Science.gov

Sample records for affect oxidative stress

  1. Oxidative stress markers in affective disorders.

    PubMed

    Siwek, Marcin; Sowa-Kućma, Magdalena; Dudek, Dominika; Styczeń, Krzysztof; Szewczyk, Bernadeta; Kotarska, Katarzyna; Misztakk, Paulina; Pilc, Agnieszka; Wolak, Małgorzata; Nowak, Gabriel

    2013-01-01

    Affective disorders are a medical condition with a complex biological pattern of etiology, involving genetic and epigenetic factors, along with different environmental stressors. Increasing numbers of studies indicate that induction of oxidative and nitrosative stress (O&NS) pathways, which is accompanied by immune-inflammatory response, might play an important role in the pathogenic mechanisms underlying many major psychiatric disorders, including depression and bipolar disorder. Reactive oxygen and nitrogen species have been shown to impair the brain function by modulating activity of principal neurotransmitter (e.g., glutamatergic) systems involved in the neurobiology of depression. Both preclinical and clinical studies revealed that depression is associated with altered levels of oxidative stress markers and typically reduced concentrations of several endogenous antioxidant compounds, such as glutathione, vitamin E, zinc and coenzyme Q10, or enzymes, including glutathione peroxidase, and with an impairment of the total antioxidant status. These oxidative stress parameters can be normalized by successful antidepressant therapy. On the other hand, some antioxidants (zinc, N-acetylcysteine, omega-3 free fatty acids) may exhibit antidepressant properties or enhance standard antidepressant therapy. These observations introduce new potential targets for the development of therapeutic interventions based on antioxidant compounds. The present paper reviews selected animal and human studies providing evidence that oxidative stress is implicated in the pathophysiology and treatment of depression and bipolar disorder.

  2. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans.

    PubMed

    Luo, Zhong-Cheng; Bilodeau, Jean-François; Nuyt, Anne Monique; Fraser, William D; Julien, Pierre; Audibert, Francois; Xiao, Lin; Garofalo, Carole; Levy, Emile

    2015-12-08

    In vitro cell model studies have shown that oxidative stress may affect beta-cell function. It is unknown whether oxidative stress may affect metabolic health in human fetuses/newborns. In a singleton pregnancy cohort (n = 248), we studied maternal (24-28 weeks gestation) and cord plasma biomarkers of oxidative stress [malondialdehyde (MDA), F2-isoprostanes] in relation to fetal metabolic health biomarkers including cord plasma glucose-to-insulin ratio (an indicator of insulin sensitivity), proinsulin-to-insulin ratio (an indicator of beta-cell function), insulin, IGF-I, IGF-II, leptin, adiponectin and ghrelin concentrations. Strong positive correlations were observed between maternal and cord plasma biomarkers of oxidative stress (r = 0.33 for MDA, r = 0.74 for total F2-isoprostanes, all p < 0.0001). Adjusting for gestational age at blood sampling, cord plasma ghrelin concentrations were consistently negatively correlated to oxidative stress biomarkers in maternal (r = -0.32, p < 0.0001 for MDA; r = -0.31, p < 0.0001 for F2-isoprostanes) or cord plasma (r = -0.13, p = 0.04 for MDA; r = -0.32, p < 0.0001 for F2-isoprostanes). Other fetal metabolic health biomarkers were not correlated to oxidative stress. Adjusting for maternal and pregnancy characteristics, similar associations were observed. Our study provides the first preliminary evidence suggesting that oxidative stress may affect fetal ghrelin levels in humans. The implications in developmental "programming" the vulnerability to metabolic syndrome related disorders remain to be elucidated.

  3. Astaxanthin affects oxidative stress and hyposalivation in aging mice

    PubMed Central

    Kuraji, Manatsu; Matsuno, Tomonori; Satoh, Tazuko

    2016-01-01

    Oral dryness, a serious problem for the aging Japanese society, is induced by aging-related hyposalivation and causes dysphagia, dysgeusia, inadaptation of dentures, and growth of oral Candida albicans. Oxidative stress clearly plays a role in decreasing saliva secretion and treatment with antioxidants such astaxanthin supplements may be beneficial. Therefore, we evaluated the effects of astaxanthin on the oral saliva secretory function of aging mice. The saliva flow increased in astaxanthin-treated mice 72 weeks after administration while that of the control decreased by half. The plasma d-ROMs values of the control but not astaxanthin-treated group measured before and 72 weeks after treatment increased. The diacron-reactive oxygen metabolites (d-ROMs) value of astaxanthin-treated mice 72 weeks after treatment was significantly lower than that of the control group was. The plasma biological antioxidative potential (BAP) values of the control but not astaxanthin-treated mice before and 72 weeks after treatment decreased. Moreover, the BAP value of the astaxanthin-treated group 72 weeks after treatment was significantly higher than that of the control was. Furthermore, the submandibular glands of astaxanthin-treated mice had fewer inflammatory cells than the control did. Specifically, immunofluorescence revealed a significantly large aquaporin-5 positive cells in astaxanthin-treated mice. Our results suggest that astaxanthin treatment may prevent age-related decreased saliva secretion. PMID:27698533

  4. Fluoride-Induced Oxidative and Inflammatory Stress in Osteosarcoma Cells: Does It Affect Bone Development Pathway?

    PubMed

    Gandhi, Deepa; Naoghare, Pravin K; Bafana, Amit; Kannan, Krishnamurthi; Sivanesan, Saravanadevi

    2017-01-01

    Oxidative stress is reported to negatively affect osteoblast cells. Present study reports oxidative and inflammatory signatures in fluoride-exposed human osteosarcoma (HOS) cells, and their possible association with the genes involved in osteoblastic differentiation and bone development pathways. HOS cells were challenged with sublethal concentration (8 mg/L) of sodium fluoride for 30 days and analyzed for transcriptomic expression. In total, 2632 transcripts associated with several biological processes were found to be differentially expressed. Specifically, genes involved in oxidative stress, inflammation, osteoblastic differentiation, and bone development pathways were found to be significantly altered. Variation in expression of key genes involved in the abovementioned pathways was validated through qPCR. Expression of serum amyloid A1 protein, a key regulator of stress and inflammatory pathways, was validated through western blot analysis. This study provides evidence that chronic oxidative and inflammatory stress may be associated with the fluoride-induced impediment in osteoblast differentiation and bone development.

  5. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees

    PubMed Central

    Simone-Finstrom, Michael; Li-Byarlay, Hongmei; Huang, Ming H.; Strand, Micheline K.; Rueppell, Olav; Tarpy, David R.

    2016-01-01

    Most pollination in large-scale agriculture is dependent on managed colonies of a single species, the honey bee Apis mellifera. More than 1 million hives are transported to California each year just to pollinate the almonds, and bees are trucked across the country for various cropping systems. Concerns have been raised about whether such “migratory management” causes bees undue stress; however to date there have been no longer-term studies rigorously addressing whether migratory management is detrimental to bee health. To address this issue, we conducted field experiments comparing bees from commercial and experimental migratory beekeeping operations to those from stationary colonies to quantify effects on lifespan, colony health and productivity, and levels of oxidative damage for individual bees. We detected a significant decrease in lifespan of migratory adult bees relative to stationary bees. We also found that migration affected oxidative stress levels in honey bees, but that food scarcity had an even larger impact; some detrimental effects of migration may be alleviated by a greater abundance of forage. In addition, rearing conditions affect levels of oxidative damage incurred as adults. This is the first comprehensive study on impacts of migratory management on the health and oxidative stress of honey bees. PMID:27554200

  6. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches

    PubMed Central

    Balmus, Ioana Miruna; Dobrin, Romeo; Timofte, Daniel

    2016-01-01

    The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context. PMID:27563374

  7. Consumption of Oxidized Soybean Oil Increased Intestinal Oxidative Stress and Affected Intestinal Immune Variables in Yellow-feathered Broilers.

    PubMed

    Liang, Fangfang; Jiang, Shouqun; Mo, Yi; Zhou, Guilian; Yang, Lin

    2015-08-01

    This study investigated the effect of oxidized soybean oil in the diet of young chickens on growth performance and intestinal oxidative stress, and indices of intestinal immune function. Corn-soybean-based diets containing 2% mixtures of fresh and oxidized soybean oil provided 6 levels (0.15, 1.01, 3.14, 4.95, 7.05, and 8.97 meqO2/kg) of peroxide value (POV) in the diets. Each dietary treatment, fed for 22 d, had 6 replicates, each containing 30 birds (n = 1,080). Increasing POV levels reduced average daily feed intake (ADFI) of the broilers during d 1 to 10, body weight and average daily gain at d 22 but did not affect overall ADFI. Concentrations of malondialdehyde (MDA) increased in plasma and jejunum as POV increased but total antioxidative capacity (T-AOC) declined in plasma and jejunum. Catalase (CAT) activity declined in plasma and jejunum as did plasma glutathione S-transferase (GST). Effects were apparent at POV exceeding 3.14 meqO2/kg for early ADFI and MDA in jejunum, and POV exceeding 1.01 meqO2/kg for CAT in plasma and jejunum, GST in plasma and T-AOC in jejunum. Relative jejunal abundance of nuclear factor kappa B (NF-κB) P50 and NF-κB P65 increased as dietary POV increased. Increasing POV levels reduced the jejunal concentrations of secretory immunoglobulin A and cluster of differentiation (CD) 4 and CD8 molecules with differences from controls apparent at dietary POV of 3.14 to 4.95 meqO2/kg. These findings indicated that growth performance, feed intake, and the local immune system of the small intestine were compromised by oxidative stress when young broilers were fed moderately oxidized soybean oil.

  8. Oxidative stress-related mechanisms affecting response to aspirin in diabetes mellitus.

    PubMed

    Santilli, Francesca; Lapenna, Domenico; La Barba, Sara; Davì, Giovanni

    2015-03-01

    Type 2 diabetes mellitus (T2DM) is a major cardiovascular risk factor. Persistent platelet activation plays a key role in atherothrombosis in T2DM. However, current antiplatelet treatments appear less effective in T2DM patients vs nondiabetics at similar risk. A large body of evidence supports the contention that oxidative stress, which characterizes DM, may be responsible, at least in part, for less-than-expected response to aspirin, with multiple mechanisms acting at several levels. This review discusses the pathophysiological mechanisms related to oxidative stress and contributing to suboptimal aspirin action or responsiveness. These include: (1) mechanisms counteracting the antiplatelet effect of aspirin, such as reduced platelet sensitivity to the antiaggregating effects of NO, due to high-glucose-mediated oxidative stress; (2) mechanisms interfering with COX acetylation especially at the platelet level, e.g., lipid hydroperoxide-dependent impaired acetylating effects of aspirin; (3) mechanisms favoring platelet priming (lipid hydroperoxides) or activation (F2-isoprostanes, acting as partial agonists of thromboxane receptor), or aldose-reductase pathway-mediated oxidative stress, leading to enhanced platelet thromboxane A2 generation or thromboxane receptor activation; (4) mechanisms favoring platelet recruitment, such as aspirin-induced platelet isoprostane formation; (5) modulation of megakaryocyte generation and thrombopoiesis by oxidative HO-1 inhibition; and (6) aspirin-iron interactions, eventually resulting in impaired pharmacological activity of aspirin, lipoperoxide burden, and enhanced generation of hydroxyl radicals capable of promoting protein kinase C activation and platelet aggregation. Acknowledgment of oxidative stress as a major contributor, not only of vascular complications, but also of suboptimal response to antiplatelet agents in T2DM, may open the way to designing and testing novel antithrombotic strategies, specifically targeting

  9. KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition.

    PubMed

    Haratake, Kousuke; Sato, Akitsugu; Tsuruta, Fuminori; Chiba, Tomoki

    2016-06-01

    Many cellular stresses cause damages of intracellular proteins, which are eventually degraded by the ubiquitin and proteasome system. The proteasome is a multicatalytic protease complex composed of 20S core particle and the proteasome activators that regulate the proteasome activity. Extracellular mutants 29 (Ecm29) is a 200 kDa protein encoded by KIAA0368 gene, associates with the proteasome, but its role is largely unknown. Here, we generated KIAA0368-deficient mice and investigated the function of Ecm29 in stress response. KIAA0368-deficient mice showed normal peptidase activity and proteasome formation at normal condition. Under stressed condition, 26S proteasome dissociates in wild-type cells, but not in KIAA0368(-/-) cells. This response was correlated with efficient degradation of damaged proteins and resistance to oxidative stress of KIAA0368(-/-) cells. Thus, Ecm29 is involved in the dissociation process of 26S proteasome, providing clue to analyse the mechanism of proteasomal degradation under various stress condition.

  10. Fish oil supplementation decreases oxidative stress but does not affect platelet-activating factor bioactivity in lungs of asthmatic rats.

    PubMed

    Zanatta, A L; Miranda, D T S Z; Dias, B C L; Campos, R M; Massaro, M C; Michelotto, P V; West, A L; Miles, E A; Calder, P C; Nishiyama, A

    2014-07-01

    Dietary fish oil supplementation increases the content of n-3 polyunsaturated fatty acids (PUFA) in cellular membranes. The highly unsaturated nature of n-3 PUFA could result in an enhanced lipid peroxidation in the oxidative environment characteristic of asthma. The oxidative reaction cascade culminates in an increased production of components associated to oxidative stress and of an important proinflammatory mediator platelet-activating factor (PAF)-like lipid. We evaluated the effect of fish oil supplementation in asthmatic rats upon the PAF bioactivity and parameters related to oxidative stress in the lung. Fish oil supplementation of asthmatic rats resulted in lower concentrations of nitrite (1.719 ± 0.137 vs. 2.454 ± 0.163 nmol/mL) and lipid hydroperoxide (72.190 ± 7.327 vs. 120.200 ± 11.270 nmol/mg protein). In asthmatic animals, fish oil increased the activities of superoxide dismutase (EC 1.15.1.1) (33.910 ± 2.325 vs. 24.110 ± 0.618 U/mg protein) and glutathione peroxidase (EC 1.11.1.9) (164.100 ± 31.250 vs. 12.590 ± 5.234 U/mg protein). However, fish oil did not affect PAF bioactivity in lung tissue of asthmatic rats (0.545 ± 0.098 340/380 vs. 0.669 ± 0.101 340/380 nm ratio). Considering the two-step process--oxidative stress and PAF bioactivity--fish oil exhibited a divergent action on these aspects of asthmatic inflammation, since the supplement lowered oxidative stress in the lungs of asthmatic rats, presenting an antioxidant effect, but did not affect PAF bioactivity. This suggests a dual effect of fish oil on oxidative stress and inflammation in asthma.

  11. Lead-induced oxidative stress adversely affects health of the occupational workers.

    PubMed

    Khan, D A; Qayyum, S; Saleem, S; Khan, F A

    2008-10-01

    Lead is a persistent toxic metal and associated with impairment of various body functions in occupational workers. The main objective was to determine the lead-induced oxidative stress and adverse health effects by biochemical markers in industrial workers. One hundred and forty-eight males consisting of 87 lead-exposed industrial workers and 61 controls were included. Blood lead level (BLL) was determined on a 3010B ESA lead analyzer. Blood complete counts were done on a hematology analyzer. Biochemical markers including serum uric acid, urea, creatinine, phosphate, alanine aminotransferase (ALT), and gamma glutamyltransferase (GGT) were measured on a Selectra E auto analyzer. Serum malondialdehyde (MDA) was measured spectrophotometrically and C-reactive protein (CRP) on Immulite-1000. Results revealed that lead-exposed workers had significantly high BLLs, median (range), 29.1 (9.0-61.1) microg/dL compared with controls, 8.3 (1.0-21.7) microg/dL. Oxidative stress (MDA, GGT) and inflammatory markers (high-sensitivity CRP) were significantly increased (P < or = 0.05). Blood pressure was raised, whereas hemoglobin was decreased in exposed group (P < or = 0.002). Serum urea, uric acid, phosphate, and ALT were significantly raised in lead-exposed workers (P < or = 0.001). Serum albumin, total proteins, and glomerular filtration rate (GFR) were decreased. Blood lead showed a significant positive correlation with serum GGT (r = 0.63), MDA (r = 0.71), CRP (r = 0.75), urea (r = 0.34), creatinine (r = 0.51), and uric acid (r = 0.29) (P < or = 0.01). It is concluded that lead exposure increases oxidative stress that correlates with adverse changes in hematological, renal, and hepatic function in the occupational workers. Elevated blood lead has positive correlation with oxidative stress, inflammatory and biochemical markers that might be used to detect impairment in the body function in lead exposed workers.

  12. Oxidative stress affects FET proteins localization and alternative pre-mRNA processing in cellular models of ALS.

    PubMed

    Svetoni, Francesca; Caporossi, Daniela; Paronetto, Maria Paola

    2014-10-01

    FUS/TLS, EWS and TAF15 are members of the FET family of DNA and RNA binding proteins, involved in multiple steps of DNA and RNA processing and implicated in the regulation of gene expression and cell-signaling. All members of the FET family contribute to human pathologies, as they are involved in sarcoma translocations and neurodegenerative diseases. Mutations in FUS/TLS, in EWSR1 and in TAF15 genescause Amyotrophic Lateral Sclerosis (ALS), a fatal human neurodegenerative disease that affects primarily motor neurons and is characterized by the progressive loss of motor neurons and degradation of the neuromuscular junctions.ALS-associated FET mutations cause FET protein relocalization into cytoplasmic aggregates, thus impairing their normal function. Protein aggregation has been suggested as a co-opting factor during the disease pathogenesis. Cytoplasmic mislocalization of FET proteins contributes to the formation of cytoplasmic aggregates that may alter RNA processing and initiate motor neuron degeneration. Interestingly, oxidative stress, which is implicated in the pathogenesis of ALS, triggers the accumulation of mutant FUS in cytoplasmic stress granules where it binds and sequester wild-type FUS.In order to evaluate the role of FET proteins in ALS and their involvement in the response to oxidative stress, we have developed cellular models of ALS expressing ALS-related FET mutants in neuroblastoma cell lines. Upon treatment with sodium arsenite, cells were analysed by immunofluorescence to monitor the localization of wild-type and mutated FET proteins. Furthermore, we have characterized signal transduction pathways and cell survival upon oxidative stress in our cellular models of ALS. Interestingly, we found that EWS mutant proteins display a different localization from FUS mutants and neither wild-type nor mutated EWS protein translocate into stress granules upon oxidative stress treatment. Collectively, our data provide a new link between the oxidative stress

  13. Early life stress affects mortality rate more than social behavior, gene expression or oxidative damage in honey bee workers.

    PubMed

    Rueppell, Olav; Yousefi, Babak; Collazo, Juan; Smith, Daniel

    2017-04-01

    Early life stressors can affect aging and life expectancy in positive or negative ways. Individuals can adjust their behavior and molecular physiology based on early life experiences but relatively few studies have connected such mechanisms to demographic patterns in social organisms. Sociality buffers individuals from environmental influences and it is unclear how much early life stress affects later life history. Workers of the honey bee (Apis mellifera L.) were exposed to two stressors, Varroa parasitism and Paraquat exposure, early in life. Consequences were measured at the molecular, behavioral, and demographic level. While treatments did not significantly affect levels of oxidative damage, expression of select genes, and titers of the common deformed wing virus, most of these measures were affected by age. Some of the age effects, such as declining levels of deformed wing virus and oxidative damage, were opposite to our predictions but may be explained by demographic selection. Further analyses suggested some influences of worker behavior on mortality and indicated weak treatment effects on behavior. The latter effects were inconsistent among the two experiments. However, mortality rate was consistently reduced by Varroa mite stress during development. Thus, mortality was more responsive to early life stress than our other response variables. The lack of treatment effects on these measures may be due to the social organization of honey bees that buffers the individual from the impact of stressful developmental conditions.

  14. Acute-phase proteins, oxidative stress biomarkers, proinflammatory cytokines, and cardiac troponin in Arabian mares affected with pyometra.

    PubMed

    El-Bahr, S M; El-Deeb, W M

    2016-09-01

    New biomarkers are essential for diagnosis of pyometra in mares. In this context, 12 subfertile Arabian mares suffered from pyometra were admitted to the Veterinary Teaching Hospital. The basis for diagnosis of pyometra was positive findings of clinical examination and rectal palpation. Blood samples were collected from diseased animals and from five Arabian healthy mares, which were considered as control group. Acute-phase proteins (APP), oxidative stress biomarkers, proinflammatory cytokines, and cardiac troponin I were estimated in the harvested sera of both groups. Clinical examination revealed purulent yellowish fluid discharged from vagina of affected animals and rectal palpation of the reproductive tract revealed uterine distention. The biochemical analysis of the serum revealed significant increase in cardiac troponin I, creatin kinase, alkaline phosphatase, malondialdehyde, tumor necrosis factor α, interleukins 6, prostaglandin F2α, haptoglobin, and serum amyloid A and significant decrease in reduced glutathione, superoxide dismutase (SOD), total antioxidant capacity, and nitric oxide (NO) of mares affected with pyometra compare to control. Cardiac troponin I was positively correlated with aspartate aminotransferase, creatin kinase, malondialdehyde, alkaline phosphatase, tumor necrosis factor α, interleukins 6, prostaglandin F2α, haptoglobin and serum amyloid A and negatively correlated with glutathione, superoxide dismutase, total antioxidant capacity and nitric oxide in serum of mares affected with pyometra. Moreover, there was high positive correlation between proinflammatory cytokines and APP in serum of mares affected with pyometra. The present study suggests cardiac troponin I together with APP, proinflammatory cytokines, and oxidative stress parameters as biomarkers for pyometra in Arabian mares.

  15. GSTM1 and APE1 genotypes affect arsenic-induced oxidative stress: a repeated measures study

    PubMed Central

    Breton, Carrie V; Kile, Molly L; Catalano, Paul J; Hoffman, Elaine; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Christiani, David C

    2007-01-01

    Background Chronic arsenic exposure is associated with an increased risk of skin, bladder and lung cancers. Generation of oxidative stress may contribute to arsenic carcinogenesis. Methods To investigate the association between arsenic exposure and oxidative stress, urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was evaluated in a cohort of 97 women recruited from an arsenic-endemic region of Bangladesh in 2003. Arsenic exposure was measured in urine, toenails, and drinking water. Drinking water and urine samples were collected on three consecutive days. Susceptibility to oxidative stress was evaluated by genotyping relevant polymorphisms in glutathione-s transferase mu (GSTM1), human 8-oxoguanine glycosylase (hOGG1) and apurinic/apyrimidinic endonuclease (APE1) genes using the Taqman method. Data were analyzed using random effects Tobit regression to account for repeated measures and 8-OHdG values below the detection limit. Results A consistent negative effect for APE1 was observed across water, toenail and urinary arsenic models. APE1 148 glu/glu + asp/glu genotype was associated with a decrease in logged 8-OHdG of 0.40 (95%CI -0.73, -0.07) compared to APE1 148 asp/asp. An association between total urinary arsenic and 8-OHdG was observed among women with the GSTM1 null genotype but not in women with GSTM1 positive. Among women with GSTM1 null, a comparison of the second, third, and fourth quartiles of total urinary arsenic to the first quartile resulted in a 0.84 increase (95% CI 0.27, 1.42), a 0.98 increase (95% CI 033, 1.66) and a 0.85 increase (95% CI 0.27, 1.44) in logged 8-OHdG, respectively. No effects between 8-OHdG and toenail arsenic or drinking water arsenic were observed. Conclusion These results suggest the APE1 variant genotype decreases repair of 8-OHdG and that arsenic exposure is associated with oxidative stress in women who lack a functional GSTM1 detoxification enzyme. PMID:18053222

  16. H2O2-Induced Oxidative Stress Affects SO4= Transport in Human Erythrocytes

    PubMed Central

    Morabito, Rossana; Romano, Orazio; La Spada, Giuseppa; Marino, Angela

    2016-01-01

    The aim of the present investigation was to verify the effect of H2O2-induced oxidative stress on SO4= uptake through Band 3 protein, responsible for Cl-/HCO3- as well as for cell membrane deformability, due to its cross link with cytoskeletal proteins. The role of cytoplasmic proteins binding to Band 3 protein has been also considered by assaying H2O2 effects on hemoglobin-free resealed ghosts of erythrocytes. Oxidative conditions were induced by 30 min exposure of human erythrocytes to different H2O2 concentrations (10 to 300 μM), with or without GSH (glutathione, 2 mM) or curcumin (10 μM), compounds with proved antioxidant properties. Since SO4= influx through Band 3 protein is slower and better controllable than Cl- or HCO3- exchange, the rate constant for SO4= uptake was measured to prove anion transport efficiency, while MDA (malondialdehyde) levels and –SH groups were estimated to quantify the effect of oxidative stress. H2O2 induced a significant decrease in rate constant for SO4= uptake at both 100 and 300 μM H2O2. This reduction, observed in erythrocytes but not in resealed ghosts and associated to increase in neither MDA levels nor in –SH groups, was impaired by both curcumin and GSH, whereas only curcumin effectively restored H2O2-induced changes in erythrocytes shape. Our results show that: i) 30 min exposure to 300 μM H2O2 reduced SO4= uptake in human erythrocytes; ii) oxidative damage was revealed by the reduction in rate constant for SO4= uptake, but not by MDA or –SH groups levels; iii) the damage was produced via cytoplasmic components which cross link with Band 3 protein; iv) the natural antioxidant curcumin may be useful in protecting erythrocytes from oxidative injury; v) SO4= uptake through Band 3 protein may be reasonably suggested as a tool to monitor erythrocytes function under oxidative conditions possibly deriving from alcohol consumption, use of drugs, radiographic contrast media administration, hyperglicemia or

  17. H2O2-Induced Oxidative Stress Affects SO4= Transport in Human Erythrocytes.

    PubMed

    Morabito, Rossana; Romano, Orazio; La Spada, Giuseppa; Marino, Angela

    2016-01-01

    The aim of the present investigation was to verify the effect of H2O2-induced oxidative stress on SO4= uptake through Band 3 protein, responsible for Cl-/HCO3- as well as for cell membrane deformability, due to its cross link with cytoskeletal proteins. The role of cytoplasmic proteins binding to Band 3 protein has been also considered by assaying H2O2 effects on hemoglobin-free resealed ghosts of erythrocytes. Oxidative conditions were induced by 30 min exposure of human erythrocytes to different H2O2 concentrations (10 to 300 μM), with or without GSH (glutathione, 2 mM) or curcumin (10 μM), compounds with proved antioxidant properties. Since SO4= influx through Band 3 protein is slower and better controllable than Cl- or HCO3- exchange, the rate constant for SO4= uptake was measured to prove anion transport efficiency, while MDA (malondialdehyde) levels and -SH groups were estimated to quantify the effect of oxidative stress. H2O2 induced a significant decrease in rate constant for SO4= uptake at both 100 and 300 μM H2O2. This reduction, observed in erythrocytes but not in resealed ghosts and associated to increase in neither MDA levels nor in -SH groups, was impaired by both curcumin and GSH, whereas only curcumin effectively restored H2O2-induced changes in erythrocytes shape. Our results show that: i) 30 min exposure to 300 μM H2O2 reduced SO4= uptake in human erythrocytes; ii) oxidative damage was revealed by the reduction in rate constant for SO4= uptake, but not by MDA or -SH groups levels; iii) the damage was produced via cytoplasmic components which cross link with Band 3 protein; iv) the natural antioxidant curcumin may be useful in protecting erythrocytes from oxidative injury; v) SO4= uptake through Band 3 protein may be reasonably suggested as a tool to monitor erythrocytes function under oxidative conditions possibly deriving from alcohol consumption, use of drugs, radiographic contrast media administration, hyperglicemia or neurodegenerative

  18. Chemically induced oxidative stress affects ASH neuronal function and behavior in C. elegans

    PubMed Central

    Gourgou, Eleni; Chronis, Nikos

    2016-01-01

    Oxidative stress (OS) impact on a single neuron’s function in vivo remains obscure. Using C. elegans as a model organism, we report the effect of paraquat (PQ)-induced OS on wild type worms on the function of the ASH polymodal neuron. By calcium (Ca2+) imaging, we quantified ASH activation upon stimulus delivery. PQ-treated worms displayed higher maximum depolarization (peak of the Ca2+ transients) compared to untreated animals. PQ had a similar effect on the ASH neuron response time (rising slope of the Ca2+ transients), except in very young worms. OS effect on ASH was partially abolished in vitamin C-treated worms. We performed octanol and osmotic avoidance tests, to investigate the OS effect on ASH-dependent behaviors. PQ-treated worms have enhanced avoidance behavior compared to untreated ones, suggesting that elevated ASH Ca2+ transients result in enhanced ASH-mediated behavior. The above findings suggest a possible hormetic effect of PQ, as a factor inducing mild oxidative stress. We also quantified locomotion parameters (velocity, bending amplitude), which are not mediated by ASH activation. Bending amplitude did not differ significantly between treated and untreated worms; velocity in older adults decreased. The differential effect of OS on behavioral patterns may mirror a selective impact on the organism’s neurons. PMID:27922032

  19. Does Oxidative Stress Induced by Alcohol Consumption Affect Orthodontic Treatment Outcome?

    PubMed Central

    Barcia, Jorge M.; Portolés, Sandra; Portolés, Laura; Urdaneta, Alba C.; Ausina, Verónica; Pérez-Pastor, Gema M. A.; Romero, Francisco J.; Villar, Vincent M.

    2017-01-01

    HIGHLIGHTS Ethanol, Periodontal ligament, Extracellular matrix, Orthodontic movement. Alcohol is a legal drug present in several drinks commonly used worldwide (chemically known as ethyl alcohol or ethanol). Alcohol consumption is associated with several disease conditions, ranging from mental disorders to organic alterations. One of the most deleterious effects of ethanol metabolism is related to oxidative stress. This promotes cellular alterations associated with inflammatory processes that eventually lead to cell death or cell cycle arrest, among others. Alcohol intake leads to bone destruction and modifies the expression of interleukins, metalloproteinases and other pro-inflammatory signals involving GSKβ, Rho, and ERK pathways. Orthodontic treatment implicates mechanical forces on teeth. Interestingly, the extra- and intra-cellular responses of periodontal cells to mechanical movement show a suggestive similarity with the effects induced by ethanol metabolism on bone and other cell types. Several clinical traits such as age, presence of systemic diseases or pharmacological treatments, are taken into account when planning orthodontic treatments. However, little is known about the potential role of the oxidative conditions induced by ethanol intake as a possible setback for orthodontic treatment in adults. PMID:28179886

  20. Hydrostatic pressure and shear stress affect endothelin-1 and nitric oxide release by endothelial cells in bioreactors.

    PubMed

    Vozzi, Federico; Bianchi, Francesca; Ahluwalia, Arti; Domenici, Claudio

    2014-01-01

    Abundant experimental evidence demonstrates that endothelial cells are sensitive to flow; however, the effect of fluid pressure or pressure gradients that are used to drive viscous flow is not well understood. There are two principal physical forces exerted on the blood vessel wall by the passage of intra-luminal blood: pressure and shear. To analyze the effects of pressure and shear independently, these two stresses were applied to cultured cells in two different types of bioreactors: a pressure-controlled bioreactor and a laminar flow bioreactor, in which controlled levels of pressure or shear stress, respectively, can be generated. Using these bioreactor systems, endothelin-1 (ET-1) and nitric oxide (NO) release from human umbilical vein endothelial cells were measured under various shear stress and pressure conditions. Compared to the controls, a decrease of ET-1 production by the cells cultured in both bioreactors was observed, whereas NO synthesis was up-regulated in cells under shear stress, but was not modulated by hydrostatic pressure. These results show that the two hemodynamic forces acting on blood vessels affect endothelial cell function in different ways, and that both should be considered when planning in vitro experiments in the presence of flow. Understanding the individual and synergic effects of the two forces could provide important insights into physiological and pathological processes involved in vascular remodeling and adaptation.

  1. Glyphosate Adversely Affects Danio rerio Males: Acetylcholinesterase Modulation and Oxidative Stress.

    PubMed

    Lopes, Fernanda Moreira; Caldas, Sergiane Souza; Primel, Ednei Gilberto; da Rosa, Carlos Eduardo

    2017-04-01

    It has been demonstrated that glyphosate-based herbicides are toxic to animals. In the present study, reactive oxygen species (ROS) generation, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO), as well as the activity and expression of the acetylcholinesterase (AChE) enzyme, were evaluated in Danio rerio males exposed to 5 or 10 mg/L of glyphosate for 24 and 96 h. An increase in ACAP in gills after 24 h was observed in the animals exposed to 5 mg/L of glyphosate. A decrease in LPO was observed in brain tissue of animals exposed to 10 mg/L after 24 h, while an increase was observed in muscle after 96 h. No significant alterations were observed in ROS generation. AChE activity was not altered in muscles or brains of animals exposed to either glyphosate concentration for 24 or 96 h. However, gene expression of this enzyme in the brain was reduced after 24 h and was enhanced in both brain and muscle tissues after 96 h. Thus, contrary to previous findings that had attributed the imbalance in the oxidative state of animals exposed to glyphosate-based herbicides to surfactants and other inert compounds, the present study demonstrated that glyphosate per se promotes this same effect in zebrafish males. Although glyphosate concentrations did not alter AChE activity, this study demonstrated for the first time that this molecule affects ache expression in male zebrafish D. rerio.

  2. Oxidative stress and anxiety

    PubMed Central

    Rammal, Hassan; Soulimani, Rachid

    2009-01-01

    High O2 consumption, modest antioxidant defenses and a lipid-rich constitution make the brain highly vulnerable to redox imbalances. Oxidative damage in the brain causes nervous system impairment. Recently, oxidative stress has also been implicated in depression, anxiety disorders and high anxiety levels. The findings which establish a link between oxidative stress and pathological anxiety have inspired a number of other recent studies focusing on the link between oxidative status and normal anxiety and also on a possible causal relationship between cellular oxidative stress and emotional stress. This review examines the recent discoveries made on the link between oxidative status and normal anxiety levels and the putative role of oxidative stress in genesis of anxiety. We discuss the different opinions and questions that exist in the field and review the methodological approaches that are being used to determine a causal relationship between oxidative and emotional stress. PMID:20357926

  3. Oxidative stress and myocarditis.

    PubMed

    Tada, Yuko; Suzuki, Jun-Ichi

    2016-01-01

    Reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide are produced highly in myocarditis. ROS, which not only act as effectors for pathogen killing but also mediate signal transduction in the stress responsive pathways, are closely related with both innate and adaptive immunity. On the other hand, oxidative stress overwhelming the capacity of anti-oxidative system generated in severe inflammation has been suggested to damage tissues and exacerbate inflammation. Oxidative stress worsens the autoimmunological process of myocarditis, and suppression of the anti-oxidative system and long-lasting oxidative stress could be one of the pathological mechanisms of cardiac remodeling leading to inflammatory cardiomyopathy. Oxidative stress is considered to be one of the promising treatment targets of myocarditis. Evidences of anti-oxidative treatments in myocarditis have not been fully established. Basic strategies of anti-oxidative treatments include inhibition of ROS production, activation of anti-oxidative enzymes and elimination of generated free radicals. ROS are produced by mitochondrial respiratory chain reactions and enzymes including NADPH oxidases, cyclooxygenase, and xanthine oxidase. Other systems involved in inflammation and stress response, such as NF-κB, Nrf2/Keap1, and neurohumoral factors also influence oxidative stress in myocarditis. The efficacy of anti-oxidative treatments could also depend on the etiology and the phases of myocarditis. We review in this article the pathological significance of ROS and oxidative stress, and the potential anti-oxidative treatments in myocarditis.

  4. Tipburn in salt-affected lettuce (Lactuca sativa L.) plants results from local oxidative stress.

    PubMed

    Carassay, Luciano R; Bustos, Dolores A; Golberg, Alberto D; Taleisnik, Edith

    2012-02-15

    Tipburn in lettuce is a physiological disorder expressed as a necrosis in the margins of young developing leaves and is commonly observed under saline conditions. Tipburn is usually attributed to Ca(2+) deficiencies, and there has very limited research on other mechanisms that may contribute to tipburn development. This work examines whether symptoms are mediated by increased reactive oxygen species (ROS) production. Two butter lettuce (Lactuca sativa L.) varieties, Sunstar (Su) and Pontina (Po), with contrasting tipburn susceptibility were grown in hydroponics with low Ca(2+) (0.5 mM), and with or without 50 mM NaCl. Tipburn symptoms were observed only in Su, and only in the saline treatment. Tipburn incidence in response to topical treatments with Ca(2+) scavengers, Ca(2+) transport inhibitors, and antioxidants was assessed. All treatments were applied before symptom expression, and evaluated later, when symptoms were expected to occur. Superoxide presence in tissues was determined with nitro blue tetrazolium (NBT) and oxidative damage as malondialdehyde (MDA) content. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities were assayed. Under control and saline conditions, tipburn could be induced in both varieties by topical treatments with a Ca(2+) scavenger (EGTA) and Ca(2+) transport inhibitors (verapamil, LaCl(3)) and reduced by supplying Ca(2+) along with a ionophore (A 23187). Tipburn symptoms were associated with locally produced ROS. O(2)(·-) and oxidative damage significantly increased in leaf margins before symptom expression, while topical antioxidant applications (Tiron, DPI) reduced symptoms in treated leaves, but not in the rest of the plant. Antioxidant enzyme activity was higher in Po, and increased more in response to EGTA treatments, and may contribute to mitigating oxidative damage and tipburn expression in this variety.

  5. Culture Volume and Vessel Affect Long-Term Survival, Mutation Frequency, and Oxidative Stress of Escherichia coli

    PubMed Central

    Kram, Karin E.

    2014-01-01

    Bacteria such as Escherichia coli are frequently studied during exponential- and stationary-phase growth. However, many strains can survive in long-term stationary phase (LTSP), without the addition of nutrients, from days to several years. During LTSP, cells experience a variety of stressors, including reactive oxidative species, nutrient depletion, and metabolic toxin buildup, that lead to physiological responses and changes in genetic stability. In this study, we monitored survival during LTSP, as well as reporters of genetic and physiological change, to determine how the physical environment affects E. coli during long-term batch culture. We demonstrate differences in yield during LTSP in cells incubated in LB medium in test tubes versus Erlenmeyer flasks, as well as growth in different volumes of medium. We determined that these differences are only partially due to differences in oxygen levels by incubating the cells in different volumes of media under anaerobic conditions. Since we hypothesized that differences in long-term survival are the result of changes in physiological outputs during the late log and early stationary phases, we monitored alkalization, mutation frequency, oxidative stress response, and glycation. Although initial cell yields are essentially equivalent under each condition tested, physiological responses vary greatly in response to culture environment. Incubation in lower-volume cultures leads to higher oxyR expression but lower mutation frequency and glycation levels, whereas incubation in high-volume cultures has the opposite effect. We show here that even under commonly used experimental conditions that are frequently treated as equivalent, the stresses experienced by cells can differ greatly, suggesting that culture vessel and incubation conditions should be carefully considered in the planning or analysis of experiments. PMID:24375138

  6. Oxidative Stress in Myopia

    PubMed Central

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem. PMID:25922643

  7. Oxidative stress in myopia.

    PubMed

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem.

  8. In Vitro Acute Exposure to DEHP Affects Oocyte Meiotic Maturation, Energy and Oxidative Stress Parameters in a Large Animal Model

    PubMed Central

    Sardanelli, Anna Maria; Pocar, Paola; Martino, Nicola Antonio; Paternoster, Maria Stefania; Amati, Francesca; Dell'Aquila, Maria Elena

    2011-01-01

    Phthalates are ubiquitous environmental contaminants because of their use in plastics and other common consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate and it impairs fertility by acting as an endocrine disruptor. The aim of the present study was to analyze the effects of in vitro acute exposure to DEHP on oocyte maturation, energy and oxidative status in the horse, a large animal model. Cumulus cell (CC) apoptosis and oxidative status were also investigated. Cumulus-oocyte complexes from the ovaries of slaughtered mares were cultured in vitro in presence of 0.12, 12 and 1200 µM DEHP. After in vitro maturation (IVM), CCs were removed and evaluated for apoptosis (cytological assessment and TUNEL) and intracellular reactive oxygen species (ROS) levels. Oocytes were evaluated for nuclear chromatin configuration. Matured (Metaphase II stage; MII) oocytes were further evaluated for cytoplasmic energy and oxidative parameters. DEHP significantly inhibited oocyte maturation when added at low doses (0.12 µM; P<0.05). This effect was related to increased CC apoptosis (P<0.001) and reduced ROS levels (P<0.0001). At higher doses (12 and 1200 µM), DEHP induced apoptosis (P<0.0001) and ROS increase (P<0.0001) in CCs without affecting oocyte maturation. In DEHP-exposed MII oocytes, mitochondrial distribution patterns, apparent energy status (MitoTracker fluorescence intensity), intracellular ROS localization and levels, mt/ROS colocalization and total SOD activity did not vary, whereas increased ATP content (P<0.05), possibly of glycolytic origin, was found. Co-treatment with N-Acetyl-Cysteine reversed apoptosis and efficiently scavenged excessive ROS in DEHP-treated CCs without enhancing oocyte maturation. In conclusion, acute in vitro exposure to DEHP inhibits equine oocyte maturation without altering ooplasmic energy and oxidative stress parameters in matured oocytes which retain the potential to be fertilized and develop into embryos

  9. Oxidative stress in patients with type 1 diabetes mellitus: is it affected by a single bout of prolonged exercise?

    PubMed

    Francescato, Maria Pia; Stel, Giuliana; Geat, Mario; Cauci, Sabina

    2014-01-01

    Presently, no clear-cut guidelines are available to suggest the more appropriate physical activity for patients with type 1 diabetes mellitus due to paucity of experimental data obtained under patients' usual life conditions. Accordingly, we explored the oxidative stress levels associated with a prolonged moderate intensity, but fatiguing, exercise performed under usual therapy in patients with type 1 diabetes mellitus and matched healthy controls. Eight patients (4 men, 4 women; 49±11 years; Body Mass Index 25.0±3.2 kg·m(-2); HbA1c 57±10 mmol·mol(-1)) and 14 controls (8 men, 6 women; 47±11 years; Body Mass Index 24.3±3.3 kg·m(-2)) performed a 3-h walk at 30% of their heart rate reserve. Venous blood samples were obtained before and at the end of the exercise for clinical chemistry analysis and antioxidant capacity. Capillary blood samples were taken at the start and thereafter every 30 min to determine lipid peroxidation. Patients showed higher oxidative stress values as compared to controls (95.9±9.7 vs. 74.1±12.2 mg·L(-1) H2O2; p<0.001). In both groups, oxidative stress remained constant throughout the exercise (p = NS), while oxidative defence increased significantly at the end of exercise (p<0.02) from 1.16±0.13 to 1.19±0.10 mmol·L(-1) Trolox in patients and from 1.09±0.21 to 1.22±0.14 mmol·L(-1) Trolox in controls, without any significant difference between the two groups. Oxidative stress was positively correlated to HbA1c (p<0.005) and negatively related with uric acid (p<0.005). In conclusion, we were the first to evaluate the oxidative stress in patients with type 1 diabetes exercising under their usual life conditions (i.e. usual therapy and diet). Specifically, we found that the oxidative stress was not exacerbated due to a single bout of prolonged moderate intensity aerobic exercise, a condition simulating several outdoor leisure time physical activities. Oxidative defence increased in both patients and controls, suggesting

  10. Oxidative stress during courtship affects male and female reproductive effort differentially in a wild bird with biparental care.

    PubMed

    Montoya, Bibiana; Valverde, Mahara; Rojas, Emilio; Torres, Roxana

    2016-12-15

    Oxidative stress has been suggested as one of the physiological mechanisms modulating reproductive effort, including investment in mate choice. Here, we evaluated whether oxidative stress influences breeding decisions by acting as a cost of or constraint on reproduction in the brown booby (Sula leucogaster), a long-lived seabird with prolonged biparental care. We found that during courtship, levels of lipid peroxidation (LP) of males and females were positively associated with gular skin color, a trait presumably used in mate choice, while levels of reactive oxygen species (ROS) were higher as laying approached and in early breeding pairs. Evidence of a constraining effect of oxidative stress for females was suggested by the fact that females with higher ROS during courtship laid smaller first eggs and had chicks with lower rates of body mass gain, and higher female LP was associated with lower offspring attendance time. No evidence of an oxidative cost of parental effort was found; from courtship to parental care, levels of ROS in males and females decreased, and changes in LP levels were non-significant. Finally, using a cross-fostering experiment we found that offspring ROS was unrelated to rearing and genetic parents' ROS. Interestingly, offspring LP was positively associated with the LP during courtship of both the rearing parents and the genetic father, suggesting that offspring LP might have both a genetic and an environmental component. Hence, in the brown booby, oxidative stress may be a cost of investment in reproductive traits before egg laying and constrain females' investment in eggs and parental care.

  11. Water deficit-induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L.

    PubMed

    Soni, Priyanka; Abdin, Malik Z

    2017-03-01

    Water stress is one of the most critical abiotic stresses that restricts growth, development, and alters physiological and biochemical mechanisms of plant. The effects of long-term water shortage-induced oxidative stress on morphophysiological parameters, proline metabolic genes, and artemisinin content were studied in Artemisia annua L. under greenhouse conditions. Plant growth, biomass accumulation, relative water content, and chlorophyll content were reduced under drought. Leaf water potential ranged from -0.3248 MPa to -1.22 MPa in stress conditions. Increased levels of proline accumulation, protein concentration, and lipid peroxidation were detected in water-stressed plants. Stage-dependent increases in activity of antioxidants including superoxide dismutase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were observed. The expression of proline biosynthetic genes including pyrroline-5-carboxylase synthase1, 1-pyrroline-5-carboxylase synthase2, and 1-pyrroline-5-carboxylase reductase was induced, while the ornithine aminotransferase transcript showed a variable response and the expression of proline catabolic genes including proline dehydrogenase1, proline dehydrogenase1, and proline 5-carboxylate dehydrogenase was reduced by water stress. Our results indicate that the glutamine pathway is predominant under drought stress in A. annua and a reduction of catabolic gene expression is adopted as a defense strategy in adverse conditions. Higher expression of biosynthetic genes and lower expression of catabolic genes at the preflowering stage confirmed the important role of proline in flower development. Artemisinin content decreased owing to water stress, but the slightly higher amounts were detected in leaves of severely stressed plants compared with moderately stressed plants. The artemisinin content of A. annua might be regulated by controlling irrigation regimes.

  12. Proteomic analysis of seminal plasma from asthenozoospermia patients reveals proteins that affect oxidative stress responses and semen quality.

    PubMed

    Wang, Jun; Wang, Jian; Zhang, Hua-Rong; Shi, Hui-Juan; Ma, Duan; Zhao, Hong-Xin; Lin, Biaoyang; Li, Run-Sheng

    2009-07-01

    Asthenozoospermia (AS) is a common cause of human male infertility. In one study, more than 80% of the samples from infertile men had reduced sperm motility. Seminal plasma is a mixture of secretions from the testis, epididymis and several male accessory glands, including the prostate, seminal vesicles and Cowper's gland. Studies have shown that seminal plasma contains proteins that are important for sperm motility. To further explore the pathophysiological character of AS, we separated the seminal plasma proteins from AS patients and healthy donors using sodium dodecyl sulfate polyacrylamide gel electrophoresis and in-gel digestion, and then subjected the proteins to liquid chromatography-mass spectrometry (LC-MS/MS) analysis. A total of 741 proteins were identified in the seminal plasma, with a false discovery rate of 3.3%. Using spectral counting, we found that 45 proteins were threefold upregulated and 56 proteins were threefold downregulated in the AS group when compared with the control. Most of these proteins originated from the epididymis and prostate. This study identified a rich source of biomarker candidates for male infertility and indicates that functional abnormalities of the epididymis and prostate can contribute to AS. We identified DJ-1-a protein that has been shown elsewhere to be involved in the control of oxidative stress (OS)-as a downregulated protein in AS seminal plasma. The levels of DJ-1 in AS seminal plasma were about half of those in the control samples. In addition, the levels of reactive oxygen species were 3.3-fold higher in the AS samples than in the controls. Taken together, these data suggest that downregulation of DJ-1 is involved in OS in semen, and therefore affects the quality of the semen.

  13. Alpha-lipoic acid affects the oxidative stress in various brain structures in mice with methionine and choline deficiency

    PubMed Central

    Veskovic, Milena; Mladenovic, Dusan; Jorgacevic, Bojan; Stevanovic, Ivana; de Luka, Silvio

    2015-01-01

    Deficiency in methionine or choline can induce oxidative stress in various organs such as liver, kidney, heart, and brain. This study was to examine the effects of alpha-lipoic acid (LA) on oxidative stress induced by methionine and choline deficiency (MCD) in several brain structures. Male mice C57BL/6 (n = 28) were divided into four groups: (1) control – continuously fed with standard chow; (2) LA – fed with standard chow and receiving LA; (3) MCD2 – fed with MCD diet for two weeks, and (4) MCD2+LA – fed with MCD diet for two weeks and receiving LA (100 mg/kg/day intraperitonealy [i.p.]). Brain tissue (cortex, hypothalamus, striatum and hippocampus) was taken for determination of oxidative stress parameters. MCD diet induced a significant increase in malondialdehyde and NOx concentration in all brain regions, while LA restored their content to normal values. Similar to this, in MCD2 group, activity of total SOD, MnSOD, and Cu/ZnSOD was reduced by MCD diet, while LA treatment improved their activities in all brain structures. Besides, in MCD2 group a decrease in catalase activity in cortex and GSH content in hypothalamus was evident, while LA treatment induced an increase in catalase activity in cortex and striatum and GSH content in hypothalamus. LA treatment can significantly reduce lipid peroxidation and nitrosative stress, caused by MCD diet, in all brain regions by restoring antioxidant enzymes activities, predominantly total SOD, MnSOD, and Cu/ZnSOD, and to a lesser extent by modulating catalase activity and GSH content. LA supplementation may be used in order to prevent brain oxidative injury induced by methionine and choline deficiency. PMID:25193852

  14. Antioxidants and cognitive training interact to affect oxidative stress and memory in APP/PSEN1 mice.

    PubMed

    Harrison, F E; Allard, J; Bixler, R; Usoh, C; Li, L; May, J M; McDonald, M P

    2009-10-01

    The present study investigated the relationships among oxidative stress, beta-amyloid and cognitive abilities in the APP/PSEN1 double-transgenic mouse model of Alzheimer's disease. In two experiments, long-term dietary supplements were given to aged APP/PSEN1 mice containing vitamin C alone (1 g/kg diet; Experiment 1) or in combination with a high (750 IU/kg diet, Experiments 1 and 2) or lower (400 IU/kg diet, Experiment 2) dose of vitamin E. Oxidative stress, measured by F(4)-neuroprostanes or malondialdehyde, was elevated in cortex of control-fed APP/PSEN1 mice and reduced to wild-type levels by vitamin supplementation. High-dose vitamin E with C was less effective at reducing oxidative stress than vitamin C alone or the low vitamin E+C diet combination. The high-dose combination also impaired water maze performance in mice of both genotypes. In Experiment 2, the lower vitamin E+C treatment attenuated spatial memory deficits in APP/PSEN1 mice and improved performance in wild-type mice in the water maze. Amyloid deposition was not reduced by antioxidant supplementation in either experiment.

  15. Gonadal hormones and oxidative stress interaction differentially affects survival of male and female mice after lung Klebsiella pneumoniae infection.

    PubMed

    Durrani, Faryal; Phelps, David S; Weisz, Judith; Silveyra, Patricia; Hu, Sanmei; Mikerov, Anatoly N; Floros, Joanna

    2012-05-01

    Survival of mice after Klebsiella pneumoniae infection and phagocytosis by alveolar macrophages (AMs), in the presence or absence of ozone (O(3)) exposure prior to infection, is sex dependent. The objective of this work was to study the role of gonadal hormones, 5α-dihydrotestosterone (DHT) and 17β-estradiol (E(2)), on mouse survival after filtered air (FA) or O(3) exposure. Gonadectomized female (G×F) and male (G×M) mice implanted with control or hormone pellets (DHT in G×F, or E(2) in G×M), exposed to O(3) (2 ppm, 3h) or FA, and infected with K. pneumoniae were monitored for survival. Survival in G×F was identical after FA or O(3) exposure; in G×M O(3) exposure resulted in lower survival compared to FA. In O(3)-exposed females, gonadectomy resulted in increased survival compared to intact females or to G×M+E(2). A similar effect was observed in G×F+DHT. The combined negative effect of oxidative stress and hormone on survival was higher for E(2). Gonadectomy eliminated (females) or minimized (males) the previously observed sex differences in survival in response to oxidative stress, and hormone treatment restored them. These findings indicate that gonadal hormones and/or oxidative stress have a significant effect on mouse survival.

  16. Oxidative Stress in Atopic Dermatitis

    PubMed Central

    Ji, Hongxiu; Li, Xiao-Kang

    2016-01-01

    Atopic dermatitis (AD) is a chronic pruritic skin disorder affecting many people especially young children. It is a disease caused by the combination of genetic predisposition, immune dysregulation, and skin barrier defect. In recent years, emerging evidence suggests oxidative stress may play an important role in many skin diseases and skin aging, possibly including AD. In this review, we give an update on scientific progress linking oxidative stress to AD and discuss future treatment strategies for better disease control and improved quality of life for AD patients. PMID:27006746

  17. Staphylococcal response to oxidative stress

    PubMed Central

    Gaupp, Rosmarie; Ledala, Nagender; Somerville, Greg A.

    2012-01-01

    Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host. PMID:22919625

  18. Erythropoietin and oxidative stress.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2008-05-01

    Unmitigated oxidative stress can lead to diminished cellular longevity, accelerated aging, and accumulated toxic effects for an organism. Current investigations further suggest the significant disadvantages that can occur with cellular oxidative stress that can lead to clinical disability in a number of disorders, such as myocardial infarction, dementia, stroke, and diabetes. New therapeutic strategies are therefore sought that can be directed toward ameliorating the toxic effects of oxidative stress. Here we discuss the exciting potential of the growth factor and cytokine erythropoietin for the treatment of diseases such as cardiac ischemia, vascular injury, neurodegeneration, and diabetes through the modulation of cellular oxidative stress. Erythropoietin controls a variety of signal transduction pathways during oxidative stress that can involve Janus-tyrosine kinase 2, protein kinase B, signal transducer and activator of transcription pathways, Wnt proteins, mammalian forkhead transcription factors, caspases, and nuclear factor kappaB. Yet, the biological effects of erythropoietin may not always be beneficial and may be poor tolerated in a number of clinical scenarios, necessitating further basic and clinical investigations that emphasize the elucidation of the signal transduction pathways controlled by erythropoietin to direct both successful and safe clinical care.

  19. Dietary-Induced Chronic Hypothyroidism Negatively Affects Rat Follicular Development and Ovulation Rate and Is Associated with Oxidative Stress.

    PubMed

    Meng, Li; Rijntjes, Eddy; Swarts, Hans; Bunschoten, Annelies; van der Stelt, Inge; Keijer, Jaap; Teerds, Katja

    2016-04-01

    The long-term effects of chronic hypothyroidism on ovarian follicular development in adulthood are not well known. Using a rat model of chronic diet-induced hypothyroidism initiated in the fetal period, we investigated the effects of prolonged reduced plasma thyroid hormone concentrations on the ovarian follicular reserve and ovulation rate in prepubertal (12-day-old) and adult (64-day-old and 120-day-old) rats. Besides, antioxidant gene expression, mitochondrial density and the occurrence of oxidative stress were analyzed. Our results show that continuous hypothyroidism results in lower preantral and antral follicle numbers in adulthood, accompanied by a higher percentage of atretic follicles, when compared to euthyroid age-matched controls. Not surprisingly, ovulation rate was lower in the hypothyroid rats. At the age of 120 days, the mRNA and protein content of superoxide dismutase 1 (SOD1) were significantly increased while catalase (CAT) mRNA and protein content was significantly decreased, suggesting a disturbed antioxidant defense capacity of ovarian cells in the hypothyroid animals. This was supported by a significant reduction in the expression of peroxiredoxin 3 ( ITALIC! Prdx3), thioredoxin reductase 1 ( ITALIC! Txnrd1), and uncoupling protein 2 ( ITALIC! Ucp2) and a downward trend in glutathione peroxidase 3 ( ITALIC! Gpx3) and glutathione S-transferase mu 2 ( ITALIC! Gstm2) expression. These changes in gene expression were likely responsible for the increased immunostaining of the oxidative stress marker 4-hydroxynonenal. Together these results suggest that chronic hypothyroidism initiated in the fetal/neonatal period results in a decreased ovulation rate associated with a disturbance of the antioxidant defense system in the ovary.

  20. Estrogen deprivation does not affect vascular heat shock response in female rats: a comparison with oxidative stress markers.

