes (uptake and exudation) and investigating the mechanisms explaining the interplay

  15. The impact of pasture conversion on nutrient cycles of tropical streams on the Osa Peninsula, Costa Rica: a paired catchment approach

    NASA Astrophysics Data System (ADS)

    Bringhurst, K.; Jordan, P.

    2011-12-01

    Changes in nutrient and hydrologic cycles caused by land disturbance typically lead to detrimental changes to ecosystems. This study utilized a paired, small-catchment approach to examine the effect of deforestation on nutrient transfer and hydrological discharge and the resulting impact on soils and streams of the Osa Peninsula, Costa Rica. Two first order streams were chosen, the first catchment had been cleared for pasture and the second consisted of undisturbed tropical wet forest. Soil concentrations of organic matter, total and soil available P were higher in the forested catchment with decreases of >33% of each in the deforested catchment. The effect of deforestation on stream discharge was a 59% increase in flow during the wet season and an increase in the Q5:Q95 ratio showing that the deforested stream was flashier. The deforested catchment loss of dissolved inorganic nitrogen (DIN) increased 95% over the forested catchment. Soluble reactive phosphorus (SRP) showed an increase in load of 43% in the deforested catchment compared to the forested catchment. The molar N:P ratios were lower than the Redfield ratio and both streams were well below the level at which N-limitation of lotic algal growth has been reported, therefore it is hypothesized that N is the limiting nutrient in streams in the study area. Soil nutrient depletion in the deforested catchment, accelerated by a changed hydrologic regime, is the likely trajectory of soil-water interactions in this tropical ecosystem. This will likely be among the secondary impacts should deforestation become widespread along this stretch of the Pacific coastline, with associated eutrophication of receiving transitional and coastal waters.

  16. Growing environment and nutrient availability affect the content of some phenolic compounds in Echinacea purpurea and Echinacea angustifolia.

    PubMed

    Zheng, Youbin; Dixon, Mike; Saxena, Praveen K

    2006-12-01

    Medicinal plant production is different from other agricultural production systems in that the plants are grown for the production of specific phytochemical(s) for human use. To address this need, a Good Manufacturing Practice (GMP)-compliant, controlled-environment production system was developed for production of Echinacea purpurea and Echinacea angustifolia. Within the prototype facility, the growing systems, nutrient availability, water and physical environment were highly controlled. The current study was designed to evaluate the effects of different hydroponic systems, nutrient solution NO (3)(-)/NH (4)(+) ratios and mild water stress on the content of some phenolic compounds in Echinacea plants. The deep-flow solution culture system in which the plant roots were continuously immersed in the nutrient solutions was optimum for the growth of E. purpurea. Higher concentrations of caftaric acid, cynarin and echinacoside were produced in E. angustifolia plants grown in the soil-based growing media while the plants grown in the deep-flow solution system had higher levels of cichoric acid. Altering the NO (3)(-)/NH (4)(+) ratio or limited water stress did not have any significant effect on the phytochemical content of Echinacea plants. Echinacea plants grown in the controlled environment systems had higher or similar amounts of cynarin, caftaric acid, echinacoside and cichoric acid as previously reported in the literature for both field-cultivated and wild-harvested Echinacea plants. This growing system offers the advantages of year-round crop production with minimal contamination by environmental pollutants and common microbes. PMID:17054043

  17. Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status.

    PubMed

    Pii, Youry; Cesco, Stefano; Mimmo, Tanja

    2015-09-01

    The elemental composition of a tissue or organism is defined as ionome. However, the combined effects on the shoot ionome determined by the taxonomic character, the nutrient status and different substrates have not been investigated. This study tests the hypothesis that phylogenetic variation of monocots and dicots grown in iron deficiency can be distinguished by the shoot ionome. We analyzed 18 elements in barley, cucumber and tomato and in two substrates (hydroponic vs soil) with different nutritional regimes. Multivariate analysis evidenced a clear separation between the species. In hydroponic conditions the main drivers separating the species are non essential-nutrients as Ti, Al, Na and Li, which were positively correlated with macro- (P, K) and micronutrients (Fe, Zn, Mo, B). The separation between species is confirmed when plants are grown on soil, but the distribution is determined especially by macronutrients (S, P, K, Ca, Mg) and micronutrients (B). A number of macro (Mg, Ca, S, P, K) and micronutrients (Fe, Mn, Zn, Cu, Mo, B) contribute to plant growth and several other important physiological and metabolic plant activities. The results reported here confirmed that the synergism and antagonism between them and other non-essential elements (Ti, Al, Si, Na) define the plant taxonomic character. The ionome profile might thus be exploited as a tool for the diagnosis of plants physiological/nutritional status but also in defining biofortification strategies to optimize both mineral enrichment of staple food crops and the nutrient input as fertilizers. PMID:26004913

  18. Biogeochemical characterization of the Cointzio reservoir (Morelia, Mexico) and identification of a watershed-dependent cycling of nutrients

    NASA Astrophysics Data System (ADS)

    Némery, J.; Alvarado, R.; Gratiot, N.; Duvert, C.; Mahé, F.; Duwig, C.; Bonnet, M.; Prat, C.; Esteves, M.

    2009-12-01

    The Cointzio reservoir (capacity 70 Mm3) is an essential component of the drinking water supply (20 %) of Morelia city (1 M inhabitants, Michoacán, Mexico). The watershed is 627 km2 and mainly forested (45 %) and cultivated (43 %) with recent increase of avocados plantations. The mean population density is 65 inh./km2 and there are no waste water treatment plants in the villages leading locally to high levels of organic and nutritive pollution. Soils are mostly volcanic and recent deforestations have led to important processes of erosion especially during the wet season (from June to October). As a result the reservoir presents a high turbidity level (Secchi < 20 cm) and has lost 20 % of its storage capacity through siltation since its building in 1940. The high turbidity renders the water potabilization processes difficult. Moreover, eutrophication and development of undesirable algae such as Cyanobacteria may even increase the water treatment cost. A weekly composite sampling was realized in 2009 at the reservoir entry and exit in order to determine nutrients mass balance. At the reservoir entrance, discharges were measured continuously. At the exit, discharges were obtained from the Comición Nacional Del Agua (CNA). The water residence time in the reservoir is lower than one year. Nutrients fluxes entering and exiting the reservoir were calculated as the product of water discharges and weekly concentrations of nutrients. Within the reservoir, the vertical distributions of temperature, oxygen, turbidity, pH (with a Hydrolab probe), nutrients (PO43-, NH4+, NO3-), Dissolved Organic Carbon, chlorophyll a (laboratory analysis with a Hach Lange spectrophotometer), phytoplankton and zooplankton (variety and abundance) were measured every month to determine its seasonal dynamics. Samples of deposited sediments were also taken to assess phosphorus (P) stock. Nutrient inputs revealed to be strongly conditioned by the watershed hydrology. During low flow period (November

  19. Elevated Progesterone Levels on the Day of Oocyte Maturation May Affect Top Quality Embryo IVF Cycles

    PubMed Central

    Huang, Bo; Ren, Xinling; Wu, Li; Zhu, Lixia; Xu, Bei; Li, Yufeng; Ai, Jihui; Jin, Lei

    2016-01-01

    In contrast to the impact of elevated progesterone on endometrial receptivity, the data on whether increased progesterone levels affects the quality of embryos is still limited. This study retrospectively enrolled 4,236 fresh in vitro fertilization (IVF) cycles and sought to determine whether increased progesterone is associated with adverse outcomes with regard to top quality embryos (TQE). The results showed that the TQE rate significantly correlated with progesterone levels on the day of human chorionic gonadotropin (hCG) trigger (P = 0.009). Multivariate linear regression analysis of factors related to the TQE rate, in conventional IVF cycles, showed that the TQE rate was negatively associated with progesterone concentration on the day of hCG (OR was -1.658, 95% CI: -2.806 to -0.510, P = 0.005). When the serum progesterone level was within the interval 2.0–2.5 ng/ml, the TQE rate was significantly lower (P <0.05) than when the progesterone level was < 1.0 ng/ml; similar results were obtained for serum progesterone levels >2.5 ng/ml. Then, we choose a progesterone level at 1.5ng/ml, 2.0 ng/ml and 2.5 ng/ml as cut-off points to verify this result. We found that the TQE rate was significantly different (P <0.05) between serum progesterone levels < 2.0 ng/ml and >2.0 ng/ml. In conclusion, the results of this study clearly demonstrated a negative effect of elevated progesterone levels on the day of hCG trigger, on TQE rate, regardless of the basal FSH, the total gonadotropin, the age of the woman, or the time of ovarian stimulation. These data demonstrate that elevated progesterone levels (>2.0 ng/ml) before oocyte maturation were consistently detrimental to the oocyte. PMID:26745711

  20. Nutrient-based ecological consideration of a temporary river catchment affected by a reservoir operation to facilitate efficient management.

    PubMed

    Tzoraki, Ourania A; Dörflinger, Gerald; Kathijotes, Nicholas; Kontou, Artemis

    2014-01-01

    The water quality status of the Kouris river in Cyprus was examined in order to fulfil the requirements for ecological quality as defined by the Water Framework Directive-2000/60/EC. Nitrate concentration (mean value) was increased in the Limnatis (2.8 mg L(-1)) tributary in comparison with the Kryos (2.1 mg L(-1)) and Kouris (1.0 mg L(-1)) tributaries depicting the influence of anthropogenic activities. The total maximum daily nutrients loads (TMDLs) based on the flow duration curves approach, showed that nutrients loads exceeded threshold values (33.3-75.6% in all hydrologic condition classes in the Kouris tributary, and 65-78% in the Limnatis tributary) especially under low flow conditions. The TMDL graph is intended to guide the temporal schedule for chemical sampling in all hydrologic classes. Kouris reservoir is an oligotrophic system, strongly influenced by the river's flash-flood character but also by the implemented management practices. Kouris river outflow, which was reduced to one-tenth in the post dam period altered the wetland hydrologic network and contributed to the decrease of aquifer thickness. Continuous evaluation and update of the River Basin Management Plans will be the basis for the sustainable development of the Kouris basin. PMID:24569286

  1. Phosphorus availability and elevated CO2 affect biological nitrogen fixation and nutrient fluxes in a clover-dominated sward.

    PubMed

    Edwards, Everard J; McCaffery, Stephanie; Evans, John R

    2006-01-01

    The response of biological nitrogen fixation (BNF) to elevated CO(2) was examined in white clover (Trifolium repens)-dominated swards under both high and low phosphorus availability. Mixed swards of clover and buffalo grass (Stenotaphrum secundatum) were grown for 15 months in 0.2 m2 sand-filled mesocosms under two CO2 treatments (ambient and twice ambient) and three nutrient treatments [no N, and either low or high P (5 or 134 kg P ha(-1)); the third nutrient treatment was supplied with high P and N (240 kg N ha(-1))]. Under ambient CO2, high P increased BNF from 410 to 900 kg ha(-1). Elevated CO2 further increased BNF to 1180 kg ha(-1) with high P, but there was no effect of CO2 on BNF with low P. Allocation of N belowground increased by approx. 50% under elevated CO2 irrespective of supplied P. The results suggest that where soil P availability is low, elevated CO2 will not increase BNF, and pasture quality could decrease because of a reduction in aboveground N. PMID:16390427

  2. Nutrient limitation leads to penetrative growth into agar and affects aroma formation in Pichia fabianii, P. kudriavzevii and Saccharomyces cerevisiae.

    PubMed

    van Rijswijck, Irma M H; Dijksterhuis, Jan; Wolkers-Rooijackers, Judith C M; Abee, Tjakko; Smid, Eddy J

    2015-01-01

    Among fermentative yeast species, Saccharomyces cerevisiae is most frequently used as a model organism, although other yeast species may have special features that make them interesting candidates to apply in food-fermentation processes. In this study, we used three yeast species isolated from fermented masau (Ziziphus mauritiana) fruit, S. cerevisiae 131, Pichia fabianii 65 and Pichia kudriavzevii 129, and determined the impact of nitrogen and/or glucose limitation on surface growth mode and the production of volatile organic compounds (VOCs). All three species displayed significant changes in growth mode in all nutrient-limited conditions, signified by the formation of metafilaments or pseudohyphae. The timing of the transition was found to be species-specific. Transition in growth mode is suggested to be linked to the production of certain fusel alcohols, such as phenylethyl alcohol, which serve as quorum-sensing molecules. Interestingly, we did not observe concomitant increased production of phenylethyl alcohol and filamentous growth. Notably, a broader range of esters was found only for the Pichia spp. grown on nitrogen-limited agar for 21 days compared to nutrient-rich agar, and when grown on glucose- and glucose- plus nitrogen-limited agar. Our data suggest that for the Pichia spp., the formation of esters may play an important role in the switch in growth mode upon nitrogen limitation. Further biological or ecological implications of ester formation are discussed. PMID:25308873

  3. Antecedent acute cycling exercise affects attention control: an ERP study using attention network test

    PubMed Central

    Chang, Yu-Kai; Pesce, Caterina; Chiang, Yi-Te; Kuo, Cheng-Yuh; Fong, Dong-Yang

    2015-01-01

    The purpose of this study was to investigate the after-effects of an acute bout of moderate intensity aerobic cycling exercise on neuroelectric and behavioral indices of efficiency of three attentional networks: alerting, orienting, and executive (conflict) control. Thirty young, highly fit amateur basketball players performed a multifunctional attentional reaction time task, the attention network test (ANT), with a two-group randomized experimental design after an acute bout of moderate intensity spinning wheel exercise or without antecedent exercise. The ANT combined warning signals prior to targets, spatial cueing of potential target locations and target stimuli surrounded by congruent or incongruent flankers, which were provided to assess three attentional networks. Event-related brain potentials and task performance were measured during the ANT. Exercise resulted in a larger P3 amplitude in the alerting and executive control subtasks across frontal, central and parietal midline sites that was paralleled by an enhanced reaction speed only on trials with incongruent flankers of the executive control network. The P3 latency and response accuracy were not affected by exercise. These findings suggest that after spinning, more resources are allocated to task-relevant stimuli in tasks that rely on the alerting and executive control networks. However, the improvement in performance was observed in only the executively challenging conflict condition, suggesting that whether the brain resources that are rendered available immediately after acute exercise translate into better attention performance depends on the cognitive task complexity. PMID:25914634

  4. Nutrient losses from Fall and Winter-applied manure: Effects of timing and soil temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil temperature is a major environmental factor that affects both the infiltration of meltwater and precipitation, and nutrient cycling. The objectives of this study were to determine nutrient losses in runoff and leachate from fall and winter-applied dairy manure based on the soil temperature at t...

  5. Influence of rapid thermal cycles in multipass welding on heat-affected-zone properties in ferritic cryogenic steels

    SciTech Connect

    Kim, H.J.; Shin, H.K.; Morris, J.W. Jr.

    1982-05-01

    The results of both welding and weld simulation studies on 2BT-treated 9Ni steel show that multiple rapid thermal cycles have a very beneficial effect on heat-affected zone toughness at cryogenic temperatures. The metallurgical sources of toughness are, however, different from those in the furnace-treated base plate. The rapidly cycled material contains no detectable austenite phase. The alloy is grain-refined by the rapid thermal cycle, and the matrix carbon content is relieved by the formation of interlathcementite precipitates which do not destroy toughness.

  6. Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem.

    PubMed

    Marcilhac, Cyril; Sialve, Bruno; Pourcher, Anne-Marie; Ziebal, Christine; Bernet, Nicolas; Béline, Fabrice

    2014-11-01

    During anaerobic digestion, nutrients are mineralized and may require post-treatment for optimum valorization. The cultivation of autotrophic microalgae using the digestate supernatant is a promising solution; however the dark color of the influent poses a serious problem. First, the color of the digestates was studied and the results obtained using three different digestates demonstrated a strong heterogeneity although their color remained rather constant over time. The digestates absorbed light over the whole visible spectrum and remained colored even after a ten-fold dilution. Secondly, the impact of light and of substrate color on the growth of Scenedesmus sp. and on nitrogen removal were assessed. These experiments led to the construction of a model for predicting the impact of influent color and light intensity on N removal. Maximum N removal (8.5 mgN- [Formula: see text]  L(-1) d(-1)) was observed with an initial optical density of 0.221 and 244 μmolE m(-)² s(-1) light and the model allows to determine N removal between 15.9 and 22.7 mgN- [Formula: see text]  L(-1) d(-1) in real conditions according to the dilution level of the influent and related color. Changes in the microalgae community were monitored and revealed the advantage of Chlorella over Scenedesmus under light-limitation. Additionally microalgae outcompeted nitrifying bacteria and experiments showed how microalgae become better competitors for nutrients when phosphorus is limiting. Furthermore, nitrification was limited by microalgae growth, even when P was not limiting. PMID:25078443

  7. Effect of intermittent aeration cycle on nutrient removal and microbial community in a fluidized bed reactor-membrane bioreactor combo system.

    PubMed

    Guadie, Awoke; Xia, Siqing; Zhang, Zhiqiang; Zeleke, Jemaneh; Guo, Wenshan; Ngo, Huu Hao; Hermanowicz, Slawomir W

    2014-03-01

    Effect of intermittent aeration cycle (IAC=15/45-60/60min) on nutrient removal and microbial community structure was investigated using a novel fluidized bed reactor-membrane bioreactor (FBR-MBR) combo system. FBR alone was found more efficient for removing PO4-P (>85%) than NH4-N (<40%) and chemical oxygen demand (COD<35%). However, in the combo system, COD and NH4-N removals were almost complete (>98%). Efficient nitrification, stable mixed liquor suspended solid and reduced transmembrane pressure was also achieved. Quantitative real-time polymerase chain reaction results of total bacteria 16S rRNA gene copies per mL of mixed-liquor varied from (2.48±0.42)×10(9) initial to (2.74±0.10)×10(8), (6.27±0.16)×10(9) and (9.17±1.78)×10(9) for 15/45, 45/15 and 60/60min of IACs, respectively. The results of clone library analysis revealed that Proteobacteria (59%), Firmicutes (12%) and Bacteroidetes (11%) were the dominant bacterial group in all samples. Overall, the combo system performs optimum nutrient removal and host stable microbial communities at 45/15min of IAC. PMID:24508900

  8. Trends in nitrogen and phosphorus cycling are consistent and constrained during tropical secondary forest succession: is secondary forest young primary forest from a nutrient perspective?

    NASA Astrophysics Data System (ADS)

    Sullivan, B. W.; Nasto, M.; Alvarez-Clare, S.; Cole, R. J.; Reed, S.; Chazdon, R.; Davidson, E. A.; Cleveland, C. C.

    2015-12-01

    Extensive deforestation of tropical rainforest often leads to agricultural abandonment and secondary forest regeneration. The land area of secondary rainforest is soon likely to exceed that of primary forest, highlighting the importance of secondary tropical rainforest in the global carbon (C) cycle. Secondary forests often grow rapidly, but the role soil nutrients play in regulating secondary forest productivity remains unsettled. Consistent with biogeochemical theory, a landmark study from a set of sites in the Amazon Basin showed that secondary forests had low nitrogen (N) availability and relatively higher phosphorus (P) availability immediately after abandonment, but that as succession proceeded, N availability "recuperated" and there was relatively less P available. To address whether such changes in N and P availability during secondary forest growth are common, we reviewed 38 studies in lowland tropical rainforest that reported changes in 23 different metrics of N and P cycling during secondary succession. We calculated slopes (rates of change) during secondary succession for each metric in each study, and analyzed patterns in these rates of change. Significant trends during secondary succession were more evident in soils than in plants, but in most cases, the variability among studies was surprisingly low. Both soil N and P availability increased through succession, at least in surface soil. Such consistent changes imply substantial biogeochemical resilience of tropical forest soils in spite of differing land use histories and species compositions among studies. In most cases, slopes were similar whether primary forest was included in, or excluded from, our analysis, suggesting that secondary succession eventually leads to similar biogeochemical conditions as those found in primary forest. Our results suggesting consistent changes in N and P availability during succession provide a biogeochemical rationale for the conservation and restoration value of

  9. Nutrient-cycling microbes in coastal Douglas-fir forests: regional-scale correlation between communities, in situ climate, and other factors

    PubMed Central

    Shay, Philip-Edouard; Winder, Richard S.; Trofymow, J. A.

    2015-01-01

    Microbes such as fungi and bacteria play fundamental roles in litter-decay and nutrient-cycling; however, their communities may respond differently than plants to climate change. The structure (diversity, richness, and evenness) and composition of microbial communities in climate transects of mature Douglas-fir stands of coastal British Columbia rainshadow forests was analyzed, in order to assess in situ variability due to different temperature and moisture regimes. We compared denaturing gradient gel electrophoresis profiles of fungi (18S-FF390/FR1), nitrogen-fixing bacteria (NifH-universal) and ammonia-oxidizing bacteria (AmoA) polymerase chain reaction amplicons in forest floor and mineral soil samples from three transects located at different latitudes, each transect spanning the Coastal Western Hemlock and Douglas-fir biogeoclimatic zones. Composition of microbial communities in both soil layers was related to degree days above 0°C (2725–3489), while pH (3.8–5.5) best explained shifts in community structure. At this spatial scale, climatic conditions were likely to directly or indirectly select for different microbial species while local site heterogeneity influenced community structure. Significant changes in microbial community composition and structure were related to differences as small as 2.47% and 2.55°C in mean annual moisture and temperature variables, respectively. The climatic variables best describing microbial composition changed from one functional group to the next; in general they did not alter community structure. Spatial distance, especially associated with latitude, was also important in accounting for community variability (4–23%); but to a lesser extent than the combined influence of climate and soil characteristics (14–25%). Results suggest that in situ climate can independently account for some patterns of microbial biogeography in coastal Douglas-fir forests. The distribution of up to 43% of nutrient-cycling microorganisms

  10. Factors affecting life cycle assessment of milk produced on 6 Mediterranean buffalo farms.

    PubMed

    Pirlo, G; Carè, S; Fantin, V; Falconi, F; Buttol, P; Terzano, G M; Masoni, P; Pacelli, C

    2014-10-01

    This study quantifies the environmental impact of milk production of Italian Mediterranean buffaloes and points out the farm characteristics that mainly affect their environmental performance. Life cycle assessment was applied in a sample of 6 farms. The functional unit was 1 kg of normalized buffalo milk (LBN), with a reference milk fat and protein content of 8.3 and 4.73%, respectively. The system boundaries included the agricultural phase of the buffalo milk chain from cradle to farm gate. An economic criterion was adopted to allocate the impacts on milk production. Impact categories investigated were global warming (GW), abiotic depletion (AD), photochemical ozone formation (PO), acidification (AC), and eutrophication (EU). The contribution to the total results of the following farm activities were investigated: (1) on-farm energy consumption, (2) manure management, (3) manure application, (4) on-farm feed production (comprising production and application of chemical fertilizers and pesticides), (5) purchased feed production, (6) enteric fermentation, and (7) transport of purchased feeds, chemical fertilizers, and pesticides from producers to farms. Global warming associated with 1 kg of LBN resulted in 5.07 kg of CO₂ Eq [coefficient of variation (CV)=21.9%], AD was 3.5 × 10(-3) kg of Sb Eq (CV=51.7%), PO was 6.8 × 10(-4) kg of C₂H₄ Eq (CV=28.8%), AC was 6.5 × 10(-2) kg of SO₂ Eq (CV=30.3%), and EU was 3.3 × 10(-2) kg of PO₄(3-) Eq (CV=36.5%). The contribution of enteric fermentation and manure application to GW is 37 and 20%, respectively; on-farm consumption, on-farm feed production, and purchased feed production are the main contributors to AD; about 70% of PO is due to enteric fermentation; manure management and manure application are responsible for 55 and 25% of AC and 25 and 55% of EU, respectively. Methane and N₂O are responsible for 44 and 43% of GW, respectively. Crude oil consumption is responsible for about 72% of AD; contribution of

  11. Fluorscence signatures of dissolved organic material in an alpine lake ecosystem: responses to interannual climate variation and nutrient cycling

    NASA Astrophysics Data System (ADS)

    McKnight, Diane; Olivier, Matt; Hell, Katherina

    2016-04-01

    During snowmelt alpine lakes receive lower concentrations of dissolved organic material (DOM) that originates from the surrounding watershed than sub-alpine and montane lakes at lower elevations. Alpine lakes also have a shorter ice-free period that constrains the summer season of phytoplankton growth. Nonetheless, previous study of the reactive transport and production of DOM in an alpine lake in the Colorado Front Range during snowmelt and the summer ice-free season has shown that changes in DOM sources and the influence of biogeochemical processes can be resolved using fluorescence spectroscopy. Here we examine inter-annual variations in DOM fluorescence signatures during the snowmelt and summer periods in comparison to records of climate, residence time and primary production in the lake during the summer. Our analysis shows that variation in chlorophyll a concentration is a driver for variations in the fluorescence index (FI), as well as for specific ultra-violet absorbance. This result supports the predictions from the previous reactive transport modeling. We also conducted mesocosm experiments with nutrient enrichment to explore the role of nitrogen and phosphorus availability in influencing the fluorescence signature of DOM in summer. These results suggest that monitoring of simple spectroscopic properties of DOM can provide a means to track the biogeochemical consequences for alpine lakes of "too much" summer as climate continues to change.

  12. Inclusion of sainfoin (Onobrychis viciifolia) silage in dairy cow rations affects nutrient digestibility, nitrogen utilization, energy balance, and methane emissions.

    PubMed

    Huyen, N T; Desrues, O; Alferink, S J J; Zandstra, T; Verstegen, M W A; Hendriks, W H; Pellikaan, W F

    2016-05-01

    Sainfoin (Onobrychis viciifolia) is a tanniniferous legume forage that has potential nutritional and health benefits preventing bloating, reducing nematode larval establishment, improving N utilization, and reducing greenhouse gas emissions. However, the use of sainfoin as a fodder crop in dairy cow rations in northwestern Europe is still relatively unknown. The objective of this study was to evaluate the effect of sainfoin silage on nutrient digestibility, animal performance, energy and N utilization, and CH4 production. Six rumen-cannulated, lactating dairy cows with a metabolic body weight (BW(0.75)) of 132.5±3.6kg were randomly assigned to either a control (CON) or a sainfoin (SAIN)-based diet over 2 experimental periods of 25 d each in a crossover design. The CON diet was a mixture of grass silage, corn silage, concentrate, and linseed. In the SAIN diet, 50% of grass silage dry matter (DM) of the CON diet was exchanged for sainfoin silage. The cows were adapted to 95% of ad libitum feed intake for a 21-d period before being housed in climate-controlled respiration chambers for 4 d, during which time feed intake, apparent total-tract digestibility, N and energy balance, and CH4 production was determined. Data were analyzed using a mixed model procedure. Total daily DM, organic matter, and neutral detergent fiber intake did not differ between the 2 diets. The apparent digestibility of DM, organic matter, neutral detergent fiber, and acid detergent fiber were, respectively, 5.7, 4.0, 15.7, and 14.8% lower for the SAIN diet. Methane production per kilogram of DM intake was lowest for the SAIN diet, CH4 production as a percentage of gross energy intake tended to be lower, and milk yield was greater for the SAIN diet. Nitrogen intake, N retention, and energy retained in body protein were greater for the SAIN than for the CON diet. Nitrogen retention as a percentage of N intake tended to be greater for the SAIN diet. These results suggest that inclusion of sainfoin

  13. Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells

    PubMed Central

    Akhtar Ali, Muhammad; Younis, Shady; Wallerman, Ola; Gupta, Rajesh; Andersson, Leif; Sjöblom, Tobias

    2015-01-01

    The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle–related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-β, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes. PMID:26056301

  14. Tomato growth as affected by root-zone temperature and the addition of gibberellic acid and kinetin to nutrient solutions

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; White, J. W.; Salisbury, F. B. (Principal Investigator)

    1984-01-01

    The effect of root-zone temperature on young tomato plants (Lycopersicon esculentum Mill. cv. Heinz 1350) was evaluated in controlled environments using a recirculating solution culture system. Growth rates were measured at root-zone temperatures of 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in a near optimum foliar environment. Optimum growth occurred at 25 degrees to 30 degrees during the first 4 weeks of growth and 20 degrees to 25 degrees during the 5th and 6th weeks. Growth was severely restricted at 15 degrees. Four concentrations of gibberellic acid (GA3) and kinetin were added to the nutrient solution in a separate trial; root-zone temperature was maintained at 15 degrees and 25 degrees. Addition of 15 micromoles GA3 to solutions increased specific leaf area, total leaf area, and dry weight production of plants in both temperature treatments. GA3-induced growth stimulation was greater at 15 degrees than at 25 degrees. GA3 may promote growth by increasing leaf area, enhancing photosynthesis per unit leaf area, or both. Kinetic was not useful in promoting growth at either temperature.

  15. Seasonal greenhouse gas and soil nutrient cycling in semi-arid native and non-native perennial grass pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photosynthetic metabolism in warm- and cool-season grass species affects greenhouse gas (GHG) emissions from soils. The major soil GHGs are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Monitoring seasonal variability of GHG and soil carbon (C) and nitrogen (N) from Central Oklahoma...

  16. Seasonal greenhouse gas and soil nutrient cycling in semi-arid native and non-native perennial grass pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research indicates that photosynthetic metabolism of warm- and cool-season grass species affects greenhouse gas (GHG, (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O))) emissions from soil. This information could help establish best management practices to mitigate GHGs and stor...

