Sample records for affect parasite transmission

  1. Host heterogeneity affects both parasite transmission to and fitness on subsequent hosts

    PubMed Central

    Young, Kyle A.; Fox, Jordan; Jokela, Jukka

    2017-01-01

    Infectious disease dynamics depend on the speed, number and fitness of parasites transmitting from infected hosts (‘donors’) to parasite-naive ‘recipients’. Donor heterogeneity likely affects these three parameters, and may arise from variation between donors in traits including: (i) infection load, (ii) resistance, (iii) stage of infection, and (iv) previous experience of transmission. We used the Trinidadian guppy, Poecilia reticulata, and a directly transmitted monogenean ectoparasite, Gyrodactylus turnbulli, to experimentally explore how these sources of donor heterogeneity affect the three transmission parameters. We exposed parasite-naive recipients to donors (infected with a single parasite strain) differing in their infection traits, and found that donor infection traits had diverse and sometimes interactive effects on transmission. First, although transmission speed increased with donor infection load, the relationship was nonlinear. Second, while the number of parasites transmitted generally increased with donor infection load, more resistant donors transmitted more parasites, as did those with previous transmission experience. Finally, parasites transmitting from experienced donors exhibited lower population growth rates on recipients than those from inexperienced donors. Stage of infection had little effect on transmission parameters. These results suggest that a more holistic consideration of within-host processes will improve our understanding of between-host transmission and hence disease dynamics. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289260

  2. Sex-Specific Differences in Shoaling Affect Parasite Transmission in Guppies

    PubMed Central

    Richards, E. Loys; van Oosterhout, Cock; Cable, Joanne

    2010-01-01

    Background Individuals have to trade-off the costs and benefits of group membership during shoaling behaviour. Shoaling can increase the risk of parasite transmission, but this cost has rarely been quantified experimentally. Guppies (Poecilia reticulata) are a model system for behavioural studies, and they are commonly infected by gyrodactylid parasites, notorious fish pathogens that are directly transmitted between guppy hosts. Methodology/Principal Findings Parasite transmission in single sex shoals of male and female guppies were observed using an experimental infection of Gyrodactylus turnbulli. Parasite transmission was affected by sex-specific differences in host behaviour, and significantly more parasites were transmitted when fish had more frequent and more prolonged contact with each other. Females shoaled significantly more than males and had a four times higher risk to contract an infection. Conclusions/Significance Intersexual differences in host behaviours such as shoaling are driven by differences in natural and sexual selection experienced by both sexes. Here we show that the potential benefits of an increased shoaling tendency are traded off against increased risks of contracting an infectious parasite in a group-living species. PMID:20949014

  3. Parasite transmission in a natural multihost-multiparasite community.

    PubMed

    Auld, Stuart K J R; Searle, Catherine L; Duffy, Meghan A

    2017-05-05

    Understanding the transmission and dynamics of infectious diseases in natural communities requires understanding the extent to which the ecology, evolution and epidemiology of those diseases are shaped by alternative hosts. We performed laboratory experiments to test how parasite spillover affected traits associated with transmission in two co-occurring parasites: the bacterium Pasteuria ramosa and the fungus Metschnikowia bicuspidata Both parasites were capable of transmission from the reservoir host ( Daphnia dentifera ) to the spillover host ( Ceriodaphnia dubia ), but this occurred at a much higher rate for the fungus than the bacterium. We quantified transmission potential by combining information on parasite transmission and growth rate, and used this to compare parasite fitness in the two host species. For both parasites, transmission potential was lower in the spillover host. For the bacterium, virulence was higher in the spillover host. Transmission back to the original host was high for both parasites, with spillover influencing transmission rate of the fungus but not the bacterium. Thus, while inferior, the spillover host is not a dead-end for either parasite. Overall, our results demonstrate that the presence of multiple hosts in a community can have important consequences for disease transmission, and host and parasite fitness.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).

  4. Host nutrition alters the variance in parasite transmission potential

    PubMed Central

    Vale, Pedro F.; Choisy, Marc; Little, Tom J.

    2013-01-01

    The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna, we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts. PMID:23407498

  5. Host nutrition alters the variance in parasite transmission potential.

    PubMed

    Vale, Pedro F; Choisy, Marc; Little, Tom J

    2013-04-23

    The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna, we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts.

  6. Parasite transmission in a natural multihost–multiparasite community

    PubMed Central

    2017-01-01

    Understanding the transmission and dynamics of infectious diseases in natural communities requires understanding the extent to which the ecology, evolution and epidemiology of those diseases are shaped by alternative hosts. We performed laboratory experiments to test how parasite spillover affected traits associated with transmission in two co-occurring parasites: the bacterium Pasteuria ramosa and the fungus Metschnikowia bicuspidata. Both parasites were capable of transmission from the reservoir host (Daphnia dentifera) to the spillover host (Ceriodaphnia dubia), but this occurred at a much higher rate for the fungus than the bacterium. We quantified transmission potential by combining information on parasite transmission and growth rate, and used this to compare parasite fitness in the two host species. For both parasites, transmission potential was lower in the spillover host. For the bacterium, virulence was higher in the spillover host. Transmission back to the original host was high for both parasites, with spillover influencing transmission rate of the fungus but not the bacterium. Thus, while inferior, the spillover host is not a dead-end for either parasite. Overall, our results demonstrate that the presence of multiple hosts in a community can have important consequences for disease transmission, and host and parasite fitness. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289264

  7. Global change, parasite transmission and disease control: lessons from ecology

    PubMed Central

    Boag, Brian; Ellison, Amy R.; Morgan, Eric R.; Murray, Kris; Pascoe, Emily L.; Sait, Steven M.; Booth, Mark

    2017-01-01

    Parasitic infections are ubiquitous in wildlife, livestock and human populations, and healthy ecosystems are often parasite rich. Yet, their negative impacts can be extreme. Understanding how both anticipated and cryptic changes in a system might affect parasite transmission at an individual, local and global level is critical for sustainable control in humans and livestock. Here we highlight and synthesize evidence regarding potential effects of ‘system changes’ (both climatic and anthropogenic) on parasite transmission from wild host–parasite systems. Such information could inform more efficient and sustainable parasite control programmes in domestic animals or humans. Many examples from diverse terrestrial and aquatic natural systems show how abiotic and biotic factors affected by system changes can interact additively, multiplicatively or antagonistically to influence parasite transmission, including through altered habitat structure, biodiversity, host demographics and evolution. Despite this, few studies of managed systems explicitly consider these higher-order interactions, or the subsequent effects of parasite evolution, which can conceal or exaggerate measured impacts of control actions. We call for a more integrated approach to investigating transmission dynamics, which recognizes these complexities and makes use of new technologies for data capture and monitoring, and to support robust predictions of altered parasite dynamics in a rapidly changing world. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289256

  8. Predation on transmission stages reduces parasitism: sea anemones consume transmission stages of a barnacle parasite.

    PubMed

    Fong, Caitlin R; Kuris, Armand M

    2017-06-01

    While parasites serve as prey, it is unclear how the spatial distribution of parasite predators provides transmission control and influences patterns of parasitism. Because many of its organisms are sessile, the rocky intertidal zone is a valuable but little used system to understand spatial patterns of parasitism and elucidate the underlying mechanisms driving these patterns. Sea anemones and barnacles are important space competitors in the rocky intertidal zone along the Pacific coast of North America. Anemones are voracious, indiscriminate predators; thus, they may intercept infectious stages of parasites before they reach a host. We investigate whether a sea anemone protects an associated barnacle from parasitism by Hemioniscus balani, an isopod parasitic castrator. At Coal Oil Point, Santa Barbara, California USA, 29% of barnacles were within 1 cm from an anemone at the surveyed tidal height. Barnacles associated with anemones had reduced parasite prevalence and higher reproductive productivity than those remote from sea anemones. In the laboratory, anemones readily consumed the transmission stage of the parasite. Hence, anemone consumption of parasite transmission stages may provide a mechanism by which community context regulates parasite prevalence at a local scale. Our results suggest predation may be an important process providing parasite transmission control.

  9. Predicting optimal transmission investment in malaria parasites

    PubMed Central

    Greischar, Megan A.; Mideo, Nicole; Read, Andrew F.; Bjørnstad, Ottar N.

    2016-01-01

    In vertebrate hosts, malaria parasites face a tradeoff between replicating and the production of transmission stages that can be passed onto mosquitoes. This tradeoff is analogous to growth-reproduction tradeoffs in multicellular organisms. We use a mathematical model tailored to the life cycle and dynamics of malaria parasites to identify allocation strategies that maximize cumulative transmission potential to mosquitoes. We show that plastic strategies can substantially outperform fixed allocation because parasites can achieve greater fitness by investing in proliferation early and delaying the production of transmission stages. Parasites should further benefit from restraining transmission investment later in infection, because such a strategy can help maintain parasite numbers in the face of resource depletion. Early allocation decisions are predicted to have the greatest impact on parasite fitness. If the immune response saturates as parasite numbers increase, parasites should benefit from even longer delays prior to transmission investment. The presence of a competing strain selects for consistently lower levels of transmission investment and dramatically increased exploitation of the red blood cell resource. While we provide a detailed analysis of tradeoffs pertaining to malaria life history, our approach for identifying optimal plastic allocation strategies may be broadly applicable. PMID:27271841

  10. Predicting optimal transmission investment in malaria parasites.

    PubMed

    Greischar, Megan A; Mideo, Nicole; Read, Andrew F; Bjørnstad, Ottar N

    2016-07-01

    In vertebrate hosts, malaria parasites face a tradeoff between replicating and the production of transmission stages that can be passed onto mosquitoes. This tradeoff is analogous to growth-reproduction tradeoffs in multicellular organisms. We use a mathematical model tailored to the life cycle and dynamics of malaria parasites to identify allocation strategies that maximize cumulative transmission potential to mosquitoes. We show that plastic strategies can substantially outperform fixed allocation because parasites can achieve greater fitness by investing in proliferation early and delaying the production of transmission stages. Parasites should further benefit from restraining transmission investment later in infection, because such a strategy can help maintain parasite numbers in the face of resource depletion. Early allocation decisions are predicted to have the greatest impact on parasite fitness. If the immune response saturates as parasite numbers increase, parasites should benefit from even longer delays prior to transmission investment. The presence of a competing strain selects for consistently lower levels of transmission investment and dramatically increased exploitation of the red blood cell resource. While we provide a detailed analysis of tradeoffs pertaining to malaria life history, our approach for identifying optimal plastic allocation strategies may be broadly applicable. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  11. Quantifying Transmission Investment in Malaria Parasites

    PubMed Central

    Greischar, Megan A.; Mideo, Nicole; Read, Andrew F.; Bjørnstad, Ottar N.