    PubMed

    Miragem, Antônio Azambuja; Ludwig, Mirna Stela; Heck, Thiago Gomes; Baldissera, Fernanda Giesel; dos Santos, Analu Bender; Frizzo, Matias Nunes; Homem de Bittencourt, Paulo Ivo

    2015-09-01

    Hot flashes, which involve a tiny rise in core temperature, are the most common complaint of peri- and post-menopausal women, being tightly related to decrease in estrogen levels. On the other hand, estradiol (E2) induces the expression of HSP72, a member of the 70 kDa family of heat shock proteins (HSP70), which are cytoprotective, cardioprotective, and heat inducible. Since HSP70 expression is compromised in age-related inflammatory diseases, we argued whether the capacity of triggering a robust heat shock (HS) response would be still present after E2 withdrawal. Hence, we studied the effects of HS treatment (hot tub) in female Wistar rats subjected to bilateral ovariectomy (OVX) after a 7-day washout period. Twelve h after HS, the animals were killed and aortic arches were surgically excised for molecular analyses. The results were compared with oxidative stress markers in the plasma (superoxide dismutase, catalase, and lipoperoxidation) because HSP70 expression is also sensitive to redox regulation. Extracellular (plasma) to intracellular HSP70 ratio, an index of systemic inflammatory status, was also investigated. The results showed that HS response was preserved in OVX animals, as inferred from HSP70 expression (up to 40% rise, p < 0.01) in the aortas, which was accompanied by no further alterations in oxidative stress, hematological parameters, and glycemic control either. This suggests that the lack of estrogen per se could not be solely ascribed as the unique source of low HSP70 expression as observed in long-term post-menopausal individuals. As a consequence, periodic evaluation of HSP70 status (iHSP70 vs. eHSP70) may be of clinical relevance because decreased HS response capacity is at the center of the onset of menopause-related dysfunctions.

  1. Oxidative stress in neonatology: a review.

    PubMed

    Mutinati, M; Pantaleo, M; Roncetti, M; Piccinno, M; Rizzo, A; Sciorsci, R L

    2014-02-01

    Free radicals are highly reactive oxidizing agents containing one or more unpaired electrons. Both in human and veterinary neonathology, it is generally accepted that oxidative stress functions as an important catalysator of neonatal disease. Soon after birth, many sudden physiological and environmental conditions make the newborn vulnerable for the negative effects of oxidative stress, which potentially can impair neonatal vitality. As a clinician, it is important to have in depth knowledge about factors affecting maternal/neonatal oxidative status and the cascades of events that enrol when the neonate is subjected to oxidative stress. This report aims at providing clinicians with an up-to-date review about oxidative stress in neonates across animal species. It will be emphasized which handlings and treatments that are applied during neonatal care or resuscitation can actually impose oxidative stress upon the neonate. Views and opinions about maternal and/or neonatal antioxydative therapy will be shared.

  2. Intestinal nematodes affect selenium bioaccumulation, oxidative stress biomarkers, and health parameters in juvenile rainbow trout (Oncorhynchus mykiss).

    PubMed

    Hursky, Olesya; Pietrock, Michael

    2015-02-17

    In environmental studies, parasites are often seen as a product of enhanced host susceptibility due to exposure to one or several stressors, whereas potential consequences of infections on host responses are often overlooked. Therefore, the present study focused on effects of parasitism on bioaccumulation of selenium (Se) in rainbow trout (Oncorhynchus mykiss). Joint effects of biological (parasite) and chemical (Se) stressors on biomarkers of oxidative stress (glutathione-S-transferase (GST), superoxide dismutase (SOD)), and fish health (condition factor (K), hepatosomatic index (HSI), gross energy) were also examined. Fish of the control group received uncontaminated food, while test fish, either experimentally infected with the nematode Raphidascaris acus or not, were exposed to dietary selenomethionine (Se-Met) at an environmentally relevant dose over 7 weeks. Selenium bioaccumulation by the parasite was low relative to its host, and parasitized trout showed slowed Se accumulation in the muscle as compared to uninfected fish. Furthermore, GST and SOD activities of trout exposed to both Se-Met and parasites were generally significantly lower than in fish exposed to Se-Met alone. Gross energy concentrations, but not K or HSI, were reduced in fish exposed to both Se-Met and R. acus. Together the experiment strongly calls for consideration of parasites when interpreting effects of pollutants on aquatic organisms in field investigations.

  3. Oxidative stress & male infertility.

    PubMed

    Makker, Kartikeya; Agarwal, Ashok; Sharma, Rakesh

    2009-04-01

    The male factor is considered a major contributory factor to infertility. Apart from the conventional causes for male infertility such as varicocoele, cryptorchidism, infections, obstructive lesions, cystic fibrosis, trauma, and tumours, a new and important cause has been identified: oxidative stress. Oxidative stress is a result of the imbalance between reactive oxygen species (ROS) and antioxidants in the body. It is a powerful mechanism that can lead to sperm damage, deformity and eventually, male infertility. This review discusses the physiological need for ROS and their role in normal sperm function. It also highlights the mechanism of production and the pathophysiology of ROS in relation to the male reproductive system and enumerate the benefits of incorporating antioxidants in clinical and experimental settings.

  4. Oxidative Stress in Malaria

    PubMed Central

    Percário, Sandro; Moreira, Danilo R.; Gomes, Bruno A. Q.; Ferreira, Michelli E. S.; Gonçalves, Ana Carolina M.; Laurindo, Paula S. O. C.; Vilhena, Thyago C.; Dolabela, Maria F.; Green, Michael D.

    2012-01-01

    Malaria is a significant public health problem in more than 100 countries and causes an estimated 200 million new infections every year. Despite the significant effort to eradicate this dangerous disease, lack of complete knowledge of its physiopathology compromises the success in this enterprise. In this paper we review oxidative stress mechanisms involved in the disease and discuss the potential benefits of antioxidant supplementation as an adjuvant antimalarial strategy. PMID:23208374

  5. CVD and Oxidative Stress

    PubMed Central

    Cervantes Gracia, Karla; Llanas-Cornejo, Daniel; Husi, Holger

    2017-01-01

    Nowadays, it is known that oxidative stress plays at least two roles within the cell, the generation of cellular damage and the involvement in several signaling pathways in its balanced normal state. So far, a substantial amount of time and effort has been expended in the search for a clear link between cardiovascular disease (CVD) and the effects of oxidative stress. Here, we present an overview of the different sources and types of reactive oxygen species in CVD, highlight the relationship between CVD and oxidative stress and discuss the most prominent molecules that play an important role in CVD pathophysiology. Details are given regarding common pharmacological treatments used for cardiovascular distress and how some of them are acting upon ROS-related pathways and molecules. Novel therapies, recently proposed ROS biomarkers, as well as future challenges in the field are addressed. It is apparent that the search for a better understanding of how ROS are contributing to the pathophysiology of CVD is far from over, and new approaches and more suitable biomarkers are needed for the latter to be accomplished. PMID:28230726

  6. Glutathione reductase from Brassica rapa affects tolerance and the redox state but not fermentation ability in response to oxidative stress in genetically modified Saccharomyces cerevisiae.

    PubMed

    Yoon, Ho-Sung; Shin, Sun-Young; Kim, Young-Saeng; Kim, Il-Sup

    2012-05-01

    To determine whether the exogenous expression of glutathione reductase (GR) from Brassica rapa subsp. pekinensis (BrGR) can reduce the deleterious effects of unfavorable conditions, we constructed a transgenic Saccharomyces cerevisiae strain bearing the GR gene cloned into the yeast expression vector, pVTU260. BrGR expression was confirmed by semi reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, immunoblotting analysis and an enzyme assay. Ectopic BrGR-expression improved cellular glutathione (GSH) homeostasis after higher GSH accumulation in the transgenic yeast than in the wild-type yeast under H(2)O(2)-induced oxidative stress. The BrGR-expressing yeast strain induced the activation of metabolic enzymes (Hxt, G6PDH, GAPDH and Ald), antioxidant systems (Gpx, Trx2, Trx3, Trr1, Tsa1 and porin) and molecular chaperones (Hsp104, Hsp90, Hsp70, Hsp42, Hsp26, Grp, Sti1 and Zpr1), which led to lower oxidative protein damage after a reduction in the level of cellular ROS in the BrGR-expressing yeast strain exposed to H(2)O(2) than in the wild-type yeast strain. BrGR-expression increased the ability to adapt and recover from H(2)O(2)-induced oxidative stress and various stressors, including heat shock, menadione, tert-butyl hydroperoxide, heavy metals, sodium dodecyl sulfate, ethanol and NaCl, but did not affect fermentation capacity. These results suggest that ectopic BrGR expression confers acquired tolerance by improving proteostasis and redox homeostasis through co-activation of various cell rescue proteins against ROS-induced oxidative stress in yeast cells.

  7. Hemoglobin oxidative stress in cancer.

    PubMed

    Della Rovere, F; Granata, A; Broccio, M; Zirilli, A; Broccio, G

    1995-01-01

    The role played by free radicals in carcinogenesis and their relationships with antioxidant pool and cancer have already been shown. Free radicals induce increased membrane permeability through membrane lipid peroxidation, protein oxidation and histamine release from mast cells. Free radicals also cause oxyhemoglobin oxidative stress which increases methemoglobin and hemichromes. For this reason, we studied the in vitro formation of methemoglobin at 0' and 90', dosed following the HPLC method, after oxidative stress of blood by means of acetylphenylhydrazine in 40 subjects with cancer and 40 healthy donors. The results showed that methemoglobin formation was highly significant in tumors as compared to controls (P < 0.0001). The statistical analyses we carried out showed that metHb formation is not affected by age, sex, smoking habit, red blood cell number, Hb, Ht or tumor staging. This makes us believe that free radicals alter erythrocyte membrane permeability and predenaturate oxyhemoglobin so that erythrocyte membrane becomes more susceptible to new oxidative stress. This caused the abnormal response we found. Our results clearly underline the role played by free radicals in tumorous disease and provide a successful and easy method to detect early, even in a pre-clinical stage, the presence of tumorous alterations in the human body.

  8. Oxidative stress and ageing.

    PubMed

    Birch-Machin, M A; Bowman, A

    2016-10-01

    Oxidative stress is the resultant damage due to redox imbalances (increase in destructive free radicals [reactive oxygen species (ROS)] and reduction in antioxidant protection/pathways) and is linked to ageing in many tissues including skin. In ageing skin there are bioenergetic differences between keratinocytes and fibroblasts which provide a potential ageing biomarker. The differences in skin bioenergy are part of the mitochondrial theory of ageing which remains one of the most widely accepted ageing theories describing subsequent increasing free radical generation. Mitochondria are the major source of cellular oxidative stress and form part of the vicious cycle theory of ageing. External and internal sources of oxidative stress include UVR/IR, pollution (environment), lifestyle (exercise and diet), alcohol and smoking all of which may potentially impact on skin although many exogenous actives and endogenous antioxidant defence systems have been described to help abrogate the increased stress. This also links to differences in skin cell types in terms of the UVR action spectrum for nuclear and mitochondrial DNA damage (the latter a previously described UVR biomarker in skin). Recent work associates bioenergy production and oxidative stress with pigment production thereby providing another additional potential avenue for targeted anti-ageing intervention in skin. This new data supporting the detrimental effects of the numerous wavelengths of UVR may aid in the development of cosmetic/sunscreen design to reduce the effects of photoageing. Recently, complex II of the mitochondrial electron transport chain appears to be more important than previously thought in the generation of free radicals (suggested predominantly by non-human studies). We investigated the relationship between complex II and ageing using human skin as a model tissue. The rate of complex II activity per unit of mitochondria was determined in fibroblasts and keratinocytes cultured from skin covering

  9. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment.

    PubMed

    Versari, Silvia; Longinotti, Giulia; Barenghi, Livia; Maier, Jeanette Anne Marie; Bradamante, Silvia

    2013-11-01

    Exposure to microgravity generates alterations that are similar to those involved in age-related diseases, such as cardiovascular deconditioning, bone loss, muscle atrophy, and immune response impairment. Endothelial dysfunction is the common denominator. To shed light on the underlying mechanism, we participated in the Progress 40P mission with Spaceflight of Human Umbilical Vein Endothelial Cells (HUVECs): an Integrated Experiment (SPHINX), which consisted of 12 in-flight and 12 ground-based control modules and lasted 10 d. Postflight microarray analysis revealed 1023 significantly modulated genes, the majority of which are involved in cell adhesion, oxidative phosphorylation, stress responses, cell cycle, and apoptosis. Thioredoxin-interacting protein was the most up-regulated (33-fold), heat-shock proteins 70 and 90 the most down-regulated (5.6-fold). Ion channels (TPCN1, KCNG2, KCNJ14, KCNG1, KCNT1, TRPM1, CLCN4, CLCA2), mitochondrial oxidative phosphorylation, and focal adhesion were widely affected. Cytokine detection in the culture media indicated significant increased secretion of interleukin-1α and interleukin-1β. Nitric oxide was found not modulated. Our data suggest that in cultured HUVECs, microgravity affects the same molecular machinery responsible for sensing alterations of flow and generates a prooxidative environment that activates inflammatory responses, alters endothelial behavior, and promotes senescence.

  10. Oxidative Stress, Nitric Oxide, and Diabetes

    PubMed Central

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A.; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the “final common pathway”, through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients. PMID:20703435

  11. Oxidative stress, nitric oxide, and diabetes.

    PubMed

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the "final common pathway", through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients.

  12. The antiestrogen endoxifen protects rat liver mitochondria from permeability transition pore opening and oxidative stress at concentrations that do not affect the phosphorylation efficiency

    SciTech Connect

    Ribeiro, Mariana P.C.; Silva, Filomena S.G.; Santos, Armanda E.; Santos, Maria S.; Custódio, José B.A.

    2013-02-15

    Endoxifen (EDX) is a key active metabolite of tamoxifen (TAM) with higher affinity and specificity to estrogen receptors that also inhibits aromatase activity. It is safe and well tolerated by healthy humans, but its use requires toxicological characterization. In this study, the effects of EDX on mitochondria, the primary targets for xenobiotic-induced toxicity, were monitored to clarify its potential side effects. EDX up to 30 nmol/mg protein did not affect the mitochondrial oxidative phosphorylation. At 50 nmol EDX/mg protein, EDX decreased the ADP phosphorylation rate and a partial collapse of mitochondrial membrane potential (Δψ), that parallels a state 4 stimulation, was observed. As the stimulation of state 4 was not inhibited by oligomycin and 50 nmol EDX/mg protein caused a slight decrease in the light scattering of mitochondria, these data suggest that EDX promotes membrane permeabilization to protons, whereas TAM at the same concentration induced mitochondrial membrane disruption. Moreover, EDX at 10 nmol/mg protein prevented and reversed the Ca{sup 2+}-induced depolarization of ΔΨ and the release of mitochondrial Ca{sup 2+}, similarly to cyclosporine A, indicating that EDX did not affect Ca{sup 2+} uptake, but directly interfered with the proteins of the mitochondrial permeability transition (MPT) megacomplex, inhibiting MPT induction. At this concentration, EDX exhibited antioxidant activity that may account for the protective effect against MPT pore opening. In conclusion, EDX within the range of concentrations reached in tissues did not significantly damage the bioenergetic functions of mitochondria, contrarily to the prodrug TAM, and prevented the MPT pore opening and the oxidative stress in mitochondria, supporting that EDX may be a less toxic drug for women with breast carcinoma. - Highlights: ► Mitochondria are important targets of Endoxifen. ► Endoxifen prevents mitochondrial permeability transition. ► Endoxifen prevents oxidative

  13. Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings: Toxicity alleviation by up-regulation of ascorbate-glutathione cycle.

    PubMed

    Bashri, Gausiya; Prasad, Sheo Mohan

    2016-10-01

    In the present study, effect of exogenous indole-3-acetic acid at their different levels (i.e. low; IAAL, 10µM and high; IAAH, 100µM) were studied on growth, oxidative stress biomarkers and antioxidant enzymes (SOD, POD, CAT and GST), and metabolites (AsA and GSH) as well as enzymes (APX, GR and DHAR) of ascorbate-glutathione cycle in Trigonella foenum-graecum L. seedlings grown under cadmium (Cd1, 3mgCd kg(-1) soil and Cd2, 9mgCd kg(-1) soil) stress. Cadmium (Cd) at both doses caused reduction in growth which was correlated with enhanced lipid peroxidation and damage to membrane as a result of excess accumulation of O2(•-) and H2O2. Cd also enhanced the oxidation of AsA and GSH to DHA and GSSG, respectively which give a clear sign of oxidative stress, despite of accelerated activity of enzymatic antioxidants: SOD, CAT, POD, GST as well as APX, DHAR (except in Cd2 stress) and GR. Exogenous application of IAAL resulted further rise in the activities of these enzymes, and maintained the redox status (> ratios: AsA/DHA and GSH/GSSG) of cells. The maintained redox status of cells under IAAL treatment declined the level of ROS in Cd1 and Cd2 treated seedlings thereby alleviated the Cd toxicity and this effect was more pronounced under Cd1 stress. Contrary to this, exogenous IAAH suppressed the activity of DHAR and GR and disturbed the redox status (< ratios: AsA/DHA and GSH/GSSG) of cells, hence excess accumulation of ROS further aggravated the Cd induced damage. Thus, overall results suggest that IAA at low (IAAL) and high (IAAH) doses affected the Cd toxicity differently by regulating the ascorbate-glutathione cycle as well as activity of other antioxidants in Trigonella seedlings.

  14. BRCA1 and Oxidative Stress

    PubMed Central

    Yi, Yong Weon; Kang, Hyo Jin; Bae, Insoo

    2014-01-01

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers. PMID:24704793

  15. The in vivo infusion of hydrogen peroxide induces oxidative stress and differentially affects the activities of small intestinal carbohydrate digestive enzymes in the neonatal pig.

    PubMed

    Lackeyram, D; Mine, Y; Widowski, T; Archbold, T; Fan, M Z

    2012-12-01

    Chronic fatigue syndrome (CFS) is characterized by persistent and relapsing fatigue that involves oxidative stress in its pathogenesis. We tested the hypothesis that a decrease in key carbohydrate-digesting enzyme activity in the gut is one of the major biological mechanisms of developing CFS in liquid formula-fed neonatal pigs with in vivo infusion of H(2)O(2). Piglets at 7 to 10 d of age were fitted with an intraperitoneal catheter, allowed a 3-d post surgical recovery, and infused with either H(2)O(2) at 5 mmol/kg BW (PER; n = 8) or the same volume of saline (CON; n = 8) in six 20-ml doses daily for a period of 10 d. During this period, animal behavior was monitored, blood samples collected, and jejunal enzyme activity kinetic experiments for lactase, sucrase, maltase, and maltase-glucoamylase were conducted. Plasma concentration of reduced glutathione remained similar (P > 0.05) to the pre-infusion level over the study duration in the CON group whereas this was 65% lower (P < 0.05) than the pre-infusion level in the PER group. Piglets experiencing oxidative stress had an overall lower (P < 0.05) physical mobility and the maximal jejunal specific activities [μmol/(mg protein · min)] for lactase (PER, 6.54 ± 0.68 vs. CON, 12.65 ± 0.69) and maltase (PER, 57.39 ± 1.02 vs. CON, 75.60 ± 1.04), respectively. However, differences were not observed (P > 0.05) in the maximal specific activities [μmol/(mg protein · min)] of sucrase (PER, 10.50 ± 1.37 vs. CON, 12.40 ± 1.55) and maltase-glucoamylase (PER, 0.71 ± 0.08 vs. CON, 0.70 ± 0.07) between the 2 groups. In conclusion, infusion of a suitable dose of H(2)O(2) induced CFS in the neonatal pigs. Oxidative stress in vivo differentially affected the maximal activities of important small intestinal carbohydrate-digesting enzymes in neonatal pigs fed a dairy milk-based liquid formula.

  16. Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection

    PubMed Central

    Lan, Lefu; Murray, Thomas S.; Kazmierczak, Barbara I.; He, Chuan

    2010-01-01

    Summary Oxidative stress is one of the main challenges bacteria must cope with during infection. Here, we identify a new oxidative stress sensing and response ospR (oxidative stress response and pigment production Regulator) gene in Pseudomonas aeruginosa. Deletion of ospR leads to a significant induction in H2O2 resistance. This effect is mediated by de-repression of PA2826, which lies immediately upstream of ospR and encodes a glutathione peroxidase. Constitutive expression of ospR alters pigment production and β-lactam resistance in P. aeruginosa via a PA2826-independent manner. We further discovered that OspR regulates additional genes involved in quorum sensing and tyrosine metabolism. These regulatory effects are redox-mediated as addition of H2O2 or cumene hydroperoxide leads to the dissociation of OspR from promoter DNA. A conserved Cys residue, Cys-24, plays the major role of oxidative stress sensing in OspR. The serine substitution mutant of Cys-24 is less susceptible to oxidation in vitro and exhibits altered pigmentation and β-lactam resistance. Lastly, we show that an ospR null mutant strain displays a greater capacity for dissemination than wild-type MPAO1 strain in a murine model of acute pneumonia. Thus, OspR is a global regulator that senses oxidative stress and regulates multiple pathways to enhance the survival of P. aeruginosa inside host. PMID:19943895

  17. A Mixture Reflecting Polybrominated Diphenyl Ether (PBDE) Profiles Detected in Human Follicular Fluid Significantly Affects Steroidogenesis and Induces Oxidative Stress in a Female Human Granulosa Cell Line.

    PubMed

    Lefevre, Pavine L C; Wade, Mike; Goodyer, Cindy; Hales, Barbara F; Robaire, Bernard

    2016-07-01

    Brominated flame retardants are incorporated into consumer products to prevent flame propagation. These compounds leach into the domestic environment, resulting in chronic exposure. Pregnancy failure is associated with high levels of polybrominated diphenyl ethers (PBDEs), a major class of brominated flame retardants, in human follicular fluid, raising serious questions regarding their impact on female fertility. Our goal was to elucidate the effects of a mixture of PBDEs, similar to the profile found in human follicular fluid, on an immortalized human granulosa cell line, the KGN cell line. We showed that cell viability was altered and oxidative stress was induced as reflected by increased reactive oxygen species formation at 100 μM of the PBDE mixture. Transcriptomic analysis revealed that PBDE treatments of 1, 5, and 20 μM altered the expression of several genes involved in the reactive oxygen species signaling pathway. Significant dose-dependent reductions in progesterone and estradiol levels in the culture medium were measured after PBDE treatment; in parallel, the expression of genes involved in estradiol metabolism, namely CYP1A1, was up-regulated by 5 and 20 μM of the PBDE mixture. Treatment with 20 μM PBDE also increased the expression and secretion of the proinflammatory factor, IL-6, into the KGN cell culture medium. Our results demonstrate that PBDEs can alter human granulosa cell functions by inducing oxidative stress and disrupting steroidogenesis. These results indicate that PBDEs may be detrimental to ovarian functions and thus may adversely affect female reproductive health after chronic exposure.

  18. Neutron Radiation Affects the Expression of Genes Involved in the Response to Auxin, Senescence and Oxidative Stress in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Fortunati, A.; Tassone, P.; Migliaccio, F.

    2008-06-01

    Researches were conducted on the effect of neutron radiation on the expression of genes auxin activated or connected with the process of senescence in Arabidopsis plants. The research was done by applying the real-time polymerase chain reaction (PCR) technique. The results indicated that the auxin response factors (ARFs) genes are clearly downregulated, whereas the indolacetic acid-induced (Aux/IAAs) genes in some cases were upregulated. By contrast in the mutants for auxin transport aux1 and eir1 the ARFs genes were upregulated. In addition, both in the wildtype and mutants, some already known genes activated by stress and senescence were significantly upregulated. On the basis of these researches we conclude that the process of senescence induced by irradiation is, at least in part, controlled by the physiology of the hormone auxin.

  19. Will Stress during Pregnancy Affect My Baby?

    MedlinePlus

    ... Research Information Clinical Trials Resources and Publications Will stress during pregnancy affect my baby? Skip sharing on social media ... health care provider during your prenatal visits. Posttraumatic Stress Disorder (PTSD) and Pregnancy PTSD is a more serious type of stress ...

  20. CorA affects tolerance of Escherichia coli and Salmonella enterica serovar Typhimurium to the lactoperoxidase enzyme system but not to other forms of oxidative stress.

    PubMed

    Sermon, Jan; Wevers, Eva M-R P; Jansen, Leentje; De Spiegeleer, Philipp; Vanoirbeek, Kristof; Aertsen, Abram; Michiels, Chris W

    2005-11-01

    The enzyme lactoperoxidase is part of the innate immune system in vertebrates and owes its antimicrobial activity to the formation of oxidative reaction products from various substrates. In a previous study, we have reported that, with thiocyanate as a substrate, the lactoperoxidase system elicits a distinct stress response in Escherichia coli MG1655. This response is different from but partly overlapping with the stress responses to hydrogen peroxide and to superoxide. In the current work, we constructed knockouts in 10 lactoperoxidase system-inducible genes to investigate their role in the tolerance of E. coli MG1655 to this antimicrobial system. Five mutations resulted in a slightly increased sensitivity, but one mutation (corA) caused hypersensitivity to the lactoperoxidase system. This hypersensitive phenotype was specific to the lactoperoxidase system, since neither the sensitivity to hydrogen peroxide nor to the superoxide generator plumbagin was affected in the corA mutant. Salmonella enterica serovar Typhimurium corA had a similar phenotype. Although corA encodes an Mg2+ transporter and at least three other inducible open reading frames belonged to the Mg2+ regulon, repression of the Mg stimulon by Mg2+ did not change the lactoperoxidase sensitivity of either the wild-type or corA mutant. Prior exposure to 0.3 mM Ni2+, which is also transported by CorA, strongly sensitized MG1655 but not the corA mutant to the lactoperoxidase system. Furthermore, this Ni2+-dependent sensitization was suppressed by the CorA-specific inhibitor Co(III) hexaammine. These results indicate that CorA affects the lactoperoxidase sensitivity of E. coli by modulating the cytoplasmic concentrations of transition metals that enhance the toxicity of the lactoperoxidase system.

  1. Tocotrienol Affects Oxidative Stress, Cholesterol Homeostasis and the Amyloidogenic Pathway in Neuroblastoma Cells: Consequences for Alzheimer’s Disease

    PubMed Central

    Grimm, Marcus O. W.; Regner, Liesa; Mett, Janine; Stahlmann, Christoph P.; Schorr, Pascal; Nelke, Christopher; Streidenberger, Olga; Stoetzel, Hannah; Winkler, Jakob; Zaidan, Shatha R.; Thiel, Andrea; Endres, Kristina; Grimm, Heike S.; Volmer, Dietrich A.; Hartmann, Tobias

    2016-01-01

    One of the characteristics of Alzheimer´s disease (AD) is an increased amyloid load and an enhanced level of reactive oxidative species (ROS). Vitamin E has known beneficial neuroprotective effects, and previously, some studies suggested that vitamin E is associated with a reduced risk of AD due to its antioxidative properties. However, epidemiological studies and nutritional approaches of vitamin E treatment are controversial. Here, we investigate the effect of α-tocotrienol, which belongs to the group of vitamin E, on AD-relevant processes in neuronal cell lines. In line with the literature, α-tocotrienol reduced the ROS level in SH-SY5Y cells. In the presence of tocotrienols, cholesterol and cholesterol esters, which have been shown to be risk factors in AD, were decreased. Besides the unambiguous positive effects of tocotrienol, amyloid-β (Aβ) levels were increased accompanied by an increase in the activity of enzymes responsible for Aβ production. Proteins and gene expression of the secretases and their components remained unchanged, whereas tocotrienol accelerates enzyme activity in cell-free assays. Besides enhanced Aβ production, tocotrienols inhibited Aβ degradation in neuro 2a (N2a)-cells. Our results might help to understand the controversial findings of vitamin E studies and demonstrate that besides the known positive neuroprotective properties, tocotrienols also have negative characteristics with respect to AD. PMID:27801864

  2. Tocotrienol Affects Oxidative Stress, Cholesterol Homeostasis and the Amyloidogenic Pathway in Neuroblastoma Cells: Consequences for Alzheimer's Disease.

    PubMed

    Grimm, Marcus O W; Regner, Liesa; Mett, Janine; Stahlmann, Christoph P; Schorr, Pascal; Nelke, Christopher; Streidenberger, Olga; Stoetzel, Hannah; Winkler, Jakob; Zaidan, Shatha R; Thiel, Andrea; Endres, Kristina; Grimm, Heike S; Volmer, Dietrich A; Hartmann, Tobias

    2016-10-29

    One of the characteristics of Alzheimer´s disease (AD) is an increased amyloid load and an enhanced level of reactive oxidative species (ROS). Vitamin E has known beneficial neuroprotective effects, and previously, some studies suggested that vitamin E is associated with a reduced risk of AD due to its antioxidative properties. However, epidemiological studies and nutritional approaches of vitamin E treatment are controversial. Here, we investigate the effect of α-tocotrienol, which belongs to the group of vitamin E, on AD-relevant processes in neuronal cell lines. In line with the literature, α-tocotrienol reduced the ROS level in SH-SY5Y cells. In the presence of tocotrienols, cholesterol and cholesterol esters, which have been shown to be risk factors in AD, were decreased. Besides the unambiguous positive effects of tocotrienol, amyloid-β (Aβ) levels were increased accompanied by an increase in the activity of enzymes responsible for Aβ production. Proteins and gene expression of the secretases and their components remained unchanged, whereas tocotrienol accelerates enzyme activity in cell-free assays. Besides enhanced Aβ production, tocotrienols inhibited Aβ degradation in neuro 2a (N2a)-cells. Our results might help to understand the controversial findings of vitamin E studies and demonstrate that besides the known positive neuroprotective properties, tocotrienols also have negative characteristics with respect to AD.

  3. Oxidative stress and hypertension.

    PubMed

    Harrison, David G; Gongora, Maria Carolina

    2009-05-01

    This review has summarized some of the data supporting a role of ROS and oxidant stress in the genesis of hypertension. There is evidence that hypertensive stimuli, such as high salt and angiotensin II, promote the production of ROS in the brain, the kidney, and the vasculature and that each of these sites contributes either to hypertension or to the untoward sequelae of this disease. Although the NADPH oxidase in these various organs is a predominant source, other enzymes likely contribute to ROS production and signaling in these tissues. A major clinical challenge is that the routinely used antioxidants are ineffective in preventing or treating cardiovascular disease and hypertension. This is likely because these drugs are either ineffective or act in a non-targeted fashion, such that they remove not only injurious ROS Fig. 5. Proposed role of T cells in the genesis of hypertension and the role of the NADPH oxidase in multiple cells/organs in modulating this effect. In this scenario, angiotensin II stimulates an NADPH oxidase in the CVOs of the brain, increasing sympathetic outflow. Sympathetic nerve terminals in lymph nodes activate T cells, and angiotensin II also directly activates T cells. These stimuli also activate expression of homing signals in the vessel and likely the kidney, which attract T cells to these organs. T cells release cytokines that stimulate the vessel and kidney NADPH oxidases, promoting vasoconstriction and sodium retention. SFO, subfornical organ. 630 Harrison & Gongora but also those involved in normal cell signaling. A potentially important and relatively new direction is the concept that inflammatory cells such as T cells contribute to hypertension. Future studies are needed to understand the interaction of T cells with the CNS, the kidney, and the vasculature and how this might be interrupted to provide therapeutic benefit.

  4. Oxidative stress in Parkinson's disease.

    PubMed

    Nikam, Shashikant; Nikam, Padmaja; Ahaley, S K; Sontakke, Ajit V

    2009-01-01

    Oxidative stress contributes to the cascade, leading to dopamine cell degeneration in Parkinson's disease. However, oxidative stress is intimately linked to other components of the degenerative process, such as mitochondrial dysfunction, excitotoxicity, nitric oxide toxicity and inflammation. It is therefore difficult to determine whether oxidative stress leads to or is a consequence of, these events. Oxidative stress was assessed by estimating lipid peroxidation product in the form of thiobarbituric acid reactive substances, nitric oxide in the form of nitrite & nitrate. Enzymatic antioxidants in the form of superoxide dismutase, glutathione peroxidase, catalase, ceruloplasmin and non enzymatic antioxidant vitamins e.g. vitamin E and C in either serum or plasma or erythrocyte in 40 patients of Parkinson's disease in the age group 40-80 years. Trace elements e.g. copper, zinc and selenium were also estimated. Plasma thiobarbituric acid reactive substances and nitric oxide levels were Significantly high but superoxide dismutase, glutathione peroxidase, catalase, ceruloplasmin, vitamin-E, vitamin-C, copper, zinc and selenium levels were significantly low in Parkinson's disease when compared with control subjects. Present study showed that elevated oxidative stress may be playing a role in dopaminergic neuronal loss in substentia nigra pars compacta and involved in pathogenesis of the Parkinson's disease.

  5. Bruxism affects stress responses in stressed rats.

    PubMed

    Sato, Chikatoshi; Sato, Sadao; Takashina, Hirofumi; Ishii, Hidenori; Onozuka, Minoru; Sasaguri, Kenichi

    2010-04-01

    It has been proposed that suppression of stress-related emotional responses leads to the simultaneous activation of both sympathetic and parasympathetic divisions of the autonomic nervous system (ANS) and that the expression of these emotional states has a protective effect against ulcerogenesis. In the present study, we investigated whether stress-induced bruxism activity (SBA) has a physiological effect of on the stress-induced changes of the stomach, thymus, and spleen as well as blood leukocytes, cortisol, and adrenaline. This study demonstrated that SBA attenuated the stress-induced ulcer genesis as well as degenerative changes of thymus and spleen. SBA also attenuated increases of adrenaline, cortisol, and neutrophils in the blood. In conclusion, expression of aggression through SBA during stress exposure attenuates both stress-induced ANS response, including gastric ulcer formation.

  6. Peroxisome proliferator-activated receptor {alpha} agonism prevents renal damage and the oxidative stress and inflammatory processes affecting the brains of stroke-prone rats.

    PubMed

    Gelosa, Paolo; Banfi, Cristina; Gianella, Anita; Brioschi, Maura; Pignieri, Alice; Nobili, Elena; Castiglioni, Laura; Cimino, Mauro; Tremoli, Elena; Sironi, Luigi

    2010-11-01

    A growing body of evidence suggests that chronic kidney disease is a significant risk for cardiovascular events and stroke regardless of traditional risk factors. The aim of this study was to examine the effects of peroxisome proliferator-activated receptor (PPAR) agonists on the tissue damage affecting salt-loaded spontaneously hypertensive stroke-prone rats ( SHRSPs), an animal model that develops a complex pathology characterized by systemic inflammation, hypertension, and proteinuria and leads to end-organ injury (initially renal and subsequently cerebral). Compared with the PPARγ agonist rosiglitazone, the PPARα ligands fenofibrate and clofibrate significantly increased survival (p < 0.001) by delaying the occurrence of brain lesions monitored by magnetic resonance imaging (p < 0.001) and delaying increased proteinuria (p < 0.001). Fenofibrate completely prevented the renal disorder characterized by severe vascular lesions, tubular damage, and glomerular sclerosis, reduced the number of ED-1-positive cells and collagen accumulation, and decreased the renal expression of interleukin-1β, transforming growth factor β, and monocyte chemoattractant protein 1. It also prevented the plasma and urine accumulation of acute-phase and oxidized proteins, suggesting that the protection induced by PPARα agonists was at least partially caused by their anti-inflammatory and antioxidative properties. The results of this study demonstrate that PPAR agonism has beneficial effects on spontaneous brain and renal damage in SHRSPs by inhibiting systemic inflammation and oxidative stress, and they support carrying out future studies aimed at evaluating the effect of PPARα agonists on proteinuria and clinical outcomes in hypertensive patients with renal disease at increased risk of stroke.

  7. Acute consumption of walnuts and walnut components differentially affect postprandial lipemia, endothelial function, oxidative stress, and cholesterol efflux in humans with mild hypercholesterolemia.

    PubMed

    Berryman, Claire E; Grieger, Jessica A; West, Sheila G; Chen, Chung-Yen O; Blumberg, Jeffrey B; Rothblat, George H; Sankaranarayanan, Sandhya; Kris-Etherton, Penny M

    2013-06-01

    Walnut consumption improves cardiovascular disease risk; however, to our knowledge, the contribution of individual walnut components has not been assessed. This study evaluated the acute consumption of whole walnuts (85 g), separated nut skins (5.6 g), de-fatted nutmeat (34 g), and nut oil (51 g) on postprandial lipemia, endothelial function, and oxidative stress. Cholesterol efflux (ex vivo) was assessed in the whole walnut treatment only. A randomized, 4-period, crossover trial was conducted in healthy overweight and obese adults (n = 15) with moderate hypercholesterolemia. There was a treatment × time point interaction for triglycerides (P < 0.01) and increased postprandial concentrations were observed for the oil and whole walnut treatments (P < 0.01). Walnut skins decreased the reactive hyperemia index (RHI) compared with baseline (P = 0.02) such that a difference persisted between the skin and oil treatments (P = 0.01). The Framingham RHI was maintained with the oil treatment compared with the skins and whole nut (P < 0.05). There was a treatment effect for the ferric reducing antioxidant potential (FRAP) (P < 0.01), and mean FRAP was greater with the oil and skin treatments compared with the nutmeat (P < 0.01). Cholesterol efflux increased by 3.3% following whole walnut consumption in J774 cells cultured with postprandial serum compared with fasting baseline (P = 0.02). Walnut oil favorably affected endothelial function and whole walnuts increased cholesterol efflux. These 2 novel mechanisms may explain in part the cardiovascular benefits of walnuts.

  8. The metabolomics of oxidative stress.

    PubMed

    Noctor, Graham; Lelarge-Trouverie, Caroline; Mhamdi, Amna

    2015-04-01

    Oxidative stress resulting from increased availability of reactive oxygen species (ROS) is a key component of many responses of plants to challenging environmental conditions. The consequences for plant metabolism are complex and manifold. We review data on small compounds involved in oxidative stress, including ROS themselves and antioxidants and redox buffers in the membrane and soluble phases, and we discuss the wider consequences for plant primary and secondary metabolism. While metabolomics has been exploited in many studies on stress, there have been relatively few non-targeted studies focused on how metabolite signatures respond specifically to oxidative stress. As part of the discussion, we present results and reanalyze published datasets on metabolite profiles in catalase-deficient plants, which can be considered to be model oxidative stress systems. We emphasize the roles of ROS-triggered changes in metabolites as potential oxidative signals, and discuss responses that might be useful as markers for oxidative stress. Particular attention is paid to lipid-derived compounds, the status of antioxidants and antioxidant breakdown products, altered metabolism of amino acids, and the roles of phytohormone pathways.

  9. A single blueberry (Vaccinium corymbosum) portion does not affect markers of antioxidant defence and oxidative stress in healthy volunteers following cigarette smoking.

    PubMed

    Del Bo', Cristian; Porrini, Marisa; Campolo, Jonica; Parolini, Marina; Lanti, Claudia; Klimis-Zacas, Dorothy; Riso, Patrizia

    2016-03-01

    We previously reported that a portion of blueberries reversed endothelial dysfunction induced by acute cigarette smoking. Since smoking-induced endothelial dysfunction is associated with a condition of oxidative stress, we evaluated whether the observed effect was mediated by modulation of markers of oxidative stress and antioxidant defence. Fourteen out of 16 male healthy smokers previously enrolled, participated in a three-armed randomized controlled study with the following experimental conditions: smoking treatment (one cigarette); blueberry treatment (300g of blueberries) + smoking (one cigarette); control treatment (300ml of water with sugar) + smoking (one cigarette). The cigarette was smoked 100min after blueberry/control/water consumption. Each treatment was separated by 1 week of washout period. Plasma vitamin (C, B12 and folate) and aminothiol concentrations, endogenous [formamidopyrimidine-DNA glycosylase (FPG)-sensitive sites] and oxidatively induced DNA damage (resistance to H2O2-induced DNA damage) in peripheral blood mononuclear cells (PBMCs) were measured at baseline and 20, 60, 90, 120min and 24h after smoking. On the whole, analysis of variance did not show a significant effect of treatment on the modulation of markers of oxidative stress and antioxidant defence but revealed an effect of time for plasma concentrations of vitamin C (P = 0.003), B12 (P < 0.001), folate (P < 0.001), total cysteine (P = 0.007) and cysteine-glycine (P = 0.010) that increased following the three treatments after smoking. No significant effect of treatment was observed for the levels of FPG-sensitive sites (P > 0.05) and H2O2-induced DNA damage (P > 0.05) in PBMCs. In conclusion, the consumption of a single blueberry portion failed to modulate markers of oxidative stress and antioxidant defence investigated in our experimental conditions. Further studies are necessary to elucidate this finding and help clarifying the mechanisms of protection of blueberries against

  10. Astaxanthin, canthaxanthin and beta-carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes.

    PubMed

    Camera, Emanuela; Mastrofrancesco, Arianna; Fabbri, Claudia; Daubrawa, Felicitas; Picardo, Mauro; Sies, Helmut; Stahl, Wilhelm

    2009-03-01

    Carotenoids are used for systemic photoprotection in humans. Regarding mechanisms underlying photoprotective effects of carotenoids, here we compared the modulation of UVA-related injury by carotenoids. Human dermal fibroblasts (HDF) were exposed to moderate doses of UVA, which stimulated apoptosis, increased levels of reactive oxygen species and thiobarbituric acid reactive substances, decreased antioxidant enzymes activities, promoted membrane perturbation, and induced the expression of heme oxygenase-1 (HO-1). The carotenoids astaxanthin (AX), canthaxanthin (CX) and beta-carotene (betaC) were delivered to HDF 24 h before exposure to UVA. Astaxanthin exhibited a pronounced photoprotective effect and counteracted all of the above-mentioned UVA-induced alterations to a significant extent. beta-Carotene only partially prevented the UVA-induced decline of catalase and superoxide dismutase activities, but it increased membrane damage and stimulated HO-1 expression. Moreover, betaC dose-dependently induced caspase-3 activity following UVA exposure. In contrast, CX had no effect on oxidative damage, except for HO-1 expression, which was augmented. Uptake of AX by fibroblasts was higher than that of the other two carotenoids. The photostability of the three compounds in fibroblasts was AX > CX > betaC. The data indicate that the oxo-carotenoid AX has a superior preventive effect towards photo-oxidative changes in cell culture.

  11. How Psychological Stress Affects Emotional Prosody

    PubMed Central

    Paulmann, Silke; Furnes, Desire; Bøkenes, Anne Ming; Cozzolino, Philip J.

    2016-01-01

    We explored how experimentally induced psychological stress affects the production and recognition of vocal emotions. In Study 1a, we demonstrate that sentences spoken by stressed speakers are judged by naïve listeners as sounding more stressed than sentences uttered by non-stressed speakers. In Study 1b, negative emotions produced by stressed speakers are generally less well recognized than the same emotions produced by non-stressed speakers. Multiple mediation analyses suggest this poorer recognition of negative stimuli was due to a mismatch between the variation of volume voiced by speakers and the range of volume expected by listeners. Together, this suggests that the stress level of the speaker affects judgments made by the receiver. In Study 2, we demonstrate that participants who were induced with a feeling of stress before carrying out an emotional prosody recognition task performed worse than non-stressed participants. Overall, findings suggest detrimental effects of induced stress on interpersonal sensitivity. PMID:27802287

  12. Contribution of mitochondrial oxidative stress to hypertension

    PubMed Central

    Dikalov, Sergey I.; Dikalova, Anna E.

    2016-01-01

    Purpose of review In 1954 Harman proposed the free radical theory of aging, and in 1972 he suggested that mitochondria are both the source and the victim of toxic free radicals. Interestingly, hypertension is age-associated disease and clinical data show that by age 70, 70% of the population has hypertension and this is accompanied by oxidative stress. Antioxidant therapy however is not currently available and common antioxidants like ascorbate and vitamin E are ineffective in preventing hypertension. The present review focuses on molecular mechanisms of mitochondrial oxidative stress and therapeutic potential of targeting mitochondria in hypertension. Recent findings In the past several years, we have shown that the mitochondria become dysfunctional in hypertension and have defined novel role of mitochondrial superoxide radicals in this disease. We have shown that genetic manipulation of mitochondrial antioxidant enzyme superoxide dismutase (SOD2) affects blood pressure and have developed mitochondria-targeted therapies such as SOD2 mimetics that effectively lower blood pressure. The specific mechanism of mitochondrial oxidative stress in hypertension, however, remains unclear. Recent animal and clinical studies have demonstrated several hormonal, metabolic, inflammatory, and environmental pathways contributing to mitochondrial dysfunction and oxidative stress. Summary Nutritional supplements, calorie restriction, and life style change are the most effective preventive strategies to improve mitochondrial function and reduce mitochondrial oxidative stress. Aging associated mitochondrial dysfunction, however, reduces efficacy of these strategies. Therefore, we propose that new classes of mitochondria-targeted antioxidants can provide high therapeutic potential to improve endothelial function and reduce hypertension. PMID:26717313

  13. Mutations and environmental factors affecting regulation of riboflavin synthesis and iron assimilation also cause oxidative stress in the yeast Pichia guilliermondii.

    PubMed

    Boretsky, Yuriy R; Protchenko, Olga V; Prokopiv, Tetiana M; Mukalov, Igor O; Fedorovych, Daria V; Sibirny, Andriy A

    2007-10-01

    Iron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. However, the mechanisms of such regulation are not known. We found that mutations causing riboflavin overproduction and iron hyperaccumulation (rib80, rib81 and hit1), as well as cobalt excess or iron deficiency all provoke oxidative stress in the Pichia guilliermondii yeast. Iron content in the cells, production both of riboflavin and malondialdehyde by P. guilliermondii wild type and hit1 mutant strains depend on a type of carbon source used in cultivation media. The data suggest that the regulation of riboflavin biosynthesis and iron assimilation in P. guilliermondii are linked with cellular oxidative state.

  14. Acute Consumption of Walnuts and Walnut Components Differentially Affect Postprandial Lipemia, Endothelial Function, Oxidative Stress, and Cholesterol Efflux in Humans with Mild Hypercholesterolemia1234

    PubMed Central

    Berryman, Claire E.; Grieger, Jessica A.; West, Sheila G.; Chen, Chung-Yen O.; Blumberg, Jeffrey B.; Rothblat, George H.; Sankaranarayanan, Sandhya; Kris-Etherton, Penny M.

    2013-01-01

    Walnut consumption improves cardiovascular disease risk; however, to our knowledge, the contribution of individual walnut components has not been assessed. This study evaluated the acute consumption of whole walnuts (85 g), separated nut skins (5.6 g), de-fatted nutmeat (34 g), and nut oil (51 g) on postprandial lipemia, endothelial function, and oxidative stress. Cholesterol efflux (ex vivo) was assessed in the whole walnut treatment only. A randomized, 4-period, crossover trial was conducted in healthy overweight and obese adults (n = 15) with moderate hypercholesterolemia. There was a treatment × time point interaction for triglycerides (P < 0.01) and increased postprandial concentrations were observed for the oil and whole walnut treatments (P < 0.01). Walnut skins decreased the reactive hyperemia index (RHI) compared with baseline (P = 0.02) such that a difference persisted between the skin and oil treatments (P = 0.01). The Framingham RHI was maintained with the oil treatment compared with the skins and whole nut (P < 0.05). There was a treatment effect for the ferric reducing antioxidant potential (FRAP) (P < 0.01), and mean FRAP was greater with the oil and skin treatments compared with the nutmeat (P < 0.01). Cholesterol efflux increased by 3.3% following whole walnut consumption in J774 cells cultured with postprandial serum compared with fasting baseline (P = 0.02). Walnut oil favorably affected endothelial function and whole walnuts increased cholesterol efflux. These 2 novel mechanisms may explain in part the cardiovascular benefits of walnuts. PMID:23616506

  15. Sublethal red tide toxin exposure in free-ranging manatees (Trichechus manatus) affects the immune system through reduced lymphocyte proliferation responses, inflammation, and oxidative stress.

    PubMed

    Walsh, Catherine J; Butawan, Matthew; Yordy, Jennifer; Ball, Ray; Flewelling, Leanne; de Wit, Martine; Bonde, Robert K

    2015-04-01

    The health of many Florida manatees (Trichechus manatus latirostris) is adversely affected by exposure to blooms of the toxic dinoflagellate, Karenia brevis. K. brevis blooms are common in manatee habitats of Florida's southwestern coast and produce a group of cyclic polyether toxins collectively referred to as red tide toxins, or brevetoxins. Although a large number of manatees exposed to significant levels of red tide toxins die, several manatees are rescued from sublethal exposure and are successfully treated and returned to the wild. Sublethal brevetoxin exposure may potentially impact the manatee immune system. Lymphocyte proliferative responses and a suite of immune function parameters in the plasma were used to evaluate effects of brevetoxin exposure on health of manatees rescued from natural exposure to red tide toxins in their habitat. Blood samples were collected from rescued manatees at Lowry Park Zoo in Tampa, FL and from healthy, unexposed manatees in Crystal River, FL. Peripheral blood leukocytes (PBL) isolated from whole blood were stimulated with T-cell mitogens, ConA and PHA. A suite of plasma parameters, including plasma protein electrophoresis profiles, lysozyme activity, superoxide dismutase (SOD) activity, and reactive oxygen/nitrogen (ROS/RNS) species, was also used to assess manatee health. Significant decreases (p<0.05) in lymphocyte proliferation were observed in ConA and PHA stimulated lymphocytes from rescued animals compared to non-exposed animals. Significant correlations were observed between oxidative stress markers (SOD, ROS/RNS) and plasma brevetoxin concentrations. Sublethal exposure to brevetoxins in the wild impacts some immune function components, and thus, overall health, in the Florida manatee.

  16. [Vitamins and oxidative stress].

    PubMed

    Kodentsova, V M; Vrzhesinskaia, O A; Mazo, V K

    2013-01-01

    The central and local stress limiting systems, including the antioxidant defense system involved in defending the organism at the cellular and systemic levels from excess activation response to stress influence, leading to damaging effects. The development of stress, regardless of its nature [cold, increased physical activity, aging, the development of many pathologies (cardiovascular, neurodegenerative diseases, diseases of the gastrointestinal tract, ischemia, the effects of burns), immobilization, hypobaric hypoxia, hyperoxia, radiation effects etc.] leads to a deterioration of the vitamin status (vitamins E, A, C). Damaging effect on the antioxidant defense system is more pronounced compared to the stress response in animals with an isolated deficiency of vitamins C, A, E, B1 or B6 and the combined vitamins deficiency in the diet. Addition missing vitamin or vitamins restores the performance of antioxidant system. Thus, the role of vitamins in adaptation to stressors is evident. However, vitamins C, E and beta-carotene in high doses, significantly higher than the physiological needs of the organism, may be not only antioxidants, but may have also prooxidant properties. Perhaps this explains the lack of positive effects of antioxidant vitamins used in extreme doses for a long time described in some publications. There is no doubt that to justify the current optimal doses of antioxidant vitamins and other dietary antioxidants specially-designed studies, including biochemical testing of initial vitamin and antioxidant status of the organism, as well as monitoring their change over time are required.

  17. [Oxidative stress in Crohn's disease].

    PubMed

    Moret, Inés; Cerrillo, Elena; Navarro-Puche, Ana; Iborra, Marisa; Rausell, Francisco; Tortosa, Luis; Beltrán, Belén

    2014-01-01

    Crohn's disease (CD) is characterized by transmural inflammation that is most frequently located in the region of the terminal ileum. Although the physiopathological mechanisms of the disease are not yet well defined, the unregulated immune response is associated with high production of reactive oxygen species (ROS). These elements are associated with complex systems known as antioxidant defenses, whose function is ROS regulation, thereby preventing the harmful effects of these elements. However, the presence of an imbalance between ROS production and ROS elimination by antioxidants has been widely described and leads to oxidative stress. In this article, we describe the most significant findings on oxidative stress in the intestinal mucosa and peripheral blood.

  18. PARTICULATE MATTER, OXIDATIVE STRESS AND ...

    EPA Pesticide Factsheets

    Particulate matter (PM), a component of air pollution has been epidemiologically associated with sudden deaths, cardiovascular and respiratory illnesses. The effects are more pronounced in patients with pre-existing conditions such as asthma, diabetes or obstructive pulmonary disorders. Clinical and experimental studies have historically focused on the cardiopulmonary effects of PM. However, since PM particles carry numerous biocontaminants that are capable of triggering free radical production and cytokine release, the possibility that PM may affect organs systems sensitive to oxidative stress must be considered. Four independent studies that summarize the neurochemical and neuropathological changes found in the brains of PM exposed animals are described here. These were recently presented at two 2007 symposia sponsored by the Society of Toxicology (Charlotte, NC) and the International Neurotoxicology Association (Monterey, CA). Particulates are covered with biocontaminants (e.g., endotoxins, mold, pollen) which convey free radical activity that can damage the lipids, nucleic acids, and proteins of target cells on contact and stimulate inflammatory cytokine release. Although, the historical focus of PM toxicity has been cardiopulmonary targets, it is now appreciated that inhaled nano-size (<100 nm) particles quickly exit the lungs and enter the circulation where they distribute to various organ systems (l.e., liver, kidneys, testes, lymph nodes) (Takenaka et aI

  19. Peroxisomes, oxidative stress, and inflammation

    PubMed Central

    Terlecky, Stanley R; Terlecky, Laura J; Giordano, Courtney R

    2012-01-01

    Peroxisomes are intracellular organelles mediating a wide variety of biosynthetic and biodegradative reactions. Included among these are the metabolism of hydrogen peroxide and other reactive species, molecules whose levels help define the oxidative state of cells. Loss of oxidative equilibrium in cells of tissues and organs potentiates inflammatory responses which can ultimately trigger human disease. The goal of this article is to review evidence for connections between peroxisome function, oxidative stress, and inflammation in the context of human health and degenerative disease. Dysregulated points in this nexus are identified and potential remedial approaches are presented. PMID:22649571

  20. Oxidative stress in cyanobacteria.

    PubMed

    Latifi, Amel; Ruiz, Marion; Zhang, Cheng-Cai

    2009-03-01

    Reactive oxygen species (ROS) are byproducts of aerobic metabolism and potent agents that cause oxidative damage. In oxygenic photosynthetic organisms such as cyanobacteria, ROS are inevitably generated by photosynthetic electron transport, especially when the intensity of light-driven electron transport outpaces the rate of electron consumption during CO(2) fixation. Because cyanobacteria in their natural habitat are often exposed to changing external conditions, such as drastic fluctuations of light intensities, their ability to perceive ROS and to rapidly initiate antioxidant defences is crucial for their survival. This review summarizes recent findings and outlines important perspectives in this field.

  1. Potential Modulation of Sirtuins by Oxidative Stress

    PubMed Central

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1–7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions. PMID:26788256

  2. Oxidative stress in obstructive nephropathy.

    PubMed

    Dendooven, Amélie; Ishola, David A; Nguyen, Tri Q; Van der Giezen, Dionne M; Kok, Robbert Jan; Goldschmeding, Roel; Joles, Jaap A

    2011-06-01

    Unilateral ureteric obstruction (UUO) is one of the most commonly applied rodent models to study the pathophysiology of renal fibrosis. This model reflects important aspects of inflammation and fibrosis that are prominent in human kidney diseases. In this review, we present an overview of the factors contributing to the pathophysiology of UUO, highlighting the role of oxidative stress.

  3. Oxidative stress in obstructive nephropathy

    PubMed Central

    Dendooven, Amélie; Ishola, David A; Nguyen, Tri Q; Van der Giezen, Dionne M; Kok, Robbert Jan; Goldschmeding, Roel; Joles, Jaap A

    2011-01-01

    Unilateral ureteric obstruction (UUO) is one of the most commonly applied rodent models to study the pathophysiology of renal fibrosis. This model reflects important aspects of inflammation and fibrosis that are prominent in human kidney diseases. In this review, we present an overview of the factors contributing to the pathophysiology of UUO, highlighting the role of oxidative stress. PMID:20804541

  4. Oxidative Stress and Neurodegenerative Disorders

    PubMed Central

    Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.

    2013-01-01

    Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827

  5. Space flight and oxidative stress

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  6. Haemophilus influenzae and oxidative stress

    PubMed Central

    Harrison, Alistair; Bakaletz, Lauren O.; Munson, Robert S.

    2012-01-01

    Haemophilus influenzae is a commensal of the human upper respiratory tract. H. influenzae can, however, move out of its commensal niche and cause multiple respiratory tract diseases. Such diseases include otitis media in young children, as well as exacerbations of chronic obstructive pulmonary disease (COPD), sinusitis, conjunctivitis, and bronchitis. During the course of colonization and infection, H. influenzae must withstand oxidative stress generated by multiple reactive oxygen species produced endogenously, by other co-pathogens and by host cells. H. influenzae has, therefore, evolved multiple mechanisms that protect the cell against oxygen-generated stresses. In this review, we will describe these systems relative to the well-described systems in Escherichia coli. Moreover, we will compare how H. influenzae combats the effect of oxidative stress as a necessary phenotype for its roles as both a successful commensal and pathogen. PMID:22919631

  7. Estradiol and neurodegenerative oxidative stress.

    PubMed

    Nilsen, Jon

    2008-10-01

    Estradiol is a potent preventative against neurodegenerative disease, in part, by activating antioxidant defense systems scavenging reactive oxygen species, limiting mitochondrial protein damage, improving electron transport chain activity and reducing mitochondrial DNA damage. Estradiol also increases the activity of complex IV of the electron transport chain, improving mitochondrial respiration and ATP production under normal and stressful conditions. However, the high oxidative cellular environment present during neurodegeneration makes estradiol a poor agent for treatment of existing disease. Oxidative stress stimulates the production of the hydroperoxide-dependent hydroxylation of estradiol to the catecholestrogen metabolites, which can undergo reactive oxygen species producing redox cycling, setting up a self-generating toxic cascade offsetting any antioxidant/antiapoptotic effects generated by the parent estradiol. Additional disease-induced factors can further perpetuate this cycle. For example dysregulation of the catecholamine system could alter catechol-O-methyltransferase-catalyzed methylation, preventing removal of redox cycling catecholestrogens from the system enhancing pro-oxidant effects of estradiol.