  17. Nutrient cycling and Above- and Below-ground Interactions in a Runoff Agroforestry System Applied with Composted Tree Trimmings

    NASA Astrophysics Data System (ADS)

    Ilani, Talli; Ephrath, Jhonathan; Silberbush, Moshe; Berliner, Pedro

    2014-05-01

    The primary production in arid zones is limited due to shortage of water and nutrients. Conveying flood water and storing it in plots surrounded by embankments allows their cropping. The efficient exploitation of the stored water can be achieved through an agroforestry system, in which two crops are grown simultaneously: annual crops with a shallow root system and trees with a deeper root system. We posit that the long-term productivity of this system can be maintained by intercropping symbiotic N fixing shrubs with annual crops, and applying the pruned and composted shrub leaves to the soil, thus ensuring an adequate nitrogen level (a limiting factor in drylands) in the soil. To test our hypothesis we carried a two year trial in which fast-growing acacia (A. saligna) trees were the woody component and maize (Zea mays L.) the intercrop. Ten treatments were applied over two maize growth seasons to examine the below- and above-ground effects of tree pruning, compost application and interactions. The addition of compost in the first growth season led to an increase of the soil organic matter reservoir, which was the main N source for the maize during the following growth season. In the second growth season the maize yield was significantly higher in the plots to which compost was applied. Pruning the tree's canopies changed the trees spatial and temporal root development, allowing the annual crop to develop between the trees. The roots of pruned trees intercropped with maize penetrated deeper in the soil. The intercropping of maize within pruned trees and implementing compost resulted in a higher water use efficiency of the water stored in the soil when compared to the not composted and monoculture treatments. The results presented suggest that the approach used in this study can be the basis for achieving sustainable agricultural production under arid conditions.

  18. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input.

    PubMed

    Qiao, Chunlian; Liu, Lingli; Hu, Shuijin; Compton, Jana E; Greaver, Tara L; Li, Quanlin

    2015-03-01

    Anthropogenic activities, and in particular the use of synthetic nitrogen (N) fertilizer, have doubled global annual reactive N inputs in the past 50-100 years, causing deleterious effects on the environment through increased N leaching and nitrous oxide (N2 O) and ammonia (NH3 ) emissions. Leaching and gaseous losses of N are greatly controlled by the net rate of microbial nitrification. Extensive experiments have been conducted to develop ways to inhibit this process through use of nitrification inhibitors (NI) in combination with fertilizers. Yet, no study has comprehensively assessed how inhibiting nitrification affects both hydrologic and gaseous losses of N and plant nitrogen use efficiency. We synthesized the results of 62 NI field studies and evaluated how NI application altered N cycle and ecosystem services in N-enriched systems. Our results showed that inhibiting nitrification by NI application increased NH3 emission (mean: 20%, 95% confidential interval: 33-67%), but reduced dissolved inorganic N leaching (-48%, -56% to -38%), N2 O emission (-44%, -48% to -39%) and NO emission (-24%, -38% to -8%). This amounted to a net reduction of 16.5% in the total N release to the environment. Inhibiting nitrification also increased plant N recovery (58%, 34-93%) and productivity of grain (9%, 6-13%), straw (15%, 12-18%), vegetable (5%, 0-10%) and pasture hay (14%, 8-20%). The cost and benefit analysis showed that the economic benefit of reducing N's environmental impacts offsets the cost of NI application. Applying NI along with N fertilizer could bring additional revenues of $163 ha(-1)  yr(-1) for a maize farm, equivalent to 8.95% increase in revenues. Our findings showed that NIs could create a win-win scenario that reduces the negative impact of N leaching and greenhouse gas production, while increases the agricultural output. However, NI's potential negative impacts, such as increase in NH3 emission and the risk of NI contamination, should be fully

  19. Zooplankton community dynamics in relation to the seasonal cycle and nutrient inputs in an urban tropical estuary in Brazil.

    PubMed

    Araujo, H M P; Nascimento-Vieira, D A; Neumann-Leitão, S; Schwamborn, R; Lucas, A P O; Alves, J P H

    2008-11-01

    Micro- and mesozooplankton were studied in the Sergipe estuary, northeastern Brazil, in order to assess the temporal variability in abundance and biodiversity under stressed conditions (urban pollution). Zooplankton samples and abiotic data were collected at one station during a full tidal cycle in July 2001 and in February 2002, corresponding to the rainy and dry seasons, respectively. The salinity regime was euhaline-polyhaline. Phosphate and dissolved oxygen were higher in July 2001, and nitrite, nitrate and ammonia in February 2002. Chlorophyll-a concentrations were low as a result of light limitation, with 1.18 +/- 0.88 microg x m(-3) in February and 1.53 +/- 1.48 microg x m(-3) in July. Fifty-nine zooplankton taxa were identified. Microzooplankton were abundant, mainly the tintinnid Favella ehrenbergii, and ranged from 18,649 ind x m(-3) in July to 678,009 ind x m(-3) in February. Mesozooplankton ranged from 1,537 ind x m(-3) in July to 37,062 ind x m(-3) in February and were dominated by barnacle nauplii in July and by copepods in February. The cluster analysis by taxa revealed the existence of three distinct groups: resilient species, characteristic of estuarine areas and occurring during all the year; species mainly more abundant in July (indicators of a healthier environmental condition); and species more abundant in February (tolerant to poor water quality). PMID:19197492

  20. Effect of different agronomic management practices on greenhouse gas emissions and nutrient cycling in a long-term field trial

    NASA Astrophysics Data System (ADS)

    Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles

    2015-04-01

    In order to achieve a reduction of greenhouse gas emissions, modern agronomic management practices need to be established. Therefore, to assess the effect of different farming practices on greenhouse gas emissions, reliable data are required. The experiment covers and compares two main aspects of agricultural management for a better implementation of sustainable land use. The focus lies on the determination and interpretation of greenhouse gas emissions, however, regarding in each case a different agricultural management system, namely an organic farming system and an integrated farming system where the effect of diverse tillage systems and fertilisation practices are observed. In addition, with analysis of the alterable biological, physical and chemical soil properties a link between the impact of different management systems on greenhouse gas emissions and the observed cycle of matter in the soil, especially the nitrogen and carbon cycle, will be enabled. Measurements have been carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then parcels of land (each around 0.2-0.4 ha) with a particular interior plot set-up have been conducted with the same crop rotation, tillage and fertilisation practice referring to organic and integrated farming management. Thus, the management impacts on the soil of more than 20 years are being examined. Fluxes of CH4, N2O and CO2 have been monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (0.4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit. Precipitation and temperature data have been observed for each experimental

  1. Heat-affected zone thermal cycles in Inconel[reg sign] 718

    SciTech Connect

    Bowers, R.J. CANMET-MTL, Ottawa, Ontario ); Nippes, E.F. . Materials Engineering Dept.)

    1993-12-01

    Thermal cycles adjacent to autogenous welds in 1-cm (0.39-in.) IN718 plate were obtained using a computer data-acquisition system. Data from gas tungsten arc welds (GTAW) of various energy inputs were regression analyzed and tabulated for various times and distances from the centerline. The observation of grain-boundary precipitates in simulated and actual weld microstructures were used as a method of thermal-cycle verification. Application of the thermal-cycle data to the simulation of a fracture-toughness specimen was investigated. Thermal gradients across the specimen and high cooling rates were limiting factors in the microstructural simulation of a large cross-sectional-area specimen.

  2. Bax alpha perturbs T cell development and affects cell cycle entry of T cells.

    PubMed Central

    Brady, H J; Gil-Gómez, G; Kirberg, J; Berns, A J

    1996-01-01

    Bax alpha can heterodimerize with Bcl-2 and Bcl-X(L), countering their effects, as well as promoting apoptosis on overexpression. We show that bax alpha transgenic mice have greatly reduced numbers of mature T cells, which results from an impaired positive selection in the thymus. This perturbation in positive selection is accompanied by an increase in the number of cycling thymocytes. Further to this, mature T cells overexpressing Bax alpha have lower levels of p27Kip1 and enter S phase more rapidly in response to interleukin-2 stimulation than do control T cells, while the converse is true of bcl-2 transgenic T cells. These data indicate that apoptotic regulatory proteins can modulate the level of cell cycle-controlling proteins and thereby directly impact on the cell cycle. Images PMID:9003775

  3. MODELING SEDIMENT-NUTRIENT FLUX AND SEDIMENT OXYGEN DEMAND

    EPA Science Inventory

    Depositional flux of particulate organic matter in bottom sediments affects nutrients cycling at the sediment-water interface and consumes oxygen from the overlying water in streams, lakes, and estuaries. This project deals with analytical modeling of nitrogen and carbon producti...

  4. Microstructural changes in HSLA-100 steel thermally cycled to simulate the heat-affected zone during welding

    SciTech Connect

    Spanos, G.; Fonda, R.W.; Vandermeer, R.A.; Matuszeski, A.

    1995-12-01

    The microstructural changes that occur in a commercial HSLA-100 steel thermally cycled to simulate weld heat affected zone (HAZ) behavior were systematically investigated primarily by transmission electron microscopy (TEM). Eight different weld thermal cycles, with peak temperatures representative of four HAZ regions (the tempered region, the intercritical region, the fine-grained austenitized region, and the coarse-grained austenitized region) and cooling rates characteristic of high heat input (cooling rate (CR) = 5 C/s) and low heat input (CR = 60 C/s) welding were simulated in a heating/quenching dilatometer. The as-received base plate consisted of heavily tempered lath martensite, acicular ferrite, and retained austenite matrix phases with precipitates of copper, niobium-carbonitride, and cementite. The microstructural changes in both the matrix and precipitate phases due to thermal cycling were examined by TEM and correlated with the results of (1) conventional optical microscopy, (2) prior austenite grain size measurements, (3) microhardness testing, and (4) dilatometric analysis. Many of the thermal cycles resulted in dramatic changes in both the microstructures and the properties due to the synergistic interaction between the simulated position in the HAZ and the heat input. Some of these microstructures deviate substantially from those predicted from published continuous cooling transformation (CCT) curves. The final microstructure was predominantly dependent upon peak temperature (i.e., position within the HAZ), although the cooling rate (i.e., heat input) strongly affected the microstructures of the simulated intercritical and fine-grained austenitized regions.

  5. [Effects of biochar on soil nutrients leaching and potential mechanisms: A review].

    PubMed

    Liu, Yu-xue; Lyu, Hao-hao; Shi, Yan; Wang, Yao-feng; Zhong, Zhe-ke; Yang, Sheng-mao

    2015-01-01

    Controlling soil nutrient leaching in farmland ecosystems has been a hotspot in the research field of agricultural environment. Biochar has its unique physical and chemical properties, playing a significant role in enhancing soil carbon storage, improving soil quality and increasing crop yield. As a kind of new exogenous material, biochar has the potential in impacting soil nutrient cycling directly or indirectly, and has profound influences on soil nutrient leaching. This paper analyzed the intrinsic factors affecting how biochar affects soil nutrient leaching, such as the physical and chemical properties of biochar, and the interaction between biochar and soil organisms. Then the latest literatures regarding the external factors, including biochar application rates, soil types, depth of soil layer, fertilization conditions and temporal dynamics, through which biochar influences soil nutrient (especially nitrogen and phosphorus) leaching were reviewed. On that basis, four related action mechanisms were clarified, including direct adsorption of nutrients by biochar due to its micropore structure or surface charge, influencing nutrient leaching through increasing soil water- holding capacity, influencing nutrient cycling through the interaction with soil microbes, and preferential transport of absorbed nutrients by fine biochar particles. At last future research directions for better understanding the interactions between biochar and nutrient leaching in the soil were proposed. PMID:25985683

  6. The Impact of Continuous and Interval Cycle Exercise on Affect and Enjoyment

    ERIC Educational Resources Information Center

    Kilpatrick, Marcus W.; Greeley, Samuel J.; Collins, Larry H.

    2015-01-01

    Rates of physical activity remain low despite public health efforts. One form of physical activity that provides significant physiological benefit but has not been evaluated in terms of affective and enjoyment responses is interval exercise. Purpose: The purpose of this study was to compare affect and enjoyment assessed before, during, and after…

  7. How Business Cycles Affect the Healthcare Sector: A Cross-country Investigation.

    PubMed

    Cleeren, Kathleen; Lamey, Lien; Meyer, Jan-Hinrich; De Ruyter, Ko

    2016-07-01

    The long-term relationship between the general economy and healthcare expenditures has been extensively researched, to explain differences in healthcare spending between countries, but the midterm (i.e., business cycle) perspective has been overlooked. This study explores business cycle sensitivity in both public and private parts of the healthcare sector across 32 countries. Responses to the business cycle vary notably, both across spending sources and across countries. Whereas in some countries, consumers and/or governments cut back, in others, private and/or public healthcare buyers tend to spend more. We also assess long-term consequences of business cycle sensitivity and show that public cost cutting during economic downturns deflates the mortality rates, whereas private cut backs increase the long-term growth in total healthcare expenditures. Finally, multiple factors help explain variability in cyclical sensitivity. Private cost cuts during economic downturns are smaller in countries with a predominantly publicly funded healthcare system and more preventive public activities. Public cut backs during contractions are smaller in countries that rely more on tax-based resources rather than social health insurances. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25916435

  8. Menstrual-cycle dependent fluctuations in ovarian hormones affect emotional memory.

    PubMed

    Bayer, Janine; Schultz, Heidrun; Gamer, Matthias; Sommer, Tobias

    2014-04-01

    The hormones progesterone and estradiol modulate neural plasticity in the hippocampus, the amygdala and the prefrontal cortex. These structures are involved in the superior memory for emotionally arousing information (EEM effects). Therefore, fluctuations in hormonal levels across the menstrual cycle are expected to influence activity in these areas as well as behavioral memory performance for emotionally arousing events. To test this hypothesis, naturally cycling women underwent functional magnetic resonance imaging during the encoding of emotional and neutral stimuli in the low-hormone early follicular and the high-hormone luteal phase. Their memory was tested after an interval of 48 h, because emotional arousal primarily enhances the consolidation of new memories. Whereas overall recognition accuracy remained stable across cycle phases, recognition quality varied with menstrual cycle phases. Particularly recollection-based recognition memory for negative items tended to decrease from early follicular to luteal phase. EEM effects for both valences were associated with higher activity in the right anterior hippocampus during early follicular compared to luteal phase. Valence-specific modulations were found in the anterior cingulate, the amygdala and the posterior hippocampus. Current findings connect to anxiolytic actions of estradiol and progesterone as well as to studies on fear conditioning. Moreover, they are in line with differential networks involved in EEM effects for positive and negative items. PMID:24492058

  9. Factors affecting cycle life in ambient temperature of secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Somoano, R.

    1982-01-01

    Three major factors are discussed: electrode integrity, electrolyte stability, and dendrite formation. It is concluded that elastomers can function as improved binders for rechargeable cathodes. The cathodes can retain integrity under long cycle life with no visual deteriorations. It is found that microelectrodes can be made from powdery cathode materials for voltammetry studies.

  10. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    PubMed

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality. PMID:26267446

  11. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem

    PubMed Central

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality. PMID:26267446

  12. Body condition score at calving affects systemic and hepatic transcriptome indicators of inflammation and nutrient metabolism in grazing dairy cows.

    PubMed

    Akbar, H; Grala, T M; Vailati Riboni, M; Cardoso, F C; Verkerk, G; McGowan, J; Macdonald, K; Webster, J; Schutz, K; Meier, S; Matthews, L; Roche, J R; Loor, J J

    2015-02-01

    , STAT3, HP, and SAA3 coupled with the increase in ALB on wk 3 in MBCS cows were consistent with blood measures. Overall, results suggest that the greater milk production of cows with higher calving BCS is associated with a proinflammatory response without negatively affecting expression of genes related to metabolism and the growth hormone/insulin-like growth factor-1 axis. Results highlight the sensitivity of indicators of metabolic health and inflammatory state to subtle changes in calving BCS and, collectively, indicate a suboptimal health status in cows calving at either BCS 3.5 or 5.5 relative to BCS 4.5. PMID:25497809

  13. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input

    EPA Science Inventory

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI alo...

  14. A Deregulated Intestinal Cell Cycle Program Disrupts Tissue Homeostasis without Affecting Longevity in Drosophila*

    PubMed Central

    Petkau, Kristina; Parsons, Brendon D.; Duggal, Aashna; Foley, Edan

    2014-01-01

    Recent studies illuminate a complex relationship between the control of stem cell division and intestinal tissue organization in the model system Drosophila melanogaster. Host and microbial signals drive intestinal proliferation to maintain an effective epithelial barrier. Although it is widely assumed that proliferation induces dysplasia and shortens the life span of the host, the phenotypic consequences of deregulated intestinal proliferation for an otherwise healthy host remain unexplored. To address this question, we genetically isolated and manipulated the cell cycle programs of adult stem cells and enterocytes. Our studies revealed that cell cycle alterations led to extensive cell death and morphological disruptions. Despite the extensive tissue damage, we did not observe an impact on longevity, suggesting a remarkable degree of plasticity in intestinal function. PMID:25170078

  15. A deregulated intestinal cell cycle program disrupts tissue homeostasis without affecting longevity in Drosophila.

    PubMed

    Petkau, Kristina; Parsons, Brendon D; Duggal, Aashna; Foley, Edan

    2014-10-10

    Recent studies illuminate a complex relationship between the control of stem cell division and intestinal tissue organization in the model system Drosophila melanogaster. Host and microbial signals drive intestinal proliferation to maintain an effective epithelial barrier. Although it is widely assumed that proliferation induces dysplasia and shortens the life span of the host, the phenotypic consequences of deregulated intestinal proliferation for an otherwise healthy host remain unexplored. To address this question, we genetically isolated and manipulated the cell cycle programs of adult stem cells and enterocytes. Our studies revealed that cell cycle alterations led to extensive cell death and morphological disruptions. Despite the extensive tissue damage, we did not observe an impact on longevity, suggesting a remarkable degree of plasticity in intestinal function. PMID:25170078

  16. Is the Stratospheric QBO affected by Solar Wind Dynamic Pressure via an Annual Cycle Modulation?

    NASA Astrophysics Data System (ADS)

    Lu, H.; Jarvis, M. J.

    2010-12-01

    This study explores possible solar wind dynamic pressure effects on equatorial temperature and wind with an emphasis on the stratospheric Quasi-biennial Oscillation (QBO). The QBO phase occurrence and transition are closely linked to an annual cycle of tropical lower stratospheric temperature. The statistical response of the tropical temperature to solar wind dynamic pressure is characterized by ~1.25 K warming near the tropopause during the Boreal winter and spring and ~ 0.5 K cooling in the troposphere during the Austral winter and spring. The combined effect of this is a reduction of the amplitude of the annual cycle in temperature in the tropical tropopause region. The weakening of the annual cycle causes systematic and significant change in the tropical upwelling and therefore the strength and phase distribution of the QBO in the lower stratosphere. In the lower stratosphere, significantly stronger and more frequency easterly anomalies are found to be associated with high solar wind dynamic pressure during August to October. In addition to the seasonal response, there is a small but seasonally invariant response that is characterized by a vertical three-cell anomaly pattern with westerly anomalies in the troposphere and at 3-10 hPa and easterly anomalies in the lower stratosphere. We propose that significantly stronger easterly anomalies in the tropical lower stratosphere under high solar wind dynamic pressure during the Austral winter and spring are a consequence both of the initializing effect of this three-cell structure and of an amplification effect due to the seasonal modulation of the annual cycle.

  17. Large nuclear vacuoles in spermatozoa negatively affect pregnancy rate in IVF cycles

    PubMed Central

    Ghazali, Shahin; Talebi, Ali Reza; Khalili, Mohammad Ali; Aflatoonian, Abbas; Esfandiari, Navid

    2015-01-01

    Background: Recently, motile sperm organelle morphology examination (MSOME) criteria as a new real time tool for evaluation of spermatozoa in intracytoplasmic sperm injection (ICSI) cycles has been considered. Objective: The aim was to investigate the predictive value of MSOME in in vitro fertilization (IVF) in comparison to ICSI cycles and evaluation of the association between MSOME parameters and traditional sperm parameters in both groups. Materials and Methods: This is a cross sectional prospective analysis of MSOME parameters in IVF (n=31) and ICSI cycles (n=35). MSOME parameters were also evaluated as the presence of vacuole (none, small, medium, large or mix); head size (normal, small or large); cytoplasmic droplet; head shape and acrosome normality. In sub-analysis, MSOME parameters were compared between two groups with successful or failed clinical pregnancy in each group. Results: In IVF group, the rate of large nuclear vacuole showed significant increase in failed as compared to successful pregnancies (13.81±9.7vs7.38±4.4, respectively, p=0.045) while MSOME parameters were the same between successful and failed pregnancies in ICSI group. Moreover, a negative correlation was noticed between LNV and sperm shape normalcy. In ICSI group, a negative correlation was established between cytoplasmic droplet and sperm shape normalcy. In addition, there was a positive correlation between sperm shape normalcy and non-vacuolated spermatozoa. Conclusion: The high rate of large nuclear vacuoles in sperm used in IVF cycles with failed pregnancies confirms that MSOME, is a helpful tool for fine sperm morphology assessment, and its application may enhance the assisted reproduction technology success rates. PMID:26494990

  18. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. PMID:26974565

  19. PKA-mediated responses in females' estrous cycle affect cocaine-induced responses in dopamine-mediated intracellular cascades.

    PubMed

    Weiner, J; Sun, W Lun; Zhou, L; Kreiter, C M; Jenab, S; Quiñones-Jenab, V

    2009-07-01

    An extensive body of literature provides evidence for both sexual dimorphism and menstrual cycle effects in drug abuse patterns and behavioral responses. However, the cellular mechanisms underlying sexually dimorphic responses to and hormonal effects on cocaine use remain unclear. We hypothesized that endogenous hormonal fluctuations during the estrous cycle of rats modulate cocaine's effects on dopamine- and PKA-mediated intracellular responses. To test this hypothesis, intact female rats at different stages of their cycle received a single injection of saline or cocaine (20 mg/kg) and were sacrificed after 15 or 60 min. The nucleus accumbens (NAc) and caudate putamen (CPu) were dissected and analyzed via Western blot for total and phosphorylated (p-thr34) dopamine- and 3'-5'-cyclic AMP-regulated phosphoprotein with molecular weight 32 kDa (DARPP-32), PP1, PP2B (CNA1 and CNB1 subunits), PKA, CREB, cFOS, and Delta-FosB. Our results show that saline-treated rats had estrous cycle-related differences in protein levels of pCREB, DARPP-32, p-thr34-DARPP-32, PP1, and CNA1. Saline-treated female rats in the estrus stage had higher levels of pCREB in the NAc, but cocaine-treatment lowered pCREB levels. The estrous cycle also significantly affected the magnitude of change for p-thr34-DARPP-32 protein levels in both the NAc and CPu. Sixty minutes of cocaine administration increased p-thr34-DARPP-32 levels in the NAc of rats during estrus and proestrus and in the CPu of rats in diestrus. Furthermore, cocaine-induced changes in PP1 protein levels in the NAc were also affected by the stage of the cycle; 60 min of cocaine administration increased PP1 levels in the NAc of rats during diestrus, whereas PP-1 levels decreased in rats during estrus. Taken together, these novel findings suggest that hormonal fluctuations during the estrous cycle may contribute to the previously reported sex differences in the PKA pathway and in behavioral responses to cocaine. PMID:19348873

  20. The relationship between sleep-wake cycle and cognitive functioning in young people with affective disorders.

    PubMed

    Carpenter, Joanne S; Robillard, Rébecca; Lee, Rico S C; Hermens, Daniel F; Naismith, Sharon L; White, Django; Whitwell, Bradley; Scott, Elizabeth M; Hickie, Ian B

    2015-01-01

    Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16-30 years; 66% female) with primary diagnoses of affective disorders, and 69 healthy controls (18-30 years; 57% female). Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a 'long sleep' cluster, a 'disrupted sleep' cluster, and a 'delayed and disrupted sleep' cluster. Circadian clusters included a 'strong circadian' cluster, a 'weak circadian' cluster, and a 'delayed circadian' cluster. Medication use differed between clusters. The 'long sleep' cluster displayed significantly worse visual memory performance compared to the 'disrupted sleep' cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments and improvement of functioning in

  1. The Relationship between Sleep-Wake Cycle and Cognitive Functioning in Young People with Affective Disorders

    PubMed Central

    Carpenter, Joanne S.; Robillard, Rébecca; Lee, Rico S. C.; Hermens, Daniel F.; Naismith, Sharon L.; White, Django; Whitwell, Bradley; Scott, Elizabeth M.; Hickie, Ian B.

    2015-01-01

    Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16–30 years; 66% female) with primary diagnoses of affective disorders, and 69 healthy controls (18–30 years; 57% female). Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a ‘long sleep’ cluster, a ‘disrupted sleep’ cluster, and a ‘delayed and disrupted sleep’ cluster. Circadian clusters included a ‘strong circadian’ cluster, a ‘weak circadian’ cluster, and a ‘delayed circadian’ cluster. Medication use differed between clusters. The ‘long sleep’ cluster displayed significantly worse visual memory performance compared to the ‘disrupted sleep’ cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments

  2. Factors Affecting the Pathways of Glucose Catabolism and the Tricarboxylic Acid Cycle in Pseudomonas natriegens

    PubMed Central

    Cho, H. W.; Eagon, R. G.

    1967-01-01

    Less than 50% of theoretical oxygen uptake was observed when glucose was dissimilated by resting cells of Pseudomonas natriegens. Low oxygen uptakes were also observed when a variety of other substrates were dissimilated. When uniformly labeled glucose-14C was used as substrate, 56% of the label was shown to accumulate in these resting cells. This material consisted, in part, of a polysaccharide which, although it did not give typical glycogen reactions, yielded glucose after its hydrolysis. Resting cells previously cultivated on media containing glucose completely catabolized glucose and formed a large amount of pyruvate within 30 min. Resting cells cultivated in the absence of glucose catabolized glucose more slowly and produced little pyruvate. Pyruvate disappeared after further incubation. In this latter case, experimental results suggested (i) that pyruvate was converted to other acidic products (e.g., acetate and lactate) and (ii) that pyruvate was further catabolized via the tricarboxylic acid cycle. Growth on glucose repressed the level of key enzymes of the tricarboxylic acid cycle and of lactic dehydrogenase. Growth on glycerol stimulated the level of these enzymes. A low level of isocitratase, but not malate synthetase, was noted in extracts of glucose-grown cells. Isocitric dehydrogenase was shown to require nicotinamide adenine dinucleotide phosphate (NADP) as cofactor. Previous experiments have shown that reduced NADP (NADPH2) cannot be readily oxidized and that pyridine nucleotide transhydrogenase could not be detected in extracts. It was concluded that acetate, lactate, and pyruvate accumulate under growing conditions when P. natriegens is cultivated on glucose (i) because of a rapid initial catabolism of glucose via an aerobic glycolytic pathway and (ii) because of a sluggishly functioning tricarboxylic acid cycle due to the accumulation of NADPH2 and to repressed levels of key enzymes. PMID:4381634

  3. Water, Carbon, and Nutrient Cycling Following Insect-induced Tree Mortality: How Well Do Plot-scale Observations Predict Ecosystem-Scale Response?

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Barnard, H. R.; Biederman, J. A.; Borkhuu, B.; Edburg, S. L.; Ewers, B. E.; Gochis, D. J.; Gutmann, E. D.; Harpold, A. A.; Hicke, J. A.; Pendall, E.; Reed, D. E.; Somor, A. J.; Troch, P. A.

    2011-12-01

    Widespread tree mortality caused by insect infestations and drought has impacted millions of hectares across western North America in recent years. Although previous work on post-disturbance responses (e.g. experimental manipulations, fire, and logging) provides insight into how water and biogeochemical cycles may respond to insect infestations and drought, we find that the unique nature of these drivers of tree mortality complicates extrapolation to larger scales. Building from previous work on forest disturbance, we present a conceptual model of how temporal changes in forest structure impact the individual components of energy balance, hydrologic partitioning, and biogeochemical cycling and the interactions among them. We evaluate and refine this model using integrated observations and process modeling on multiple scales including plot, stand, flux tower footprint, hillslope, and catchment to identify scaling relationships and emergent patterns in hydrological and biogeochemical responses. Our initial results suggest that changes in forest structure at point or plot scales largely have predictable effects on energy, water, and biogeochemical cycles that are well captured by land surface, hydrological, and biogeochemical models. However, observations from flux towers and nested catchments suggest that both the hydrological and biogeochemical effects observed at tree and plot scales may be attenuated or exacerbated at larger scales. Compensatory processes are associated with attenuation (e.g. as transpiration decreases, evaporation and sublimation increase), whereas both attenuation and exacerbation may result from nonlinear scaling behavior across transitions in topography and ecosystem structure that affect the redistribution of energy, water, and solutes. Consequently, the effects of widespread tree mortality on ecosystem services of water supply and carbon sequestration will likely depend on how spatial patterns in mortality severity across the landscape

  4. Precision Agriculture and Nutrient Cycling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture (PA) refers to the practice of managing agronomic inputs according to specific needs across the landscape. The major impediment to implement the adoption of PA is the development of decision-support systems. One way to achieve this objective is to integrate crop simulation mode...

  5. Understanding the Cycle of Military Deployment: How It Affects Young Children and Families

    ERIC Educational Resources Information Center

    Robertson, Rachel

    2008-01-01

    The statistics of children and families experiencing military life and affected by deployment are astounding. Many children who have an uncle, aunt, brother, or other family member serving in the military live near a military duty station, but others live far from other military families. Caregivers and teachers of young children share a common…

  6. Temperature cycling periods affect growth and tuberization in potatoes under continuous irradiation

    NASA Technical Reports Server (NTRS)

    Cao, W.; Tibbitts, T. W.