    2016-01-01

    Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment. PMID:26890485

  12. Breaking beta: deconstructing the parasite transmission function

    PubMed Central

    McCallum, Hamish; Fenton, Andy; Hudson, Peter J.; Lee, Brian; Levick, Beth; Norman, Rachel

    2017-01-01

    Transmission is a fundamental step in the life cycle of every parasite but it is also one of the most challenging processes to model and quantify. In most host–parasite models, the transmission process is encapsulated by a single parameter β. Many different biological processes and interactions, acting on both hosts and infectious organisms, are subsumed in this single term. There are, however, at least two undesirable consequences of this high level of abstraction. First, nonlinearities and heterogeneities that can be critical to the dynamic behaviour of infections are poorly represented; second, estimating the transmission coefficient β from field data is often very difficult. In this paper, we present a conceptual model, which breaks the transmission process into its component parts. This deconstruction enables us to identify circumstances that generate nonlinearities in transmission, with potential implications for emergent transmission behaviour at individual and population scales. Such behaviour cannot be explained by the traditional linear transmission frameworks. The deconstruction also provides a clearer link to the empirical estimation of key components of transmission and enables the construction of flexible models that produce a unified understanding of the spread of both micro- and macro-parasite infectious disease agents. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289252

  13. Modelling Parasite Transmission in a Grazing System: The Importance of Host Behaviour and Immunity

    PubMed Central

    Fox, Naomi J.; Marion, Glenn; Davidson, Ross S.; White, Piran C. L.; Hutchings, Michael R.

    2013-01-01

    Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts’ immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites’ free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance) can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes is required to

  14. Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species.

    PubMed

    Graystock, Peter; Goulson, Dave; Hughes, William O H

    2015-08-22

    The dispersal of parasites is critical for epidemiology, and the interspecific vectoring of parasites when species share resources may play an underappreciated role in parasite dispersal. One of the best examples of such a situation is the shared use of flowers by pollinators, but the importance of flowers and interspecific vectoring in the dispersal of pollinator parasites is poorly understood and frequently overlooked. Here, we use an experimental approach to show that during even short foraging periods of 3 h, three bumblebee parasites and two honeybee parasites were dispersed effectively onto flowers by their hosts, and then vectored readily between flowers by non-host pollinator species. The results suggest that flowers are likely to be hotspots for the transmission of pollinator parasites and that considering potential vector, as well as host, species will be of general importance for understanding the distribution and transmission of parasites in the environment and between pollinators. © 2015 The Author(s).

  15. A parasitic selfish gene that affects host promiscuity.

    PubMed

    Giraldo-Perez, Paulina; Goddard, Matthew R

    2013-11-07

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1-2% in 'natural' niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially.

  16. Parasite transmission among relatives halts Red Queen dynamics.

    PubMed

    Greenspoon, Philip B; Mideo, Nicole

    2017-03-01

    The theory that coevolving hosts and parasites create a fluctuating selective environment for one another (i.e., produce Red Queen dynamics) has deep roots in evolutionary biology; yet empirical evidence for Red Queen dynamics remains scarce. Fluctuating coevolutionary dynamics underpin the Red Queen hypothesis for the evolution of sex, as well as hypotheses explaining the persistence of genetic variation under sexual selection, local parasite adaptation, the evolution of mutation rate, and the evolution of nonrandom mating. Coevolutionary models that exhibit Red Queen dynamics typically assume that hosts and parasites encounter one another randomly. However, if related individuals aggregate into family groups or are clustered spatially, related hosts will be more likely to encounter parasites transmitted by genetically similar individuals. Using a model that incorporates familial parasite transmission, we show that a slight degree of familial parasite transmission is sufficient to halt coevolutionary fluctuations. Our results predict that evidence for Red Queen dynamics, and its evolutionary consequences, are most likely to be found in biological systems in which hosts and parasites mix mainly at random, and are less likely to be found in systems with familial aggregation. This presents a challenge to the Red Queen hypothesis and other hypotheses that depend on coevolutionary cycling. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  17. Host social organization and mating system shape parasite transmission opportunities in three European bat species.

    PubMed

    van Schaik, J; Kerth, G

    2017-02-01

    For non-mobile parasites living on social hosts, infection dynamics are strongly influenced by host life history and social system. We explore the impact of host social systems on parasite population dynamics by comparing the infection intensity and transmission opportunities of three mite species of the genus Spinturnix across their three European bat hosts (Myotis daubentonii, Myotis myotis, Myotis nattereri) during the bats' autumn mating season. Mites mainly reproduce in host maternity colonies in summer, but as these colonies are closed, opportunities for inter-colony transmission are limited to host interactions during the autumn mating season. The three investigated hosts differ considerably in their social system, most notably in maternity colony size, mating system, and degree of male summer aggregation. We observed marked differences in parasite infection during the autumn mating period between the species, closely mirroring the predictions made based on the social systems of the hosts. Increased host aggregation sizes in summer yielded higher overall parasite prevalence and intensity, both in male and female hosts. Moreover, parasite levels in male hosts differentially increased throughout the autumn mating season in concordance with the degree of contact with female hosts afforded by the different mating systems of the hosts. Critically, the observed host-specific differences have important consequences for parasite population structure and will thus affect the coevolutionary dynamics between the interacting species. Therefore, in order to accurately characterize host-parasite dynamics in hosts with complex social systems, a holistic approach that investigates parasite infection and transmission across all periods is warranted.

  18. Exploitation of manipulators: 'hitch-hiking' as a parasite transmission strategy.

    PubMed

    Thomas; Renaud; Poulin

    1998-07-01

    For many parasites with complex life cycles, manipulation of host behaviour is an adaptation to increase the probability of successful transmission. Since manipulation is likely to be costly, other parasites may exploit hosts already manipulated so as to ensure their transmission without investing in manipulation. Such a cheating strategy, called 'hitch-hiking', could be adaptive in a range of situations. We first propose and discuss criteria that should be met by any parasite to be considered a hitch-hiker. Then, to understand the evolution of the hitch-hiking strategy, we use simple mathematical models to analyse the influence of several variables on the potential benefits for a nonmanipulative parasite of actively seeking a ride to the definitive host with a manipulative parasite. The models suggest that the prevalence or abundance of manipulative parasites will be a key determinant of whether hitch-hiking can be an advantageous option for other parasites. Copyright 1998 The Association for the Study of Animal Behaviour.

  19. A parasitic selfish gene that affects host promiscuity

    PubMed Central

    Giraldo-Perez, Paulina; Goddard, Matthew R.

    2013-01-01

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1–2% in ‘natural’ niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially. PMID:24048156

  20. Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa.

    PubMed

    Mendes, Antonio M; Schlegelmilch, Timm; Cohuet, Anna; Awono-Ambene, Parfait; De Iorio, Maria; Fontenille, Didier; Morlais, Isabelle; Christophides, George K; Kafatos, Fotis C; Vlachou, Dina

    2008-05-16

    In much of sub-Saharan Africa, the mosquito Anopheles gambiae is the main vector of the major human malaria parasite, Plasmodium falciparum. Convenient laboratory studies have identified mosquito genes that affect positively or negatively the developmental cycle of the model rodent parasite, P. berghei. Here, we use transcription profiling and reverse genetics to explore whether five disparate mosquito gene regulators of P. berghei development are also pertinent to A. gambiae/P. falciparum interactions in semi-natural conditions, using field isolates of this parasite and geographically related mosquitoes. We detected broadly similar albeit not identical transcriptional responses of these genes to the two parasite species. Gene silencing established that two genes affect similarly both parasites: infections are hindered by the intracellular local activator of actin cytoskeleton dynamics, WASP, but promoted by the hemolymph lipid transporter, ApoII/I. Since P. berghei is not a natural parasite of A. gambiae, these data suggest that the effects of these genes have not been drastically altered by constant interaction and co-evolution of A. gambiae and P. falciparum; this conclusion allowed us to investigate further the mode of action of these two genes in the laboratory model system using a suite of genetic tools and infection assays. We showed that both genes act at the level of midgut invasion during the parasite's developmental transition from ookinete to oocyst. ApoII/I also affects the early stages of oocyst development. These are the first mosquito genes whose significant effects on P. falciparum field isolates have been established by direct experimentation. Importantly, they validate for semi-field human malaria transmission the concept of parasite antagonists and agonists.

  1. Experimental investigation of alternative transmission functions: Quantitative evidence for the importance of nonlinear transmission dynamics in host-parasite systems.