  8. The 894G>T endothelial nitric oxide synthase genetic polymorphism affects hemodynamic responses to mental stress performed before and after exercise.

    PubMed

    Rocha, Natália Galito; Neves, Fabricia Junqueira; Silva, Bruno Moreira; Sales, Allan Robson Kluser; Nóbrega, Antonio Claudio

    2012-03-01

    Nitric oxide is the primary mediator of vasodilation during mental stress. Since genetic polymorphisms in the nitric oxide synthase (eNOS) gene seem to impair the production of NO, this study aimed to evaluate the effect of an exercise bout on hemodynamic responses to mental stress in subjects with the 894G>T polymorphism of eNOS. Subjects without (wild-type group; n = 16) or with (polymorphic-type group; n = 19) the 894G>T polymorphism underwent a mental stress challenge before and after a maximal cardiopulmonary exercise test. Blood pressure was measured by auscultation and forearm blood flow by venous occlusion plethysmography. The groups were similar regarding anthropometric, metabolic, resting blood pressure and exercise variables. Before exercise, systolic blood pressure response during mental stress was higher in the polymorphic-type group (∆wild-type: 8.0 ± 2.0% vs. ∆polymorphic-type: 12.5 ± 1.8%, P = 0.01), while the increase in forearm vascular conductance was similar between the groups (∆wild-type 90.8 ± 26.4% vs. ∆polymorphic-type: 86.3 ± 24.1%, P = 0.44). After exercise, the systolic blood pressure at baseline and during mental stress was lower than before exercise in the whole group (P < 0.05), but the pressure response during mental stress was still higher in the polymorphic-type group (∆wild-type: 5.8 ± 1.5% vs. ∆polymorphic-type: 10.2 ± 1.4%, P = 0.01). The increase in forearm vascular conductance was inhibited only in the polymorphic-type group (∆before exercise 86.3 ± 24.1% vs. ∆after exercise: 41.5 ± 12.6%, P = 0.04). In conclusion, these results suggest the 894G>T eNOS polymorphism is associated with altered hemodynamic responses to mental stress both before and after a single bout of dynamic exercise with potential clinical implications.

  9. Correlates of oxidative stress in wild kestrel nestlings (Falco tinnunculus).

    PubMed

    Costantini, David; Casagrande, Stefania; De Filippis, Stefania; Brambilla, Gianfranco; Fanfani, Alberto; Tagliavini, James; Dell'Omo, Giacomo

    2006-05-01

    The fitness of an organism can be affected by conditions experienced during early development. In light of the impact that oxidative stress can have on the health and ageing of a bird species, this study evaluated factors accounting for the variation in oxidative stress levels in nestlings of the Eurasian kestrel (Falco tinnunculus) by measuring the serum concentration of reactive oxygen metabolites and the serum antioxidant barrier against hypochlorite-induced oxidation. The ratio between these two variables was considered as an index of oxidative stress, with higher values meaning higher oxidative damage. Six-chick broods showed the highest level of oxidative stress, while no effect of sex was found. Age showed an inverse relationship with the oxidants and the levels of oxidative stress, with younger birds having higher levels. Hatching date, body condition, body mass and carotenoid concentration did not show any relationship with oxidants, antioxidants or degree of oxidative stress. These findings suggest that intrabrood sibling competition could play a role in determining oxidative stress, and that in carnivorous birds other antioxidant molecules could be more important than carotenoids to reduce oxidative stress.

  10. Exposure to mobile phone electromagnetic field radiation, ringtone and vibration affects anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats.

    PubMed

    Shehu, Abubakar; Mohammed, Aliyu; Magaji, Rabiu Abdussalam; Muhammad, Mustapha Shehu

    2016-04-01

    Research on the effects of Mobile phone radio frequency emissions on biological systems has been focused on noise and vibrations as auditory stressors. This study investigated the potential effects of exposure to mobile phone electromagnetic field radiation, ringtone and vibration on anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats. Twenty five male wistar rats were randomly divided into five groups of 5 animals each: group I: exposed to mobile phone in switched off mode (control), group II: exposed to mobile phone in silent mode, group III: exposed to mobile phone in vibration mode, group IV: exposed to mobile phone in ringtone mode, group V: exposed to mobile phone in vibration and ringtone mode. The animals in group II to V were exposed to 10 min call (30 missed calls for 20 s each) per day for 4 weeks. Neurobehavioural studies for assessing anxiety were carried out 24 h after the last exposure and the animals were sacrificed. Brain samples were collected for biochemical evaluation immediately. Results obtained showed a significant decrease (P < 0.05) in open arm duration in all the experimental groups when compared to the control. A significant decrease (P < 0.05) was also observed in catalase activity in group IV and V when compared to the control. In conclusion, the results of the present study indicates that 4 weeks exposure to electromagnetic radiation, vibration, ringtone or both produced a significant effect on anxiety-like behavior and oxidative stress in young wistar rats.

  11. Disruption of the Candida albicans ATC1 gene encoding a cell-linked acid trehalase decreases hypha formation and infectivity without affecting resistance to oxidative stress.

    PubMed

    Pedreño, Yolanda; González-Párraga, Pilar; Martínez-Esparza, María; Sentandreu, Rafael; Valentín, Eulogio; Argüelles, Juan-Carlos

    2007-05-01

    In Candida albicans, the ATC1 gene, encoding a cell wall-associated acid trehalase, has been considered as a potentially interesting target in the search for new antifungal compounds. A phenotypic characterization of the double disruptant atc1Delta/atc1Delta mutant showed that it was unable to grow on exogenous trehalose as sole carbon source. Unlike actively growing cells from the parental strain (CAI4), the atc1Delta null mutant displayed higher resistance to environmental insults, such as heat shock (42 degrees C) or saline exposure (0.5 M NaCl), and to both mild and severe oxidative stress (5 and 50 mM H(2)O(2)), which are relevant during in vivo infections. Parallel measurements of intracellular trehalose and trehalose-metabolizing enzymes revealed that significant amounts of the disaccharide were stored in response to thermal and oxidative challenge in the two cell types. The antioxidant activities of catalase and glutathione reductase were triggered by moderate oxidative exposure (5 mM H(2)O(2)), whereas superoxide dismutase was inhibited dramatically by H(2)O(2), where a more marked decrease was observed in atc1Delta cells. In turn, the atc1Delta mutant exhibited a decreased capacity of hypha and pseudohypha formation tested in different media. Finally, the homozygous null mutant in a mouse model of systemic candidiasis displayed strongly reduced pathogenicity compared with parental or heterozygous strains. These results suggest not only a novel role for the ATC1 gene in dimorphism and infectivity, but also that an interconnection between stress resistance, dimorphic conversion and virulence in C. albicans may be reconsidered. They also support the hypothesis that Atc1p is not involved in the physiological hydrolysis of endogenous trehalose.

  12. Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host.

    PubMed

    Boccara, Martine; Mills, Catherine E; Zeier, Jürgen; Anzi, Chiara; Lamb, Chris; Poole, Robert K; Delledonne, Massimo

    2005-07-01

    Host cells respond to infection by generating nitric oxide (NO) as a cytotoxic weapon to facilitate killing of invading microbes. Bacterial flavohaemoglobins are well-known scavengers of NO and play a crucial role in protecting animal pathogens from nitrosative stress during infection. Erwinia chrysanthemi, which causes macerating diseases in a wide variety of plants, possesses a flavohaemoglobin (HmpX) whose function in plant pathogens has remained unclear. Here we show that HmpX consumes NO and prevents inhibition by NO of cell respiration, indicating a role in protection from nitrosative stress. Furthermore, infection of Saintpaulia ionantha plants with an HmpX-deficient mutant of E. chrysanthemi revealed that the lack of NO scavenging activity causes the accumulation of unusually high levels of NO in host tissue and triggers hypersensitive cell death. Introduction of the wild-type hmpX gene in an incompatible strain of Pseudomonas syringae had a dramatic effect on the hypersensitive cell death in soya bean cell suspensions, and markedly reduced the development of macroscopic symptoms in Arabidopsis thaliana plants. These observations indicate that HmpX not only protects against nitrosative stress but also attenuates host hypersensitive reaction during infection by intercepting NO produced by the plant for the execution of the hypersensitive cell death programme.

  13. Inflammatory and oxidative stress in rotavirus infection

    PubMed Central

    Guerrero, Carlos A; Acosta, Orlando

    2016-01-01

    Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines. PMID:27175349

  14. Neurodegenerative diseases and oxidative stress.

    PubMed

    Emerit, J; Edeas, M; Bricaire, F

    2004-01-01

    Oxidative stress is now recognized as accountable for redox regulation involving reactive oxygen species (ROS) and reactive nitrogen species (RNS). Its role is pivotal for the modulation of critical cellular functions, notably for neurons astrocytes and microglia, such as apoptosis program activation, and ion transport, calcium mobilization, involved in excitotoxicity. Excitotoxicity and apoptosis are the two main causes of neuronal death. The role of mitochondria in apoptosis is crucial. Multiple apoptotic pathways emanate from the mitochondria. The respiratory chain of mitochondria that by oxidative phosphorylation, is the fount of cellular energy, i.e. ATP synthesis, is responsible for most of ROS and notably the first produced, superoxide anion (O(2)(;-)). Mitochondrial dysfunction, i.e. cell energy impairment, apoptosis and overproduction of ROS, is a final common pathogenic mechanism in aging and in neurodegenerative disease such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Nitric oxide (NO(;)), an RNS, which can be produced by three isoforms of NO-synthase in brain, plays a prominent role. The research on the genetics of inherited forms notably ALS, AD, PD, has improved our understanding of the pathobiology of the sporadic forms of neurodegenerative diseases or of aging of the brain. ROS and RNS, i.e. oxidative stress, are not the origin of neuronal death. The cascade of events that leads to neurons, death is complex. In addition to mitochondrial dysfunction (apoptosis), excitotoxicity, oxidative stress (inflammation), the mechanisms from gene to disease involve also protein misfolding leading to aggregates and proteasome dysfunction on ubiquinited material.

  15. Oxidative stress and glycemic regulation.

    PubMed

    Ceriello, A

    2000-02-01

    Oxidative stress is an acknowledged pathogenetic mechanism in diabetic complications. Hyperglycemia is a widely known cause of enhanced free radical concentration, whereas oxidative stress involvement in glycemic regulation is still debated. Glucose transport is a cascade of events starting from the interaction of insulin with its own receptor at the plasma membrane and ending with intracellular glucose metabolism. In this complex series of events, each step plays an important role and can be inhibited by a negative effect of oxidative stress. Several studies show that an acute increase in the blood glucose level may impair the physiological homeostasis of many systems in living organisms. The mechanisms through which acute hyperglycemia exerts these effects may be identified in the production of free radicals. It has been suggested that insulin resistance may be accompanied by intracellular production of free radicals. In adipocytes cultured in vitro, insulin increases the production of hydrogen peroxide, which has been shown to mimic the action of insulin. These data allow us to hypothesize that a vicious circle between hyperinsulinemia and free radicals could be operating: insulin resistance might cause elevated plasma free radical concentrations, which, in turn, might be responsible for a deterioration of insulin action, with hyperglycemia being a contributory factor. Data supporting this hypothesis are available. Vitamin E improves insulin action in healthy, elderly, and non-insulin-dependent diabetic subjects. Similar results can be obtained by vitamin C administration.

  16. [Oxidative stress and endothelial dysfunction].

    PubMed

    Jarasūniene, Dalia; Simaitis, Audrius

    2003-01-01

    Growing numbers of morbidity and mortality due to the Coronary Heart Disease (CHD) is recognized as the more increasing challenge in the world. The initial stage of atherosclerosis, early diagnosis and treatment of CHD are the main objectives of current research. Endothelium dysfunction, the earliest expression of the atherosclerotic process is associated with subtle biochemical changes that gradually are transformed into the structural changes of the arterial wall. The theory of free radicals is the most common among the atherosclerosis explanations. Overproduction or impaired neutralization of the free radicals accounts for oxidative stress that is causing substantial damage to the low density lipoproteins, nitric oxyde (NO), endothelium cells, tissue cells and finally leads to the endothelium dysfuction. Pathophysiology of oxidative stress and its role in the endothelium dysfunction are discussed in this paper. Positive role of various medications (statins, angiotensin converting enzym inhibitors, aldosteron antagonists, estrogens, antioxidants, b-blockers with vasodilatative properties) to the oxidative stress and consequently to the endothelium dysfuction are discussed as well.

  17. [Oxidative stress and preeclampsia: A review].

    PubMed

    Guerby, P; Vidal, F; Garoby-Salom, S; Vayssiere, C; Salvayre, R; Parant, O; Negre-Salvayre, A

    2015-11-01

    Preeclampsia is a leading cause of pregnancy complications and affects 3-7% of pregnant women. Pathophysiology of preeclampsia is still unclear. According to the two-stage model of preeclampsia, the abnormal and hypoperfused placenta (stage 1) releases factors to the bloodstream, which are responsible for the maternal symptoms (stage 2), characterised by a systemic inflammation and endothelial dysfunction. Oxidative stress plays an important role in the pathophysiology of the preeclampsia and could be the common denominator between the two. This review summarizes the current knowledge of a new potential etiology of the disease, with a special focus on oxidative stress. We also review the different factors that have been proposed to cause endothelial cell dysfunction in preeclampsia, and trials investigating the role of antioxidant supplementation in preeclampsia.

  18. p53, Oxidative Stress, and Aging

    PubMed Central

    Liu, Dongping

    2011-01-01

    Abstract Mammalian aging is associated with elevated levels of oxidative damage of DNA, proteins, and lipids as a result of unbalanced prooxidant and antioxidant activities. Accumulating evidence indicates that oxidative stress is a major physiological inducer of aging. p53, the guardian of the genome that is important for cellular responses to oxidative stresses, might be a key coordinator of oxidative stress and aging. In response to low levels of oxidative stresses, p53 exhibits antioxidant activities to eliminate oxidative stress and ensure cell survival; in response to high levels of oxidative stresses, p53 exhibits prooxidative activities that further increase the levels of stresses, leading to cell death. p53 accomplishes these context-dependent roles by regulating the expression of a panel of genes involved in cellular responses to oxidative stresses and by modulating other pathways important for oxidative stress responses. The mechanism that switches p53 function from antioxidant to prooxidant remains unclear, but could account for the findings that increased p53 activities have been linked to both accelerated aging and increased life span in mice. Therefore, a balance of p53 antioxidant and prooxidant activities in response to oxidative stresses could be important for longevity by suppressing the accumulation of oxidative stresses and DNA damage. Antioxid. Redox Signal. 15, 1669–1678. PMID:21050134

  19. Cyclophilin D Is Involved in the Regulation of Autophagy and Affects the Lifespan of P. anserina in Response to Mitochondrial Oxidative Stress

    PubMed Central

    Kramer, Piet; Jung, Alexander T.; Hamann, Andrea; Osiewacz, Heinz D.

    2016-01-01

    The mitochondrial permeability transition pore plays a key role in programmed cell death and the induction of autophagy. Opening of the pore is regulated by the mitochondrial peptidyl prolyl-cis, trans-isomerase cyclophilin D (CYPD). Previously it was shown in the aging model organism Podospora anserina that PaCYPD abundance increases during aging and that PaCypD overexpressors are characterized by accelerated aging. Here, we describe a role of PaCYPD in the regulation of autophagy. We found that the accelerated aging phenotype observed in a strain overexpressing PaCypD is not metacaspase-dependent but is accompanied by an increase of general autophagy and mitophagy, the selective autophagic degradation of mitochondria. It thus is linked to what has been defined as “autophagic cell death” or “type II” programmed cell death. Moreover, we found that the previously demonstrated age-related induction of autophagy in wild-type aging depends on the presence of PaCYPD. Deletion of PaCypD leads to a decrease in autophagy in later stages of age and under paraquat-mediated oxidative stress. Finally, we report that PaCYPD is also required for mitohormesis, the beneficial effect of mild mitochondrial stress. Thus, PaCYPD plays a key role in the context-dependent regulation of pathways leading to pro-survival and pro-death effects of autophagy. PMID:27683587

  20. Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in Cmah-null mice affect hearing loss

    PubMed Central

    Choi, Yun-Jung; Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2015-01-01

    CMP-Neu5Ac hydroxylase (Cmah) disruption caused several abnormalities and diseases including hearing loss in old age. However, underling molecular mechanisms that give rise to age-related hearing loss (AHL) in Cmah-null mouse are still obscure. In this study, Cmah-null mice showed age-related decline of hearing associated with loss of sensory hair cells, spiral ganglion neurons, and/or stria vascularis degeneration in the cochlea. To identify differential gene expression profiles and pathway associated with AHL, we performed microarray analysis using Illumina MouseRef-8 v2 Expression BeadChip and pathway-focused PCR array in the cochlear tissues of Cmah-null mouse. Pathway and molecular mechanism analysis using differentially expressed genes provided evidences that altered biological pathway due to oxidative damage by low expressed antioxidants and dysregulated reactive oxygen species (ROS) metabolism. Especially, low sirtuin 3 (Sirt3) gene expressions in Cmah-null mice decreased both of downstream regulator (Foxo1 and MnSod) and regulatory transcription factor (Hif1α and Foxo3a) gene expression. Taken together, we suggest that down-regulation of Sirt3 expression leads to oxidative stress and mitochondrial dysfunction by regulation of ROS and that it could alter various signaling pathways in Cmah-null mice with AHL. PMID:26319214

  1. Tyrosine phosphorylation of clathrin heavy chain under oxidative stress.

    PubMed

    Ihara, Yoshito; Yasuoka, Chie; Kageyama, Kan; Wada, Yoshinao; Kondo, Takahito

    2002-09-20

    In mouse pancreatic insulin-producing betaTC cells, oxidative stress due to H(2)O(2) causes tyrosine phosphorylation in various proteins. To identify proteins bearing phosphotyrosine under stress, the proteins were affinity purified using an anti-phosphotyrosine antibody-conjugated agarose column. A protein of 180kDa was identified as clathrin heavy chain (CHC) by electrophoresis and mass spectrometry. Immunoprecipitated CHC showed tyrosine phosphorylation upon H(2)O(2) treatment and the phosphorylation was suppressed by the Src kinase inhibitor, PP2. The phosphorylation status of CHC affected the intracellular localization of CHC and the clathrin-dependent endocytosis of transferrin under oxidative stress. In conclusion, CHC is a protein that is phosphorylated at tyrosine by H(2)O(2) and this phosphorylation status is implicated in the intracellular localization and functions of CHC under oxidative stress. The present study demonstrates that oxidative stress affects intracellular vesicular trafficking via the alteration of clathrin-dependent vesicular trafficking.

  2. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    PubMed Central

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  3. Oxidative stress in androgenetic alopecia

    PubMed Central

    Prie, BE; Iosif, L; Tivig, I; Stoian, I; Giurcaneanu, C

    2016-01-01

    Rationale:Androgenetic alopecia is not considered a life threatening disease but can have serious impacts on the patient’s psychosocial life. Genetic, hormonal, and environmental factors are considered responsible for the presence of androgenetic alopecia. Recent literature reports have proved the presence of inflammation and also of oxidative stress at the level of dermal papilla cells of patients with androgenetic alopecia Objective:We have considered of interest to measure the oxidative stress parameters in the blood of patients with androgenetic alopecia Methods and results:27 patients with androgenetic alopecia and 25 age-matched controls were enrolled in the study. Trolox Equivalent Antioxidant Capacity (TEAC), malondialdehyde (MDA) and total thiols levels were measured on plasma samples. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activities, and also non protein thiols levels together with TEAC activity were determined on erythrocytes samples No statistically significant changes were observed for TEAC erythrocytes, non-protein thiols, GPx and CAT activities. Significantly decreased (p<0.01) SOD activity was found in patients with androgenetic alopecia. For plasma samples decreased TEAC activity (p<0.001), increased MDA levels (p<0.001) and no change in total thiols concentration were found in patients when compared with the controls. Discussions:Decreased total antioxidant activity and increased MDA levels found in plasma samples of patients with androgenetic alopecia are indicators of oxidative stress presence in these patients. Significantly decreased SOD activity but no change in catalase, glutathione peroxidase, non protein thiols level and total antioxidant activity in erythrocytes are elements which suggest the presence of a compensatory mechanism for SOD dysfunction in red blood cells of patients with androgenetic alopecia. Abbreviations: AAG = androgenetic alopecia, MDA = malondialdehyde, SOD = superoxide dismutase

  4. Oxidative stress in androgenetic alopecia.

    PubMed

    Prie, B E; Iosif, L; Tivig, I; Stoian, I; Giurcaneanu, C

    2016-01-01

    Rationale:Androgenetic alopecia is not considered a life threatening disease but can have serious impacts on the patient's psychosocial life. Genetic, hormonal, and environmental factors are considered responsible for the presence of androgenetic alopecia. Recent literature reports have proved the presence of inflammation and also of oxidative stress at the level of dermal papilla cells of patients with androgenetic alopecia Objective:We have considered of interest to measure the oxidative stress parameters in the blood of patients with androgenetic alopecia Methods and results:27 patients with androgenetic alopecia and 25 age-matched controls were enrolled in the study. Trolox Equivalent Antioxidant Capacity (TEAC), malondialdehyde (MDA) and total thiols levels were measured on plasma samples. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activities, and also non protein thiols levels together with TEAC activity were determined on erythrocytes samples No statistically significant changes were observed for TEAC erythrocytes, non-protein thiols, GPx and CAT activities. Significantly decreased (p<0.01) SOD activity was found in patients with androgenetic alopecia. For plasma samples decreased TEAC activity (p<0.001), increased MDA levels (p<0.001) and no change in total thiols concentration were found in patients when compared with the controls. Discussions:Decreased total antioxidant activity and increased MDA levels found in plasma samples of patients with androgenetic alopecia are indicators of oxidative stress presence in these patients. Significantly decreased SOD activity but no change in catalase, glutathione peroxidase, non protein thiols level and total antioxidant activity in erythrocytes are elements which suggest the presence of a compensatory mechanism for SOD dysfunction in red blood cells of patients with androgenetic alopecia.

  5. Oxidative Stress in Inherited Mitochondrial Diseases

    PubMed Central

    Hayashi, Genki; Cortopassi, Gino

    2015-01-01

    Mitochondria are a source of reactive oxygen species (ROS). Mitochondrial diseases are the result of inherited defects in mitochondrially-expressed genes. One potential pathomechanism for mitochondrial disease is oxidative stress. Oxidative stress can occur as the result of increased ROS production, or decreased ROS protection. The role of oxidative stresses in the five most common inherited mitochondrial diseases; Friedreich's ataxia (FA), LHON, MELAS, MERRF and Leigh Syndrome (LS) is discussed. Published reports for oxidative stress involvement in pathomechanism in these five mitochondrial diseases are reviewed. The strongest for oxidative stress pathomechanism among the five diseases was in Friedreich's ataxia. In addition, a meta-analysis was carried out to provide an unbiased evaluation of the role of oxidative stress in the five diseases, by searching for oxidative stress citation count frequency within each disease. Of the five most common mitochondrial diseases, the strongest support for oxidative stress is in Friedreich's ataxia (6.42%), followed by LHON (2.45%), MELAS (2.18%), MERRF (1.71%), and LS (1.03%). The increased frequency of oxidative stress citations was significant relative to the mean of the total pool of five diseases (p<0.01) and the mean of the four non-Friedreich's diseases (p<0.0001). Thus there is support for oxidative stress in all five most common mitochondrial diseases, but the strongest, significant support is for Friedreich's ataxia. PMID:26073122

  6. Oxidative Stress in Oral Diseases

    PubMed Central

    Kesarwala, Aparna H.; Krishna, Murali C.; Mitchell, James B.

    2014-01-01

    Oxidative species, including reactive oxygen species (ROS), are components of normal cellular metabolism and are required for intracellular processes as varied as proliferation, signal transduction, and apoptosis. In the situation of chronic oxidative stress, however, ROS contribute to various pathophysiologies and are involved in multiple stages of carcinogenesis. In head and neck cancers specifically, many common risk factors contribute to carcinogenesis via ROS-based mechanisms, including tobacco, areca quid, alcohol, and viruses. Given their widespread influence on the process of carcinogenesis, ROS and their related pathways are attractive targets for intervention. The effects of radiation therapy, a central component of treatment for nearly all head and neck cancers, can also be altered via interfering with oxidative pathways. These pathways are also relevant to the development of many benign oral diseases. In this review, we outline how ROS contribute to pathophysiology with a focus toward head and neck cancers and benign oral diseases, describing potential targets and pathways for intervention that exploit the role of oxidative species in these pathologic processes. PMID:25417961

  7. Oxidative Stress and HPV Carcinogenesis

    PubMed Central

    De Marco, Federico

    2013-01-01

    Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV), represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare) neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS) is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I) The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II) OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewed. The anti-apoptotic and pro-angiogenetic role of NO (nitric oxide) and iNOS (inducible nitric oxide synthase) will be discussed together with the OS/HPV cooperation in inducing cancer metabolism adaptation. Unexplored/underexplored aspects of the OS interplay with the HPV-driven carcinogenesis will be

  8. Oxidative Stress in Diabetic Nephropathy

    PubMed Central

    Kashihara, N.; Haruna, Y.; Kondeti, V.K.; Kanwar, Y.S.

    2013-01-01

    Diabetic nephropathy is a leading cause of end-stage renal failure worldwide. Its morphologic characteristics include glomerular hypertrophy, basement membrane thickening, mesangial expansion, tubular atrophy, interstitial fibrosis and arteriolar thickening. All of these are part and parcel of microvascular complications of diabetes. A large body of evidence indicates that oxidative stress is the common denominator link for the major pathways involved in the development and progression of diabetic micro- as well as macrovascular complications of diabetes. There are a number of macromolecules that have been implicated for increased generation of reactive oxygen species (ROS), such as, NAD(P)H oxidase, advanced glycation end products (AGE), defects in polyol pathway, uncoupled nitric oxide synthase (NOS) and mitochondrial respiratory chain via oxidative phosphorylation. Excess amounts of ROS modulate activation of protein kinase C, mitogen-activated protein kinases, and various cytokines and transcription factors which eventually cause increased expression of extracellular matrix (ECM) genes with progression to fibrosis and end stage renal disease. Activation of renin-angiotensin system (RAS) further worsens the renal injury induced by ROS in diabetic nephropathy. Buffering the generation of ROS may sound a promising therapeutic to ameliorate renal damage from diabetic nephropathy, however, various studies have demonstrated minimal reno-protection by these agents. Interruption in the RAS has yielded much better results in terms of reno-protection and progression of diabetic nephropathy. In this review various aspects of oxidative stress coupled with the damage induced by RAS are discussed with the anticipation to yield an impetus for designing new generation of specific antioxidants that are potentially more effective to reduce reno-vascular complications of diabetes. PMID:20939814

  9. Stress modulation of cognitive and affective processes.

    PubMed

    Campeau, Serge; Liberzon, Israel; Morilak, David; Ressler, Kerry

    2011-09-01

    This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects.

  10. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    EPA Science Inventory

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  11. Etiologies of sperm oxidative stress

    PubMed Central

    Sabeti, Parvin; Pourmasumi, Soheila; Rahiminia, Tahereh; Akyash, Fatemeh; Talebi, Ali Reza

    2016-01-01

    Sperm is particularly susceptible to reactive oxygen species (ROS) during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN) leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions. PMID:27351024

  12. Inflammation, oxidative stress, and obesity.

    PubMed

    Fernández-Sánchez, Alba; Madrigal-Santillán, Eduardo; Bautista, Mirandeli; Esquivel-Soto, Jaime; Morales-González, Angel; Esquivel-Chirino, Cesar; Durante-Montiel, Irene; Sánchez-Rivera, Graciela; Valadez-Vega, Carmen; Morales-González, José A

    2011-01-01

    Obesity is a chronic disease of multifactorial origin and can be defined as an increase in the accumulation of body fat. Adipose tissue is not only a triglyceride storage organ, but studies have shown the role of white adipose tissue as a producer of certain bioactive substances called adipokines. Among adipokines, we find some inflammatory functions, such as Interleukin-6 (IL-6); other adipokines entail the functions of regulating food intake, therefore exerting a direct effect on weight control. This is the case of leptin, which acts on the limbic system by stimulating dopamine uptake, creating a feeling of fullness. However, these adipokines induce the production of reactive oxygen species (ROS), generating a process known as oxidative stress (OS). Because adipose tissue is the organ that secretes adipokines and these in turn generate ROS, adipose tissue is considered an independent factor for the generation of systemic OS. There are several mechanisms by which obesity produces OS. The first of these is the mitochondrial and peroxisomal oxidation of fatty acids, which can produce ROS in oxidation reactions, while another mechanism is over-consumption of oxygen, which generates free radicals in the mitochondrial respiratory chain that is found coupled with oxidative phosphorylation in mitochondria. Lipid-rich diets are also capable of generating ROS because they can alter oxygen metabolism. Upon the increase of adipose tissue, the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), was found to be significantly diminished. Finally, high ROS production and the decrease in antioxidant capacity leads to various abnormalities, among which we find endothelial dysfunction, which is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide (NO), and an increase in endothelium-derived contractile factors, favoring atherosclerotic disease.

  13. Inflammation, Oxidative Stress, and Obesity

    PubMed Central

    Fernández-Sánchez, Alba; Madrigal-Santillán, Eduardo; Bautista, Mirandeli; Esquivel-Soto, Jaime; Morales-González, Ángel; Esquivel-Chirino, Cesar; Durante-Montiel, Irene; Sánchez-Rivera, Graciela; Valadez-Vega, Carmen; Morales-González, José A.

    2011-01-01

    Obesity is a chronic disease of multifactorial origin and can be defined as an increase in the accumulation of body fat. Adipose tissue is not only a triglyceride storage organ, but studies have shown the role of white adipose tissue as a producer of certain bioactive substances called adipokines. Among adipokines, we find some inflammatory functions, such as Interleukin-6 (IL-6); other adipokines entail the functions of regulating food intake, therefore exerting a direct effect on weight control. This is the case of leptin, which acts on the limbic system by stimulating dopamine uptake, creating a feeling of fullness. However, these adipokines induce the production of reactive oxygen species (ROS), generating a process known as oxidative stress (OS). Because adipose tissue is the organ that secretes adipokines and these in turn generate ROS, adipose tissue is considered an independent factor for the generation of systemic OS. There are several mechanisms by which obesity produces OS. The first of these is the mitochondrial and peroxisomal oxidation of fatty acids, which can produce ROS in oxidation reactions, while another mechanism is over-consumption of oxygen, which generates free radicals in the mitochondrial respiratory chain that is found coupled with oxidative phosphorylation in mitochondria. Lipid-rich diets are also capable of generating ROS because they can alter oxygen metabolism. Upon the increase of adipose tissue, the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), was found to be significantly diminished. Finally, high ROS production and the decrease in antioxidant capacity leads to various abnormalities, among which we find endothelial dysfunction, which is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide (NO), and an increase in endothelium-derived contractile factors, favoring atherosclerotic disease. PMID:21686173

  14. Impact of oxidative stress in fetal programming.

    PubMed

    Thompson, Loren P; Al-Hasan, Yazan

    2012-01-01

    Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring.

  15. Applied Stress Affecting the Environmentally Assisted Cracking

    NASA Astrophysics Data System (ADS)

    Vasudevan, A. K.

    2013-03-01

    Stress corrosion cracking (SCC) is affected by the mode of applied stress, i.e., tension, compression, or torsion. The cracking is measured in terms of initiation time to nucleate a crack or time to failure. In a simple uniaxial loading under tension or compression, it is observed that the initiation time can vary in orders of magnitude depending on the alloy and the environment. Fracture can be intergranular or transgranular or mixed mode. Factors that affect SCC are solubility of the metal into surrounding chemical solution, and diffusion rate (like hydrogen into a tensile region) of an aggressive element into the metal and liquid metallic elements in the grain boundaries. Strain hardening exponent that affects the local internal stresses and their gradients can affect the diffusion kinetics. We examine two environments (Ga and 3.5 pct NaCl) for the same alloy 7075-T651, under constant uniaxial tension and compression load. These two cases provide us application to two different governing mechanisms namely liquid metal embrittlement (7075-Ga) and hydrogen-assisted cracking (7075-NaCl). We note that, in spite of the differences in their mechanisms, both systems show similar behavior in the applied K vs crack initiation time plots. One common theme among them is the transport mechanism of a solute element to a tensile-stress region to initiate fracture.

  16. Molecular mechanisms of ROS production and oxidative stress in diabetes.

    PubMed

    Newsholme, Philip; Cruzat, Vinicius Fernandes; Keane, Kevin Noel; Carlessi, Rodrigo; de Bittencourt, Paulo Ivo Homem

    2016-12-15

    Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.

  17. Oxidative stress in kidney transplantation: causes, consequences, and potential treatment.

    PubMed

    Nafar, Mohsen; Sahraei, Zahra; Salamzadeh, Jamshid; Samavat, Shiva; Vaziri, Nosartolah D

    2011-11-01

    Oxidative stress is a major mediator of adverse outcomes throughout the course of transplantation. Transplanted kidneys are prone to oxidative stress-mediated injury by pre-transplant and post-transplant conditions that cause reperfusion injury or imbalance between oxidants and antioxidants. Besides adversely affecting the allograft, oxidative stress and its constant companion, inflammation, cause cardiovascular disease, cancer, metabolic syndrome, and other disorders in transplant recipients. Presence and severity of oxidative stress can be assessed by various biomarkers produced from interaction of reactive oxygen species with lipids, proteins, nucleic acids, nitric oxide, glutathione, etc. In addition, expression and activities of redox-sensitive molecules such as antioxidant enzymes can serve as biomarkers of oxidative stress. Via activation of nuclear factor kappa B, oxidative stress promotes inflammation which, in turn, amplifies oxidative stress through reactive oxygen species generation by activated immune cells. Therefore, inflammation markers are indirect indicators of oxidative stress. Many treatment options have been evaluated in studies conducted at different stages of transplantation in humans and animals. These studies have provided useful strategies for use in donors or in organ preservation solutions. However, strategies tested for use in post-transplant phase have been largely inconclusive and controversial. A number of therapeutic options have been exclusively examined in animal models and only a few have been tested in humans. Most of the clinical investigations have been of short duration and have provided no insight into their impact on the long-term survival of transplant patients. Effective treatment of oxidative stress in transplant population remains elusive and awaits future explorations.

  18. 2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress.

    PubMed

    Shahin, S; Mishra, V; Singh, S P; Chaturvedi, C M

    2014-05-01

    Electromagnetic radiations are reported to produce long-term and short-term biological effects, which are of great concern to human health due to increasing use of devices emitting EMR especially microwave (MW) radiation in our daily life. In view of the unavoidable use of MW emitting devices (microwaves oven, mobile phones, Wi-Fi, etc.) and their harmful effects on biological system, it was thought worthwhile to investigate the long-term effects of low-level MW irradiation on the reproductive function of male Swiss strain mice and its mechanism of action. Twelve-week-old mice were exposed to non-thermal low-level 2.45-GHz MW radiation (CW for 2 h/day for 30 days, power density = 0.029812 mW/cm(2) and SAR = 0.018 W/Kg). Sperm count and sperm viability test were done as well as vital organs were processed to study different stress parameters. Plasma was used for testosterone and testis for 3β HSD assay. Immunohistochemistry of 3β HSD and nitric oxide synthase (i-NOS) was also performed in testis. We observed that MW irradiation induced a significant decrease in sperm count and sperm viability along with the decrease in seminiferous tubule diameter and degeneration of seminiferous tubules. Reduction in testicular 3β HSD activity and plasma testosterone levels was also noted in the exposed group of mice. Increased expression of testicular i-NOS was observed in the MW-irradiated group of mice. Further, these adverse reproductive effects suggest that chronic exposure to nonionizing MW radiation may lead to infertility via free radical species-mediated pathway.

  19. Do the serum oxidative stress biomarkers provide a reasonable index of the general oxidative stress status?

    PubMed

    Argüelles, Sandro; García, Sonia; Maldonado, Mariam; Machado, Alberto; Ayala, Antonio

    2004-11-01

    The oxidant status of an individual is assessed by determining a group of markers in noninvasive samples. One limitation when measuring these biomarkers is that they do not give information about tissue localization of oxidative stress. The present study was undertaken to establish whether the serum oxidative stress biomarkers are indicative of oxidative stress in tissues of an individual. To accomplish this, we determined a few generic markers of oxidation in serum and tissues of six groups of rats treated experimentally, to modulate their oxidative stress status. The correlation between serum and tissue levels was calculated for each marker. Also, for each tissue, the correlation between the values of these oxidative stress biomarkers was analysed. Our results show that only lipid peroxides in serum could be useful to predict the oxidative stress in tissues. No correlation was found between any of the oxidative stress markers in serum.

  20. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    PubMed Central

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  1. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy.

    PubMed

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen; Chen, Gang

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches.

  2. Oxidative Stress and Pulmonary Fibrosis

    PubMed Central

    Cheresh, Paul; Kim, Seok-Jo; Tulasiram, Sandhya; Kamp, David W.

    2012-01-01

    Oxidative stress is implicated as an important molecular mechanism underlying fibrosis in a variety of organs, including the lungs. However, the causal role of reactive oxygen species (ROS) released from environmental exposures and inflammatory / interstitial cells in mediating fibrosis as well as how best to target an imbalance in ROS production in patients with fibrosis are not firmly established. We focus on the role of ROS in pulmonary fibrosis and, where possible, highlight overlapping molecular pathways in other organs. The key origins of oxidative stress in pulmonary fibrosis (e.g. environmental toxins, mitochondria / NADPH oxidase of inflammatory and lung target cells, and depletion of antioxidant defenses) are reviewed. The role of alveolar epithelial cell (AEC) apoptosis by mitochondria- and p53-regulated death pathways are examined. We emphasize an emerging role for the endoplasmic reticulum (ER) in pulmonary fibrosis. After briefly summarizing how ROS trigger a DNA damage response, we concentrate on recent studies implicating a role for mitochondrial DNA (mtDNA) damage and repair mechanisms focusing on 8-oxoguanine DNA glycosylase (Ogg1) as well as crosstalk between ROS production, mtDNA damage, p53, Ogg1, and mitochondrial aconitase (ACO2). Finally, the association between ROS and TGF-β1-induced fibrosis is discussed. Novel insights into the molecular basis of ROS-induced pulmonary diseases and, in particular, lung epithelial cell death may promote the development of unique therapeutic targets for managing pulmonary fibrosis as well as fibrosis in other organs and tumors, and in aging; diseases for which effective management is lacking. PMID:23219955

  3. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase

    PubMed Central

    Sanchez–Padilla, J.; Guzman, J.N.; Ilijic, E.; Kondapalli, J.; Galtieri, D.J.; Yang, B.; Schieber, S.; Oertel, W.; Wokosin, D.; Schumacker, P. T.; Surmeier, D. J.

    2014-01-01

    Summary Loss of noradrenergic locus coeruleus (LC) neurons is a prominent feature of aging–related neurodegenerative diseases, like Parkinson’s disease (PD). The basis of this vulnerability is not understood. To explore possible physiological determinants, LC neurons were studied using electrophysiological and optical approaches in ex vivo mouse brain slices. These studies revealed that autonomous activity in LC neurons was accompanied by oscillations in dendritic Ca2+ concentration attributable to opening of L–type Ca2+ channels. This oscillation elevated mitochondrial oxidant stress and was attenuated by inhibition of nitric oxide synthase. The relationship between activity and stress was malleable, as arousal and carbon dioxide, each increased the spike rate, but differentially affected mitochondrial oxidant stress. Oxidant stress also was increased in an animal model of PD. Thus, our results point to activity–dependent Ca2+ entry and a resulting mitochondrial oxidant stress as factors contributing to the vulnerability of LC neurons. PMID:24816140

  4. Oxidative Stress Adaptation with Acute, Chronic and Repeated Stress

    PubMed Central

    Pickering, Andrew M.; Vojtovich, Lesya; Tower, John; Davies, Kelvin J. A.

    2013-01-01

    Oxidative stress adaptation or hormesis is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells, and the fruit fly Drosophila melanogaster, are capable of adapting to chronic or repeated stress by up-regulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12 hours or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the level of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila, nevertheless also caused significant reductions in lifespan for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. PMID:23142766

  5. Air pollution, oxidative stress, and Alzheimer's disease.

    PubMed

    Moulton, Paula Valencia; Yang, Wei

    2012-01-01

    Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide and will continue to affect millions more with population aging on the rise. AD causality is multifactorial. Known causal factors include genetic predisposition, age, and sex. Environmental toxins such as air pollution (AP) have also been implicated in AD causation. Exposure to AP can lead to chronic oxidative stress (OS), which is involved in the pathogenesis of AD. Whereas AP plays a role in AD pathology, the epidemiological evidence for this association is limited. Given the significant prevalence of AP exposure combined with increased population aging, epidemiological evidence for this link is important to consider. In this paper, we examine the existing evidence supporting the relationship between AP, OS, and AD and provide recommendations for future research on the population level, which will provide evidence in support of public health interventions.

  6. Evaluation of Oxidative Stress in Bipolar Disorder in terms of Total Oxidant Status, Total Antioxidant Status, and Oxidative Stress Index

    PubMed Central

    CİNGİ YİRÜN, Merve; ÜNAL, Kübranur; ALTUNSOY ŞEN, Neslihan; YİRÜN, Onur; AYDEMİR, Çiğdem; GÖKA, Erol

    2016-01-01

    Introduction Bipolar disorder is one of the most debilitating psychiatric disorders characterized by disruptive episodes of mania/hypomania and depression. Considering the complex role of biological and environmental factors in the etiology of affective disorders, recent studies have focused on oxidative stress, which may damage nerve cell components and take part in pathophysiology. The aim of the present study was to contribute to the data about oxidative stress in bipolar disorder by detecting the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels of manic episode (ME) and euthymic (EU) patients and by comparing these results with those of healthy controls (HCs). Methods The study population consisted of 28 EU outpatients meeting the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for bipolar disorder I and 23 inpatients who were currently hospitalized in a psychiatry ward with the diagnosis of the bipolar disorder ME according to the DSM-5 criteria. Forty-three healthy subjects were included in the study as the control group (HC). Serum TAS, TOS, and OSI levels of all the participants were determined. Results Statistical analysis of serum TAS, TOS, and OSI levels did not show any significant differences between the ME patients, EU patients, and HCs. Comparison between the bipolar disorder patients (ME+EU) and HC also did not reveal any statistically significant difference between these two groups in terms of serum TAS, TOS, and OSI levels. Conclusion To date, studies on oxidative stress in bipolar disorder have led to controversial results. In the present study, no statistically significant difference was detected between the oxidative parameters of bipolar disorder patients and HCs. In order to comprehensively evaluate oxidative stress in bipolar disorder, further studies are needed. PMID:28373794

  7. Oxidative stress and psychological functioning among medical students

    PubMed Central

    Srivastava, Rani; Batra, Jyoti

    2014-01-01

    Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA) levels) and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression) among medical/paramedical students of 1st and 3rd year). Materials and Methods: A total of 150 students; 75 from 1st year (2010–2011) and75 from 3rd year (2009–2010); of medical and paramedical background were assessed on level of MDA (oxidative stress) and personality variables, that is, level of anxiety, stress, and depression. These psychological variables were correlated with the level of their oxidative stress. Results: Findings revealed that both groups are influenced by oxidative stress and their psychological variables are also compatible in order to confirm their vulnerabilities to stress. Conclusions: Stress in 3rd year students was significantly higher and it was noted that it adversely affects the psychological parameters. Hence, special attention on mental health aspect in these students may be given. PMID:25788802

  8. Induction of Oxidative Stress in Kidney

    PubMed Central

    Ozbek, Emin

    2012-01-01

    Oxidative stress has a critical role in the pathophysiology of several kidney diseases, and many complications of these diseases are mediated by oxidative stress, oxidative stress-related mediators, and inflammation. Several systemic diseases such as hypertension, diabetes mellitus, and hypercholesterolemia; infection; antibiotics, chemotherapeutics, and radiocontrast agents; and environmental toxins, occupational chemicals, radiation, smoking, as well as alcohol consumption induce oxidative stress in kidney. We searched the literature using PubMed, MEDLINE, and Google scholar with “oxidative stress, reactive oxygen species, oxygen free radicals, kidney, renal injury, nephropathy, nephrotoxicity, and induction”. The literature search included only articles written in English language. Letters or case reports were excluded. Scientific relevance, for clinical studies target populations, and study design, for basic science studies full coverage of main topics, are eligibility criteria for articles used in this paper. PMID:22577546

  9. Clinical Relevance of Biomarkers of Oxidative Stress

    PubMed Central

    Frijhoff, Jeroen; Winyard, Paul G.; Zarkovic, Neven; Davies, Sean S.; Stocker, Roland; Cheng, David; Knight, Annie R.; Taylor, Emma Louise; Oettrich, Jeannette; Ruskovska, Tatjana; Gasparovic, Ana Cipak; Cuadrado, Antonio; Weber, Daniela; Poulsen, Henrik Enghusen; Grune, Tilman; Schmidt, Harald H.H.W.

    2015-01-01

    Abstract Significance: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. Critical Issues: The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. Future Directions: Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 23, 1144–1170. PMID:26415143

  10. Oxidative stress in the neonate.

    PubMed

    Robles, R; Palomino, N; Robles, A

    2001-11-01

    The aim of this study is to determine the oxidative state of term and preterm neonates at the moment of birth and during the first days of life, and the influence of exposure to oxygen on the premature neonates.A total of 20 neonates were selected. Group A: 10 healthy full-term neonates, and Group B: 10 preterm neonates with no other pathology associated, requiring oxygen therapy. Venous samples were taken in cord at 3 and 72 h in Group A, and in cord at 3, 24 and 72 h and 7 days in Group B.Hydroperoxides, Q10 coenzyme (Co Q10) and alpha-tocopherol were measured within the erythrocyte membrane. Levels of hydroperoxides present in erythrocyte membrane were higher than normal both in Group A and in Group B at birth. This increase was greater in the group of premature neonates. Levels of alpha-tocopherol at birth increase significantly at 72 h in term neonates. Among the premature newborns, alpha-tocopherol levels are two to three times lower at birth and do not rise to higher levels as in the term neonate group. Fall in levels of Co Q10 in erythrocyte membranes is observed, and perhaps is due to the role of Co Q10 in maintaining the pool of reduced tocopherol. At birth, the neonate presents an increase of markers of oxidative stress and a decrease of their antioxidant defenses. This difference is greater as gestational age decreases. The application of oxygen therapy resulted in these levels which remain low throughout the study period.

  11. Oxidative Stress Related Diseases in Newborns

    PubMed Central

    Aykac, Kubra

    2016-01-01

    We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. PMID:27403229

  12. Ageing, oxidative stress, and mitochondrial uncoupling.

    PubMed

    Harper, M-E; Bevilacqua, L; Hagopian, K; Weindruch, R; Ramsey, J J

    2004-12-01

    Mitochondria are a cell's single greatest source of reactive oxygen species. Reactive oxygen species are important for many life sustaining processes of cells and tissues, but they can also induce cell damage and death. If their production and levels within cells is not effectively controlled, then the detrimental effects of oxidative stress can accumulate. Oxidative stress is widely thought to underpin many ageing processes, and the oxidative stress theory of ageing is one of the most widely acknowledged theories of ageing. As well as being the major source of reactive oxygen species, mitochondria are also a major site of oxidative damage. The purpose of this review is a concise and current review of the effects of oxidative stress and ageing on mitochondrial function. Emphasis is placed upon the roles of mitochondrial proton leak, the uncoupling proteins, and the anti-ageing effects of caloric restriction.

  13. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  14. Oxidative stress and oxidative damage in chemical carcinogenesis

    SciTech Connect

    Klaunig, James E. Wang Zemin; Pu Xinzhu; Zhou Shaoyu

    2011-07-15

    Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.

  15. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals.

    PubMed

    Akbarian, Abdollah; Michiels, Joris; Degroote, Jeroen; Majdeddin, Maryam; Golian, Abolghasem; De Smet, Stefaan

    2016-01-01

    Heat as a stressor of poultry has been studied extensively for many decades; it affects poultry production on a worldwide basis and has significant impact on well-being and production. More recently, the involvement of heat stress in inducing oxidative stress has received much interest. Oxidative stress is defined as the presence of reactive species in excess of the available antioxidant capacity of animal cells. Reactive species can modify several biologically cellular macromolecules and can interfere with cell signaling pathways. Furthermore, during the last decade, there has been an ever-increasing interest in the use of a wide array of natural feed-delivered phytochemicals that have potential antioxidant properties for poultry. In light of this, the current review aims to (1) summarize the mechanisms through which heat stress triggers excessive superoxide radical production in the mitochondrion and progresses into oxidative stress, (2) illustrate that this pathophysiology is dependent on the intensity and duration of heat stress, (3) present different nutritional strategies for mitigation of mitochondrial dysfunction, with particular focus on antioxidant phytochemicals. Oxidative stress that occurs with heat exposure can be manifest in all parts of the body; however, mitochondrial dysfunction underlies oxidative stress. In the initial phase of acute heat stress, mitochondrial substrate oxidation and electron transport chain activity are increased resulting in excessive superoxide production. During the later stage of acute heat stress, down-regulation of avian uncoupling protein worsens the oxidative stress situation causing mitochondrial dysfunction and tissue damage. Typically, antioxidant enzyme activities are upregulated. Chronic heat stress, however, leads to downsizing of mitochondrial metabolic oxidative capacity, up-regulation of avian uncoupling protein, a clear alteration in the pattern of antioxidant enzyme activities, and depletion of antioxidant

  16. Relationships between Stress Granules, Oxidative Stress, and Neurodegenerative Diseases

    PubMed Central

    2017-01-01

    Cytoplasmic stress granules (SGs) are critical for facilitating stress responses and for preventing the accumulation of misfolded proteins. SGs, however, have been linked to the pathogenesis of neurodegenerative diseases, in part because SGs share many components with neuronal granules. Oxidative stress is one of the conditions that induce SG formation. SGs regulate redox levels, and SG formation in turn is differently regulated by various types of oxidative stress. These associations and other evidences suggest that SG formation contributes to the development of neurodegenerative diseases. In this paper, we review the regulation of SG formation/assembly and discuss the interactions between oxidative stress and SG formation. We then discuss the links between SGs and neurodegenerative diseases and the current therapeutic approaches for neurodegenerative diseases that target SGs. PMID:28194255

  17. Fipronil insecticide toxicology: oxidative stress and metabolism.

    PubMed

    Wang, Xu; Martínez, María Aránzazu; Wu, Qinghua; Ares, Irma; Martínez-Larrañaga, María Rosa; Anadón, Arturo; Yuan, Zonghui

    2016-11-01

    Fipronil (FIP) is widely used across the world as a broad-spectrum phenylpyrazole insecticide and veterinary drug. FIP was the insecticide to act by targeting the γ-aminobutyric acid (GABA) receptor and has favorable selective toxicity towards insects rather than mammals. However, because of accidental exposure, incorrect use of FIP or widespread FIP use leading to the contamination of water and soil, there is increasing evidence that FIP could cause a variety of toxic effects on animals and humans, such as neurotoxic, hepatotoxic, nephrotoxic, reproductive, and cytotoxic effects on vertebrate and invertebrates. In the last decade, oxidative stress has been suggested to be involved in the various toxicities induced by FIP. To date, few reviews have addressed the toxicity of FIP in relation to oxidative stress. The focus of this article is primarily intended to summarize the progress in research associated with oxidative stress as a possible mechanism for FIP-induced toxicity as well as metabolism. The present review reports that studies have been conducted to reveal the generation of reactive oxygen species (ROS) and oxidative stress as a result of FIP treatment and have correlated them with various types of toxicity. Furthermore, the metabolism of FIP was also reviewed, and during this process, various CYP450 enzymes were involved and oxidative stress might occur. The roles of various compounds in protecting against FIP-induced toxicity based on their anti-oxidative effects were also summarized to further understand the role of oxidative stress in FIP-induced toxicity.

  18. Oxidative stress and the ageing endocrine system.

    PubMed

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  19. Management of multicellular senescence and oxidative stress

    PubMed Central

    Haines, David D; Juhasz, Bela; Tosaki, Arpad

    2013-01-01

    Progressively sophisticated understanding of cellular and molecular processes that contribute to age-related physical deterioration is being gained from ongoing research into cancer, chronic inflammatory syndromes and other serious disorders that increase with age. Particularly valuable insight has resulted from characterization of how senescent cells affect the tissues in which they form in ways that decrease an organism's overall viability. Increasingly, the underlying pathophysiology of ageing is recognized as a consequence of oxidative damage. This leads to hyperactivity of cell growth pathways, prominently including mTOR (mammalian target of rapamycin), that contribute to a build-up in cells of toxic aggregates such as progerin (a mutant nuclear cytoskeletal protein), lipofuscin and other cellular debris, triggering formation of senescent cellular phenotypes, which interact destructively with surrounding tissue. Indeed, senescent cell ablation dramatically inhibits physical deterioration in progeroid (age-accelerated) mice. This review explores ways in which oxidative stress creates ageing-associated cellular damage and triggers induction of the cell death/survival programs’ apoptosis, necrosis, autophagy and ‘necroapoptophagy’. The concept of ‘necroapoptophagy’ is presented here as a strategy for varying tissue oxidative stress intensity in ways that induce differential activation of death versus survival programs, resulting in enhanced and sustained representation of healthy functional cells. These strategies are discussed in the context of specialized mesenchymal stromal cells with the potential to synergize with telocytes in stabilizing engrafted progenitor cells, thereby extending periods of healthy life. Information and concepts are summarized in a hypothetical approach to suppressing whole-organism senescence, with methods drawn from emerging understandings of ageing, gained from Cnidarians (jellyfish, corals and anemones) that undergo a

  20. Waterlogging and submergence stress: affects and acclimation.

    PubMed

    Phukan, Ujjal J; Mishra, Sonal; Shukla, Rakesh Kumar

    2016-10-01

    Submergence, whether partial or complete, imparts some serious consequences on plants grown in flood prone ecosystems. Some plants can endure these conditions by embracing various survival strategies, including morphological adaptations and physiological adjustments. This review summarizes recent progress made in understanding of the stress and the acclimation responses of plants under waterlogged or submerged conditions. Waterlogging and submergence are often associated with hypoxia development, which may trigger various morphological traits and cellular acclimation responses. Ethylene, abscisic acid, gibberellic acid and other hormones play a crucial role in the survival process which is controlled genetically. Effects at the cellular level, including ATP management, starch metabolism, elemental toxicity, role of transporters and redox status have been explained. Transcriptional and hormonal interplay during this stress may provide some key aspects in understanding waterlogging and submergence tolerance. The level and degree of tolerance may vary depending on species or climatic variations which need to be studied for a proper understanding of waterlogging stress at the global level. The exploration of regulatory pathways and interplay in model organisms such as Arabidopsis and rice would provide valuable resources for improvement of economically and agriculturally important plants in waterlogging affected areas.

  1. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  2. Exercise-Induced Oxidative Stress Responses in the Pediatric Population.

    PubMed

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z; Mastorakos, George; Fatouros, Ioannis G

    2017-01-17

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  3. Effect of paraquat-induced oxidative stress

    PubMed Central

    Wiemer, Matthias; Osiewacz, Heinz D.