    1992-01-01

    Plants of the potato (Solanum tuberosum L.) cultivars Denali, Norland, Haig and Kennebec were grown for 42 days under three temperature cycling periods (thermoperiods) with continuous irradiation in two repeated experiments to help determine if temperature cycling might be varied to optimize tuber development of potatoes in controlled environments. Thermoperiods of 6/6 hours, 12/12 hours and 24/24 hours were established with the same temperature change of 22/14C and same controlled vapor pressure deficit of 0.60 kPa. The thermoperiod of 24/24 hours significantly promoted tuber initiation but slowed tuber enlargement in all four cultivars, compared to the thermoperiods of 6/6 hours and 12/12 hours. Denali' produced the highest tuber and total dry weights under the 6/6 hours thermoperiod. Kennebec' produced the highest tuber dry weight under the 12/12 hours thermoperiod. Thermoperiods had no significant effect on shoot and root dry weights of any cultivars. The major effect of thermoperiods was on initiation and enlargement of tubers.

  7. Out of sight - Profiling soil characteristics, nutrients and microbial communities affected by organic amendments down to one meter in a long-term maize cultivation experiment

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Mikkonen, Anu; Zavattaro, Laura; Grignani, Carlo; Baumgarten, Andreas; Spiegel, Heide

    2016-04-01

    Soil characteristics, nutrients and microbial activity in the deeper soil layers are topics not of-ten covered in agricultural studies since the main interest lies within the most active topsoils and deep soils are more time-consuming to sample. Studies have shown that deep soil does matter, although biogeochemical cycles are not fully understood yet. The main aim of this study is to investigate the soil organic matter dynamics, nutrients and microbial community composition in the first meter of the soil profiles in the long-term maize cropping system ex-periment Tetto Frati, in the vicinity of the Po River in Northern Italy. The trial site lies on a deep, calcareous, free-draining soil with a loamy texture. The following treatments have been applied since 1992: 1) maize for silage with 250 kg mineral N ha-1 (crop residue removal, CRR), 2) maize for grain with 250 kg mineral N ha-1 (crop residue incorporation, CRI), 3) maize for silage with 250 kg bovine slurry N ha-1 (SLU), 4) maize for silage with 250 kg farm yard manure N ha-1 (FYM). Soil characteristics (pH, carbonate content, soil organic carbon (SOC), aggregate stability (WSA)), and nutrients (total nitrogen (Nt), CAL-extractable phos-phorous (P) and potassium (K), potential N mineralisation) were investigated. Bacteri-al community composition was investigated with Ion PGM high-throughput sequencing at the depth of 8000 sequences per sample. Soil pH was moderately alkaline in all soil samples, in-creasing with increasing soil depth, as the carbonate content increased. SOC was significantly higher in the treatments with organic amendments (CRI, SLU and FYM) compared to CRR in 0-25 cm (11.1, 11.6, 14.7 vs. 9.8 g kg-1, respectively), but not in the deeper soil. At 50-75 cm soil depth FYM treatment revealed higher WSA compared to CRR, as well as higher CAL-extractable K (25 and 15 mg kg-1, respectively) and potential N mineralisation (11.30 and 8.78 mg N kg-1 7d-1, respectively). At 75-100 cm soil depth, SLU and

  8. Modeling phase transformation behavior during thermal cycling in the heat-affected zone of stainless steel welds

    SciTech Connect

    Vitek, J.M.; Iskander, Y.S.; David, S.A.

    1995-12-31

    An implicit finite-difference analysis was used to model the diffusion-controlled transformation behavior in a ternary system. The present analysis extends earlier work by examining the transformation behavior under the influence of multiple thermal cycles. The analysis was applied to the Fe-Cr-Ni ternary system to simulate the microstructural development in austenitic stainless steel welds. The ferrite-to-austenite transformation was studied in an effort to model the response of the heat-affected zone to multiple thermal cycles experienced during multipass welding. Results show that under some conditions, a transformation ``inertia`` exists that delays the system`s response when changing from cooling to heating. Conditions under which this ``inertia`` is most influential were examined. It was also found that under some conditions, the transformation behavior does not follow the equilibrium behavior as a function of temperature. Results also provide some insight into effect of composition distribution on transformation behavior.

  9. Does infection tilt the scales? Disease effects on the mass balance of an invertebrate nutrient recycler.

    PubMed

    Narr, Charlotte F; Frost, Paul C

    2015-12-01

    While parasites are increasingly recognized as important components of ecosystems, we currently know little about how they alter ecosystem nutrient availability via host-mediated nutrient cycling. We examined whether infection alters the flow of nutrients through hosts and whether such effects depend upon host diet quality. To do so, we compared the mass specific nutrient (i.e., nitrogen and phosphorus) release rates, ingestion rates, and elemental composition of uninfected Daphnia to those infected with a bacterial parasite, P. ramosa. N and P release rates were increased by infection when Daphnia were fed P-poor diets, but we found no effect of infection on the nutrient release of individuals fed P-rich diets. Calculations based on the first law of thermodynamics indicated that infection should increase the nutrient release rates of Daphnia by decreasing nutrient accumulation rates in host tissues. Although we found reduced nutrient accumulation rates in infected Daphnia fed all diets, this reduction did not increase the nutrient release rates of Daphnia fed the P-rich diet because infected Daphnia fed this diet ingested nutrients more slowly than uninfected hosts. Our results thus indicate that parasites can significantly alter the nutrient use of animal consumers, which could affect the availability of nutrients in heavily parasitized environments. PMID:26298190

  10. “I like the way you move”: how hormonal changes across the menstrual cycle affect female perceptions of gait

    PubMed Central

    2012-01-01

    Background Variations in hormone concentrations across the menstrual cycle affect human female mate preferences. It has been shown that around the time of ovulation human females prefer more masculine male voices, faces, and bodies while simultaneously preferring less faces that are more feminine. They prefer also displays of male dominance, males with more symmetrical faces, and the scent of males with high levels of body symmetry. The aim of the experiments reported here was to investigate whether there are changes in female preferences for walking gaits across the menstrual cycle. Results Experiment 1 showed female observers could discriminate between point-light walkers with low and high levels of fluctuating asymmetries in their gaits. Female observers were more sensitive to asymmetries in female gaits than they were for asymmetries in male gaits. Experiment 2 showed that level of gait asymmetry did not affect the abilities of observers to discriminate female from male walkers. Experiment 3 showed that female observers did not change their preference for low and high asymmetry walkers across their menstrual cycles. However, females showed a decreased preference for all female walkers at the time during which it was estimated observers were at peak fertility. That same change in preference was not observed for male walkers. Conclusions These data suggest female observers may not value gait asymmetry, as a mate selection cue, in the same way that they value asymmetries in faces and bodies. While only “average” gaits were used in these experiments, rather than the gaits of individual walkers, the types of asymmetries in gait tested here were not used in the same way as static cues for judging the apparent healthiness of individuals. Females do discriminate well average female gait asymmetries and do change their preferences for those gaits across their menstrual cycle. Doing so may reflect the operation of processes that equip females with an advantage when

  11. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.

    PubMed

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-10-01

    Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were

  12. Improvement of Arbuscular Mycorrhiza Development by Inoculation of Soil with Phosphate-Solubilizing Rhizobacteria To Improve Rock Phosphate Bioavailability ((sup32)P) and Nutrient Cycling

    PubMed Central

    Toro, M.; Azcon, R.; Barea, J.

    1997-01-01

    The interactive effect of phosphate-solubilizing bacteria and arbuscular mycorrhizal (AM) fungi on plant use of soil P sources of low bioavailability (endogenous or added as rock phosphate [RP] material) was evaluated by using soil microcosms which integrated (sup32)P isotopic dilution techniques. The microbial inocula consisted of the AM fungus Glomus intraradices and two phosphate-solubilizing rhizobacterial isolates: Enterobacter sp. and Bacillus subtilis. These rhizobacteria behaved as "mycorrhiza helper bacteria" promoting establishment of both the indigenous and the introduced AM endophytes despite a gradual decrease in bacterial population size, which dropped from 10(sup7) at planting to 10(sup3) CFU g(sup-1) of dry rhizosphere soil at harvest. Dual inoculation with G. intraradices and B. subtilis significantly increased biomass and N and P accumulation in plant tissues. Regardless of the rhizobacterium strain and of the addition of RP, AM plants displayed lower specific activity ((sup32)P/(sup31)P) than their comparable controls, suggesting that the plants used P sources not available in their absence. The inoculated rhizobacteria may have released phosphate ions ((sup31)P), either from the added RP or from the less-available indigenous P sources, which were effectively taken up by the external AM mycelium. Soluble Ca deficiency in the test soil may have benefited P solubilization. At least 75% of the P in dually inoculated plants derived from the added RP. It appears that these mycorrhizosphere interactions between bacterial and fungal plant associates contributed to the biogeochemical P cycling, thus promoting a sustainable nutrient supply to plants. PMID:16535730

  13. Effects of food nutrient content, insect age and stage in the feeding cycle on the FMRFamide immunoreactivity of diffuse endocrine cells in the locust gut.

    PubMed

    Zudaire, E; Simpson, S J; Montuenga, L M

    1998-11-01

    We have studied the influence of variations in dietary protein and digestible carbohydrate content, of insect age and of time during the feeding cycle on the endocrine cells of the ampullar region of the midgut in the African migratory locust Locusta migratoria L. Morphometric analysis of FMRFamide-like immunoreactivity was used as an indirect measure of the amount of FMRFamide-related peptides (FaRPs) stored in the gut endocrine cells. There was a highly significant correlation between FaRP content and the nutritional quality of the food, measured relative to the concentrations and ratio of protein to digestible carbohydrate in a nutritionally optimal diet. The direction of the relationship between FaRP content and diet quality varied with age during the fifth stadium. On day 1, FaRP levels increased with the nutritional quality of the food, while on day 4 the opposite relationship was observed. Release of peptide was triggered by the onset of a meal during ad libitum feeding, with cell FaRP levels returning to premeal values within 15 min of the meal ending. The results also suggested that cell contents were released during food deprivation beyond the normal intermeal interval. Locusts switched for a single meal during ad libitum feeding on day 4 from a low- to a high-carbohydrate food did not respond by reducing endocrine cell FaRP content. Our results show a relationship between the diffuse gut endocrine system and feeding and nutrition in locusts. The ampullar endocrine cells are in three-way contact with the midgut luminal contents, with the primary urine from the Malpighian tubules and with the haemolymph. They are thus ideally positioned to play an integrative receptor-secretory function in the regulation of a variety of post-ingestive processes, such as enzyme secretion, absorption, gut motility or nutrient metabolism. PMID:9866881

  14. Warming, euxinia and sea level rise during the Paleocene-Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling

    NASA Astrophysics Data System (ADS)

    Sluijs, A.; van Roij, L.; Harrington, G. J.; Schouten, S.; Sessa, J. A.; LeVay, L. J.; Reichart, G.-J.; Slomp, C. P.

    2014-07-01

    The Paleocene-Eocene Thermal Maximum (PETM, ~ 56 Ma) was a ~ 200 kyr episode of global warming, associated with massive injections of 13C-depleted carbon into the ocean-atmosphere system. Although climate change during the PETM is relatively well constrained, effects on marine oxygen concentrations and nutrient cycling remain largely unclear. We identify the PETM in a sediment core from the US margin of the Gulf of Mexico. Biomarker-based paleotemperature proxies (methylation of branched tetraether-cyclization of branched tetraether (MBT-CBT) and TEX86) indicate that continental air and sea surface temperatures warmed from 27-29 to ~ 35 °C, although variations in the relative abundances of terrestrial and marine biomarkers may have influenced these estimates. Vegetation changes, as recorded from pollen assemblages, support this warming. The PETM is bracketed by two unconformities. It overlies Paleocene silt- and mudstones and is rich in angular (thus in situ produced; autochthonous) glauconite grains, which indicate sedimentary condensation. A drop in the relative abundance of terrestrial organic matter and changes in the dinoflagellate cyst assemblages suggest that rising sea level shifted the deposition of terrigenous material landward. This is consistent with previous findings of eustatic sea level rise during the PETM. Regionally, the attribution of the glauconite-rich unit to the PETM implicates the dating of a primate fossil, argued to represent the oldest North American specimen on record. The biomarker isorenieratene within the PETM indicates that euxinic photic zone conditions developed, likely seasonally, along the Gulf Coastal Plain. A global data compilation indicates that O2 concentrations dropped in all ocean basins in response to warming, hydrological change, and carbon cycle feedbacks. This culminated in (seasonal) anoxia along many continental margins, analogous to modern trends. Seafloor deoxygenation and widespread (seasonal) anoxia likely

  15. Timing Carbohydrate Beverage Intake During Prolonged Moderate Intensity Exercise Does Not Affect Cycling Performance

    PubMed Central

    SCHWEITZER, GEORGE G.; SMITH, JOHN D.; LECHEMINANT, JAMES D.

    2009-01-01

    Carbohydrate beverages consumed during long-term exercise have been shown to attenuate fatigue and improve performance; however, the optimal timing of ingestion is unclear. Therefore, the purpose of this study was to determine if timing the carbohydrate ingestion (continual loading (CL), front-loading (FL), and end-loading (EL)) during prolonged exercise influenced exercise performance in competitive cyclists. Ten well-trained cyclists completed three separate exercise bouts on a bicycle ergometer, each lasting 2 hours at an intensity of ~67% VO2 max, followed by a 15-minute “all out” time trial. In the CL trial, a carbohydrate beverage was ingested throughout the trial. In the FL trial, participants ingested a carbohydrate beverage during the first hour and a placebo beverage during the second hour. In the EL trial, a carbohydrate beverage was ingested during the second hour and a placebo during the first hour. The amount of carbohydrate consumed (75 g) was the same among conditions. The order of conditions was single-blinded, counterbalanced, and determined randomly. Performance was measured by the work output during the 15-minute performance ride. There were no differences in work output among the three conditions during the final time trial. In the first hour of exercise, peak venous blood glucose was highest in the FL condition. In the second hour, peak venous blood glucose was highest in the EL condition. Following the time trial, venous blood glucose levels were similar among CL, FL, and EL. Overall, the timing of carbohydrate beverage consumption during prolonged moderate intensity cycling did not alter cycling performance.

  16. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use

    PubMed Central

    Boon, Hanneke; Gijsen, Annemie P.; Stegen, Jos H. C. H.; Kuipers, Harm; van Loon, Luc J. C.

    2007-01-01

    Using contemporary stable-isotope methodology and fluorescence microscopy, we assessed the impact of carbohydrate supplementation on whole-body and fiber-type-specific intramyocellular triacylglycerol (IMTG) and glycogen use during prolonged endurance exercise. Ten endurance-trained male subjects were studied twice during 3 h of cycling at 63 ± 4% of maximal O2 uptake with either glucose ingestion (CHO trial; 0.7 g CHO kg−1 h−1) or without (CON placebo trial; water only). Continuous infusions with [U-13C] palmitate and [6,6-2H2] glucose were applied to quantify plasma free fatty acids (FFA) and glucose oxidation rates and to estimate intramyocellular lipid and glycogen use. Before and after exercise, muscle biopsy samples were taken to quantify fiber-type-specific IMTG and glycogen content. Plasma glucose rate of appearance (Ra) and carbohydrate oxidation rates were substantially greater in the CHO vs CON trial. Carbohydrate supplementation resulted in a lower muscle glycogen use during the first hour of exercise in the CHO vs CON trial, resulting in a 38 ± 19 and 57 ± 22% decreased utilization in type I and II muscle-fiber glycogen content, respectively. In the CHO trial, both plasma FFA Ra and subsequent plasma FFA concentrations were lower, resulting in a 34 ± 12% reduction in plasma FFA oxidation rates during exercise (P < 0.05). Carbohydrate intake did not augment IMTG utilization, as fluorescence microscopy revealed a 76 ± 21 and 78 ± 22% reduction in type I muscle-fiber lipid content in the CHO and CON trial, respectively. We conclude that carbohydrate supplementation during prolonged cycling exercise does not modulate IMTG use but spares muscle glycogen use during the initial stages of exercise in endurance-trained men. PMID:17333244

  17. Dietary patterns in pregnancy and effects on nutrient intake in the Mid-South: the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) study.

    PubMed

    Völgyi, Eszter; Carroll, Kecia N; Hare, Marion E; Ringwald-Smith, Karen; Piyathilake, Chandrika; Yoo, Wonsuk; Tylavsky, Frances A

    2013-05-01

    Dietary patterns are sensitive to differences across socio-economic strata or cultural habits and may impact programing of diseases in later life. The purpose of this study was to identify distinct dietary patterns during pregnancy in the Mid-South using factor analysis. Furthermore, we aimed to analyze the differences in the food groups and in macro- and micronutrients among the different food patterns. The study was a cross-sectional analysis of 1155 pregnant women (mean age 26.5 ± 5.4 years; 62% African American, 35% Caucasian, 3% Other; and pre-pregnancy BMI 27.6 ± 7.5 kg/m(2)). Using food frequency questionnaire data collected from participants in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) study between 16 and 28 weeks of gestation, dietary patterns were identified using factor analysis. Three major dietary patterns, namely, Healthy, Processed, and US Southern were identified among pregnant women from the Mid-South. Further analysis of the three main patterns revealed four mixed dietary patterns, i.e., Healthy-Processed, Healthy-US Southern, Processed-US Southern, and overall Mixed. These dietary patterns were different (p < 0.001) from each other in almost all the food items, macro- and micro nutrients and aligned across socioeconomic and racial groups. Our study describes unique dietary patterns in the Mid-South, consumed by a cohort of women enrolled in a prospective study examining the association of maternal nutritional factors during pregnancy that are known to affect brain and cognitive development by age 3. PMID:23645026

  18. Dietary Patterns in Pregnancy and Effects on Nutrient Intake in the Mid-South: The Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) Study

    PubMed Central

    Völgyi, Eszter; Carroll, Kecia N.; Hare, Marion E.; Ringwald-Smith, Karen; Piyathilake, Chandrika; Yoo, Wonsuk; Tylavsky, Frances A.

    2013-01-01

    Dietary patterns are sensitive to differences across socio-economic strata or cultural habits and may impact programing of diseases in later life. The purpose of this study was to identify distinct dietary patterns during pregnancy in the Mid-South using factor analysis. Furthermore, we aimed to analyze the differences in the food groups and in macro- and micronutrients among the different food patterns. The study was a cross-sectional analysis of 1155 pregnant women (mean age 26.5 ± 5.4 years; 62% African American, 35% Caucasian, 3% Other; and pre-pregnancy BMI 27.6 ± 7.5 kg/m2). Using food frequency questionnaire data collected from participants in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) study between 16 and 28 weeks of gestation, dietary patterns were identified using factor analysis. Three major dietary patterns, namely, Healthy, Processed, and US Southern were identified among pregnant women from the Mid-South. Further analysis of the three main patterns revealed four mixed dietary patterns, i.e., Healthy-Processed, Healthy-US Southern, Processed-US Southern, and overall Mixed. These dietary patterns were different (p < 0.001) from each other in almost all the food items, macro- and micro nutrients and aligned across socioeconomic and racial groups. Our study describes unique dietary patterns in the Mid-South, consumed by a cohort of women enrolled in a prospective study examining the association of maternal nutritional factors during pregnancy that are known to affect brain and cognitive development by age 3. PMID:23645026

  19. Aging affects spatial distribution of leg muscle oxygen saturation during ramp cycling exercise.

    PubMed

    Takagi, Shun; Kime, Ryotaro; Murase, Norio; Watanabe, Tsubasa; Osada, Takuya; Niwayama, Masatsugu; Katsumura, Toshihito

    2013-01-01

    We compared muscle oxygen saturation (SmO2) responses in several leg muscles and within a single muscle during ramp cycling exercise between elderly men (n = 8; age, 65 ± 3 years; ELD) and young men (n = 10; age, 23 ± 3 years; YNG). SmO2 was monitored at the distal site of the vastus lateralis (VLd), proximal site of the vastus lateralis (VLp), rectus femoris (RF), vastus medialis (VM), biceps femoris (BF), gastrocnemius lateralis (GL), gastrocnemius medialis (GM), and tibialis anterior (TA) by near-infrared spatial resolved spectroscopy. During submaximal exercise, significantly lower SmO2 at a given absolute work rate was observed in VLd, RF, BF, GL, and TA but not in VLp, VM, and GM in ELD than in YNG. In contrast, at all measurement sites, SmO2 at peak exercise was not significantly different between groups. These results indicate that the effects of aging on SmO2 responses are heterogeneous between leg muscles and also within a single muscle. The lower SmO2 in older men may have been caused by reduced muscle blood flow or altered blood flow distribution. PMID:23852490

  20. Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels

    NASA Astrophysics Data System (ADS)

    Frank, Edward D.; Han, Jeongwoo; Palou-Rivera, Ignasi; Elgowainy, Amgad; Wang, Michael Q.

    2012-03-01

    Researchers around the world are developing sustainable plant-based liquid transportation fuels (biofuels) to reduce petroleum consumption and greenhouse gas emissions. Algae are attractive because they promise large yields per acre compared to grasses, grains and trees, and because they produce oils that might be converted to diesel and gasoline equivalents. It takes considerable energy to produce algal biofuels with current technology; thus, the potential benefits of algal biofuels compared to petroleum fuels must be quantified. To this end, we identified key parameters for algal biofuel production using GREET, a tool for the life-cycle analysis of energy use and emissions in transportation systems. The baseline scenario produced 55 400 g CO2 equivalent per million BTU of biodiesel compared to 101 000 g for low-sulfur petroleum diesel. The analysis considered the potential for greenhouse gas emissions from anaerobic digestion processes commonly used in algal biofuel models. The work also studied alternative scenarios, e.g., catalytic hydrothermal gasification, that may reduce these emissions. The analysis of the nitrogen recovery step from lipid-extracted algae (residues) highlighted the importance of considering the fate of the unrecovered nitrogen fraction, especially that which produces N2O, a potent greenhouse gas with global warming potential 298 times that of CO2.

  1. Glucosylceramide synthesis inhibition affects cell cycle progression, membrane trafficking, and stage differentiation in Giardia lamblia.

    PubMed

    Stefanić, Sasa; Spycher, Cornelia; Morf, Laura; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Wild, Peter; Hehl, Adrian B; Sonda, Sabrina

    2010-09-01

    Synthesis of glucosylceramide via glucosylceramide synthase (GCS) is a crucial event in higher eukaryotes, both for the production of complex glycosphingolipids and for regulating cellular levels of ceramide, a potent antiproliferative second messenger. In this study, we explored the dependence of the early branching eukaryote Giardia lamblia on GCS activity. Biochemical analyses revealed that the parasite has a GCS located in endoplasmic reticulum (ER) membranes that is active in proliferating and encysting trophozoites. Pharmacological inhibition of GCS induced aberrant cell division, characterized by arrest of cytokinesis, incomplete cleavage furrow formation, and consequent block of replication. Importantly, we showed that increased ceramide levels were responsible for the cytokinesis arrest. In addition, GCS inhibition resulted in prominent ultrastructural abnormalities, including accumulation of cytosolic vesicles, enlarged lysosomes, and clathrin disorganization. Moreover, anterograde trafficking of the encystations-specific protein CWP1 was severely compromised and resulted in inhibition of stage differentiation. Our results reveal novel aspects of lipid metabolism in G. lamblia and specifically highlight the vital role of GCS in regulating cell cycle progression, membrane trafficking events, and stage differentiation in this parasite. In addition, we identified ceramide as a potent bioactive molecule, underscoring the universal conservation of ceramide signaling in eukaryotes. PMID:20335568

  2. A new Gsdma3 mutation affecting anagen phase of first hair cycle

    SciTech Connect

    Tanaka, Shigekazu; Tamura, Masaru; Aoki, Aya; Fujii, Tomoaki; Komiyama, Hiromitsu; Sagai, Tomoko; Shiroishi, Toshihiko . E-mail: tshirois@lab.nig.ac.jp

    2007-08-10

    Recombination-induced mutation 3 (Rim3) is a spontaneous mouse mutation that exhibits dominant phenotype of hyperkeratosis and hair loss. Fine linkage analysis of Rim3 and sequencing revealed a novel single point mutation, G1124A leading to Ala348Thr, in Gsdma3 in chromosome 11. Transgenesis with BAC DNA harboring the Rim3-type Gsdma3 recaptured the Rim3 phenotype, providing direct evidence that Gsdma3 is the causative gene of Rim3. We examined the spatial expression of Gsdma3 and characterized the Rim3 phenotype in detail. Gsdma3 is expressed in differentiated epidermal cells in the skin, but not in the proliferating epidermal cells. Histological analysis of Rim3 mutant showed hyperplasia of the epidermal cells in the upper hair follicles and abnormal anagen phase at the first hair cycle. Furthermore, immunohistochemical analysis revealed hyperproliferation and misdifferentiation of the upper follicular epidermis in Rim3 mutant. These results suggest that Gsdma3 is involved in the proliferation and differentiation of epidermal stem cells.

  3. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan

    2011-10-15

    Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole. PMID:21596542

  4. Nutrients and clam contamination by Escherichia coli in a meso-tidal coastal lagoon: Seasonal variation in counter cycle to external sources.

    PubMed

    Botelho, Maria João; Soares, Florbela; Matias, Domitília; Vale, Carlos

    2015-07-15

    The clam Ruditapes decussatus was transplanted from a natural recruitment area of Ria Formosa to three sites, surveyed for nutrients in water and sediments. Specimens were sampled monthly for determination of Escherichia coli, condition index and gonadal index. Higher nutrient values in low tide reflect drainage, anthropogenic sources or sediment regeneration, emphasising the importance of water mixing in the entire lagoon driven by the tide. Despite the increase of effluent discharges in summer due to tourism, nutrient concentrations and E. coli in clams were lower in warmer periods. The bactericide effect of temperature and solar radiation was better defined in clams from the inlet channel site than from sites closer to urban effluents. High temperature in summer and torrential freshwater inputs to Ria Formosa may anticipate climate change scenarios for south Europe. Seasonal variation of nutrients and clam contamination may thus point to possible alterations in coastal lagoons and their ecosystem services. PMID:26003385

  5. How Subduction Settings can Affect Planetary Nitrogen Cycle: An Experimental Insight

    NASA Astrophysics Data System (ADS)

    Cedeno, D. G.; Conceicao, R. V.; Wilbert de Souza, M. R.; Carniel, L. C.; Schmitz Quinteiro, R. V.

    2015-12-01

    Nitrogen is one of the main building blocks of life on Earth and its elemental cycle is deeply connected with organic matter and the biological system. It is known that nitrogen can be stored in mantellic phases (such as clinopyroxenes) or in metallic alloys under high pressures, meaning that Earth's mantle, and even the core, could be efficient nitrogen reservoirs. Probably, nitrogen is present in these deep Earth systems since the formation of our planet. Nevertheless, it is possible that superficial nitrogen can be reintroduced in the mantle through tectonic processes along Earth history. This is reinforced by d15N values in inclusions in diamonds and other deep mantle phases. We believe that subduction zones are efficient enough to transport nitrogen from surface to mantle. Clay minerals with high charge exchange capacity (CEC) are good candidates to convey nitrogen in subduction zones, especially when we take into account the similarities between K+ and NH4+. To simulate the high-pressure high-temperature conditions found in subduction zones, we performed a series of experiments with montmorillonite clay mineral undergone to high pressure and high temperature produced by a hydraulic press coupled with toroidal chambers, in pressures ranging from 2.5 to 7.7 GPa and temperatures up to 700oC. We used ex situ XRD analysis to accompany the main montmorillonite structural changes and FTIR analysis to determine quantitatively the presence of nitrogen. So far, our results show that the main structural transition in montmorillonite happens at ~350oC at room pressure and ~450oC at 2.5 and 4.0 GPa and consists in the transformation of an open clay structure to a closed mica structure (tobelite). FTIR data show the presence of nitrogen in all the analysed experiments. With the data obtained, we can presume that clay minerals carried in subduction zones can successfully transport nitrogen and other volatiles to the mantle. However, only cold subduction systems have the

  6. The importance of wood nutrient storage in tropical forest nitrogen and phosphorus cycles: Insights from a sapling defoliation experiment in Panama

    NASA Astrophysics Data System (ADS)

    Heineman, K.; Dalling, J. W.

    2015-12-01

    The availability of soil nutrients limits productivity and influences tree species distribution in tropical forests. Given the scarcity of soil resources, trees in tropical forests should be under selection to store nutrients for periods when nutrient demand exceeds supply. However, little is known about the capacity of trees to remobilize nutrients from long-lived woody biomass in tropical forests, despite wood sequestering a large proportion of bioavailable nutrients in tropical ecosystems. We evaluated nitrogen (N) and phosphorus (P) remobilization from woody biomass via experimental defoliation of saplings from four widely distributed genera of tropical trees in Panama. Focal saplings were sampled in high and low fertility habitats in both montane and lowland forests to maximize contrast in the availability and identity of limiting nutrients. N and P concentrations of stem wood were measured before defoliation and after subsequent re-foliation response to calculate wood remobilization efficiency. Initial wood P concentrations differed significantly within taxa between low and high fertility habitats, whereas initial wood N differed significantly within taxa between lowland and montane forests, but not among soil fertility habitats. In three of four genera studied, wood P concentrations declined after refoliation at both elevations, and the proportion of wood P remobilized was greater on low fertility compared to high fertility sites. In contrast, significant N remobilization was restricted to the low fertility montane site, where nitrogen is most likely to limit plant growth. These findings provide evidence that a significant fraction of N and P in woody biomass is can be remobilized in response to asymmetry in nutrient supply and demand, as opposed consisting primarily of recalcitrant structural material. Furthermore, variation in remobilization responses of species to defoliation provides additional evidence that multiple nutrient-limitation in tropical

  7. Herbivores and nutrients control grassland plant diversity via light limitation.

    PubMed

    Borer, Elizabeth T; Seabloom, Eric W; Gruner, Daniel S; Harpole, W Stanley; Hillebrand, Helmut; Lind, Eric M; Adler, Peter B; Alberti, Juan; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Chu, Chengjin; Cleland, Elsa E; Crawley, Michael J; Daleo, Pedro; Damschen, Ellen I; Davies, Kendi F; DeCrappeo, Nicole M; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Leakey, Andrew D B; Li, Wei; MacDougall, Andrew S; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Mortensen, Brent; O'Halloran, Lydia R; Orrock, John L; Pascual, Jesús; Prober, Suzanne M; Pyke, David A; Risch, Anita C; Schuetz, Martin; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren L; Williams, Ryan J; Wragg, Peter D; Wright, Justin P; Yang, Louie H

    2014-04-24

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light. PMID:24670649

  8. Herbivores and nutrients control grassland plant diversity via light limitation

    USGS Publications Warehouse

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  9. CD82 expression alters with human endometrial cycles and affects the uterine endometrial receptivity in vitro.