    PubMed

    Orlofske, Sarah A; Flaxman, Samuel M; Joseph, Maxwell B; Fenton, Andy; Melbourne, Brett A; Johnson, Pieter T J

    2018-05-01

    Understanding pathogen transmission is crucial for predicting and managing disease. Nonetheless, experimental comparisons of alternative functional forms of transmission remain rare, and those experiments that are conducted are often not designed to test the full range of possible forms. To differentiate among 10 candidate transmission functions, we used a novel experimental design in which we independently varied four factors-duration of exposure, numbers of parasites, numbers of hosts and parasite density-in laboratory infection experiments. We used interactions between amphibian hosts and trematode parasites as a model system and all candidate models incorporated parasite depletion. An additional manipulation involving anaesthesia addressed the effects of host behaviour on transmission form. Across all experiments, nonlinear transmission forms involving either a power law or a negative binomial function were the best-fitting models and consistently outperformed the linear density-dependent and density-independent functions. By testing previously published data for two other host-macroparasite systems, we also found support for the same nonlinear transmission forms. Although manipulations of parasite density are common in transmission studies, the comprehensive set of variables tested in our experiments revealed that variation in density alone was least likely to differentiate among competing transmission functions. Across host-pathogen systems, nonlinear functions may often more accurately represent transmission dynamics and thus provide more realistic predictions for infection. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  2. Genetic variation affecting host-parasite interactions: different genes affect different aspects of sigma virus replication and transmission in Drosophila melanogaster.

    PubMed

    Bangham, Jenny; Kim, Kang-Wook; Webster, Claire L; Jiggins, Francis M

    2008-04-01

    In natural populations, genetic variation affects resistance to disease. Knowing how much variation exists, and understanding the genetic architecture of this variation, is important for medicine, for agriculture, and for understanding evolutionary processes. To investigate the extent and nature of genetic variation affecting resistance to pathogens, we are studying a tractable model system: Drosophila melanogaster and its natural pathogen the vertically transmitted sigma virus. We show that considerable genetic variation affects transmission of the virus from parent to offspring. However, maternal and paternal transmission of the virus is affected by different genes. Maternal transmission is a simple Mendelian trait: most of the genetic variation is explained by a polymorphism in ref(2)P, a gene already well known to affect resistance to sigma. In contrast, there is considerable genetic variation in paternal transmission that cannot be explained by ref(2)P and is caused by other loci on chromosome 2. Furthermore, we found no genetic correlation between paternal transmission of the virus and resistance to infection by the sigma virus following injection. This suggests that different loci affect viral replication and paternal transmission.

  3. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria.

    PubMed

    Shapiro, Lillian L M; Whitehead, Shelley A; Thomas, Matthew B

    2017-10-01

    Malaria transmission is known to be strongly impacted by temperature. The current understanding of how temperature affects mosquito and parasite life history traits derives from a limited number of empirical studies. These studies, some dating back to the early part of last century, are often poorly controlled, have limited replication, explore a narrow range of temperatures, and use a mixture of parasite and mosquito species. Here, we use a single pairing of the Asian mosquito vector, An. stephensi and the human malaria parasite, P. falciparum to conduct a comprehensive evaluation of the thermal performance curves of a range of mosquito and parasite traits relevant to transmission. We show that biting rate, adult mortality rate, parasite development rate, and vector competence are temperature sensitive. Importantly, we find qualitative and quantitative differences to the assumed temperature-dependent relationships. To explore the overall implications of temperature for transmission, we first use a standard model of relative vectorial capacity. This approach suggests a temperature optimum for transmission of 29°C, with minimum and maximum temperatures of 12°C and 38°C, respectively. However, the robustness of the vectorial capacity approach is challenged by the fact that the empirical data violate several of the model's simplifying assumptions. Accordingly, we present an alternative model of relative force of infection that better captures the observed biology of the vector-parasite interaction. This model suggests a temperature optimum for transmission of 26°C, with a minimum and maximum of 17°C and 35°C, respectively. The differences between the models lead to potentially divergent predictions for the potential impacts of current and future climate change on malaria transmission. The study provides a framework for more detailed, system-specific studies that are essential to develop an improved understanding on the effects of temperature on malaria

  4. Alternative life-history and transmission strategies in a parasite: first come, first served?

    PubMed

    Poulin, R; Lefebvre, F

    2006-01-01

    Alternative transmission strategies are common in many parasitic organisms, often representing discrete phenotypes adopted in response to external cues. The facultative truncation of the normal 3-host life-cycle to a 2-host cycle in many trematodes provides an example: some individuals mature precociously, via progenesis, in their intermediate host and produce eggs without the need to reach a definitive host. The factors that determine how many and which individuals adopt the truncated life-cycle within a parasite population remain unknown. We investigated the occurrence of progenesis in the trematode Stegodexamene anguillae within its fish intermediate host. Location within the host was a key determinant of progenesis. Although the size and egg output of progenetic metacercariae encysted in host gonads did not differ from those of the few progenetic metacercariae in other host tissues, the likelihood of metacercariae becoming progenetic was much higher for those in the gonads than those elsewhere in the host. Progenetic parasites can only evacuate their eggs along with host eggs or sperm, providing a link between the parasite's transmission strategy and its location in the host. Host size and sex, and the presence of other parasite species in the host, did not affect the occurrence of progenesis in S. anguillae. However, the proportion of metacercariae in host gonads and the proportion of progenetic metacercariae both decreased with increasing numbers of S. anguillae per host. These results suggest that progenesis is adopted mostly by the parasites that successfully establish in host gonads. These are generally the first to infect a fish; subsequent arrivals settle in other tissues as the gonads quickly become saturated with parasites. In this system, the site of encystment within the fish host both promotes and constrains the adoption of a facultative, truncated life-cycle by the parasite.

  5. Modeling effective transmission pathways and control of the world's most successful parasite.

    PubMed

    Turner, Matthew; Lenhart, Suzanne; Rosenthal, Benjamin; Zhao, Xiaopeng

    2013-06-01

    Toxoplasma gondii(T. gondii) is a single-celled, intracellular protozoan responsible for the disease toxoplasmosis. The parasite is prevalent worldwide, and it infects all warm-blooded vertebrates. Consumption of meats in which this parasite has encysted confers risk of infection to people and other animals, as does ingestion of water or foods contaminated with environmentally resistant oocysts excreted by cats. Vertical transmission (from mother to offspring) is also possible, leading to disease risk and contributing additional means of ensuring perpetuation of transmission. In this work, we adopt a differential equation model to investigate the effective transmission pathways of T. gondii, as well as potential control mechanisms. Detailed analyses are carried out to examine the significance of transmission routes, virulence, vertical transmission, parasite-induced changes in host behavior, and controls based on vaccination and harvesting. Modeling and analysis efforts may shed insights into understanding the complex life cycle of T. gondii. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission

    USGS Publications Warehouse

    Thieltges, David W.; Amundsen, Per-Arne; Hechinger, Ryan F.; Johnson, Pieter T.J.; Lafferty, Levin D.; Mouritsen, Kim N.; Preston, Daniel L.; Reise, Karsten; Zander, C. Dieter; Poulin, Robert

    2013-01-01

    While the recent inclusion of parasites into food-web studies has highlighted the role of parasites as consumers, there is accumulating evidence that parasites can also serve as prey for predators. Here we investigated empirical patterns of predation on parasites and their relationships with parasite transmission in eight topological food webs representing marine and freshwater ecosystems. Within each food web, we examined links in the typical predator–prey sub web as well as the predator–parasite sub web, i.e. the quadrant of the food web indicating which predators eat parasites. Most predator– parasite links represented ‘concomitant predation’ (consumption and death of a parasite along with the prey/host; 58–72%), followed by ‘trophic transmission’ (predator feeds on infected prey and becomes infected; 8–32%) and predation on free-living parasite life-cycle stages (4–30%). Parasite life-cycle stages had, on average, between 4.2 and 14.2 predators. Among the food webs, as predator richness increased, the number of links exploited by trophically transmitted parasites increased at about the same rate as did the number of links where these stages serve as prey. On the whole, our analyses suggest that predation on parasites has important consequences for both predators and parasites, and food web structure. Because our analysis is solely based on topological webs, determining the strength of these interactions is a promising avenue for future research.

  7. It's a predator-eat-parasite world: how characteristics of predator, parasite and environment affect consumption.

    PubMed

    Orlofske, Sarah A; Jadin, Robert C; Johnson, Pieter T J

    2015-06-01

    Understanding the effects of predation on disease dynamics is increasingly important in light of the role ecological communities can play in host-parasite interactions. Surprisingly, however, few studies have characterized direct predation of parasites. Here we used an experimental approach to show that consumption of free-living parasite stages is highly context dependent, with significant influences of parasite size, predator size and foraging mode, as well as environmental condition. Among the four species of larval trematodes and two types of predators (fish and larval damselflies) studied here, parasites with larger infective stages (size >1,000 μm) were most vulnerable to predation by fish, while small-bodied fish and damselflies (size <10 mm) consumed the most infectious stages. Small parasite species (size approx. 500 μm) were less frequently consumed by both fish and larval damselflies. However, these results depended strongly on light availability; trials conducted in the dark led to significantly fewer parasites consumed overall, especially those with a size of <1,000 μm, emphasizing the importance of circadian shedding times of parasite free-living stages for predation risk. Intriguingly, active predation functioned to help limit fishes' infection by directly penetrating parasite species. Our results are consistent with established theory developed for predation on zooplankton that emphasizes the roles of body size, visibility and predation modes and further suggest that consumer-resource theory may provide a predictive framework for when predators should significantly influence parasite transmission. These results contribute to our understanding of transmission in natural systems, the role of predator-parasite links in food webs and the evolution of parasite morphology and behavior.

  8. Transmission of Babesia microti Parasites by Solid Organ Transplantation

    PubMed Central

    Herwaldt, Barbara L.; Kazmierczak, James J.; Weiss, John W.; Klein, Christina L.; Leith, Catherine P.; He, Rong; Oberley, Matthew J.; Tonnetti, Laura; Wilkins, Patricia P.; Gauthier, Gregory M.