    2014-01-01

    Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS) at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly linked to aging. Here we view the impact of ROS from a different angle: their role in the control of gene expression. We report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina grown on medium containing paraquat (PQ). This treatment leads to an increased cellular generation and release of H2O2, a reduced growth rate, and a decrease in lifespan. The combined challenge by PQ and copper has a synergistic negative effect on growth and lifespan. The data from the transcriptome analysis of the wild type cultivated under PQ-stress and their comparison to those of a longitudinal aging study as well as of a copper-uptake longevity mutant of P. anserina revealed that PQ-stress leads to the up-regulation of transcripts coding for components involved in mitochondrial remodeling. PQ also affects the expression of copper-regulated genes suggesting an increase of cytoplasmic copper levels as it has been demonstrated earlier to occur during aging of P. anserina and during senescence of human fibroblasts. This effect may result from the induction of the mitochondrial permeability transition pore via PQ-induced ROS, leading to programmed cell death as part of an evolutionary conserved mechanism involved in biological aging and lifespan control. PMID:28357247

  4. Proteomics, oxidative stress and male infertility.

    PubMed

    Agarwal, Ashok; Durairajanayagam, Damayanthi; Halabi, Jacques; Peng, Jason; Vazquez-Levin, Monica

    2014-07-01

    Oxidative stress has been established as one of the main causes of male infertility and has been implicated in many diseases associated with infertile men. It results from high concentrations of free radicals and suppressed antioxidant potential, which may alter protein expression in seminal plasma and/or spermatozoa. In recent years, proteomic analyses have been performed to characterize the protein profiles of seminal ejaculate from men with different clinical conditions, such as high oxidative stress. The aim of the present review is to summarize current findings on proteomic studies performed in men with high oxidative stress compared with those with physiological concentrations of free radicals, to better understand the aetiology of oxidative stress-induced male infertility. Each of these studies has suggested candidate biomarkers of oxidative stress, among them are DJ-1, PIP, lactotransferrin and peroxiredoxin. Changes in protein concentrations in seminal plasma samples with oxidative stress conditions were related to stress responses and to regulatory pathways, while alterations in sperm proteins were mostly associated to metabolic responses (carbohydrate metabolism) and stress responses. Future studies should include assessment of post-translational modifications in the spermatozoa as well as in seminal plasma proteomes of men diagnosed with idiopathic infertility. Oxidative stress, which occurs due to a state of imbalance between free radicals and antioxidants, has been implicated in most cases of male infertility. Cells that are in a state of oxidative stress are more likely to have altered protein expression. The aim of this review is to better understand the causes of oxidative stress-induced male infertility. To achieve this, we assessed proteomic studies performed on the seminal plasma and spermatozoa of men with high levels of oxidative stress due to various clinical conditions and compared them with men who had physiological concentrations of free

  5. Salivary markers of oxidative stress in oral diseases

    PubMed Central

    Tóthová, L'ubomíra; Kamodyová, Natália; Červenka, Tomáš; Celec, Peter

    2015-01-01

    Saliva is an interesting alternative diagnostic body fluid with several specific advantages over blood. These include non-invasive and easy collection and related possibility to do repeated sampling. One of the obstacles that hinders the wider use of saliva for diagnosis and monitoring of systemic diseases is its composition, which is affected by local oral status. However, this issue makes saliva very interesting for clinical biochemistry of oral diseases. Periodontitis, caries, oral precancerosis, and other local oral pathologies are associated with oxidative stress. Several markers of lipid peroxidation, protein oxidation and DNA damage induced by reactive oxygen species can be measured in saliva. Clinical studies have shown an association with oral pathologies at least for some of the established salivary markers of oxidative stress. This association is currently limited to the population level and none of the widely used markers can be applied for individual diagnostics. Oxidative stress seems to be of local oral origin, but it is currently unclear whether it is caused by an overproduction of reactive oxygen species due to inflammation or by the lack of antioxidants. Interventional studies, both, in experimental animals as well as humans indicate that antioxidant treatment could prevent or slow-down the progress of periodontitis. This makes the potential clinical use of salivary markers of oxidative stress even more attractive. This review summarizes basic information on the most commonly used salivary markers of oxidative damage, antioxidant status, and carbonyl stress and the studies analyzing these markers in patients with caries or periodontitis. PMID:26539412

  6. Oxidative stress, protein modification and Alzheimer disease.

    PubMed

    Tramutola, A; Lanzillotta, C; Perluigi, M; Butterfield, D Allan

    2016-06-15

    Alzheimer disease (AD) is a progressive neurodegenerative disease that affects the elderly population with complex etiology. Many hypotheses have been proposed to explain different causes of AD, but the exact mechanisms remain unclear. In this review, we focus attention on the oxidative-stress hypothesis of neurodegeneration and we discuss redox proteomics approaches to analyze post-mortem human brain from AD brain. Collectively, these studies have provided valuable insights into the molecular mechanisms involved both in the pathogenesis and progression of AD, demonstrating the impairment of numerous cellular processes such as energy production, cellular structure, signal transduction, synaptic function, mitochondrial function, cell cycle progression, and degradative systems. Each of these cellular functions normally contributes to maintain healthy neuronal homeostasis, so the deregulation of one or more of these functions could contribute to the pathology and clinical presentation of AD. In particular, we discuss the evidence demonstrating the oxidation/dysfunction of a number of enzymes specifically involved in energy metabolism that support the view that reduced glucose metabolism and loss of ATP are crucial events triggering neurodegeneration and progression of AD.

  7. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

    PubMed Central

    Rahal, Anu; Kumar, Amit; Singh, Vivek; Yadav, Brijesh

    2014-01-01

    Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS) are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. PMID:24587990

  8. Oxidative Stress in Aging Human Skin

    PubMed Central

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-01-01

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis. PMID:25906193

  9. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

    PubMed Central

    Kurita-Ochiai, Tomoko; Jia, Ru; Cai, Yu; Yamaguchi, Yohei; Yamamoto, Masafumi

    2015-01-01

    Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis. PMID:26783845

  10. Oxidative Stress in Placenta: Health and Diseases

    PubMed Central

    Wu, Fan; Tian, Fu-Ju; Lin, Yi

    2015-01-01

    During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed. PMID:26693479

  11. Mammalian Metallothionein-2A and Oxidative Stress

    PubMed Central

    Ling, Xue-Bin; Wei, Hong-Wei; Wang, Jun; Kong, Yue-Qiong; Wu, Yu-You; Guo, Jun-Li; Li, Tian-Fa; Li, Ji-Ke

    2016-01-01

    Mammalian metallothionein-2A (MT2A) has received considerable attention in recent years due to its crucial pathophysiological role in anti-oxidant, anti-apoptosis, detoxification and anti-inflammation. For many years, most studies evaluating the effects of MT2A have focused on reactive oxygen species (ROS), as second messengers that lead to oxidative stress injury of cells and tissues. Recent studies have highlighted that oxidative stress could activate mitogen-activated protein kinases (MAPKs), and MT2A, as a mediator of MAPKs, to regulate the pathogenesis of various diseases. However, the molecule mechanism of MT2A remains elusive. A deeper understanding of the functional, biochemical and molecular characteristics of MT2A would be identified, in order to bring new opportunities for oxidative stress therapy. PMID:27608012

  12. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress

    PubMed Central

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434

  13. Oxidative stress in IgA nephropathy.

    PubMed

    Coppo, R; Camilla, R; Amore, A; Peruzzi, L

    2010-01-01

    IgA nephropathy (IgAN) is characterized by mesangial deposits of IgA1, likely due to accumulation of IgA immune complexes. The activation of intracellular signaling mostly results in oxidative stress, as detected in mesangial cells cultured with aberrantly glycosylated IgA or IgA aggregates and in renal biopsies of patients with IgAN. Signs of altered oxidation/antioxidation balance have been detected in sera and/or in erythrocytes of patients with IgAN, including increased levels of lipoperoxide or malondialdehyde and reduced activity of superoxide dismutase, catalase and glutathione peroxidase. Moreover, increased levels of a marker of oxidative stress, advanced oxidation protein products (AOPPs), have been reported to be significantly associated with proteinuria and disease progression in patients with IgAN. AOPPs are often carried by albumin and can in turn enhance the oxidative stress in the circulation. Recent research suggests that the nephrotoxicity of aberrantly glycosylated IgA1 in IgAN is enhanced in the presence of systemic signs of oxidative stress, and it is tempting to hypothesize that the level of the oxidative milieu conditions the different expression and progression of IgAN.

  14. Oxidative stress in severe acute illness

    PubMed Central

    Bar-Or, David; Bar-Or, Raphael; Rael, Leonard T.; Brody, Edward N.

    2015-01-01

    The overall redox potential of a cell is primarily determined by oxidizable/reducible chemical pairs, including glutathione–glutathione disulfide, reduced thioredoxin–oxidized thioredoxin, and NAD+–NADH (and NADP–NADPH). Current methods for evaluating oxidative stress rely on detecting levels of individual byproducts of oxidative damage or by determining the total levels or activity of individual antioxidant enzymes. Oxidation–reduction potential (ORP), on the other hand, is an integrated, comprehensive measure of the balance between total (known and unknown) pro-oxidant and antioxidant components in a biological system. Much emphasis has been placed on the role of oxidative stress in chronic diseases, such as Alzheimer's disease and atherosclerosis. The role of oxidative stress in acute diseases often seen in the emergency room and intensive care unit is considerable. New tools for the rapid, inexpensive measurement of both redox potential and total redox capacity should aid in introducing a new body of literature on the role of oxidative stress in acute illness and how to screen and monitor for potentially beneficial pharmacologic agents. PMID:25644686

  15. Evaluation of oxidative stress via total antioxidant status, sialic acid, malondialdehyde and RT-PCR findings in sheep affected with bluetongue

    PubMed Central

    Aytekin, I.; Aksit, H.; Sait, A.; Kaya, F.; Aksit, D.; Gokmen, M.; Baca, A. Unsal

    2015-01-01

    Introduction Bluetongue (BT) is a non-contagious infectious disease of ruminants. The disease agent bluetongue virus (BTV) is classified in the Reoviridae family Orbivirus. Aims and objectives The aim of this study was to determine serum malondialdehyde (MDA), total antioxidative stres (TAS), total sialic acid (TSA), ceruloplasmin, triglyceride, alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), cholesterol, creatinine, albumin, and total protein levels in sheep with and without bluetongue (BT). Materials and Methods The study included 13 Sakiz crossbreed sheep, aged 1–4 years and usually in the last stage of pregnancy, as the BT group and a control group consisting of 10 healthy sheep. All sheep were clinically examined before collecting blood samples. Serum ALT, AST, cholesterol, triglyceride, albumin, GGT, total protein, creatinine and TAS levels were measured using commercially available kits as per manufacturer's recommendations using a Biochemistry Auto Analyzer (Sinnowa D280, China). Serum lipid peroxidation was estimated through a previously described method in which MDA reacts with thiobarbituric acid (TBA) to form a coloured complex at a maximum absorbance of 535 nm. The TSA value was measured at 549 nm using the method described by Warren (1959): sialic acid was oxidised to formyl-pyruvic acid, which reacts with TBA to form a pink product. The ceruloplasmin concentration was measured according to Sunderman and Nomoto (1970): ceruloplasmin and p-phenylenediamine formed a coloured oxidation product that was proportional to the concentration of serum ceruloplasmin. Real time RT-PCR and conventional RT-PCR were performed as described by Shaw and others (2007). Results Biochemistry analysis of serum showed that in the BT group, TSA, MDA, triglyceride and ALT and AST were higher and that ceruloplasmin and TAS were lower than in the control group. Serum albumin, cholesterol, creatinine, total protein and GGT did

  16. Role of oxidative stress on platelet hyperreactivity during aging.

    PubMed

    Fuentes, Eduardo; Palomo, Iván

    2016-03-01

    Thrombotic events are common causes of morbidity and mortality in the elderly. Age-accelerated vascular injury is commonly considered to result from increased oxidative stress. There is abundant evidence that oxidative stress regulate several components of thrombotic processes, including platelet activation. Thus oxidative stress can trigger platelet hyperreactivity by decreasing nitric oxide bioavailability. Therefore oxidative stress measurement may help in the early identification of asymptomatic subjects at risk of thrombosis. In addition, oxidative stress inhibitors and platelet-derived nitric oxide may represent a novel anti-aggregation/-activation approach. In this article the relative contribution of oxidative stress and platelet activation in aging is explored.

  17. Oxidative Stress Resistance in Deinococcus radiodurans†

    PubMed Central

    Slade, Dea; Radman, Miroslav

    2011-01-01

    Summary: Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health. PMID:21372322

  18. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  19. Variability of oxidative stress biomarkers in hemodialysis patients.

    PubMed

    Dahwa, Rumbidzai; Fassett, Robert G; Wang, Zaimin; Briskey, David; Mallard, Alistair R; Coombes, Jeff S

    2014-03-01

    Oxidative stress biomarkers may have a role in the future to assist clinical decisions regarding the use of antioxidant therapies and their efficacy. The aims of this study were to evaluate the within and between-individual variability of plasma oxidative stress biomarkers and investigate factors affecting their variability. Plasma F2-isoprostanes and protein carbonyls were measured in 14 hemodialysis patients every 2 weeks for 10 weeks. Within-individual coefficients of variation (CVs) were isoprostanes = 30.4% (range = 6.1-66.7%) and protein carbonyls = 16.3% (8.4-29.5%). Between-individual CVs were isoprostanes = 34.4% (28.9-40.2%) and protein carbonyls = 19.5% (15.6-24.5%). There were no significant (p > 0.05) relationships between the oxidative stress biomarkers and dietary antioxidant intake, medications, clinical and demographic parameters.

  20. Transketolase counteracts oxidative stress to drive cancer development

    PubMed Central

    Xu, Iris Ming-Jing; Lai, Robin Kit-Ho; Lin, Shu-Hai; Tse, Aki Pui-Wah; Chiu, David Kung-Chun; Koh, Hui-Yu; Law, Cheuk-Ting; Wong, Chun-Ming; Cai, Zongwei; Wong, Carmen Chak-Lui; Ng, Irene Oi-Lin

    2016-01-01

    Cancer cells experience an increase in oxidative stress. The pentose phosphate pathway (PPP) is a major biochemical pathway that generates antioxidant NADPH. Here, we show that transketolase (TKT), an enzyme in the PPP, is required for cancer growth because of its ability to affect the production of NAPDH to counteract oxidative stress. We show that TKT expression is tightly regulated by the Nuclear Factor, Erythroid 2-Like 2 (NRF2)/Kelch-Like ECH-Associated Protein 1 (KEAP1)/BTB and CNC Homolog 1 (BACH1) oxidative stress sensor pathway in cancers. Disturbing the redox homeostasis of cancer cells by genetic knockdown or pharmacologic inhibition of TKT sensitizes cancer cells to existing targeted therapy (Sorafenib). Our study strengthens the notion that antioxidants are beneficial to cancer growth and highlights the therapeutic benefits of targeting pathways that generate antioxidants. PMID:26811478

  1. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    PubMed

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  2. Radical-free biology of oxidative stress

    PubMed Central

    Jones, Dean P.

    2008-01-01

    Free radical-induced macromolecular damage has been studied extensively as a mechanism of oxidative stress, but large-scale intervention trials with free radical scavenging antioxidant supplements show little benefit in humans. The present review summarizes data supporting a complementary hypothesis for oxidative stress in disease that can occur without free radicals. This hypothesis, which is termed the “redox hypothesis,” is that oxidative stress occurs as a consequence of disruption of thiol redox circuits, which normally function in cell signaling and physiological regulation. The redox states of thiol systems are sensitive to two-electron oxidants and controlled by the thioredoxins (Trx), glutathione (GSH), and cysteine (Cys). Trx and GSH systems are maintained under stable, but nonequilibrium conditions, due to a continuous oxidation of cell thiols at a rate of about 0.5% of the total thiol pool per minute. Redox-sensitive thiols are critical for signal transduction (e.g., H-Ras, PTP-1B), transcription factor binding to DNA (e.g., Nrf-2, nuclear factor-κB), receptor activation (e.g., αIIbβ3 integrin in platelet activation), and other processes. Nonradical oxidants, including peroxides, aldehydes, quinones, and epoxides, are generated enzymatically from both endogenous and exogenous precursors and do not require free radicals as intermediates to oxidize or modify these thiols. Because of the nonequilibrium conditions in the thiol pathways, aberrant generation of nonradical oxidants at rates comparable to normal oxidation may be sufficient to disrupt function. Considerable opportunity exists to elucidate specific thiol control pathways and develop interventional strategies to restore normal redox control and protect against oxidative stress in aging and age-related disease. PMID:18684987

  3. Cellular Mechanisms of Oxidative Stress and Action in Melanoma.

    PubMed

    Venza, Mario; Visalli, Maria; Beninati, Concetta; De Gaetano, Giuseppe Valerio; Teti, Diana; Venza, Isabella

    2015-01-01

    Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment.

  4. Cellular Mechanisms of Oxidative Stress and Action in Melanoma

    PubMed Central

    Venza, Mario; Visalli, Maria; Beninati, Concetta; De Gaetano, Giuseppe Valerio; Teti, Diana; Venza, Isabella

    2015-01-01

    Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment. PMID:26064422

  5. Oxidative Stress Marker and Pregnancy Induced Hypertension

    PubMed Central

    Draganovic, Dragica; Lucic, Nenad; Jojic, Dragica

    2016-01-01

    Background: Pregnancy induced hypertension (PIH) is a state of extremely increased oxidative stress. Hence, research and test of role and significance of oxidative stress in hypertensive disturbance in pregnancy is very important. Aim: Aims of this research were to determine a level of thiobarbituric acid reactive substance (TBARS) as oxidative stress marker in blood of pregnant woman with pregnancy induced hypertension and to analyze correlation of TBARS values with blood pressure values in pregnancy induced hypertensive pregnant women. Patients and methods: Research has been performed at the Clinic of Gynecology and Obstetrics, University Clinical Centre in the Republic of Srpska. It covered 100 pregnant women with hypertension and 100 healthy pregnant women of gestation period from 28 to 40 weeks. Level of TBARS is determined as an equivalent of malondialdehyde standard, in accordance with recommendations by producer (Oxi Select TBARS Analisa Kit). Results: Pregnancy induced hypertension is a state of extremely increased oxidative stress. All pregnant women experiencing hypertension had increased TBARS values in medium value interval over 20 µmol, 66%, whereas in group of healthy pregnant women, only 1% experienced increased TBARS value. Pregnant women with difficult preeclampsia (32%) had high TBARS values, over 40 µmol, and with mild PIH, only 4.9% pregnant women. Conclusion: Pregnant women with pregnancy induced hypertension have extremely increased degree of oxidative stress and lipid peroxidation. TBARS values are in positive correlation with blood pressure values, respectively the highest TBARS value were present in pregnant women with the highest blood pressure values. PMID:28210016

  6. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  7. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    PubMed Central

    Kayama, Yosuke; Raaz, Uwe; Jagger, Ann; Adam, Matti; Schellinger, Isabel N.; Sakamoto, Masaya; Suzuki, Hirofumi; Toyama, Kensuke; Spin, Joshua M.; Tsao, Philip S.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease. PMID:26512646

  8. The impact of oxidative stress on hair.

    PubMed

    Trüeb, R M

    2015-12-01

    Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage lipids, proteins, and DNA. They are generated by a multitude of endogenous and environmental challenges, while the body possesses endogenous defense mechanisms. With age, production of free radicals increases, while the endogenous defense mechanisms decrease. This imbalance leads to progressive damage of cellular structures, presumably resulting in the aging phenotype. While the role of oxidative stress has been widely discussed in skin aging, little focus has been placed on its impact on hair condition. Moreover, most literature on age-related hair changes focuses on alopecia, but it is equally important that the hair fibers that emerge from the scalp exhibit significant age-related changes that have equal impact on the overall cosmetic properties of hair. Sources of oxidative stress with impact on the pre-emerging fiber include: oxidative metabolism, smoking, UVR, and inflammation from microbial, pollutant, or irritant origins. Sources of oxidative stress with impact on the post-emerging fiber include: UVR (enhanced by copper), chemical insults, and oxidized scalp lipids. The role of the dermatologist is recognition and treatment of pre- and post-emerging factors for lifetime scalp and hair health.

  9. Potential markers of oxidative stress in stroke.

    PubMed

    Cherubini, Antonio; Ruggiero, Carmelinda; Polidori, M Cristina; Mecocci, Patrizia

    2005-10-01

    Free radical production is increased in ischemic and hemorrhagic stroke, leading to oxidative stress that contributes to brain damage. The measurement of oxidative stress in stroke would be extremely important for a better understanding of its pathophysiology and for identifying subgroups of patients that might receive targeted therapeutic intervention. Since direct measurement of free radicals and oxidized molecules in the brain is difficult in humans, several biological substances have been investigated as potential peripheral markers. Among lipid peroxidation products, malondialdehyde, despite its relevant methodological limitations, is correlated with the size of ischemic stroke and clinical outcome, while F2-isoprostanes appear to be promising, but they have not been adequately evaluated. 8-Hydroxy-2-deoxyguanosine has been extensively investigated as markers of oxidative DNA damage but no study has been done in stroke patients. Also enzymatic and nonenzymatic antioxidants have been proposed as indirect markers. Among them ascorbic acid, alpha-tocopherol, uric acid, and superoxide dismutase are related to brain damage and clinical outcome. After a critical evaluation of the literature, we conclude that, while an ideal biomarker is not yet available, the balance between antioxidants and by-products of oxidative stress in the organism might be the best approach for the evaluation of oxidative stress in stroke patients.

  10. The effect of oxidative stress during exercise in the horse.

    PubMed

    Williams, C A

    2016-10-01

    Oxidative stress is an imbalance of the oxidant-to-antioxidant ratio in the body. Increases in oxidative stress and changes in antioxidant status have been shown during endurance and intense exercise and eventing competition in horses. Antioxidants include vitamins, minerals, enzymes, and proteins that must be synthesized in the body or obtained from the diet. Therefore, exercise level and diet are both factors that play a role in influencing the oxidative stress and antioxidant status of the equine athlete. Along with exercise intensity and duration, diet, age, and training program can also affect oxidative stress in the horse. Several studies using exogenous supplementation of vitamin E, vitamin C, and alpha-lipoic acid have shown positive results in decreasing the effects of exercise (endurance and intense exercise)-induced oxidative stress and increasing the antioxidant status based on the markers and antioxidants measured, whereas other studies using superoxide dismutase showed little effects on the exercise horse. The "free radical theory of aging" states that long-term effects of the degenerative changes associated with aging may induce oxidative stress. However, in old horses (22 ± 2 yr), lipid peroxidation levels and blood antioxidant concentrations were similar to those found in younger but mature (12 ± 2 yr) horses both at rest and during exercise. Other studies found that yearlings (18 ± 2.4 mo) that are novel to forced exercise had less lipid peroxidation and greater antioxidant status than mature mares (13 ± 2.1 yr) prior to exercise training. Exercise training reduced oxidative stress markers and improved antioxidant status in mares, whereas few effects were seen in yearlings. This indicates that youth provided more defense against oxidative stress due to exercise than the exercise training program. Other studies during competition (endurance, jumping, eventing, and racing) have investigated the influence on oxidative stress with varying results

  11. Oxidative stress as a mechanism of teratogenesis.

    PubMed

    Hansen, Jason M

    2006-12-01

    Emerging evidence shows that redox-sensitive signal transduction pathways are critical for developmental processes, including proliferation, differentiation, and apoptosis. As a consequence, teratogens that induce oxidative stress (OS) may induce teratogenesis via the misregulation of these same pathways. Many of these pathways are regulated by cellular thiol redox couples, namely glutathione/glutathione disulfide, thioredoxinred/thioredoinox, and cysteine/cystine. This review outlines oxidative stress as a mechanism of teratogenesis through the disruption of thiol-mediated redox signaling. Due to the ability of many known and suspected teratogens to induce oxidative stress and the many signaling pathways that have redox-sensitive components, further research is warranted to fully understand these mechanisms.

  12. Drug-Induced Oxidative Stress and Toxicity

    PubMed Central

    Deavall, Damian G.; Martin, Elizabeth A.; Horner, Judith M.; Roberts, Ruth

    2012-01-01

    Reactive oxygen species (ROS) are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity. PMID:22919381

  13. Oxidative stress and mitochondrial dysfunction in sepsis.

    PubMed

    Galley, H F

    2011-07-01

    Sepsis-related organ dysfunction remains the most common cause of death in the intensive care unit (ICU), despite advances in healthcare and science. Marked oxidative stress as a result of the inflammatory responses inherent with sepsis initiates changes in mitochondrial function which may result in organ damage. Normally, a complex system of interacting antioxidant defences is able to combat oxidative stress and prevents damage to mitochondria. Despite the accepted role that oxidative stress-mediated injury plays in the development of organ failure, there is still little conclusive evidence of any beneficial effect of systemic antioxidant supplementation in patients with sepsis and organ dysfunction. It has been suggested, however, that antioxidant therapy delivered specifically to mitochondria may be useful.

  14. Oxidative stress in development: nature or nurture?

    PubMed

    Dennery, Phyllis A

    2010-10-15

    An unavoidable consequence of aerobic respiration is the generation of reactive oxygen species (ROS). These may negatively impact development. Nevertheless, a certain amount of oxidative stress is required to allow for the normal progression of embryonic and fetal growth. Alterations in placental oxidative stress results in altered placental function and ultimately altered fetal growth and/or developmental programming leading to long-term consequences into adulthood. This article reviews the role of redox in fetal development and will focus on how developmental programming is influenced by the fetal and placental redox state as well as discuss potential therapeutic interventions.

  15. Involvement of oxidative stress in Alzheimer disease.

    PubMed

    Nunomura, Akihiko; Castellani, Rudy J; Zhu, Xiongwei; Moreira, Paula I; Perry, George; Smith, Mark A

    2006-07-01

    Genetic and lifestyle-related risk factors for Alzheimer disease (AD) are associated with an increase in oxidative stress, suggesting that oxidative stress is involved at an early stage of the pathologic cascade. Moreover, oxidative stress is mechanistically and chronologically associated with other key features of AD, namely, metabolic, mitochondrial, metal, and cell-cycle abnormalities. Contrary to the commonly held notion that pathologic hallmarks of AD signify etiology, several lines of evidence now indicate that aggregation of amyloid-beta and tau is a compensatory response to underlying oxidative stress. Therefore, removal of proteinaceous accumulations may treat the epiphenomenon rather than the disease and may actually enhance oxidative damage. Although some antioxidants have been shown to reduce the incidence of AD, the magnitude of the effect may be modified by individual factors such as genetic predisposition (e.g. apolipoprotein E genotype) and habitual behaviors. Because caloric restriction, exercise, and intellectual activity have been experimentally shown to promote neuronal survival through enhancement of endogenous antioxidant defenses, a combination of dietary regimen of low total calorie and rich antioxidant nutrients and maintaining physical and intellectual activities may ultimately prove to be one of the most efficacious strategies for AD prevention.

  16. Oxidative stress in brain ischemia.

    PubMed

    Love, S

    1999-01-01

    Brain ischemia initiates a complex cascade of metabolic events, several of which involve the generation of nitrogen and oxygen free radicals. These free radicals and related reactive chemical species mediate much of damage that occurs after transient brain ischemia, and in the penumbral region of infarcts caused by permanent ischemia. Nitric oxide, a water- and lipid-soluble free radical, is generated by the action of nitric oxide synthases. Ischemia causes a surge in nitric oxide synthase 1 (NOS 1) activity in neurons and, possibly, glia, increased NOS 3 activity in vascular endothelium, and later an increase in NOS 2 activity in a range of cells including infiltrating neutrophils and macrophages, activated microglia and astrocytes. The effects of ischemia on the activity of NOS 1, a Ca2+-dependent enzyme, are thought to be secondary to reversal of glutamate reuptake at synapses, activation of NMDA receptors, and resulting elevation of intracellular Ca2+. The up-regulation of NOS 2 activity is mediated by transcriptional inducers. In the context of brain ischemia, the activity of NOS 1 and NOS 2 is broadly deleterious, and their inhibition or inactivation is neuroprotective. However, the production of nitric oxide in blood vessels by NOS 3, which, like NOS 1, is Ca2+-dependent, causes vasodilatation and improves blood flow in the penumbral region of brain infarcts. In addition to causing the synthesis of nitric oxide, brain ischemia leads to the generation of superoxide, through the action of nitric oxide synthases, xanthine oxidase, leakage from the mitochondrial electron transport chain, and other mechanisms. Nitric oxide and superoxide are themselves highly reactive but can also combine to form a highly toxic anion, peroxynitrite. The toxicity of the free radicals and peroxynitrite results from their modification of macromolecules, especially DNA, and from the resulting induction of apoptotic and necrotic pathways. The mode of cell death that prevails probably

  17. Nitric oxide and oxidative stress in placental explant cultures.

    PubMed

    Goncalves, Juvic M; Casart, Ysabel C; Camejo, María I

    2016-01-01

    Placental explant culture, and cellular cytolysis and cellular differentiation have been previously studied. However, oxidative stress and nitric oxide profiles have not been evaluated in these systems. The aim of this study was to determine the release of lipid peroxidation and nitric oxide from placental explants cultured over a seven day period. Placental explants were maintained for seven days in culture and the medium was changed every 24 hours. The response was assessed in terms of syncytiotrophoblast differentiation (human chorionic gonadotropin, hCG), cellular cytolysis (lactate dehydrogenase, LDH), oxidative stress (thiobarbituric acid reactive substances, TBARS), and nitric oxide (NO). Levels of hCG increased progressively from day two to attain its highest level on days four and five after which it decreased gradually. In contrast, the levels of LDH, TBARS, and NO were elevated in the early days of placental culture when new syncytiotrophoblast from cytotrophoblast were forming and also in the last days of culture when tissue was declining. In conclusion, the levels of NO and lipid peroxidation follow a pattern similar to LDH and contrary to hCG. Future placental explant studies to evaluate oxidative stress and NO should consider the physiological changes inherent during the time of culture.

  18. In vitro model suggests oxidative stress involved in keratoconus disease

    NASA Astrophysics Data System (ADS)

    Karamichos, D.; Hutcheon, A. E. K.; Rich, C. B.; Trinkaus-Randall, V.; Asara, J. M.; Zieske, J. D.

    2014-04-01

    Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype.

  19. In vitro model suggests oxidative stress involved in keratoconus disease

    PubMed Central

    Karamichos, D.; Hutcheon, A. E. K.; Rich, C. B.; Trinkaus-Randall, V.; Asara, J. M.; Zieske, J. D.

    2014-01-01

    Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype. PMID:24714342

  20. Good Stress, Bad Stress and Oxidative Stress: Insights from Anticipatory Cortisol Reactivity

    PubMed Central

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M.; Dhabhar, Firdaus S.; Su, Yali; Epel, Elissa

    2014-01-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F2α (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-OxoG) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as “peak” cortisol reactivity, while the increase from 0 to 15 min was defined as “anticipatory” cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-OxoG and IsoP (but not

  1. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    PubMed

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHd

  2. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    PubMed

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis.

  3. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    PubMed Central

    Busch, Andrea W.U.; Montgomery, Beronda L.

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. PMID:25618582

  4. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response.

    PubMed

    Busch, Andrea W U; Montgomery, Beronda L

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms.

  5. Oxidative stress in benign prostate hyperplasia.

    PubMed

    Zabaiou, N; Mabed, D; Lobaccaro, J M; Lahouel, M

    2016-02-01

    To assess the status of oxidative stress in benign prostate hyperplasia, a very common disease in older men which constitutes a public health problem in Jijel, prostate tissues were obtained by transvesical adenomectomy from 10 men with benign prostate hyperplasia. We measured the cytosolic levels of malondialdehyde (MDA) and glutathione (GSH) and cytosolic enzyme activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione S-transferase. The development of benign prostate hyperplasia is accompanied by impaired oxidative status by increasing levels of MDA, depletion of GSH concentrations and a decrease in the activity of all the antioxidant enzymes studied. These results have allowed us to understand a part of the aetiology of benign prostate hyperplasia related to oxidative stress.

  6. Oxidative stress, phototherapy and the neonate.

    PubMed

    Gathwala, G; Sharma, S

    2000-11-01

    Phototherapy is the most widely used form of therapy for unconjugated hyperbilirubinaemia. Its non-invasive nature and few side effects reported earlier have led to the assumption that it is innocuous. Recent research has revealed that phototherapy is a photodynamic stress and can induce lipid peroxidation. There is increasing evidence that many severe diseases of the neonate are caused by oxidative injury and lipid peroxidation. In the present communique, we review the oxidative susceptibility of the neonate and the evidence now available that phototherapy induces oxidative stress. Although intensive phototherapy (up to 40 mwatt/cm2/nm) has been reported to be increasingly effective, a little caution, we believe is warranted, till more definite data in the human neonate, help resolve the issue.

  7. Methylglyoxal promotes oxidative stress and endothelial dysfunction.

    PubMed

    Sena, Cristina M; Matafome, Paulo; Crisóstomo, Joana; Rodrigues, Lisa; Fernandes, Rosa; Pereira, Paulo; Seiça, Raquel M

    2012-05-01

    Modern diets can cause modern diseases. Research has linked a metabolite of sugar, methylglyoxal (MG), to the development of diabetic complications, but the exact mechanism has not been fully elucidated. The present study was designed to investigate whether MG could directly influence endothelial function, oxidative stress and inflammation in Wistar and Goto-Kakizaki (GK) rats, an animal model of type 2 diabetes. Wistar and GK rats treated with MG in the drinking water for 3 months were compared with the respective control rats. The effects of MG were investigated on NO-dependent vasorelaxation in isolated rat aortic arteries from the different groups. Insulin resistance, NO bioavailability, glycation, a pro-inflammatory biomarker monocyte chemoattractant protein-1 (MCP-1) and vascular oxidative stress were also evaluated. Methylglyoxal treated Wistar rats significantly reduced the efficacy of NO-dependent vasorelaxation (p<0.001). This impairment was accompanied by a three fold increase in the oxidative stress marker nitrotyrosine. Advanced glycation endproducts (AGEs) formation was significantly increased as well as MCP-1 and the expression of the receptor for AGEs (RAGE). NO bioavailability was significantly attenuated and accompanied by an increase in superoxide anion immunofluorescence. Methylglyoxal treated GK rats significantly aggravated endothelial dysfunction, oxidative stress, AGEs accumulation and diminished NO bioavailability when compared with control GK rats. These results indicate that methylglyoxal induced endothelial dysfunction in normal Wistar rats and aggravated the endothelial dysfunction present in GK rats. The mechanism is at least in part by increasing oxidative stress and/or AGEs formation with a concomitant increment of inflammation and a decrement in NO bioavailability. The present study provides further evidence for methylglyoxal as one of the causative factors in the pathogenesis of atherosclerosis and development of macrovascular

  8. Piracetam improves mitochondrial dysfunction following oxidative stress.

    PubMed

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2006-01-01

    1.--Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. 2.--Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. 3.--Piracetam treatment at concentrations between 100 and 1000 microM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 microM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. 4.--Piracetam treatment (100-500 mg kg(-1) daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. 5.--In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients.

  9. Immune mechanisms linked to depression via oxidative stress and neuroprogression.

    PubMed

    Bakunina, Nataliia; Pariante, Carmine M; Zunszain, Patricia A

    2015-01-10

    Emerging evidence suggests the significant role of inflammation and oxidative stress as main contributors to the neuroprogression that is observed in major depressive disorder (MDD), where patients show increased inflammatory and oxidative stress biomarkers. The process of neuroprogression includes stage-related neurodegeneration, cell death, reduced neurogenesis, reduced neuronal plasticity and increased autoimmune responses. Oxidative stress is a consequence of the biological imbalance between Reactive Oxygen Species (ROS) and antioxidants, leading to the alteration of biomolecules and the loss of control of the intracellular redox-related signaling pathways. ROS serve as crucial secondary messengers in signal transduction and significantly affect inflammatory pathways by activating NF-κB and MAPK family stress kinases. When present in excess, ROS inflict damage, affecting cellular constituents with the formation of pro-inflammatory molecules, such as malondialdehyde, 4-Hydroxynonenal, neoepitopes and damage-associated molecular patterns promoting immune response, and ultimately leading to cell death. The failure of cells to adapt to the changes in redox homeostasis and the subsequent cell death, together with the damage caused by inflammatory mediators, have been considered as major causes of neuroprogression and hence MDD. Both an activated immune-inflammatory system and increased oxidative stress act synergistically, complicating our understanding of the pathogenesis of depression. The cascade of antioxidative and inflammatory events is orchestrated by several transcription factors, with Nrf2 and NF-κB having particular relevance to MDD. This review focuses on potential molecular mechanisms through which impaired redox homeostasis and neuroinflammation can affect the neuronal environment and contribute to depression This article is protected by copyright. All rights reserved.

  10. Multimarker Screening of Oxidative Stress in Aging

    PubMed Central

    Syslová, Kamila; Böhmová, Adéla; Kuzma, Marek; Pelclová, Daniela; Kačer, Petr

    2014-01-01

    Aging is a complex process of organism decline in physiological functions. There is no clear theory explaining this phenomenon, but the most accepted one is the oxidative stress theory of aging. Biomarkers of oxidative stress, substances, which are formed during oxidative damage of phospholipids, proteins, and nucleic acids, are present in body fluids of diseased people as well as the healthy ones (in a physiological concentration). 8-iso prostaglandin F2α is the most prominent biomarker of phospholipid oxidative damage, o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine are biomarkers of protein oxidative damage, and 8-hydroxy-2′-deoxyguanosine and 8-hydroxyguanosine are biomarkers of oxidative damage of nucleic acids. It is thought that the concentration of biomarkers increases as the age of people increases. However, the concentration of biomarkers in body fluids is very low and, therefore, it is necessary to use a sensitive analytical method. A combination of HPLC and MS was chosen to determine biomarker concentration in three groups of healthy people of a different age (twenty, forty, and sixty years) in order to find a difference among the groups. PMID:25147595

  11. Oxidative stress in alcohol-induced rat parotid sialadenosis.

    PubMed

    Campos, Sara Cristina Gonçalves; Moreira, Denise Aparecida Corrêa; Nunes, Terezinha D'Avila e Silva; Colepicolo, Pio; Brigagão, Maísa Ribeiro Pereira Lima

    2005-07-01

    This study evaluated the effect of chronic ethanol consumption on the oxidative status of rat parotid and submandibular glands. To identify the endogenous response to ethanol ingestion, the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined. In addition, the antioxidant alpha-tocopherol was supplied to the animals in order to estimate its action in ethanol-associated glandular damage. The thiobarbituric acid reactive substances (TBARS), and the protein carbonyl (PC) content, both markers of cellular oxidative stress on lipid and protein structures, respectively, were recorded. Animals subjected to alcohol ingestion showed a low body growth rate with concomitant enlargement of absolute and relative parotid wet weight, compared with pair-fed calorie-controlled rats. Parotid glands of ethanol-treated animals showed increased SOD and GPx activity, and alpha-tocopherol was able to reduce their activities to the control levels. TBARS and PC were enhanced after chronic ethanol treatment in rat parotids. Supplemental alpha-tocopherol suppressed the oxidative ethanol-induced damage in lipid without affecting induced protein oxidation. Submandibular glands revealed no alterations in the weight, enzymatic and oxidative parameters tested due to ethanol and/or alpha-tocopherol ingestion. These findings indicate the involvement of oxidative stress in parotid gland sialadenosis due to ethanol consumption and the capability of alpha-tocopherol to halt lipid damage, although this low-molecular antioxidant compound leads to neither increased glandular weight nor protein oxidation in ethanol-induced parotid alterations.

  12. Revisiting an age-old question regarding oxidative stress

    PubMed Central

    Edrey, Yael H.; Salmon, Adam B.

    2014-01-01

    Significant advances in maintaining health throughout life can be made through a clear understanding of the fundamental mechanisms that regulate aging. The Oxidative Stress Theory of Aging (OSTA) is likely the most well-studied mechanistic theory of aging and suggests that the rate of aging is controlled by accumulation of oxidative damage. To directly test the OSTA, aging has been measured in several lines of mice with genetic alteration of the expression of enzymatic antioxidants. Under its strictest interpretation, these studies do not support the OSTA, as modulation of antioxidant expression does not generally affect mouse lifespan. However, the incidence of many age-related diseases and pathologies is altered in these models suggesting that oxidative stress does significantly impact some aspects of the aging process. Further, oxidative stress may affect aging in disparate patterns among tissues or under different environmental conditions. In this review, we summarize the current literature regarding aging in antioxidant mutant mice and offer several interpretations on their support of the OSTA. PMID:24704971

  13. [Mitochondria, oxidative stress and aging].

    PubMed

    Szarka, András; Bánhegyi, Gábor; Sümegi, Balázs

    2014-03-23

    The free radical theory of aging was defined in the 1950s. On the base of this theory, the reactive oxygen species formed in the metabolic pathways can play pivotal role in ageing. The theory was modified by defining the mitochondrial respiration as the major cellular source of reactive oxygen species and got the new name mitochondrial theory of aging. Later on the existence of a "vicious cycle" was proposed, in which the reactive oxygen species formed in the mitochondrial respiration impair the mitochondrial DNA and its functions. The formation of reactive oxygen species are elevated due to mitochondrial dysfunction. The formation of mitochondrial DNA mutations can be accelerated by this "vicious cycle", which can lead to accelerated aging. The exonuclease activity of DNA polymerase γ, the polymerase responsible for the replication of mitochondrial DNA was impaired in mtDNA mutator mouse recently. The rate of somatic mutations in mitochondrial DNA was elevated and an aging phenotype could have been observed in these mice. Surprisingly, no oxidative impairment neither elevated reactive oxygen species formation could have been observed in the mtDNA mutator mice, which may question the existence of the "vicious cycle".

  14. Apoptosis modulated by oxidative stress and inflammation during obstructive nephropathy.

    PubMed

    Manucha, Walter; Vallés, Patricia G

    2012-08-01

    Kidney apoptosis and fibrosis are an inevitable outcome of progressive chronic kidney diseases where congenital obstructive nephropathy is the primary cause of the end-stage renal disease in children, and is also a major cause of renal failure in adults. The injured tubular cells linked to interstitial macrophages, and myofibroblasts produce cytokines and growth factors that promote an inflammatory state in the kidney, induce tubular cell apoptosis, and facilitate the accumulation of extracellular matrix. Angiotensin II plays a central role in the renal fibrogenesis at a very early stage leading to a rapid progression in chronic kidney disease. The increasing levels of angiotensin II induce pro-inflammatory cytokines, NF-κB activation, adhesion molecules, chemokines, growth factors, and oxidative stress. Furthermore, growing evidence reports that angiotensin II (a pro-inflammatory hormone) increases the mitochondrial oxidative stress regulating apoptosis induction. This review summarizes our understanding about possible mechanisms that contribute to apoptosis modulated by inflammation and/or oxidative stress during obstructive nephropathy. The new concept of antiinflammatory tools regulating mitochondrial oxidative stress will directly affect the inflammatory process and apoptosis. This idea could have attractive consequences in the treatment of renal and other inflammatory pathologies.

  15. Acetaminophen protects brain endothelial cells against oxidative stress.

    PubMed

    Tripathy, Debjani; Grammas, Paula

    2009-05-01

    Increasing evidence suggests that acetaminophen has unappreciated anti-oxidant and anti-inflammatory properties. Drugs that affect oxidant and inflammatory stress in the brain are of interest because both processes are thought to contribute to the pathogenesis of neurodegenerative disease. The objective of this study is to determine whether acetaminophen affects the response of brain endothelial cells to oxidative stress. Cultured brain endothelial cells are pre-treated with acetaminophen and then exposed to the superoxide-generating compound menadione (25 microM). Cell survival, inflammatory protein expression, and anti-oxidant enzyme activity are measured. Menadione causes a significant (p<0.001) increase in endothelial cell death as well as an increase in RNA and protein levels of tumor necrosis factor alpha, interleukin-1, macrophage inflammatory protein alpha, and RANTES. Menadione also evokes a significant (p<0.001) increase in the activity of the anti-oxidant enzyme superoxide dismutase (SOD). Pre-treatment of endothelial cell cultures with acetaminophen (25-100 microM) increases endothelial cell survival and inhibits menadione-induced expression of inflammatory proteins and SOD activity. In addition, we document, for the first time, that acetaminophen increases expression of the anti-apoptotic protein Bcl2. Suppressing Bcl2 with siRNA blocks the pro-survival effect of acetaminophen. These data show that acetaminophen has anti-oxidant and anti-inflammatory effects on the cerebrovasculature and suggest a heretofore unappreciated therapeutic potential for this drug in neurodegenerative diseases such as Alzheimer's disease that are characterized by oxidant and inflammatory stress.

  16. Oxidative Stress: A Promising Target for Chemoprevention

    PubMed Central

    John, AM Sashi Papu; Ankem, Murali K; Damodaran, Chendil

    2016-01-01

    Cancer is a leading cause of death worldwide, and treating advanced stages of cancer remains clinically challenging. Epidemiological studies have shown that oxidants and free radicals induced DNA damage is one of the predominant causative factors for cancer pathogenesis. Hence, oxidants are attractive targets for chemoprevention as well as therapy. Dietary agents are known to exert an anti-oxidant property which is one of the most efficient preventive strategy in cancer progression. In this article, we highlight dietary agents can potentially target oxidative stress, in turn delaying, preventing, or treating cancer development. Some of these agents are currently in use in basic research, while some have been launched successfully into clinical trials. PMID:27088073

  17. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    PubMed Central

    Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara

    2012-01-01

    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514

  18. Oxidative stress response in Paracoccidioides brasiliensis.

    PubMed

    Campos, Elida G; Jesuino, Rosália Santos Amorim; Dantas, Alessandra da Silva; Brígido, Marcelo de Macedo; Felipe, Maria Sueli S

    2005-06-30

    Survival of pathogenic fungi inside human hosts depends on evasion from the host immune system and adaptation to the host environment. Among different insults that Paracoccidioides brasiliensis has to handle are reactive oxygen and nitrogen species produced by the human host cells, and by its own metabolism. Knowing how the parasite deals with reactive species is important to understand how it establishes infection and survives within humans. The initiative to describe the P. brasiliensis transcriptome fostered new approaches to study oxidative stress response in this organism. By examining genes related to oxidative stress response, one can evaluate the parasite's ability to face this condition and infer about possible ways to overcome this ability. We report the results of a search of the P. brasiliensis assembled expressed sequence tag database for homologous sequences involved in oxidative stress response. We described several genes coding proteins involved in antioxidant defense, for example, catalase and superoxide dismutase isoenzymes, peroxiredoxin, cytochrome c peroxidase, glutathione synthesis enzymes, thioredoxin, and the transcription factors Yap1 and Skn7. The transcriptome analysis of P. brasiliensis reveals a pathogen that has many resources to combat reactive species. Besides characterizing the antioxidant defense system in P. brasiliensis, we also compared the ways in which different fungi respond to oxidative damage, and we identified the basic features of this response.

  19. Behavior of Oxidative Stress Markers in Alcoholic Liver Cirrhosis Patients

    PubMed Central

    Galicia-Moreno, Marina; Rosique-Oramas, Dorothy; Medina-Avila, Zaira; Álvarez-Torres, Tania; Falcón, Dalia; Higuera-de la tijera, Fátima; Béjar, Yadira L.; Cordero-Pérez, Paula; Muñoz-Espinosa, Linda; Pérez-Hernández, José Luis; Kershenobich, David

    2016-01-01

    Alcohol is the most socially accepted addictive substance worldwide, and its metabolism is related with oxidative stress generation. The aim of this work was to evaluate the role of oxidative stress in alcoholic liver cirrhosis (ALC). This study included 187 patients divided into two groups: ALC, classified according to Child-Pugh score, and a control group. We determined the levels of reduced and oxidized glutathione (GSH and GSSG) and the GSH/GSSG ratio by an enzymatic method in blood. Also, protein carbonyl and malondialdehyde (MDA) content were estimated in serum. MDA levels increased in proportion to the severity of damage, whereas the GSH and GSSG levels decreased and increased, respectively, at different stages of cirrhosis. There were no differences in the GSH/GSSG ratio and carbonylated protein content between groups. We also evaluated whether the active consumption of or abstinence from alcoholic beverages affected the behavior of these oxidative markers and only found differences in the MDA, GSH, and GSSG determination and the GSH/GSSG ratio. Our results suggest that alcoholic cirrhotic subjects have an increase in oxidative stress in the early stages of disease severity and that abstinence from alcohol consumption favors the major antioxidant endogen: GSH in patients with advanced disease severity. PMID:28074118

  20. Behavior of Oxidative Stress Markers in Alcoholic Liver Cirrhosis Patients.

    PubMed

    Galicia-Moreno, Marina; Rosique-Oramas, Dorothy; Medina-Avila, Zaira; Álvarez-Torres, Tania; Falcón, Dalia; Higuera-de la Tijera, Fátima; Béjar, Yadira L; Cordero-Pérez, Paula; Muñoz-Espinosa, Linda; Pérez-Hernández, José Luis; Kershenobich, David; Gutierrez-Reyes, Gabriela

    2016-01-01

    Alcohol is the most socially accepted addictive substance worldwide, and its metabolism is related with oxidative stress generation. The aim of this work was to evaluate the role of oxidative stress in alcoholic liver cirrhosis (ALC). This study included 187 patients divided into two groups: ALC, classified according to Child-Pugh score, and a control group. We determined the levels of reduced and oxidized glutathione (GSH and GSSG) and the GSH/GSSG ratio by an enzymatic method in blood. Also, protein carbonyl and malondialdehyde (MDA) content were estimated in serum. MDA levels increased in proportion to the severity of damage, whereas the GSH and GSSG levels decreased and increased, respectively, at different stages of cirrhosis. There were no differences in the GSH/GSSG ratio and carbonylated protein content between groups. We also evaluated whether the active consumption of or abstinence from alcoholic beverages affected the behavior of these oxidative markers and only found differences in the MDA, GSH, and GSSG determination and the GSH/GSSG ratio. Our results suggest that alcoholic cirrhotic subjects have an increase in oxidative stress in the early stages of disease severity and that abstinence from alcohol consumption favors the major antioxidant endogen: GSH in patients with advanced disease severity.

  1. Does posttraumatic stress disorder (PTSD) affect performance?

    PubMed

    LeBlanc, Vicki R; Regehr, Cheryl; Jelley, R Blake; Barath, Irene

    2007-08-01

    Research has increasingly identified alarming levels of traumatic stress symptoms in individuals working in emergency services and other high stress jobs. This study examined the effects of prior critical incident exposure and current posttraumatic symptoms on the performance of a nonpatient population, police recruits, during an acutely stressful event. A stressful policing situation was created through the use of a video simulator room that was responsive to actions of participants. The performance of participants to the simulated emergency was evaluated by 3 independent blinded raters. Prior exposure to critical incidents was measured using the Critical Incident History Questionnaire and current level of traumatic stress symptoms was measured using the Impact of Events Scale-Revised. Neither previous exposure to critical incidents nor trauma symptoms correlated with performance level. Recruits with high or severe levels of trauma symptoms did not demonstrate impairments in judgment, communication, or situation control compared with their colleagues with lesser or no trauma symptoms. On the basis of these findings, there is no reason to believe that police recruits with PTSD are prone to making errors of communication or judgment that would place them or others at increased risk.

  2. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress

    PubMed Central

    2014-01-01

    Background Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Results Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Conclusions Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress. PMID:24636079

  3. Oxidative Stress and Air Pollution Exposure

    PubMed Central

    Lodovici, Maura; Bigagli, Elisabetta

    2011-01-01

    Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM2.5, PM < 2.5 μm) and ultrafine (PM0.1, PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact. PMID:21860622

  4. Oxidative stress and inflammatory bowel disease.

    PubMed

    Almenier, Hazem A; Al Menshawy, Hazem H; Maher, Maha M; Al Gamal, Salah

    2012-01-01

    Inflammatory Bowel Disease (IBD) is a chronic relapsing and remitting inflammatory condition of the gastrointestinal tract. The exact cause of IBD remains undetermined, the condition appears to be related to a combination of genetic and environmental factors. While many gaps in our knowledge still exist, the last two decades have witnessed an unprecedented progress not only in the etiology ; but mainly in the mechanisms underlying the chronic inflammatory response, immunologic and genetic aspects. We review some recent points of research in pathogenesis with special stress on oxidative stress and its correlations with disease activity.

  5. Oxidative Stress and Periodontal Disease in Obesity.

    PubMed

    Dursun, Erhan; Akalin, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  6. Oxidative Stress and Periodontal Disease in Obesity

    PubMed Central

    Dursun, Erhan; Akalın, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-01-01

    Abstract Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women. Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated. Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status

  7. ALS and Oxidative Stress: The Neurovascular Scenario

    PubMed Central

    Thakur, Keshav; Gupta, Pawan Kumar

    2013-01-01

    Oxidative stress and angiogenic factors have been placed as the prime focus of scientific investigations after an establishment of link between vascular endothelial growth factor promoter (VEGF), hypoxia, and amyotrophic lateral sclerosis (ALS) pathogenesis. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter and mutant superoxide dismutase 1 (SOD1) which are characterised by atrophy and muscle weakness resulted in phenotype resembling human ALS in mice. This results in lower motor neurodegeneration thus establishing an important link between motor neuron degeneration, vasculature, and angiogenic molecules. In this review, we have presented human, animal, and in vitro studies which suggest that molecules like VEGF have a therapeutic, diagnostic, and prognostic potential in ALS. Involvement of vascular growth factors and hypoxia response elements also highlights the converging role of oxidative stress and neurovascular network for understanding and treatment of various neurodegenerative disorders like ALS. PMID:24367722

  8. [Atherosclerosis, oxidative stress and physical activity. Review].

    PubMed

    Calderón, Juan Camilo; Fernández, Ana Zita; María de Jesús, Alina Isabel

    2008-09-01

    Atherosclerosis and related diseases have emerged as the leading cause of morbidity and mortality in the western world and, therefore, as a problem of public health. Free radicals and reactive oxygen species have been suggested to be part of the pathophysiology of these diseases. It is well known that physical activity plays an important role as a public health measure by reducing the risk of developing atherosclerosis-related cardiovascular events in the general population. It is also known that physical activity increases in some tissues, the reactive oxygen species production. In this review the atherosclerosis-oxidative stress-physical activity relationship is focused on the apparent paradox by which physical activity reduces atherosclerosis and cardiovascular risk in parallel with the activation of an apparently damaging mechanism which is an increased oxidative stress. A hypothesis including the experimental and clinical evidence is presented to explain the aforementioned paradox.

  9. Oxidative stress and Parkinson’s disease

    PubMed Central

    Blesa, Javier; Trigo-Damas, Ines; Quiroga-Varela, Anna; Jackson-Lewis, Vernice R.

    2015-01-01

    Parkinson disease (PD) is a chronic, progressive neurological disease that is associated with a loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. The molecular mechanisms underlying the loss of these neurons still remain elusive. Oxidative stress is thought to play an important role in dopaminergic neurotoxicity. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neuronal degeneration in PD. Environmental factors, such as neurotoxins, pesticides, insecticides, dopamine (DA) itself, and genetic mutations in PD-associated proteins contribute to mitochondrial dysfunction which precedes reactive oxygen species formation. In this mini review, we give an update of the classical pathways involving these mechanisms of neurodegeneration, the biochemical and molecular events that mediate or regulate DA neuronal vulnerability, and the role of PD-related gene products in modulating cellular responses to oxidative stress in the course of the neurodegenerative process. PMID:26217195

  10. Function of isoprenoid quinones and chromanols during oxidative stress in plants.

    PubMed

    Kruk, Jerzy; Szymańska, Renata; Nowicka, Beatrycze; Dłużewska, Jolanta

    2016-09-25

    Isoprenoid quinones and chromanols in plants fulfill both signaling and antioxidant functions under oxidative stress. The redox state of the plastoquinol pool (PQ-pool), which is modulated by interaction with reactive oxygen species (ROS) during oxidative stress, has a major regulatory function in both short- and long-term acclimatory responses. By contrast, the scavenging of ROS by prenyllipids affects signaling pathways where ROS play a role as signaling molecules. As the primary antioxidants, isoprenoid quinones and chromanols are synthesized under high-light stress in response to any increased production of ROS. During photo-oxidative stress, these prenyllipids are continuously synthesized and oxidized to other compounds. In turn, their oxidation products (hydroxy-plastochromanol, plastoquinol-C, plastoquinone-B) can still have an antioxidant function. The oxidation products of isoprenoid quinones and chromanols formed specifically in the face of singlet oxygen, can be indicators of singlet oxygen stress.

  11. Oxidative stress and male reproductive health

    PubMed Central

    Aitken, Robert J; Smith, Tegan B; Jobling, Matthew S; Baker, Mark A; De Iuliis, Geoffry N

    2014-01-01

    One of the major causes of defective sperm function is oxidative stress, which not only disrupts the integrity of sperm DNA but also limits the fertilizing potential of these cells as a result of collateral damage to proteins and lipids in the sperm plasma membrane. The origins of such oxidative stress appear to involve the sperm mitochondria, which have a tendency to generate high levels of superoxide anion as a prelude to entering the intrinsic apoptotic cascade. Unfortunately, these cells have very little capacity to respond to such an attack because they only possess the first enzyme in the base excision repair (BER) pathway, 8-oxoguanine glycosylase 1 (OGG1). The latter successfully creates an abasic site, but the spermatozoa cannot process the oxidative lesion further because they lack the downstream proteins (APE1, XRCC1) needed to complete the repair process. It is the responsibility of the oocyte to continue the BER pathway prior to initiation of S-phase of the first mitotic division. If a mistake is made by the oocyte at this stage of development, a mutation will be created that will be represented in every cell in the body. Such mechanisms may explain the increase in childhood cancers and other diseases observed in the offspring of males who have suffered oxidative stress in their germ line as a consequence of age, environmental or lifestyle factors. The high prevalence of oxidative DNA damage in the spermatozoa of male infertility patients may have implications for the health of children conceived in vitro and serves as a driver for current research into the origins of free radical generation in the germ line. PMID:24369131

  12. Induction of oxidative stress and oxidative damage in rat glial cells by acrylonitrile.

    PubMed

    Kamendulis, L M; Jiang, J; Xu, Y; Klaunig, J E

    1999-08-01

    Chronic treatment of rats with acrylonitrile (ACN) resulted in a dose-related increase in glial cell tumors (astrocytomas). While the exact mechanism(s) for ACN-induced carcinogenicity remains unresolved, non-genotoxic and possibly tumor promotion modes of action appear to be involved in the induction of glial tumors. Recent studies have shown that ACN induced oxidative stress selectively in rat brain in a dose-responsive manner. The present study examined the ability of ACN to induce oxidative stress in a rat glial cell line, a target tissue, and in cultured rat hepatocytes, a non-target tissue of ACN carcinogenicity. Glial cells and hepatocytes were treated for 1, 4 and 24 h with sublethal concentrations of ACN. ACN induced an increase in oxidative DNA damage, as evidenced by increased production of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in glial cells but not in rat hepatocytes. Hydroxyl radical formation following ACN treatment was also selectively increased in glial cells. Following 1 and 4 h of ACN exposure, the levels of the non-enzymatic antioxidant glutathione, as well as the activities of the enzymatic antioxidants catalase and superoxide dismutase were significantly decreased in the rat glial cells. Lipid peroxidation and the activity of glutathione peroxidase were not affected by ACN treatment in rat glial cells. No changes in any of these biomarkers of oxidative stress were observed in hepatocytes treated with ACN. These data indicate that ACN selectively induced oxidative stress in rat glial cells.