    PubMed

    Wei, Xiaowei; Liu, Shuai; Wang, Xiaoqi; Yan, Qiu

    2012-03-01

    Embryo implantation is a process that requires both temporal and spatial synchronization of the uterine endometrium and the embryo, and the endometrium becomes receptive to the embryo during the window of implantation. Although the expression patterns of many implantation-related molecules change dynamically during this process, the impact of CD82 on endometrial receptivity has not been elucidated. By immunohistochemical staining, we found that CD82 levels rose from the proliferative phase to the secretory phase in human endometrium. Specifically, the highest level appeared in mid- and late-secretory phases. Consistently, RL95-2 cells, representative of high-receptive endometrial epithelium, expressed higher levels of CD82 than did HEC-1A cells, which are representative of low-receptive endometrial epithelium, as detected by reverse transcription-polymerase chain reaction, Western blot and immunofluorescence. Furthermore, progesterone up-regulated the expression of CD82 in both epithelial cell lines. Down-regulation of CD82 in RL95-2 cells by either CD82 siRNA transfection or treatment with a CD82 antibody significantly decreased the adhesion of human embryonic JAR cells to RL95-2 cell monolayers (P < 0.01) and inhibited the phosphorylation of focal adhesion kinase (FAK). In contrast, up-regulation of CD82 in HEC-1A cells by CD82 cDNA transfection promoted embryonic JAR cell adhesion to HEC-1A monolayers (P < 0.05) and activated the phosphorylation of FAK. In conclusion, the expression of CD82 increases in endometrial tissues during the window of embryo implantation, CD82 expression affects endometrial receptivity of the uterine epithelial cells in vitro, and the FAK signaling pathway may be involved in this phenomenon. The correlation between CD82 and endometrial receptivity suggests that CD82 may serve as a potential marker of endometrial function. PMID:22393164

  10. Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: Implications for coastal nutrient cycling in the Great Barrier Reef Lagoon

    NASA Astrophysics Data System (ADS)

    Erler, Dirk V.; Wang, Xingchen T.; Sigman, Daniel M.; Scheffers, Sander R.; Martínez-García, Alfredo; Haug, Gerald H.

    2016-01-01

    Ongoing human activities are known to affect nitrogen cycling on coral reefs, but the full history of anthropogenic impact is unclear due to a lack of continuous records. We have used the nitrogen isotopic composition of skeleton-bound organic matter (CS-δ15N) in a coastal Porites coral from Magnetic Island in the Great Barrier Reef as a proxy for N cycle changes over a 168 yr period (1820-1987 AD). The Magnetic Island inshore reef environment is considered to be relatively degraded by terrestrial runoff; given prior CS-δ15N studies from other regions, there was an expectation of both secular change and oscillations in CS-δ15N since European settlement of the mainland in the mid 1800s. Surprisingly, CS-δ15N varied by less than 1.5‰ despite significant land use change on the adjacent mainland over the 168-yr measurement period. After 1930, CS-δ15N may have responded to changes in local river runoff, but the effect was weak. We propose that natural buffering against riverine nitrogen load in this region between 1820 and 1987 is responsible for the observed stability in CS-δ15N. In addition to coral derived skeletal δ15N, we also report, for the first time, δ15N measurements of non-coral derived organic N occluded within the coral skeleton, which appear to record significant changes in the nature of terrestrial N inputs. In the context of previous CS-δ15N records, most of which yield CS-δ15N changes of at least 5‰, the Magnetic Island coral suggests that the inherent down-core variability of the CS-δ15N proxy is less than 2‰ for Porites.

  11. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens

    PubMed Central

    Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.

    2016-01-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973

  12. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens.

    PubMed

    Gharajehdaghipour, Tazarve; Roth, James D; Fafard, Paul M; Markham, John H

    2016-01-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ(15)N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973

  13. Nutrient Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  14. Nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  15. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara

    PubMed Central

    Zhang, Qian; Visser, Eric J. W.; de Kroon, Hans; Huber, Heidrun

    2015-01-01

    Background and Aims Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Methods Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Key Results Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. Conclusions The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant’s life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow

  16. Deregulated expression of Cdc6 in the skin facilitates papilloma formation and affects the hair growth cycle.

    PubMed

    Búa, Sabela; Sotiropoulou, Peggy; Sgarlata, Cecilia; Borlado, Luis R; Eguren, Manuel; Domínguez, Orlando; Ortega, Sagrario; Malumbres, Marcos; Blanpain, Cedric; Méndez, Juan

    2015-01-01

    Cdc6 encodes a key protein for DNA replication, responsible for the recruitment of the MCM helicase to replication origins during the G1 phase of the cell division cycle. The oncogenic potential of deregulated Cdc6 expression has been inferred from cellular studies, but no mouse models have been described to study its effects in mammalian tissues. Here we report the generation of K5-Cdc6, a transgenic mouse strain in which Cdc6 expression is deregulated in tissues with stratified epithelia. Higher levels of CDC6 protein enhanced the loading of MCM complexes to DNA in epidermal keratinocytes, without affecting their proliferation rate or inducing DNA damage. While Cdc6 overexpression did not promote skin tumors, it facilitated the formation of papillomas in cooperation with mutagenic agents such as DMBA. In addition, the elevated levels of CDC6 protein in the skin extended the resting stage of the hair growth cycle, leading to better fur preservation in older mice. PMID:26697840

  17. Ocean Acidification Affects Redox-Balance and Ion-Homeostasis in the Life-Cycle Stages of Emiliania huxleyi

    PubMed Central

    Rokitta, Sebastian D.; John, Uwe; Rost, Björn

    2012-01-01

    Ocean Acidification (OA) has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO2 partial pressures (pCO2; 38.5 Pa vs. 101.3 Pa CO2) under low and high light (50 vs. 300 µmol photons m−2 s−1). Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects can be attributed

  18. Egg storage duration and hatch window affect gene expression of nutrient transporters and intestine morphological parameters of early hatched broiler chicks.

    PubMed

    Yalcin, S; Gursel, I; Bilgen, G; Izzetoglu, G T; Horuluoglu, B H; Gucluer, G

    2016-05-01

    In recent years, researchers have given emphasis on the differences in physiological parameters between early and late hatched chicks within a hatch window. Considering the importance of intestine development in newly hatched chicks, however, changes in gene expression of nutrient transporters in the jejunum of early hatched chicks within a hatch window have not been studied yet. This study was conducted to determine the effects of egg storage duration before incubation and hatch window on intestinal development and expression of PepT1 (H+-dependent peptide transporter) and SGLT1 (sodium-glucose co-transporter) genes in the jejunum of early hatched broiler chicks within a 30 h of hatch window. A total of 1218 eggs obtained from 38-week-old Ross 308 broiler breeder flocks were stored for 3 (ES3) or 14 days (ES14) and incubated at the same conditions. Eggs were checked between 475 and 480 h of incubation and 40 chicks from each egg storage duration were weighed; chick length and rectal temperature were measured. The chicks were sampled to evaluate morphological parameters and PepT1 and SGLT1 expression. The remaining chicks that hatched between 475 and 480 h were placed back in the incubator and the same measurements were conducted with those chicks at the end of hatch window at 510 h of incubation. Chick length, chick dry matter content, rectal temperature and weight of small intestine segments increased, whereas chick weight decreased during the hatch window. The increase in the jejunum length and villus width and area during the hatch window were higher for ES3 than ES14 chicks. PepT1 expression was higher for ES3 chicks compared with ES14. There was a 10.2 and 17.6-fold increase in PepT1 and SGLT1 expression of ES3 chicks at the end of hatch window, whereas it was only 2.3 and 3.3-fold, respectively, for ES14 chicks. These results suggested that egg storage duration affected development of early hatched chicks during 30 h of hatch window. It can be concluded that

  19. Stoichiometric patterns in foliar nutrient resorption across multiple scales

    USGS Publications Warehouse

    Reed, Sasha C.; Townsend, Alan R.; Davidson, Eric A.; Cleveland, Cory C.

    2012-01-01

    *Nutrient resorption is a fundamental process through which plants withdraw nutrients from leaves before abscission. Nutrient resorption patterns have the potential to reflect gradients in plant nutrient limitation and to affect a suite of terrestrial ecosystem functions. *Here, we used a stoichiometric approach to assess patterns in foliar resorption at a variety of scales, specifically exploring how N : P resorption ratios relate to presumed variation in N and/or P limitation and possible relationships between N : P resorption ratios and soil nutrient availability. *N : P resorption ratios varied significantly at the global scale, increasing with latitude and decreasing with mean annual temperature and precipitation. In general, tropical sites (absolute latitudes < 23°26′) had N : P resorption ratios of < 1, and plants growing on highly weathered tropical soils maintained the lowest N : P resorption ratios. Resorption ratios also varied with forest age along an Amazonian forest regeneration chronosequence and among species in a diverse Costa Rican rain forest. *These results suggest that variations in N : P resorption stoichiometry offer insight into nutrient cycling and limitation at a variety of spatial scales, complementing other metrics of plant nutrient biogeochemistry. The extent to which the stoichiometric flexibility of resorption will help regulate terrestrial responses to global change merits further investigation.

  20. Insects, infestations and nutrient fluxes

    NASA Astrophysics Data System (ADS)

    Michalzik, B.

    2012-04-01

    endemic situations (Larrson and Tenow 1980). However, at times of insect mass outbreaks with leaf area losses up to 100%, nutrient fluxes are strongly affected at the ecosystem level and consequently attract greater attention (Grace 1986). In this context, mass outbreaks of herbivore insects constitute a class of ecosystem disturbance (Pickett and White 1985). More specific, insect pests meet the criteria of biogeochemical "hot spots" and "hot moments" (McClain et al. 2003) as they induce temporal-spatial process heterogeneity or changes in biogeochemical reaction rates, but not necessarily changes in the structure of ecosystems or landscapes. This contribution presents a compilation of literature and own research data on insect herbivory effects on nutrient cycling and ecosystem functioning from the plot to the catchment scale. It focuses on temperate forest ecosystems and on short-term impacts as exerted by two focal functional groups of herbivore canopy insects (leaf and sap feeders). In detail, research results on effects operating on short temporal scales are presented including a) alterations in throughfall fluxes encompassing dissolved and particulate organic matter fractions, b) alterations in the amount, timing and quality of frass and honeydew deposition and c) soil microbial activity and decomposition processes.

  1. Silage and whole-farm nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The management of forage-based livestock farms is complex. A selected silage system can affect nutrient management by influencing the type, amount, and nutrient content of feeds fed. Manure handling procedures used on a farm can also affect the yield and nutrient contents of the forages produced. So...

  2. RESPONSE OF BENTHIC ECOSYSTEMS TO DEEP OCEAN SEWAGE OUTFALLS IN HAWAII: A NUTRIENT CYCLING APPROACH TO BIOLOGICAL IMPACT ASSESSMENT AND MONITORING

    EPA Science Inventory

    The report describes the nutrient budgets, benthic metabolism and community structures observed around two deep ocean sewage outfalls off Oahu, Hawaii. The authors conclude that, at an ecosystem management level, the overall effect of effluent on benthic and pelagic ecosystems of...

  3. Sodium diformate and extrusion temperature affect nutrient digestibility and physical quality of diets with fish meal and barley protein concentrate for rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of the experiment were to evaluate the effects of ingredient, extrusion temperature, and the acid salt sodium diformate (NaDF) in diets for rainbow trout on apparent nutrient digestibility and physical quality of the diets. The experiment was arranged in a 23 factorial design with two...

  4. Modelling the effects and economics of managed realignment on the cycling and storage of nutrients, carbon and sediments in the Blackwater estuary UK

    NASA Astrophysics Data System (ADS)

    Shepherd, D.; Burgess, D.; Jickells, T.; Andrews, J.; Cave, R.; Turner, R. K.; Aldridge, J.; Parker, E. R.; Young, E.

    2007-07-01

    A hydrodynamic model is developed for the Blackwater estuary (UK) and used to estimate nitrate removal by denitrification. Using the model, sediment analysis and estimates of sedimentation rates, we estimate changes in estuarine denitrification and intertidal carbon and nutrient storage and associated value of habitat created under a scenario of extensive managed realignment. We then use this information, together with engineering and land costs, to conduct a cost benefit analysis of the managed realignment. This demonstrates that over a 50-100 year timescale the value of the habitat created and carbon buried is sufficient to make the large scale managed realignment cost effective. The analysis reveals that carbon and nutrient storage plus habitat creation represent major and quantifiable benefits of realignment. The methodology described here can be readily transferred to other coastal systems.

  5. Factors affecting variation of different measures of cheese yield and milk nutrient recovery from an individual model cheese-manufacturing process.

    PubMed

    Cipolat-Gotet, C; Cecchinato, A; De Marchi, M; Bittante, G

    2013-01-01

    Cheese yield (CY) is the most important technological trait of milk, because cheese-making uses a very high proportion of the milk produced worldwide. Few studies have been carried out at the level of individual milk-producing animals due to a scarcity of appropriate procedures for model-cheese production, the complexity of cheese-making, and the frequent use of the fat and protein (or casein) contents of milk as a proxy for cheese yield. Here, we report a high-throughput cheese manufacturing process that mimics all phases of cheese-making, uses 1.5-L samples of milk from individual animals, and allows the simultaneous processing of 15 samples per run. Milk samples were heated (35°C for 40 min), inoculated with starter culture (90 min), mixed with rennet (51.2 international milk-clotting units/L of milk), and recorded for gelation time. Curds were cut twice (10 and 15 min after gelation), separated from the whey, drained (for 30 min), pressed (3 times, 20 min each, with the wheel turned each time), salted in brine (for 60 min), weighed, and sampled. Whey was collected, weighed, and sampled. Milk, curd, and whey samples were analyzed for pH, total solids, fat content, and protein content, and energy content was estimated. Three measures of percentage cheese yield (%CY) were calculated: %CY(CURD), %CY(SOLIDS), and %CY(WATER), representing the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: REC(FAT), REC(PROTEIN), and REC(SOLIDS), which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding components in the milk. Energy recovery, REC(ENERGY), represented the energy content of the cheese compared with that in the milk. This

  6. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin.

    PubMed

    Maliki, Raphiou; Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0-10 and 10-20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635

  7. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin

    PubMed Central

    Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635

  8. Consequences of the ban of by-products from terrestrial animals in livestock feeding in Germany and the European Union: alternatives, nutrient and energy cycles, plant production, and economic aspects.

    PubMed

    Rodehutscord, M; Abel, H J; Friedt, W; Wenk, C; Flachowsky, G; Ahlgrimm, H J; Johnke, B; Kühl, R; Breves, G

    2002-04-01

    or rotation furnace if heat is the main energy required. In contrast, the energetic efficiency of fermentation is low. (4.) Incineration or co-incineration of MBM and other by-products causes pollution gas emissions amounting to about 1.4 kg CO2 and 0.2 kg NOx per kg. The CO2 production as such is hardly disadvantageous, because heat and electrical energy can be generated by the combustion process. The prevention of dangerous gaseous emissions from MBM burning is current standard in the incineration plants in Germany and does not affect the environment inadmissibly. (5.) The effects of the MBM ban on the price for compound feed is not very significant. Obviously, substitution possibilities between different feed ingredients helped to exchange MBM without large price distortions. However, with each kg MBM not used in pig and poultry feeding economic losses of about 0.14 [symbol: see text] have to considered. In conclusion, the by far highest proportion of raw materials for MBM comes as by-products from the slaughter process. Coming this way, and assuring that further treatment is safe from the hygienic point of view, MBM and animal fat can be regarded as valuable sources of amino acids, minerals and energy in feeding pigs and poultry. Using them as feedstuffs could considerably contribute to the goal of keeping limited nutrients, phosphorus in particular, within the nutrient cycle and dealing responsible with limited resources. PMID:12389223

  9. Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle

    SciTech Connect

    Argaw, Takele; Wilson, Carolyn A.

    2015-01-15

    Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. - Highlights: • Env cleavage signal impacts infectivity of gammaretroviruses. • Non-infectious mutants have hyper-glycosylated envelope that bind target cells. • Non-infectious mutants have defects in the formation of the double-stranded DNA. • Env cleavage motif has functions beyond cleavage of the env precursor.

  10. FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC

    PubMed Central

    Merolla, Francesco; Poser, Ina; Visconti, Roberta; Ilardi, Gennaro; Paladino, Simona; Inuzuka, Hiroyuki; Guggino, Gianluca; Monaco, Roberto; Colecchia, David; Monaco, Guglielmo; Cerrato, Aniello; Chiariello, Mario; Denning, Krista; Claudio, Pier Paolo; Staibano, Stefania; Celetti, Angela

    2015-01-01

    CCDC6 gene product is a pro-apoptotic protein substrate of ATM, whose loss or inactivation enhances tumour progression. In primary tumours, the impaired function of CCDC6 protein has been ascribed to CCDC6 rearrangements and to somatic mutations in several neoplasia. Recently, low levels of CCDC6 protein, in NSCLC, have been correlated with tumor prognosis. However, the mechanisms responsible for the variable levels of CCDC6 in primary tumors have not been described yet. We show that CCDC6 turnover is regulated in a cell cycle dependent manner. CCDC6 undergoes a cyclic variation in the phosphorylated status and in protein levels that peak at G2 and decrease in mitosis. The reduced stability of CCDC6 in the M phase is dependent on mitotic kinases and on degron motifs that are present in CCDC6 and direct the recruitment of CCDC6 to the FBXW7 E3 Ubl. The de-ubiquitinase enzyme USP7 appears responsible of the fine tuning of the CCDC6 stability, affecting cells behaviour and drug response. Thus, we propose that the amount of CCDC6 protein in primary tumors, as reported in lung, may depend on the impairment of the CCDC6 turnover due to altered protein-protein interaction and post-translational modifications and may be critical in optimizing personalized therapy. PMID:25885523

  11. Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle.

    PubMed

    Argaw, Takele; Wilson, Carolyn A

    2015-01-15

    Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. PMID:25462351

  12. Cardiac Myosin Binding Protein C Phosphorylation Affects Cross-Bridge Cycle's Elementary Steps in a Site-Specific Manner

    PubMed Central

    Wang, Li; Sadayappan, Sakthivel; Kawai, Masakata

    2014-01-01

    Based on our recent finding that cardiac myosin binding protein C (cMyBP-C) phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302), DAD (Asp273-Ala282-Asp302), SAS (Ser273-Ala282-Ser302), and t/t (cMyBP-C null) genotypes, and the results were compared to transgenic mice expressing wide-type (WT) cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi), and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc), and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases. PMID:25420047

  13. Nutrient sources and transport along urban flowpaths to aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.; Janke, B.; Baker, L. A.; Hobbie, S. E.; Nidzgorski, D.; Sterner, R.; Wilson, B. N.

    2012-12-01

    Water quality of urban freshwater ecosystems is widely impaired by eutrophication, with little recent improvement and much potential for further degradation due to urban expansion and intensification. Despite the degradation of water quality in urban streams and lakes and adjacent coastal areas, relatively little is known about the relative importance of specific nutrient sources and the processes that regulate their movement across highly modified land-water interfaces. To better understand the nutrient sources and cycling that affect aquatic ecosystems, we assess nutrient movement through urban drainage networks in St. Paul, Minnesota. Nutrient concentrations and flux in stormwater at six intensively monitored sites show consistent seasonal patterns, with peaks in total nitrogen (N) and phosphorus (P) in the late spring. Trees contributed to nutrient movement via litterfall and throughfall to impervious surfaces, with peaks in inputs that corresponded to stormwater nutrient patterns. Despite runoff generated primarily from impervious surfaces, organic carbon and nitrogen concentrations were high, with organic N accounting for >80% of stormwater N loading. Together, these data suggested an important role for urban tree canopies in nutrient mobilization in stormwater. Base flow, present in larger storm drains and buried streams, results primarily from groundwater seepage and from outflow of surface water connected to drains. Base flow contributed significantly to nutrient export, particularly for N (33 to 68% of warm season export) but also for P (8 to 34%). Sites with upstream hydrologic connections to lakes and remnant above-ground stream reaches had higher baseflow organic carbon and P, and reduced N concentrations compared to sites dominated by groundwater. Together, these data show that the characteristics of urban vegetation and the nature of human alterations to hydrologic connections are dominant features influencing the form and amount of nutrient movement

  14. Pathogen infection drives patterns of nutrient resorption in citrus plants.

    PubMed

    Cao, Jirong; Cheng, Chunzhen; Yang, Junjie; Wang, Qibing

    2015-01-01

    Nutrient resorption processes in the plants infected by pathogen remain poorly understood. Huanglongbing (HLB) is a destructive disease of citrus. HLB-pathogen 'Candidatus Liberibacter asiaticus' grows specifically in the phloem of hosts and may cause problems in the plant vascular system after infection. Therefore, it brings a great concern about the phloem nutrient transport and nutrient intra-cycling in HLB-affected plants. We investigated the effects of 'Ca. L. asiaticus' infection on nitrogen (N) and phosphorus (P) concentrations and resorption in different citrus species (i.e. Citrus reticulata, Citrus limon and Citrus maxima). HLB-pathogen infection had distinctive impacts on nutrient resorption in different species. P resorption efficiency substantially decreased in infected C. reticulata plants relative to the healthy plants in summer, which may account for the marked decrease in the average fruit yield. P resorption was more efficient in infected C. limon plants than in the healthy plants. However, for C. maxima plants, HLB had no significant effects on N:P ratio in live leaves and resorption efficiency as well as on fruit yield. Keeping efficient internal nutrient cycling can be a strategy of citrus species being tolerant to HLB. PMID:26419510

  15. Pathogen infection drives patterns of nutrient resorption in citrus plants

    PubMed Central

    Cao, Jirong; Cheng, Chunzhen; Yang, Junjie; Wang, Qibing

    2015-01-01

    Nutrient resorption processes in the plants infected by pathogen remain poorly understood. Huanglongbing (HLB) is a destructive disease of citrus. HLB-pathogen ‘Candidatus Liberibacter asiaticus’ grows specifically in the phloem of hosts and may cause problems in the plant vascular system after infection. Therefore, it brings a great concern about the phloem nutrient transport and nutrient intra-cycling in HLB-affected plants. We investigated the effects of ‘Ca. L. asiaticus’ infection on nitrogen (N) and phosphorus (P) concentrations and resorption in different citrus species (i.e. Citrus reticulata, Citrus limon and Citrus maxima). HLB-pathogen infection had distinctive impacts on nutrient resorption in different species. P resorption efficiency substantially decreased in infected C. reticulata plants relative to the healthy plants in summer, which may account for the marked decrease in the average fruit yield. P resorption was more efficient in infected C. limon plants than in the healthy plants. However, for C. maxima plants, HLB had no significant effects on N:P ratio in live leaves and resorption efficiency as well as on fruit yield. Keeping efficient internal nutrient cycling can be a strategy of citrus species being tolerant to HLB. PMID:26419510

  16. Allocation of Nutrients to Somatic Tissues in Young Ovariectomized Grasshoppers

    PubMed Central

    Judd, Evan T.; Hatle, John D.; Drewry, Michelle D.; Wessels, Frank J.; Hahn, Daniel A.

    2010-01-01

    The disposable soma hypothesis predicts that when reproduction is reduced, life span is increased because more nutrients are invested in the soma, increasing somatic repair. Rigorously testing the hypothesis requires tracking nutrients from ingestion to allocation to the soma or to reproduction. Fruit flies on life-extending dietary restriction increase allocation to the soma “relative” to reproduction, suggesting that allocation of nutrients can be associated with extension of life span. Here, we use stable isotopes to track ingested nutrients in ovariectomized grasshoppers during the first oviposition cycle. Previous work has shown that ovariectomy extends life span, but investment of protein in reproduction is not reduced until after the first clutch of eggs is laid. Because ovariectomy does not affect investment in reproduction at this age, the disposable soma hypothesis would predict that ovariectomy should also not affect investment in somatic tissues. We developed grasshopper diets with distinct signatures of 13C and 15N, but that produced equivalent reproductive outputs. These diets are, therefore, appropriate for the reciprocal switches in diet needed for tracking ingested nutrients. Incorporation of stable isotopes into eggs showed that grasshoppers are income breeders, especially for carbon. Allocation to the fat body of nitrogen ingested as adults was slightly increased by ovariectomy; this was our only result that was not consistent with the disposable soma hypothesis. In contrast, ovariectomy did not affect allocation of nitrogen to femoral muscles. Further, allocation of carbon to the fat body or femoral muscles did not appear to be affected by ovariectomy. Total anti-oxidant activities in the hemolymph and femoral muscles were not affected by ovariectomy. These experiments showed that allocation of nutrients was altered little by ovariectomy in young grasshoppers. Additional studies on older individuals are needed to further test the disposable

  17. Allocation of nutrients to somatic tissues in young ovariectomized grasshoppers.

    PubMed

    Judd, Evan T; Hatle, John D; Drewry, Michelle D; Wessels, Frank J; Hahn, Daniel A

    2010-11-01

    The disposable soma hypothesis predicts that when reproduction is reduced, life span is increased because more nutrients are invested in the soma, increasing somatic repair. Rigorously testing the hypothesis requires tracking nutrients from ingestion to allocation to the soma or to reproduction. Fruit flies on life-extending dietary restriction increase allocation to the soma "relative" to reproduction, suggesting that allocation of nutrients can be associated with extension of life span. Here, we use stable isotopes to track ingested nutrients in ovariectomized grasshoppers during the first oviposition cycle. Previous work has shown that ovariectomy extends life span, but investment of protein in reproduction is not reduced until after the first clutch of eggs is laid. Because ovariectomy does not affect investment in reproduction at this age, the disposable soma hypothesis would predict that ovariectomy should also not affect investment in somatic tissues. We developed grasshopper diets with distinct signatures of ¹³C and ¹⁵N, but that produced equivalent reproductive outputs. These diets are, therefore, appropriate for the reciprocal switches in diet needed for tracking ingested nutrients. Incorporation of stable isotopes into eggs showed that grasshoppers are income breeders, especially for carbon. Allocation to the fat body of nitrogen ingested as adults was slightly increased by ovariectomy; this was our only result that was not consistent with the disposable soma hypothesis. In contrast, ovariectomy did not affect allocation of nitrogen to femoral muscles. Further, allocation of carbon to the fat body or femoral muscles did not appear to be affected by ovariectomy. Total anti-oxidant activities in the hemolymph and femoral muscles were not affected by ovariectomy. These experiments showed that allocation of nutrients was altered little by ovariectomy in young grasshoppers. Additional studies on older individuals are needed to further test the disposable

  18. Nutrient loading alters the performance of key nutrient exchange mutualisms.

    PubMed

    Shantz, Andrew A; Lemoine, Nathan P; Burkepile, Deron E

    2016-01-01

    Nutrient exchange mutualisms between phototrophs and heterotrophs, such as plants and mycorrhizal fungi or symbiotic algae and corals, underpin the functioning of many ecosystems. These relationships structure communities, promote biodiversity and help maintain food security. Nutrient loading may destabilise these mutualisms by altering the costs and benefits each partner incurs from interacting. Using meta-analyses, we show a near ubiquitous decoupling in mutualism performance across terrestrial and marine environments in which phototrophs benefit from enrichment at the expense of their heterotrophic partners. Importantly, heterotroph identity, their dependence on phototroph-derived C and the type of nutrient enrichment (e.g. nitrogen vs. phosphorus) mediated the responses of different mutualisms to enrichment. Nutrient-driven changes in mutualism performance may alter community organisation and ecosystem processes and increase costs of food production. Consequently, the decoupling of nutrient exchange mutualisms via alterations of the world's nitrogen and phosphorus cycles may represent an emerging threat of global change. PMID:26549314

  19. Extrinsic light:dark cycles, rather than endogenous circadian cycles, affect the photoperiodic counter in the pitcher-plant mosquito, Wyeomyia smithii.

    PubMed

    Emerson, Kevin J; Letaw, Alathea D; Bradshaw, William E; Holzapfel, Christina M

    2008-07-01

    A wide diversity of organisms use photoperiod (daylength) as an environmental cue to anticipate the changing seasons and to time various life-history events such as dormancy and migration. Photoperiodic time measurement consists of two main components, (1) the photoperiodic timer that discriminates between long and short days, and (2) the photoperiodic counter that accumulates and stores information from the timer and then induces the phenotypic output. Herein, we use extended night treatments to show that light is necessary to accumulate photoperiodic information across the geographic range of the mosquito, Wyeomyia smithii and that the photoperiodic counter counts extrinsic (external) light:dark cycles and not endogenous (internal) circadian cycles. PMID:18427810

  20. Extrinsic light:dark cycles, rather than endogenous circadian cycles, affect the photoperiodic counter in the pitcher-plant mosquito, Wyeomyia smithii

    PubMed Central

    Emerson, Kevin J.; Letaw, Alathea D.; Bradshaw, William E.; Holzapfel, Christina M.