    2016-01-01

    Babesia microti, an intraerythrocytic parasite, is tickborne in nature. In contrast to transmission by blood transfusion, which has been well documented, transmission associated with solid organ transplantation has not been reported. We describe parasitologically confirmed cases of babesiosis diagnosed ≈8 weeks posttransplantation in 2 recipients of renal allografts from an organ donor who was multiply transfused on the day he died from traumatic injuries. The organ donor and recipients had no identified risk factors for tickborne infection. Antibodies against B. microti parasites were not detected by serologic testing of archived pretransplant specimens. However, 1 of the organ donor’s blood donors was seropositive when tested postdonation and had risk factors for tick exposure. The organ donor probably served as a conduit of Babesia parasites from the seropositive blood donor to both kidney recipients. Babesiosis should be included in the differential diagnosis of unexplained fever and hemolytic anemia after blood transfusion or organ transplantation. PMID:27767010

  9. Host Diet Affects the Morphology of Monarch Butterfly Parasites.

    PubMed

    Hoang, Kevin; Tao, Leiling; Hunter, Mark D; de Roode, Jacobus C

    2017-06-01

    Understanding host-parasite interactions is essential for ecological research, wildlife conservation, and health management. While most studies focus on numerical traits of parasite groups, such as changes in parasite load, less focus is placed on the traits of individual parasites such as parasite size and shape (parasite morphology). Parasite morphology has significant effects on parasite fitness such as initial colonization of hosts, avoidance of host immune defenses, and the availability of resources for parasite replication. As such, understanding factors that affect parasite morphology is important in predicting the consequences of host-parasite interactions. Here, we studied how host diet affected the spore morphology of a protozoan parasite ( Ophryocystis elektroscirrha ), a specialist parasite of the monarch butterfly ( Danaus plexippus ). We found that different host plant species (milkweeds; Asclepias spp.) significantly affected parasite spore size. Previous studies have found that cardenolides, secondary chemicals in host plants of monarchs, can reduce parasite loads and increase the lifespan of infected butterflies. Adding to this benefit of high cardenolide milkweeds, we found that infected monarchs reared on milkweeds of higher cardenolide concentrations yielded smaller parasites, a potentially hidden characteristic of cardenolides that may have important implications for monarch-parasite interactions.

  10. A class of tricyclic compounds blocking malaria parasite oocyst development and transmission.

    PubMed

    Eastman, Richard T; Pattaradilokrat, Sittiporn; Raj, Dipak K; Dixit, Saurabh; Deng, Bingbing; Miura, Kazutoyo; Yuan, Jing; Tanaka, Takeshi Q; Johnson, Ronald L; Jiang, Hongying; Huang, Ruili; Williamson, Kim C; Lambert, Lynn E; Long, Carole; Austin, Christopher P; Wu, Yimin; Su, Xin-Zhuan

    2013-01-01

    Malaria is a deadly infectious disease in many tropical and subtropical countries. Previous efforts to eradicate malaria have failed, largely due to the emergence of drug-resistant parasites, insecticide-resistant mosquitoes and, in particular, the lack of drugs or vaccines to block parasite transmission. ATP-binding cassette (ABC) transporters are known to play a role in drug transport, metabolism, and resistance in many organisms, including malaria parasites. To investigate whether a Plasmodium falciparum ABC transporter (Pf14_0244 or PfABCG2) modulates parasite susceptibility to chemical compounds or plays a role in drug resistance, we disrupted the gene encoding PfABCG2, screened the recombinant and the wild-type 3D7 parasites against a library containing 2,816 drugs approved for human or animal use, and identified an antihistamine (ketotifen) that became less active against the PfABCG2-disrupted parasite in culture. In addition to some activity against asexual stages and gametocytes, ketotifen was highly potent in blocking oocyst development of P. falciparum and the rodent parasite Plasmodium yoelii in mosquitoes. Tests of structurally related tricyclic compounds identified additional compounds with similar activities in inhibiting transmission. Additionally, ketotifen appeared to have some activity against relapse of Plasmodium cynomolgi infection in rhesus monkeys. Further clinical evaluation of ketotifen and related compounds, including synthetic new derivatives, in blocking malaria transmission may provide new weapons for the current effort of malaria eradication.

  11. Host immune constraints on malaria transmission: insights from population biology of within-host parasites

    PubMed Central

    2013-01-01

    Background Plasmodium infections trigger complex immune reactions from their hosts against several life stages of the parasite, including gametocytes. These immune responses are highly variable, depending on age, genetics, and exposure history of the host as well as species and strain of parasite. Although the effects of host antibodies that act against gamete stages in the mosquito (due to uptake in the blood meal) are well documented, the effects of host immunity upon within-host gametocytes are not as well understood. This report consists of a theoretical population biology-based analysis to determine constraints that host immunity impose upon gametocyte population growth. The details of the mathematical models used for the analysis were guided by published reports of clinical and animal studies, incorporated plausible modalities of immune reactions to parasites, and were tailored to the life cycl es of the two most widespread human malaria pathogens, Plasmodium falciparum and Plasmodium vivax. Results For the same ability to bind and clear a target, the model simulations suggest that an antibody attacking immature gametocytes would tend to lower the overall density of transmissible mature gametocytes more than an antibody attacking the mature forms directly. Transmission of P. falciparum would be especially vulnerable to complete blocking by antibodies to its immature forms since its gametocytes take much longer to reach maturity than those of P. vivax. On the other hand, antibodies attacking the mature gametocytes directly would reduce the time the mature forms can linger in the host. Simulation results also suggest that varying the standard deviation in the time necessary for individual asexual parasites to develop and produce schizonts can affect the efficiency of production of transmissible gametocytes. Conclusions If mature gametocyte density determines the probability of transmission, both Plasmodium species, but especially P. falciparum, could bolster

  12. How have fisheries affected parasite communities?

    USGS Publications Warehouse

    Wood, Chelsea L.; Lafferty, Kevin D.

    2015-01-01

    To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.

  13. New Insights Into the Transmissibility of Leishmania infantum From Dogs to Sand Flies: Experimental Vector-Transmission Reveals Persistent Parasite Depots at Bite Sites

    PubMed Central

    Aslan, Hamide; Oliveira, Fabiano; Meneses, Claudio; Castrovinci, Philip; Gomes, Regis; Teixeira, Clarissa; Derenge, Candace A.; Orandle, Marlene; Gradoni, Luigi; Oliva, Gaetano; Fischer, Laurent; Valenzuela, Jesus G.; Kamhawi, Shaden

    2016-01-01

    Canine leishmaniasis (CanL) is a chronic fatal disease of dogs and a major source of human infection through propagation of parasites in vectors. Here, we infected 8 beagles through multiple experimental vector transmissions with Leishmania infantum–infected Lutzomyia longipalpis. CanL clinical signs varied, although live parasites were recovered from all dog spleens. Splenic parasite burdens correlated positively with Leishmania-specific interleukin 10 levels, negatively with Leishmania-specific interferon γ and interleukin 2 levels, and negatively with Leishmania skin test reactivity. A key finding was parasite persistence for 6 months in lesions observed at the bite sites in all dogs. These recrudesced following a second transmission performed at a distal site. Notably, sand flies efficiently acquired parasites after feeding on lesions at the primary bite site. In this study, controlled vector transmissions identify a potentially unappreciated role for skin at infectious bite sites in dogs with CanL, providing a new perspective regarding the mechanism of Leishmania transmissibility to vector sand flies. PMID:26768257

  14. Waterborne transmission of protozoan parasites: Review of worldwide outbreaks - An update 2011-2016.

    PubMed

    Efstratiou, Artemis; Ongerth, Jerry E; Karanis, Panagiotis

    2017-05-01

    This review provides a comprehensive update of worldwide waterborne parasitic protozoan outbreaks that occurred with reports published since previous reviews largely between January 2011 and December 2016. At least 381 outbreaks attributed to waterborne transmission of parasitic protozoa were documented during this time period. The nearly half (49%) of reports occurred in New Zealand, 41% of the outbreaks in North America and 9% in Europe. The most common etiological agent was Cryptosporidium spp., reported in 63% (239) of the outbreaks, while Giardia spp. was mentioned in 37% (142). No outbreaks attributed to other parasitic protozoa were reported. The distribution of reported outbreaks does not correspond to more broadly available epidemiological data or general knowledge of water and environmental conditions in the reporting countries. Noticeably, developing countries that are probably most affected by such waterborne disease outbreaks still lack reliable surveillance systems, and an international standardization of surveillance and reporting systems has yet to be established. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Social transmission of a host defense against cuckoo parasitism.

    PubMed

    Davies, Nicholas B; Welbergen, Justin A

    2009-06-05

    Coevolutionary arms races between brood parasites and hosts involve genetic adaptations and counter-adaptations. However, hosts sometimes acquire defenses too rapidly to reflect genetic change. Our field experiments show that observation of cuckoo (Cuculus canorus) mobbing by neighbors on adjacent territories induced reed warblers (Acrocephalus scirpaceus) to increase the mobbing of cuckoos but not of parrots (a harmless control) on their own territory. In contrast, observation of neighbors mobbing parrots had no effect on reed warblers' responses to either cuckoos or parrots. These results indicate that social learning provides a mechanism by which hosts rapidly increase their nest defense against brood parasites. Such enemy-specific social transmission enables hosts to track fine-scale spatiotemporal variation in parasitism and may influence the coevolutionary trajectories and population dynamics of brood parasites and hosts.

  16. Prevalence, transmission, and genetic diversity of blood parasites infecting tundra-nesting geese in Alaska

    USGS Publications Warehouse

    Ramey, Andy M.; Reed, John A.; Schmutz, Joel A.; Fondell, Tom F.; Meixell, Brandt W.; Hupp, Jerry W.; Ward, David H.; Terenzi, John; Ely, Craig R.