  13. Lamins as mediators of oxidative stress

    SciTech Connect

    Sieprath, Tom; Darwiche, Rabih; De Vos, Winnok H.

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer The nuclear lamina defines structural and functional properties of the cell nucleus. Black-Right-Pointing-Pointer Lamina dysfunction leads to a broad spectrum of laminopathies. Black-Right-Pointing-Pointer Recent data is reviewed connecting laminopathies to oxidative stress. Black-Right-Pointing-Pointer A framework is proposed to explain interactions between lamins and oxidative stress. -- Abstract: The nuclear lamina defines both structural and functional properties of the eukaryotic cell nucleus. Mutations in the LMNA gene, encoding A-type lamins, lead to a broad spectrum of diseases termed laminopathies. While different hypotheses have been postulated to explain disease development, there is still no unified view on the mechanistic basis of laminopathies. Recent observations indicate that laminopathies are often accompanied by altered levels of reactive oxygen species and a higher susceptibility to oxidative stress at the cellular level. In this review, we highlight the role of reactive oxygen species for cell function and disease development in the context of laminopathies and present a framework of non-exclusive mechanisms to explain the reciprocal interactions between a dysfunctional lamina and altered redox homeostasis.

  14. Oxidative Stress in Patients With Acne Vulgaris

    PubMed Central

    Arican, Ozer; Belge Kurutas, Ergul; Sasmaz, Sezai

    2005-01-01

    Acne vulgaris is one of the common dermatological diseases and its pathogenesis is multifactorial. In this study, we aim to determine the effects of oxidative stress in acne vulgaris. Forty-three consecutive acne patients and 46 controls were enrolled. The parameters of oxidative stress such as catalase (CAT), glucose-6-phosphate dehydrogenase (G6PD), superoxide dismutase (SOD), and malondialdehyde (MDA) in the venous blood of cases were measured spectrophotometrically. The values compared with control group, the relation between the severity and distribution of acne, and the correlation of each enzyme level were researched. CAT and G6PD levels in patients were found to be statistically decreased, and SOD and MDA levels were found to be statistically increased (P < .001). However, any statistical difference and correlation could not be found between the severity and distribution of lesions and the mean levels of enzymes. In addition, we found that each enzyme is correlated with one another. Our findings show that oxidative stress exists in the acne patients. It will be useful to apply at least one antioxidant featured drug along with the combined acne treatment. PMID:16489259

  15. Chrononutrition against Oxidative Stress in Aging

    PubMed Central

    Garrido, M.; Terrón, M. P.; Rodríguez, A. B.

    2013-01-01

    Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases. PMID:23861994

  16. Oxidative stress in toxicology: established mammalian and emerging piscine model systems.

    PubMed Central

    Kelly, K A; Havrilla, C M; Brady, T C; Abramo, K H; Levin, E D

    1998-01-01

    Interest in the toxicological aspects of oxidative stress has grown in recent years, and research has become increasingly focused on the mechanistic aspects of oxidative damage and cellular responses in biological systems. Toxic consequences of oxidative stress at the subcellular level include lipid peroxidation and oxidative damage to DNA and proteins. These effects are often used as end points in the study of oxidative stress. Typically, mammalian species have been used as models to study oxidative stress and to elucidate the mechanisms underlying cellular damage and response, largely because of the interest in human health issues surrounding oxidative stress. However, it is becoming apparent that oxidative stress also affects aquatic organisms exposed to environmental pollutants. Research in fish has demonstrated that mammalian and piscine systems exhibit similar toxicological and adaptive responses to oxidative stress. This suggests that piscine models, in addition to traditional mammalian models, may be useful for further understanding the mechanisms underlying the oxidative stress response. Images Figure 1 Figure 2 Figure 3 PMID:9637794

  17. Oxidative and nitrosative stress in Staphylococcus aureus biofilm.

    PubMed

    Arce Miranda, Julio E; Sotomayor, Claudia E; Albesa, Inés; Paraje, María G

    2011-02-01

    Diverse chemical and physical agents can alter cellular functions associated with oxidative metabolism, thus stimulating the production of reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI) in planktonic bacterial physiology. However, more research is necessary to determine the precise role of cellular stress in biofilm. The present study was designed to address the issues of Staphylococcus aureus biofilm formation with respect to the generation of oxidative and nitrosative stress. We studied three pathogenic S. aureus clinical strains and an ATCC strain exposed to a different range of culture conditions (time, temperature, pH, reduction and atmospheric conditions) using quantitative methods of biofilm detection. We observed that cellular stress could be produced inside biofilms, thereby affecting their growth, resulting in an increase of ROS and RNI production, and a decrease of the extracellular matrix under unfavorable conditions. These radical oxidizers could then accumulate in an extracellular medium and thus affect the matrix. These results contribute to a better understanding of the processes that enable adherent biofilms to grow on inert surfaces and lead to an improved knowledge of ROS and RNI regulation, which may help to clarify the relevance of biofilm formation in medical devices.

  18. Neuro-oxidative-nitrosative stress in sepsis.

    PubMed

    Berg, Ronan M G; Møller, Kirsten; Bailey, Damian M

    2011-07-01

    Neuro-oxidative-nitrosative stress may prove the molecular basis underlying brain dysfunction in sepsis. In the current review, we describe how sepsis-induced reactive oxygen and nitrogen species (ROS/RNS) trigger lipid peroxidation chain reactions throughout the cerebrovasculature and surrounding brain parenchyma, due to failure of the local antioxidant systems. ROS/RNS cause structural membrane damage, induce inflammation, and scavenge nitric oxide (NO) to yield peroxynitrite (ONOO(-)). This activates the inducible NO synthase, which further compounds ONOO(-) formation. ROS/RNS cause mitochondrial dysfunction by inhibiting the mitochondrial electron transport chain and uncoupling oxidative phosphorylation, which ultimately leads to neuronal bioenergetic failure. Furthermore, in certain 'at risk' areas of the brain, free radicals may induce neuronal apoptosis. In the present review, we define a role for ROS/RNS-mediated neuronal bioenergetic failure and apoptosis as a primary mechanism underlying sepsis-associated encephalopathy and, in sepsis survivors, permanent cognitive deficits.

  19. Does iodine biofortification affect oxidative metabolism in lettuce plants?

    PubMed

    Blasco, Begoña; Ríos, Juan Jose; Leyva, Rocío; Cervilla, Luis Miguel; Sánchez-Rodríguez, Eva; Rubio-Wilhelmi, María Mar; Rosales, Miguel Angel; Ruiz, Juan Manuel; Romero, Luis

    2011-09-01

    Plants produce low levels of reactive oxygen species (ROS), which form part of basic cell chemical communication; however, different types of stress can lead to an overexpression of ROS that can damage macromolecules essential for plant growth and development. Iodine is vital to human health, and iodine biofortification programs help improve the human intake through plant consumption. This biofortification process has been shown to influence the antioxidant capacity of lettuce plants, suggesting that the oxidative metabolism of the plant may be affected. The results of this study demonstrate that the response to oxidative stress is variable and depends on the form of iodine applied. Application of iodide (I(-)) to lettuce plants produces a reduction in superoxide dismutase (SOD) activity and an increase in catalase (CAT) and L-galactono dehydrogenase enzyme activities and in the activity of antioxidant compounds such as ascorbate (AA) and glutathione. This did not prove a very effective approach since a dose of 80 μM produced a reduction in the biomass of the plants. For its part, application of iodate (IO (3) (-) ) produced an increase in the activities of SOD, ascorbate peroxidase, and CAT, the main enzymes involved in ROS detoxification; it also increased the concentration of AA and the regenerative activities of the Halliwell-Asada cycle. These data confirm the non-phytotoxicity of IO (3) (-) since there is no lipid peroxidation or biomass reduction. According to our results, the ability of IO (3) (-) to induce the antioxidant system indicates that application of this form of iodine may be an effective strategy to improve the response of plants to different types of stress.

  20. Oxidative stress inhibits distant metastasis by human melanoma cells

    PubMed Central

    Piskounova, Elena; Agathocleous, Michalis; Murphy, Malea M.; Hu, Zeping; Huddlestun, Sara E.; Zhao, Zhiyu; Leitch, A. Marilyn; Johnson, Timothy M.; DeBerardinis, Ralph J.; Morrison, Sean J.

    2015-01-01

    Solid cancer cells commonly enter the blood and disseminate systemically but are highly inefficient at forming distant metastases for poorly understood reasons. We studied human melanomas that differed in their metastasis histories in patients and in their capacity to metastasize in NSG mice. All melanomas had high frequencies of cells that formed subcutaneous tumours, but much lower percentages of cells that formed tumours after intravenous or intrasplenic transplantation, particularly among inefficient metastasizers. Melanoma cells in the blood and visceral organs experienced oxidative stress not observed in established subcutaneous tumours. Successfully metastasizing melanomas underwent reversible metabolic changes during metastasis that increased their capacity to withstand oxidative stress, including increased dependence upon NADPH-generating enzymes in the folate pathway. Anti-oxidants promoted distant metastasis in NSG mice. Folate pathway inhibition using low-dose methotrexate, ALDH1L2 knockdown, or MTHFD1 knockdown inhibited distant metastasis without significantly affecting the growth of subcutaneous tumors in the same mice. Oxidative stress thus limits distant metastasis by melanoma cells in vivo. PMID:26466563

  1. Oxidative stress as a cofactor in spinocerebellar ataxia type 2.

    PubMed

    Guevara-García, Mariela; Gil-del Valle, Lizette; Velásquez-Pérez, Luis; García-Rodríguez, Julio César

    2012-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a redox-sensitive neurodegenerative disease affecting the cerebellum, fibre connections in the cerebellum, the peripheral nervous system, and extracerebellar central pathways. Currently, Cuba has the highest reported global rate for this disease. The aim of this review article is to summarize and discuss the current knowledge about evidence of oxidative stress during SCA2. Recent reports have suggested that ataxin 2 and other related factors contribute to the redox imbalance in this disease. It is important to recognize and clarify the molecular mechanisms associated with the redox imbalance to consider ataxias innovative approaches to counteract oxidative stress-induced tissue damage, through alternative therapeutic or nutritional intervention in SCA2 and related diseases.

  2. Endothelial dysfunction and preeclampsia: role of oxidative stress

    PubMed Central

    Sánchez-Aranguren, Lissette C.; Prada, Carlos E.; Riaño-Medina, Carlos E.; Lopez, Marcos

    2014-01-01

    Preeclampsia (PE) is an often fatal pathology characterized by hypertension and proteinuria at the 20th week of gestation that affects 5–10% of the pregnancies. The problem is particularly important in developing countries in where the incidence of hypertensive disorders of pregnancy is higher and maternal mortality rates are 20 times higher than those reported in developed countries. Risk factors for the development of PE include obesity, insulin resistance and hyperlipidemia that stimulate inflammatory cytokine release and oxidative stress leading to endothelial dysfunction (ED). However, how all these clinical manifestations concur to develop PE is still not very well understood. The related poor trophoblast invasion and uteroplacental artery remodeling described in PE, increases reactive oxygen species (ROS), hypoxia and ED. Here we aim to review current literature from research showing the interplay between oxidative stress, ED and PE to the outcomes of current clinical trials aiming to prevent PE with antioxidant supplementation. PMID:25346691

  3. [Oxidative stress and antioxitant therapy of chronic periodontitis].

    PubMed

    Shen, Y X; Guo, S J; Wu, Y F

    2016-07-01

    Chronic periodontitis is a progressive, infectious inflammation disease, caused by the dysbiosis of oral resident flora, leading to the destruction of periodontium. The onset of pathogenic microorganisms is the etiological factor of periodontitis, while the immuno-inflammatory response affects the progression of the disease. Under chronic periodontitis, oxidative stress occurs when excessive reactive oxygen species are produced and exceed the compensative capacity of the organism. Oxidative stress leads to the destruction of periodontium, in a direct way(damaging the biomolecule) or an indirect way(enhancing the produce of inflammatory cytokine and destructive enzymes). Therefore, as the antagonist of the reactive oxygen species, antioxidants may be helpful to treat the chronic periodontitis. This paper reviewed relevant literatures about the destructive role of excessive reactive oxygen species and protective role of antioxidants in chronic periodontitis.

  4. Neuroprotective effects of sildenafil against oxidative stress and memory dysfunction in mice exposed to noise stress.

    PubMed

    Sikandaner, Hu Erxidan; Park, So Young; Kim, Min Jung; Park, Shi Nae; Yang, Dong Won

    2017-02-15

    Noise exposure has been well characterized as an environmental stressor, and is known to have auditory and non-auditory effects. Phosphodiesterase 5 (PDE5) inhibitors affect memory and hippocampus plasticity through various signaling cascades which are regulated by cGMP. In this study, we investigated the effects of sildenafil on memory deficiency, neuroprotection and oxidative stress in mice caused by chronic noise exposure. Mice were exposed to noise for 4h every day up to 14days at 110dB SPL of noise level. Sildenafil (15mg/kg) was orally administered 30min before noise exposure for 14days. Behavioral assessments were performed using novel object recognition (NOR) test and radial arm maze (RAM) test. Higher levels of memory dysfunction and oxidative stress were observed in noise alone-induced mice compared to control group. Interestingly, sildenafil administration increased memory performance, decreased oxidative stress, and increased neuroprotection in the hippocampus region of noise alone-induced mice likely through affecting memory related pathways such as cGMP/PKG/CREB and p25/CDK5, and induction of free radical scavengers such as SOD1, SOD2, SOD3, Prdx5, and catalase in the brain of stressed mice.

  5. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

    PubMed

    Liu, Shaobin; Zeng, Tingying Helen; Hofmann, Mario; Burcombe, Ehdi; Wei, Jun; Jiang, Rongrong; Kong, Jing; Chen, Yuan

    2011-09-27

    Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model-Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O(2)(•-)) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves as redox state mediator in bacteria. Conductive rGO and Gt have higher oxidation capacities than insulating GO and GtO. Results suggest that antimicrobial actions are contributed by both membrane and oxidation stress. We propose that a three-step antimicrobial mechanism, previously used for carbon nanotubes, is applicable to graphene-based materials. It includes initial cell deposition on graphene-based materials, membrane stress caused by direct contact with sharp nanosheets, and the ensuing superoxide anion-independent oxidation. We envision that physicochemical properties of graphene-based materials, such as density of functional groups, size, and conductivity, can be precisely tailored to either reducing their health and environmental risks or increasing their application potentials.

  6. Oxidative stress and antioxidant status in patients with complicated urolithiasis

    PubMed Central

    E, Ceban; P, Banov; A, Galescu; V, Botnari

    2016-01-01

    In recent years, intense efforts have been made to clarify the pathogenesis of urolithiasis, which affects more than 10% of the population of developed countries. Currently, a number of studies have assumed a key role in the pathogenesis of oxalate urolithiasis, which is the most common one that belongs to the active forms of oxygen generated in the kidney, as a result of the activation of free radical oxidation that occurs in the interaction of calcium oxalate crystals with renal tubular epithelial cells. In the current work, oxidant and antioxidant status were assessed in the blood of patients with complicated urolithiasis pre - and post surgery. The surgical treatment of complicated urolithiasis leads a decrease of the oxidative stress and an increase in the potential of antiradical and antiperoxidative protection. PMID:27974930

  7. Oxidative stress and antioxidant status in patients with complicated urolithiasis.

    PubMed

    E, Ceban; P, Banov; A, Galescu; V, Botnari

    2016-01-01

    In recent years, intense efforts have been made to clarify the pathogenesis of urolithiasis, which affects more than 10% of the population of developed countries. Currently, a number of studies have assumed a key role in the pathogenesis of oxalate urolithiasis, which is the most common one that belongs to the active forms of oxygen generated in the kidney, as a result of the activation of free radical oxidation that occurs in the interaction of calcium oxalate crystals with renal tubular epithelial cells. In the current work, oxidant and antioxidant status were assessed in the blood of patients with complicated urolithiasis pre - and post surgery. The surgical treatment of complicated urolithiasis leads a decrease of the oxidative stress and an increase in the potential of antiradical and antiperoxidative protection.

  8. Modeling Oxidation Induced Stresses in Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Freborg, A. M.; Petrus, G. J.; Brindley, William J.

    1998-01-01

    The use of thermal barrier coatings (TBC's) in gas turbines has increased dramatically in recent years, due mainly to the need for component protection from ever increasing service temperatures. Oxidation of the bond coat has been identified as an important contributing factor to spallation of the ceramic top coat during service. Additional variables found to influence TBC thermal cycle life include bond coat coefficient of thermal expansion, creep behavior of both the ceramic and bond coat layers, and modulus of elasticity. The purpose of this work was to characterize the effects of oxidation on the stress states within the TBC system, as well as to examine the interaction of oxidation with other factors affecting TBC life.

  9. Oxidative Stress and the Homeodynamics of Iron Metabolism

    PubMed Central

    Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586

  10. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  11. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels.

    PubMed

    Hermann, Anton; Sitdikova, Guzel F; Weiger, Thomas M

    2015-08-17

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences.

  12. Oxidative Stress and Autophagy in Cardiovascular Homeostasis

    PubMed Central

    Morales, Cyndi R.; Pedrozo, Zully; Lavandero, Sergio

    2014-01-01

    Abstract Significance: Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. Recent Advances: ROS/RNS and autophagy communicate with each other via both transcriptional and post-translational events. This cross talk, in turn, regulates the structural integrity of cardiomyocytes, promotes proteostasis, and reduces inflammation, events critical to disease pathogenesis. Critical Issues: Dysregulation of either autophagy or redox state has been implicated in many cardiovascular diseases. Cardiomyocytes are rich in mitochondria, which make them particularly sensitive to oxidative damage. Maintenance of mitochondrial homeostasis and elimination of defective mitochondria are each critical to the maintenance of redox homeostasis. Future Directions: The complex interplay between autophagy and oxidative stress underlies a wide range of physiological and pathological events and its elucidation holds promise of potential clinical applicability. Antioxid. Redox Signal. 20, 507–518. PMID:23641894

  13. Oxidative stress, thyroid dysfunction & Down syndrome

    PubMed Central

    Campos, Carlos; Casado, Ángela

    2015-01-01

    Down syndrome (DS) is one of the most common chromosomal disorders, occurring in one out of 700-1000 live births, and the most common cause of mental retardation. Thyroid dysfunction is the most typical endocrine abnormality in patients with DS. It is well known that thyroid dysfunction is highly prevalent in children and adults with DS and that both hypothyroidism and hyperthyroidism are more common in patients with DS than in the general population. Increasing evidence has shown that DS individuals are under unusual increased oxidative stress, which may be involved in the higher prevalence and severity of a number of pathologies associated with the syndrome, as well as the accelerated ageing observed in these individuals. The gene for Cu/Zn superoxide dismutase (SOD1) is coded on chromosome 21 and it is overexpressed (~50%) resulting in an increase of reactive oxygen species (ROS) due to overproduction of hydrogen peroxide (H2O2). ROS leads to oxidative damage of DNA, proteins and lipids, therefore, oxidative stress may play an important role in the pathogenesis of DS. PMID:26354208

  14. Oxidative stress and longevity in Caenorhabditis elegans as mediated by SKN-1.

    PubMed

    Park, Sang-Kyu; Tedesco, Patricia M; Johnson, Thomas E

    2009-06-01

    Oxidative stress has been hypothesized to play a role in normal aging. The response to oxidative stress is regulated by the SKN-1 transcription factor, which also is necessary for intestinal development in Caenorhabditis elegans. Almost a thousand genes including the antioxidant and heat-shock responses, as well as genes responsible for xenobiotic detoxification were induced by the oxidative stress which was found using transcriptome analysis. There were also 392 down-regulated genes including many involved in metabolic homeostasis, organismal development, and reproduction. Many of these oxidative stress-induced transcriptional changes are dependent on SKN-1 action; the induction of the heat-shock response is not. When RNAi to inhibit genes was used, most had no effect on either resistance to oxidative stress or longevity; however two SKN-1-dependent genes, nlp-7 and cup-4, that were up-regulated by oxidative stress were found to be required for resistance to oxidative stress and for normal lifespan. nlp-7 encodes a neuropeptide-like protein, expressed in neurons, while cup-4 encodes a coelomocyte-specific, ligand-gated ion channel. RNAi of nlp-7 or cup-4 increased sensitivity to oxidative stress and reduced lifespan. Among down-regulated genes, only inhibition of ent-1, a nucleoside transporter, led to increased resistance to oxidative stress; inhibition had no effect on lifespan. In contrast, RNAi of nhx-2, a Na(+)/H(+) exchanger, extended lifespan significantly without affecting sensitivity to oxidative stress. These findings showed that a transcriptional shift from growth and maintenance towards the activation of cellular defense mechanisms was caused by the oxidative stress; many of these transcriptional alterations are SKN-1 dependent.

  15. Flavonoids and oxidative stress in Drosophila melanogaster.

    PubMed

    Sotibrán, América Nitxin Castañeda; Ordaz-Téllez, María Guadalupe; Rodríguez-Arnaiz, Rosario

    2011-11-27

    Flavonoids are a family of antioxidants that are widely represented in fruits, vegetables, dry legumes, and chocolate, as well as in popular beverages, such as red wine, coffee, and tea. The flavonoids chlorogenic acid, kaempferol, quercetin and quercetin 3β-d-glycoside were investigated for genotoxicity using the wing somatic mutation and recombination test (SMART). This test makes use of two recessive wing cell markers: multiple wing hairs (mwh) and flare (flr(3)), which are mutations located on the left arm of chromosome 3 of Drosophila melanogaster and are indicative of both mitotic recombination and various types of mutational events. In order to test the antioxidant capacities of the flavonoids, experiments were conducted with various combinations of oxidants and polyphenols. Oxidative stress was induced using hydrogen peroxide, the Fenton reaction and paraquat. Third-instar transheterozygous larvae were chronically treated for all experiments. The data obtained in this study showed that, at the concentrations tested, the flavonoids did not induce somatic mutations or recombination in D. melanogaster with the exception of quercetin, which proved to be genotoxic at only one concentration. The oxidants hydrogen peroxide and the Fenton reaction did not induce mutations in the wing somatic assay of D. melanogaster, while paraquat and combinations of flavonoids produced significant numbers of small single spots. Quercetin 3β-d-glycoside mixed with paraquat was shown to be desmutagenic. Combinations of the oxidants with the other flavonoids did not show any antioxidant activity.

  16. Oxidative stress and antioxidants: Distress or eustress?

    PubMed

    Niki, Etsuo

    2016-04-01

    There is a growing consensus that reactive oxygen species (ROS) are not just associated with various pathologies, but that they act as physiological redox signaling messenger with important regulatory functions. It is sometimes stated that "if ROS is a physiological signaling messenger, then removal of ROS by antioxidants such as vitamins E and C may not be good for human health." However, it should be noted that ROS acting as physiological signaling messenger and ROS removed by antioxidants are not the same. The lipid peroxidation products of polyunsaturated fatty acids and cholesterol induce adaptive response and enhance defense capacity against subsequent oxidative insults, but it is unlikely that these lipid peroxidation products are physiological signaling messenger produced on purpose. The removal of ROS and inhibition of lipid peroxidation by antioxidants should be beneficial for human health, although it has to be noted also that they may not be an effective inhibitor of oxidative damage mediated by non-radical oxidants. The term ROS is vague and, as there are many ROS and antioxidants which are different in chemistry, it is imperative to explicitly specify ROS and antioxidant to understand the effects and role of oxidative stress and antioxidants properly.

  17. Biocompatibility of implantable materials: An oxidative stress viewpoint.

    PubMed

    Mouthuy, Pierre-Alexis; Snelling, Sarah J B; Dakin, Stephanie G; Milković, Lidija; Gašparović, Ana Čipak; Carr, Andrew J; Žarković, Neven

    2016-12-01

    Oxidative stress occurs when the production of oxidants surpasses the antioxidant capacity in living cells. Oxidative stress is implicated in a number of pathological conditions such as cardiovascular and neurodegenerative diseases but it also has crucial roles in the regulation of cellular activities. Over the last few decades, many studies have identified significant connections between oxidative stress, inflammation and healing. In particular, increasing evidence indicates that the production of oxidants and the cellular response to oxidative stress are intricately connected to the fate of implanted biomaterials. This review article provides an overview of the major mechanisms underlying the link between oxidative stress and the biocompatibility of biomaterials. ROS, RNS and lipid peroxidation products act as chemo-attractants, signalling molecules and agents of degradation during the inflammation and healing phases. As chemo-attractants and signalling molecules, they contribute to the recruitment and activation of inflammatory and healing cells, which in turn produce more oxidants. As agents of degradation, they contribute to the maturation of the extracellular matrix at the healing site and to the degradation of the implanted material. Oxidative stress is itself influenced by the material properties, such as by their composition, their surface properties and their degradation products. Because both cells and materials produce and react with oxidants, oxidative stress may be the most direct route mediating the communication between cells and materials. Improved understanding of the oxidative stress mechanisms following biomaterial implantation may therefore help the development of new biomaterials with enhanced biocompatibility.

  18. Air pollution and circulating biomarkers of oxidative stress

    PubMed Central

    Staimer, Norbert; Vaziri, Nosratola D.

    2013-01-01

    Chemical components of air pollutant exposures that induce oxidative stress and subsequent inflammation may be partly responsible for associations of cardiovascular morbidity and mortality with airborne particulate matter and combustion-related pollutant gasses. However, epidemiologic evidence regarding this is limited. An exposure-assessment approach is to measure the oxidative potential of particle mixtures because it is likely that hundreds of correlated chemicals are involved in overall effects of air pollution on health. Oxidative potential likely depends on particle composition and size distribution, especially ultrafine particle concentration, and on transition metals and certain semivolatile and volatile organic chemicals. For health effects, measuring systemic oxidative stress in the blood is one feasible approach, but there is no universal biomarker of oxidative stress and there are many potential target molecules (lipids, proteins, DNA, nitric oxide, etc.), which may be more or less suitable for specific study goals. Concurrent with the measurement of oxidative stress, it is important to measure gene and/or protein expression of endogenous antioxidant enzymes because they can modify relations between oxidative stress biomarkers and air pollutants. Conversely, the expression and activities of these enzymes are modified by oxidative stress. This interplay will likely determine the observed effects of air pollutants on systemic inflammatory and thrombotic mediators and related clinical outcomes. Studies are needed to assess the reliability and validity of oxidative stress biomarkers, evaluate differences in associations between oxidative stress biomarkers and various pollutant measurements (mass, chemical components, and oxidative potential), and evaluate impacts of antioxidant responses on these relations. PMID:23626660

  19. Concepts of oxidative stress and antioxidant defense in Crohn's disease.

    PubMed

    Alzoghaibi, Mohammed A

    2013-10-21

    Oxygen free radical and lipid peroxides (oxidative stress) are highly reactive and represent very damaging compounds. Oxidative stress could be a major contributing factor to the tissue injury and fibrosis that characterize Crohn's disease. An imbalance between increased reactive oxygen species levels and decreased antioxidant defenses occurs in Crohn's patients. Decreased blood levels of vitamins C and E and decreased intestinal mucosal levels of CuZn superoxide dismutase, glutathione, vitamin A, C, E, and β-carotene have been reported for Crohn's patients. Increased levels of proinflammatory cytokines, such as interleukin-1 and -8 and tumor necrosis factor, have been detected in inflammatory bowel disease. Oxidative stress significantly increased the production of neutrophils, chemokines, and interleukin-8. These effects were inhibited by antioxidant vitamins and arachidonic acid metabolite inhibitors in human intestinal smooth muscle cells isolated from the bowels of Crohn's disease patients. The main pathological feature of Crohn's disease is an infiltration of polymorphonuclear neutrophils and mononuclear cells into the affected part of the intestine. Activated neutrophils produce noxious substances that cause inflammation and tissue injury. Due to the physiological and biochemical actions of reactive oxygen species and lipid peroxides, many of the clinical and pathophysiological features of Crohn's disease might be explained by an imbalance of increased reactive oxygen species and a net decrease of antioxidant molecules. This review describes the general concepts of free radical, lipid peroxide and antioxidant activities and eventually illustrates their interferences in the development of Crohn's strictures.

  20. Markers of Oxidative Stress in Pregnant Women with Sleep Disturbances

    PubMed Central

    Rajendiran, Soundravally; Nimesh, Archana; Ananthanarayanan, P. H.; Dhiman, Pooja

    2015-01-01

    Objective The quality and duration of sleep is impaired during pregnancy. Our study aimed to determine whether maternal sleep deprivation occurring during the second and third trimester of pregnancy could alter fetal well-being with respect to birth weight and APGAR score by altering the inflammatory status and oxidative stress in the mothers.  Methods Sleep adequacy was assessed using the Pittsburgh Sleep Quality Index (PSQI). We investigated the inflammatory status and oxidative stress at term in the blood of pregnant subjects with and without sleep deprivation by measuring the levels of protein-bound sialic acid (PBSA), high-sensitivity C-reactive protein (hsCRP), malondialdehyde (MDA) and protein carbonyl (PCO). Homocysteine (Hcy) and its vitamin determinants were also measured. Fetal outcome with respect to birth weight and APGAR score were compared between study subjects.  Results A significant increase was observed in the levels of hsCRP, PBSA, Hcy, MDA, and PCO, in the sleep-deprived group when compared to the control group. Fetal outcome at birth showed a significant difference between the cases with high sleep deprivation and those with low sleep deprivation.  Conclusion Sleep deprivation in pregnancy leads to an increase in the inflammatory parameters, oxidative stress, and Hcy levels. Fetal outcome at birth was affected more in mothers with high sleep deprivation than those with low sleep deprivation. Follow-up in these babies are needed to reveal any differences in their growth and development. PMID:26366260

  1. Higher in vitro resistance to oxidative stress in extra-pair offspring.

    PubMed

    Losdat, S; Helfenstein, F; Saladin, V; Richner, H

    2011-11-01

    Oxidative stress is considered to act as a universal physiological constraint in life-history evolution of animals. This should be of interest for extra-pair paternity behaviour, and we tested here the prediction that offspring arising from extra-pair matings of female great tits show higher resistance to oxidative stress than within-pair offspring. Resistance to oxidative stress, measured as the whole blood resistance to a controlled free-radical attack, was significantly higher for extra-pair offspring as predicted although these were not heavier or in better body condition than within-pair offspring. Since resistance to oxidative stress has been suggested to enhance survival and reproductive rates, extra-pair offspring with superior resistance to oxidative stress, be it through maternal effects or paternal inheritance, may achieve higher fitness and thus provide significant indirect fitness benefits to their mothers. In addition, because oxidative stress affects colour signals and sperm traits, females may also gain fitness benefits by producing sons that are more attractive (sexy-sons hypothesis) and have sperm of superior quality (sexy-sperm hypothesis). Heritability of resistance to oxidative stress as well as maternal effects may both act as proximate mechanisms for the observed result. Disentangling these two mechanisms would require an experimental approach. Future long-term studies should also aim at experimentally testing whether higher resistance to oxidative stress of EP nestlings indeed translates into fitness benefits to females.

  2. Acute stress does not affect risky monetary decision-making.

    PubMed

    Sokol-Hessner, Peter; Raio, Candace M; Gottesman, Sarah P; Lackovic, Sandra F; Phelps, Elizabeth A

    2016-12-01

    The ubiquitous and intense nature of stress responses necessitate that we understand how they affect decision-making. Despite a number of studies examining risky decision-making under stress, it is as yet unclear whether and in what way stress alters the underlying processes that shape our choices. This is in part because previous studies have not separated and quantified dissociable valuation and decision-making processes that can affect choices of risky options, including risk attitudes, loss aversion, and choice consistency, among others. Here, in a large, fully-crossed two-day within-subjects design, we examined how acute stress alters risky decision-making. On each day, 120 participants completed either the cold pressor test or a control manipulation with equal probability, followed by a risky decision-making task. Stress responses were assessed with salivary cortisol. We fit an econometric model to choices that dissociated risk attitudes, loss aversion, and choice consistency using hierarchical Bayesian techniques to both pool data and allow heterogeneity in decision-making. Acute stress was found to have no effect on risk attitudes, loss aversion, or choice consistency, though participants did become more loss averse and more consistent on the second day relative to the first. In the context of an inconsistent previous literature on risk and acute stress, our findings provide strong and specific evidence that acute stress does not affect risk attitudes, loss aversion, or consistency in risky monetary decision-making.

  3. Effect of oxidative stress on Rho kinase II and smooth muscle contraction in rat stomach.

    PubMed

    Al-Shboul, Othman; Mustafa, Ayman

    2015-06-01

    Recent studies have shown that both Rho kinase signaling and oxidative stress are involved in the pathogenesis of a number of human diseases, such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the gastrointestinal (GI) smooth muscle Rho kinase pathway. The aim of the current study was to investigate the effect of oxidative stress on Rho kinase II and muscle contraction in rat stomach. The peroxynitrite donor 3-morpholinosydnonimine (SIN-1), hydrogen peroxide (H2O2), and peroxynitrite were used to induce oxidative stress. Rho kinase II expression and ACh-induced activity were measured in control and oxidant-treated cells via specifically designed enzyme-linked immunosorbent assay (ELISA) and activity assay kits, respectively. Single smooth muscle cell contraction was measured via scanning micrometry in the presence or absence of the Rho kinase blocker, Y-27632 dihydrochloride. All oxidant agents significantly increased ACh-induced Rho kinase II activity without affecting its expression level. Most important, oxidative stress induced by all three agents augmented ACh-stimulated muscle cell contraction, which was significantly inhibited by Y-27632. In conclusion, oxidative stress activates Rho kinase II and enhances contraction in rat gastric muscle, suggesting an important role in GI motility disorders associated with oxidative stress.

  4. PHEOCHROMOCYTOMA: A CATECHOLAMINE AND OXIDATIVE STRESS DISORDER

    PubMed Central

    Pacak, Karel

    2012-01-01

    The WHO classification of endocrine tumors defines pheochromocytoma as a tumor arising from chromaffin cells in the adrenal medulla — an intra-adrenal paraganglioma. Closely related tumors of extra-adrenal sympathetic and parasympathetic paraganglia are classified as extra-adrenal paragangliomas. Almost all pheochromocytomas and paragangliomas produce catecholamines. The concentrations of catecholamines in pheochromocytoma tissues are enormous, potentially creating a volcano that can erupt at any time. Significant eruptions result in catecholamine storms called “attacks” or “spells”. Acute catecholamine crisis can strike unexpectedly, leaving traumatic memories of acute medical disaster that champions any intensive care unit. A very well-defined genotype-biochemical phenotype relationship exists, guiding proper and cost-effective genetic testing of patients with these tumors. Currently, the production of norepinephrine and epinephrine is optimally assessed by the measurement of their O-methylated metabolites, normetanephrine or metanephrine, respectively. Dopamine is a minor component, but some paragangliomas produce only this catecholamine or this together with norepinephrine. Methoxytyramine, the O-methylated metabolite of dopamine, is the best biochemical marker of these tumors. In those patients with equivocal biochemical results, a modified clonidine suppression test coupled with the measurement of plasma normetanephrine has recently been introduced. In addition to differences in catecholamine enzyme expression, the presence of either constitutive or regulated secretory pathways contributes further to the very unique mutation-dependent catecholamine production and release, resulting in various clinical presentations. Oxidative stress results from a significant imbalance between levels of prooxidants, generated during oxidative phosphorylation, and antioxidants. The gradual accumulation of prooxidants due to metabolic oxidative stress results in proto

  5. Statins and oxidative stress in chronic heart failure.

    PubMed

    Costa, Sónia; Reina-Couto, Marta; Albino-Teixeira, António; Sousa, Teresa

    2016-01-01

    Statins are the most commonly prescribed drugs for the treatment of dyslipidemia. They are also recommended in primary and secondary prevention of cardiovascular disease. In addition to decreasing cholesterol synthesis, statins interfere with the synthesis of isoprenoid intermediates, which may explain many of their pleiotropic properties, including their antioxidant effects. Oxidative stress is defined as an imbalance between the synthesis of reactive oxygen species and their elimination by antioxidant defense systems, with a prevailing pro-oxidant status that results in macromolecular damage and disruption of cellular redox signaling. Reactive oxygen species interfere with various processes that affect cardiac structure and function, contributing to the contractile dysfunction, myocardial hypertrophy and fibrosis observed in the pathophysiology of heart failure. By regulating several molecular pathways that control nicotinamide adenine dinucleotide phosphate oxidase and endothelial nitric oxide synthase activity, statins help restore redox homeostasis. These drugs also contribute to the control of inflammation and appear to have a protective role in various diseases. The results of observational studies and clinical trials with statins in heart failure have not been consensual. This review aims to analyze the role of oxidative stress in heart failure and the molecular mechanisms underlying statins' antioxidant properties. It also examines current scientific evidence on the use of these drugs as a specific treatment for heart failure.

  6. Positive affect, negative affect, stress, and social support as mediators of the forgiveness-health relationship.

    PubMed

    Green, Michelle; Decourville, Nancy; Sadava, Stanley

    2012-01-01

    Structural equation modeling was used to test a model in which positive affect, negative affect, perceived stress, and social support were hypothesized to mediate the relationship between forgiveness and mental and physical health. Six hundred and twenty-three undergraduates completed a battery of self-report measures. Results of the analyses indicated that the forgiveness-health relation was mediated by positive affect, negative affect, stress, and the interrelationship between negative affect and stress. There was limited support for social support and the interrelationship between positive affect and social support as mediators. The results suggested that the relationship between forgiveness and health is mediated rather than direct. Implications and directions for future research are discussed.

  7. Oxidative stress: Biomarkers and novel therapeutic pathways.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2010-03-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.

  8. OXIDATIVE STRESS: BIOMARKERS AND NOVEL THERAPEUTIC PATHWAYS

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2010-01-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation. PMID:20064603

  9. Oxidative Stress in Genetic Mouse Models of Parkinson's Disease

    PubMed Central

    Varçin, Mustafa; Bentea, Eduard; Michotte, Yvette; Sarre, Sophie

    2012-01-01

    There is extensive evidence in Parkinson's disease of a link between oxidative stress and some of the monogenically inherited Parkinson's disease-associated genes. This paper focuses on the importance of this link and potential impact on neuronal function. Basic mechanisms of oxidative stress, the cellular antioxidant machinery, and the main sources of cellular oxidative stress are reviewed. Moreover, attention is given to the complex interaction between oxidative stress and other prominent pathogenic pathways in Parkinson's disease, such as mitochondrial dysfunction and neuroinflammation. Furthermore, an overview of the existing genetic mouse models of Parkinson's disease is given and the evidence of oxidative stress in these models highlighted. Taken into consideration the importance of ageing and environmental factors as a risk for developing Parkinson's disease, gene-environment interactions in genetically engineered mouse models of Parkinson's disease are also discussed, highlighting the role of oxidative damage in the interplay between genetic makeup, environmental stress, and ageing in Parkinson's disease. PMID:22829959

  10. Chasing great paths of Helmut Sies "Oxidative Stress".

    PubMed

    Majima, Hideyuki J; Indo, Hiroko P; Nakanishi, Ikuo; Suenaga, Shigeaki; Matsumoto, Ken-Ichiro; Matsui, Hirofumi; Minamiyama, Yukiko; Ichikawa, Hiroshi; Yen, Hsiu-Chuan; Hawkins, Clare L; Davies, Michael J; Ozawa, Toshihiko; St Clair, Daret K

    2016-04-01

    Prof. Dr. Helmut Sies is a pioneer of "Oxidative Stress", and has published over 18 papers with the name of "Oxidative Stress" in the title. He has been Editor-in-Chief of the journal "Archives of Biochemistry and Biophysics" for many years, and is a former Editor-in-Chief of the journal "Free Radical Research". He has clarified our understanding of the causes of chronic developing diseases, and has studied antioxidant factors. In this article, importance of "Oxidative Stress" and our mitochondrial oxidative stress studies; roles of mitochondrial ROS, effects of vitamin E and its homologues in oxidative stress-related diseases, effects of antioxidants in vivo and in vitro, and a mitochondrial superoxide theory for oxidative stress diseases and aging are introduced, and some of our interactions with Helmut are described, congratulating and appreciating his great path.

  11. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    SciTech Connect

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  12. Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule?

    PubMed

    Foucaud, L; Goulaouic, S; Bennasroune, A; Laval-Gilly, P; Brown, D; Stone, V; Falla, J

    2010-09-01

    The aim of this study was to investigate whether carbon black (CB) nanoparticles might induce toxicity to monocytic cells in vitro via an oxidative stress mechanism involving formation of the lipid peroxidation product 4-hydroxynonenal (4-HNE) and the subsequent role of 4-HNE in inducing further cytotoxic effects. ROS production in cells by CB nanoparticles was shown by the oxidation of DCFH after a short time exposure. These particles induced the formation of 4-HNE-protein adducts and significant modification of glutathione content corresponding to an increase of oxidized glutathione form (GSSG) and a decrease of total glutathione (GSX) content. These results attest to an oxidative stress induced by the carbon black nanoparticles, although no induction of HO-1 protein expression was detected. Concerning the effects of a direct exposure to 4-HNE, our results showed that 4-HNE is not cytotoxic for concentrations lower than 12.5 microM. By contrast, it provokes a very high cytotoxicity for concentrations above 25 microM. An induction of HO-1 expression was observed from concentrations above 5 microM of 4-HNE. Finally, glutathione content decreased significantly from 5 microM of 4-HNE but no modification was observed under this concentration. The discrepancy between effects of carbon black nanoparticles and 4-HNE on the intracellular markers of oxidative stress suggests that 4-HNE is not directly implied in the signalling of oxidative toxicity of nanoparticles but is an effective biomarker of oxidative effects of nanoparticles.

  13. Oxidative stress in marine environments: biochemistry and physiological ecology.

    PubMed

    Lesser, Michael P

    2006-01-01

    Oxidative stress-the production and accumulation of reduced oxygen intermediates such as superoxide radicals, singlet oxygen, hydrogen peroxide, and hydroxyl radicals-can damage lipids, proteins, and DNA. Many disease processes of clinical interest and the aging process involve oxidative stress in their underlying etiology. The production of reactive oxygen species is also prevalent in the world's oceans, and oxidative stress is an important component of the stress response in marine organisms exposed to a variety of insults as a result of changes in environmental conditions such as thermal stress, exposure to ultraviolet radiation, or exposure to pollution. As in the clinical setting, reactive oxygen species are also important signal transduction molecules and mediators of damage in cellular processes, such as apoptosis and cell necrosis, for marine organisms. This review brings together the voluminous literature on the biochemistry and physiology of oxidative stress from the clinical and plant physiology disciplines with the fast-increasing interest in oxidative stress in marine environments.

  14. Diabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy

    PubMed Central

    Muriach, María; Flores-Bellver, Miguel; Romero, Francisco J.; Barcia, Jorge M.

    2014-01-01

    Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation. PMID:25215171

  15. Diabetes and the brain: oxidative stress, inflammation, and autophagy.

    PubMed

    Muriach, María; Flores-Bellver, Miguel; Romero, Francisco J; Barcia, Jorge M

    2014-01-01

    Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation.

  16. Biomarkers of exposure to endogenous oxidative and aldehyde stress.

    PubMed

    Bruce, W Robert; Lee, Owen; Liu, Zhen; Marcon, Norman; Minkin, Salomon; O'Brien, Peter J

    2011-08-01

    We observed an unexpectedly strong association of three different endogenous aldehydes and noted that the association could be explained by multiple reactions in which oxidative stress increased the formation of endogenous aldehydes and endogenous aldehydes increased oxidative stress. These interactions make it reasonable to assess multiple exposures to endogenous oxidative and aldehyde stress with less specific measures such as advanced glycation end-products or protein carbonyls.

  17. Oxidative and nitrosative stress in ammonia neurotoxicity.

    PubMed

    Skowrońska, Marta; Albrecht, Jan

    2013-04-01

    Increased ammonia accumulation in the brain due to liver dysfunction is a major contributor to the pathogenesis of hepatic encephalopathy (HE). Fatal outcome of rapidly progressing (acute) HE is mainly related to cytotoxic brain edema associated with astrocytic swelling. An increase of brain ammonia in experimental animals or treatment of cultured astrocytes with ammonia generates reactive oxygen and nitrogen species in the target tissues, leading to oxidative/nitrosative stress (ONS). In cultured astrocytes, ammonia-induced ONS is invariably associated with the increase of the astrocytic cell volume. Interrelated mechanisms underlying this response include increased nitric oxide (NO) synthesis which is partly coupled to the activation of NMDA receptors and increased generation of reactive oxygen species by NADPH oxidase. ONS and astrocytic swelling are further augmented by excessive synthesis of glutamine (Gln) which impairs mitochondrial function following its accumulation in there and degradation back to ammonia ("the Trojan horse" hypothesis). Ammonia also induces ONS in other cell types of the CNS: neurons, microglia and the brain capillary endothelial cells (BCEC). ONS in microglia contributes to the central inflammatory response, while its metabolic and pathophysiological consequences in the BCEC evolve to the vasogenic brain edema associated with HE. Ammonia-induced ONS results in the oxidation of mRNA and nitration/nitrosylation of proteins which impact intracellular metabolism and potentiate the neurotoxic effects. Simultaneously, ammonia facilitates the antioxidant response of the brain, by activating astrocytic transport and export of glutathione, in this way increasing the availability of precursors of neuronal glutathione synthesis.

  18. The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori.

    PubMed

    Pelliciari, Simone; Vannini, Andrea; Roncarati, Davide; Danielli, Alberto

    2015-01-01

    The microaerophilic gastric pathogen Helicobacter pylori is exposed to oxidative stress originating from the aerobic environment, the oxidative burst of phagocytes and the formation of reactive oxygen species, catalyzed by iron excess. Accordingly, the expression of genes involved in oxidative stress defense have been repeatedly linked to the ferric uptake regulator Fur. Moreover, mutations in the Fur protein affect the resistance to metronidazole, likely due to loss-of-function in the regulation of genes involved in redox control. Although many advances in the molecular understanding of HpFur function were made, little is known about the mechanisms that enable Fur to mediate the responses to oxidative stress. Here we show that iron-inducible, apo-Fur repressed genes, such as pfr and hydA, are induced shortly after oxidative stress, while their oxidative induction is lost in a fur knockout strain. On the contrary, holo-Fur repressed genes, such as frpB1 and fecA1, vary modestly in response to oxidative stress. This indicates that the oxidative stress signal specifically targets apo-Fur repressed genes, rather than impairing indiscriminately the regulatory function of Fur. Footprinting analyses showed that the oxidative signal strongly impairs the binding affinity of Fur toward apo-operators, while the binding toward holo-operators is less affected. Further evidence is presented that a reduced state of Fur is needed to maintain apo-repression, while oxidative conditions shift the preferred binding architecture of Fur toward the holo-operator binding conformation, even in the absence of iron. Together the results demonstrate that the allosteric regulation of Fur enables transduction of oxidative stress signals in H. pylori, supporting the concept that apo-Fur repressed genes can be considered oxidation inducible Fur regulatory targets. These findings may have important implications in the study of H. pylori treatment and resistance to antibiotics.

  19. Alterations in magnesium and oxidative status during chronic emotional stress.

    PubMed

    Cernak, I; Savic, V; Kotur, J; Prokic, V; Kuljic, B; Grbovic, D; Veljovic, M

    2000-03-01

    Magnesium and oxidative status were investigated in young volunteers exposed to chronic stress (political intolerance, awareness of potential military attacks, permanent stand-by duty and reduced holidays more than 10 years) or subchronic stress consisting of everyday mortal danger in military actions lasting more than 3 months. Significant decreases in plasma ionized Mg2+, total Mg and ionized Ca2+ concentrations were found in both groups. Similarly, both study groups exhibited oxidative stress as assessed by increased plasma superoxide anions and malondialdehyde and modified antioxidant defense. There were no significant differences between the two stress groups. A negative correlation between magnesium balance and oxidative stress was observed suggesting that the same etiological factor (chronic stress) initiate decreases in both free and total magnesium concentrations and simultaneously increase oxidative stress intensity. These findings support the need for magnesium supplementation with antioxidant vitamins for people living in conditions of chronic stress.

  20. Amount and source of dietary copper affects small intestine morphology, duodenal lipid peroxidation, hepatic oxidative stress,and mRNA expression of hepatic copper regulatory proteins in weanling pigs.

    PubMed

    Fry, R S; Ashwell, M S; Lloyd, K E; O'Nan, A T; Flowers, W L; Stewart, K R; Spears, J W

    2012-09-01

    protein 17 was less (P = 0.01) in CuSO(4) and tended to be less (P = 0.08) in TBCC pigs vs. control pigs. Expression of antioxidant 1 mRNA was greater (P = 0.04) in TBCC pigs and tended to be greater (P = 0.06) in CuSO(4) pigs compared with control pigs. Results of this study indicated that, when fed at 225 mg Cu/kg diet, TBCC may cause less oxidative stress in the duodenum than CuSO(4). Feeding weanling pigs increased Cu resulted in modulation of certain Cu transporters and chaperones at the transcription level.

  1. Stress sensitivity and the development of affective disorders.

    PubMed

    Bale, Tracy L

    2006-11-01

    Depressive disorders are the most common form of mental illness in America, affecting females twice as often as males. The great variability of symptoms and responses to therapeutic treatment emphasize the complex underlying neurobiology of disease onset and progression. Evidence from human and animal studies reveals a vital link between individual stress sensitivity and the predisposition toward mood disorders. While the stress response is essential for maintenance of homeostasis and survival, chronic stress and maladaptive responses to stress insults can lead to depression or other affective disorders. A key factor in the mediation of stress responsivity is the neuropeptide corticotropin-releasing factor (CRF). Studies in animal models of heightened stress sensitivity have illustrated the involvement of CRF downstream neurotransmitter targets, including serotonin and norepinephrine, in the profound neurocircuitry failure that may underlie maladaptive coping strategies. Stress sensitivity may also be a risk factor in affective disorder development susceptibility. As females show an increased stress response and recovery time compared to males, they may be at an increased vulnerability for disease. Therefore, examination of sex differences in CRF and downstream targets may aid in the elucidation of the underlying causes of the increased disease presentation in females. While we continue to make progress in our understanding of mood disorder etiology, we still have miles to go before we sleep. As an encouraging number of new animal models of altered stress sensitivity and negative stress coping strategies have been developed, the future looks extremely promising for the possibility of a new generation of drug targets to be developed.

  2. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL

    PubMed Central

    Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R.; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  3. Targeting oxidative stress response by green tea polyphenols: clinical implications.

    PubMed

    Yiannakopoulou, Eugenia Ch

    2013-09-01

    Green tea polyphenols, the most interesting constituent of green tea leaves, have been shown to have both pro-oxidant and antioxidant properties. Both pro-oxidant and antioxidant properties are expected to contribute to modulation of oxidative stress response under ideal optimal dosage regimens. Exposure to a low concentration of a pro-oxidant prior to exposure to oxidative stress induces the expression of genes that code for proteins that induce adaptation in a subsequent oxidative stress. On the other hand, exposure to an antioxidant concurrently with exposure to the oxidative stress affords protection through free radical scavenging or through other indirect antioxidant mechanisms. In any case, the optimal conditions that afford protection from oxidative stress should be defined for any substance with redox properties. Green tea polyphenols, being naturally occurring substances, seem to be an ideal option for the modulation of oxidative stress response. This paper reviews available data on the pro-oxidant and antioxidant properties of green tea polyphenols focusing on their potential on the modulation of oxidative stress response.

  4. Effects of oxidative stress on erythrocyte deformability

    NASA Astrophysics Data System (ADS)

    Bayer, Rainer; Wasser, Gerd

    1996-05-01

    Hemolysis as a consequence of open heart surgery is well investigated and explained by the oxidative and/or mechanical stress produced, e.g. by the heart lung machine. In Europe O3 is widely used by physicians, dedicated to alternative medicine. They apply O3 mostly by means of the Major Autohematotherapy (MAH, a process of removing 50 - 100 ml of blood, adding O3 gas to it and returning it to the patient's body). No controlled studies on the efficacy of O3 are available so far, but several anecdotal cases appear to confirm that MAH improves microcirculation, possibly due to increased RBC flexibility. Most methods established to estimate RBC deformability are hard to standardize and include high error of measurement. For our present investigation we used the method of laser diffraction in combination with image analysis. The variation coefficient of the measurement is less than 1%. Previous investigations of our group have shown, that mechanical stress decreases deformability, already at rather low levels of mechanical stress which do not include hemolysis. On the other hand exposure to O2, H2O2 or O3 does not alter the deformability of RBC and--except O3--does not induce considerably hemolysis. However this only holds true if deformability (shear rates 36/s - 2620/s) is determined in isotonic solutions. In hypertonic solutions O3 decreases RBC deformability, but improves it in hypotonic solutions. The results indicate that peroxidative stress dehydrates RBC and reduces their size. To explain the positive effect of O3 on the mechanical fragility of RBC we tentatively assume, that the reduction of RBC size facilitates the feed through small pore filters. In consequence, the size reduction in combination with undisturbed deformability at iso-osmolarity may have a beneficial effect on microcirculation.

  5. Oxidative Stress and ADHD: A Meta-Analysis

    PubMed Central

    Joseph, Nidhin; Zhang-James, Yanli; Perl, Andras; Faraone, Stephen V.

    2017-01-01

    Objective To clarify the role of oxidative stress and antioxidant activity in ADHD. Method We examined the association of ADHD and oxidative stress by applying random effects meta-analysis to studies of oxidative stress and antioxidant status in medication naive patients with ADHD and controls. Results Six studies of a total of 231 ADHD patients and 207 controls met our selection criteria. The association between ADHD and antioxidant status was not significant. We found a significant association between ADHD and oxidative stress that could not be accounted for by publication bias. The significant association lost significance after correcting for intrastudy clustering. No one observation accounted for the positive result. Conclusion These results are preliminary given the small number of studies. They suggest that patients with ADHD have normal levels of antioxidant production, but that their response to oxidative stress is insufficient, leading to oxidative damage. PMID:24232168

  6. Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio).

    PubMed

    Brun, Nadja Rebecca; Christen, Verena; Furrer, Gerhard; Fent, Karl

    2014-10-07

    Indium and indium tin oxide (ITO) are extensively used in electronic technologies. They may be introduced into the environment during production, use, and leaching from electronic devices at the end of their life. At present, surprisingly little is known about potential ecotoxicological implications of indium contamination. Here, molecular effects of indium nitrate (In(NO3)3) and ITO nanoparticles were investigated in vitro in zebrafish liver cells (ZFL) cells and in zebrafish embryos and novel insights into their molecular effects are provided. In(NO3)3 led to induction of endoplasmic reticulum (ER) stress response, induction of reactive oxygen species (ROS) and induction of transcripts of pro-apoptotic genes and TNF-α in vitro at a concentration of 247 μg/L. In(NO3)3 induced the ER stress key gene BiP at mRNA and protein level, as well as atf6, which ultimately led to induction of the important pro-apoptotic marker gene chop. The activity of In(NO3)3 on ER stress induction was much stronger than that of ITO, which is explained by differences in soluble free indium ion concentrations. The effect was also stronger in ZFL cells than in zebrafish embryos. Our study provides first evidence of ER stress and oxidative stress induction by In(NO3)3 and ITO indicating a critical toxicological profile that needs further investigation.

  7. Biphasic regulation of lysosomal exocytosis by oxidative stress.

    PubMed

    Ravi, Sreeram; Peña, Karina A; Chu, Charleen T; Kiselyov, Kirill

    2016-11-01

    Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca(2+). We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.

  8. Oxidative stress, free radicals and protein peroxides.

    PubMed

    Gebicki, Janusz M

    2016-04-01

    Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione.