    2014-01-01

    A wide diversity of organisms use photoperiod (daylength) as an environmental cue to anticipate the changing seasons and to time various life-history events such as dormancy and migration. Photoperiodic time measurement consists of two main components, (1) the photoperiodic timer that discriminates between long and short days, and (2) the photoperiodic counter that accumulates and stores information from the timer and then induces the phenotypic output. Herein, we use extended night treatments to show that light is necessary to accumulate photoperiodic information across the geographic range of the mosquito, Wyeomyia smithii and that the photoperiodic counter counts extrinsic (external) light:dark cycles and not endogenous (internal) circadian cycles. PMID:18427810

  1. Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies.

    PubMed

    Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Dirzo, Rodolfo

    2010-02-01

    Plant introductions and subsequent community shifts are known to affect nutrient cycling, but most such studies have focused on nutrient enrichment effects. The nature of plant-driven nutrient depletions and the mechanisms by which these might occur are relatively poorly understood. In this study we demonstrate that the proliferation of the commonly introduced coconut palm, Cocos nucifera, interrupts the flow of allochthonous marine subsidies to terrestrial ecosystems via an indirect effect: impact on birds. Birds avoid nesting or roosting in C. nucifera, thus reducing the critical nutrient inputs they bring from the marine environment. These decreases in marine subsidies then lead to reductions in available soil nutrients, decreases in leaf nutrient quality, diminished leaf palatability, and reduced herbivory. This nutrient depletion pathway contrasts the more typical patterns of nutrient enrichment that follow plant species introductions. Research on the effects of spatial subsidy disruptions on ecosystems has not yet examined interruptions driven by changes within the recipient community, such as plant community shifts. The ubiquity of coconut palm introductions across the tropics and subtropics makes these observations particularly noteworthy. Equally important, the case of C. nucifera provides a strong demonstration of how plant community changes can dramatically impact the supply of allochthonous nutrients and thereby reshape energy flow in ecosystems. PMID:20133852

  2. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells.

    PubMed

    Das, Amitabh; Chai, Jin Choul; Jung, Kyoung Hwa; Das, Nando Dulal; Kang, Sung Chul; Lee, Young Seek; Seo, Hyemyung; Chai, Young Gyu

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53(-/-) NE-4Cs). We determined the effect of LPS as a model of inflammation in p53(-/-) NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53(-/-) NE-4Cs and in LPS-stimulated JMJD2A-kd p53(-/-) NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. PMID:25193078

  3. Complotype affects the extent of down-regulation by Factor I of the C3b feedback cycle in vitro.

    PubMed

    Lay, E; Nutland, S; Smith, J E; Hiles, I; Smith, R A G; Seilly, D J; Buchberger, A; Schwaeble, W; Lachmann, P J

    2015-08-01

    Sera from a large panel of normal subjects were typed for three common polymorphisms, one in C3 (R102G) and two in Factor H (V62I and Y402H), that influence predisposition to age-related macular degeneration and to some forms of kidney disease. Three groups of sera were tested; those that were homozygous for the three risk alleles; those that were heterozygous for all three; and those homozygous for the low-risk alleles. These groups vary in their response to the addition of exogenous Factor I when the alternative complement pathway is activated by zymosan. Both the reduction in the maximum amount of iC3b formed and the rate at which the iC3b is converted to C3dg are affected. For both reactions the at-risk complotype requires higher doses of Factor I to produce similar down-regulation. Because iC3b reacting with the complement receptor CR3 is a major mechanism by which complement activation gives rise to inflammation, the breakdown of iC3b to C3dg can be seen to have major significance for reducing complement-induced inflammation. These findings demonstrate for the first time that sera from subjects with different complement alleles behave as predicted in an in-vitro assay of the down-regulation of the alternative complement pathway by increasing the concentration of Factor I. These results support the hypothesis that exogenous Factor I may be a valuable therapeutic aid for down-regulating hyperactivity of the C3b feedback cycle, thereby providing a treatment for age-related macular degeneration and other inflammatory diseases of later life. PMID:25124117

  4. Key Nutrients.

    ERIC Educational Resources Information Center

    Federal Extension Service (USDA), Washington, DC.

    Lessons written to help trainer agents prepare aides for work with families in the Food and Nutrition Program are presented in this booklet. The key nutrients discussed in the 10 lessons are protein, carbohydrates, fat, calcium, iron, iodine, and Vitamins A, B, C, and D. the format of each lesson is as follows: Purpose, Presentation, Application…

  5. Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal.

    PubMed

    Dwivedi, Sanjay; Tripathi, R D; Srivastava, Sudhakar; Singh, Ragini; Kumar, Amit; Tripathi, Preeti; Dave, Richa; Rai, U N; Chakrabarty, Debasis; Trivedi, P K; Tuli, R; Adhikari, B; Bag, M K

    2010-09-01

    The exposure of paddy fields to arsenic (As) through groundwater irrigation is a serious concern that may not only lead to As accumulation to unacceptable levels but also interfere with mineral nutrients in rice grains. In the present field study, profiling of the mineral nutrients (iron (Fe), phosphorous, zinc, and selenium (Se)) was done in various rice genotypes with respect to As accumulation. A significant genotypic variation was observed in elemental retention on root Fe plaque and their accumulation in various plant parts including grains, specific As uptake (29-167 mg kg(-1) dw), as well as As transfer factor (4-45%). Grains retained the least level of As (0.7-3%) with inorganic As species being the dominant forms, while organic As species, viz., dimethylarsinic acid and monomethylarsonic acid, were non-detectable. In all tested varieties, the level of Se was low (0.05-0.12 mg kg(-1) dw), whereas that of As was high (0.4-1.68 mg kg(-1) dw), considering their safe/recommended daily intake limits, which may not warrant their human consumption. Hence, their utilization may increase the risk of arsenicosis, when grown in As-contaminated areas. PMID:20490609

  6. Recent (2008-10) water quality in the Barton Springs segment of the Edwards aquifer and its contributing zone, central Texas, with emphasis on factors affecting nutrients and bacteria

    USGS Publications Warehouse

    Mahler, Barbara J.; Musgrove, MaryLynn; Sample, Thomas L.; Wong, Corinne I.

    2011-01-01

    The Barton Springs zone, which comprises the Barton Springs segment of the Edwards aquifer and the watersheds to the west that contribute to its recharge, is in south-central Texas, an area with rapid growth in population and increasing amounts of land area affected by development. During November 2008-March 2010, an investigation of factors affecting the fate and transport of nutrients and bacteria in the Barton Springs zone was conducted by the U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality. The primary objectives of the study were to characterize occurrence of nutrients and bacteria in the Barton Springs zone under a range of flow conditions; to improve understanding of the interaction between surface-water quality and groundwater quality; and to evaluate how factors such as streamflow variability and dilution affect the fate and transport of nutrients and bacteria in the Barton Springs zone. The USGS collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge and Buda), and the main orifice of Barton Springs in Austin, Texas. During the period of the study, during which the hydrologic conditions transitioned from exceptional drought to wetter than normal, water samples were collected routinely (every 3 to 4 weeks) from the streams, wells, and spring and, in response to storms, from the streams and spring. All samples were analyzed for major ions, nutrients, the bacterium Escherichia coli, and suspended sediment. During the dry period, the geochemistry of groundwater at the two wells and at Barton Springs was dominated by flow from the aquifer matrix and was relatively similar and unchanging at the three sites. At the onset of the wet period, when the streams began to flow, the geochemistry of groundwater samples from the Marbridge well and Barton Springs changed rapidly, and concentrations of most major ions and nutrients and

  7. Modeling greenhouse gas emissions (CO2, N2O, CH4) from managed arable soils with a fully coupled hydrology-biogeochemical modeling system simulating water and nutrient transport and associated carbon and nitrogen cycling at catchment scale

    NASA Astrophysics Data System (ADS)

    Klatt, Steffen; Haas, Edwin; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Plesca, Ina; Breuer, Lutz; Zhu, Bo; Zhou, Minghua; Zhang, Wei; Zheng, Xunhua; Wlotzka, Martin; Heuveline, Vincent

    2014-05-01

    The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in a small catchment at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the evapotranspiration is based on Penman-Monteith. Biogeochemical processes are modelled by LandscapeDNDC, including soil microclimate, plant growth and biomass allocation

  8. Ileal and total tract nutrient digestibilities and fecal characteristics of dogs as affected by soybean protein inclusion in dry, extruded diets.

    PubMed

    Clapper, G M; Grieshop, C M; Merchen, N R; Russett, J C; Brent, J L; Fahey, G C

    2001-06-01

    Plant-based protein sources are generally less variable in chemical composition than animal-based protein sources. However, relatively few data are available on the nutrient digestibilities of plant-based protein sources by companion animals. The effects of including selected soybean protein sources in dog diets on nutrient digestion at the ileum and in the total tract, as well as on fecal characteristics, were evaluated. Six protein sources were used: soybean meal (SBM), Soyafluff 200W (soy flour), Profine F (traditional aqueous-alcohol extracted soy protein concentrate [SPC 1]), Profine E (extruded SPC [SPC 2]), Soyarich I (modified molecular weight SPC [SPC 3]), and poultry meal (PM). All diets were extruded and kibbled. Test ingredients varied in CP and fat contents; however, diets were formulated to be isonitrogenous and isocaloric. Nutrient intakes were similar, except for total dietary fiber (TDF), which was lower (P < 0.01) for dogs fed the PM diet. Apparent ileal digestibilities of DM, OM, fat, and TDF were not different among treatments; however, CP digestibility at the terminal ileum was higher (P < 0.01) for diets containing soy protein sources than for PM. Total tract CP digestibility was greater (P < 0.01) for soy protein-containing diets than for PM. Apparent total tract digestibilities of DM, OM, fat, and TDF were not different among treatments. Apparent amino acid digestibilities at the terminal ileum, excluding methionine, threonine, alanine, and glycine, were higher (P < 0.01) for soy protein-containing diets than for PM. Dogs fed SPC diets had lower (P < 0.01) fecal outputs (g asis feces/g DMI) than dogs fed the SF diet, and dogs fed SBM tended (P < 0.11) to have lower fecal outputs than dogs fed the SF diet. However, dogs fed the PM diet had lower (P < 0.03) fecal outputs than dogs fed SPC-containing diets. Fecal outputs and scores reflected the TDF and nonstructural carbohydrate contents of the soy protein fraction. Soy protein sources are

  9. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    SciTech Connect

    Das, Amitabh; Chai, Jin Choul; Jung, Kyoung Hwa; Das, Nando Dulal; Kang, Sung Chul; Lee, Young Seek; Seo, Hyemyung; Chai, Young Gyu

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  10. Herbivores and nutrients control grassland plant diversity via light limitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human alterations to nutrient cycles and herbivore communities are dramatically altering global biodiversity. Theory predicts these changes to be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive excl...

  11. Global nutrient limitation in terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Fisher, Joshua B.; Badgley, Grayson; Blyth, Eleanor

    2012-09-01

    Most vegetation is limited in productivity by nutrient availability, but the magnitude of limitation globally is not known. Nutrient limitation is directly relevant not only to ecology and agriculture, but also to the global carbon cycle by regulating how much atmospheric CO2the terrestrial biosphere can sequester. We attempt to identify total nutrient limitation in terrestrial plant productivity globally using ecophysiological theory and new developments in remote sensing for evapotranspiration and plant productivity. Our map of nutrient limitation qualitatively reproduces known regional nutrient gradients (e.g., across Amazonia), highlights differences in nutrient addition to croplands (e.g., between "developed" and "developing" countries), identifies the role of nutrients on the distribution of major biomes (e.g., tree line migration in boreal North America), and compares similarly to a ground-based test along the Long Substrate Age Gradient in Hawaii, U.S.A. (e.g., foliar and soil nutrients, litter decomposition). Nonetheless, challenges in representing light and water use efficiencies, disturbance, and comparison to ground data with multiple interacting nutrients provide avenues for further progress on refining such a global map. Global average reduction in terrestrial plant productivity was within 16-28%, depending on treatment of disturbance; these values can be compared to global carbon cycle model estimates of carbon uptake reduction with nutrient cycle inclusion.

  12. Coupled ecosystem carbon and nutrient cycling in a High Arctic ecosystem are altered by long-term experimental warming and higher rainfall

    NASA Astrophysics Data System (ADS)

    Schaeffer, S. M.; Schimel, J.; Welker, J. M.

    2013-12-01

    The rapid changes in temperature and precipitation in High Arctic tundra ecosystems are altering the biogeochemical cycles of nitrogen (N) and carbon (C), but in ways that are difficult to anticipate. The challenge grows from the complexity of tundra soil organic matter, the uncertainty of N cycle responses and the extent to which shifts in soil N processes are coupled with the C cycle, including leaf-level photosynthesis, gross ecosystem photosynthesis (GEP-productivity) and net CO2 exchange (NEE-C sequestration). Understanding the processes that are leading to changes in High Arctic biogeochemical processes are especially important today as soil organic C pools in the High Arctic are up to 6 times greater than previously estimated, and are sensitive to being oxidized to the atmosphere through changes in microbial decomposition associated with warmer and wetter conditions. We used a long-term (since 2003) experiment of summer warming and supplemental summer water additions to a High Arctic ecosystem in NW Greenland to determine the impact of interactions between temperature, water availability, and microbial metabolism on the cycling of C and plant-available N in High Arctic tundra soil. We have found that water availability plays a critical role in these cycles in High Arctic tundra, over and above that from temperature increases. On seasonal time scales, we observed greater net N mineralization under both global change scenarios, yet water addition also significantly increased net nitrification rates, loss of NO3--N via leaching from surface soil layers, and lowered rates of labile organic C and N production. We also expected the chronic warming and watering would lead to long-term changes in soil N-cycling that would be reflected in soil δ15N values. However, we found that soil δ15N decreased under the different climate change scenarios. Our findings indicate that warmer, wetter High Arctic tundra will be cycling N and C in ways that may transform these

  13. Three Independent Forms of Regulation Affect Expression of Ho, Cln1 and Cln2 during the Cell Cycle of Saccharomyces Cerevisiae

    PubMed Central

    Breeden, L.; Mikesell, G.

    1994-01-01

    The G(1) cyclins (CLNs) bind to and activate the CDC28 kinase during the G(1) to S transition in Saccharomyces cerevisiae. Two G(1) cyclins are regulated at the RNA level so that their RNAs peak at the G(1)/S boundary. In this report we show that the cell cycle regulation of CLN1 and CLN2 is partially determined by the restricted expression of SWI4, a known trans-activator of SCB elements. When SWI4 is constitutively expressed or deleted, cell cycle regulation of CLN1/2 is reduced but not eliminated. In the absence of Swi6, another known regulator of both SCB and MCB elements, cell cycle regulation of the CLNs is also reduced, and the Start-dependence of HO transcription is eliminated. This indicates that Swi6 also plays an important role in the normal cell cycle regulation of all three promoters. When both Swi6 activity and the transcriptional regulation of SWI4 are eliminated, cell cycle regulation is further reduced, indicating that these are two independent pathways of regulation. However, a twofold fluctuation in transcript levels still persists under these conditions. This reveals a third source of cell cycle control, which could affect Swi4 activity post-transcriptionally, or reflect the existence of another unidentified regulator of these promoters. PMID:7896087

  14. Ovarian cycle-linked plasticity of δ-GABAA receptor subunits in hippocampal interneurons affects γ oscillations in vivo.

    PubMed

    Barth, Albert M I; Ferando, Isabella; Mody, Istvan

    2014-01-01

    GABAA receptors containing δ subunits (δ-GABAARs) are GABA-gated ion channels with extra- and perisynaptic localization, strong sensitivity to neurosteroids (NS), and a high degree of plasticity. In selective brain regions they are expressed on specific principal cells and interneurons (INs), and generate a tonic conductance that controls neuronal excitability and oscillations. Plasticity of δ-GABAARs in principal cells has been described during states of altered NS synthesis including acute stress, puberty, ovarian cycle, pregnancy and the postpartum period, with direct consequences on neuronal excitability and network dynamics. The defining network events implicated in cognitive function, memory formation and encoding are γ oscillations (30-120 Hz), a well-timed loop of excitation and inhibition between principal cells and PV-expressing INs (PV + INs). The δ-GABAARs of INs can modify γ oscillations, and a lower expression of δ-GABAARs on INs during pregnancy alters γ frequency recorded in vitro. The ovarian cycle is another physiological event with large fluctuations in NS levels and δ-GABAARs. Stages of the cycle are paralleled by swings in memory performance, cognitive function, and mood in both humans and rodents. Here we show δ-GABAARs changes during the mouse ovarian cycle in hippocampal cell types, with enhanced expression during diestrus in principal cells and specific INs. The plasticity of δ-GABAARs on PV-INs decreases the magnitude of γ oscillations continuously recorded in area CA1 throughout several days in vivo during diestrus and increases it during estrus. Such recurring changes in γ magnitude were not observed in non-cycling wild-type (WT) females, cycling females lacking δ-GABAARs only on PV-INs (PV-Gabrd (-/-)), and in male mice during a time course equivalent to the ovarian cycle. Our findings may explain the impaired memory and cognitive performance experienced by women with premenstrual syndrome (PMS) or premenstrual dysphoric

  15. Small-scale soil water repellency in pine rizhosphere associated with ectomycorrhiza is affected by nutrient patchiness: a soil microcosms study

    NASA Astrophysics Data System (ADS)

    Lozano, Elena; Hallett, Paul; Johnson, David; Moore, Lucy; Mataix-Solera, Jorge; Jiménez-Pinilla, Patricia; Arcenegui, Victoria

    2014-05-01

    Soil water repellency (SWR) or hydrophobicity has been commonly related to organic compounds released from the roots or decomposition of different plant species (Doerr et al., 2000). In addition, fungi and microorganisms that are associated with specific plants, could also influence SWR through the production of exudates or cellular material that form hydrophobic coatings on soil surfaces (Feeney et al., 2004; Hallett and Young, 1999) or act as surfactants. Nutrient availability, microbial biomass, organic matter and specific exudates have all been associated with the development of SWR. In terms of plant productivity, these impacts can be significant as their interaction with pore structure changes at the root-soil interface regulates both water transport and storage (Sperry et al., 1998). In boreal forests, basidiomycetous fungi are known to have a large impact on the development of SWR. These fungi are important degraders of organic material and symbionts forming ectomycorrhizal fungi (EF) associations with trees. Although many researchers have suggested a strong positive impact of EF on the ability of plants to capture water from soils, their impact on SWR at the root-soil interface and spatially within soil with a patchy nutrient distribution has not yet been investigated. This study used microcosms with mycelia systems of the EF extending from Pinus sylvestris host plants. Each microcosm was incubated during 15 days and contained plastic cup with 33P under the roots. The transfer of P from the mycelium to the host plant was monitored using a radioactive tracers and a non-destructive electronic autoradiography system in another study (data not published). SWR was measured using different approaches; as repellency index, R using a microinfiltrometer with a contact radius of 0.1 mm (modified from Hallet et al., 2002) and with the water drop penetration time test (WDPT). Sorptivity and SWR were measured between 40-50 points/microcosms. Results obtained with both

  16. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use.

    PubMed

    Gerbrandt, Kelsey; Chu, Pei Lin; Simmonds, Allison; Mullins, Kimberley A; MacLean, Heather L; Griffin, W Michael; Saville, Bradley A

    2016-04-01

    Lignocellulosic ethanol has potential for lower life cycle greenhouse gas emissions compared to gasoline and conventional grain-based ethanol. Ethanol production 'pathways' need to meet economic and environmental goals. Numerous life cycle assessments of lignocellulosic ethanol have been published over the last 15 years, but gaps remain in understanding life cycle performance due to insufficient data, and model and methodological issues. We highlight key aspects of these issues, drawing on literature and a case study of corn stover ethanol. Challenges include the complexity of feedstock/ecosystems and market-mediated aspects and the short history of commercial lignocellulosic ethanol facilities, which collectively have led to uncertainty in GHG emissions estimates, and to debates on LCA methods and the role of uncertainty in decision making. PMID:26807514

  17. Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles

    NASA Astrophysics Data System (ADS)

    Jilbert, T.; Slomp, C. P.; Gustafsson, B. G.; Boer, W.

    2011-06-01

    Patterns of regeneration and burial of phosphorus (P) in the Baltic Sea are strongly dependent on redox conditions. Redox varies spatially along water depth gradients and temporally in response to the seasonal cycle and multidecadal hydrographic variability. Alongside the well-documented link between iron oxyhydroxide dissolution and release of P from Baltic Sea sediments, we show that preferential remineralization of P with respect to carbon (C) and nitrogen (N) during degradation of organic matter plays a key role in determining the surplus of bioavailable P in the water column. Preferential remineralization of P takes place both in the water column and upper sediments and its rate is shown to be redox-dependent, increasing as reducing conditions become more severe at greater water-depth in the deep basins. Existing Redfield-based biogeochemical models of the Baltic may therefore underestimate the imbalance between N and P availability for primary production, and hence the vulnerability of the Baltic to sustained eutrophication via the fixation of atmospheric N. However, burial of organic P is also shown to increase during multidecadal intervals of expanded hypoxia, due to higher net burial rates of organic matter around the margins of the deep basins. Such intervals may be characterized by basin-scale acceleration of all fluxes within the P cycle, including productivity, regeneration and burial, sustained by the relative accessibility of the water column P pool beneath a shallow halocline.

  18. Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles

    NASA Astrophysics Data System (ADS)

    Jilbert, T.; Slomp, C. P.; Gustafsson, B. G.; Boer, W.

    2011-01-01

    Patterns of regeneration and burial of phosphorus (P) in the Baltic Sea are strongly dependent on redox conditions. Redox varies spatially along water depth gradients and temporally in response to the seasonal cycle and multidecadal hydrographic variability. Alongside the well-documented link between iron oxyhydroxide dissolution and release of P from Baltic Sea sediments, we show that preferential remineralization of P with respect to carbon (C) and nitrogen (N) during degradation of organic matter plays a key role in determining the surplus of bioavailable P in the water column. Preferential remineralization of P takes place both in the water column and upper sediments and its rate is shown to be water-depth dependent, increasing with the severity of reducing conditions into the deep basins. Existing Redfield-based biogeochemical models of the Baltic may therefore underestimate the imbalance between N and P availability for primary production, and hence the vulnerability of the Baltic to sustained eutrophication via the fixation of atmospheric N. However, burial of organic P is also shown to increase during multidecadal intervals of expanded hypoxia, due to higher net burial rates of organic matter around the margins of the deep basins. Such intervals may be characterized by basin-scale acceleration of all fluxes within the P cycle, including productivity, regeneration and burial, sustained by the relative accessibility of the water column P pool beneath a shallow halocline.

  19. Impacts of an Invasive Snail (Tarebia granifera) on Nutrient Cycling in Tropical Streams: The Role of Riparian Deforestation in Trinidad, West Indies

    PubMed Central

    Moslemi, Jennifer M.; Snider, Sunny B.; MacNeill, Keeley; Gilliam, James F.; Flecker, Alexander S.

    2012-01-01

    Non-native species and habitat degradation are two major catalysts of environmental change and often occur simultaneously. In freshwater systems, degradation of adjacent terrestrial vegetation may facilitate introduced species by altering resource availability. Here we examine how the presence of intact riparian cover influences the impact of an invasive herbivorous snail, Tarebia granifera, on nitrogen (N) cycling in aquatic systems on the island of Trinidad. We quantified snail biomass, growth, and N excretion in locations where riparian vegetation was present or removed to determine how snail demographics and excretion were related to the condition of the riparian zone. In three Neotropical streams, we measured snail biomass and N excretion in open and closed canopy habitats to generate estimates of mass- and area-specific N excretion rates. Snail biomass was 2 to 8 times greater and areal N excretion rates ranged from 3 to 9 times greater in open canopy habitats. Snails foraging in open canopy habitat also had access to more abundant food resources and exhibited greater growth and mass-specific N excretion rates. Estimates of ecosystem N demand indicated that snail N excretion in fully closed, partially closed, and open canopy habitats supplied 2%, 11%, and 16% of integrated ecosystem N demand, respectively. We conclude that human-mediated riparian canopy loss can generate hotspots of snail biomass, growth, and N excretion along tropical stream networks, altering the impacts of an invasive snail on the biogeochemical cycling of N. PMID:22761706

  20. How do changes in the Diurnal Cycle affect Bi-stability and Climate Sensitivity in the Habitable Zone?

    NASA Astrophysics Data System (ADS)

    Boschi, R.; Valerio, L.

    2013-09-01

    In this study we deal with the effect of varying the length of the diurnal cycle on its bi-stability properties. By using a general circulation model, PlaSim, we consider several values for the diurnal cycle, from tidally locked, to that of 1 Earth day. For each value of the diurnal cycle, we slowly modulate the solar constant between 1510 and 1000 Wm-2 and perform a hysteresis experiment. It is found that the width of the bi-stable region, i.e. the range of climate states - determined here by changes in S* - which support two climatic attractors, reduces when the diurnal cycle is increased in length and disappears - signifying the merging of both attractors - for climates with a diurnal cycle greater than 180 days. Crucial to the loss of bi-stability is the longitudinally asymmetric distribution of solar radiation, incident on the planet's surface, leading to the development of equatorial sea-ice. For diurnal cycles where bi-stability is found, the longitudinally asymmetric heating is sufficiently compensated for by the strength of the zonal winds and the rate of solar distribution, which redistribute heat and maintain the meridional temperature gradient across all longitudes. Conversely, for mono-stable regimes, the energy transport associated with zonal winds becomes insufficient to compensate for the increase in the length of the diurnal cycle, resulting in large zonal temperature gradients along the equatorial band. Furthermore, the results found here confirm and reenforce the robustness of those found in Boschi et al (2013), showing that, for climates which support bistability, it may be possible to parameterise variables such as the material entropy production and the meridional heat transport in terms of the surface and emission temperatures, within reasonably well defined upper and lower bounds, even when considering a wide range of planetary rotation speeds and changes to the infrared opacity. This paves the way for the possibility of practically deducing

  1. Salinity and nutrient contents of tidal water affects soil respiration and carbon sequestration of high and low tidal flats of Jiuduansha wetlands in different ways.

    PubMed

    Hu, Yu; Wang, Lei; Fu, Xiaohua; Yan, Jianfang; Wu, Jihua; Tsang, Yiufai; Le, Yiquan; Sun, Ying

    2016-09-15

    Soils were collected from low tidal flats and high tidal flats of Shang shoal located upstream and Xia shoal located downstream with different tidal water qualities, in the Jiuduansha wetland of the Yangtze River estuary. Soil respiration (SR) in situ and soil abiotic and microbial characteristics were studied to clarify the respective differences in the effects of tidal water salinity and nutrient levels on SR and soil carbon sequestration in low and high tidal flats. In low tidal flats, higher total nitrogen (TN) and lower salinity in the tidal water of Shang shoal resulted in higher TN and lower salinity in its soils compared with Xia shoal. These would benefit β-Proteobacteria and Anaerolineae in Shang shoal soil, which might have higher heterotrophic microbial activities and thus soil microbial respiration and SR. In low tidal flats, where soil moisture was high and the major carbon input was active organic carbon from tidal water, increasing TN was a more important factor than salinity and obviously enhanced soil microbial heterotrophic activities, soil microbial respiration and SR. While, in high tidal flats, higher salinity in Xia shoal due to higher salinity in tidal water compared with Shang shoal benefited γ-Proteobacteria which might enhance autotrophic microbial activity, and was detrimental to β-Proteobacteria in Xia shoal soil. These might have led to lower soil microbial respiration and thus SR in Xia shoal compared with Shang shoal. In high tidal flats, where soil moisture was relatively lower and the major carbon input was plant biomass that was difficult to degrade, soil salinity was the major factor restraining microbial activities, soil microbial respiration and SR. PMID:27208721

  2. The impact of elevated CO2 concentrations on soil microbial community, soil organic matter storage and nutrient cycling at a natural CO2 vent in NW Bohemia

    NASA Astrophysics Data System (ADS)

    Nowak, Martin; Beulig, Felix; von Fischer, Joe; Muhr, Jan; Kuesel, Kirsten; Trumbore, Susan

    2014-05-01

    Natural CO2 vents or 'mofettes' are diffusive or advective exhalations of geogenic CO2 from soils. These structures occur at several places worldwide and in most cases they are linked to volcanic activity. Characteristic for mofette soils are high CO2 concentrations of up to more than 90% as well as a lack of oxygen, low pH values and reducing conditions. Mofette soils usually are considered to be sites of carbon accumulation, which is not only due to the absence of oxygen, but might also result from lower plant litter quality due to CO2 fertilization of CO2 influenced plants and reduced availability of N and P for the decomposer community. Furthermore, fermentation processes and the formation of reduced elements by anoxic decomposition might fuel chemo-lithoautotrophic or mixotrophic microbial CO2 uptake, a process which might have important ecological functions by closing internal element cycles, formation of trace gasses as well as by re-cycling and storing of carbon. Several studies of microbial community structure revealed a shift towards CO2 utilizing prokaryotes in moffete soils compared to a reference site. Here, we use combined stable and radiocarbon isotope data from mofette soils in NW Bohemia to quantify the contribution of geogenic CO2 to soil organic carbon formation within mofette soils, either resulting from plant litter or from microbial CO2 uptake. This is possible because the geogenic CO2 has a distinct isotopic signature (δ13C = -2 o Δ14C = -1000 ) that is very different from the isotopic signature of atmospheric CO2. First results show that mofette soils have a high Corg content (20 to 40 %) compared to a reference site (2 to 20 %) and soil organic matter is enriched in 13C as well as depleted in 14C. This indicates that geogenic CO2 is re-fixed and stored as SOM. In order to quantify microbial contribution to CO2 fixation and SOM storage, microbial CO2 uptake rates were determined by incubating mofette soils with 13CO2 labelled gas. The

  3. Nutrient content of diet affects the signaling activity of the insulin/target of rapamycin/p70 S6 kinase pathway in the African malaria mosquito Anopheles gambiae.