    2014-01-01

    A total of 842 blood samples collected from five species of tundra-nesting geese in Alaska was screened for haemosporidian parasites using molecular techniques. Parasites of the generaLeucocytozoon Danilewsky, 1890, Haemoproteus Kruse, 1890, and Plasmodium Marchiafava and Celli, 1885 were detected in 169 (20%), 3 (<1%), and 0 (0%) samples, respectively. Occupancy modeling was used to estimate prevalence of Leucocytozoon parasites and assess variation relative to species, age, sex, geographic area, year, and decade. Species, age, and decade were identified as important in explaining differences in prevalence of Leucocytozoonparasites. Leucocytozoon parasites were detected in goslings sampled along the Arctic Coastal Plain using both historic and contemporary samples, which provided support for transmission in the North American Arctic. In contrast, lack of detection of Haemoproteus and Plasmodiumparasites in goslings (n = 238) provided evidence to suggest that the transmission of parasites of these genera may not occur among waterfowl using tundra habitats in Alaska, or alternatively, may only occur at low levels. Five haemosporidian genetic lineages shared among different species of geese sampled from two geographic areas were indicative of interspecies parasite transmission and supported broad parasite or vector distributions. However, identicalLeucocytozoon and Haemoproteus lineages on public databases were limited to waterfowl hosts suggesting constraints in the range of parasite hosts.

  17. Alternative prey use affects helminth parasite infections in grey wolves.

    PubMed

    Friesen, Olwyn C; Roth, James D

    2016-09-01

    Predators affect prey populations not only through direct predation, but also by acting as definitive hosts for their parasites and completing parasite life cycles. Understanding the affects of parasitism on prey population dynamics requires knowing how their predators' parasite community is affected by diet and prey availability. Ungulates, such as moose (Alces americanus) and white-tailed deer (Odocoileus virginianus), are often important prey for wolves (Canis lupus), but wolves also consume a variety of alternative prey, including beaver (Castor canadensis) and snowshoe hare (Lepus americanus). The use of alternative prey, which may host different or fewer parasites than ungulates, could potentially reduce overall abundance of ungulate parasites within the ecosystem, benefiting both wolves and ungulate hosts. We examined parasites in wolf carcasses from eastern Manitoba and estimated wolf diet using stable isotope analysis. Taeniidae cestodes were present in most wolves (75%), reflecting a diet primarily comprised of ungulates, but nematodes were unexpectedly rare. Cestode abundance was negatively related to the wolf's δ(13) C value, indicating diet affects parasite abundance. Wolves that consumed a higher proportion of beaver and caribou (Rangifer tarandus), estimated using Bayesian mixing models, had lower cestode abundance, suggesting the use of these alternative prey can reduce parasite loads. Long-term consumption of beavers may lower the abundance of adult parasites in wolves, eventually lowering parasite density in the region and ultimately benefiting ungulates that serve as intermediate hosts. Thus, alternative prey can affect both predator-prey and host-parasite interactions and potentially affect food web dynamics. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  18. When parasites become prey: ecological and epidemiological significance of eating parasites

    USGS Publications Warehouse

    Johnson, Pieter T.J.; Dobson, Andrew P.; Lafferty, Kevin D.; Marcogliese, David J.; Memmott, Jane; Orlofske, Sarah A.; Poulin, Robert; Thieltges, David W.

    2010-01-01

    Recent efforts to include parasites in food webs have drawn attention to a previously ignored facet of foraging ecology: parasites commonly function as prey within ecosystems. Because of the high productivity of parasites, their unique nutritional composition and their pathogenicity in hosts, their consumption affects both food-web topology and disease risk in humans and wildlife. Here, we evaluate the ecological, evolutionary and epidemiological significance of feeding on parasites, including concomitant predation, grooming, predation on free-living stages and intraguild predation. Combining empirical data and theoretical models, we show that consumption of parasites is neither rare nor accidental, and that it can sharply affect parasite transmission and food web properties. Broader consideration of predation on parasites will enhance our understanding of disease control, food web structure and energy transfer, and the evolution of complex life cycles.

  19. The evolution of parasitic and mutualistic plant-virus symbioses through transmission-virulence trade-offs.

    PubMed

    Hamelin, Frédéric M; Hilker, Frank M; Sun, T Anthony; Jeger, Michael J; Hajimorad, M Reza; Allen, Linda J S; Prendeville, Holly R

    2017-09-15

    Virus-plant interactions range from parasitism to mutualism. Viruses have been shown to increase fecundity of infected plants in comparison with uninfected plants under certain environmental conditions. Increased fecundity of infected plants may benefit both the plant and the virus as seed transmission is one of the main virus transmission pathways, in addition to vector transmission. Trade-offs between vertical (seed) and horizontal (vector) transmission pathways may involve virulence, defined here as decreased fecundity in infected plants. To better understand plant-virus symbiosis evolution, we explore the ecological and evolutionary interplay of virus transmission modes when infection can lead to an increase in plant fecundity. We consider two possible trade-offs: vertical seed transmission vs infected plant fecundity, and horizontal vector transmission vs infected plant fecundity (virulence). Through mathematical models and numerical simulations, we show (1) that a trade-off between virulence and vertical transmission can lead to virus extinction during the course of evolution, (2) that evolutionary branching can occur with subsequent coexistence of mutualistic and parasitic virus strains, and (3) that mutualism can out-compete parasitism in the long-run. In passing, we show that ecological bi-stability is possible in a very simple discrete-time epidemic model. Possible extensions of this study include the evolution of conditional (environment-dependent) mutualism in plant viruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A mitogen-activated protein kinase regulates male gametogenesis and transmission of the malaria parasite Plasmodium berghei

    PubMed Central

    Rangarajan, Radha; Bei, Amy K; Jethwaney, Deepa; Maldonado, Priscilla; Dorin, Dominique; Sultan, Ali A; Doerig, Christian

    2005-01-01

    Differentiation of malaria parasites into sexual forms (gametocytes) in the vertebrate host and their subsequent development into gametes in the mosquito vector are crucial steps in the completion of the parasite's life cycle and transmission of the disease. The molecular mechanisms that regulate the sexual cycle are poorly understood. Although several signal transduction pathways have been implicated, a clear understanding of the pathways involved has yet to emerge. Here, we show that a Plasmodium berghei homologue of Plasmodium falciparum mitogen-activated kinase-2 (Pfmap-2), a gametocyte-specific mitogen-activated protein kinase (MAPK), is required for male gamete formation. Parasites lacking Pbmap-2 are competent for gametocytogenesis, but exflagellation of male gametocytes, the process that leads to male gamete formation, is almost entirely abolished in mutant parasites. Consistent with this result, transmission of mutant parasites to mosquitoes is grossly impaired. This finding identifies a crucial role for a MAPK pathway in malaria transmission. PMID:15864297

  1. Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites.

    PubMed

    Lempereur, Laetitia; Larcombe, Stephen D; Durrani, Zeeshan; Karagenc, Tulin; Bilgic, Huseyin Bilgin; Bakirci, Serkan; Hacilarlioglu, Selin; Kinnaird, Jane; Thompson, Joanne; Weir, William; Shiels, Brian

    2017-06-05

    Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a 'One Health' approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans.

  2. Distribution and transmission of the highly pathogenic parasite Ichthyophonus in marine fishes of Alaska

    USGS Publications Warehouse

    Gregg, Jacob L.; Grady, Courtney A.; Thompson, Rachel L.; Purcell, Maureen K.; Friedman, Carolyn S.; Hershberger, Paul K.

    2014-01-01

    A combination of field surveys, molecular typing, and laboratory experiments were used to improve our understanding of the distribution and transmission mechanisms of fish parasites in the genus Ichthyophonus. Ichthyophonus spp. infections were detected from the Bering Sea to the coast of Oregon in 10 of 13 host species surveyed. Sequences of rDNA extracted from these isolates indicate that a ubiquitous Ichthyophonus type occurs in the NE Pacific Ocean and Bering Sea and accounts for nearly all the infections encountered. Among NE Pacific isolates, only parasites from yellowtail rockfish and Puget Sound rockfish varied at the DNA locus examined. These data suggest that a single source population of these parasites is available to fishes in diverse niches across a wide geographic range. A direct life cycle within a common forage species could account for the relatively low parasite diversity we encountered. In the laboratory we tested the hypothesis that waterborne transmission occurs among Pacific herring, a common NE Pacific forage species. No horizontal transmission occurred during a four-month cohabitation experiment involving infected herring and conspecific sentinels. The complete life cycle of Ichthyophonus spp. is not known, but these results suggest that system-wide processes maintain a relatively homogenous parasite population.

  3. Environmental Constraints Guide Migration of Malaria Parasites during Transmission

    PubMed Central

    Hellmann, Janina Kristin; Münter, Sylvia; Kudryashev, Mikhail; Schulz, Simon; Heiss, Kirsten; Müller, Ann-Kristin; Matuschewski, Kai; Spatz, Joachim P.; Schwarz, Ulrich S.; Frischknecht, Friedrich

    2011-01-01

    Migrating cells are guided in complex environments mainly by chemotaxis or structural cues presented by the surrounding tissue. During transmission of malaria, parasite motility in the skin is important for Plasmodium sporozoites to reach the blood circulation. Here we show that sporozoite migration varies in different skin environments the parasite encounters at the arbitrary sites of the mosquito bite. In order to systematically examine how sporozoite migration depends on the structure of the environment, we studied it in micro-fabricated obstacle arrays. The trajectories observed in vivo and in vitro closely resemble each other suggesting that structural constraints can be sufficient to guide Plasmodium sporozoites in complex environments. Sporozoite speed in different environments is optimized for migration and correlates with persistence length and dispersal. However, this correlation breaks down in mutant sporozoites that show adhesion impairment due to the lack of TRAP-like protein (TLP) on their surfaces. This may explain their delay in infecting the host. The flexibility of sporozoite adaption to different environments and a favorable speed for optimal dispersal ensures efficient host switching during malaria transmission. PMID:21698220

  4. Foodborne parasites from wildlife: how wild are they?

    PubMed

    Kapel, Christian M O; Fredensborg, Brian L

    2015-04-01

    The majority of wild foods consumed by humans are sourced from intensively managed or semi-farmed populations. Management practices inevitably affect wildlife density and habitat characteristics, which are key elements in the transmission of parasites. We consider the risk of transmission of foodborne parasites to humans from wildlife maintained under natural or semi-natural conditions. A deeper understanding will be useful in counteracting foodborne parasites arising from the growing industry of novel and exotic foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Host age modulates parasite infectivity, virulence and reproduction.