  9. The Oxygen Paradox, oxidative stress, and ageing.

    PubMed

    Davies, Kelvin J A

    2016-04-01

    Professor Helmut Sies is being lauded in this special issue of Archives of Biochemistry & Biophysics, on the occasion of his retirement as Editor-in-Chief. There is no doubt that Helmut has exerted an enormously positive influence on this journal, the fields of Biochemistry & Biophysics in general, and the areas of free radical and redox biology & medicine in particular. Helmut Sies' many discoveries about peroxide metabolism, glutathione, glutathione peroxidases, singlet oxygen, carotenoids in general and lycopene in particular, and flavonoids, fill the pages of his more than 600 publications. In addition, he will forever be remembered for coining the term 'oxidative stress' that is so widely used (and sometimes abused) by most of his colleagues.

  10. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases.

  11. Cerulein Pancreatitis: Oxidative Stress, Inflammation, and Apoptosis

    PubMed Central

    2008-01-01

    Cerulein pancreatitis is similar to human edematous pancreatitis, manifesting with dysregulation of digestive enzyme production and cytoplasmic vacuolization, the death of acinar cells, edema formation, and infiltration of inflammatory cells into the pancreas. Reactive oxygen species are involved in nuclear factor-κB activation, cytokine expression, apoptosis and pathogenesis of pancreatitis. There is recent evidence that cerulein activates NADPH oxidase, which is a major source of reactive oxygen species during inflammation and apoptosis in pancreatic acinar cells. In addition, the Janus kinase/signal transducer and activator of transcription pathway has been suggested as being involved in inflammatory signaling in the pancreas. This review discusses the involvement of oxidative stress in inflammation and apoptosis in pancreatic acinar cells stimulated with cerulein as an in vitro model of pancreatitis. PMID:20485614

  12. Thyroid Hormones, Oxidative Stress, and Inflammation

    PubMed Central

    Raimondo, Sebastiano; Olivieri, Giulio; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  13. Increased oxidative stress and impaired antioxidant response in Lafora disease.

    PubMed

    Romá-Mateo, Carlos; Aguado, Carmen; García-Giménez, José Luis; Ibáñez-Cabellos, José Santiago; Seco-Cervera, Marta; Pallardó, Federico V; Knecht, Erwin; Sanz, Pascual

    2015-01-01

    Lafora disease (LD, OMIM 254780, ORPHA501) is a fatal neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in the vast majority of cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin and malin. In the last years, several reports have revealed molecular details of these two proteins and have identified several processes affected in LD, but the pathophysiology of the disease still remains largely unknown. Since autophagy impairment has been reported as a characteristic treat in both Lafora disease cell and animal models, and as there is a link between autophagy and mitochondrial performance, we sought to determine if mitochondrial function could be altered in those models. Using fibroblasts from LD patients, deficient in laforin or malin, we found mitochondrial alterations, oxidative stress and a deficiency in antioxidant enzymes involved in the detoxification of reactive oxygen species (ROS). Similar results were obtained in brain tissue samples from transgenic mice deficient in either the EPM2A or EPM2B genes. Furthermore, in a proteomic analysis of brain tissue obtained from Epm2b-/- mice, we observed an increase in a modified form of peroxiredoxin-6, an antioxidant enzyme involved in other neurological pathologies, thus corroborating an alteration of the redox condition. These data support that oxidative stress produced by an increase in ROS production and an impairment of the antioxidant enzyme response to this stress play an important role in development of LD.

  14. Oxidative Stress and DNA Methylation in Prostate Cancer

    PubMed Central

    Donkena, Krishna Vanaja; Young, Charles Y. F.; Tindall, Donald J.

    2010-01-01

    The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy. PMID:20671914

  15. The Role of Oxidative Stress and Antioxidants in Liver Diseases.

    PubMed

    Li, Sha; Tan, Hor-Yue; Wang, Ning; Zhang, Zhang-Jin; Lao, Lixing; Wong, Chi-Woon; Feng, Yibin

    2015-11-02

    A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  16. Strategies for Reducing or Preventing the Generation of Oxidative Stress

    PubMed Central

    Poljsak, B.

    2011-01-01

    The reduction of oxidative stress could be achieved in three levels: by lowering exposure to environmental pollutants with oxidizing properties, by increasing levels of endogenous and exogenous antioxidants, or by lowering the generation of oxidative stress by stabilizing mitochondrial energy production and efficiency. Endogenous oxidative stress could be influenced in two ways: by prevention of ROS formation or by quenching of ROS with antioxidants. However, the results of epidemiological studies where people were treated with synthetic antioxidants are inconclusive and contradictory. Recent evidence suggests that antioxidant supplements (although highly recommended by the pharmaceutical industry and taken by many individuals) do not offer sufficient protection against oxidative stress, oxidative damage or increase the lifespan. The key to the future success of decreasing oxidative-stress-induced damage should thus be the suppression of oxidative damage without disrupting the wellintegrated antioxidant defense network. Approach to neutralize free radicals with antioxidants should be changed into prevention of free radical formation. Thus, this paper addresses oxidative stress and strategies to reduce it with the focus on nutritional and psychosocial interventions of oxidative stress prevention, that is, methods to stabilize mitochondria structure and energy efficiency, or approaches which would increase endogenous antioxidative protection and repair systems. PMID:22191011

  17. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    PubMed Central

    Li, Sha; Tan, Hor-Yue; Wang, Ning; Zhang, Zhang-Jin; Lao, Lixing; Wong, Chi-Woon; Feng, Yibin

    2015-01-01

    A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed. PMID:26540040

  18. Oxidative stress decreases with elevation in the lizard Psammodromus algirus.

    PubMed

    Reguera, Senda; Zamora-Camacho, Francisco J; Trenzado, Cristina E; Sanz, Ana; Moreno-Rueda, Gregorio

    2014-06-01

    Oxidative stress is considered one of the main ecological and evolutionary forces. Several environmental stressors vary geographically and thus organisms inhabiting different sites face different oxidant environments. Nevertheless, there is scarce information about how oxidative damage and antioxidant defences vary geographically in animals. Here we study how oxidative stress varies from lowlands (300-700 m asl) to highlands (2200-2500 m asl) in the lizard Psammodromus algirus. To accomplish this, antioxidant enzymatic activity (catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione transferase, DT-diaphorase) and lipid peroxidation were assayed in tissue samples from the lizards' tail. Lipid peroxidation was higher in individuals from lowlands than from highlands, indicating higher oxidative stress in lowland lizards. These results suggest that environmental conditions are less oxidant at high elevations with respect to low ones. Therefore, our study shows that oxidative stress varies geographically, which should have important consequences for our understanding of geographic variation in physiology and life-history of organisms.

  19. [Selenium and oxidative stress in cancer patients].

    PubMed

    Gorozhanskaia, É G; Sviridova, S P; Dobrovol'skaia, M M; Zybrikhina, G N; Kashnia, Sh R

    2013-01-01

    In order to identify the features of violations of free-radical processes in blood serum of 94 untreated cancer patients with different localization of the tumor (cancer of the stomach, colon, breast, ovarian, hemoblastoses) were determined selenium levels and indicators of oxidative stress (sum of metabolites of nitrogen--NOx, the level of superoxide dismutase--Cu/ZnSOD and malondiialdehyde-MDA, and the activity of catalase). In addition, 40 patients with malignant liver disease and clinical signs of liver failure in the early postoperative period was carried out a comparative evaluation of the efficacy of selenium-containing drug "Selenaze" (sodium selenite pentahydrate). It was found that selenium levels in cancer patients by 25-30% below the norm of 110-120 mg/l at a rate of 73.0 +/- 2.6 mg/l. Low levels of NOx was detected in patients with all tumor localizations (22.1 +/- 1.1 microM, with normal range 28.4 +/- 0.9 microM). The exceptions were patients with extensive malignant process in the liver, in which the NOx levels were significantly higher than normal (p < 0.001). The high level of NOx has a toxic effect on the hepatocyte, causing metabolic disorders and inflammatory-necrotic changes in the liver. Elevated levels of SOD and MDA in normal values of catalase activity was detected in all patients. The use of "Selenaze" in postoperative patients with tumors of the liver increased selenium levels by 10-12%, which was accompanied by a decrease in the content of SOD and NOx, and contributed to earlier recovery of detoxic and synthetic liver function. These findings point to an intensification of oxidative stress and metabolic disorders in the malignant process, which is the basis for metabolic correction.

  20. Traumatic stress, oxidative stress and posttraumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis

    PubMed Central

    Miller, Mark W.; Sadeh, Naomi

    2014-01-01

    Posttraumatic stress disorder (PTSD) is associated with elevated risk for a variety of age-related diseases and neurodegeneration. In this paper, we review evidence relevant to the hypothesis that chronic PTSD constitutes a form of persistent life stress that potentiates oxidative stress (OXS) and accelerates cellular aging. We provide an overview of empirical studies that have examined the effects of psychological stress on OXS, discuss the stress-perpetuating characteristics of PTSD, and then identify mechanisms by which PTSD might promote OXS and accelerated aging. We review studies on OXS-related genes and the role that they may play in moderating the effects of PTSD on neural integrity and conclude with a discussion of directions for future research on antioxidant treatments and biomarkers of accelerated aging in PTSD. PMID:25245500

  1. Oxidative and Nitrative Stress in Neurodegeneration

    PubMed Central

    Cobb, Catherine A.; Cole, Marsha P.

    2015-01-01

    Aerobes require oxygen for metabolism and normal free radical formation. As a result, maintaining the redox homeostasis is essential for brain cell survival due to their high metabolic energy requirement to sustain electrochemical gradients, neurotransmitter release, and membrane lipid stability. Further, brain antioxidant levels are limited compared to other organs and less able to compensate for reactive oxygen and nitrogen species (ROS/RNS) generation which contribute oxidative/nitrative stress (OS/NS). Antioxidant treatments such as vitamin E, minocycline, and resveratrol mediate neuroprotection by prolonging the incidence of or reversing OS and NS conditions. Redox imbalance occurs when the antioxidant capacity is overwhelmed, consequently leading to activation of alternate pathways that remain quiescent under normal conditions. If OS/NS fails to lead to adaptation, tissue damage and injury ensue, resulting in cell death and/or disease. The progression of OS/NS-mediated neurodegeneration along with contributions from microglial activation, dopamine metabolism, and diabetes comprise a detailed interconnected pathway. This review proposes a significant role for OS/NS and more specifically, lipid peroxidation (LPO) and other lipid modifications, by triggering microglial activation to elicit a neuroinflammatory state potentiated by diabetes or abnormal dopamine metabolism. Subsequently, sustained stress in the neuroinflammatory state overwhelms cellular defenses and prompts neurotoxicity resulting in the onset or amplification of brain damage. PMID:26024962

  2. Oxidative stress causes plasma protein modification.

    PubMed

    Tetik, Sermin; Kiliç, Arzu; Aksoy, Halil; Rizaner, Nahit; Ahmad, Sarfraz; Yardimci, Turay

    2015-01-01

    We investigated the effect of oxidative systems on plasma proteins using Chloramine-T, a source of free radicals. Plasma specimens from 10 healthy volunteers were treated with 40 mmol/L Chloramine-T (1:1 v/v). Total protein and plasma carbonyl levels were evaluated spectrophotometrically. Identification of plasma proteins modifications was performed by SDS-PAGE, protein and lipid electrophoresis. Protein fragmentation was evaluated by HPLC. Total protein levels of oxidised plasmas were significantly lower (4.08 ± 0.12 g/dL) than control (7.86 ± 0.03 g/dL) (P < 0.01). Plasma carbonyl levels were higher (1.94 ± 0.38 nmol/mg protein) in oxidised plasma than that of control (0.03 ± 0.01 nmol/mg protein) (P < 0.01). Plasma oxidation had no significant effect on the levels of proteins and lipids. Protein fragmentations were detected in oxidised groups compared to those of the control. We conclude that protein modifications have direct effect on the protein functions, which are related to stress agent, its treatment period(s), and the methodology used for evaluating such experimental results.

  3. Influence of Oxidative Stress on Stored Platelets

    PubMed Central

    2016-01-01

    Platelet storage and its availability for transfusion are limited to 5-6 days. Oxidative stress (OS) is one of the causes for reduced efficacy and shelf-life of platelets. The studies on platelet storage have focused on improving the storage conditions by altering platelet storage solutions, temperature, and materials. Nevertheless, the role of OS on platelet survival during storage is still unclear. Hence, this study was conducted to investigate the influence of storage on platelets. Platelets were stored for 12 days at 22°C. OS markers such as aggregation, superoxides, reactive oxygen species, glucose, pH, lipid peroxidation, protein oxidation, and antioxidant enzymes were assessed. OS increased during storage as indicated by increments in aggregation, superoxides, pH, conjugate dienes, and superoxide dismutase and decrements in glucose and catalase. Thus, platelets could endure OS till 6 days during storage, due to the antioxidant defense system. An evident increase in OS was observed from day 8 of storage, which can diminish the platelet efficacy. The present study provides an insight into the gradual changes occurring during platelet storage. This lays the foundation towards new possibilities of employing various antioxidants as additives in storage solutions. PMID:26949396

  4. Correlation of Zinc with Oxidative Stress Biomarkers

    PubMed Central

    Morales-Suárez-Varela, María; Llopis-González, Agustín; González-Albert, Verónica; López-Izquierdo, Raúl; González-Manzano, Isabel; Cháves, Javier; Huerta-Biosca, Vicente; Martin-Escudero, Juan C.

    2015-01-01

    Hypertension and smoking are related with oxidative stress (OS), which in turn reports on cellular aging. Zinc is an essential element involved in an individual’s physiology. The aim of this study was to evaluate the relation of zinc levels in serum and urine with OS and cellular aging and its effect on the development of hypertension. In a Spanish sample with 1500 individuals, subjects aged 20–59 years were selected, whose zinc intake levels fell within the recommended limits. These individuals were classified according to their smoking habits and hypertensive condition. A positive correlation was found (Pearson’s C = 0.639; p = 0.01) between Zn serum/urine quotient and oxidized glutathione levels (GSSG). Finally, risk of hypertension significantly increased when the GSSG levels exceeded the 75 percentile; OR = 2.80 (95%CI = 1.09–7.18) and AOR = 3.06 (95%CI = 0.96–9.71). Low zinc levels in serum were related with OS and cellular aging and were, in turn, to be a risk factor for hypertension.  PMID:25774936

  5. Oxidative stress in atherosclerosis and diabetes.

    PubMed

    Lankin, V Z; Lisina, M O; Arzamastseva, N E; Konovalova, G G; Nedosugova, L V; Kaminnyi, A I; Tikhaze, A K; Ageev, F T; Kukharchuk, V V; Belenkov, Yu N

    2005-07-01

    We measured the content of lipid peroxides in plasma LDL from patients with chronic CHD not accompanied by hypercholesterolemia; CHD and hypercholesterolemia; type 2 diabetes mellitus and decompensation of carbohydrate metabolism; and CHD, circulatory insufficiency, and type 2 diabetes mellitus (without hypercholesterolemia). The content of lipid peroxides in LDL isolated from blood plasma by differential ultracentrifugation in a density gradient was estimated by a highly specific method with modifications (reagent Fe(2+) xylene orange and triphenylphosphine as a reducing agent for organic peroxides). The content of lipid peroxides in LDL from patients was much higher than in controls (patients without coronary heart disease and diabetes). Hypercholesterolemia and diabetes can be considered as factors promoting LDL oxidation in vivo. Our results suggest that stimulation of lipid peroxidation in low-density lipoproteins during hypercholesterolemia and diabetes is associated with strong autooxidation of cholesterol and glucose during oxidative and carbonyl (aldehyde) stress, respectively. These data illustrate a possible mechanism of the progression of atherosclerosis in patients with diabetes mellitus.

  6. Oxidative stress in zebrafish (Danio rerio) sperm.

    PubMed

    Hagedorn, Mary; McCarthy, Megan; Carter, Virginia L; Meyers, Stuart A

    2012-01-01

    Laboratories around the world have produced tens of thousands of mutant and transgenic zebrafish lines. As with mice, maintaining all of these valuable zebrafish genotypes is expensive, risky, and beyond the capacity of even the largest stock centers. Because reducing oxidative stress has become an important aspect of reducing the variability in mouse sperm cryopreservation, we examined whether antioxidants might improve cryopreservation of zebrafish sperm. Four experiments were conducted in this study. First, we used the xanthine-xanthine oxidase (X-XO) system to generate reactive oxygen species (ROS). The X-XO system was capable of producing a stress reaction in zebrafish sperm reducing its sperm motility in a concentration dependent manner (P<0.05). Second, we examined X-XO and the impact of antioxidants on sperm viability, ROS and motility. Catalase (CAT) mitigated stress and maintained viability and sperm motility (P>0.05), whereas superoxide dismutase (SOD) and vitamin E did not (P<0.05). Third, we evaluated ROS in zebrafish spermatozoa during cryopreservation and its effect on viability and motility. Methanol (8%) reduced viability and sperm motility (P<0.05), but the addition of CAT mitigated these effects (P>0.05), producing a mean 2.0 to 2.9-fold increase in post-thaw motility. Fourth, we examined the effect of additional cryoprotectants and CAT on fresh sperm motility. Cryoprotectants, 8% methanol and 10% dimethylacetamide (DMA), reduced the motility over the control value (P<0.5), whereas 10% dimethylformamide (DMF) with or without CAT did not (P>0.05). Zebrafish sperm protocols should be modified to improve the reliability of the cryopreservation process, perhaps using a different cryoprotectant. Regardless, the simple addition of CAT to present-day procedures will significantly improve this process, assuring increased and less variable fertilization success and allowing resource managers to dependably plan how many straws are needed to safely

  7. The evaluation of the oxidative stress for patients receiving neoadjuvant chemoradiotherapy for locally advanced rectal cancer

    PubMed Central

    Serbanescu, GL; Gruia, MI; Bara, M; Anghel, RM

    2017-01-01

    Hypothesis: Nowadays, rectal cancer is an important healthcare challenge that affects many thousands of people each year worldwide, being diagnosed especially after the age of 50 years. Objective: This study attempted to evaluate the oxidative stress in patients with rectal cancer. Methods and results: 30 patients from the “Prof. Dr. Al. Trestioreanu” Institute of Oncology in Bucharest were treated with neoadjuvant radiochemotherapy during 2014 and 2016 and were included in the clinical study. Blood samples were obtained in dynamics during the treatment. From the blood samples, the serum was separated and used to identify the biochemical oxidative stress parameters. Results: Regarding the determination of lipid peroxides, albumin thiols, the cuprum oxidase activity of ceruloplasmin, the values registered in the dynamic of the treatment highlighted their increase to a maximum at the treatment’s endpoint due to an important oxidative stress. Regarding the serum values for total antioxidants, the results pointed out the activation of the natural protection systems, which in time were overwhelmed, due to the installed oxidative stress. Conclusion: Part of the cytotoxic effect of radiotherapy was due to the production of oxidative stress. The cell was constantly exposed to the cytotoxic action of the reactive oxygen species. The obtained results indicated the dual relation to which the tumoral cell exposed itself and the installed oxidative stress, respectively, the oxidative stress being a cause or a consequence of the malign transformation. Abbreviations: CT = computed tomography, MRI = magnetic resonance imaging, ESMO = European Society for Medical Oncology, ECOG = performance status scale PMID:28255388

  8. The evaluation of the oxidative stress for patients receiving neoadjuvant chemoradiotherapy for locally advanced rectal cancer.

    PubMed

    Serbanescu, G L; Gruia, M I; Bara, M; Anghel, R M

    2017-01-01

    Hypothesis: Nowadays, rectal cancer is an important healthcare challenge that affects many thousands of people each year worldwide, being diagnosed especially after the age of 50 years. Objective: This study attempted to evaluate the oxidative stress in patients with rectal cancer. Methods and results: 30 patients from the "Prof. Dr. Al. Trestioreanu" Institute of Oncology in Bucharest were treated with neoadjuvant radiochemotherapy during 2014 and 2016 and were included in the clinical study. Blood samples were obtained in dynamics during the treatment. From the blood samples, the serum was separated and used to identify the biochemical oxidative stress parameters. Results: Regarding the determination of lipid peroxides, albumin thiols, the cuprum oxidase activity of ceruloplasmin, the values registered in the dynamic of the treatment highlighted their increase to a maximum at the treatment's endpoint due to an important oxidative stress. Regarding the serum values for total antioxidants, the results pointed out the activation of the natural protection systems, which in time were overwhelmed, due to the installed oxidative stress. Conclusion: Part of the cytotoxic effect of radiotherapy was due to the production of oxidative stress. The cell was constantly exposed to the cytotoxic action of the reactive oxygen species. The obtained results indicated the dual relation to which the tumoral cell exposed itself and the installed oxidative stress, respectively, the oxidative stress being a cause or a consequence of the malign transformation. Abbreviations: CT = computed tomography, MRI = magnetic resonance imaging, ESMO = European Society for Medical Oncology, ECOG = performance status scale.

  9. Acute stress affects risk taking but not ambiguity aversion.

    PubMed

    Buckert, Magdalena; Schwieren, Christiane; Kudielka, Brigitte M; Fiebach, Christian J

    2014-01-01

    Economic decisions are often made in stressful situations (e.g., at the trading floor), but the effects of stress on economic decision making have not been systematically investigated so far. The present study examines how acute stress influences economic decision making under uncertainty (risk and ambiguity) using financially incentivized lotteries. We varied the domain of decision making as well as the expected value of the risky prospect. Importantly, no feedback was provided to investigate risk taking and ambiguity aversion independent from learning processes. In a sample of 75 healthy young participants, 55 of whom underwent a stress induction protocol (Trier Social Stress Test for Groups), we observed more risk seeking for gains. This effect was restricted to a subgroup of participants that showed a robust cortisol response to acute stress (n = 26). Gambling under ambiguity, in contrast to gambling under risk, was not influenced by the cortisol response to stress. These results show that acute psychosocial stress affects economic decision making under risk, independent of learning processes. Our results further point to the importance of cortisol as a mediator of this effect.

  10. Acute stress affects risk taking but not ambiguity aversion

    PubMed Central

    Buckert, Magdalena; Schwieren, Christiane; Kudielka, Brigitte M.; Fiebach, Christian J.

    2014-01-01

    Economic decisions are often made in stressful situations (e.g., at the trading floor), but the effects of stress on economic decision making have not been systematically investigated so far. The present study examines how acute stress influences economic decision making under uncertainty (risk and ambiguity) using financially incentivized lotteries. We varied the domain of decision making as well as the expected value of the risky prospect. Importantly, no feedback was provided to investigate risk taking and ambiguity aversion independent from learning processes. In a sample of 75 healthy young participants, 55 of whom underwent a stress induction protocol (Trier Social Stress Test for Groups), we observed more risk seeking for gains. This effect was restricted to a subgroup of participants that showed a robust cortisol response to acute stress (n = 26). Gambling under ambiguity, in contrast to gambling under risk, was not influenced by the cortisol response to stress. These results show that acute psychosocial stress affects economic decision making under risk, independent of learning processes. Our results further point to the importance of cortisol as a mediator of this effect. PMID:24834024

  11. Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers.

    PubMed

    Altan, O; Pabuçcuoğlu, A; Altan, A; Konyalioğlu, S; Bayraktar, H

    2003-09-01

    1. This study was conducted to determine the effects of heat stress on fearfulness, leucocyte components, oxidative stress and lipid peroxidation in two commercial broiler strains, Cobb (C) and Ross (R). 2. At 36 and 37 d of age birds were exposed to 38 +/- 1 degree C for 3 h. Rectal temperatures, duration of tonic immobility (TI), haematocrit values, proportions of leucocyte components (heterophil, lymphocyte, basophil, eosinophil, monocyte), malondialdehyde (MDA) concentrations and antioxidant enzyme activities (CAT, SOD, GPx) of all the birds were determined, before and after heat treatment. 3. Rectal temperatures increased and haematocrit values decreased in birds exposed to heat stress. Heat stress caused a significant increase in heterophil/lymphocyte and in basophil ratios. 4. Exposing birds to heat stress increased duration of TI, suggesting heat-stressed birds tended to be more fearful. 5. Heat stress resulted in a significant Genotype x Treatment interaction for MDA concentration. CAT, SOD and GPx activities; MDA concentrations in heat-stressed R strain birds were greater than in heat-stressed C strain birds.

  12. Classification of oxidative stress based on its intensity

    PubMed Central

    Lushchak, Volodymyr I.

    2014-01-01

    In living organisms production of reactive oxygen species (ROS) is counterbalanced by their elimination and/or prevention of formation which in concert can typically maintain a steady-state (stationary) ROS level. However, this balance may be disturbed and lead to elevated ROS levels called oxidative stress. To our best knowledge, there is no broadly acceptable system of classification of oxidative stress based on its intensity due to which proposed here system may be helpful for interpretation of experimental data. Oxidative stress field is the hot topic in biology and, to date, many details related to ROS-induced damage to cellular components, ROS-based signaling, cellular responses and adaptation have been disclosed. However, it is common situation when researchers experience substantial difficulties in the correct interpretation of oxidative stress development especially when there is a need to characterize its intensity. Careful selection of specific biomarkers (ROS-modified targets) and some system may be helpful here. A classification of oxidative stress based on its intensity is proposed here. According to this classification there are four zones of function in the relationship between “Dose/concentration of inducer” and the measured “Endpoint”: I – basal oxidative stress (BOS); II – low intensity oxidative stress (LOS); III – intermediate intensity oxidative stress (IOS); IV – high intensity oxidative stress (HOS). The proposed classification will be helpful to describe experimental data where oxidative stress is induced and systematize it based on its intensity, but further studies will be in need to clear discriminate between stress of different intensity. PMID:26417312

  13. Blood and Oxidative Stress (BOS): Soyuz mission "Eneide"

    NASA Astrophysics Data System (ADS)

    Rizzo, Angela Maria; Adorni, Laura; Montorfano, Gigliola; Negroni, Manuela; Zava, Stefania; Berra, Bruno

    2007-09-01

    The aim of this experiment was to assay astronaut antioxidant status, to analyse red blood cell membrane composition of astronauts prior and after flight and to study the correlation with oxidative stress that erythrocytes have undergone due to space radiations. Results obtained from this single case study, indicate that during a short time flight, erythrocytes decrease their antioxidant defences, to counteract oxidative stress.

  14. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    PubMed

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis.

  15. Hypoxia-Induced Oxidative Stress Modulation with Physical Activity

    PubMed Central

    Debevec, Tadej; Millet, Grégoire P.; Pialoux, Vincent

    2017-01-01

    Increased oxidative stress, defined as an imbalance between prooxidants and antioxidants, resulting in molecular damage and disruption of redox signaling, is associated with numerous pathophysiological processes and known to exacerbate chronic diseases. Prolonged systemic hypoxia, induced either by exposure to terrestrial altitude or a reduction in ambient O2 availability is known to elicit oxidative stress and thereby alter redox balance in healthy humans. The redox balance modulation is also highly dependent on the level of physical activity. For example, both high-intensity exercise and inactivity, representing the two ends of the physical activity spectrum, are known to promote oxidative stress. Numerous to-date studies indicate that hypoxia and exercise can exert additive influence upon redox balance alterations. However, recent evidence suggests that moderate physical activity can attenuate altitude/hypoxia-induced oxidative stress during long-term hypoxic exposure. The purpose of this review is to summarize recent findings on hypoxia-related oxidative stress modulation by different activity levels during prolonged hypoxic exposures and examine the potential mechanisms underlying the observed redox balance changes. The paper also explores the applicability of moderate activity as a strategy for attenuating hypoxia-related oxidative stress. Moreover, the potential of such moderate intensity activities used to counteract inactivity-related oxidative stress, often encountered in pathological, elderly and obese populations is also discussed. Finally, future research directions for investigating interactive effects of altitude/hypoxia and exercise on oxidative stress are proposed. PMID:28243207

  16. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  17. Antioxidant status and biomarkers of oxidative stress in canine lymphoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background – Oxidative stress might play a role in carcinogenesis, as well as impacting morbidity and mortality of veterinary cancer patients. The purpose of this study was to evaluate antioxidant concentrations and biomarkers of oxidative stress in dogs with newly-diagnosed lymphoma prior to treatm...

  18. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    EPA Science Inventory

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  19. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    SciTech Connect

    Mazière, Cécile; Salle, Valéry; Gomila, Cathy; Mazière, Jean-Claude

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  20. Maternal Stress and Affect Influence Fetal Neurobehavioral Development.

    ERIC Educational Resources Information Center

    DiPietro, Janet A.; Hilton, Sterling C.; Hawkins, Melissa; Costigan, Kathleen A.; Pressman, Eva K.

    2002-01-01

    Investigated associations between maternal psychological and fetal neurobehavioral functioning with data provided at 24, 30, and 36 weeks gestation. Found that fetuses of women who were more affectively intense, appraised their lives as more stressful, and reported more pregnancy-specific hassles were more active across gestation. Fetuses of women…

  1. Oxidative stress in diabetes: implications for vascular and other complications.

    PubMed

    Pitocco, Dario; Tesauro, Manfredi; Alessandro, Rizzi; Ghirlanda, Giovanni; Cardillo, Carmine

    2013-10-30

    In recent decades, oxidative stress has become a focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence shows that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on these studies, an emerging concept is that oxidative stress is the "final common pathway" through which the risk factors for several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis; in particular, oxidative stress plays a key role in the pathogenesis of insulin resistance and β-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes and its vascular complications, the leading cause of death in diabetic patients.

  2. Oxidative Stress in Diabetes: Implications for Vascular and Other Complications

    PubMed Central

    Pitocco, Dario; Tesauro, Manfredi; Alessandro, Rizzi; Ghirlanda, Giovanni; Cardillo, Carmine

    2013-01-01

    In recent decades, oxidative stress has become a focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence shows that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on these studies, an emerging concept is that oxidative stress is the “final common pathway” through which the risk factors for several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell–cell homeostasis; in particular, oxidative stress plays a key role in the pathogenesis of insulin resistance and β-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes and its vascular complications, the leading cause of death in diabetic patients. PMID:24177571

  3. Nanoparticles, Lung Injury, and the Role of Oxidant Stress

    PubMed Central

    Madl, Amy K.; Plummer, Laurel E.; Carosino, Christopher; Pinkerton, Kent E.

    2015-01-01

    The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties, which have been shown to induce inflammation and oxidative stress in biologic systems. Oxidative stress reflects the imbalance between the generation of reaction oxygen species (ROS) and the biochemical mechanisms to detoxify and repair resulting damage of reactive intermediates. This review examines current research incidental and engineered nanoparticles in terms of their health effects on the lungs and mechanisms by which oxidative stress via physicochemical characteristics influence toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review will also briefly discuss some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site specific fashion. PMID:24215442

  4. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    SciTech Connect

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  5. Myeloperoxidase: expressing inflammation and oxidative stress in cardiovascular disease.

    PubMed

    Anatoliotakis, Nikolaos; Deftereos, Spyridon; Bouras, Georgios; Giannopoulos, Georgios; Tsounis, Dimitrios; Angelidis, Christos; Kaoukis, Andreas; Stefanadis, Christodoulos

    2013-01-01

    Myeloperoxidase (MPO), a heme protein released by leukocytes, is one of the most widely studied during the last decades molecule that plays a crucial role in inflammation and oxidative stress in the cellular level. It has become increasingly recognized that MPO performs a very important role as part of the innate immune system through the formation of microbicidal reactive oxidants, whilst it affects the arterial endothelium with a number of mechanisms that include modification of net cellular cholesterol flux and impairment of Nitric Oxide (NO)-induced vascular relaxation. In that way, MPO is implicated into both the formation and propagation of atheromatosis and there is substantial evidence that it also promotes ischemia through destabilization of the vulnerable plaque. Numerous studies have added information on the notion that MPO and its oxidant products are part of the inflammatory cascade initiated by endothelial injury and they are significantly overproduced at the site of arterial inflammation. Subsequent studies achieved quantification of this observation showing significant elevations of the systemic levels of MPO in a wide spectrum of cardiovascular disease scenarios with acute coronary syndromes and heart failure being the most studied. This review highlights key-aspects of MPO's pathophysiological properties and summarizes the role of MPO as a diagnostic and prognostic tool for a number of cardiovascular pathologies.

  6. Oxidative Stress and the Use of Antioxidants in Stroke

    PubMed Central

    Shirley, Rachel; Ord, Emily N. J.; Work, Lorraine M.

    2014-01-01

    Transient or permanent interruption of cerebral blood flow by occlusion of a cerebral artery gives rise to an ischaemic stroke leading to irreversible damage or dysfunction to the cells within the affected tissue along with permanent or reversible neurological deficit. Extensive research has identified excitotoxicity, oxidative stress, inflammation and cell death as key contributory pathways underlying lesion progression. The cornerstone of treatment for acute ischaemic stroke remains reperfusion therapy with recombinant tissue plasminogen activator (rt-PA). The downstream sequelae of events resulting from spontaneous or pharmacological reperfusion lead to an imbalance in the production of harmful reactive oxygen species (ROS) over endogenous anti-oxidant protection strategies. As such, anti-oxidant therapy has long been investigated as a means to reduce the extent of injury resulting from ischaemic stroke with varying degrees of success. Here we discuss the production and source of these ROS and the various strategies employed to modulate levels. These strategies broadly attempt to inhibit ROS production or increase scavenging or degradation of ROS. While early clinical studies have failed to translate success from bench to bedside, the combination of anti-oxidants with existing thrombolytics or novel neuroprotectants may represent an avenue worthy of clinical investigation. Clearly, there is a pressing need to identify new therapeutic alternatives for the vast majority of patients who are not eligible to receive rt-PA for this debilitating and devastating disease. PMID:26785066

  7. Manganese-induced oxidative stress in two ontogenetic stages of chamomile and amelioration by nitric oxide.

    PubMed

    Kováčik, Jozef; Babula, Petr; Hedbavny, Josef; Švec, Pavel

    2014-02-01

    Impact of manganese (Mn(2+)) excess (100, 500 and 1000 μM over 7 days) on two ontogenetic stages (7-week-old plants and 7-day-old seedlings) of Matricaria chamomilla was compared. Mn excess depressed growth of seedlings (but not germination) and stimulated oxidative stress (ROS and lipid peroxidation) in both plants and seedlings. Growth inhibition could be evoked by higher Mn uptake and higher translocation factor in seedlings than in plants. Total thiols staining revealed elevation in almost all treatments. In 7-week-old plants, activity of peroxidases increased slightly and rather decreased under high Mn doses. Superoxide rather than hydrogen peroxide contributed to visualized ROS presence. Fluorescence of nitric oxide (NO) showed stimulation in plants but decrease in seedlings. Impact of exogenous nitric oxide donor (sodium nitroprusside/SNP) was therefore tested and results showed amelioration of 1000 μM Mn-induced oxidative stress in seedlings (decrease in H2O2 and increase in NO content while antioxidative enzyme activities were variably affected) concomitantly with depleted Mn accumulation. It is concluded that NO participates in tolerance to Mn excess but negative effects of the highest SNP dose were also observed. Extensive fluorescence microscopy is also explanatively discussed.

  8. Taste modulation of nociception differently affects chronically stressed rats.

    PubMed

    Fontella, Fernanda Urruth; Nunes, Marcele Leon; Crema, Leonardo M; Balk, Rodrigo S; Dalmaz, Carla; Netto, Carlos Alexandre

    2004-01-01

    Stress responses cover a wide range of physiological changes, including alterations in the perception of and response to pain. Animals submitted to repeated stress present altered nociception and this effect is part of this process of adaptation; in addition pleasant and unpleasant experiences with tastes and odors have been shown to affect distinct behavioral aspects, such as pain perception. The aim of the present study is to verify the responses of repeatedly stressed rats (1 h of daily immobilization during 40 days) to pleasant and unpleasant tastes on nociception, when compared to control animals. An increase in the tail-flick latency (TFL) was observed 5 min after exposure to a sweet taste in the control group, whereas no effect was observed in chronically stressed animals. When submitted to an unpleasant taste (5% acetic acid), the chronically stressed group presented an increase in TFL, whereas no effect was observed in the control group. In conclusion, chronically stressed animals present different nociceptive responses to sweet and acid tastes; although control animals suitably respond to a sweet stimulus, stressed animals seem to be more apt to react to the unpleasant stimulus.

  9. Clinical Perspective of Oxidative Stress in Sporadic ALS

    PubMed Central

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  10. Ancestry trumps experience: Transgenerational but not early life stress affects the adult physiological stress response.

    PubMed

    McCormick, Gail L; Robbins, Travis R; Cavigelli, Sonia A; Langkilde, Tracy

    2017-01-01

    Exposure to stressors can affect an organism's physiology and behavior as well as that of its descendants (e.g. through maternal effects, epigenetics, and/or selection). We examined the relative influence of early life vs. transgenerational stress exposure on adult stress physiology in a species that has populations with and without ancestral exposure to an invasive predator. We raised offspring of eastern fence lizards (Sceloporus undulatus) from sites historically invaded (high stress) or uninvaded (low stress) by predatory fire ants (Solenopsis invicta) and determined how this different transgenerational exposure to stress interacted with the effects of early life stress exposure to influence the physiological stress response in adulthood. Offspring from these high- and low-stress populations were exposed weekly to either sub-lethal attack by fire ants (an ecologically relevant stressor), topical treatment with a physiologically-appropriate dose of the stress-relevant hormone, corticosterone (CORT), or a control treatment from 2 to 43weeks of age. Several months after treatments ended, we quantified plasma CORT concentrations at baseline and following restraint, exposure to fire ants, and adrenocorticotropic hormone (ACTH) injection. Exposure to fire ants or CORT during early life did not affect lizard stress physiology in adulthood. However, offspring of lizards from populations that had experienced multiple generations of fire ant-invasion exhibited more robust adult CORT responses to restraint and ACTH-injection compared to offspring from uninvaded populations. Together, these results indicate that transgenerational stress history may be at least as important, if not more important, than early life stress in affecting adult physiological stress responses.

  11. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    PubMed

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption.

  12. KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress

    PubMed Central

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-01-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053

  13. Oxidative stress in the brain causes hypertension via sympathoexcitation.

    PubMed

    Kishi, Takuya; Hirooka, Yoshitaka

    2012-01-01

    Activation of the sympathetic nervous system (SNS) has an important role in the pathogenesis of hypertension, and is determined by the brain. Previous many studies have demonstrated that oxidative stress, mainly produced by angiotensin II type 1 (AT(1)) receptor and nicotinamide adenine dinucleotide phosphate (NAD (P) H) oxidase, in the autonomic brain regions was involved in the activation of the SNS of hypertension. In this concept, we have investigated the role of oxidative stress in the rostral ventrolateral medulla (RVLM), which is known as the cardiovascular center in the brainstem, in the activation of the SNS, and demonstrated that AT(1) receptor and NAD (P) H oxidase-induced oxidative stress in the RVLM causes sympathoexcitation in hypertensive rats. The mechanisms in which brain oxidative stress causes sympathoexcitation have been investigated, such as the interactions with nitric oxide (NO), effects on the signal transduction, or inflammations. Interestingly, the environmental factors of high salt intake and high calorie diet may also increase the oxidative stress in the brain, particularly in the RVLM, thereby activating the central sympathetic outflow and increasing the risk of hypertension. Furthermore, several orally administered AT(1) receptor blockers have been found to cause sympathoinhibition via reduction of oxidative stress through the inhibition of central AT(1) receptor. In conclusion, we must consider that AT(1) receptor and the related oxidative stress production in the brain cause the activation of SNS in hypertension, and that AT(1) receptor in the brain could be novel therapeutic target of the treatments for hypertension.

  14. eNOS gene polymorphisms modify the association of PM(10) with oxidative stress.

    PubMed

    Kim, Jin Hee; Choi, Yoon-Hyeong; Bae, Sanghyuk; Park, Hye-Yin; Hong, Yun-Chul

    2012-11-15

    Previous studies have suggested that air pollution increases various health outcomes through oxidative stress and oxidative stress-related genes modify the relationship between air pollution and health outcomes. Therefore, we evaluated the effect of PM(10) on the levels of malondialdehyde (MDA), oxidative stress biomarker, and the effect modification by genetic polymorphisms of eNOS, oxidative stress-related gene, in the 560 Korean elderly. We obtained urine samples repeatedly from participants during five medical examinations between 2008 and 2010 and all ambient air pollutant concentration data from the Korea National Institute of Environmental Research air quality monitoring system. We measured urinary levels of MDA to assess oxidative stress and genotyped eNOS (rs1799983, rs2853796, and rs7830). Mixed-effect model was used to estimate the effect of PM(10) on the level of oxidative stress biomarker and their modification by genotypes. PM(10) showed apparent positive effect on MDA level after adjusting for age, sex, BMI, cotinine level, temperature, dew point, levels of SO(2), O(3), NO(2), and CO, and season (p=0.0133). Moreover, the association of PM(10) with MDA was found only in participants with eNOS GG genotype for rs1799983 (p=0.0107), TT genotype for rs2853796 (p=0.0289), or GT genotype for rs7830 (p=0.0158) and in participants with a set of risky haplotypes (GTT, GTG, GGT, and TGT) (p=0.0093). Our results suggest that PM(10) affect oxidative stress in the elderly and eNOS genotype affect the oxidative stress level in regard of exposure to PM(10).

  15. Oxidative stress and Kawasaki disease: how is oxidative stress involved from the acute stage to the chronic stage?

    PubMed

    Yahata, Tomoyo; Hamaoka, Kenji

    2017-01-01

    Inflammation and oxidative stress are closely related. Further, oxidative stress plays an important role in the pathology of inflammation-based Kawasaki disease. An excessive in vivo production of reactive oxygen species increases oxidative stress in the body, which triggers an endless vicious spiral of inflammation reactions and reactive oxygen metabolites. This presumably forms diffuse vasculitis in the acute phase. Acute inflammation and oxidative stress can be rapidly controlled by treatments; however, they may remain for a long time. This has recently been identified as a problem in the chronic phase of Kawasaki disease. Generally, the presence of vascular inflammation and oxidative stress impairs blood vessels, leading to the onset of atherosclerosis, which is a widely recognized risk. The current discussion focuses on whether the same is valid for blood vessels in the chronic phase of Kawasaki disease.

  16. Zinc stress affects ionome and metabolome in tea plants.

    PubMed

    Zhang, Yinfei; Wang, Yu; Ding, Zhaotang; Wang, Hui; Song, Lubin; Jia, Sisi; Ma, Dexin

    2017-02-01

    The research of physiological responses to Zn stress in plants has been extensively studied. However, the ionomics and metabolomics responses of plants to Zn stress remain largely unknown. In present study, the nutrient elements were identified involved in ion homeostasis and metabolomics changes related to Zn deficiency or excess in tea plants. Nutrient element analysis demonstrated that the concentrations of Zn affected the ion-uptake in roots and the nutrient element transportation to leaves, leading to the different distribution of P, S, Al, Ca, Fe and Cu in the tea leaves or roots. Metabolomics analysis revealed that Zn deficiency or excess differentially influenced the metabolic pathways in the tea leaves. More specifically, Zn deficiency affected the metabolism of carbohydrates, and Zn excess affected flavonoids metabolism. Additionally, the results showed that both Zn deficiency and Zn excess led to reduced nicotinamide levels, which speeded up NAD(+) degradation and thus reduced energy metabolism. Furthermore, element-metabolite correlation analysis illustrated that Zn contents in the tea leaves were positively correlated with organic acids, nitrogenous metabolites and some carbohydrate metabolites, and negatively correlated with the metabolites involved in secondary metabolism and some other carbohydrate metabolites. Meanwhile, metabolite-metabolite correlation analysis demonstrated that organic acids, sugars, amino acids and flavonoids played dominant roles in the regulation of the tea leaf metabolism under Zn stress. Therefore, the conclusion should be drawn that the tea plants responded to Zn stress by coordinating ion-uptake and regulation of metabolism of carbohydrates, nitrogenous metabolites, and flavonoids.

  17. Aldehyde Dehydrogenases in Cellular Responses to Oxidative/electrophilic Stress

    PubMed Central

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Ying, Chen; Jackson, Brian; Matsumoto, Akiko; Thompson, David C.; Vasiliou, Vasilis

    2013-01-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors like dehydration and ultraviolet radiation. The ability to act as an ‘aldehyde scavenger’ during lipid peroxidation is another ostensibly universal ALDH function found across species. Up-regulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation) and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that significantly contributes to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, underscoring the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  18. Oxidative stress and the effect of parasites on a carotenoid-based ornament.

    PubMed

    Mougeot, F; Martínez-Padilla, J; Blount, J D; Pérez-Rodríguez, L; Webster, L M I; Piertney, S B

    2010-02-01

    Oxidative stress, the physiological condition whereby the production of reactive oxygen and nitrogen species overwhelms the capacity of antioxidant defences, causes damage to key bio-molecules. It has been implicated in many diseases, and is proposed as a reliable currency in the trade-off between individual health and ornamentation. Whether oxidative stress mediates the expression of carotenoid-based signals, which are among the commonest signals of many birds, fish and reptiles, remains controversial. In the present study, we explored interactions between parasites, oxidative stress and the carotenoid-based ornamentation of red grouse Lagopus lagopus scoticus. We tested whether removing nematode parasites influenced both oxidative balance (levels of oxidative damage and circulating antioxidant defences) and carotenoid-based ornamentation. At the treatment group level, parasite purging enhanced the size and colouration of ornaments but did not significantly affect circulating carotenoids, antioxidant defences or oxidative damage. However, relative changes in these traits among individuals indicated that males with a greater number of parasites prior to treatment (parasite purging) showed a greater increase in the levels of circulating carotenoids and antioxidants, and a greater decrease in oxidative damage, than those with initially fewer parasites. At the individual level, a greater increase in carotenoid pigmentation was associated with a greater reduction in oxidative damage. Therefore, an individual's ability to express a carotenoid-based ornament appeared to be linked to its current oxidative balance and susceptibility to oxidative stress. Our experimental results suggest that oxidative stress can mediate the impact of parasites on carotenoid-based signals, and we discuss possible mechanisms linking carotenoid-based ornaments to oxidative stress.

  19. The role of oxidative stress and antioxidants in male fertility

    PubMed Central

    Walczak–Jedrzejowska, Renata; Wolski, Jan Karol

    2013-01-01

    Oxidative stress results from the imbalance between production of the reactive oxygen species (ROS) and the protective effect of the antioxidant system responsible for their neutralization and removal. An excess of ROS causes a pathological reaction resulting in damage to cells and tissues. Spermatozoa are particularly vulnerable to the harmful effects of ROS. Oxidative stress affects their activity, damages DNA structure, and accelerates apoptosis, all of which consequently decrease their numbers, hinders motility and development of normal morphology, and impairs function. This leads to disturbances in fertility or embryo development disorder. The main cellular source of ROS in the semen are immature sperm cells and white blood cells. The increase in the number of leukocytes may be due to infection and inflammation, but can also be secondary to harmful environmental factors, long sexual abstinence, or varicocele. The protective antioxidant system in the semen is composed of enzymes, as well as nonenzymatic substances, which closely interact with each other to ensure optimal protection against ROS. Non–enzymatic antioxidants include vitamins A, E, C, and B complex, glutathione, pantothenic acid, coenzyme Q10 and carnitine, and micronutrients such as zinc, selenium, and copper. It seems that a deficiency of any of them can cause a decrease in total antioxidant status. In vitro and in vivo that studies demonstrate many antioxidants possess a beneficial effect on fertility and, therefore, their use is recommended as supportive therapy for the treatment of infertility in men. PMID:24578993

  20. Oxidative stress in aging: advances in proteomic approaches.

    PubMed

    Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.

  1. The Bad, the Good, and the Ugly about Oxidative Stress

    PubMed Central

    Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2012-01-01

    Alzheimer's disease (AD), Parkinson's disease (PD), and cancer (e.g., leukemia) are the most devastating disorders affecting millions of people worldwide. Except for some kind of cancers, no effective and/or definitive therapeutic treatment aimed to reduce or to retard the clinic and pathologic symptoms induced by AD and PD is presently available. Therefore, it is urgently needed to understand the molecular basis of these disorders. Since oxidative stress (OS) is an important etiologic factor of the pathologic process of AD, PD, and cancer, understanding how intracellular signaling pathways respond to OS will have a significant implication in the therapy of these diseases. Here, we propose a model of minimal completeness of cell death signaling induced by OS as a mechanistic explanation of neuronal and cancer cell demise. This mechanism might provide the basis for therapeutic design strategies. Finally, we will attempt to associate PD, cancer, and OS. This paper critically analyzes the evidence that support the “oxidative stress model” in neurodegeneration and cancer. PMID:22619696

  2. Oxidative Stress in Aging: Advances in Proteomic Approaches

    PubMed Central

    Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E.

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging. PMID:24688629

  3. Diet of Racing Sled Dogs Affects Erythrocyte Depression by Stress

    PubMed Central

    Adkins, T. O.; Kronfeld, D. S.

    1982-01-01

    Fourteen racing huskies were matched into pairs then assigned to two diets, a commercial stress diet and an experimental diet. Proportions of protein: fat:carbohydrate on an available energy basis were 23:57:20 in a commercial stress diet and 28:69:3 in an experimental diet. The team participated in the 1979 Iditarod Trail race and was overtaken by an episode of diarrhea. Clinical signs were suggestive of parvovirus infection; high serum titers of parvo antibodies were found after the race. Blood examination showed normal levels of metabolites, electrolytes and enzymes after the race. Erythrocyte counts were depressed significantly during the race, by 15% in dogs fed an experimental diet and by 27% in those fed a commercial stress diet. Erythrocyte parameters have also become depressed during the racing season in middle distance sled dogs fed 28% protein (energy basis) but not 32 or 39%. Depressed red blood cell production has been demonstrated previously in dogs subjected to stress induced experimentally in several ways, and its restoration has been affected by dietary protein. Erythrocyte parameters may be useful indicies of the degree of stress in a dog as well as the adequacy of its protein intake during stress. PMID:17422178

  4. Increased oxidative stress and oxidative DNA damage in non-remission schizophrenia patients.

    PubMed

    Sertan Copoglu, U; Virit, Osman; Hanifi Kokacya, M; Orkmez, Mustafa; Bulbul, Feridun; Binnur Erbagci, A; Semiz, Murat; Alpak, Gokay; Unal, Ahmet; Ari, Mustafa; Savas, Haluk A

    2015-09-30

    Increasing evidence shows that oxidative stress plays a role in the pathophysiology of schizophrenia. But there is not any study which examines the effects of oxidative stress on DNA in schizophrenia patients. Therefore we aimed to assess the oxidative stress levels and oxidative DNA damage in schizophrenia patients with and without symptomatic remission. A total of 64 schizophrenia patients (38 with symptomatic remission and 26 without symptomatic remission) and 80 healthy volunteers were included in the study. 8-hydroxydeoxyguanosine (8-OHdG), total oxidant status (TOS) and total antioxidant status (TAS) were measured in plasma. TOS, oxidative stress index (OSI) and 8-OHdG levels were significantly higher in non-remission schizophrenic (Non-R-Sch) patients than in the controls. TOS and OSI levels were significantly higher in remission schizophrenic (R-Sch) patients than in the controls. TAS level were significantly lower and TOS and OSI levels were significantly higher in R-Sch patients than in Non-R-Sch patients. Despite the ongoing oxidative stress in patients with both R-Sch and Non-R-Sch, oxidative DNA damage was higher in only Non-R-Sch patients compared to controls. It is suggested that oxidative stress can cause the disease via DNA damage, and oxidative stress plays a role in schizophrenia through oxidative DNA damage.

  5. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us?

    PubMed Central

    Hussain, Tarique; Yin, Yulong; Blachier, Francois; Tossou, Myrlene C. B.; Rahu, Najma

    2016-01-01

    Oxidative stress is viewed as an imbalance between the production of reactive oxygen species (ROS) and their elimination by protective mechanisms, which can lead to chronic inflammation. Oxidative stress can activate a variety of transcription factors, which lead to the differential expression of some genes involved in inflammatory pathways. The inflammation triggered by oxidative stress is the cause of many chronic diseases. Polyphenols have been proposed to be useful as adjuvant therapy for their potential anti-inflammatory effect, associated with antioxidant activity, and inhibition of enzymes involved in the production of eicosanoids. This review aims at exploring the properties of polyphenols in anti-inflammation and oxidation and the mechanisms of polyphenols inhibiting molecular signaling pathways which are activated by oxidative stress, as well as the possible roles of polyphenols in inflammation-mediated chronic disorders. Such data can be helpful for the development of future antioxidant therapeutics and new anti-inflammatory drugs. PMID:27738491

  6. Oxidative stress responses in Escherichia coli and Salmonella typhimurium.

    PubMed Central

    Farr, S B; Kogoma, T

    1991-01-01

    Oxidative stress is strongly implicated in a number of diseases, such as rheumatoid arthritis, inflammatory bowel disorders, and atherosclerosis, and its emerging as one of the most important causative agents of mutagenesis, tumorigenesis, and aging. Recent progress on the genetics and molecular biology of the cellular responses to oxidative stress, primarily in Escherichia coli and Salmonella typhimurium, is summarized. Bacteria respond to oxidative stress by invoking two distinct stress responses, the peroxide stimulon and the superoxide stimulon, depending on whether the stress is mediated by peroxides or the superoxide anion. The two stimulons each contain a set of more than 30 genes. The expression of a subset of genes in each stimulon is under the control of a positive regulatory element; these genes constitute the OxyR and SoxRS regulons. The schemes of regulation of the two regulons by their respective regulators are reviewed in detail, and the overlaps of these regulons with other stress responses such as the heat shock and SOS responses are discussed. The products of Oxy-R- and SoxRS-regulated genes, such as catalases and superoxide dismutases, are involved in the prevention of oxidative damage, whereas others, such as endonuclease IV, play a role in the repair of oxidative damage. The potential roles of these and other gene products in the defense against oxidative damage in DNA, proteins, and membranes are discussed in detail. A brief discussion of the similarities and differences between oxidative stress responses in bacteria and eukaryotic organisms concludes this review. PMID:1779927

  7. Chronic oxidative stress after irradiation: an unproven hypothesis

    PubMed Central

    Cohen, Samuel R; Cohen, Eric P

    2012-01-01

    Injury and organ failure after irradiation of late-responding tissues is a substantial problem in radiation oncology and a major threat after accidental or belligerent exposures. The mechanisms of injury may include death of clonogens, vascular injury, activation of cytokine networks, and/or chronic oxidative stress. Knowledge of mechanisms may guide optimal use of mitigators. The hypothesis of chronic oxidative stress as a mechanism of late radiation injury has received much attention. We review herein the published evidence for chronic oxidative stress in vivo, and for use of antioxidants as mitigators of normal tissue radiation injury. We conclude that there is only indirect evidence for chronic oxidative stress after irradiation, and there are only limited published reports of mitigation by antioxidants. We did not find a differentiation of persistent markers of oxidative stress from an ongoing production of oxygen radicals. It is thus unproven that chronic oxidative stress plays a major role in causing radiation injury and organ failure in late-responding tissues. Further investigation is justified, to identify persistent oxidative stress and to identify optimal mitigators of radiation injury. PMID:23245910

  8. The effects of oxidative stress on female reproduction: a review

    PubMed Central

    2012-01-01

    Oxidative stress (OS), a state characterized by an imbalance between pro-oxidant molecules including reactive oxygen and nitrogen species, and antioxidant defenses, has been identified to play a key role in the pathogenesis of subfertility in both males and females. The adverse effects of OS on sperm quality and functions have been well documented. In females, on the other hand, the impact of OS on oocytes and reproductive functions remains unclear. This imbalance between pro-oxidants and antioxidants can lead to a number of reproductive diseases such as endometriosis, polycystic ovary syndrome (PCOS), and unexplained infertility. Pregnancy complications such as spontaneous abortion, recurrent pregnancy loss, and preeclampsia, can also develop in response to OS. Studies have shown that extremes of body weight and lifestyle factors such as cigarette smoking, alcohol use, and recreational drug use can promote excess free radical production, which could affect fertility. Exposures to environmental pollutants are of increasing concern, as they too have been found to trigger oxidative states, possibly contributing to female infertility. This article will review the currently available literature on the roles of reactive species and OS in both normal and abnormal reproductive physiological processes. Antioxidant supplementation may be effective in controlling the production of ROS and continues to be explored as a potential strategy to overcome reproductive disorders associated with infertility. However, investigations conducted to date have been through animal or in vitro studies, which have produced largely conflicting results. The impact of OS on assisted reproductive techniques (ART) will be addressed, in addition to the possible benefits of antioxidant supplementation of ART culture media to increase the likelihood for ART success. Future randomized controlled clinical trials on humans are necessary to elucidate the precise mechanisms through which OS affects female

  9. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  10. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies.