    PubMed

    Arsic, Dany; Guerin, Patrick M

    2008-08-01

    Regulation of female mosquito feeding and reproduction plays a central role in their disease-vector competence. In this study we show that Anopheles gambiae mosquitoes engorged on albumin, amino acid and saline meals the same way as on blood, whereas sucrose evoked a typical plant nectar feeding response. Among the artificial diets, only the albumin-containing ones allowed follicular development. The target of rapamycin (TOR)/p70 S6 kinase (S6K) pathway has been identified as an essential nutrient-sensing tool controlling egg development in mosquitoes under the control of regulating inputs from the insulin pathway. We assayed the early response of TOR, S6K, tuberous sclerosis (TSC2), insulin receptor (INR) and two insulin-like peptides (ILPs) by quantitative real-time PCR assessment of mRNA levels and immunoblotting of phosphorylated active TOR and S6K in An. gambiae ovary and brain 3 h after engorgement. We show that transcript levels of s6k and members of the insulin pathway are readily affected by nutrients (especially one ILP in the head) and that the TOR/S6K phosphorylation is able to react quickly to a meal to an extent which depends on the true nutritive value. PMID:18634792

  4. Bone nutrients for vegetarians.

    PubMed

    Mangels, Ann Reed

    2014-07-01

    The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health. PMID:24898231

  5. Treating cattle with progesterone as well as a GnRH analogue affects oestrous cycle length and fertility.

    PubMed

    Lynch, P R; Macmillan, K L; Taufa, V K

    1999-08-16

    Initiating the chronic administration of progesterone to cattle during metoestrus will produce shortened oestrous cycles containing one or two wave-like sequences of ovarian follicle development. Conception rates are reduced to inseminations at the oestrus preceding these shortened cycles. In contrast, a single injection of the GnRH analogue, buserelin, around mid-dioestrus can lengthen the oestrous cycle by increasing the proportion of cycles with three waves of follicular development and may also increase conception rates. A series of trials was conducted to test the hypothesis that the adverse effects of progesterone on oestrous cycle length and conception rate could be prevented with a strategic injection of GnRH. In Trial 1, progesterone was administered per vaginum to heifers for 10 days from Day 2 or 3 (Oestrus = Day 0) and with (n = 42) or without (n = 46) an injection of a GnRH analogue (10 microg buserelin) on Day 12 or 13. Other heifers (n = 44) served as an untreated control group. The average inter-oestrous interval (IOI) for those heifers treated only with progesterone was 17.0 days and was less (p<0.05) than the average intervals for those also receiving GnRH (20.2 days) or in the control group (20.0 days). In Trial 2, 45 heifers were inseminated following a synchronised oestrus. Progesterone was administered as in Trial 1 to 22 of the heifers. Their conception rate was 45.4% and this was less (p<0.05) than the 73.9% obtained with their 23 untreated contemporaries. Trial 3 was completed using 530 cows in commercial dairyherds. The 259 cows receiving progesterone and GnRH (buserelin) after their first inseminations had a conception rate of 68.3% compared to 56.1% for their 271 untreated herdmates (p<0.05%). Heifer calves born to treated cows had heavier birthweights (33.4 vs. 31.1 kg; p<0.05), but birthweights of bull calves were unaffected (35.5 vs. 35.8 kg). Gestation lengths for cows conceiving to first inseminations were similar for treated and

  6. Lower temperature during the dark cycle affects disease development on Lygodium microphyllum (Old World climbing fern) by Bipolaris sacchari

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth chamber studies were conducted to examine environmental parameters affecting disease development by the indigenous pathogen Bipolaris sacchari isolate LJB-1L on the invasive weed Lygodium microphyllum (Old World climbing fern). Initial studies examined three different temperature regimes (20...

  7. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    NASA Astrophysics Data System (ADS)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  8. Rapid High Spatial Resolution Chemical Characterization of Soil Structure to Illuminate Nutrient Distribution Mechanisms Related to Carbon Cycling Using Laser Ablation Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hicks, R. K.; Alexander, M. L. L.; Newburn, M. K.

    2015-12-01

    Soils contain approximately half of Earth's terrestrial carbon. As such, it is important to understand the factors that control the cycling of this soil organic carbon between the land and the atmosphere. Models that attribute the persistence of soil organic carbon to the intrinsic properties of the molecules themselves are inconsistent with recent observations— for example, materials that are more thermodynamically stable have been found to have a shorter lifetime in soils than ones that are less stable, and vice versa. A new explanation has therefore been posited that invokes ecosystem properties as a whole, and not just intrinsic molecular properties, as the kinetic factor controlling soil carbon dynamics. Because soil dynamics occur on a small scale, techniques with high spatial resolution are required for their study. Existing techniques such as TOF-SIMS require preparation of the sample and introduction into a high vacuum system, and do not address the need to examine large numbers of sample systems without perturbation of chemical and physical properties. To address this analytical challenge, we have coupled a laser ablation (LA) module to an Aerodyne aerosol mass spectrometer (AMS), thereby enabling sample introduction and subsequent measurement of small amounts of soil organic matter by the laser ablation aerosol mass spectrometer (LA-AMS). Due to the adjustable laser beam width, the LA-AMS can probe spot sizes ranging from 1-150 μm in diameter, liberating from 10-100 ng/pulse. With a detection limit of 1 pM, the AMS allows for chemical characterization of the ablated material in terms of elemental ratios, compound classes, and TOC/TOM ratios. Furthermore, the LA-AMS is capable of rapid, in-situ sampling under ambient conditions, thereby eliminating the need for sample processing or transport before analysis. Here, we will present the first results from systematic studies aimed at validating the LA-AMS method as well as results from initial measurements

  9. How does the exchange of one oxygen atom with sulfur affect the catalytic cycle of carbonic anhydrase?

    PubMed

    Schenk, Stephan; Kesselmeier, Jürgen; Anders, Ernst

    2004-06-21

    We have extended our investigations of the carbonic anhydrase (CA) cycle with the model system [(H(3)N)(3)ZnOH](+) and CO(2) by studying further heterocumulenes and catalysts. We investigated the hydration of COS, an atmospheric trace gas. This reaction plays an important role in the global COS cycle since biological consumption, that is, uptake by higher plants, algae, lichens, and soil, represents the dominant terrestrial sink for this gas. In this context, CA has been identified by a member of our group as the key enzyme for the consumption of COS by conversion into CO(2) and H(2)S. We investigated the hydration mechanism of COS by using density functional theory to elucidate the details of the catalytic cycle. Calculations were first performed for the uncatalyzed gas phase reaction. The rate-determining step for direct reaction of COS with H(2)O has an energy barrier of deltaG=53.2 kcal mol(-1). We then employed the CA model system [(H(3)N)(3)ZnOH](+) (1) and studied the effect on the catalytic hydration mechanism of replacing an oxygen atom with sulfur. When COS enters the carbonic anhydrase cycle, the sulfur atom is incorporated into the catalyst to yield [(H(3)N)(3)ZnSH](+) (27) and CO(2). The activation energy of the nucleophilic attack on COS, which is the rate-determining step, is somewhat higher (20.1 kcal mol(-1) in the gas phase) than that previously reported for CO(2). The sulfur-containing model 27 is also capable of catalyzing the reaction of CO(2) to produce thiocarbonic acid. A larger barrier has to be overcome for the reaction of 27 with CO(2) compared to that for the reaction of 1 with CO(2). At a well-defined stage of this cycle, a different reaction path can emerge: a water molecule helps to regenerate the original catalyst 1 from 27, a process accompanied by the formation of thiocarbonic acid. We finally demonstrate that nature selected a surprisingly elegant and efficient group of reactants, the [L(3)ZnOH](+)/CO(2)/H(2)O system, that helps

  10. Impact of biological treatments of bio-waste for nutrients, energy and bio-methane recovery in a life cycle perspective.

    PubMed

    Di Maria, Francesco; Micale, Caterina; Contini, Stefano; Morettini, Emanuela

    2016-06-01

    Composting of the source-segregated organic fraction of municipal solid waste was compared in a life cycle perspective with conventional anaerobic digestion (AD), aimed at electricity substitution, and with AD aimed at biogas upgrading into bio-methane. Three different uses of the bio-methane were considered: injection in the natural gas grid for civil heating needs; use as fuel for high efficiency co-generation; use as fuel for vehicles. Scenarios with biogas upgrading showed quite similar impact values, generally higher than those of composting and conventional AD, for which there was a lower impact. A decisive contribution to the higher impact of the scenarios with bio-methane production was by the process for biogas upgrading. In any case the substitution of natural gas with bio-methane resulted in higher avoided impacts compared to electricity substitution by conventional AD. The uncertainty analysis confirmed the positive values for eutrophication, acidification and particulate matter. Large uncertainty was determined for global warming and photochemical ozone formation. PMID:27095293

  11. Form of supplemental selenium fed to cycling cows affects systemic concentrations of progesterone but not those of estradiol.

    PubMed

    Cerny, Katheryn L; Anderson, Les; Burris, Walter R; Rhoads, Michelle; Matthews, James C; Bridges, Phillip J

    2016-03-15

    In areas where soils are deficient in selenium (Se), dietary supplementation of this trace mineral directly to cattle is recommended. Selenium status affects fertility, and the form of Se supplemented to cows affects tissue-specific gene expression profiles. The objective of this study was to determine whether the form of Se consumed by cows would affect follicular growth and the production of steroids. Thirty-three Angus-cross cows that had ad libitum access of a mineral mix containing 35 ppm of Se in free-choice vitamin-mineral mixes as either inorganic (ISe), organic (OSe), or a 50/50 mix of ISe and OSe (MIX) for 180 days were used. After 170 days of supplementation, all cows were injected with 25-mg PGF2α to induce regression of the CL and then monitored for behavioral estrus (Day 0). From Day 4 to Day 8 after estrus, follicular growth was determined by transrectal ultrasonography. On Day 6, cows were injected with PGF2α (20 then 15 mg, 8-12 hours apart) to induce regression of the developing CL and differentiation of the dominant follicle of the first follicular wave into a preovulatory follicle. On Day 8, 36 hours after PGF2α (20 mg), the contents of the preovulatory follicle were aspirated by ultrasound-guided follicular puncture. Blood collected on Days 6 and 8 and follicular fluid collected on Day 8 was analyzed for concentrations of progesterone and estradiol. Form of Se supplemented to cows affected (P = 0.04) the systemic concentration of progesterone on Day 6, but not on Day 8. Form of Se did not affect the systemic concentration of estradiol on Day 6 or Day 8. Form of Se tended to affect (P = 0.07) the concentration of progesterone, but not that of estradiol, in the follicular fluid. Form of Se did not affect diameter of the dominant ovarian follicle on Days 4 to 6, but tended to affect (P = 0.08) the diameter of the preovulatory follicle on Day 8. Our results suggest that form of Se fed to cows affects the production of progesterone

  12. Does MW Radiation Affect Gene Expression, Apoptotic Level, and Cell Cycle Progression of Human SH-SY5Y Neuroblastoma Cells?

    PubMed

    Kayhan, Handan; Esmekaya, Meric Arda; Saglam, Atiye Seda Yar; Tuysuz, Mehmed Zahid; Canseven, Ayşe Gulnihal; Yagci, Abdullah Munci; Seyhan, Nesrin

    2016-06-01

    Neuroblastoma (NB) is a cancer that occurs in sympathetic nervous system arising from neuroblasts and nerve tissue of the adrenal gland, neck, chest, or spinal cord. It is an embryonal malignancy and affects infants and children. In this study, we investigated the effects of microwave (MW) radiation on apoptotic activity, cell viability, and cell cycle progression in human SH-SY5Y NB cells which can give information about MW radiation effects on neural cells covering the period from the embryonic stages to infants. SH-SY5Y NB cells were exposed to 2.1 GHz W-CDMA modulated MW radiation for 24 h at a specific absorption rate of 0.491 W/kg. Control samples were in the same conditions with MW-exposed samples but they were not exposed to MW radiation. The apoptotic activity of cells was measured by Annexin-V-FITC and propidium iodide staining. Moreover, mRNA levels of proliferative and cell cycle proteins were determined by real-time RT-PCR. The change in cell cycle progression was observed by using CycleTest-Plus DNA reagent. No significant change was observed in apoptotic activity of MW-exposed cells compared to control cells. The mRNA levels of c-myc and cyclin D1 were significantly reduced in MW group (p < 0.05). The percentage of MW-exposed cells in G1 phase was significantly higher than the percentage of control cells in G1 phase. MW radiation caused cell cycle arrest in G1 phase. These results showed that 2.1 GHz W-CDMA modulated MW radiation did not cause apoptotic cell death but changed cell cycle progression. PMID:27260669

  13. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  14. Influence of Affective Stimuli on Leg Power Output and Associated Neuromuscular Parameters during Repeated High Intensity Cycling Exercises

    PubMed Central

    Jaafar, Hamdi; Rouis, Majdi; Coudrat, Laure; Gélat, Thierry; Noakes, Timothy David; Driss, Tarak

    2015-01-01

    The aim of this study was to examine the impact of emotional eliciting pictures on neuromuscular performance during repetitive supramaximal cycling exercises (RSE). In a randomized order, twelve male participants were asked to perform five 6-s cycle sprints (interspaced by 24 s of recovery) on a cycle ergometer in front of neutral, pleasant or unpleasant pictures. During each RSE, mean power output (MPO) and electromyographic activity [root mean square (RMS) and median frequency (MF)] of the vastus lateralis and vastus medialis muscles were analyzed. Neuromuscular efficiency (NME) was calculated as the ratio of MPO to RMS. Higher RMS (232.17 ± 1.17 vs. 201.90 ± 0.47 μV) and MF (68.56 ± 1.78 vs. 64.18 ± 2.17 Hz) were obtained in pleasant compared to unpleasant conditions (p < 0.05). This emotional effect persisted from the first to the last sprint. Higher MPO was obtained in pleasant than in unpleasant conditions (690.65 ± 38.23 vs. 656.73 ± 35.95 W, p < 0.05). However, this emotional effect on MPO was observed only for the two first sprints. NME decreased from the third sprint (p < 0.05), which indicated the occurrence of peripheral fatigue after the two first sprints. These results suggested that, compared with unpleasant pictures, pleasant ones increased the neuromuscular performance during RSE. Moreover, the disappearance of the beneficial effect of pleasant emotion on mechanical output from the third sprint appears to be due to peripheral fatigue. PMID:26305334

  15. Temporal variations in gaseous elemental mercury concentrations at a contaminated site: Main factors affecting nocturnal maxima in daily cycles

    NASA Astrophysics Data System (ADS)

    Esbrí, José M.; Martínez-Coronado, Alba; Higueras, Pablo L.

    2016-01-01

    Mercury is considered to be a global pollutant and it has been globally transported as gaseous elemental mercury (GEM). International networks for the continuous monitoring of mercury, all of which are based on background sites, study the dispersion pattern of this metal and trends in its evolution in time and space. However, information about seasonal and daily cycling of polluted sites is scarce. The aim of the work described here was to cover this gap in knowledge. For this purpose, continuous (GEM) measurements were carried out in Almadén town from November 2011 to September 2013. Meteorological data were also collected during this time. GEM data show an average concentration during the sampling period (2011-2013) of 27.4 ng m-3, with a range of 0.8-686.9 ng m-3. The results highlighted seasonal and daily cycles of GEM in Almadén town, with seasonally higher levels in summer (686.9 ng m-3) and significantly daily higher levels during the night. A multiple linear regression model has established wind speed as the best GEM predictor in all seasons during the night, while the best predictor in winter is relative humidity, temperature in spring, solar radiation in summer and wind speed in autumn during the day. These results provide evidence that, in mining polluted sites like Almadén, photochemical reactions have a negligible impact on GEM levels during the daytime and that meteorological parameters are more relevant. Further studies on diurnal GEM cycling in polluted sites must be carried out to obtain a realistic local risk assessment, taking into account night GEM levels and their importance in each case study.

  16. Spinal Cord Injury Causes Brain Inflammation Associated with Cognitive and Affective Changes: Role of Cell Cycle Pathways

    PubMed Central

    Zhao, Zaorui; Sabirzhanov, Boris; Stoica, Bogdan A.; Kumar, Alok; Luo, Tao; Skovira, Jacob; Faden, Alan I.

    2014-01-01

    Experimental spinal cord injury (SCI) causes chronic neuropathic pain associated with inflammatory changes in thalamic pain regulatory sites. Our recent studies examining chronic pain mechanisms after rodent SCI showed chronic inflammatory changes not only in thalamus, but also in other regions including hippocampus and cerebral cortex. Because changes appeared similar to those in our rodent TBI models that are associated with neurodegeneration and neurobehavioral dysfunction, we examined effects of mouse SCI on cognition, depressive-like behavior, and brain inflammation. SCI caused spatial and retention memory impairment and depressive-like behavior, as evidenced by poor performance in the Morris water maze, Y-maze, novel objective recognition, step-down passive avoidance, tail suspension, and sucrose preference tests. SCI caused chronic microglial activation in the hippocampus and cerebral cortex, where microglia with hypertrophic morphologies and M1 phenotype predominated. Stereological analyses showed significant neuronal loss in the hippocampus at 12 weeks but not 8 d after injury. Increased cell-cycle-related gene (cyclins A1, A2, D1, E2F1, and PCNA) and protein (cyclin D1 and CDK4) expression were found chronically in hippocampus and cerebral cortex. Systemic administration of the selective cyclin-dependent kinase inhibitor CR8 after SCI significantly reduced cell cycle gene and protein expression, microglial activation and neurodegeneration in the brain, cognitive decline, and depression. These studies indicate that SCI can initiate a chronic brain neurodegenerative response, likely related to delayed, sustained induction of M1-type microglia and related cell cycle activation, which result in cognitive deficits and physiological depression. PMID:25122899

  17. Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways.

    PubMed

    Wu, Junfang; Zhao, Zaorui; Sabirzhanov, Boris; Stoica, Bogdan A; Kumar, Alok; Luo, Tao; Skovira, Jacob; Faden, Alan I

    2014-08-13

    Experimental spinal cord injury (SCI) causes chronic neuropathic pain associated with inflammatory changes in thalamic pain regulatory sites. Our recent studies examining chronic pain mechanisms after rodent SCI showed chronic inflammatory changes not only in thalamus, but also in other regions including hippocampus and cerebral cortex. Because changes appeared similar to those in our rodent TBI models that are associated with neurodegeneration and neurobehavioral dysfunction, we examined effects of mouse SCI on cognition, depressive-like behavior, and brain inflammation. SCI caused spatial and retention memory impairment and depressive-like behavior, as evidenced by poor performance in the Morris water maze, Y-maze, novel objective recognition, step-down passive avoidance, tail suspension, and sucrose preference tests. SCI caused chronic microglial activation in the hippocampus and cerebral cortex, where microglia with hypertrophic morphologies and M1 phenotype predominated. Stereological analyses showed significant neuronal loss in the hippocampus at 12 weeks but not 8 d after injury. Increased cell-cycle-related gene (cyclins A1, A2, D1, E2F1, and PCNA) and protein (cyclin D1 and CDK4) expression were found chronically in hippocampus and cerebral cortex. Systemic administration of the selective cyclin-dependent kinase inhibitor CR8 after SCI significantly reduced cell cycle gene and protein expression, microglial activation and neurodegeneration in the brain, cognitive decline, and depression. These studies indicate that SCI can initiate a chronic brain neurodegenerative response, likely related to delayed, sustained induction of M1-type microglia and related cell cycle activation, which result in cognitive deficits and physiological depression. PMID:25122899

  18. Climate Variability Impacts on Watershed Nutrient Delivery and Reservoir Production

    NASA Astrophysics Data System (ADS)

    White, J. D.; Prochnow, S. J.; Zygo, L. M.; Byars, B. W.

    2005-05-01

    Reservoirs in agricultural dominated watersheds tend to exhibit pulse-system behavior especially if located in climates dominated by summer convective precipitation inputs. Concentration and bulk mass of nutrient and sediment inputs into reservoir systems vary in terms of timing and magnitude of delivery from watershed sources to reservoirs under these climate conditions. Reservoir management often focuses on long-term average inputs without considering short and long-term impacts of variation in loading. In this study we modeled a watershed-reservoir system to assess how climate variability affects reservoir primary production through shifts in external loading and internal recycling of limiting nutrients. The Bosque watershed encompasses 423,824 ha in central Texas which delivers water to Lake Waco, a 2900 ha reservoir that is the primary water source for the city of Waco and surrounding areas. Utilizing the Soil Water Assessment Tool for the watershed and river simulations and the CE-Qual-2e model for the reservoir, hydrologic and nutrient dynamics were simulated for a 10 year period encompassing two ENSO cycles. The models were calibrated based on point measurement of water quality attributes for a two year time period. Results indicated that watershed delivery of nutrients was affected by the presence and density of small flood-control structure in the watershed. However, considerable nitrogen and phosphorus loadings were derived from soils in the upper watershed which have had long-term waste-application from concentrated animal feeding operations. During El Niño years, nutrient and sediment loads increased by 3 times above non-El Niño years. The simulated response within the reservoir to these nutrient and sediment loads had both direct and indirect. Productivity evaluated from chlorophyll a and algal biomass increased under El Niño conditions, however species composition shifts were found with an increase in cyanobacteria dominance. In non-El Niño years

  19. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle.

    PubMed

    Lai, Jianbin; Chen, Hao; Teng, Kunling; Zhao, Qingzhen; Zhang, Zhonghui; Li, Yin; Liang, Liming; Xia, Ran; Wu, Yaorong; Guo, Huishan; Xie, Qi

    2009-03-01

    The C4 protein from Curtovirus is known as a major symptom determinant, but the mode of action of the C4 protein remains unclear. To understand the mechanism of involvement of C4 protein in virus-plant interactions, we introduced the C4 gene from Beet severe curly top virus (BSCTV) into Arabidopsis under a conditional expression promoter; the resulting overexpression of BSCTV C4 led to abnormal host cell division. RKP, a RING finger protein, which is a homolog of the human cell cycle regulator KPC1, was discovered to be induced by BSCTV C4 protein. Mutation of RKP reduced the susceptibility to BSCTV in Arabidopsis and impaired BSCTV replication in plant cells. Callus formation is impaired in rkp mutants, indicating a role of RKP in the plant cell cycle. RKP was demonstrated to be a functional ubiquitin E3 ligase and is able to interact with cell-cycle inhibitor ICK/KRP proteins in vitro. Accumulation of the protein ICK2/KRP2 was found increased in the rkp mutant. The above results strengthen the possibility that RKP might regulate the degradation of ICK/KRP proteins. In addition, the protein level of ICK2/KRP2 was decreased upon BSCTV infection. Overexpression of ICK1/KRP1 in Arabidopsis could reduce the susceptibility to BSCTV. In conclusion, we found that RKP is induced by BSCTV C4 and may affect BSCTV infection by regulating the host cell cycle. PMID:19000158

  20. Light, nutrients, and herbivore growth in oligotrophic streams

    SciTech Connect

    Hill, Walter R; Smith, John G; Stewart, Arthur J

    2010-02-01

    The light : nutrient hypothesis posits that herbivore growth is increasingly constrained by low food quality as the ratio of light to nutrients increases in aquatic ecosystems. We tested predictions of this hypothesis by examining the effects of large seasonal cycles in light and nutrients on the mineral content of periphyton and the growth rate of a dominant herbivore (the snail Elimia clavaeformis) in two oligotrophic streams. Streambed irradiances in White Oak Creek and Walker Branch (eastern Tennessee, USA) varied dramatically on a seasonal basis due to leaf phenology in the surrounding deciduous forests and seasonal changes in sun angle. Concentrations of dissolved nutrients varied inversely with light, causing light : nitrate and light : phosphate to range almost 100-fold over the course of any individual year. Periphyton nitrogen and phosphorus concentrations were much lower than the concentrations of these elements in snails, and they bottomed out in early spring when streambed irradiances were highest. Snail growth, however, peaked in early spring when light:nutrient ratios were highest and periphyton nutrient concentrations were lowest, Growth was linearly related to primary production (accounting for up to 85% of growth variance in individual years), which in turn was driven by seasonal variation in light. Conceptual models of herbivore growth indicate that growth should initially increase as increasing light levels stimulate primary production, but then level off, and then decrease as the negative effects of decreasing algal nutrient content override the positive effects of increased food production. Our results showed no evidence of an inflection point where increasing ratios of light to nutrients negatively affected growth. Snail growth in these intensively grazed streams is probably unaffected by periphyton nutrient content because exploitative competition for food reduces growth rates to levels where the demand for nitrogen and phosphorus is small

  1. Neonatal exposure to 17α-ethynyl estradiol affects ovarian gene expression and disrupts reproductive cycles in female rats.

    PubMed

    Nozawa, Kaori; Nagaoka, Kentaro; Zhang, Haolin; Usuda, Kento; Okazaki, Sachiko; Taya, Kazuyoshi; Yoshida, Midori; Watanabe, Gen

    2014-07-01

    Neonatal exposure to synthetic estrogen causes delayed reproductive dysfunction in female rats. Exposure to 17α-ethynyl estradiol (EE, low: 20 and high: 2000 μg/kg) induced an abnormal estrous cycle during PND171-190 in low-dose and PND126-145 in high-dose group. At PND90 within normal estrous cycle, high-dose animals showed lack of LH surge and low of ovarian hormones in serum level. Gene expression analysis demonstrated that level of mRNA encoding luteinizing hormone/chorionic gonadotropin receptor (LHCGR) was higher in EE-treated ovaries than in control ovaries, and LHCGR protein colocalized with apoptosis-related proteins in the interstitial area of the ovary. At PND1, ovarian LHCGR mRNA levels were higher in EE-treated rats than in control rats, and direct induction of LHCGR expression by EE was observed in vitro. Our results indicate that neonatal exposure to EE induces irregular LHCGR expression in the immature ovary, which may influence the occurrence of delayed reproductive dysfunction in adult animals. PMID:24632129

  2. Runoff and nutrient losses during winter periods in cold climates--requirements to nutrient simulation models.

    PubMed

    Deelstra, Johannes; Kvaernø, Sigrun H; Granlund, Kirsti; Sileika, Antanas Sigitas; Gaigalis, Kazimieras; Kyllmar, Katarina; Vagstad, Nils

    2009-03-01

    Large areas in Europe may experience frozen soils during winter periods which pose special challenges to modelling. Extensive data are collected in small agricultural catchments in Nordic and Baltic countries. An analysis on measurements, carried out in four small agricultural catchments has shown that a considerable amount of the yearly nutrient loss occurs during the freezing period. A freezing period was defined as the time period indicated by the maximum and minimum points on the cumulative degree-day curve. On average 6-32% of the yearly runoff was generated during this period while N-loss varied from 5-35% and P loss varied from 3-33%. The results indicate that infiltration into frozen soils might occur during the freezing period and that the runoff generating processes, at least during a considerable part of the freezing period, are rather similar compared to the processes outside the freezing period. Freeze-thaw cycles affect the infiltration capacity and aggregate stability, thereby the erosion and nutrient losses. The Norwegian catchment had a high P loss during the freezing period compared to the other catchments, most likely caused by catchment characteristics such as slope, soil types, tillage methods and fertiliser application. It is proposed to use data, collected on small agricultural dominated catchments, in the calibration and validation of watershed management models and to take into account runoff and nutrient loss processes which are representative for cold climates, thereby obtaining reliable results. PMID:19280038

  3. The repeated drying-wetting and freezing-thawing cycles affect only the active pool of soil organic matter

    NASA Astrophysics Data System (ADS)

    Semenov, Vyacheslav; Zinyakova, Natalya; Tulina, Anastasiya

    2016-04-01

    The decrease in the content of soil organic carbon, particularly in active form, is one of the major problems of the 21st century, which is closely related to the disturbance of the biogeochemical carbon cycle and to the increase in the emission of carbon dioxide into the atmosphere. The main reasons for the SOM losses are the surplus of the SOM active pool losses due to mineralization, erosion, and infiltration over the input of fresh organic matter to the soil, as well as the changes in the soil conditions and processes due to natural and anthropogenic disturbing impacts. Experiments were carried out with mixed samples from the upper layers of soddy-podzolic soil, gray forest soil, and typical chernozems. Soil samples as controls were incubated after wetting for 150 days. The dynamics and cumulative production of C-CO2 under stable temperature (22°C) and moisture conditions were determined; the initial content of potentially mineralizable organic matter (C0) in the soil at the beginning of the incubation was then calculated to use these data as the control. Other soil samples were exposed in flasks to the following successive treatments: wetting →incubation → freezing → thawing → incubation →drying. Six repeated cycles of disturbing impacts were performed for 140 days of the experiment. After six cycles, the soil samples were incubated under stable temperature and moisture conditions for 150 days. The wetting of dried soils and the thawing of frozen soils are accompanied by the pulsed dynamics of the C-CO2 production with an abrupt increase in the rate of the C-CO2 emission within several days by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. The rate of the C-CO2 production pulses under each subsequent impact decreased compared to the preceding one similarly for all studied soils, which could be due to the depletion in potentially mineralizable soil organic matter (C0). The cumulative extra C-CO2 production by

  4. Generalized Nutrient Taxes Can Increase Consumer Welfare.

    PubMed

    Bishai, David

    2015-11-01

    Certain nutrients can stimulate appetite making them fattening in a way that is not fully conveyed by the calorie content on the label. For rational eaters, this information gap could be corrected by more labeling. As an alternative, this paper proposes a set of positive and negative taxes on the fattening and slimming nutrients in food rather than on the food itself. There are conditions under which this tax plus subsidy system could increase welfare by stopping unwanted weight gain while leaving the final retail price of food unchanged. A nutrient tax system could improve welfare if fattening nutrients, net of their effect on weight, are inferior goods and the fiscal cost of administering the tax is sufficiently low. More data on the price elasticity of demand for nutrients as well as data on how specific nutrients affect satiety and how total calorie intake would be necessary before one could be sure a nutrient tax would work in practice. PMID:25241653

  5. Biogeographic patterns of nutrient resorption from Quercus variabilis Blume leaves across China.

    PubMed

    Sun, X; Kang, H; Chen, H Y H; Björn, B; Samuel, B F; Liu, C

    2016-05-01

    The variation in nutrient resorption has been studied at different taxonomic levels and geographic ranges. However, the variable traits of nutrient resorption at the individual species level across its distribution are poorly understood. We examined the variability and environmental controls of leaf nutrient resorption of Quercus variabilis, a widely distributed species of important ecological and economic value in China. The mean resorption efficiency was highest for phosphorus (P), followed by potassium (K), nitrogen (N), sulphur (S), magnesium (Mg) and carbon (C). Resorption efficiencies and proficiencies were strongly affected by climate and respective nutrients concentrations in soils and green leaves, but had little association with leaf mass per area. Climate factors, especially growing season length, were dominant drivers of nutrient resorption efficiencies, except for C, which was strongly related to green leaf C status. In contrast, green leaf nutritional status was the primary controlling factor of leaf nutrient proficiencies, except for C. Resorption efficiencies of N, P, K and S increased significantly with latitude, and were negatively related to growing season length and mean annual temperature. In turn, N, P, K and S in senesced leaves decreased with latitude, likely due to their efficient resorption response to variation in climate, but increased for Mg and did not change for C. Our results indicate that the nutrient resorption efficiency and proficiency of Q. variabilis differed strongly among nutrients, as well as growing environments. Our findings provide important insights into understanding the nutrient conservation strategy at the individual species level and its possible influence on nutrient cycling. PMID:26597338

  6. Extreme warming, photic zone euxinia and sea level rise during the Paleocene/Eocene Thermal Maximum on the Gulf of Mexico Coastal Plain; connecting marginal marine biotic signals, nutrient cycling and ocean deoxygenation

    NASA Astrophysics Data System (ADS)

    Sluijs, A.; van Roij, L.; Harrington, G. J.; Schouten, S.; Sessa, J. A.; LeVay, L. J.; Reichart, G.-J.; Slomp, C. P.