    PubMed

    Izhar, Rony; Ben-Ami, Frida

    2015-07-01

    Host age is one of the most striking differences among hosts within most populations, but there is very little data on how age-dependent effects impact ecological and evolutionary dynamics of both the host and the parasite. Here, we examined the influence of host age (juveniles, young and old adults) at parasite exposure on host susceptibility, fecundity and survival as well as parasite transmission, using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa. Younger D. magna were more susceptible to infection than older ones, regardless of host or parasite clone. Also, younger-infected D. magna became castrated faster than older hosts, but host and parasite clone effects contributed to this trait as well. Furthermore, the early-infected D. magna produced considerably more parasite transmission stages than late-infected ones, while host age at exposure did not affect virulence as it is defined in models (host mortality). When virulence is defined more broadly as the negative effects of infection on host fitness, by integrating the parasitic effects on host fecundity and mortality, then host age at exposure seems to slide along a negative relationship between host and parasite fitness. Thus, the virulence-transmission trade-off differs strongly among age classes, which in turn affects predictions of optimal virulence. Age-dependent effects on host susceptibility, virulence and parasite transmission could pose an important challenge for experimental and theoretical studies of infectious disease dynamics and disease ecology. Our results present a call for a more explicit stage-structured theory for disease, which will incorporate age-dependent epidemiological parameters. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  6. 9 CFR 311.25 - Parasites not transmissible to man; tapeworm cysts in sheep; hydatid cysts; flukes; gid bladder...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Parasites not transmissible to man... DISEASED OR OTHERWISE ADULTERATED CARCASSES AND PARTS § 311.25 Parasites not transmissible to man; tapeworm... man, the following general rules shall govern except as otherwise provided in this section: If the...

  7. 9 CFR 311.25 - Parasites not transmissible to man; tapeworm cysts in sheep; hydatid cysts; flukes; gid bladder...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Parasites not transmissible to man... DISEASED OR OTHERWISE ADULTERATED CARCASSES AND PARTS § 311.25 Parasites not transmissible to man; tapeworm... man, the following general rules shall govern except as otherwise provided in this section: If the...

  8. 9 CFR 311.25 - Parasites not transmissible to man; tapeworm cysts in sheep; hydatid cysts; flukes; gid bladder...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Parasites not transmissible to man... DISEASED OR OTHERWISE ADULTERATED CARCASSES AND PARTS § 311.25 Parasites not transmissible to man; tapeworm... man, the following general rules shall govern except as otherwise provided in this section: If the...

  9. 9 CFR 311.25 - Parasites not transmissible to man; tapeworm cysts in sheep; hydatid cysts; flukes; gid bladder...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Parasites not transmissible to man... DISEASED OR OTHERWISE ADULTERATED CARCASSES AND PARTS § 311.25 Parasites not transmissible to man; tapeworm... man, the following general rules shall govern except as otherwise provided in this section: If the...

  10. Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: implications for disease in a warming climate.

    PubMed

    Zamora-Vilchis, Itzel; Williams, Stephen E; Johnson, Christopher N

    2012-01-01

    The rising global temperature is predicted to expand the distribution of vector-borne diseases both in latitude and altitude. Many host communities could be affected by increased prevalence of disease, heightening the risk of extinction for many already threatened species. To understand how host communities could be affected by changing parasite distributions, we need information on the distribution of parasites in relation to variables like temperature and rainfall that are predicted to be affected by climate change. We determined relations between prevalence of blood parasites, temperature, and seasonal rainfall in a bird community of the Australian Wet Tropics along an elevation gradient. We used PCR screening to investigate the prevalence and lineage diversity of four genera of blood parasites (Plasmodium, Haemoproteus, Leucocytozoon and Trypanosoma) in 403 birds. The overall prevalence of the four genera of blood parasites was 32.3%, with Haemoproteus the predominant genus. A total of 48 unique lineages were detected. Independent of elevation, parasite prevalence was positively and strongly associated with annual temperature. Parasite prevalence was elevated during the dry season. Low temperatures of the higher elevations can help to reduce both the development of avian haematozoa and the abundance of parasite vectors, and hence parasite prevalence. In contrast, high temperatures of the lowland areas provide an excellent environment for the development and transmission of haematozoa. We showed that rising temperatures are likely to lead to increased prevalence of parasites in birds, and may force shifts of bird distribution to higher elevations. We found that upland tropical areas are currently a low-disease habitat and their conservation should be given high priority in management plans under climate change.

  11. Environmental Temperature Affects Prevalence of Blood Parasites of Birds on an Elevation Gradient: Implications for Disease in a Warming Climate

    PubMed Central

    Zamora-Vilchis, Itzel; Williams, Stephen E.; Johnson, Christopher N.

    2012-01-01

    Background The rising global temperature is predicted to expand the distribution of vector-borne diseases both in latitude and altitude. Many host communities could be affected by increased prevalence of disease, heightening the risk of extinction for many already threatened species. To understand how host communities could be affected by changing parasite distributions, we need information on the distribution of parasites in relation to variables like temperature and rainfall that are predicted to be affected by climate change. Methodology/Principal Findings We determined relations between prevalence of blood parasites, temperature, and seasonal rainfall in a bird community of the Australian Wet Tropics along an elevation gradient. We used PCR screening to investigate the prevalence and lineage diversity of four genera of blood parasites (Plasmodium, Haemoproteus, Leucocytozoon and Trypanosoma) in 403 birds. The overall prevalence of the four genera of blood parasites was 32.3%, with Haemoproteus the predominant genus. A total of 48 unique lineages were detected. Independent of elevation, parasite prevalence was positively and strongly associated with annual temperature. Parasite prevalence was elevated during the dry season. Conclusions/Significance Low temperatures of the higher elevations can help to reduce both the development of avian haematozoa and the abundance of parasite vectors, and hence parasite prevalence. In contrast, high temperatures of the lowland areas provide an excellent environment for the development and transmission of haematozoa. We showed that rising temperatures are likely to lead to increased prevalence of parasites in birds, and may force shifts of bird distribution to higher elevations. We found that upland tropical areas are currently a low-disease habitat and their conservation should be given high priority in management plans under climate change. PMID:22723966

  12. The most important parasites in Serbia involving the foodborne route of transmission

    NASA Astrophysics Data System (ADS)

    Petrović, J. M.; Prodanov-Radulović, J. Z.; Vasilev, S. D.

    2017-09-01

    Food can be an important route for transmission of parasites to humans. Compared to other foodborne pathogens in Serbia, foodborne (or potentially foodborne) parasites do not get the attention they undoubtedly deserve. The aim of this article is to give an overview of the most important parasitic pathogens that can be transmitted by food, and that cause disease in humans: Echinococcus, Trichinella, Taenia solium and Toxoplasma gondii. For each of these pathogens, the severity of human diseases they cause, incidence, mortality and case fatality rate among humans in Serbia as well as their prevalence in animal species in Serbia are described. Some of the described foodborne parasites can induce severe disease symptoms in humans associated with high case fatality rates, while others can cause massive outbreaks. All of the aforementioned parasites occur throughout Serbia and cause both severe public health problems and substantial economic losses in livestock production. In conclusion, the control measures of foodborne parasites certainly need to include education of farmers and improvement of veterinary sanitary measures in animal farming and animal waste control.

  13. Parasites and marine invasions: Ecological and evolutionary perspectives

    NASA Astrophysics Data System (ADS)

    Goedknegt, M. Anouk; Feis, Marieke E.; Wegner, K. Mathias; Luttikhuizen, Pieternella C.; Buschbaum, Christian; Camphuysen, Kees (C. J.); van der Meer, Jaap; Thieltges, David W.

    2016-07-01

    Worldwide, marine and coastal ecosystems are heavily invaded by introduced species and the potential role of parasites in the success and impact of marine invasions has been increasingly recognized. In this review, we link recent theoretical developments in invasion ecology with empirical studies from marine ecosystems in order to provide a conceptual framework for studying the role of parasites and their hosts in marine invasions. Based on an extensive literature search, we identified six mechanisms in which invaders directly or indirectly affect parasite and host populations and communities: I) invaders can lose some or all of their parasites during the invasion process (parasite release or reduction), often causing a competitive advantage over native species; II) invaders can also act as a host for native parasites, which may indirectly amplify the parasite load of native hosts (parasite spillback); III) invaders can also be parasites themselves and be introduced without needing co-introduction of the host (introduction of free-living infective stages); IV) alternatively, parasites may be introduced together with their hosts (parasite co-introduction with host); V) consequently, these co-introduced parasites can sometimes also infect native hosts (parasite spillover); and VI) invasive species may be neither a host nor a parasite, but nevertheless affect native parasite host interactions by interfering with parasite transmission (transmission interference). We discuss the ecological and evolutionary implications of each of these mechanisms and generally note several substantial effects on natural communities and ecosystems via i) mass mortalities of native populations creating strong selection gradients, ii) indirect changes in species interactions within communities and iii) trophic cascading and knock-on effects in food webs that may affect ecosystem function and services. Our review demonstrates a wide range of ecological and evolutionary implications of

  14. How do humans affect wildlife nematodes?

    USGS Publications Warehouse

    Weinstein, Sara B.; Lafferty, Kevin D.