    PubMed

    Rani, Vibha; Deep, Gagan; Singh, Rakesh K; Palle, Komaraiah; Yadav, Umesh C S

    2016-03-01

    Increased body weight and metabolic disorder including insulin resistance, type 2 diabetes and cardiovascular complications together constitute metabolic syndrome. The pathogenesis of metabolic syndrome involves multitude of factors. A number of studies however indicate, with some conformity, that oxidative stress along with chronic inflammatory condition pave the way for the development of metabolic diseases. Oxidative stress, a state of lost balance between the oxidative and anti-oxidative systems of the cells and tissues, results in the over production of oxidative free radicals and reactive oxygen species (ROS). Excessive ROS generated could attack the cellular proteins, lipids and nucleic acids leading to cellular dysfunction including loss of energy metabolism, altered cell signalling and cell cycle control, genetic mutations, altered cellular transport mechanisms and overall decreased biological activity, immune activation and inflammation. In addition, nutritional stress such as that caused by high fat high carbohydrate diet also promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation, and decreased antioxidant system and reduced glutathione (GSH) levels. These changes lead to initiation of pathogenic milieu and development of several chronic diseases. Studies suggest that in obese person oxidative stress and chronic inflammation are the important underlying factors that lead to development of pathologies such as carcinogenesis, obesity, diabetes, and cardiovascular diseases through altered cellular and nuclear mechanisms, including impaired DNA damage repair and cell cycle regulation. Here we discuss the aspects of metabolic disorders-induced oxidative stress in major pathological conditions and strategies for their prevention and therapy.

  11. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  12. The Mind-Body Connection - Can Prolonged Stress Affect Whether Breast Cancer Returns?

    MedlinePlus

    ... Past Issues The Mind-Body Connection Can Prolonged Stress Affect Whether Breast Cancer Returns? Past Issues / Winter ... traumatic life events. The categories ranged from traumatic stress to some stress to no significant stress. According ...

  13. Cyclooxygenase-2 inhibition reduces stress-induced affective pathology

    PubMed Central

    Gamble-George, Joyonna Carrie; Baldi, Rita; Halladay, Lindsay; Kocharian, Adrina; Hartley, Nolan; Silva, Carolyn Grace; Roberts, Holly; Haymer, Andre; Marnett, Lawrence J; Holmes, Andrew; Patel, Sachin

    2016-01-01

    Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders. DOI: http://dx.doi.org/10.7554/eLife.14137.001 PMID:27162170

  14. [Oxidative stress: one of the major causes of vascular calcification in chronic kidney disease patients].

    PubMed

    Nyitrai, Mónika; Balla, György; Balla, József

    2015-11-22

    The leading cause of high mortality in dialyzed patients is cardiovascular disease. One of the main contributors of cardiovascular event is vascular calcification, which occurs even in very young patients. Multiple factors and complex mechanisms are involved in the formation of robust vascular calcification which affects a large vascular area observed in chronic kidney diseases. Patients on dialysis are exposed to enhanced oxidative stress as a result of increased pro-oxidant activity and reduced anti-oxidant systems. The oxidation of lipoprotein particles is implicated in the development of vascular damage representing oxidative threat, which leads to endothelial dysfunction. Moreover, in a pro-oxidant environment osteoblastic trans-differentiation of smooth muscle cells was shown to occur. Heme derived from oxidized hemoglobin might contribute to the formation of reactive lipid metabolites. This oxidative burden contributes to the development of atherosclerosis and vascular calcification. Heme oxygenase-1 and ferritin may serve as intracellular defense mechanisms against such an insult.

  15. The Role of Flavonoids on Oxidative Stress in Epilepsy

    PubMed Central

    Diniz, Tâmara Coimbra; Silva, Juliane Cabral; de Lima-Saraiva, Sarah Raquel Gomes; Ribeiro, Fernanda Pires Rodrigues de Almeida; Pacheco, Alessandra Gomes Marques; de Freitas, Rivelilson Mendes; Quintans-Júnior, Lucindo José; Quintans, Jullyana de Souza Siqueira; Mendes, Rosemairy Luciane; Almeida, Jackson Roberto Guedes da Silva

    2015-01-01

    Backgrounds. Oxidative stress can result from excessive free-radical production and it is likely implicated as a possible mechanism involved in the initiation and progression of epileptogenesis. Flavonoids can protect the brain from oxidative stress. In the central nervous system (CNS) several flavonoids bind to the benzodiazepine site on the GABAA-receptor resulting in anticonvulsive effects. Objective. This review provides an overview about the role of flavonoids in oxidative stress in epilepsy. The mechanism of action of flavonoids and its relation to the chemical structure is also discussed. Results/Conclusions. There is evidence that suggests that flavonoids have potential for neuroprotection in epilepsy. PMID:25653736

  16. Severe Life Stress and Oxidative Stress in the Brain: From Animal Models to Human Pathology

    PubMed Central

    Jaquet, Vincent; Trabace, Luigia; Krause, Karl-Heinz

    2013-01-01

    Abstract Significance: Severe life stress (SLS), as opposed to trivial everyday stress, is defined as a serious psychosocial event with the potential of causing an impacting psychological traumatism. Recent Advances: Numerous studies have attempted to understand how the central nervous system (CNS) responds to SLS. This response includes a variety of morphological and neurochemical modifications; among them, oxidative stress is almost invariably observed. Oxidative stress is defined as disequilibrium between oxidant generation and the antioxidant response. Critical Issues: In this review, we discuss how SLS leads to oxidative stress in the CNS, and how the latter impacts pathophysiological outcomes. We also critically discuss experimental methods that measure oxidative stress in the CNS. The review covers animal models and human observations. Animal models of SLS include sleep deprivation, maternal separation, and social isolation in rodents, and the establishment of hierarchy in non-human primates. In humans, SLS, which is caused by traumatic events such as child abuse, war, and divorce, is also accompanied by oxidative stress in the CNS. Future Directions: The outcome of SLS in humans ranges from resilience, over post-traumatic stress disorder, to development of chronic mental disorders. Defining the sources of oxidative stress in SLS might in the long run provide new therapeutic avenues. Antioxid. Redox Signal. 18, 1475–1490. PMID:22746161

  17. Oxidative stress and antioxidants: exposure and impact on female fertility

    PubMed Central

    Ruder, Elizabeth H.; Hartman, Terryl J.; Blumberg, Jeffrey; Goldman, Marlene B.

    2009-01-01

    Background Reproductive failure is a significant public health concern. Although relatively little is known about factors affecting fertility and early pregnancy loss, a growing body of literature suggests that environmental and lifestyle factors play an important role. There is sufficient evidence to hypothesize that diet, particularly its constituent antioxidants, and oxidative stress (OS) may influence the timing and maintenance of a viable pregnancy. We hypothesize that conditions leading to OS in the female affect time-to-pregnancy and early pregnancy loss. Methods We review the epidemiology of female infertility related to antioxidant defenses and oxidation and examine potential sources of OS from the ovarian germ cell through the stages of human pregnancy and pregnancy complications related to infertility. Articles were identified through a search of the PubMed database. Results Female OS is a likely mediator of conception and threshold levels for OS exist, dependent on anatomic location and stage of preconception. Conclusions Prospective pregnancy studies with dietary assessment and collection of biological samples prior to conception with endpoints of time-to-pregnancy and early pregnancy loss are needed. PMID:18535004

  18. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver

    PubMed Central

    Satapati, Santhosh; Kucejova, Blanka; Duarte, Joao A.G.; Fletcher, Justin A.; Reynolds, Lacy; Sunny, Nishanth E.; He, Tianteng; Nair, L. Arya; Livingston, Kenneth; Fu, Xiaorong; Merritt, Matthew E.; Sherry, A. Dean; Malloy, Craig R.; Shelton, John M.; Lambert, Jennifer; Parks, Elizabeth J.; Corbin, Ian; Magnuson, Mark A.; Browning, Jeffrey D.; Burgess, Shawn C.

    2015-01-01

    Mitochondria are critical for respiration in all tissues; however, in liver, these organelles also accommodate high-capacity anaplerotic/cataplerotic pathways that are essential to gluconeogenesis and other biosynthetic activities. During nonalcoholic fatty liver disease (NAFLD), mitochondria also produce ROS that damage hepatocytes, trigger inflammation, and contribute to insulin resistance. Here, we provide several lines of evidence indicating that induction of biosynthesis through hepatic anaplerotic/cataplerotic pathways is energetically backed by elevated oxidative metabolism and hence contributes to oxidative stress and inflammation during NAFLD. First, in murine livers, elevation of fatty acid delivery not only induced oxidative metabolism, but also amplified anaplerosis/cataplerosis and caused a proportional rise in oxidative stress and inflammation. Second, loss of anaplerosis/cataplerosis via genetic knockdown of phosphoenolpyruvate carboxykinase 1 (Pck1) prevented fatty acid–induced rise in oxidative flux, oxidative stress, and inflammation. Flux appeared to be regulated by redox state, energy charge, and metabolite concentration, which may also amplify antioxidant pathways. Third, preventing elevated oxidative metabolism with metformin also normalized hepatic anaplerosis/cataplerosis and reduced markers of inflammation. Finally, independent histological grades in human NAFLD biopsies were proportional to oxidative flux. Thus, hepatic oxidative stress and inflammation are associated with elevated oxidative metabolism during an obesogenic diet, and this link may be provoked by increased work through anabolic pathways. PMID:26571396

  19. Stress in Context: Morpho-Syntactic Properties Affect Lexical Stress Assignment in Reading Aloud

    PubMed Central

    Spinelli, Giacomo; Sulpizio, Simone; Primativo, Silvia; Burani, Cristina

    2016-01-01

    Recent findings from English and Russian have shown that grammatical category plays a key role in stress assignment. In these languages, some grammatical categories have a typical stress pattern and this information is used by readers. However, whether readers are sensitive to smaller distributional differences and other morpho-syntactic properties (e.g., gender, number, person) remains unclear. We addressed this issue in word and non-word reading in Italian, a language in which: (1) nouns and verbs differ in the proportion of words with a dominant stress pattern; (2) information specified by words sharing morpho-syntactic properties may contrast with other sources of information, such as stress neighborhood. Both aspects were addressed in two experiments in which context words were used to induce the desired morpho-syntactic properties. Experiment 1 showed that the relatively different proportions of stress patterns between grammatical categories do not affect stress processing in word reading. In contrast, Experiment 2 showed that information specified by words sharing morpho-syntactic properties outweighs stress neighborhood in non-word reading. Thus, while general information specified by grammatical categories may not be used by Italian readers, stress neighbors with morpho-syntactic properties congruent with those of the target stimulus have a primary role in stress assignment. These results underscore the importance of expanding investigations of stress assignment beyond single words, as current models of single-word reading seem unable to account for our results. PMID:27445910

  20. Protective mechanisms of Cucumis sativus in diabetes-related modelsof oxidative stress and carbonyl stress

    PubMed Central

    Heidari, Himan; Kamalinejad, Mohammad; Noubarani, Maryam; Rahmati, Mokhtar; Jafarian, Iman; Adiban, Hasan; Eskandari, Mohammad Reza

    2016-01-01

    Introduction: Oxidative stress and carbonyl stress have essential mediatory roles in the development of diabetes and its related complications through increasing free radicals production and impairing antioxidant defense systems. Different chemical and natural compounds have been suggested for decreasing such disorders associated with diabetes. The objectives of the present study were to investigate the protective effects of Cucumis sativus (C. sativus) fruit (cucumber) in oxidative and carbonyl stress models. These diabetes-related models with overproduction of reactive oxygen species (ROS) and reactive carbonyl species (RCS) simulate conditions observed in chronic hyperglycemia. Methods: Cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonyl stress model) were measured and the protective effects of C. sativus were evaluated using freshly isolated rat hepatocytes. Results: Aqueous extract of C. sativus fruit (40 μg/mL) prevented all cytotoxicity markers in both the oxidative and carbonyl stress models including cell lysis, ROS formation, membrane lipid peroxidation, depletion of glutathione, mitochondrial membrane potential decline, lysosomal labialization, and proteolysis. The extract also protected hepatocytes from protein carbonylation induced by glyoxal. Our results indicated that C. sativus is able to prevent oxidative stress and carbonyl stress in the isolated hepatocytes. Conclusion: It can be concluded that C. sativus has protective effects in diabetes complications and can be considered a safe and suitable candidate for decreasing the oxidative stress and carbonyl stress that is typically observed in diabetes mellitus. PMID:27340622

  1. Oxidative stress reduces levels of dysbindin-1A via its PEST domain.

    PubMed

    Yap, Mei-Yi Alicia; Lo, Yew-Long; Talbot, Konrad; Ong, Wei-Yi

    2014-12-01

    Oxidative stress resulting from the generation of reactive oxygen species has been proposed as an etiological factor in schizophrenia. The present study tests the hypothesis that oxidative stress can affect levels of dysbindin-1A, encoded by Dtnbp1, a genetic risk factor for schizophrenia, via its PEST domain. In vitro studies on SH-SY5Y cells indicate that oxidative stress triggers proteasomal degradation of dysbindin-1A, and that this requires interactions with its PEST domain, which may be a TRIM32 target. We specifically found (a) that oxidative stress induced in SH-SY5Y cells by 500 µM hydrogen peroxide reduced levels of full-length dysbindin-1, but did not reduce levels of that protein lacking its PEST domain and (b) that levels of full-length dysbindin-1, but not dysbindin-1 lacking its PEST domain, were higher in cells treated with the proteasome inhibitor MG132. Oxidative stress thus emerges as the first known cellular factor regulating dysbindin-1 isoforms with PEST domains. These findings are consistent with the previously noted fact that phosphorylation of PEST domains often marks proteins for proteasomal degradation, and raises the possibility that treatments reducing oxidative stress in the brain, especially during development, may lower schizophrenia risk.

  2. Matrix metalloproteinase inhibition reduces oxidative stress associated with cerebral amyloid angiopathy in vivo in transgenic mice.

    PubMed

    Garcia-Alloza, Monica; Prada, Claudia; Lattarulo, Carli; Fine, Sara; Borrelli, Laura A; Betensky, Rebecca; Greenberg, Steven M; Frosch, Matthew P; Bacskai, Brian J

    2009-06-01

    Cerebral amyloid angiopathy (CAA), characterized by extracellular beta-amyloid peptide (Abeta) deposits in vessel walls, is present in the majority of cases of Alzheimer's disease and is a major cause of hemorrhagic stroke. Although the molecular pathways activated by vascular Abeta are poorly understood, extracellular matrix metalloproteinases (MMP) and Abeta-induced oxidative stress appear to play important roles. We adapted fluorogenic assays for MMP activity and reactive oxygen species generation for use in vivo. Using multiphoton microscopy in APPswe/PS1dE9 and Tg-2576 transgenic mice, we observed strong associations between MMP activation, oxidative stress, and CAA deposition in leptomeningeal vessels. Antioxidant treatment with alpha-phenyl-N-tert-butyl-nitrone reduced oxidative stress associated with CAA (approximately 50% reduction) without affecting MMP activation. Conversely, a selection of agents that inhibit MMP by different mechanisms of action, including minocycline, simvastatin, and GM6001, reduced not only CAA-associated MMP activation (approximately 30-40% reduction) but also oxidative stress (approximately 40% reduction). The inhibitors of MMP did not have direct antioxidant effects. Treatment of animals with alpha-phenyl-N-tert-butyl-nitrone or minocycline did not have a significant effect on CAA progression rates. These data suggest a close association between Abeta-related MMP activation and oxidative stress in vivo and raise the possibility that treatment with MMP inhibitors may have beneficial effects by indirectly reducing the oxidative stress associated with CAA.

  3. Kidney hypoxia, attributable to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress.

    PubMed

    Friederich-Persson, Malou; Thörn, Erik; Hansell, Peter; Nangaku, Masaomi; Levin, Max; Palm, Fredrik

    2013-11-01

    Diabetic nephropathy is strongly associated with both increased oxidative stress and kidney tissue hypoxia. The increased oxidative stress causes increased kidney oxygen consumption resulting in kidney tissue hypoxia. To date, it has been difficult to determine the role of kidney hypoxia, per se, for the development of nephropathy. We tested the hypothesis that kidney hypoxia, without confounding factors such as hyperglycemia or elevated oxidative stress, results in nephropathy. To induce kidney hypoxia, dinitrophenol (30 mg per day per kg bodyweight by gavage), a mitochondrial uncoupler that increases oxygen consumption and causes kidney hypoxia, was administered for 30 consecutive days to rats. Thereafter, glomerular filtration rate, renal blood flow, kidney oxygen consumption, kidney oxygen tension, kidney concentrations of glucose and glycogen, markers of oxidative stress, urinary protein excretion, and histological findings were determined and compared with vehicle-treated controls. Dinitrophenol did not affect arterial blood pressure, renal blood flow, glomerular filtration rate, blood glucose, or markers of oxidative stress but increased kidney oxygen consumption, and reduced cortical and medullary concentrations of glucose and glycogen, and resulted in intrarenal tissue hypoxia. Furthermore, dinitrophenol treatment increased urinary protein excretion, kidney vimentin expression, and infiltration of inflammatory cells. In conclusion, increased mitochondrial oxygen consumption results in kidney hypoxia and subsequent nephropathy. Importantly, these results demonstrate that kidney tissue hypoxia, per se, without confounding hyperglycemia or oxidative stress, may be sufficient to initiate the development of nephropathy and therefore demonstrate a new interventional target for treating kidney disease.

  4. Increased Oxidative Stress as a Selective Anticancer Therapy

    PubMed Central

    Liu, Jiahui; Wang, Zhichong

    2015-01-01

    Reactive oxygen species (ROS) are closely related to tumorgenesis. Under hypoxic environment, increased levels of ROS induce the expression of hypoxia inducible factors (HIFs) in cancer stem cells (CSCs), resulting in the promotion of the upregulation of CSC markers, and the reduction of intracellular ROS level, thus facilitating CSCs survival and proliferation. Although the ROS level is regulated by powerful antioxidant defense mechanisms in cancer cells, it is observed to remain higher than that in normal cells. Cancer cells may be more sensitive than normal cells to the accumulation of ROS; consequently, it is supposed that increased oxidative stress by exogenous ROS generation therapy has an effect on selectively killing cancer cells without affecting normal cells. This paper reviews the mechanisms of redox regulation in CSCs and the pivotal role of ROS in anticancer treatment. PMID:26273420

  5. The role of oxidative stress in Rett syndrome: an overview.

    PubMed

    De Felice, Claudio; Signorini, Cinzia; Leoncini, Silvia; Pecorelli, Alessandra; Durand, Thierry; Valacchi, Giuseppe; Ciccoli, Lucia; Hayek, Joussef

    2012-07-01

    The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl-CpG binding protein 2 (MeCP2) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from our and other laboratories indicates a potential role of oxidative stress (OS) in RTT. This review examines the current state of the knowledge on the role of OS in explaining the natural history, genotype-phenotype correlation, and clinical heterogeneity of the human disease. Biochemical evidence of OS appears to be related to neurological symptom severity, mutation type, and clinical presentation. These findings pave the way for potential new genetic downstream therapeutic strategies aimed at improving patient quality of life. Further efforts in the near future are needed for investigating the yet unexplored "black box" between the MeCP2 gene mutation and subsequent OS derangement.

  6. [Oxidative stress in plants exposed to heavy metals].

    PubMed

    Rucińiska-Sobkowiak, Renata

    2010-01-01

    Oxidative stress has been involved in the toxicity of heavy metals in different plant species. Exposure to metal ions can intensify the production of reactive oxygen species (ROS) such as: superoxide radicals, hydroxyl radicals or hydrogen peroxide. These species can react with cellular components (lipids, proteins, nucleic acids) and cause lipid peroxidation, membrane damage and inactivation of enzymes thus affect many physiological processes as well as cell viability. Plants have evolved a complex array of mechanisms to maintain low ROS level and avoid the detrimental effects of excessively high ROS concentrations. This antioxidant network includes numerous soluble (ascorbate, glutathione) and membrane (tocopherol) compounds as well as enzymes involved in ROS scavenging (superoxide dismutase, catalase, ascorbate peroxidase). ROS must be efficiently detoxified to ameliorate the harmful effects of heavy metals in the cells. However they cannot be eliminated completely because plants use ROS as second messengers in signal transduction cascades in diverse physiological processes.

  7. Stress selectively affects the reactivated components of a declarative memory.

    PubMed

    Hupbach, Almut; Dorskind, Joelle M

    2014-10-01

    When long-term memories are reactivated, they can reenter a transient plastic state in which they are vulnerable to interference or physiological manipulations. The present study attempted to directly affect reactivated memories through a stress manipulation, and compared the effects of stress on reactivated and nonreactivated components of a declarative memory in a within-subject design. We presented image pairs that consisted of an image of an animal and an image of an unrelated object. Participants were instructed to memorize the object images. Forty-eight hours later, we presented half of the animal images again in an unrelated task to indirectly reactivate the associated object images. Immediately after reactivation, participants were exposed to cold pressor stress or a warm water control condition. Forty-eight hours later, we assessed memory for the object images with a free recall test. Reactivation boosted memory performance in the control condition, such that reactivated items were better recalled than nonreactivated items. This memory-enhancing effect of reactivation was completely abolished by cold pressor stress. Importantly, stress selectively impacted only the reactivated items while leaving memory for the nonreactivated items unaffected. The present study shows that it is possible to selectively reactivate and modulate specific parts of a declarative memory.

  8. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context.

  9. Oxidative stress induces senescence in human mesenchymal stem cells

    SciTech Connect

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker; Nerlich, Michael; Angele, Peter

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  10. Crosstalk between oxidative and nitrosative stress and arterial stiffness.

    PubMed

    Mozos, Ioana; Luca, Constantin Tudor

    2017-02-01

    Arterial stiffness, the expression of reduced arterial elasticity, is an effective predictor of cardiovascular disorders. Oxidative stress is an imbalance between exposure to toxic reactive oxygen species (ROS) and antioxidant systems. The increase in reactive nitrogen species (RNS) is termed nitrosative stress. We review the main mechanisms and products linking arterial stiffness with oxidative and nitrosative stress in several disorders, focusing on recent experimental and clinical data, and the mechanisms explaining benefits of antioxidant therapy. Oxidative and nitrosative stress play important roles in arterial stiffness elevation in several disorders, including diabetes mellitus, hypertension, metabolic syndrome, obesity, peripheral arterial disease, chronic obstructive pulmonary disease, systemic lupus erythematosus, thalassemia, Kawasaki disease and malignant disorders. Oxidative and nitrosative stress are responsible for endothelial dysfunction due to uncoupling of the nitric oxide synthase, oxidative damage to lipids, proteins and DNA in vascular endothelial cells, associated with inflammation, arteriosclerosis and atherosclerosis. Regular physical exercise, caloric restriction, red wine, statins, sartans, metformin, oestradiol, curcumin and combinations of antioxidant vitamins are therapeutic strategies that may decrease arterial stiffness and oxidative stress thus reducing the risk of cardiovascular events. ROS and RNS represent potential therapeutic targets for preventing progression of arterial stiffness.

  11. Oxidative stress in aspic vipers facing pregnancy and water constraints.

    PubMed

    Stier, Antoine; Dupoué, Andréaz; Picard, Damien; Angelier, Frédéric; Brischoux, François; Lourdais, Olivier

    2017-03-14

    The physiological mechanisms underlying the 'cost of reproduction' remain under debate, though oxidative stress has emerged as a potential candidate. The 'oxidative cost of reproduction' has received considerable attention with regards to food and antioxidant availability, however the limitation of water availability has thus far been neglected. In this study we experimentally examined the combined effect of pregnancy and water-deprivation on oxidative status in a viviparous snake (Vipera aspis), a species naturally exposed to periods of water and food deprivation. We predicted a cumulative effect of pregnancy and dehydration on oxidative stress levels. Our results support the occurrence of an oxidative cost of reproduction since we found higher oxidative damage levels in pregnant females than in non-reproductive individuals, despite an up-regulation of antioxidant defences. Surprisingly, water-deprivation was associated with an up-regulation of antioxidant defences, and did not increase oxidative damage, either alone or in combination with reproduction.

  12. Nitrous oxide emissions affected by biochar and nitrogen stabilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emission...

  13. Futile cycling increases sensitivity toward oxidative stress in Escherichia coli

    PubMed Central

    Adolfsen, Kristin J.; Brynildsen, Mark P.

    2015-01-01

    Reactive oxygen species (ROS) are toxic molecules utilized by the immune system to combat invading pathogens. Recent evidence suggests that inefficiencies in ATP production or usage can lead to increased endogenous ROS production and sensitivity to oxidative stress in bacteria. With this as inspiration, and knowledge that ATP is required for a number of DNA repair mechanisms, we hypothesized that futile cycling would be an effective way to increase sensitivity to oxidative stress. We developed a mixed integer linear optimization framework to identify experimentally-tractable futile cycles, and confirmed metabolic modeling predictions that futile cycling depresses growth rate, and increases both O2 consumption and ROS production per biomass generated. Further, intracellular ATP was decreased and sensitivity to oxidative stress increased in all actively cycling strains compared to their catalytically inactive controls. This research establishes a fundamental connection between ATP metabolism, endogenous ROS production, and tolerance toward oxidative stress in bacteria. PMID:25732623

  14. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response

    PubMed Central

    Kumar, Akhilesh; Birnbaum, Michael D; Patel, Devang M; Morgan, William M; Singh, Jayanti; Barrientos, Antoni; Zhang, Fangliang

    2016-01-01

    Arginyltransferase 1 (Ate1) mediates protein arginylation, a poorly understood protein posttranslational modification (PTM) in eukaryotic cells. Previous evidence suggest a potential involvement of arginylation in stress response and this PTM was traditionally considered anti-apoptotic based on the studies of individual substrates. However, here we found that arginylation promotes cell death and/or growth arrest, depending on the nature and intensity of the stressing factor. Specifically, in yeast, mouse and human cells, deletion or downregulation of the ATE1 gene disrupts typical stress responses by bypassing growth arrest and suppressing cell death events in the presence of disease-related stressing factors, including oxidative, heat, and osmotic stresses, as well as the exposure to heavy metals or radiation. Conversely, in wild-type cells responding to stress, there is an increase of cellular Ate1 protein level and arginylation activity. Furthermore, the increase of Ate1 protein directly promotes cell death in a manner dependent on its arginylation activity. Finally, we found Ate1 to be required to suppress mutation frequency in yeast and mammalian cells during DNA-damaging conditions such as ultraviolet irradiation. Our study clarifies the role of Ate1/arginylation in stress response and provides a new mechanism to explain the link between Ate1 and a variety of diseases including cancer. This is also the first example that the modulation of the global level of a PTM is capable of affecting DNA mutagenesis. PMID:27685622

  15. Introduction to Oxidative Stress in Biomedical and Biological Research

    PubMed Central

    Breitenbach, Michael; Eckl, Peter

    2015-01-01

    Oxidative stress is now a well-researched area with thousands of new articles appearing every year. We want to give the reader here an overview of the topics in biomedical and basic oxidative stress research which are covered by the authors of this thematic issue. We also want to give the newcomer a short introduction into some of the basic concepts, definitions and analytical procedures used in this field. PMID:26117854

  16. Oxidative Stress: A Master Regulator of Plant Trade-Offs?

    PubMed

    Morales, Melanie; Munné-Bosch, Sergi

    2016-12-01

    Trade-offs between growth, reproduction, and defence have been documented. Oxidative stress is one of the physiological mechanisms that underlie trade-offs at the cellular and organ levels. The diversity of plant life forms and the complexity of scaling up limit our knowledge of oxidative stress as a universal mediator of life-history trade-offs at the organism level. Joint efforts by plant physiologists and ecologists will undoubtedly provide novel insights into this topic in the near future.

  17. Emerging importance of oxidative stress in regulating striated muscle elasticity.

    PubMed

    Beckendorf, Lisa; Linke, Wolfgang A

    2015-02-01

    The contractile function of striated muscle cells is altered by oxidative/nitrosative stress, which can be observed under physiological conditions but also in diseases like heart failure or muscular dystrophy. Oxidative stress causes oxidative modifications of myofilament proteins and can impair myocyte contractility. Recent evidence also suggests an important effect of oxidative stress on muscle elasticity and passive stiffness via modifications of the giant protein titin. In this review we provide a short overview of known oxidative modifications in thin and thick filament proteins and then discuss in more detail those oxidative stress-related modifications altering titin stiffness directly or indirectly. Direct modifications of titin include reversible disulfide bonding within the cardiac-specific N2-Bus domain, which increases titin stiffness, and reversible S-glutathionylation of cryptic cysteines in immunoglobulin-like domains, which only takes place after the domains have unfolded and which reduces titin stiffness in cardiac and skeletal muscle. Indirect effects of oxidative stress on titin can occur via reversible modifications of protein kinase signalling pathways (especially the NO-cGMP-PKG axis), which alter the phosphorylation level of certain disordered titin domains and thereby modulate titin stiffness. Oxidative stress also activates proteases such as matrix-metalloproteinase-2 and (indirectly via increasing the intracellular calcium level) calpain-1, both of which cleave titin to irreversibly reduce titin-based stiffness. Although some of these mechanisms require confirmation in the in vivo setting, there is evidence that oxidative stress-related modifications of titin are relevant in the context of biomarker design and represent potential targets for therapeutic intervention in some forms of muscle and heart disease.

  18. Prohibitin as an oxidative stress biomarker in the eye.

    PubMed

    Lee, Hyunju; Arnouk, Hilal; Sripathi, Srinivas; Chen, Ping; Zhang, Ruonan; Bartoli, Manuela; Hunt, Richard C; Hrushesky, William J M; Chung, Hyewon; Lee, Sung Haeng; Jahng, Wan Jin

    2010-12-01

    Identification of biomarker proteins in the retina and retinal pigment epithelium (RPE) under oxidative stress may imply new insights into signaling mechanisms of retinal degeneration at the molecular level. Proteomic data from an in vivo mice model in constant light and an in vitro oxidative stress model are compared to controls under normal conditions. Our proteomic study shows that prohibitin is involved in oxidative stress signaling in the retina and RPE. The identity of prohibitin in the retina and RPE was studied using 2D electrophoresis, immunohistochemistry, western blot, and mass spectrometry analysis. Comparison of expression levels with apoptotic markers as well as translocation between mitochondria and the nucleus imply that the regulation of prohibitin is an early signaling event in the RPE and retina under oxidative stress. Immunohistochemical analysis of murine aged and diabetic eyes further suggests that the regulation of prohibitin in the RPE/retina is related to aging- and diabetes-induced oxidative stress. Our proteomic approach implies that prohibitin in the RPE and the retina could be a new biomarker protein of oxidative stress in aging and diabetes.

  19. Nitrative and Oxidative Stress in Toxicology and Disease

    PubMed Central

    Roberts, Ruth A.; Laskin, Debra L.; Smith, Charles V.; Robertson, Fredika M.; Allen, Erin M. G.; Doorn, Jonathan A.; Slikker, William

    2009-01-01

    Persistent inflammation and the generation of reactive oxygen and nitrogen species play pivotal roles in tissue injury during disease pathogenesis and as a reaction to toxicant exposures. The associated oxidative and nitrative stress promote diverse pathologic reactions including neurodegenerative disorders, atherosclerosis, chronic inflammation, cancer, and premature labor and stillbirth. These effects occur via sustained inflammation, cellular proliferation and cytotoxicity and via induction of a proangiogenic environment. For example, exposure to the ubiquitous air pollutant ozone leads to generation of reactive oxygen and nitrogen species in lung macrophages that play a key role in subsequent tissue damage. Similarly, studies indicate that genes involved in regulating oxidative stress are altered by anesthetic treatment resulting in brain injury, most notable during development. In addition to a role in tissue injury in the brain, inflammation, and oxidative stress are implicated in Parkinson's disease, a neurodegenerative disease characterized by the loss of dopamine neurons. Recent data suggest a mechanistic link between oxidative stress and elevated levels of 3,4-dihydroxyphenylacetaldehyde, a neurotoxin endogenous to dopamine neurons. These findings have significant implications for development of therapeutics and identification of novel biomarkers for Parkinson's disease pathogenesis. Oxidative and nitrative stress is also thought to play a role in creating the proinflammatory microenvironment associated with the aggressive phenotype of inflammatory breast cancer. An understanding of fundamental concepts of oxidative and nitrative stress can underpin a rational plan of treatment for diseases and toxicities associated with excessive production of reactive oxygen and nitrogen species. PMID:19656995

  20. Neuroinflammation and Oxidative Stress in Diabetic Neuropathy: Futuristic Strategies Based on These Targets

    PubMed Central

    Sandireddy, Reddemma; Yerra, Veera Ganesh; Areti, Aparna; Komirishetty, Prashanth

    2014-01-01

    In Diabetes, the chronic hyperglycemia and associated complications affecting peripheral nerves are one of the most commonly occurring microvascular complications with an overall prevalence of 50–60%. Among the vascular complications of diabetes, diabetic neuropathy is the most painful and disabling, fatal complication affecting the quality of life in patients. Several theories of etiologies surfaced down the lane, amongst which the oxidative stress mediated damage in neurons and surrounding glial cell has gained attention as one of the vital mechanisms in the pathogenesis of neuropathy. Mitochondria induced ROS and other oxidants are responsible for altering the balance between oxidants and innate antioxidant defence of the body. Oxidative-nitrosative stress not only activates the major pathways namely, polyol pathway flux, advanced glycation end products formation, activation of protein kinase C, and overactivity of the hexosamine pathway, but also initiates and amplifies neuroinflammation. The cross talk between oxidative stress and inflammation is due to the activation of NF-κB and AP-1 and inhibition of Nrf2, peroxynitrite mediate endothelial dysfunction, altered NO levels, and macrophage migration. These all culminate in the production of proinflammatory cytokines which are responsible for nerve tissue damage and debilitating neuropathies. This review focuses on the relationship between oxidative stress and neuroinflammation in the development and progression of diabetic neuropathy. PMID:24883061

  1. The effects of dietary restriction on oxidative stress in rodents

    PubMed Central

    Walsh, Michael E.; Shi, Yun; Van Remmen, Holly

    2013-01-01

    Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends lifespan in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging. PMID:23743291

  2. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells.

    PubMed

    Wang, Jing; Yang, Xin; Zhang, Jingjing

    2016-08-01

    Pancreatic β cell dysfunction, i.e., failure to provide insulin in concentrations sufficient to control blood sugar, is central to the etiology of all types of diabetes. Current evidence implicates mitochondrial oxidative stress and endoplasmic reticulum (ER) stress in pancreatic β cell loss and impaired insulin secretion. Oxidative and ER stress are interconnected so that misfolded proteins induce reactive oxygen species (ROS) production; likewise, oxidative stress disturbs the ER redox state thereby disrupting correct disulfide bond formation and proper protein folding. mTOR signaling regulates many metabolic processes including protein synthesis, cell growth, survival and proliferation. Oxidative stress inhibits mTORC1, which is considered an important suppressor of mitochondrial oxidative stress in β cells, and ultimately, controls cell survival. The interplay between ER stress and mTORC1 is complicated, since the unfolded protein response (UPR) activation can occur upstream or downstream of mTORC1. Persistent activation of mTORC1 initiates protein synthesis and UPR activation, while in the later phase induces ER stress. Chronic activation of ER stress inhibits Akt/mTORC1 pathway, while under particular settings, acute activation of UPR activates Akt-mTOR signaling. Thus, modulating mitochondrial oxidative stress and ER stress via mTOR signaling may be an approach that will effectively suppress obesity- or glucolipotoxicity-induced metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM). In this review, we focus on the regulations between mTOR signaling and mitochondrial oxidative or ER stress in pancreatic β cells.

  3. Infrared Dielectric Properties of Low-Stress Silicon Oxide

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe; Wollack, Edward J.; Brown, Ari D.; Miller, Kevin H.

    2016-01-01

    Silicon oxide thin films play an important role in the realization of optical coatings and high-performance electrical circuits. Estimates of the dielectric function in the far- and mid-infrared regime are derived from the observed transmittance spectrum for a commonly employed low-stress silicon oxide formulation. The experimental, modeling, and numerical methods used to extract the dielectric function are presented.

  4. CONCENTRATED AMBIENT AIR POLLUTION CREATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  5. ELECTROSTATIC CHARGE STIMULATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can create oxidative stress (OS)-mediated inflammatory changes upon impact. The oxidative burst signals the activation of phage-lineage cells such as peripheral macrophages, Kupffer cells and CNS microgl...

  6. Mechanisms of Oxidative Stress Resistance in The Brain: Lessons Learned From Hypoxia Tolerant Extremophilic Vertebrates

    PubMed Central

    Garbarino, Valentina R.; Orr, Miranda E.; Rodriguez, Karl A.; Buffenstein, Rochelle

    2016-01-01

    The Oxidative Stress Theory of Aging has had tremendous impact in research involving aging and age-associated diseases including those that affect the nervous system. With over half a century of accrued data showing both strong support for and against this theory, there is a need to critically evaluate the data acquired from common biomedical research models, and to also diversify the species used in studies involving this proximate theory. One approach is to follow Orgel’s second axiom that “evolution is smarter than we are” and judiciously choose species that may have evolved to live with chronic or seasonal oxidative stressors. Vertebrates that have naturally evolved to live under extreme conditions (e.g., anoxia or hypoxia), as well as those that undergo daily or seasonal torpor encounter both decreased oxygen availability and subsequent reoxygenation, with concomitant increased oxidative stress. Due to its high metabolic activity, the brain may be particularly vulnerable to oxidative stress. Here, we focus on oxidative stress responses in the brains of certain mouse models as well as extremophilic vertebrates. Exploring the naturally evolved biological tools utilized to cope with seasonal or environmentally variable oxygen availability may yield key information pertinent for how to deal with oxidative stress and thereby mitigate its propagation of age-associated diseases. PMID:25841340

  7. Pathogenesis of liver fibrosis: role of oxidative stress.

    PubMed

    Poli, G

    2000-06-01

    In the liver, the progressive accumulation of connective tissue, a complex and dynamic process termed fibrosis, represents a very frequent event following a repeated or chronic insult of sufficient intensity to trigger a "wound healing"-like reaction. The fibrotic process recognises the involvement of various cells and different factors in bringing about an excessive fibrogenesis with disruption of intercellular contacts and interactions and of extracellular matrix composition. However, Kupffer cells, together with recruited mononuclear cells, and hepatic stellate cells are by far the key-players in liver fibrosis. Their cross-talk is triggered and favoured by a series of chemical mediators, with a prominent role played by the transforming growth factor beta. Both expression and synthesis of this inflammatory and pro-fibrogenic cytokine are mainly modulated through redox-sensitive reactions. Further, involvement of reactive oxygen species and lipid peroxidation products can be clearly demonstrated in other fundamental events of hepatic fibrogenesis, like activation and effects of stellate cells, expression of metalloproteinases and of their specific inhibitors. The important outcome of such findings as regards the pathogenesis of liver fibrosis derives from the observation of a consistent and marked oxidative stress condition in many if not all chronic disease processes affecting hepatic tissue. Hence, reactive oxidant species likely contribute to both onset and progression of fibrosis as induced by alcohol, viruses, iron or copper overload, cholestasis, hepatic blood congestion.

  8. Antioxidants and oxidative stress in Helix pomatia snails during estivation.

    PubMed

    Nowakowska, Anna; Swiderska-Kołacz, Grazyna; Rogalska, Justyna; Caputa, Michał

    2009-11-01

    Estivation enables land snails to survive a prolonged dryness but the return to active state imposes conditions of oxidative stress on internal organs due to a transient large increase in oxygen consumption, which augments mitochondrial production of reactive oxygen species. Therefore, activities of antioxidant enzymes, concentrations of reduced glutathione (GSH) and TBARS as an index of lipid peroxidation, were evaluated in Helix pomatia snails (i) during summer activity, (ii) during estivation, which was induced experimentally, (iii) at the start of arousal from estivation, and (iv) being aroused for 24 h. Estivation induced significant decreases in activity of catalase in the kidney and hepatopancreas and glutathione peroxidase in the kidney. Activity of glutathione reductase was unaffected by estivation/arousal cycle. Summer-active and estivating snails maintained high activity of glutathione transferase. Concentration of GSH was organ-dependent and was positively affected by estivation. Lack of increase in TBARS concentration during estivation/arousal cycle suggests that antioxidant defence system of H. pomatia snails is highly efficacious. In conclusion, permanent maintenance of relatively high activities of the antioxidant enzymes and the high concentration of GSH in H. pomatia snails indicate that they have well-developed strategy of defence against oxidative injury.

  9. Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers

    PubMed Central

    Zuo, Tao; Zhu, Minghui; Xu, Wenming

    2016-01-01

    Oxidative stress (OS) has received extensive attention in the last two decades, because of the discovery that abnormal oxidation status was related to patients with chronic diseases, such as diabetes, cardiovascular, polycystic ovary syndrome (PCOS), cancer, and neurological diseases. OS is considered as a potential inducing factor in the pathogenesis of PCOS, which is one of the most common complex endocrine disorders and a leading cause of female infertility, affecting 4%–12% of women in the world, as OS has close interactions with PCOS characteristics, just as insulin resistance (IR), hyperandrogenemia, and chronic inflammation. It has also been shown that DNA mutations and alterations induced by OS are involved in cancer pathogenesis, tumor cell survival, proliferation, invasion, angiogenesis, and so on. Furthermore, recent studies show that the females with PCOS are reported to have an increasing risk of cancers. As a result, the more serious OS in PCOS is regarded as an important potential incentive for the increasing risk of cancers, and this study aims to analyze the possibility and potential pathogenic mechanism of the above process, providing insightful thoughts and evidences for preventing cancer potentially caused by PCOS in clinic. PMID:26770659

  10. Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers.

    PubMed

    Zuo, Tao; Zhu, Minghui; Xu, Wenming

    2016-01-01

    Oxidative stress (OS) has received extensive attention in the last two decades, because of the discovery that abnormal oxidation status was related to patients with chronic diseases, such as diabetes, cardiovascular, polycystic ovary syndrome (PCOS), cancer, and neurological diseases. OS is considered as a potential inducing factor in the pathogenesis of PCOS, which is one of the most common complex endocrine disorders and a leading cause of female infertility, affecting 4%-12% of women in the world, as OS has close interactions with PCOS characteristics, just as insulin resistance (IR), hyperandrogenemia, and chronic inflammation. It has also been shown that DNA mutations and alterations induced by OS are involved in cancer pathogenesis, tumor cell survival, proliferation, invasion, angiogenesis, and so on. Furthermore, recent studies show that the females with PCOS are reported to have an increasing risk of cancers. As a result, the more serious OS in PCOS is regarded as an important potential incentive for the increasing risk of cancers, and this study aims to analyze the possibility and potential pathogenic mechanism of the above process, providing insightful thoughts and evidences for preventing cancer potentially caused by PCOS in clinic.

  11. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes.

  12. Oxidative stress and autophagy: Crucial modulators of kidney injury

    PubMed Central

    Sureshbabu, Angara; Ryter, Stefan W.; Choi, Mary E.

    2015-01-01

    Both acute kidney injury (AKI) and chronic kidney disease (CKD) that lead to diminished kidney function are interdependent risk factors for increased mortality. If untreated over time, end stage renal disease (ESRD) is an inevitable outcome. Acute and chronic kidney diseases occur partly due to imbalance between the molecular mechanisms that govern oxidative stress, inflammation, autophagy and cell death. Oxidative stress refers to the cumulative effects of highly reactive oxidizing molecules that cause cellular damage. Autophagy removes damaged organelles, protein aggregates and pathogens by recruiting these substrates into double membrane vesicles called autophagosomes which subsequently fuse with lysosomes. Mounting evidence suggests that both oxidative stress and autophagy are significantly involved in kidney health and disease. However, very little is known about the signaling processes that link them. This review is focused on understanding the role of oxidative stress and autophagy in kidney diseases. In this review, we also discuss the potential relationships between oxidative stress and autophagy that may enable the development of better therapeutic intervention to halt the progression of kidney disease and promote its repair and resolution. PMID:25613291

  13. [Oxidative stress and fertility: false evidence and bad recipes].

    PubMed

    Ménézo, Y; Entezami, F; Lichtblau, I; Cohen, M; Belloc, S; Brack, M

    2012-12-01

    Worldwide statistics agree that at least one out of six couples has fertility problems. If the male gamete is the origin of this problem, it is generally admitted that the oxidative stress is involved. Modern life has obviously increased fertility problems through pesticides, xenoestrogenes, endocrine disrupting chemicals involved in plastic technology such as polychlorinated bisphenyls, bisphenol A, phthalates and alkylphenols… and other cosmetic additives. An important part of these compounds increases oxidative stress, at least in part. Oxidative stress is more than probably at the origin or recurrent increasing pathologies such as endometriosis. If the oocyte is theoretically able to repair oxidative stress linked decays such as DNA fragmentation and oxidation of bases, its capacity is finite and decreasing with age. In order to decrease DNA repair charge, reducing or even avoiding the generation of DNA damages related to reactive oxygen species through consumption of antioxidants compounds is often tempting: however Reasons will be provided to break from current treatments given haphazardly in the population in the age of reproduction, as well as the potential risks of over-exposure. Furthermore recommended treatments, in relation with the new concepts in oxidative stress, will be specified.

  14. Role of Oxidative Stress in Refractory Epilepsy: Evidence in Patients and Experimental Models

    PubMed Central

    Cardenas-Rodriguez, Noemi; Huerta-Gertrudis, Bernardino; Rivera-Espinosa, Liliana; Montesinos-Correa, Hortencia; Bandala, Cindy; Carmona-Aparicio, Liliana; Coballase-Urrutia, Elvia

    2013-01-01

    Oxidative stress, a state of imbalance in the production of reactive oxygen species and nitrogen, is induced by a wide variety of factors. This biochemical state is associated with systemic diseases, and diseases affecting the central nervous system. Epilepsy is a chronic neurological disorder with refractoriness to drug therapy at about 30%. Currently, experimental evidence supports the involvement of oxidative stress in seizures, in the process of their generation, and in the mechanisms associated with refractoriness to drug therapy. Hence, the aim of this review is to present information in order to facilitate the handling of this evidence and determine the therapeutic impact of the biochemical status for this pathology. PMID:23344052

  15. Role of oxidative stress in refractory epilepsy: evidence in patients and experimental models.

    PubMed

    Cardenas-Rodriguez, Noemi; Huerta-Gertrudis, Bernardino; Rivera-Espinosa, Liliana; Montesinos-Correa, Hortencia; Bandala, Cindy; Carmona-Aparicio, Liliana; Coballase-Urrutia, Elvia

    2013-01-14

    Oxidative stress, a state of imbalance in the production of reactive oxygen species and nitrogen, is induced by a wide variety of factors. This biochemical state is associated with systemic diseases, and diseases affecting the central nervous system. Epilepsy is a chronic neurological disorder with refractoriness to drug therapy at about 30%. Currently, experimental evidence supports the involvement of oxidative stress in seizures, in the process of their generation, and in the mechanisms associated with refractoriness to drug therapy. Hence, the aim of this review is to present information in order to facilitate the handling of this evidence and determine the therapeutic impact of the biochemical status for this pathology.

  16. Stressed Oxidation of C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Brewer, David N.; Eckel, Andrew J.; Cawley, James D.

    1997-01-01

    Constant load, stressed oxidation testing was performed on T-300 C/SiC composites with a SiC seal coat. Test conditions included temperatures ranging from 350 C to 1500 C at stresses of 69 MPa and 172 MPa (10 and 25 ksi). The coupon subjected to stressed oxidation at 550 C/69 MPa for 25 hours had a room temperature residual strength one-half that of the as-received coupons. The coupon tested at the higher stress and all coupons tested at higher temperatures failed in less than 25 hr. Microstructural analysis of the fracture surfaces, using SEM (scanning electron microscopy), revealed the formation of reduced cross-sectional fibers with pointed tips. Analysis of composite cross-sections show pathways for oxygen ingress. The discussion will focus on fiber/matrix interphase oxidation and debonding as well as the formation and implications of the fiber tip morphology.

  17. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders.

    PubMed

    Islam, Md Torequl

    2017-01-01

    Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to the etiology of many diseases, including neurodegenerative diseases (NDDs) such as Alzheimer diseases, Amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Multiple sclerosis, and Parkinson's diseases. In addition, oxidative stress causing protein misfold may turn to other NDDs include Creutzfeldt-Jakob disease, Bovine Spongiform Encephalopathy, Kuru, Gerstmann-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. An overview of the oxidative stress and mitochondrial dysfunction-linked NDDs has been summarized in this review.

  18. Statins lower calcium-induced oxidative stress in isolated mitochondria.

    PubMed

    Parihar, A; Parihar, M S; Zenebe, W J; Ghafourifar, P

    2012-04-01

    Statins are widely used cholesterol-lowering agents that exert cholesterol-independent effects including antioxidative. The present study delineates the effects of statins, atorvastatin, and simvastatin on oxidative stress and functions of mitochondria that are the primary cellular sources of oxidative stress. In isolated rat liver mitochondria, both the statins prevented calcium-induced cytochrome c release, lipid peroxidation, and opening of the mitochondrial membrane permeability transition (MPT). Both the statins decreased the activity of mitochondrial nitric oxide synthase (mtNOS), lowered the intramitochondrial ionized calcium, and increased the mitochondrial transmembrane potential. Our findings suggest that statins lower intramitochondrial ionized calcium that decreases mtNOS activity, lowers oxidative stress, prevents MPT opening, and prevents the release of cytochrome c from the mitochondria. These results provide a novel framework for understanding the antioxidative properties of statins and their effects on mitochondrial functions.

  19. Markers of Oxidative Stress and Neuroprogression in Depression Disorder.

    PubMed

    Vaváková, Magdaléna; Ďuračková, Zdeňka; Trebatická, Jana

    2015-01-01

    Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed.

  20. Morphine as a Potential Oxidative Stress-Causing Agent.

    PubMed

    Skrabalova, Jitka; Drastichova, Zdenka; Novotny, Jiri

    2013-11-01

    Morphine exhibits important pharmacological effects for which it has been used in medical practice for quite a long time. However, it has a high addictive potential and can be abused. Long-term use of this drug can be connected with some pathological consequences including neurotoxicity and neuronal dysfunction, hepatotoxicity, kidney dysfunction, oxidative stress and apoptosis. Therefore, most studies examining the impact of morphine have been aimed at determining the effects induced by chronic morphine exposure in the brain, liver, cardiovascular system and macrophages. It appears that different tissues may respond to morphine diversely and are distinctly susceptible to oxidative stress and subsequent oxidative damage of biomolecules. Importantly, production of reactive oxygen/nitrogen species induced by morphine, which have been observed under different experimental conditions, can contribute to some pathological processes, degenerative diseases and organ dysfunctions occurring in morphine abusers or morphine-treated patients. This review attempts to provide insights into the possible relationship between morphine actions and oxidative stress.

  1. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  2. Markers of Oxidative Stress and Neuroprogression in Depression Disorder

    PubMed Central

    Vaváková, Magdaléna; Trebatická, Jana

    2015-01-01

    Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed. PMID:26078821

  3. OXIDATIVE STRESS 3 Is a Chromatin-Associated Factor Involved in Tolerance to Heavy Metals and Oxidative Stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cDNA expression library from Brassica juncea was introduced into the fission yeast Schizosaccharomyces pombe to select for transformants tolerant to cadmium. Transformants expressing OXIDATIVE STRESS 3 (OXS3) or OXS3-Like cDNA exhibited enhanced tolerance to a range of metals and oxidizing chemica...

  4. Oxidative stress, innate immunity, and age-related macular degeneration.

    PubMed

    Shaw, Peter X; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer's disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  5. Oxidative stress, innate immunity, and age-related macular degeneration

    PubMed Central

    Shaw, Peter X.; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    2016-01-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  6. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa).

    PubMed

    Tang, Wei; Sun, Jiaqi; Liu, Jia; Liu, Fangfang; Yan, Jun; Gou, Xiaojun; Lu, Bao-Rong; Liu, Yongsheng

    2014-11-01

    As an important osmoprotectant, glycine betaine (GB) plays an essential role in resistance to abiotic stress in a variety of organisms, including rice (Oryza sativa L.). However, GB content is too low to be detectable in rice, although rice genome possesses several orthologs coding for betaine aldehyde dehydrogenase (BADH) involved in plant GB biosynthesis. Rice BADH1 (OsBADH1) has been shown to be targeted to peroxisome and its overexpression resulted in increased GB biosynthesis and tolerance to abiotic stress. In this study, we demonstrated a pivotal role of OsBADH1 in stress tolerance without altering GB biosynthesis capacity, using the RNA interference (RNAi) technique. OsBADH1 was ubiquitously expressed in different organs, including roots, stems, leaves and flowers. Transgenic rice lines downregulating OsBADH1 exhibited remarkably reduced tolerance to NaCl, drought and cold stresses. The decrease of stress tolerance occurring in the OsBADH1-RNAi repression lines was associated with an elevated level of malondialdehyde content and hydrogen peroxidation. No GB accumulation was detected in transgene-positive and transgene-negative lines derived from heterozygous transgenic T0 plants. Moreover, transgenic OsBADH1-RNAi repression lines showed significantly reduced seed set and yield. In conclusion, the downregulation of OsBADH1, even though not causing any change of GB content, was accounted for the reduction of ability to dehydrogenate the accumulating metabolism-derived aldehydes and subsequently resulted in decreased stress tolerance and crop productivity. These results suggest that OsBADH1 possesses an enzyme activity to catalyze other aldehydes in addition to betaine aldehyde (the precursor of GB) and thus alleviate their toxic effects under abiotic stresses.

  7. Contaminant-induced oxidative stress in fish: a mechanistic approach.

    PubMed

    Lushchak, Volodymyr I

    2016-04-01

    The presence of reactive oxygen species (ROS) in living organisms was described more than 60 years ago and virtually immediately it was suggested that ROS were involved in various pathological processes and aging. The state when ROS generation exceeds elimination leading to an increased steady-state ROS level has been called "oxidative stress." Although ROS association with many pathological states in animals is well established, the question of ROS responsibility for the development of these states is still open. Fish represent the largest group of vertebrates and they inhabit a broad range of ecosystems where they are subjected to many different aquatic contaminants. In many cases, the deleterious effects of contaminants have been connected to induction of oxidative stress. Therefore, deciphering of molecular mechanisms leading to such contaminant effects and organisms' response may let prevent or minimize deleterious impacts of oxidative stress. This review describes general aspects of ROS homeostasis, in particular highlighting its basic aspects, modification of cellular constituents, operation of defense systems and ROS-based signaling with an emphasis on fish systems. A brief introduction to oxidative stress theory is accompanied by the description of a recently developed classification system for oxidative stress based on its intensity and time course. Specific information on contaminant-induced oxidative stress in fish is covered in sections devoted to such pollutants as metal ions (particularly iron, copper, chromium, mercury, arsenic, nickel, etc.), pesticides (insecticides, herbicides, and fungicides) and oil with accompanying pollutants. In the last section, certain problems and perspectives in studies of oxidative stress in fish are described.

  8. Oxidative stress alters global histone modification and DNA methylation.

    PubMed

    Niu, Yingmei; DesMarais, Thomas L; Tong, Zhaohui; Yao, Yixin; Costa, Max

    2015-05-01

    The JmjC domain-containing histone demethylases can remove histone lysine methylation and thereby regulate gene expression. The JmjC domain uses iron Fe(II) and α-ketoglutarate (αKG) as cofactors in an oxidative demethylation reaction via hydroxymethyl lysine. We hypothesize that reactive oxygen species will oxidize Fe(II) to Fe(III), thereby attenuating the activity of JmjC domain-containing histone demethylases. To minimize secondary responses from cells, extremely short periods of oxidative stress (3h) were used to investigate this question. Cells that were exposed to hydrogen peroxide (H2O2) for 3h exhibited increases in several histone methylation marks including H3K4me3 and decreases of histone acetylation marks including H3K9ac and H4K8ac; preincubation with ascorbate attenuated these changes. The oxidative stress level was measured by generation of 2',7'-dichlorofluorescein, GSH/GSSG ratio, and protein carbonyl content. A cell-free system indicated that H2O2 inhibited histone demethylase activity where increased Fe(II) rescued this inhibition. TET protein showed a decreased activity under oxidative stress. Cells exposed to a low-dose and long-term (3 weeks) oxidative stress also showed increased global levels of H3K4me3 and H3K27me3. However, these global methylation changes did not persist after washout. The cells exposed to short-term oxidative stress also appeared to have higher activity of class I/II histone deacetylase (HDAC) but not class III HDAC. In conclusion, we have found that oxidative stress transiently alters the epigenetic program process through modulating the activity of enzymes responsible for demethylation and deacetylation of histones.

  9. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences.

    PubMed

    Tezel, Gülgün

    2006-09-01

    Reactive oxygen species (ROS) are generated as by-products of cellular metabolism, primarily in the mitochondria. Although ROS are essential participants in cell signaling and regulation, when their cellular production overwhelms the intrinsic antioxidant capacity, damage to cellular macromolecules such as DNA, proteins, and lipids ensues. Such a state of "oxidative stress" is thought to contribute to the pathogenesis of a number of neurodegenerative diseases. Growing evidence supports the involvement of oxidative stress as a common component of glaucomatous neurodegeneration in different subcellular compartments of retinal ganglion cells (RGCs). Besides the evidence of direct cytotoxic consequences leading to RGC death, it also seems highly possible that ROS are involved in signaling RGC death by acting as a second messenger and/or modulating protein function by redox modifications of downstream effectors through enzymatic oxidation of specific amino acid residues. Different studies provide cumulating evidence, which supports the association of ROS with different aspects of the neurodegenerative process. Oxidative protein modifications during glaucomatous neurodegeneration increase neuronal susceptibility to damage and also lead to glial dysfunction. Oxidative stress-induced dysfunction of glial cells may contribute to spreading neuronal damage by secondary degeneration. Oxidative stress also promotes the accumulation of advanced glycation end products in glaucomatous tissues. In addition, oxidative stress takes part in the activation of immune response during glaucomatous neurodegeneration, as ROS stimulate the antigen presenting ability of glial cells and also function as co-stimulatory molecules during antigen presentation. By discussing current evidence, this review provides a broad perspective on cellular mechanisms and potential consequences of oxidative stress in glaucoma.