    2013-12-01

    The Paleocene/Eocene Thermal Maximum (PETM, ~56 Ma) was a ~200 kyr episode of global warming, associated with massive injections of 13C-depleted carbon into the ocean-atmosphere system. Although climate change during the PETM is relatively well constrained, effects on marine oxygen and nutrient cycling remain largely unclear. We identify the PETM in a sediment core from the US margin of the Gulf of Mexico. Biomarker-based paleotemperature proxies (MBT/CBT and TEX86) indicate that continental air and sea surface temperatures warmed from 27-29 °C to ~35 °C, although variations in the relative abundances of terrestrial and marine biomarkers may have influenced the record. Vegetation changes as recorded from pollen assemblages supports profound warming. Lithology, relative abundances of terrestrial vs. marine palynomorphs as well as dinoflagellate cyst and biomarker assemblages indicate sea level rise during the PETM, consistent with previously recognized eustatic rise. The recognition of a maximum flooding surface during the PETM changes regional sequence stratigraphic interpretations, which allows us to exclude the previously posed hypothesis that a nearby fossil found in PETM-deposits represents the first North American primate. Within the PETM we record the biomarker isorenieratane, diagnostic of euxinic photic zone conditions. A global data compilation indicates that deoxygenation occurred in large regions of the global ocean in response to warming, hydrological change, and carbon cycle feedbacks, particularly along continental margins, analogous to modern trends. Seafloor deoxygenation and widespread anoxia likely caused phosphorus regeneration from suboxic and anoxic sediments. We argue that this fuelled shelf eutrophication, as widely recorded from microfossil studies, increasing organic carbon burial along continental margins as a negative feedback to carbon input and global warming. If properly quantified with future work, the PETM offers the opportunity to

  7. The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles.

    PubMed

    Minetti, Alberto E; Gaudino, Paolo; Seminati, Elena; Cazzola, Dario

    2013-02-15

    Although most of the literature on locomotion energetics and biomechanics is about constant-speed experiments, humans and animals tend to move at variable speeds in their daily life. This study addresses the following questions: 1) how much extra metabolic energy is associated with traveling a unit distance by adopting acceleration/deceleration cycles in walking and running, with respect to constant speed, and 2) how can biomechanics explain those metabolic findings. Ten males and ten females walked and ran at fluctuating speeds (5 ± 0, ± 1, ± 1.5, ± 2, ± 2.5 km/h for treadmill walking, 11 ± 0, ± 1, ± 2, ± 3, ± 4 km/h for treadmill and field running) in cycles lasting 6 s. Field experiments, consisting of subjects following a laser spot projected from a computer-controlled astronomic telescope, were necessary to check the noninertial bias of the oscillating-speed treadmill. Metabolic cost of transport was found to be almost constant at all speed oscillations for running and up to ±2 km/h for walking, with no remarkable differences between laboratory and field results. The substantial constancy of the metabolic cost is not explained by the predicted cost of pure acceleration/deceleration. As for walking, results from speed-oscillation running suggest that the inherent within-stride, elastic energy-free accelerations/decelerations when moving at constant speed work as a mechanical buffer for among-stride speed fluctuations, with no extra metabolic cost. Also, a recent theory about the analogy between sprint (level) running and constant-speed running on gradients, together with the mechanical determinants of gradient locomotion, helps to interpret the present findings. PMID:23221963

  8. Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels.

    PubMed

    Zhao, Lijuan; Sun, Youping; Hernandez-Viezcas, Jose A; Hong, Jie; Majumdar, Sanghamitra; Niu, Genhua; Duarte-Gardea, Maria; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-03-01

    Information about changes in physiological and agronomic parameters through the life cycle of plants exposed to engineered nanoparticles (NPs) is scarce. In this study, corn (Zea mays) plants were cultivated to full maturity in soil amended with either nCeO2 or nZnO at 0, 400, and 800 mg/kg. Gas exchange was monitored every 10 days, and at harvest, bioaccumulation of Ce and Zn in tissues was determined by ICP-OES/MS. The effects of NPs exposure on nutrient concentration and distribution in ears were also evaluated by ICP-OES and μ-XRF. Results showed that nCeO2 at both concentrations did not impact gas exchange in leaves at any growth stage, while nZnO at 800 mg/kg reduced net photosynthesis by 12%, stomatal conductance by 15%, and relative chlorophyll content by 10% at day 20. Yield was reduced by 38% with nCeO2 and by 49% with nZnO. Importantly, μ-XRF mapping showed that nCeO2 changed the allocation of calcium in kernels, compared to controls. In nCeO2 treated plants, Cu, K, Mn, and Zn were mainly localized at the insertion of kernels into cobs, but Ca and Fe were distributed in other parts of the kernels. Results showed that nCeO2 and nZnO reduced corn yield and altered quality of corn. PMID:25648544

  9. Soil nutrient heterogeneity modulates ecosystem responses to changes in the identity and richness of plant functional groups

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Gallardo, Antonio

    2015-01-01

    Summary Recent research has shown that biodiversity may has its greatest impact on ecosystem functioning in heterogeneous environments. However, the role of soil heterogeneity as a modulator of ecosystem responses to changes in biodiversity remains poorly understood, as few biodiversity studies have explicitly considered this important ecosystem feature. We conducted a microcosm experiment over two growing seasons to evaluate the joint effects of changes in plant functional groups (grasses, legumes, non-legume forbs and a combination of them), spatial distribution of soil nutrients (homogeneous and heterogeneous) and nutrient availability (50 and 100 mg of nitrogen [N] added as organic material) on plant productivity and surrogates of carbon, phosphorous and N cycling (β-glucosidase and acid phosphatase enzymes and in situ N availability, respectively). Soil nutrient heterogeneity interacted with nutrient availability and plant functional diversity to determine productivity and nutrient cycling responses. All the functional groups exhibited precise root foraging patterns. Above- and belowground productivity increased under heterogeneous nutrient supply. Surrogates of nutrient cycling were not directly affected by soil nutrient heterogeneity. Regardless of their above- and belowground biomass, legumes increased the availability of soil inorganic N and the activity of the acid phosphatase and β-glucosidase enzymes. Our study emphasizes the role of soil nutrient heterogeneity as a modulator of ecosystem responses to changes in functional diversity beyond the species level. Functional group identity, rather than richness, can play a key role in determining the effects of biodiversity on ecosystem functioning. Synthesis. Our results highlight the importance of explicitly considering soil heterogeneity in diversity-ecosystem functioning experiments, where the identity of the plant functional group is of major importance. Such consideration will improve our ability to

  10. [Sound duration and sound pattern affect the recovery cycles of inferior collicular neurons in leaf-nosed bat, Hipposideros armiger].

    PubMed

    Tang, Jia; Fu, Zi-Ying; Wu, Fei-Jian

    2010-10-25

    The effects of sound duration and sound pattern on the recovery cycles of inferior collicular (IC) neurons in constant frequency-frequency modulation (CF-FM) bats were explored in this study. Five leaf-nosed bats, Hipposideros armiger (4 males, 1 female, 43-50 g body weight), were used as subjects. The extracellular responses of IC neurons to paired sound stimuli with different duration and patterns were recorded, and the recovery was counted as the ratio of the second response to the first response. Totally, 169 sound-sensitive IC neurons were recorded in the experiment. According to the interpulse interval (IPI) of paired sounds when neurons reached 50% recovery (50% IPI), the recovery cycles of these IC neurons were classified into 3 types: fast recovery (F, the 50% IPI was less than 15 ms), short recovery (S, the 50% IPI was between 15.1 and 30 ms) and long recovery (L, the 50% IPI was more than 30 ms). When paired CF stimuli with 2 ms duration was used, the ratio of F neurons was 32.3%, and it decreased to 18.1% and 18.2% respectively when 5 and 7 ms CF stimuli were used. The ratios of S and L neurons were 41.5%, 33.7%, 29.1% and 26.2%, 48.2%, 52.7% respectively when 2, 5 and 7 ms CF stimuli were used. The average 50% IPI determined after stimulation with paired 2 ms, 5 ms and 7 ms CF sounds were (30.2 ± 27.6), (39.9 ± 29.1) and (49.4 ± 34.7) ms, respectively, and the difference among them was significant (P< 0.01). When the stimuli of paired 2 ms CF sounds were shifted to paired 2 ms FM sounds, the proportion of F, S and L neurons changed from 32.3%, 41.5%, 26.2% to 47.7%, 24.6%, 27.7%, respectively, and the average 50% IPI decreased from (30.2 ± 27.6) to (23.9 ± 19.0) ms (P< 0.05, n = 65). When paired 5+2 ms CF-FM pulses were used instead of 7 ms CF sounds, the proportion of F, S and L neurons changed from 18.2%, 29.1%, 52.7% to 29.1%, 27.3%, 43.6%, respectively, and the average 50% IPI decreased from (49.4 ± 34.7) to (36.3 ± 29.4) ms (P< 0.05, n = 55

  11. Nutrient Attenuation Under Natural Conditions in Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches are common practice in agricultural landscapes with poorly drained soils. Even though high concentrations of nutrients and other agricultural chemicals have been reportedly associated with agricultural drainage ditches, processes affecting nutrient transport in these ditches are not...

  12. NUTRIENT DYNAMICS IN RELATION TO GEOMORPHOLOGY OF RIVERINE WETLANDS

    EPA Science Inventory

    Variation in water depth and soil properties associated with geomorphic structures can affect riverine wetland nutrient dynamics by altering biogeochemical processes. We examined the seasonal influence of soils and geomorphology on nutrient forms and concentrations in riverine we...

  13. Linking environmental nutrient enrichment and disease emergence in humans and wildlife

    PubMed Central

    Johnson, Pieter T. J.; Townsend, Alan R.; Cleveland, Cory C.; Glibert, Patricia M.; Howarth, Robert W.; McKenzie, Valerie J.; Rejmankova, Eliska; Ward, Mary H.

    2009-01-01

    Worldwide increases in the numbers of human and wildlife diseases present ecologists with the challenge of understanding how large-scale environmental changes affect host-parasite interactions. One of the most profound changes to Earth’s ecosystems is the alteration of global nutrient cycles, including those of phosphorus (P) and especially nitrogen (N). Alongside the obvious direct benefits of nutrient application for food production, growing evidence suggests that anthropogenic inputs of N and P can indirectly affect the abundance of infectious and noninfectious pathogens, sometimes leading to epidemic conditions. However, the mechanisms underpinning observed correlations, and how such patterns vary with disease type, have long remained conjectural. Here, we discuss recent experimental advances in this area to critically evaluate the relationship between environmental nutrient enrichment and disease. Given the inter-related nature of human and wildlife disease emergence, we include a broad range of human and wildlife examples from terrestrial, marine and freshwater ecosystems. We examine the consequences of nutrient pollution on directly transmitted, vector-borne, complex life cycle, and noninfectious pathogens, including West Nile virus, malaria, harmful algal blooms, coral reef diseases and amphibian malformations. Our synthetic examination suggests that the effects of environmental nutrient enrichment on disease are complex and multifaceted, varying with the type of pathogen, host species and condition, attributes of the ecosystem and the degree of enrichment; some pathogens increase in abundance whereas others decline or disappear. Nevertheless, available evidence indicates that ecological changes associated with nutrient enrichment often exacerbate infection and disease caused by generalist parasites with direct or simple life cycles. Observed mechanisms include changes in host/vector density, host distribution, infection resistance, pathogen virulence or

  14. Glucosylceramide synthesis inhibition affects cell cycle progression, membrane trafficking, and stage differentiation in Giardia lamblia[S

    PubMed Central

    Štefanić, Saša; Spycher, Cornelia; Morf, Laura; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Wild, Peter; Hehl, Adrian B.; Sonda, Sabrina

    2010-01-01

    Synthesis of glucosylceramide via glucosylceramide synthase (GCS) is a crucial event in higher eukaryotes, both for the production of complex glycosphingolipids and for regulating cellular levels of ceramide, a potent antiproliferative second messenger. In this study, we explored the dependence of the early branching eukaryote Giardia lamblia on GCS activity. Biochemical analyses revealed that the parasite has a GCS located in endoplasmic reticulum (ER) membranes that is active in proliferating and encysting trophozoites. Pharmacological inhibition of GCS induced aberrant cell division, characterized by arrest of cytokinesis, incomplete cleavage furrow formation, and consequent block of replication. Importantly, we showed that increased ceramide levels were responsible for the cytokinesis arrest. In addition, GCS inhibition resulted in prominent ultrastructural abnormalities, including accumulation of cytosolic vesicles, enlarged lysosomes, and clathrin disorganization. Moreover, anterograde trafficking of the encystations-specific protein CWP1 was severely compromised and resulted in inhibition of stage differentiation. Our results reveal novel aspects of lipid metabolism in G. lamblia and specifically highlight the vital role of GCS in regulating cell cycle progression, membrane trafficking events, and stage differentiation in this parasite. In addition, we identified ceramide as a potent bioactive molecule, underscoring the universal conservation of ceramide signaling in eukaryotes. PMID:20335568

  15. Are patterns in nutrient limitation belowground consistent with those aboveground: Results from a 4 million year chronosequence

    USGS Publications Warehouse

    Reed, S.C.; Vitousek, P.M.; Cleveland, C.C.

    2011-01-01

    Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in 'young' sites to phosphorus (P) limitation in 'old' sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status. ?? 2010 US Government.

  16. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? 2011 Author(s).

  17. Effects of nutrient enrichment on mangrove leaf litter decomposition.

    PubMed

    Keuskamp, Joost A; Hefting, Mariet M; Dingemans, Bas J J; Verhoeven, Jos T A; Feller, Ilka C

    2015-03-01

    Nutrient enrichment of mangroves, a common phenomenon along densely populated coastlines, may negatively affect mangrove ecosystems by modifying internal carbon and nutrient cycling. The decomposition of litter exerts a strong influence on these processes and is potentially modified by eutrophication. This study describes effects of N and P enrichment on litter decomposition rate and mineralisation/immobilisation patterns. By making use of reciprocal litter transplantation experiments among fertiliser treatments, it was tested if nutrient addition primarily acts on the primary producers (i.e. changes in litter quantity and quality) or on the microbial decomposers (i.e. changes in nutrient limitation for decomposition). Measurements were done in two mangrove forests where primary production was either limited by N or by P, which had been subject to at least 5 years of experimental N and P fertilisation. Results of this study indicated that decomposers were always N-limited regardless of the limitation of the primary producers. This leads to a differential nutrient limitation between decomposers and primary producers in sites where mangrove production was P-limited. In these sites, fertilisation with P caused litter quality to change, resulting in a higher decomposition rate. This study shows that direct effects of fertilisation on decomposition through an effect on decomposer nutrient availability might be non-significant, while the indirect effects through modifying litter quality might be quite substantial in mangroves. Our results show no indication that eutrophication increases decomposition without stimulating primary production. Therefore we do not expect a decline in carbon sequestration as a result of eutrophication of mangrove ecosystems. PMID:25497680

  18. How Hinge Positioning in Cross-Country Ski Bindings Affect Exercise Efficiency, Cycle Characteristics and Muscle Coordination during Submaximal Roller Skiing

    PubMed Central

    Bolger, Conor M.; Sandbakk, Øyvind; Ettema, Gertjan; Federolf, Peter

    2016-01-01

    The purposes of the current study were to 1) test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2) investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding’s hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG) signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA). Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P < 0.05). The changed patterns in muscle activation are in alignment with previously described mechanisms that explain the effects of hinge positioning in speed-skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants. PMID:27203597

  19. Menstrual cycle phase at the time of rape does not affect recovery of semen or amplification of STR profiles of a suspect in vaginal swabs.

    PubMed

    Cerdas, Loreley; Herrera, Fabiola; Arrieta, Glenn; Morelli, Concepción; Álvarez, Karla; Gómez, Aarón

    2016-02-01

    The effect of women menstrual cycle on the forensic analysis of rapes was studied in a random group of 170 victims aged among 10 and 51 years. Participants were grouped according to the day of the menstrual cycle in which they were at the moment of the assault. From each participant, samples of vaginal fluid were taken and analyzed for sperm cells, p30 protein, total human DNA and human male DNA. Moreover, amplification of suspect's autosomal STR and Y-STR was attempted. Suspects' autosomal STR profiles were obtained from 92 of the 101 samples in which spermatozoa were found; and Y-STR haplotype was obtained in 1 of the 9 samples where autosomal STR profiles of a male were not obtained. On the other hand, Y-STR haplotypes were obtained in 2 of the 21 samples negative for sperm cells but positive for p30 protein. Y-STR haplotypes were also obtained in 11 of the 48 samples negative for sperm cells and p30 protein. It was found that groups of participants did not differ on the recovery of sperm cells from the vaginal swabs, quantification of suspect's DNA or amplification of their STR profiles. It is concluded that the menstrual cycle phase at the moment of the sexual assault does not affect the main outcomes of the forensic investigation of rapes. PMID:26734988

  20. Herbivores and nutrients control grassland plant diversity via light limitation.

    SciTech Connect

    Borer, Elizabeth T.; et al, et al

    2014-01-01

    Human alterations to nutrient cycles1,2 and herbivore communities3–7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8,9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  1. The role of snow cover and soil freeze/thaw cycles affecting boreal-arctic soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Kimball, J. S.; Rawlins, M. A.; Moghaddam, M.; Euskirchen, E. S.

    2015-07-01

    Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate widespread reductions (∼ 0.8-1.3 days decade-1) in the mean annual snow cover extent and frozen season duration across the pan-Arctic domain, coincident with regional climate warming trends. How the soil carbon pool responds to these changes will have a large impact on regional and global climate. Here, we developed a coupled terrestrial carbon and hydrology model framework with detailed 1-D soil heat transfer representation to investigate the sensitivity of soil organic carbon stocks and soil decomposition to changes in snow cover and soil freeze/thaw processes in the Pan-Arctic region over the past three decades (1982-2010). Our results indicate widespread soil active layer deepening across the pan-Arctic, with a mean decadal trend of 6.6 ± 12.0 (SD) cm, corresponding with widespread warming and lengthening non-frozen season. Warming promotes vegetation growth and soil heterotrophic respiration, particularly within surface soil layers (≤ 0.2 m). The model simulations also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥ 0.5 m) soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤ 0.2 m) soil layers, especially in colder climate zones (mean annual T ≤ -10 °C). Our results demonstrate the important control of snow cover in affecting northern soil freeze/thaw and soil carbon decomposition processes, and the necessity of considering both warming, and changing precipitation and snow cover regimes in characterizing permafrost soil carbon dynamics.

  2. Regulating nutrient allocation in plants

    DOEpatents

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  3. Rhizosphere priming: a nutrient perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizospher...

  4. c-Myc Regulates Cyclin D-Cdk4 and -Cdk6 Activity but Affects Cell Cycle Progression at Multiple Independent Points

    PubMed Central

    Mateyak, Maria K.; Obaya, Alvaro J.; Sedivy, John M.

    1999-01-01

    c-myc is a cellular proto-oncogene associated with a variety of human cancers and is strongly implicated in the control of cellular proliferation, programmed cell death, and differentiation. We have previously reported the first isolation of a c-myc-null cell line. Loss of c-Myc causes a profound growth defect manifested by the lengthening of both the G1 and G2 phases of the cell cycle. To gain a clearer understanding of the role of c-Myc in cellular proliferation, we have performed a comprehensive analysis of the components that regulate cell cycle progression. The largest defect observed in c-myc−/− cells is a 12-fold reduction in the activity of cyclin D1-Cdk4 and -Cdk6 complexes during the G0-to-S transition. Downstream events, such as activation of cyclin E-Cdk2 and cyclin A-Cdk2 complexes, are delayed and reduced in magnitude. However, it is clear that c-Myc affects the cell cycle at multiple independent points, because restoration of the Cdk4 and -6 defect does not significantly increase growth rate. In exponentially cycling cells the absence of c-Myc reduces coordinately the activities of all cyclin–cyclin-dependent kinase complexes. An analysis of cyclin-dependent kinase complex regulators revealed increased expression of p27KIP1 and decreased expression of Cdk7 in c-myc−/− cells. We propose that c-Myc functions as a crucial link in the coordinate adjustment of growth rate to environmental conditions. PMID:10373516

  5. Redox regime shifts in microbially mediated biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Bush, T.; Butler, I. B.; Free, A.; Allen, R. J.

    2015-06-01

    Understanding how the Earth's biogeochemical cycles respond to environmental change is a prerequisite for the prediction and mitigation of the effects of anthropogenic perturbations. Microbial populations mediate key steps in these cycles, yet they are often crudely represented in biogeochemical models. Here, we show that microbial population dynamics can qualitatively affect the response of biogeochemical cycles to environmental change. Using simple and generic mathematical models, we find that nutrient limitations on microbial population growth can lead to regime shifts, in which the redox state of a biogeochemical cycle changes dramatically as the availability of a redox-controlling species, such as oxygen or acetate, crosses a threshold (a "tipping point"). These redox regime shifts occur in parameter ranges that are relevant to the present-day sulfur cycle in the natural environment and the present-day nitrogen cycle in eutrophic terrestrial environments. These shifts may also have relevance to iron cycling in the iron-containing Proterozoic and Archean oceans. We show that redox regime shifts also occur in models with physically realistic modifications, such as additional terms, chemical states, or microbial populations. Our work reveals a possible new mechanism by which regime shifts can occur in nutrient-cycling ecosystems and biogeochemical cycles, and highlights the importance of considering microbial population dynamics in models of biogeochemical cycles.

  6. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions

    USGS Publications Warehouse

    Xiao-Tao, Lü; Reed, Sasha C.; Yu, Qiang; Han, Xing-Guo

    2016-01-01

    Taken together, the results suggest plants in this ecosystem are much more responsive to changing N cycles than P cycles and emphasize the significance of nutrient resorption as an important plant control over the stoichiometric coupling of N and P under nutrient enriched conditions.

  7. Challenges: Soil dynamics and nutrient cycling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the late 1960’s there was an increasing realization in the U.S.A. and other parts of the world, especially in Europe of the potential problems associated with the disposal of spoil and sewage sludge materials. While insufficient information was available to determine potential adverse effects of ...

  8. NUTRIENT REGULATION OF CELL CYCLE PROGRESSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell replication is tightly controlled in normal tissues and aberrant during disease progression, such as in tumorigenesis. The replication of cells can be divided into four distinct phases: Gap 1 (G1), synthesis (S), gap 2 (G2), and mitosis (M). The progression from one phase to the next is intrica...

  9. A framework to assess biogeochemical response to ecosystem disturbance using nutrient partitioning ratios

    USGS Publications Warehouse

    Kranabetter, J. Marty; McLauchlan, Kendra K.; Enders, Sara K.; Fraterrigo, Jennifer M.; Higuera, Philip E.; Morris, Jesse L.; Rastetter, Edward B.; Barnes, Rebecca; Buma, Brian; Gavin, Daniel G.; Gerhart, Laci M.; Gillson, Lindsey; Hietz, Peter; Mack, Michelle C.; McNeil, Brenden; Perakis, Steven

    2016-01-01

    Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.

  10. Nutrient limitations to secondary forest regrowth

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.; Martinelli, Luiz A.

    The old, highly weathered soils of the lowland forest within the Amazon Basin generally exhibit conservative P cycles and leaky N cycles. This generalization applies to mature forests, but accelerating land use change is altering Amazonian landscapes. About 16% of the original forest area has been cleared, and about 160,000 km2 is in secondary forest cover. Secondary forests are common in agricultural regions, but few persist in one place for much more than 5 years. The nutrients within ephemeral forests are important for smallholder traditional slash-and-burn agriculture and in alternatives developed to conserve nutrients. Forest clearing causes an initial loss of nutrients through timber harvesting, fire, erosion, soil gaseous emissions, and hydrologic leaching, with N losses exceeding P losses. In contrast, the Ca, Mg, and K present in woody biomass are largely conserved as ash following fire, redistributing these nutrients to the soil. After the initial postclearing pulse of nutrient availability, rates of N cycling and loss consistently decline as cattle pastures age. Fertilization experiments have demonstrated that growth of young forests in abandoned agricultural land is nutrient limited. Several N cycling indicators in a secondary forest chronosequence study also demonstrated a conservative N cycle in young forests. Variable N limitation in young forests helps explain a negative relationship observed between the burn frequency during previous agricultural phases and the rate of forest regrowth. Recuperation of the N cycle gradually occurs during decades of secondary forest succession, such that mature lowland forests eventually recover abundant N relative to a conservative P cycle.

  11. Antiphase Light and Temperature Cycles Affect PHYTOCHROME B-Controlled Ethylene Sensitivity and Biosynthesis, Limiting Leaf Movement and Growth of Arabidopsis1[C][W

    PubMed Central

    Bours, Ralph; van Zanten, Martijn; Pierik, Ronald; Bouwmeester, Harro; van der Krol, Alexander

    2013-01-01

    In the natural environment, days are generally warmer than the night, resulting in a positive day/night temperature difference (+DIF). Plants have adapted to these conditions, and when exposed to antiphase light and temperature cycles (cold photoperiod/warm night [−DIF]), most species exhibit reduced elongation growth. To study the physiological mechanism of how light and temperature cycles affect plant growth, we used infrared imaging to dissect growth dynamics under +DIF and −DIF in the model plant Arabidopsis (Arabidopsis thaliana). We found that −DIF altered leaf growth patterns, decreasing the amplitude and delaying the phase of leaf movement. Ethylene application restored leaf growth in −DIF conditions, and constitutive ethylene signaling mutants maintain robust leaf movement amplitudes under −DIF, indicating that ethylene signaling becomes limiting under these conditions. In response to −DIF, the phase of ethylene emission advanced 2 h, but total ethylene emission was not reduced. However, expression analysis on members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase ethylene biosynthesis gene family showed that ACS2 activity is specifically suppressed in the petiole region under −DIF conditions. Indeed, petioles of plants under −DIF had reduced ACC content, and application of ACC to the petiole restored leaf growth patterns. Moreover, acs2 mutants displayed reduced leaf movement under +DIF, similar to wild-type plants under −DIF. In addition, we demonstrate that the photoreceptor PHYTOCHROME B restricts ethylene biosynthesis and constrains the −DIF-induced phase shift in rhythmic growth. Our findings provide a mechanistic insight into how fluctuating temperature cycles regulate plant growth. PMID:23979970

  12. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  13. Discontinuous gas-exchange cycle characteristics are differentially affected by hydration state and energy metabolism in gregarious and solitary desert locusts.