    2015-01-01

    Human actions can affect wildlife and their nematode parasites. Species introductions and human-facilitated range expansions can create new host–parasite interactions. Novel hosts can introduce parasites and have the potential to both amplify and dilute nematode transmission. Furthermore, humans can alter existing nematode dynamics by changing host densities and the abiotic conditions that affect larval parasite survival. Human impacts on wildlife might impair parasites by reducing the abundance of their hosts; however, domestic animal production and complex life cycles can maintain transmission even when wildlife becomes rare. Although wildlife nematodes have many possible responses to human actions, understanding host and parasite natural history, and the mechanisms behind the changing disease dynamics might improve disease control in the few cases where nematode parasitism impacts wildlife.

  15. Synergy in anti-malarial pre-erythrocytic and transmission-blocking antibodies is achieved by reducing parasite density

    PubMed Central

    Betancourt, Michael; Upton, Leanna M; Angrisano, Fiona; Morin, Merribeth J

    2018-01-01

    Anti-malarial pre-erythrocytic vaccines (PEV) target transmission by inhibiting human infection but are currently partially protective. It has been posited, but never demonstrated, that co-administering transmission-blocking vaccines (TBV) would enhance malaria control. We hypothesized a mechanism that TBV could reduce parasite density in the mosquito salivary glands, thereby enhancing PEV efficacy. This was tested using a multigenerational population assay, passaging Plasmodium berghei to Anopheles stephensi mosquitoes. A combined efficacy of 90.8% (86.7–94.2%) was observed in the PEV +TBV antibody group, higher than the estimated efficacy of 83.3% (95% CrI 79.1–87.0%) if the two antibodies acted independently. Higher PEV efficacy at lower mosquito parasite loads was observed, comprising the first direct evidence that co-administering anti-sporozoite and anti-transmission interventions act synergistically, enhancing PEV efficacy across a range of TBV doses and transmission intensities. Combining partially effective vaccines of differing anti-parasitic classes is a pragmatic, powerful way to accelerate malaria elimination efforts. PMID:29914622

  16. Artesunate-tafenoquine combination therapy promotes clearance and abrogates transmission of the avian malaria parasite Plasmodium gallinaceum.

    PubMed

    Tasai, Suchada; Saiwichai, Tawee; Kaewthamasorn, Morakot; Tiawsirisup, Sonthaya; Buddhirakkul, Prayute; Chaichalotornkul, Sirintip; Pattaradilokrat, Sittiporn

    2017-01-15

    Clinical manifestations of malaria infection in vertebrate hosts arise from the multiplication of the asexual stage parasites in the blood, while the gametocytes are responsible for the transmission of the disease. Antimalarial drugs that target the blood stage parasites and transmissible gametocytes are rare, but are essentially needed for the effective control of malaria and for limiting the spread of resistance. Artemisinin and its derivatives are the current first-line antimalarials that are effective against the blood stage parasites and gametocytes, but resistance to artemisinin has now emerged and spread in various malaria endemic areas. Therefore, a novel antimalarial drug, or a new drug combination, is critically needed to overcome this problem. The objectives of this study were to evaluate the efficacy of a relatively new antimalarial compound, tafenoquine (TQ), and a combination of TQ and a low dose of artesunate (ATN) on the in vivo blood stage multiplication, gametocyte development and transmission of the avian malaria parasite Plasmodium gallinaceum to the vector Aedes aegypti. The results showed that a 5-d treatment with TQ alone was unable to clear the blood stage parasites, but was capable of reducing the mortality rate, while TQ monotherapy at a high dose of 30mg/kg was highly effective against the gametocytes and completely blocked the transmission of P. gallinaceum. In addition, the combination therapy of TQ+ATN completely cleared P. gallinaceum blood stages and sped up the gametocyte clearance from chickens, suggesting the synergistic effect of the two drugs. In conclusion, TQ is demonstrated to be effective for limiting avian malaria transmission and may be used in combination with a low dose of ATN for safe and effective treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies.

    PubMed

    Ben-Ami, F; Rigaud, T; Ebert, D

    2011-06-01

    In many natural populations, hosts are found to be infected by more than one parasite species. When these parasites have different host exploitation strategies and transmission modes, a conflict among them may arise. Such a conflict may reduce the success of both parasites, but could work to the benefit of the host. For example, the less-virulent parasite may protect the host against the more-virulent competitor. We examine this conflict using the waterflea Daphnia magna and two of its sympatric parasites: the blood-infecting bacterium Pasteuria ramosa that transmits horizontally and the intracellular microsporidium Octosporea bayeri that can concurrently transmit horizontally and vertically after infecting ovaries and fat tissues of the host. We quantified host and parasite fitness after exposing Daphnia to one or both parasites, both simultaneously and sequentially. Under conditions of strict horizontal transmission, Pasteuria competitively excluded Octosporea in both simultaneous and sequential double infections, regardless of the order of exposure. Host lifespan, host reproduction and parasite spore production in double infections resembled those of single infection by Pasteuria. When hosts became first vertically (transovarilly) infected with O. bayeri, Octosporea was able to withstand competition with P. ramosa to some degree, but both parasites produced less transmission stages than they did in single infections. At the same time, the host suffered from reduced fecundity and longevity. Our study demonstrates that even when competing parasite species utilize different host tissues to proliferate, double infections lead to the expression of higher virulence and ultimately may select for higher virulence. Furthermore, we found no evidence that the less-virulent and vertically transmitting O. bayeri protects its host against the highly virulent P. ramosa. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  18. Ecosystem consequences of fish parasites

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2008-01-01

    In most aquatic ecosystems, fishes are hosts to parasites and, sometimes, these parasites can affect fish biology. Some of the most dramatic cases occur when fishes are intermediate hosts for larval parasites. For example, fishes in southern California estuaries are host to many parasites. The most common of these parasites, Euhaplorchis californiensis, infects the brain of the killifish Fundulus parvipinnis and alters its behaviour, making the fish 10–30 times more susceptible to predation by the birds that serve as its definitive host. Parasites like E. californiensis are embedded in food webs because they require trophic transmission. In the Carpinteria Salt Marsh estuarine food web, parasites dominate the links and comprise substantial amount of biomass. Adding parasites to food webs alters important network statistics such as connectance and nestedness. Furthermore, some free-living stages of parasites are food items for free-living species. For instance, fishes feed on trematode cercariae. Being embedded in food webs makes parasites sensitive to changes in the environment. In particular, fishing and environmental disturbance, by reducing fish populations, may reduce parasite populations. Indirect evidence suggests a decrease in parasites in commercially fished species over the past three decades. In addition, environmental degradation can affect fish parasites. For these reasons, parasites in fishes may serve as indicators of environmental impacts.

  19. cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission

    PubMed Central

    Thompson, Eloise; Breil, Florence; Lorthiois, Audrey; Dupuy, Florian; Cummings, Ross; Duffier, Yoann; Corbett, Yolanda; Mercereau-Puijalon, Odile; Vernick, Kenneth; Taramelli, Donatella; Baker, David A.; Langsley, Gordon; Lavazec, Catherine

    2015-01-01

    Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites. PMID:25951195

  20. A fine-tuned vector-parasite dialogue in tsetse's cardia determines peritrophic matrix integrity and trypanosome transmission success

    PubMed Central

    Aksoy, Emre; Weiss, Brian L.; Zhao, Xin; Awuoche, Erick O.; Wu, Yineng; Aksoy, Serap

    2018-01-01

    Arthropod vectors have multiple physical and immunological barriers that impede the development and transmission of parasites to new vertebrate hosts. These barriers include the peritrophic matrix (PM), a chitinous barrier that separates the blood bolus from the midgut epithelia and modulates vector-pathogens interactions. In tsetse flies, a sleeve-like PM is continuously produced by the cardia organ located at the fore- and midgut junction. African trypanosomes, Trypanosoma brucei, must bypass the PM twice; first to colonize the midgut and secondly to reach the salivary glands (SG), to complete their transmission cycle in tsetse. However, not all flies with midgut infections develop mammalian transmissible SG infections—the reasons for which are unclear. Here, we used transcriptomics, microscopy and functional genomics analyses to understand the factors that regulate parasite migration from midgut to SG. In flies with midgut infections only, parasites fail to cross the PM as they are eliminated from the cardia by reactive oxygen intermediates (ROIs)—albeit at the expense of collateral cytotoxic damage to the cardia. In flies with midgut and SG infections, expression of genes encoding components of the PM is reduced in the cardia, and structural integrity of the PM barrier is compromised. Under these circumstances trypanosomes traverse through the newly secreted and compromised PM. The process of PM attrition that enables the parasites to re-enter into the midgut lumen is apparently mediated by components of the parasites residing in the cardia. Thus, a fine-tuned dialogue between tsetse and trypanosomes at the cardia determines the outcome of PM integrity and trypanosome transmission success. PMID:29614112

  1. A hitchhiker's guide to parasite transmission: The phoretic behaviour of feather lice.

    PubMed

    Harbison, Christopher W; Jacobsen, Matthew V; Clayton, Dale H

    2009-04-01

    Transmission to new hosts is a fundamental challenge for parasites. Some species meet this challenge by hitchhiking on other, more mobile parasite species, a behaviour known as phoresis. For example, feather-feeding lice that parasitise birds disperse to new hosts by hitchhiking on parasitic louse flies, which fly between individual birds. Oddly, however, some species of feather lice do not engage in phoresis. For example, although Rock Pigeon (Columba livia) "wing" lice (Columbicola columbae) frequently move to new hosts phoretically on louse flies (Pseudolynchia canariensis), Rock Pigeon "body" lice (Campanulotes compar) do not. This difference in phoretic behaviour is puzzling because the two species of lice have very similar life cycles and are equally dependent on transmission to new hosts. We conducted a series of experiments designed to compare the orientation, locomotion and attachment capabilities of these two species of lice, in relation to louse flies. We show that wing lice use fly activity as a cue in orientation and locomotion, whereas body lice do not. We also show that wing lice are more capable of remaining attached to active flies that are walking, grooming or flying. The superior phoretic ability of wing lice may be related to morphological adaptations for life on wing feathers, compared to body feathers.