  10. Low-level lasers affect Escherichia coli cultures in hyperosmotic stress

    NASA Astrophysics Data System (ADS)

    Pinheiro, C. C.; Barboza, L. L.; Paoli, F.; Fonseca, A. S.

    2015-08-01

    Physical characteristics and practical properties have made lasers of interest for biomedical applications. Effects of low-level lasers on biological tissues could occur or be measurable depending on cell type, presence of a pathologic process or whether the cells are in an adverse environment. The objective of this work was to evaluate the survival, morphology and filamentation of E. coli cells proficient and deficient in the repair of oxidative DNA lesions exposed low-level red and infrared lasers submitted to hyperosmotic stress. Wild type and endonuclease VIII deficient E. coli cells in exponential and stationary growth phase were exposed to red and infrared lasers and submitted to hyperosmotic stress. Cell viability, filamentation phenotype and cell morphology were evaluated. Cell viability was not significantly altered but previous laser exposure induced filamentation and an altered area of stressed cells depending on physiologic condition and presence of the DNA repair. Results suggest that previous exposure to low-level red and infrared lasers could not affect viability but induced morphologic changes in cells submitted to hyperosmotic stress depending on physiologic conditions and repair of oxidative DNA lesions.

  11. Evaluation of toxicity and oxidative stress induced by intravenous iron isomaltoside 1000 in a nonclinical model.

    PubMed

    Toblli, Jorge E; Cao, Gabriel; Oliveri, Leda; Angerosa, Margarita

    2011-01-01

    The physicochemical characteristics of intravenous iron complexes affect the extent of weakly-bound iron and thus the degree of oxidative stress. The new preparation iron isomaltoside 1000 (IIM) was compared to iron sucrose (IS) and a control group in terms of biochemistry, oxidative stress, inflammatory markers and iron deposition in the liver, heart and kidneys of healthy rats. Renal function was significantly impaired in the IIM group versus both IS and controls. Liver enzymes were also significantly higher in IIM-treated animals versus the other groups, indicative of hepatic injury. Systolic blood pressure was significantly lower following IIM administration compared to IS or control animals. Oxidative stress in the liver, heart and kidneys was greater in the IIM group, as indicated by significantly increased levels of malondialdehyde and antioxidant enzyme activity, accompaniedby a significantly lower ratio of reduced to oxidized glutathione. Microscopy demonstrated more extensive positive staining for iron, and a smaller area of ferritin staining, in the liver, heart and kidneys of rats treated with IIM versus IS.Levels of the inflammatory markers TNF-alpha and IL6 were both significantly higher in the IIM group versus IS in all assessed tissues. These findings indicate that IIM has a less favorable safety profile than IS in healthy rats, adversely affecting iron deposition, oxidative stress and inflammatory responses, with impaired liver and renal function.

  12. Oxidative stress in patients with obstructive sleep apnoea syndrome.

    PubMed

    Passali, D; Corallo, G; Yaremchuk, S; Longini, M; Proietti, F; Passali, G C; Bellussi, L

    2015-12-01

    Obstructive sleep apnoea syndrome (OSAS) is a disorder that leads to metabolic abnormalities and increased cardiovascular risk. The aim of this study was to identify early laboratory markers of cardiovascular disease through analysis of oxidative stress in normal subjects and patients with OSAS. A prospective study was designed to compare outcomes of oxidative stress laboratory tests in 20 adult patients with OSAS and a control group of 20 normal subjects. Laboratory techniques for detecting and quantifying free radical damage must be targeted to assess the pro-oxidant component and the antioxidant in order to obtain an overall picture of oxidative balance. No statistical differences in age, sex distribution, or BMI were found between the two groups (p>0.05). There were significant differences in the apnoea/hypopnoea index (AHI) between OSAS patients and the control group (p<0.05). Statistically significant differences in isoprostane, advanced oxidation protein products (AOPP) and non-protein bound iron (NPBI) levels were found between the study and control groups. No significant difference in the levels of thiol biomarkers was found between the two groups. The main finding of the present study was increased production of oxidative stress biomarkers in OSAS patients. The major difference between thiols and other oxidative stress biomarkers is that thiols are antioxidants, while the others are expressions of oxidative damage. The findings of the present study indicate that biomarkers of oxidative stress in OSAS may be used as a marker of upper airway obstructive episodes due to mechanical trauma, as well as a marker of hypoxaemia causing local oropharyngeal inflammation.

  13. Effect of temperature in multiple biomarkers of oxidative stress in coastal shrimp.

    PubMed

    Vinagre, Catarina; Madeira, Diana; Mendonça, Vanessa; Dias, Marta; Roma, Joma; Diniz, Mário S

    2014-04-01

    Various studies in captivity and in the wild have pointed to the effect of season, and temperature in particular, in the levels of the oxidative stress biomarkers currently used for environmental quality assessment. However, knowledge on how temperature affects the oxidative stress response is unavailable for most species. This study investigated the effect of increasing temperature on lipid peroxidation, catalase activity, superoxide dismutase and glutathione-S-transferase in the shrimps, Palaemon elegans and Palaemon serratus. It was concluded that increasing temperatures significantly affect all the biomarkers tested in both species, with the exception of superoxide dismutase in P. serratus which was not affected by temperature. The oxidative stress response was more intense in P. elegans, than in P. serratus, producing higher peaks of all biomarkers at temperatures between 22°C and 26°C, followed by low levels at higher temperatures. It was concluded that monitoring of ecosystems using oxidative stress biomarkers should take into account the species and thermal history of the organisms. Sampling should be avoided during heat waves and immediately after heat waves.

  14. Role of Nrf2 in Oxidative Stress and Toxicity

    PubMed Central

    Ma, Qiang

    2015-01-01

    Organismal life encounters reactive oxidants from internal metabolism and environmental toxicant exposure. Reactive oxygen and nitrogen species cause oxidative stress and are traditionally viewed as being harmful. On the other hand, controlled production of oxidants in normal cells serves useful purposes to regulate signaling pathways. Reactive oxidants are counterbalanced by complex antioxidant defense systems regulated by a web of pathways to ensure that the response to oxidants is adequate for the body’s needs. A recurrent theme in oxidant signaling and antioxidant defense is reactive cysteine thiol–based redox signaling. The nuclear factor erythroid 2–related factor 2 (Nrf2) is an emerging regulator of cellular resistance to oxidants. Nrf2 controls the basal and induced expression of an array of antioxidant response element–dependent genes to regulate the physiological and pathophysiological outcomes of oxidant exposure. This review discusses the impact of Nrf2 on oxidative stress and toxicity and how Nrf2 senses oxidants and regulates antioxidant defense. PMID:23294312

  15. Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: More evidence for oxidative stress in vitiligo

    SciTech Connect

    Schallreuter, K.U. . E-mail: k.schallreuter@bradford.ac.uk; Gibbons, N.C.J.; Zothner, C.; Abou Elloof, M.M.; Wood, J.M.

    2007-08-17

    Patients with acute vitiligo have low epidermal catalase expression/activities and accumulate 10{sup -3} M H{sub 2}O{sub 2}. One consequence of this severe oxidative stress is an altered calcium homeostasis in epidermal keratinocytes and melanocytes. Here, we show decreased epidermal calmodulin expression in acute vitiligo. Since 10{sup -3}M H{sub 2}O{sub 2} oxidises methionine and tryptophan residues in proteins, we examined calcium binding to calmodulin in the presence and absence of H{sub 2}O{sub 2} utilising {sup 45}calcium. The results showed that all four calcium atoms exchanged per molecule of calmodulin. Since oxidised calmodulin looses its ability to activate calcium ATPase, enzyme activities were followed in full skin biopsies from lesional skin of patients with acute vitiligo (n = 6) and healthy controls (n = 6). The results yielded a 4-fold decrease of ATPase activities in the patients. Computer simulation of native and oxidised calmodulin confirmed the loss of all four calcium ions from their specific EF-hand domains. Taken together H{sub 2}O{sub 2}-mediated oxidation affects calcium binding in calmodulin leading to perturbed calcium homeostasis and perturbed L-phenylalanine-uptake in the epidermis of acute vitiligo.

  16. Exercise Training Attenuates the Dysregulated Expression of Adipokines and Oxidative Stress in White Adipose Tissue

    PubMed Central

    Ishibashi, Yoshinaga; Ohno, Hideki

    2017-01-01

    Obesity-induced inflammatory changes in white adipose tissue (WAT), which caused dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein-1, contribute to the development of insulin resistance. Moreover, current literature reports state that WAT generates reactive oxygen species (ROS), and the enhanced production of ROS in obese WAT has been closely associated with the dysregulated expression of adipokines in WAT. Therefore, the reduction in excess WAT and oxidative stress that results from obesity is thought to be one of the important strategies in preventing and improving lifestyle-related diseases. Exercise training (TR) not only brings about a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the adipokines in WAT. Furthermore, some reports indicate that TR affects the generation of oxidative stress in WAT. This review outlines the impact of TR on the expression of inflammation-related adipokines and oxidative stress in WAT. PMID:28168013

  17. Targets of oxidative stress in cardiovascular system.

    PubMed

    Chakraborti, T; Ghosh, S K; Michael, J R; Batabyal, S K; Chakraborti, S

    1998-10-01

    Although oxidants such as superoxide (O2.) and hydrogen peroxide (H2O2) play a role in host-mediated destruction of foreign pathogens yet excessive generation of oxidants may lead to a variety of pathological complications in the cardiovascular system. An important mechanism by which oxidants cause dysfunction of the cardiovascular system appears to be due to the increase in intracellular free Ca2+ concentration. Oxidants cause cellular Ca2+ mobilization by modulating activities of a variety of regulators such as Na+/H+ and Na+/Ca2+ exchangers, Na+/K+ ATPase and Ca2+ ATPase and Ca2+ channels that are associated with Ca2+ transport in the plasma membrane and the sarco(endo)plasmic reticular membrane of myocardial cells. Recent research have suggested that the increase in Ca2+ level by oxidants plays a pivotal role in inducing several protein kinases such as protein kinase C, tyrosine kinase and mitogen activated protein kinases. Oxidant-mediated alteration of different signal transduction systems and their interations eventually regulate a variety of pathological conditions such as atherosclerosis, apoptosis and necrosis in the myocardium.

  18. Oxidative stress: a potential link between emotional wellbeing and immune response.

    PubMed

    Salim, Samina

    2016-08-01

    Emotional wellbeing is central to normal health and good living. Persistent psychological stress often disrupts emotional wellbeing and triggers onset of neuropsychiatric ailments. An integrated, multisystemic stress response involving neuroinflammatory, neuroendocrine and metabolic cascades seem to have some causative links. Of particular interest are the neuroinflammatory processes. Psychological stress has been suggested to negatively affect normal functioning of the immune system contributing to the pathophysiology of some neuropsychiatric conditions. Thus examination of the interaction between the immune system and the central nervous system is likely to reveal molecular targets critical for development of potential therapeutic and preventive measures. This review is a summarized discussion of evidence linking impact of psychological stress on the immune system, with a particular emphasis on oxidative stress mechanisms by which mental stress potentially impacts immune function leading to activation of multiple cascades resulting in subsequent manifestation of psychiatric symptomologies.

  19. Myelophil ameliorates brain oxidative stress in mice subjected to restraint stress.

    PubMed

    Lee, Jin-Seok; Kim, Hyung-Geug; Han, Jong-Min; Lee, Jong-Suk; Son, Seung-Wan; Ahn, Yo-Chan; Son, Chang-Gue

    2012-12-03

    We evaluated the pharmacological effects of Myelophil, a 30% ethanol extract of a mix of Astragali Radix and Salviae Radix, on oxidative stress-induced brain damage in mice caused by restraint stress. C57BL/6 male mice (eight weeks old) underwent daily oral administration of distilled water, Myelophil (25, 50, or 100mg/kg), or ascorbic acid (100mg/kg) 1h before induction of restraint stress, which involved 3h of immobilization per day for 21days. Nitric oxide levels, lipid peroxidation, activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione redox system enzymes), and concentrations of adrenaline, corticosterone, and interferon-γ, were measured in brain tissues and/or sera. Restraint stress-induced increases in nitric oxide levels (serum and brain tissues) and lipid peroxidation (brain tissues) were significantly attenuated by Myelophil treatment. Restraint stress moderately lowered total antioxidant capacity, catalase activity, glutathione content, and the activities of glutathione reductase, glutathione peroxidase, and glutathione S-transferase; all these responses were reversed by Myelophil. Myelophil significantly attenuated the elevated serum concentrations of adrenaline and corticosterone and restored serum and brain interferon-γ levels. Moreover, Myelophil normalized expression of the genes encoding monoamine oxidase A, catechol-O-methyltransferase, and phenylethanolamine N-methyltransferase, which was up-regulated by restraint stress in brain tissues. These results suggest that Myelophil has pharmacological properties protects brain tissues against stress-associated oxidative stress damage, perhaps in part through regulation of stress hormones.

  20. Transient ALT activation protects human primary cells from chromosome instability induced by low chronic oxidative stress

    PubMed Central

    Coluzzi, Elisa; Buonsante, Rossella; Leone, Stefano; Asmar, Anthony J.; Miller, Kelley L.; Cimini, Daniela; Sgura, Antonella

    2017-01-01

    Cells are often subjected to the effect of reactive oxygen species (ROS) as a result of both intracellular metabolism and exposure to exogenous factors. ROS-dependent oxidative stress can induce 8-oxodG within the GGG triplet found in the G-rich human telomeric sequence (TTAGGG), making telomeres highly susceptible to ROS-induced oxidative damage. Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes and their dysfunction is believed to affect a wide range of cellular and/or organismal processes. Acute oxidative stress was shown to affect telomere integrity, but how prolonged low level oxidative stress, which may be more physiologically relevant, affects telomeres is still poorly investigated. Here, we explored this issue by chronically exposing human primary fibroblasts to a low dose of hydrogen peroxide. We observed fluctuating changes in telomere length and fluctuations in the rates of chromosome instability phenotypes, such that when telomeres shortened, chromosome instability increased and when telomeres lengthened, chromosome instability decreased. We found that telomere length fluctuation is associated with transient activation of an alternative lengthening of telomere (ALT) pathway, but found no evidence of cell death, impaired proliferation, or cell cycle arrest, suggesting that ALT activation may prevent oxidative damage from reaching levels that threaten cell survival. PMID:28240303

  1. Acrylonitrile-Induced Oxidative Stress and Oxidative DNA Damage in Male Sprague-Dawley Rats

    PubMed Central

    Kamendulis, Lisa M.; Klaunig, James E.

    2009-01-01

    Studies have demonstrated that the induction of oxidative stress may be involved in brain tumor induction in rats by acrylonitrile. The present study examined whether acrylonitrile induces oxidative stress and DNA damage in rats and whether blood can serve as a valid surrogate for the biomonitoring of oxidative stress induced by acrylonitrile in the exposed population. Male Sprague-Dawley rats were treated with 0, 3, 30, 100, and 200 ppm acrylonitrile in drinking water for 28 days. One group of rats were also coadministered N-acetyl cysteine (NAC) (0.3% in diet) with acrylonitrile (200 ppm in drinking water) to examine whether antioxidant supplementation was protective against acrylonitrile-induced oxidative stress. Direct DNA strand breakage in white blood cells (WBC) and brain was measured using the alkaline comet assay. Oxidative DNA damage in WBC and brain was evaluated using formamidopyrimidine DNA glycosylase (fpg)-modified comet assay and with high-performance liquid chromatography-electrochemical detection. No significant increase in direct DNA strand breaks was observed in brain and WBC from acrylonitrile-treated rats. However, oxidative DNA damage (fpg comet and 8′hydroxyl-2-deoxyguanosine) in brain and WBC was increased in a dose-dependent manner. In addition, plasma levels of reactive oxygen species (ROS) increased in rats administered acrylonitrile. Dietary supplementation with NAC prevented acrylonitrile-induced oxidative DNA damage in brain and WBC. A slight, but significant, decrease in the GSH:GSSG ratio was seen in brain at acrylonitrile doses > 30 ppm. These results provide additional support that the mode of action for acrylonitrile-induced astrocytomas involves the induction of oxidative stress and damage. Significant associations were seen between oxidative DNA damage in WBC and brain, ROS formation in plasma, and the reported tumor incidences. Since oxidative DNA damage in brain correlated with oxidative damage in WBC, these results suggest

  2. Nitric oxide signaling in plant responses to abiotic stresses.

    PubMed

    Qiao, Weihua; Fan, Liu-Min

    2008-10-01

    Nitric oxide (NO) plays important roles in diverse physiological processes in plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.

  3. Mild oxidative stress is beneficial for sperm telomere length maintenance

    PubMed Central

    Mishra, Swetasmita; Kumar, Rajeev; Malhotra, Neena; Singh, Neeta; Dada, Rima

    2016-01-01

    AIM: To evaluate telomere length in sperm DNA and its correlation with oxidative stress (normal, mild, severe). METHODS: The study included infertile men (n = 112) and age matched fertile controls (n = 102). The average telomere length from the sperm DNA was measured using a quantitative real time PCR based assay. Seminal reactive oxygen species (ROS) and 8-Isoprostane (8-IP) levels were measured by chemiluminescence assay and ELISA respectively. RESULTS: Average sperm telomere length in infertile men and controls was 0.609 ± 0.15 and 0.789 ± 0.060, respectively (P < 0.0001). Seminal ROS levels in infertile was higher [66.61 ± 28.32 relative light units (RLU)/s/million sperm] than in controls (14.04 ± 10.67 RLU/s/million sperm) (P < 0.0001). The 8-IP level in infertile men was significantly higher (421.55 ± 131.29 pg/mL) than in controls (275.94 ± 48.13 pg/mL) (P < 0.001). When correlated to oxidative stress, in normal range of oxidative stress (ROS, 0-21.3 RLU/s/million sperm) the average telomere length in cases was 0.663 ± 0.14, in mild oxidative stress (ROS, 21.3-35 RLU/s/million sperm) it was elevated (0.684 ± 0.12) and in severe oxidative stress (ROS > 35 RLU/s/million sperm) average telomere length was decreased to 0.595 ± 0.15. CONCLUSION: Mild oxidative stress results in lengthening of telomere length, but severe oxidative stress results in shorter telomeres. Although telomere maintenance is a complex trait, the study shows that mild oxidative stress is beneficial in telomere length maintenance and thus a delicate balance needs to be established to maximize the beneficial effects of free radicals and prevent harmful effects of supra physiological levels. Detailed molecular evaluation of telomere structure, its correlation with oxidative stress would aid in elucidating the cause of accelerated telomere length attrition. PMID:27376021

  4. Oxidative stress in the oral cavity: sources and pathological outcomes.

    PubMed

    Avezov, Katia; Reznick, Abraham Z; Aizenbud, Dror

    2015-04-01

    Oxidative stress (OS), an imbalance in the oxidant-antioxidant equilibrium, is thought to be involved in the development of many seemingly unrelated diseases. Oral cavity tissues are a unique environment constantly exposed to internal and external compounds and material hazards as almost no other part of the human body. Some of the compounds are capable of generating OS. Here, the main groups of endogenous as well as exogenous OS sources are presented, followed by their oxidative effect on the salivary contents and function. The oxidative mechanisms in oral cells and their pathologic influence are also discussed.

  5. Oxidative stress participates in quadriceps muscle dysfunction during the initiation of osteoarthritis in rats.

    PubMed

    Hsu, Dur-Zong; Chu, Pei-Yi; Wu, Po-Ting; Shen, Po-Chuan; Jou, I-Ming

    2015-01-01

    Osteoarthritis is the most common form of arthritis, affecting approximately 15% of the population. Quadriceps muscle weakness is one of the risk factors of osteoarthritis development. Oxidative stress has been reported to play an important role in the pathogenesis of various muscle dysfunction; however, whether it is involved in osteoarthritis-associated quadriceps muscle weakness has never been investigated. The aim of the present study is to examine the involvement of oxidative stress in quadriceps muscle dysfunction in the initiation of osteoarthritis in rats. Rat osteoarthritis was initiated by conducting meniscectomy (MNX). Quadriceps muscle dysfunction was evaluated by assessing muscular interleukin-6, citrate synthase activity, and myosin heavy chain IIa mRNA expression levels. Muscular oxidative stress was assessed by determining lipid peroxidation, Nrf2 expression, reactive oxygen species, and circulating antioxidants. Increased muscular interleukin-6 production as well as decreased citrate synthase activity and myosin heavy chain IIa mRNA expression were observed at 7 and 14 days after MNX. Biomarkers of oxidative stress were significantly increased after MNX. Muscular free radical counts were increased while glutathione and glutathione peroxidase expression were decreased in MNX-treated rats. We conclude that oxidative stress may be involved in the pathogenesis of muscle dysfunction in MNX-induced osteoarthritis.

  6. Mitochondrial respiratory dysfunction-elicited oxidative stress and posttranslational protein modification in mitochondrial diseases.

    PubMed

    Wu, Yu-Ting; Wu, Shi-Bei; Lee, Wan-Yu; Wei, Yau-Huei

    2010-07-01

    Pathogenic mutation in mtDNA and mitochondrial dysfunction are associated with mitochondrial diseases. In this review, we discuss the oxidative stress-elicited mitochondrial protein modifications that may contribute to the pathophysiology of mitochondrial diseases. We demonstrated that excess ROS produced by defective mitochondria could increase the acetylation of microtubule proteins through the suppression of Sirt2, which results in perinuclear distribution of mitochondria in skin fibroblasts of patients with CPEO syndrome. Our recent work showed that mitochondrial dysfunction-induced oxidative stress can disrupt protein degradation system by inhibiting the ubiquitin-proteasome pathway and protease activity in human cells harboring mutant mtDNA. This in turn causes accumulation of aberrant proteins in mitochondria and renders the mutant cells more susceptible to apoptosis induced by oxidative stress. Furthermore, oxidative stress can modulate phosphorylation of mitochondrial proteins, which can affect metabolism in a number of diseases. Taken together, we suggest that oxidative stress-triggered protein modifications and defects in protein turnover play an important role in the pathogenesis and progression of mitochondrial diseases.

  7. Contribution of NADH oxidase to oxidative stress tolerance and virulence of Streptococcus suis serotype 2.

    PubMed

    Zheng, Chengkun; Ren, Sujing; Xu, Jiali; Zhao, Xigong; Shi, Guolin; Wu, Jianping; Li, Jinquan; Chen, Huanchun; Bei, Weicheng

    2017-01-02

    Streptococcus suis is a major swine and zoonotic pathogen that causes severe infections. Previously, we identified 2 Spx regulators in S. suis, and demonstrated that SpxA1 affects oxidative stress tolerance and virulence. However, the mechanism behind SpxA1 function remains unclear. In this study, we targeted 4 genes that were expressed at significantly reduced levels in the spxA1 mutant, to determine their specific roles in adaptation to oxidative stress and virulence potential. The Δnox strain exhibited impaired growth under oxidative stress conditions, suggesting that NADH oxidase is involved in oxidative stress tolerance. Using murine and pig infection models, we demonstrate for the first time that NADH oxidase is required for virulence in S. suis 2. Furthermore, the enzymatic activity of NADH oxidase has a key role in oxidative stress tolerance and a secondary role in virulence. Collectively, our findings reveal that NADH oxidase plays an important part in SpxA1 function and provide a new insight into the pathogenesis of S. suis 2.

  8. Oxidative stress and carbon metabolism influence Aspergillus flavus transcriptome composition and secondary metabolite production

    PubMed Central

    Fountain, Jake C.; Bajaj, Prasad; Pandey, Manish; Nayak, Spurthi N.; Yang, Liming; Kumar, Vinay; Jayale, Ashwin S.; Chitikineni, Anu; Zhuang, Weijian; Scully, Brian T.; Lee, R. Dewey; Kemerait, Robert C.; Varshney, Rajeev K.; Guo, Baozhu

    2016-01-01

    Contamination of crops with aflatoxin is a serious global threat to food safety. Aflatoxin production by Aspergillus flavus is exacerbated by drought stress in the field and by oxidative stress in vitro. We examined transcriptomes of three toxigenic and three atoxigenic isolates of A. flavus in aflatoxin conducive and non-conducive media with varying levels of H2O2 to investigate the relationship of secondary metabolite production, carbon source, and oxidative stress. We found that toxigenic and atoxigenic isolates employ distinct mechanisms to remediate oxidative damage, and that carbon source affected the isolates’ expression profiles. Iron metabolism, monooxygenases, and secondary metabolism appeared to participate in isolate oxidative responses. The results suggest that aflatoxin and aflatrem biosynthesis may remediate oxidative stress by consuming excess oxygen and that kojic acid production may limit iron-mediated, non-enzymatic generation of reactive oxygen species. Together, secondary metabolite production may enhance A. flavus stress tolerance, and may be reduced by enhancing host plant tissue antioxidant capacity though genetic improvement by breeding selection. PMID:27941917

  9. Maternal obesity and malnourishment exacerbate perinatal oxidative stress resulting in diabetogenic programming in F1 offspring.

    PubMed

    Saad, M I; Abdelkhalek, T M; Haiba, M M; Saleh, M M; Hanafi, M Y; Tawfik, S H; Kamel, M A

    2016-06-01

    The effect of in-utero environment on fetal health and survival is long-lasting, and this is known as the fetal origin hypothesis. The oxidative stress state during gestation could play a pivotal role in fetal programming and development of diseases such as diabetes. In this study, we investigated the effect of intra-uterine obesity and malnutrition on oxidative stress markers in pancreatic and peripheral tissues of F1 offspring both prenatally and postnatally. Furthermore, the effect of postnatal diet on oxidative stress profile was evaluated. The results indicated that intra-uterine obesity and malnourishment significantly increased oxidative stress in F1 offspring. Moreover, the programming effect of obesity was more pronounced and protracted than malnutrition. The obesity-induced programming of offspring tissues was independent of high-caloric environment that the offspring endured; however, high-caloric diet potentiated its effect. In addition, pancreas and liver were the most affected tissues by fetal reprogramming both prenatally and postnatally. In conclusion, maternal obesity and malnutrition-induced oxidative stress could predispose offspring to insulin resistance and diabetes.

  10. Effect of progesterone on phosphamidon-induced impairment of memory and oxidative stress in rats.

    PubMed

    Sharma, Amit K; Bhattacharya, Swapan K; Khanna, Naresh; Tripathi, Ashok K; Arora, Tarun; Mehta, Ashish K; Mehta, Kapil D; Joshi, Vikas

    2011-10-01

    Progesterone (a neurosteroid) is an important modulator of the nervous system functioning. Organophosphorus pesticides like phosphamidon have been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was therefore designed to investigate the effects of progesterone (PROG) on phosphamidon-induced modulation of cognitive function and oxidative stress in rats. Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining the levels of thiobarbituric acid reactive species (TBARS) and non-protein thiols (NP-SH) in isolated homogenized whole brain samples. The results showed a significant reduction in SDL and prolongation of TL in the phosphamidon (1.74 mg/kg/d; p.o.) treated group at weeks 6 and 8 as compared to the control group. Two weeks treatment with PROG (15 mg/kg/d; i.p.) antagonized the effect of phosphamidon on SDL as well as TL. Phosphamidon alone produced a significant increase in the brain TBARS levels and decrease in the brain NP-SH levels. Treatment with PROG (15 mg/kg/d; i.p.) attenuated the effect of phosphamidon on oxidative stress. Together, the results showed that progesterone attenuated the cognitive dysfunction and increased oxidative stress induced by phosphamidon in the brain.

  11. Relationship of oxidative stress and endothelial dysfunction in sleep apnoea.

    PubMed

    Jurado-Gámez, B; Fernandez-Marin, M C; Gómez-Chaparro, J L; Muñoz-Cabrera, L; Lopez-Barea, J; Perez-Jimenez, F; Lopez-Miranda, J

    2011-04-01

    The aim of the present study was to evaluate ischaemic reactive hyperaemia (IRH) in obstructive sleep apnoea (OSA) and its relationship with oxidative stress. We studied 69 consecutive patients referred to our Sleep Unit (Reina Sofia University Hospital, Cordoba, Spain). Patients with chronic diseases or those taking medication were excluded. IRH was assessed before and after polysomnography. Morning IRH and oxidative stress markers were compared between patients with (apnoea-hypopnoea index (AHI) ≥ 5) and without (AHI < 5) OSA. Measurements were repeated in 25 severe OSA patients after continuous positive airway pressure (CPAP) therapy. We included 46 OSA patients (mean ± sd AHI 49 ± 32.1) and 23 non-OSA subjects (AHI 3 ± 0.9). The OSA patients showed a significant worsening of morning IRH, and a significant increase in malondialdehyde and 8-hydroxydeoxyguanosine levels. Only the oxygen desaturation index independently explained morning IRH, while malondialdehyde levels showed a weak effect on IRH. In severe OSA patients, IRH improved significantly after CPAP treatment, as did malondialdehyde, 8-hydroxydeoxyguanosine and protein carbonyl levels. In OSA patients, endothelial dysfunction and oxidative stress were observed, and IRH worsened after sleep. The increase in oxidative stress was not associated with IRH, while intermittent hypoxia was strongly associated with IRH. In severe OSA patients, CPAP treatment improved oxidative stress and endothelial function.

  12. Oxidative stress modulation in hepatitis C virus infected cells

    PubMed Central

    Lozano-Sepulveda, Sonia A; Bryan-Marrugo, Owen L; Cordova-Fletes, Carlos; Gutierrez-Ruiz, Maria C; Rivas-Estilla, Ana M

    2015-01-01

    Hepatitis C virus (HCV) replication is associated with the endoplasmic reticulum, where the virus can induce cellular stress. Oxidative cell damage plays an important role in HCV physiopathology. Oxidative stress is triggered when the concentration of oxygen species in the extracellular or intracellular environment exceeds antioxidant defenses. Cells are protected and modulate oxidative stress through the interplay of intracellular antioxidant agents, mainly glutathione system (GSH) and thioredoxin; and antioxidant enzyme systems such as superoxide dismutase, catalase, GSH peroxidase, and heme oxygenase-1. Also, the use of natural and synthetic antioxidants (vitamin C and E, N-acetylcysteine, glycyrrhizin, polyenylphosphatidyl choline, mitoquinone, quercetin, S-adenosylmethionine and silymarin) has already shown promising results as co-adjuvants in HCV therapy. Despite all the available information, it is not known how different agents with antiviral activity can interfere with the modulation of the cell redox state induced by HCV and decrease viral replication. This review describes an evidence-based consensus on molecular mechanisms involved in HCV replication and their relationship with cell damage induced by oxidative stress generated by the virus itself and cell antiviral machinery. It also describes some molecules that modify the levels of oxidative stress in HCV-infected cells. PMID:26692473

  13. Role of Magnesium in Oxidative Stress in Individuals with Obesity.

    PubMed

    Morais, Jennifer Beatriz Silva; Severo, Juliana Soares; Santos, Loanne Rocha Dos; de Sousa Melo, Stéfany Rodrigues; de Oliveira Santos, Raisa; de Oliveira, Ana Raquel Soares; Cruz, Kyria Jayanne Clímaco; do Nascimento Marreiro, Dilina

    2017-03-01

    Adipose tissue is considered an endocrine organ that promotes excessive production of reactive oxygen species when in excess, thus contributing to lipid peroxidation. Magnesium deficiency contributes to the development of oxidative stress in obese individuals, as this mineral plays a role as an antioxidant, participates as a cofactor of several enzymes, maintains cell membrane stability and mitigates the effects of oxidative stress. The objective of this review is to bring together updated information on the participation of magnesium in the oxidative stress present in obesity. We conducted a search of articles published in the PubMed, SciELO and LILACS databases, using the keywords 'magnesium', 'oxidative stress', 'malondialdehyde', 'superoxide dismutase', 'glutathione peroxidase', 'reactive oxygen species', 'inflammation' and 'obesity'. The studies show that obese subjects have low serum concentrations of magnesium, as well as high concentrations of oxidative stress marker in these individuals. Furthermore, it is evident that the adequate intake of magnesium contributes to its appropriate homeostasis in the body. Thus, this review of current research can help define the need for intervention with supplementation of this mineral for the prevention and treatment of disorders associated with this chronic disease.

  14. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    SciTech Connect

    Lefevre, Sophie; Sliwa, Dominika; Rustin, Pierre; Camadro, Jean-Michel; Santos, Renata

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  15. Phloroglucinol Attenuates Free Radical-induced Oxidative Stress

    PubMed Central

    So, Mi Jung; Cho, Eun Ju

    2014-01-01

    The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions (O2−), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, O2−, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide (H2O2)-induced SIPS. Phloroglucinol treatment attenuated H2O2-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS. PMID:25320709

  16. Arterial Stiffness, Oxidative Stress, and Smoke Exposure in Wildland Firefighters

    PubMed Central

    Gaughan, Denise M.; Siegel, Paul D.; Hughes, Michael D.; Chang, Chiung-Yu; Law, Brandon F.; Campbell, Corey R.; Richards, Jennifer C.; Kales, Stefanos F.; Chertok, Marcia; Kobzik, Lester; Nguyen, Phuongson; O’Donnell, Carl R.; Kiefer, Max; Wagner, Gregory R.; Christiani, David C.

    2015-01-01

    Objectives To assess the association between exposure, oxidative stress, symptoms, and cardiorespiratory function in wildland firefighters. Methods We studied two Interagency Hotshot Crews with questionnaires, pulse wave analysis for arterial stiffness, spirometry, urinary 8-iso-prostaglandin F2α (8-isoprostane) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), and the smoke exposure marker (urinary levoglucosan). Arterial stiffness was assessed by examining levels of the aortic augmentation index, expressed as a percentage. An oxidative stress score comprising the average of z-scores created for 8-OHdG and 8-isoprostane was calculated. Results Mean augmentation index % was higher for participants with higher oxidative stress scores after adjusting for smoking status. Specifically for every one unit increase in oxidative stress score the augmentation index % increased 10.5% (95% CI: 2.5, 18.5%). Higher mean lower respiratory symptom score was associated with lower percent predicted forced expiratory volume in one second/forced vital capacity. Conclusions Biomarkers of oxidative stress may serve as indicators of arterial stiffness in wildland firefighters. PMID:24909863

  17. Aluminum Induces Oxidative Stress Genes in Arabidopsis thaliana1

    PubMed Central

    Richards, Keith D.; Schott, Eric J.; Sharma, Yogesh K.; Davis, Keith R.; Gardner, Richard C.

    1998-01-01

    Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al. PMID:9449849

  18. Acute exercise and oxidative stress: a 30 year history

    PubMed Central

    Fisher-Wellman, Kelsey; Bloomer, Richard J

    2009-01-01

    The topic of exercise-induced oxidative stress has received considerable attention in recent years, with close to 300 original investigations published since the early work of Dillard and colleagues in 1978. Single bouts of aerobic and anaerobic exercise can induce an acute state of oxidative stress. This is indicated by an increased presence of oxidized molecules in a variety of tissues. Exercise mode, intensity, and duration, as well as the subject population tested, all can impact the extent of oxidation. Moreover, the use of antioxidant supplements can impact the findings. Although a single bout of exercise often leads to an acute oxidative stress, in accordance with the principle of hormesis, such an increase appears necessary to allow for an up-regulation in endogenous antioxidant defenses. This review presents a comprehensive summary of original investigations focused on exercise-induced oxidative stress. This should provide the reader with a well-documented account of the research done within this area of science over the past 30 years. PMID:19144121

  19. Causes and consequences of oxidative stress in spermatozoa.

    PubMed

    Aitken, Robert John; Gibb, Zamira; Baker, Mark A; Drevet, Joel; Gharagozloo, Parviz

    2016-01-01

    Spermatozoa are highly vulnerable to oxidative attack because they lack significant antioxidant protection due to the limited volume and restricted distribution of cytoplasmic space in which to house an appropriate armoury of defensive enzymes. In particular, sperm membrane lipids are susceptible to oxidative stress because they abound in significant amounts of polyunsaturated fatty acids. Susceptibility to oxidative attack is further exacerbated by the fact that these cells actively generate reactive oxygen species (ROS) in order to drive the increase in tyrosine phosphorylation associated with sperm capacitation. However, this positive role for ROS is reversed when spermatozoa are stressed. Under these conditions, they default to an intrinsic apoptotic pathway characterised by mitochondrial ROS generation, loss of mitochondrial membrane potential, caspase activation, phosphatidylserine exposure and oxidative DNA damage. In responding to oxidative stress, spermatozoa only possess the first enzyme in the base excision repair pathway, 8-oxoguanine DNA glycosylase. This enzyme catalyses the formation of abasic sites, thereby destabilising the DNA backbone and generating strand breaks. Because oxidative damage to sperm DNA is associated with both miscarriage and developmental abnormalities in the offspring, strategies for the amelioration of such stress, including the development of effective antioxidant formulations, are becoming increasingly urgent.

  20. Staufen Recruitment into Stress Granules Does Not Affect Early mRNA Transport in Oligodendrocytes

    PubMed Central

    Thomas, María G.; Tosar, Leandro J. Martinez; Loschi, Mariela; Pasquini, Juana M.; Correale, Jorge; Kindler, Stefan; Boccaccio, Graciela L.

    2005-01-01

    Staufen is a conserved double-stranded RNA-binding protein required for mRNA localization in Drosophila oocytes and embryos. The mammalian homologues Staufen 1 and Staufen 2 have been implicated in dendritic RNA targeting in neurons. Here we show that in rodent oligodendrocytes, these two proteins are present in two independent sets of RNA granules located at the distal myelinating processes. A third kind of RNA granules lacks Staufen and contains major myelin mRNAs. Myelin Staufen granules associate with microfilaments and microtubules, and their subcellular distribution is affected by polysome-disrupting drugs. Under oxidative stress, both Staufen 1 and Staufen 2 are recruited into stress granules (SGs), which are stress-induced organelles containing transiently silenced messengers. Staufen SGs contain the poly(A)-binding protein (PABP), the RNA-binding proteins HuR and TIAR, and small but not large ribosomal subunits. Staufen recruitment into perinuclear SGs is paralleled by a similar change in the overall localization of polyadenylated RNA. Under the same conditions, the distribution of recently transcribed and exported mRNAs is not affected. Our results indicate that Staufen 1 and Staufen 2 are novel and ubiquitous SG components and suggest that Staufen RNPs are involved in repositioning of most polysomal mRNAs, but not of recently synthesized transcripts, during the stress response. PMID:15525674

  1. Respiratory capacity of the Kluyveromyces marxianus yeast isolated from the mezcal process during oxidative stress.

    PubMed

    Arellano-Plaza, Melchor; Gschaedler-Mathis, Anne; Noriega-Cisneros, Ruth; Clemente-Guerrero, Mónica; Manzo-Ávalos, Salvador; González-Hernández, Juan Carlos; Saavedra-Molina, Alfredo

    2013-07-01

    During the mezcal fermentation process, yeasts are affected by several stresses that can affect their fermentation capability. These stresses, such as thermal shock, ethanol, osmotic and growth inhibitors are common during fermentation. Cells have improved metabolic systems and they express stress response genes in order to decrease the damage caused during the stress, but to the best of our knowledge, there are no published works exploring the effect of oxidants and prooxidants, such as H2O2 and menadione, during growth. In this article, we describe the behavior of Kluyveromyces marxianus isolated from spontaneous mezcal fermentation during oxidative stress, and compared it with that of Saccharomyces cerevisiae strains that were also obtained from mezcal, using the W303-1A strain as a reference. S. cerevisiae strains showed greater viability after oxidative stress compared with K. marxianus strains. However, when the yeast strains were grown in the presence of oxidants in the media, K. marxianus exhibited a greater ability to grow in menadione than it did in H2O2. Moreover, when K. marxianus SLP1 was grown in a minibioreactor, its behavior when exposed to menadione was different from its behavior with H2O2. The yeast maintained the ability to consume dissolved oxygen during the 4 h subsequent to the addition of menadione, and then stopped respiration. When exposed to H2O2, the yeast stopped consuming oxygen for the following 8 h, but began to consume oxygen when stressors were no longer applied. In conclusion, yeast isolated from spontaneous mezcal fermentation was able to resist oxidative stress for a long period of time.

  2. Oxidative Stress in Glaucomatous Neurodegeneration: Mechanisms and Consequences

    PubMed Central

    Tezel, Gülgün

    2007-01-01

    Reactive oxygen species (ROS) are generated as by-products of cellular metabolism, primarily in the mitochondria. Although ROS are essential participants in cell signaling and regulation, when their cellular production overwhelms the intrinsic antioxidant capacity, damage to cellular macromolecules such as DNA, proteins, and lipids ensues. Such a state of “oxidative stress” is thought to contribute to the pathogenesis of a number of neurodegenerative diseases. Growing evidence supports the involvement of oxidative stress as a common component of glaucomatous neurodegeneration in different subcellular compartments of retinal ganglion cells (RGCs). Besides the evidence of direct cytotoxic consequences leading to RGC death, it also seems highly possible that ROS are involved in signaling RGC death by acting as a second messenger and/or modulating protein function by redox modifications of downstream effectors through enzymatic oxidation of specific amino acid residues. Different studies provide cumulating evidence, which supports the association of ROS with different aspects of the neurodegenerative process. Oxidative protein modifications during glaucomatous neurodegeneration increase neuronal susceptibility to damage and also lead to glial dysfunction. Oxidative stress-induced dysfunction of glial cells may contribute to spreading neuronal damage by secondary degeneration. Oxidative stress also promotes the accumulation of advanced glycation end products in glaucomatous tissues. It is also evident that oxidative stress takes part in the activation of immune response during glaucomatous neurodegeneration, as ROS stimulate the antigen presenting ability of glial cells and also function as co-stimulatory molecules during antigen presentation. By discussing current evidence, this review provides a broad perspective on cellular mechanisms and potential consequences of oxidative stress in glaucoma. PMID:16962364

  3. Nonezymatic formation of succinate in mitochondria under oxidative stress.

    PubMed

    Fedotcheva, Nadezhda I; Sokolov, Alexander P; Kondrashova, Mariya N

    2006-07-01

    The products of the reactions of mitochondrial 2-oxo acids with hydrogen peroxide and tert-butyl hydroperoxide (tert-BuOOH) were studied in a chemical system and in rat liver mitochondria. It was found by HPLC that the decarboxylation of alpha-ketoglutarate (KGL), pyruvate (PYR), and oxaloacetate (OA) by both oxidants results in the formation of succinate, acetate, and malonate, respectively. The two latter products do not metabolize in rat liver mitochondria, whereas succinate is actively oxidized, and its nonenzymatic formation from KGL may shunt the tricarboxylic acid (TCA) cycle upon inactivation of alpha-ketoglutarate dehydrogenase (KGDH) under oxidative stress, which is inherent in many diseases and aging. The occurrence of nonenzymatic oxidation of KGL in mitochondria was established by an increase in the CO(2) and succinate levels in the presence of the oxidants and inhibitors of enzymatic oxidation. H(2)O(2) and menadione as an inductor of reactive oxygen species (ROS) caused the formation of CO(2) in the presence of sodium azide and the production of succinate, fumarate, and malate in the presence of rotenone. These substrates were also formed from KGL when mitochondria were incubated with tert-BuOOH at concentrations that completely inhibit KGDH. The nonenzymatic oxidation of KGL can support the TCA cycle under oxidative stress, provided that KGL is supplied via transamination. This is supported by the finding that the strong oxidant such as tert-BuOOH did not impair respiration and its sensitivity to the transaminase inhibitor aminooxyacetate when glutamate and malate were used as substrates. The appearance of two products, KGL and fumarate, also favors the involvement of transamination. Thus, upon oxidative stress, nonenzymatic decarboxylation of KGL and transamination switch the TCA cycle to the formation and oxidation of succinate.

  4. Novel biomarker pipeline to probe the oxidation sites and oxidation degrees of hemoglobin in bovine erythrocytes exposed to oxidative stress.

    PubMed

    Zong, Wansong; Wang, Xiaoning; Yang, Chuanxi; Du, Yonggang; Sun, Weijun; Xu, Zhenzhen

    2016-06-01

    Research on biomarkers for protein oxidation might give insight into the mechanistic mode of oxidative stress. In the work present here, a novel pipeline was established to probe the oxidation mechanism of bovine hemoglobin (Hb) with its oxidation products serving as the biomarkers. Reactive oxygen species generated by irradiation were used to mimic oxidative stress conditions to oxidize Hb in bovine erythrocytes. After Hb extraction and digestion, oxidized peptides in the tryptic fragments were assigned by comparison with the extracted ion chromatography spectra of native peptide from the control sample. Subsequent tandem mass spectrometry analysis of these peptides proved that oxidation was limited to partially exposed amino acid residues (α-Phe36 , β-Met1 , β-Trp14 , for instance) in Hb. Quantitation analysis on these oxidized peptides showed that oxidation degrees of target sites had positive correlations with the extended oxidation dose and the oxidation processes were also controlled by residues types. Compared with the conventional protein carbonyl assay, the identified oxidized products were feasibility biomarkers for Hb oxidation, indicating that the proposed biomarker pipeline was suitable to provide specific and valid information for protein oxidation. Copyright © 2015 John Wiley & Sons, Ltd.

  5. The Mismetallation of Enzymes during Oxidative Stress*

    PubMed Central

    Imlay, James A.

    2014-01-01

    Mononuclear iron enzymes can tightly bind non-activating metals. How do cells avoid mismetallation? The model bacterium Escherichia coli may control its metal pools so that thermodynamics favor the correct metallation of each enzyme. This system is disrupted, however, by superoxide and hydrogen peroxide. These species oxidize ferrous iron and thereby displace it from many iron-dependent mononuclear enzymes. Ultimately, zinc binds in its place, confers little activity, and imposes metabolic bottlenecks. Data suggest that E. coli compensates by using thiols to extract the zinc and by importing manganese to replace the catalytic iron atom. Manganese resists oxidants and provides substantial activity. PMID:25160623

  6. Oxidative stress, circulating antioxidants, and dietary preferences in songbirds.

    PubMed

    Alan, Rebecca R; McWilliams, Scott R

    2013-03-01

    Oxidative stress is an unavoidable consequence of metabolism and increases during intensive exercise. This is especially problematic for migratory birds that metabolize fat to fuel long-distance flight. Birds can mitigate damage by increasing endogenous antioxidants (e.g. uric acid) or by consuming dietary antioxidants (e.g. tocopherol). During flight, birds may increase protein catabolism of lean tissue which may increase circulating uric acid and many birds also consume an antioxidant-rich frugivorous diet during autumn migration. We evaluated three related hypotheses in a migratory passerine: (1) protein consumption is positively related to circulating antioxidants, (2) a dietary oxidative stressor [i.e. polyunsaturated fatty acid (PUFA)] influences antioxidant capacity and oxidative damage, and (3) oxidative stress influences dietary antioxidant preferences. White-throated Sparrows (Zonotrichia albicollis) consuming a high protein diet increased circulating uric acid; however, uric acid, antioxidant capacity, and oxidative stress did not differ between birds consuming a high PUFA versus a low PUFA diet, despite increased oxidative damage in high PUFA birds. Birds did not prefer antioxidant-rich diets even when fed high PUFA, low protein. We conclude that White-throated Sparrows successfully mitigated oxidative damage associated with a high PUFA diet and mounted an endogenous antioxidant response independent of uric acid, other circulating antioxidants, and dietary antioxidants.

  7. Cold defence responses: the role of oxidative stress.

    PubMed

    Blagojevic, Dusko P; Grubor-Lajsic, Gordana N; Spasic, Mihajlo B

    2011-01-01

    Low temperatures provoke increased production of heat accompanied by increased respiration, oxygen consumption and the production of partially reduced oxygen species called ROS. ROS induce different forms of cellular oxidative damage, disturb the redox state and can change the activity of several metabolic enzymes. Organisms have developed a functionally connected set of anti-oxidant enzymes and low molecular mass compounds (together termed the ADS) that metabolise primary ROS. If ROS production within cells overwhelms the ADS, oxidative damage arises and oxidative stress can occur. Short-term cold exposure in endotherms leads to oxidative stress. As cold exposure persists organisms develop adaptive changes toward reducing ROS production and increasing the ADS. In contrast, heterotherms and ectotherms as a normal part of their over-wintering strategy slow down metabolism, oxygen consumption and subsequently cause ROS production. Increased baseline activity of key anti-oxidant enzymes as well as 'secondary' enzymatic defence and/or glutathione levels in preparation for a putative oxidative stressful situation arising from tissue re-oxygenation seems to be the preferred evolutionary adaptation of such animals exposed to low environmental temperatures.

  8. Oxidative stress, fibrosis, and early afterdepolarization-mediated cardiac arrhythmias.

    PubMed

    Karagueuzian, Hrayr S; Nguyen, Thao P; Qu, Zhilin; Weiss, James N

    2013-01-01

    Animal and clinical studies have demonstrated that oxidative stress, a common pathophysiological factor in cardiac disease, reduces repolarization reserve by enhancing the L-type calcium current, the late Na, and the Na-Ca exchanger, promoting early afterdepolarizations (EADs) that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF) in structurally remodeled hearts. Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative-stress induced EADs to manifest as triggered activity and VT/VF, since normal non-fibrotic hearts are resistant to arrhythmias when challenged with similar or higher levels of oxidative stress. The findings imply that antifibrotic therapy, in addition to therapies designed to suppress EAD formation at the cellular level, may be synergistic in reducing the risk of sudden cardiac death.

  9. Does aspirin-induced oxidative stress cause asthma exacerbation?

    PubMed Central

    Kacprzak, Dorota

    2015-01-01

    Aspirin-induced asthma (AIA) is a distinct clinical syndrome characterized by severe asthma exacerbations after ingestion of aspirin or other non-steroidal anti-inflammatory drugs. The exact pathomechanism of AIA remains unknown, though ongoing research has shed some light. Recently, more and more attention has been focused on the role of aspirin in the induction of oxidative stress, especially in cancer cell systems. However, it has not excluded the similar action of aspirin in other inflammatory disorders such as asthma. Moreover, increased levels of 8-isoprostanes, reliable biomarkers of oxidative stress in expired breath condensate in steroid-naïve patients with AIA compared to AIA patients treated with steroids and healthy volunteers, has been observed. This review is an attempt to cover aspirin-induced oxidative stress action in AIA and to suggest a possible related pathomechanism. PMID:26170841

  10. Mitochondrial dysfunction and oxidative stress in aging and cancer

    PubMed Central

    Kudryavtseva, Anna V.; Krasnov, George S.; Dmitriev, Alexey A.; Alekseev, Boris Y.; Kardymon, Olga L.; Sadritdinova, Asiya F.; Fedorova, Maria S.; Pokrovsky, Anatoly V.; Melnikova, Nataliya V.; Kaprin, Andrey D.; Moskalev, Alexey A.; Snezhkina, Anastasiya V.

    2016-01-01

    Aging and cancer are the most important issues to research. The population in the world is growing older, and the incidence of cancer increases with age. There is no doubt about the linkage between aging and cancer. However, the molecular mechanisms underlying this association are still unknown. Several lines of evidence suggest that the oxidative stress as a cause and/or consequence of the mitochondrial dysfunction is one of the main drivers of these processes. Increasing ROS levels and products of the oxidative stress, which occur in aging and age-related disorders, were also found in cancer. This review focuses on the similarities between ageing-associated and cancer-associated oxidative stress and mitochondrial dysfunction as their common phenotype. PMID:27270647

  11. Oxidative stress, fibrosis, and early afterdepolarization-mediated cardiac arrhythmias

    PubMed Central

    Karagueuzian, Hrayr S.; Nguyen, Thao P.; Qu, Zhilin; Weiss, James N.

    2013-01-01

    Animal and clinical studies have demonstrated that oxidative stress, a common pathophysiological factor in cardiac disease, reduces repolarization reserve by enhancing the L-type calcium current, the late Na, and the Na-Ca exchanger, promoting early afterdepolarizations (EADs) that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF) in structurally remodeled hearts. Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative-stress induced EADs to manifest as triggered activity and VT/VF, since normal non-fibrotic hearts are resistant to arrhythmias when challenged with similar or higher levels of oxidative stress. The findings imply that antifibrotic therapy, in addition to therapies designed to suppress EAD formation at the cellular level, may be synergistic in reducing the risk of sudden cardiac death. PMID:23423152

  12. Discovery of biomarkers for oxidative stress based on cellular metabolomics.

    PubMed

    Wang, Ningli; Wei, Jianteng; Liu, Yewei; Pei, Dong; Hu, Qingping; Wang, Yu; Di, Duolong

    2016-07-01

    Oxidative stress has a close relationship with various pathologic physiology phenomena and the potential biomarkers of oxidative stress may provide evidence for clinical diagnosis or disease prevention. Metabolomics was employed to identify the potential biomarkers of oxidative stress. High-performance liquid chromatography-diode array detector, mass spectrometry and partial least squares discriminate analysis were used in this study. The 10, 15 and 13 metabolites were considered to discriminate the model group, vitamin E-treated group and l-glutathione-treated group, respectively. Some of them have been identified, namely, malic acid, vitamin C, reduced glutathione and tryptophan. Identification of other potential biomarkers should be conducted and their physiological significance also needs to be elaborated.

  13. Bilirubin oxidation products, oxidative stress, and intracerebral hemorrhage

    PubMed Central

    Clark, J. F.; Loftspring, M.; Wurster, W. L.; Beiler, S.; Beiler, C; Wagner, K. R.; Pyne-Geithman, G. J.

    2009-01-01

    Summary Hematoma and perihematomal regions after intracerebral hemorrhage (ICH) are biochemically active environments known to undergo potent oxidizing reactions. We report facile production of bilirubin oxidation products (BOXes) via hemoglobin/Fenton reaction under conditions approximating putative in vivo conditions seen following ICH. Using a mixture of human hemoglobin, physiological buffers, unconjugated solubilized bilirubin, and molecular oxygen and/or hydrogen peroxide, we generated BOXes, confirmed by spectral signature consistent with known BOXes mixtures produced by independent chemical synthesis, as well as HPLC-MS of BOX A and BOX B. Kinetics are straightforward and uncomplicated, having initial rates around 0.002 μM bilirubin per μM hemoglobin per second under normal experimental conditions. In hematomas from porcine ICH model, we observed significant production of BOXes, malondialdehyde, and superoxide dismutase, indicating a potent oxidizing environment. BOX concentrations increased from 0.084 ± 0.01 in fresh blood to 22.24 ± 4.28 in hematoma at 72 h, and were 11.22 ± 1.90 in adjacent white matter (nmol/g). Similar chemical and analytical results are seen in ICH in vivo, indicating the hematoma is undergoing similar potent oxidations. This is the first report of BOXes production using a well-defined biological reaction and in vivo model of same. Following ICH, amounts of unconjugated bilirubin in hematoma can be substantial, as can levels of iron and hemoglobin. Oxidation of unconjugated bilirubin to yield bioactive molecules, such as BOXes, is an important discovery, expanding the role of bilirubin in pathological processes seen after ICH. PMID:19066073

  14. Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved?

    PubMed

    Boiani, Mariana; Piacenza, Lucia; Hernández, Paola; Boiani, Lucia; Cerecetto, Hugo; González, Mercedes; Denicola, Ana

    2010-06-15

    Chagas disease is caused by the trypanosomatid parasite Trypanosoma cruzi and threatens millions of lives in South America. As other neglected diseases there is almost no research and development effort by the pharmaceutical industry and the treatment relies on two drugs, Nifurtimox and Benznidazole, discovered empirically more than three decades ago. Nifurtimox, a nitrofurane derivative, is believed to exert its biological activity through the bioreduction of the nitro-group to a nitro-anion radical which undergoes redox-cycling with molecular oxygen. This hypothesis is generally accepted, although arguments against it have been presented. In the present work we studied the ability of Nifurtimox and five N-oxide-containing heterocycles to induce oxidative stress in T. cruzi. N-Oxide-containing heterocycles represent a promising group of new trypanosomicidal agents and their mode of action is not completely elucidated. The results here obtained argue against the oxidative stress hypothesis almost for all the studied compounds, including Nifurtimox. A significant reduction in the level of parasitic low-molecular-weight thiols was observed after Nifurtimox treatment; however, it was not linked to the production of reactive oxidant species. Besides, redox-cycling is only observed at high Nifurtimox concentrations (>400microM), two orders of magnitude higher than the concentration required for anti-proliferative activity (5microM). Our results indicate that an increase in oxidative stress is not the main mechanism of action of Nifurtimox. Among the studied N-oxide-containing heterocycles, benzofuroxan derivatives strongly inhibited parasite dehydrogenase activity and affected mitochondrial membrane potential. The indazole derivative raised intracellular oxidants production, but it was the least effective as anti-T. cruzi.