    PubMed

    Talal, Stav; Ayali, Amir; Gefen, Eran

    2015-12-01

    The termination of discontinuous gas exchange cycles (DGCs) in severely dehydrated insects casts doubt on the generality of the hygric hypothesis, which posits that DGCs evolved as a water conservation mechanism. We followed DGC characteristics in the two density-dependent phases of the desert locust Schistocerca gregaria throughout exposure to an experimental treatment of combined dehydration and starvation stress, and subsequent rehydration. We hypothesized that, under stressful conditions, the more stress-resistant gregarious locusts would maintain DGCs longer than solitary locusts. However, we found no phase-specific variations in body water content, water loss rates (total and respiratory) or timing of stress-induced abolishment of DGCs. Likewise, locusts of both phases re-employed DGCs after ingesting comparable volumes of water when rehydrated. Despite comparable water management performances, the effect of exposure to stressful experimental conditions on DGC characteristics varied significantly between gregarious and solitary locusts. Interburst duration, which is affected by the ability to buffer CO2, was significantly reduced in dehydrated solitary locusts compared with gregarious locusts. Moreover, despite similar rehydration levels, only gregarious locusts recovered their initial CO2 accumulation capacity, indicating that cycle characteristics are affected by factors other than haemolymph volume. Haemolymph protein measurements and calculated respiratory exchange ratios suggest that catabolism of haemolymph proteins may contribute to a reduced haemolymph buffering capacity, and thus a compromised ability for CO2 accumulation, in solitary locusts. Nevertheless, DGC was lost at similar hydration states in the two phases, suggesting that DGCs are terminated as a result of inadequate oxygen supply to the tissues. PMID:26486365

  14. Testing a cycle of family violence model in conflict-affected, low-income countries: a qualitative study from Timor-Leste.

    PubMed

    Rees, Susan; Thorpe, Rosamund; Tol, Wietse; Fonseca, Mira; Silove, Derrick

    2015-04-01

    The present study examines key aspects of an emerging cycle of violence model as applied to conflict-affected countries. We focus specifically on the roles of intimate partner violence (IPV), consequent experiences of explosive anger amongst women, and associated patterns of harsh parenting. Between 2010 and 2011, we conducted a women-centred and culturally sensitive qualitative inquiry with 77 mothers drawn consecutively from a data-base of all adults residing in two villages in Timor-Leste. We over-sampled women who in the preceding whole of household survey met criteria for Intermittent Explosive Disorder (IED). Our methodology included in-depth qualitative interviews followed by a focus group with a comprehensive array of service providers. We used the NVivo software package to manage and analyse data. Our findings provide support for a link between IPV and experiences of explosive anger amongst Timorese mothers. Furthermore, women commonly reported that experiences of explosive anger were accompanied by harsh parenting directed at their children. Women identified the role of patriarchy in legitimizing and perpetuating IPV. Our findings suggest that empowering women to address IPV and poverty may allow them to overcome or manage feelings of anger in a manner that will reduce risk of associated harsh parenting. A fuller examination of the cycle of violence model will need to take into account wider contributing factors at the macro-level (historical, conflict-related, political), the meso-level (community-wide adherence to patriarchal norms affecting the rights and roles of women), and the micro-level (family interactions and gendered role expectations, individual psychological responses, and parenting). Longitudinal studies in post-conflict settings are needed to examine whether the sequence of male violence against women, mothers experience of explosive anger, and consequent harsh parenting contributes to risk of aggression and mental disorder in offspring

  15. Millennial δ18O oscillations from a replicated Holocene speleothem record from Iberian Peninsula and hemispherical teleconecctions affecting the water cycle

    NASA Astrophysics Data System (ADS)

    Domínguez-Villar, David; Wang, Xianfeng; Krklec, Kristina; Cheng, Hai; Edwards, R. Lawrence

    2016-04-01

    We present a speleothem δ18O record from Kaite Cave in northern Iberian Peninsula covering the last 9.7 ka BP. The record is constructed from four different stalagmites that replicate each other. The age model is based on 63 U-Th dates and over 4500 laminae providing a robust time frame for the record. The δ18O record has characteristic millennial oscillations through the Holocene with periodicity around 2 ka during the Late Holocene and around 1 ka during the Early Holocene. Causes of the millennial δ18O variability are not dominated by the amount of rainfall or atmospheric temperature and other controls of the water cycle are more relevant. The aquifer at this site filters any seasonal bias and speleothems records the inter-annual δ18O variability in precipitation. On the other hand, moisture source analysis at this site shows that significant amount of precipitation is from recycled moisture (continental origin). A variable proportion of this parameter is capable to impact significantly past values of δ18O in precipitation. Thus, we interpret the millennial oscillations of the δ18O record as changes in the hydrological cycle resulting from variable percentages of the recycled precipitation over the Iberian Peninsula. We found that variable amount of recycled precipitation in Iberian Peninsula is related to the location of the Iceland Low pressure cell, although does not correlate with NAO index. Correlation of Kaite δ18O record during the Holocene with other representative records suggests that millennial oscillations are caused by variability of the Gulf Stream/North Atlantic Current that affects atmospheric pressure fields in the North Atlantic. Further correlation of Kaite δ18O record along the world supports that the recorded millennial oscillations of the water cycle are related to persistent variability on the tropical North Atlantic. Only during periods of major sea-ice variability in high-latitudes of the North Atlantic, the later region replaces

  16. Physical exercise affects slow cycling cells in the rat heart and reveals a new potential niche area in the atrioventricular junction.

    PubMed

    Vukusic, Kristina; Asp, Julia; Henriksson, Helena Barreto; Brisby, Helena; Lindahl, Anders; Sandstedt, Joakim

    2015-10-01

    Physical exercise has several beneficial effects on the heart. In other tissues it has been shown to activate endogenous stem cells. There is however a lack of knowledge how exercise affects the distribution of progenitor cells as well as overall cell turnover within the heart. Therefore, proliferating cells were identified using BrdU DNA labeling in a rat exercise model. Slow cycling cells were identified by label retention. BrdU+ nuclei were counted in apex, ventricle and atrioventricular junction (AV junction), as well as in skin tissue where label retaining cells (LRC) have been described previously. After 13 weeks of chasing, the cells with the highest intensity were identified and considered as LRC. Heart tissue showed slower proliferation compared to skin. The highest number of BrdU+ cells was found in the AV junction. Here, a sub region in close proximity to the valvular insertion point was observed, where density of BrdU+ cells was high at all time points. Physical exercise increased proliferation in AV junction at the early stage. Furthermore, the sub region was found to harbor a significant higher number of LRC compared to other regions of the heart in the exercised animals. Progenitor markers MDR1 and Sca-1 were detected in the same area by immunohistochemistry. In conclusions, our data shows that physical exercise affects cell turnover and distribution of LRC in the heart. Furthermore, it reveals a region within the AV junction of the heart that shows features of a stem cell niche. PMID:26047663

  17. Influence of Physiological Stress on Nutrient Stoichiometry in Larval Amphibians.

    PubMed

    Kirschman, Lucas J; Haslett, Savhannah; Fritz, Kelley A; Whiles, Matt R; Warne, Robin W

    2016-01-01

    Exposure to environmental stressors alters animal phenotypes as well as nutrient metabolism, assimilation, and excretion. While stress-induced shifts in nutrient processes are known to alter organismal carbon (C) and nitrogen (N) stoichiometry, there has been little exploration of how environmental factors influence phosphorous (P). A better understanding of how P cycling varies with animal physiological state may provide insight into across-scale processes, because P is essential to animal function and ecological processes such as production and decomposition. We tested the effects of predator stress and exogenous glucocorticoids on C∶N∶P stoichiometry of larval amphibians. Glucocorticoids altered nutrient stoichiometry, apparently by modulating ossification and renal function. This reduced whole-body P and significantly increased N∶P. Additionally, elevated glucocorticoids caused a long-term reduction in P excretion. This reduction may reflect an initial unmeasured loss of P that glucocorticoids induce over acute timescales. In contrast, exposure to predator cues had no effect on larval C∶N∶P stoichiometry, which highlights that different stressors have varied effects on the endocrine stress response. Predation, in particular, is ubiquitous in the environment; thus, larvae responding to predators have conserved mechanisms that likely prevent or minimize physiological disruption. These results demonstrate the differing physiological roles of N and P, distinct nutrient demands associated with amphibian metamorphosis, and the contrasting effects that different environmental factors have on the physiological stress response. Our results also suggest that anthropogenic changes to the environment that induce chronic stress in amphibians could affect the biogeochemistry of nutrient-poor environments where they may act as keystone species. PMID:27327181

  18. Nutrient Density Scores.

    ERIC Educational Resources Information Center

    Dickinson, Annette; Thompson, William T.

    1979-01-01

    Announces a nutrient density food scoring system called the Index of Nutritional Quality (INQ). It expresses the ratio between the percent RDA of a nutrient and the percent daily allowance of calories in a food. (Author/SA)

  19. Rhizosphere priming: a nutrient perspective

    PubMed Central

    Dijkstra, Feike A.; Carrillo, Yolima; Pendall, Elise; Morgan, Jack A.

    2013-01-01

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N) through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P) limited. Under P limitation, rhizodeposition may be used for mobilization of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils. PMID:23908649

  20. Post-learning stress differentially affects memory for emotional gist and detail in naturally cycling women and women on hormonal contraceptives

    PubMed Central

    Nielsen, Shawn E.; Ahmed, Imran; Cahill, Larry

    2014-01-01

    Sex differences in emotional memory have received increasing interest over the past decade. However, to date, no work has explored how a post-learning stressor might modulate the influence of sex hormone status on memory for gist and peripheral detail in an emotional versus neutral context. Here, we tested three predictions. First, compared to naturally cycling women (NC women) in the luteal phase, women on hormonal contraception (HC women) would have significantly blunted HPA reactivity to physical stress. Second, post-learning stress would enhance detail and gist memory from an emotional story in NC women, and finally, post-learning stress would not affect emotional memory for details or gist in HC women. Healthy NC and HC women viewed a brief, narrated story containing neutral or emotionally arousing elements. Immediately after, Cold Pressor Stress (CPS) or a control procedure was administered. One week later, participants received a surprise free recall test for story elements. NC women exhibited significantly greater cortisol increases to CPS compared to HC women. NC women who viewed the emotional story and were administered CPS recalled the most peripheral details overall and more gist from the emotional compared to the neutral story. In HC women, however, the post-learning cortisol release did not affect memory for gist or peripheral details from the emotional or neutral story in any way. Additionally, NC and HC women performed similarly on measures of attention and arousal. These findings suggest that in women, post-learning stress differentially affects memory for emotional information depending on their hormonal contraceptive status. PMID:24841741

  1. Processes and patterns of oceanic nutrient limitation

    NASA Astrophysics Data System (ADS)

    Moore, C. M.; Mills, M. M.; Arrigo, K. R.; Berman-Frank, I.; Bopp, L.; Boyd, P. W.; Galbraith, E. D.; Geider, R. J.; Guieu, C.; Jaccard, S. L.; Jickells, T. D.; La Roche, J.; Lenton, T. M.; Mahowald, N. M.; Marañón, E.; Marinov, I.; Moore, J. K.; Nakatsuka, T.; Oschlies, A.; Saito, M. A.; Thingstad, T. F.; Tsuda, A.; Ulloa, O.

    2013-09-01

    Microbial activity is a fundamental component of oceanic nutrient cycles. Photosynthetic microbes, collectively termed phytoplankton, are responsible for the vast majority of primary production in marine waters. The availability of nutrients in the upper ocean frequently limits the activity and abundance of these organisms. Experimental data have revealed two broad regimes of phytoplankton nutrient limitation in the modern upper ocean. Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow. In contrast, iron often limits productivity where subsurface nutrient supply is enhanced, including within the main oceanic upwelling regions of the Southern Ocean and the eastern equatorial Pacific. Phosphorus, vitamins and micronutrients other than iron may also (co-)limit marine phytoplankton. The spatial patterns and importance of co-limitation, however, remain unclear. Variability in the stoichiometries of nutrient supply and biological demand are key determinants of oceanic nutrient limitation. Deciphering the mechanisms that underpin this variability, and the consequences for marine microbes, will be a challenge. But such knowledge will be crucial for accurately predicting the consequences of ongoing anthropogenic perturbations to oceanic nutrient biogeochemistry.

  2. DEVELOPMENT OF SAV LOSS-NUTRIENT LOAD RELATIONSHIPS AND FACTORS WHICH CONTROL SAV RESPONSE TO NUTRIENTS

    EPA Science Inventory

    This research aims to understand the relationship between SAV loss and nutrient loading (N and P). A set of models will be developed and used to examine how nutrients interact with the physical and biological components to affect the health of SAV populations. First, a literat...

  3. NATIONAL NUTRIENTS DATABASE

    EPA Science Inventory

    Resource Purpose:The Nutrient Criteria Program has initiated development of a National relational database application that will be used to store and analyze nutrient data. The ultimate use of these data will be to derive ecoregion- and waterbody-specific numeric nutrient...

  4. Functioning of a Shallow-Water Sediment System during Experimental Warming and Nutrient Enrichment

    PubMed Central

    Alsterberg, Christian; Sundbäck, Kristina; Hulth, Stefan

    2012-01-01

    Effects of warming and nutrient enrichment on intact unvegetated shallow-water sediment were investigated for 5 weeks in the autumn under simulated natural field conditions, with a main focus on trophic state and benthic nitrogen cycling. In a flow-through system, sediment was exposed to either seawater at ambient temperature or seawater heated 4°C above ambient, with either natural or nutrient enriched water. Sediment–water fluxes of oxygen and inorganic nutrients, nitrogen mineralization, and denitrification were measured. Warming resulted in an earlier shift to net heterotrophy due to increased community respiration; primary production was not affected by temperature but (slightly) by nutrient enrichment. The heterotrophic state was, however, not further strengthened by warming, but was rather weakened, probably because increased mineralization induced a shortage of labile organic matter. Climate-related warming of seawater during autumn could therefore, in contrast to previous predictions, induce shorter but more intensive heterotrophic periods in shallow-water sediments, followed by longer autotrophic periods. Increased nitrogen mineralization and subsequent effluxes of ammonium during warming suggested a preferential response of organisms driving nitrogen mineralization when compared to sinks of ammonium such as nitrification and algal assimilation. Warming and nutrient enrichment resulted in non-additive effects on nitrogen mineralization and denitrification (synergism), as well as on benthic fluxes of phosphate (antagonism). The mode of interaction appears to be related to the trophic level of the organisms that are the main drivers of the affected processes. Despite the weak response of benthic microalgae to both warming and nutrient enrichment, the assimilation of nitrogen by microalgae was similar in magnitude to rates of nitrogen mineralization. This implies a sustained filter function and retention capacity of nutrients by the sediment. PMID

  5. Functioning of a shallow-water sediment system during experimental warming and nutrient enrichment.

    PubMed

    Alsterberg, Christian; Sundbäck, Kristina; Hulth, Stefan

    2012-01-01

    Effects of warming and nutrient enrichment on intact unvegetated shallow-water sediment were investigated for 5 weeks in the autumn under simulated natural field conditions, with a main focus on trophic state and benthic nitrogen cycling. In a flow-through system, sediment was exposed to either seawater at ambient temperature or seawater heated 4°C above ambient, with either natural or nutrient enriched water. Sediment-water fluxes of oxygen and inorganic nutrients, nitrogen mineralization, and denitrification were measured. Warming resulted in an earlier shift to net heterotrophy due to increased community respiration; primary production was not affected by temperature but (slightly) by nutrient enrichment. The heterotrophic state was, however, not further strengthened by warming, but was rather weakened, probably because increased mineralization induced a shortage of labile organic matter. Climate-related warming of seawater during autumn could therefore, in contrast to previous predictions, induce shorter but more intensive heterotrophic periods in shallow-water sediments, followed by longer autotrophic periods. Increased nitrogen mineralization and subsequent effluxes of ammonium during warming suggested a preferential response of organisms driving nitrogen mineralization when compared to sinks of ammonium such as nitrification and algal assimilation. Warming and nutrient enrichment resulted in non-additive effects on nitrogen mineralization and denitrification (synergism), as well as on benthic fluxes of phosphate (antagonism). The mode of interaction appears to be related to the trophic level of the organisms that are the main drivers of the affected processes. Despite the weak response of benthic microalgae to both warming and nutrient enrichment, the assimilation of nitrogen by microalgae was similar in magnitude to rates of nitrogen mineralization. This implies a sustained filter function and retention capacity of nutrients by the sediment. PMID:23240032

  6. HDAC8 Inhibition Blocks SMC3 Deacetylation and Delays Cell Cycle Progression without Affecting Cohesin-dependent Transcription in MCF7 Cancer Cells.

    PubMed

    Dasgupta, Tanushree; Antony, Jisha; Braithwaite, Antony W; Horsfield, Julia A

    2016-06-10

    Cohesin, a multi-subunit protein complex involved in chromosome organization, is frequently mutated or aberrantly expressed in cancer. Multiple functions of cohesin, including cell division and gene expression, highlight its potential as a novel therapeutic target. The SMC3 subunit of cohesin is acetylated (ac) during S phase to establish cohesion between replicated chromosomes. Following anaphase, ac-SMC3 is deacetylated by HDAC8. Reversal of SMC3 acetylation is imperative for recycling cohesin so that it can be reloaded in interphase for both non-mitotic and mitotic functions. We blocked deacetylation of ac-SMC3 using an HDAC8-specific inhibitor PCI-34051 in MCF7 breast cancer cells, and examined the effects on transcription of cohesin-dependent genes that respond to estrogen. HDAC8 inhibition led to accumulation of ac-SMC3 as expected, but surprisingly, had no influence on the transcription of estrogen-responsive genes that are altered by siRNA targeting of RAD21 or SMC3. Knockdown of RAD21 altered estrogen receptor α (ER) recruitment at SOX4 and IL20, and affected transcription of these genes, while HDAC8 inhibition did not. Rather, inhibition of HDAC8 delayed cell cycle progression, suppressed proliferation and induced apoptosis in a concentration-dependent manner. We conclude that HDAC8 inhibition does not change the estrogen-specific transcriptional role of cohesin in MCF7 cells, but instead, compromises cell cycle progression and cell survival. Our results argue that candidate inhibitors of cohesin function may differ in their effects depending on the cellular genotype and should be thoroughly tested for predicted effects on cohesin's mechanistic roles. PMID:27072133

  7. Bacteria contribute to sediment nutrient release and reflect progressed eutrophication-driven hypoxia in an organic-rich continental sea.

    PubMed

    Sinkko, Hanna; Lukkari, Kaarina; Sihvonen, Leila M; Sivonen, Kaarina; Leivuori, Mirja; Rantanen, Matias; Paulin, Lars; Lyra, Christina

    2013-01-01

    In the sedimental organic matter of eutrophic continental seas, such as the largest dead zone in the world, the Baltic Sea, bacteria may directly participate in nutrient release by mineralizing organic matter or indirectly by altering the sediment's ability to retain nutrients. Here, we present a case study of a hypoxic sea, which receives riverine nutrient loading and in which microbe-mediated vicious cycles of nutrients prevail. We showed that bacterial communities changed along the horizontal loading and vertical mineralization gradients in the Gulf of Finland of the Baltic Sea, using multivariate statistics of terminal restriction fragments and sediment chemical, spatial and other properties of the sampling sites. The change was mainly explained by concentrations of organic carbon, nitrogen and phosphorus, which showed strong positive correlation with Flavobacteria, Sphingobacteria, Alphaproteobacteria and Gammaproteobacteria. These bacteria predominated in the most organic-rich coastal surface sediments overlain by oxic bottom water, whereas sulphate-reducing bacteria, particularly the genus Desulfobacula, prevailed in the reduced organic-rich surface sediments in the open sea. They correlated positively with organic nitrogen and phosphorus, as well as manganese oxides. These relationships suggest that the bacterial groups participated in the aerobic and anaerobic degradation of organic matter and contributed to nutrient cycling. The high abundance of sulphate reducers in the surficial sediment layers reflects the persistence of eutrophication-induced hypoxia causing ecosystem-level changes in the Baltic Sea. The sulphate reducers began to decrease below depths of 20 cm, where members of the family Anaerolineaceae (phylum Chloroflexi) increased, possibly taking part in terminal mineralization processes. Our study provides valuable information on how organic loading affects sediment bacterial community compositions, which consequently may maintain active

  8. The Coronary Artery Disease-associated Coding Variant in Zinc Finger C3HC-type Containing 1 (ZC3HC1) Affects Cell Cycle Regulation*

    PubMed Central

    Kaiser, Michael A.; Ghaderi Najafabadi, Maryam; McVey, David G.; Beveridge, Allan J.; Schofield, Christine L.; Samani, Nilesh J.; Webb, Tom R.

    2016-01-01

    Genome-wide association studies have to date identified multiple coronary artery disease (CAD)-associated loci; however, for most of these loci the mechanism by which they affect CAD risk is unclear. The CAD-associated locus 7q32.2 is unusual in that the lead variant, rs11556924, is not in strong linkage disequilibrium with any other variant and introduces a coding change in ZC3HC1, which encodes NIPA. In this study, we show that rs11556924 polymorphism is associated with lower regulatory phosphorylation of NIPA in the risk variant, resulting in NIPA with higher activity. Using a genome-editing approach we show that this causes an effective decrease in cyclin-B1 stability in the nucleus, thereby slowing its nuclear accumulation. By perturbing the rate of nuclear cyclin-B1 accumulation, rs11556924 alters the regulation of mitotic progression resulting in an extended mitosis. This study shows that the CAD-associated coding polymorphism in ZC3HC1 alters the dynamics of cell-cycle regulation by NIPA. PMID:27226629

  9. The hygric hypothesis does not hold water: abolition of discontinuous gas exchange cycles does not affect water loss in the ant Camponotus vicinus.

    PubMed

    Lighton, John R B; Turner, Robbin J

    2008-02-01

    The discontinuous gas exchange cycle (DGC) of insects and other tracheate arthropods temporally decouples oxygen uptake and carbon dioxide emission and generates powerful concentration gradients for both gas species between the outside world and the tracheal system. Although the DGC is considered an adaptation to reduce respiratory water loss (RWL) - the "hygric hypothesis" - it is absent from many taxa, including xeric ones. The "chthonic hypothesis" states that the DGC originated as an adaptation to gas exchange in hypoxic and hypercapnic, i.e. underground, environments. If that is the case then the DGC is not the ancestral condition, and its expression is not necessarily a requirement for reducing RWL. Here we report a study of water loss rate in the ant Camponotus vicinus, measured while its DGC was slowly eliminated by gradual hypoxia (hypoxic ramp de-DGCing). Metabolic rate remained constant. The DGC ceased at a mean P(O2) of 8.4 kPa. RWL in the absence of DGCs was not affected until P(O2) declined below 3.9 kPa. Below that value, non-DGC spiracular regulation failed, accompanied by a large increase in RWL. Thus, the spiracular control strategy of the DGC is not required for low RWL, even in animals that normally express the DGC. PMID:18245633

  10. POD-1/TCF21 Reduces SHP Expression, Affecting LRH-1 Regulation and Cell Cycle Balance in Adrenocortical and Hepatocarcinoma Tumor Cells

    PubMed Central

    França, Monica Malheiros; Ferraz-de-Souza, Bruno; Lerario, Antonio Marcondes; Fragoso, Maria Candida Barisson Villares; Lotfi, Claudimara Ferini Pacicco

    2015-01-01

    POD-1/TCF21 may play a crucial role in adrenal and gonadal homeostasis and represses Sf-1/SF-1 expression in adrenocortical tumor cells. SF-1 and LRH-1 are members of the Fzt-F1 subfamily of nuclear receptors. LRH-1 is involved in several biological processes, and both LRH-1 and its repressor SHP are involved in many types of cancer. In order to assess whether POD-1 can regulate LRH-1 via the same mechanism that regulates SF-1, we analyzed the endogenous mRNA levels of POD-1, SHP, and LRH-1 in hepatocarcinoma and adrenocortical tumor cells using qRT-PCR. Hereafter, these tumor cells were transiently transfected with pCMVMycPod-1, and the effect of POD-1 overexpression on E-box elements in the LRH-1 and SHP promoter region were analyzed by ChIP assay. Also, Cyclin E1 protein expression was analyzed to detect cell cycle progression. We found that POD-1 overexpression significantly decreased SHP/SHP mRNA and protein levels through POD-1 binding to the E-box sequence in the SHP promoter. Decreased SHP expression affected LRH-1 regulation and increased Cyclin E1. These findings show that POD-1/TCF21 regulates SF-1 and LRH-1 by distinct mechanisms, contributing to the understanding of POD-1 involvement and its mechanisms of action in adrenal and liver tumorigenesis, which could lead to the discovery of relevant biomarkers. PMID:26421305

  11. The Coronary Artery Disease-associated Coding Variant in Zinc Finger C3HC-type Containing 1 (ZC3HC1) Affects Cell Cycle Regulation.

    PubMed

    Jones, Peter D; Kaiser, Michael A; Ghaderi Najafabadi, Maryam; McVey, David G; Beveridge, Allan J; Schofield, Christine L; Samani, Nilesh J; Webb, Tom R

    2016-07-29

    Genome-wide association studies have to date identified multiple coronary artery disease (CAD)-associated loci; however, for most of these loci the mechanism by which they affect CAD risk is unclear. The CAD-associated locus 7q32.2 is unusual in that the lead variant, rs11556924, is not in strong linkage disequilibrium with any other variant and introduces a coding change in ZC3HC1, which encodes NIPA. In this study, we show that rs11556924 polymorphism is associated with lower regulatory phosphorylation of NIPA in the risk variant, resulting in NIPA with higher activity. Using a genome-editing approach we show that this causes an effective decrease in cyclin-B1 stability in the nucleus, thereby slowing its nuclear accumulation. By perturbing the rate of nuclear cyclin-B1 accumulation, rs11556924 alters the regulation of mitotic progression resulting in an extended mitosis. This study shows that the CAD-associated coding polymorphism in ZC3HC1 alters the dynamics of cell-cycle regulation by NIPA. PMID:27226629

  12. AGGREGATED FILTER-FEEDING CONSUMERS ALTER NUTRIENT LIMITATION: CONSEQUENCES FOR ECOSYSTEM AND COMMUNITY DYNAMICS

    EPA Science Inventory

    Nutrient cycling is a key process that ties all organisms together. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of...

  13. Native Mussels Alter Nutrient Availability and Reduce Blue-Green Algae Abundance

    EPA Science Inventory

    Nutrient cycling is a key process that ties all organisms together. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of...

  14. Recovery of agricultural nutrients from biorefineries.

    PubMed

    Carey, Daniel E; Yang, Yu; McNamara, Patrick J; Mayer, Brooke K

    2016-09-01

    This review lays the foundation for why nutrient recovery must be a key consideration in design and operation of biorefineries and comprehensively reviews technologies that can be used to recover an array of nitrogen, phosphorus, and/or potassium-rich products of relevance to agricultural applications. Recovery of these products using combinations of physical, chemical, and biological operations will promote sustainability at biorefineries by converting low-value biomass (particularly waste material) into a portfolio of higher-value products. These products can include a natural partnering of traditional biorefinery outputs such as biofuels and chemicals together with nutrient-rich fertilizers. Nutrient recovery not only adds an additional marketable biorefinery product, but also avoids the negative consequences of eutrophication, and helps to close anthropogenic nutrient cycles, thereby providing an alternative to current unsustainable approaches to fertilizer production, which are energy-intensive and reliant on nonrenewable natural resource extraction. PMID:26948442

  15. A Targeted Management of the Nutrient Solution in a Soilless Tomato Crop According to Plant Needs.

    PubMed

    Signore, Angelo; Serio, Francesco; Santamaria, Pietro

    2016-01-01

    The adoption of closed soilless systems is useful in minimizing the environmental impact of the greenhouse crops. Instead, a significant problem in closed soilless systems is represented by the accumulation of ions in the recycled nutrient solution (NS), in particular the unabsorbed or poorly absorbed ones. To overcome such problem, we: (1) studied the effect of several values of the electrical conductivity (EC) of NS in a NFT (Nutrient Film Technique) system on a cherry type tomato crop, and (2) define a NS (called recovery solution), based on the concept of "uptake concentration" and transpiration-biomass ratio, that fits the real needs of the plant with respect to water and nutrients. Three levels of EC set point (SP), above which the NS was completely replaced (SP5, SP7.5, and SP10 for the EC limit of 5, 7.5, and 10 dS m(-1), respectively), were established. The SP10 treatment yield was not different from other treatments, and it allowed a better quality of the berries (for dry matter and total soluble solids) and higher environmental sustainability due to a lower discharge of total nutrients into the environment (37 and 59% with respect to SP7.5 and SP5, respectively). The recovery solution used in the second trial allowed a more punctual NS management, by adapting to the real needs of the crop. Moreover, it allowed a lesser amount of water and nutrients to be discharged into the environment and a better use of brackish water, due to a more accurate management of the EC of the NS. The targeted management, based on transpiration-biomass ratio, indicates that, in some stages of the plant cycle, the NS used can be diluted, in order to save water and nutrients. With such management a closed cycle can be realized without affecting the yield, but improving the quality of the tomato berries. PMID:27242804

  16. A Targeted Management of the Nutrient Solution in a Soilless Tomato Crop According to Plant Needs

    PubMed Central

    Signore, Angelo; Serio, Francesco; Santamaria, Pietro

    2016-01-01

    The adoption of closed soilless systems is useful in minimizing the environmental impact of the greenhouse crops. Instead, a significant problem in closed soilless systems is represented by the accumulation of ions in the recycled nutrient solution (NS), in particular the unabsorbed or poorly absorbed ones. To overcome such problem, we: (1) studied the effect of several values of the electrical conductivity (EC) of NS in a NFT (Nutrient Film Technique) system on a cherry type tomato crop, and (2) define a NS (called recovery solution), based on the concept of “uptake concentration” and transpiration–biomass ratio, that fits the real needs of the plant with respect to water and nutrients. Three levels of EC set point (SP), above which the NS was completely replaced (SP5, SP7.5, and SP10 for the EC limit of 5, 7.5, and 10 dS m-1, respectively), were established. The SP10 treatment yield was not different from other treatments, and it allowed a better quality of the berries (for dry matter and total soluble solids) and higher environmental sustainability due to a lower discharge of total nutrients into the environment (37 and 59% with respect to SP7.5 and SP5, respectively). The recovery solution used in the second trial allowed a more punctual NS management, by adapting to the real needs