  2. Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission

    PubMed Central

    Glennon, Elizabeth K. K.; Adams, L. Garry; Hicks, Derrick R.; Dehesh, Katayoon; Luckhart, Shirley

    2016-01-01

    Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation. PMID:27001761

  3. The evolution of parasitic and mutualistic plant–virus symbioses through transmission-virulence trade-offs

    Treesearch

    Frédéric M. Hamelin; Frank M. Hilker; T. Anthony Sun; Michael J. Jeger; M. Reza Hajimorad; Linda J.S. Allen; Holly R. Prendeville

    2017-01-01

    Virus–plant interactions range from parasitism to mutualism. Viruses have been shown to increase fecundity of infected plants in comparison with uninfected plants under certain environmental conditions. Increased fecundity of infected plants may benefit both the plant and the virus as seed transmission is one of the main virus transmission pathways, in addition to...

  4. Parasites and poverty: the case of schistosomiasis.

    PubMed

    King, Charles H

    2010-02-01

    Simultaneous and sequential transmission of multiple parasites, and their resultant overlapping chronic infections, are facts of life in many underdeveloped rural areas. These represent significant but often poorly measured health and economic burdens for affected populations. For example, the chronic inflammatory process associated with long-term schistosomiasis contributes to anaemia and undernutrition, which, in turn, can lead to growth stunting, poor school performance, poor work productivity, and continued poverty. To date, most national and international programs aimed at parasite control have not considered the varied economic and ecological factors underlying multi-parasite transmission, but some are beginning to provide a coordinated approach to control. In addition, interest is emerging in new studies for the re-evaluation and recalibration of the health burden of helminthic parasite infection. Their results should highlight the strong potential of integrated parasite control in efforts for poverty reduction. Copyright 2009 Elsevier B.V. All rights reserved.

  5. PARASITES AND POVERTY: THE CASE OF SCHISTOSOMIASIS

    PubMed Central

    King, Charles H.

    2009-01-01

    Simultaneous and sequential transmission of multiple parasites, and their resultant overlapping chronic infections, are facts of life in many underdeveloped rural areas. These represent significant but often poorly-measured health and economic burdens for affected populations. For example, the chronic inflammatory process associated with long-term schistosomiasis contributes to anaemia and undernutrition, which, in turn, can lead to growth stunting, poor school performance, poor work productivity, and continued poverty. To date, most national and international programs aimed at parasite control have not considered the varied economic and ecological factors underlying multi-parasite transmission, but some are beginning to provide a coordinated approach to control. In addition, interest is emerging in new studies for the re-evaluation and recalibration of the health burden of helminthic parasite infection. Their results should highlight the strong potential of integrated parasite control in efforts for poverty reduction. PMID:19962954

  6. The influence of poverty and culture on the transmission of parasitic infections in rural nicaraguan villages.

    PubMed

    Karan, Abraar; Chapman, Gretchen B; Galvani, Alison

    2012-01-01

    Intestinal parasitic infections cause one of the largest global burdens of disease. To identify possible areas for interventions, a structured questionnaire addressing knowledge, attitude, and practice regarding parasitic infections as well as the less studied role of culture and resource availability was presented to mothers of school-age children in rural communities around San Juan del Sur, Nicaragua. We determined that access to resources influenced knowledge, attitude, and behaviors that may be relevant to transmission of parasitic infections. For example, having access to a clinic and prior knowledge about parasites was positively correlated with the practice of having fencing for animals, having fewer barefoot children, and treating children for parasites. We also found that cultural beliefs may contribute to parasitic transmission. Manifestations of machismo culture and faith in traditional medicines conflicted with healthy practices. We identified significant cultural myths that prevented healthy behaviors, including the beliefs that cutting a child's nails can cause tetanus and that showering after a hot day caused sickness. The use of traditional medicine was positively correlated with the belief in these cultural myths. Our study demonstrates that the traditional knowledge, attitude, and practice model could benefit from including components that examine resource availability and culture.

  7. Evolution of trophic transmission in parasites: Why add intermediate hosts?

    USGS Publications Warehouse

    Choisy, Marc; Brown, Sam P.; Lafferty, Kevin D.; Thomas, Frédéric

    2003-01-01

    Although multihost complex life cycles (CLCs) are common in several distantly related groups of parasites, their evolution remains poorly understood. In this article, we argue that under particular circumstances, adding a second host to a single-host life cycle is likely to enhance transmission (i.e., reaching the target host). For instance, in several situations, the propagules of a parasite exploiting a predator species will achieve a higher host-finding success by encysting in a prey of the target predator than by other dispersal modes. In such a case, selection should favor the transition from a singleto a two-host life cycle that includes the prey species as an intermediate host. We use an optimality model to explore this idea, and we discuss it in relation to dispersal strategies known among free-living species, especially animal dispersal. The model found that selection favored a complex life cycle only if intermediate hosts were more abundant than definitive hosts. The selective value of a complex life cycle increased with predation rates by definitive hosts on intermediate hosts. In exploring trade-offs between transmission strategies, we found that more costly trade-offs made it more difficult to evolve a CLC while less costly trade-offs between traits could favor a mixed strategy.

  8. Genetic variation affecting host-parasite interactions: major-effect quantitative trait loci affect the transmission of sigma virus in Drosophila melanogaster.

    PubMed

    Bangham, Jenny; Knott, Sara A; Kim, Kang-Wook; Young, Robert S; Jiggins, Francis M

    2008-09-01

    In natural populations, genetic variation affects resistance to disease. Whether that genetic variation comprises lots of small-effect polymorphisms or a small number of large-effect polymorphisms has implications for adaptation, selection and how genetic variation is maintained in populations. Furthermore, how much genetic variation there is, and the genes that underlie this variation, affects models of co-evolution between parasites and their hosts. We are studying the genetic variation that affects the resistance of Drosophila melanogaster to its natural pathogen--the vertically transmitted sigma virus. We have carried out three separate quantitative trait locus mapping analyses to map gene variants on the second chromosome that cause variation in the rate at which males transmit the infection to their offspring. All three crosses identified a locus in a similar chromosomal location that causes a large drop in the rate at which the virus is transmitted. We also found evidence for an additional smaller-effect quantitative trait locus elsewhere on the chromosome. Our data, together with previous experiments on the sigma virus and parasitoid wasps, indicate that the resistance of D. melanogaster to co-evolved pathogens is controlled by a limited number of major-effect polymorphisms.

  9. Experimental parasite community ecology: intraspecific variation in a large tapeworm affects community assembly.

    PubMed

    Benesh, Daniel P; Kalbe, Martin

    2016-07-01

    Non-random species associations occur in naturally sampled parasite communities. The processes resulting in predictable community structure (e.g. particular host behaviours, cross-immunity, interspecific competition) could be affected by traits that vary within a parasite species, like growth or antigenicity. We experimentally infected three-spined sticklebacks with a large tapeworm (Schistocephalus solidus) that impacts the energy needs, foraging behaviour and immune reactions of its host. The tapeworms came from two populations, characterized by high or low growth in sticklebacks. Our goal was to evaluate how this parasite, and variation in its growth, affects the acquisition of other parasites. Fish infected with S. solidus were placed into cages in a lake to expose them to the natural parasite community. We also performed a laboratory experiment in which infected fish were exposed to a fixed dose of a common trematode parasite. In the field experiment, infection with S. solidus affected the abundance of four parasite species, relative to controls. For two of the four species, changes occurred only in fish harbouring the high-growth S. solidus; one species increased in abundance and the other decreased. These changes did not appear to be directly linked to S. solidus growth though. The parasite exhibiting elevated abundance was the same trematode used in the laboratory infection. In that experiment, we found a similar infection pattern, suggesting that S. solidus affects the physiological susceptibility of fish to this trematode. Associations between S. solidus and other parasites occur and vary in direction. However, some of these associations were contingent on the S. solidus population, suggesting that intraspecific variability can affect the assembly of parasite communities. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  10. Rethinking the extrinsic incubation period of malaria parasites.

    PubMed

    Ohm, Johanna R; Baldini, Francesco; Barreaux, Priscille; Lefevre, Thierry; Lynch, Penelope A; Suh, Eunho; Whitehead, Shelley A; Thomas, Matthew B

    2018-03-12

    The time it takes for malaria parasites to develop within a mosquito, and become transmissible, is known as the extrinsic incubation period, or EIP. EIP is a key parameter influencing transmission intensity as it combines with mosquito mortality rate and competence to determine the number of mosquitoes that ultimately become infectious. In spite of its epidemiological significance, data on EIP are scant. Current approaches to estimate EIP are largely based on temperature-dependent models developed from data collected on parasite development within a single mosquito species in the 1930s. These models assume that the only factor affecting EIP is mean environmental temperature. Here, we review evidence to suggest that in addition to mean temperature, EIP is likely influenced by genetic diversity of the vector, diversity of the parasite, and variation in a range of biotic and abiotic factors that affect mosquito condition. We further demonstrate that the classic approach of measuring EIP as the time at which mosquitoes first become infectious likely misrepresents EIP for a mosquito population. We argue for a better understanding of EIP to improve models of transmission, refine predictions of the possible impacts of climate change, and determine the potential evolutionary responses of malaria parasites to current and future mosquito control tools.

  11. Manifold habitat effects on the prevalence and diversity of avian blood parasites

    PubMed Central

    Sehgal, Ravinder N.M.

    2015-01-01

    Habitats are rapidly changing across the planet and the consequences will have major and long-lasting effects on wildlife and their parasites. Birds harbor many types of blood parasites, but because of their relatively high prevalence and ease of diagnosis, it is the haemosporidians – Plasmodium, Haemoproteus, and Leucocytozoon – that are the best studied in terms of ecology and evolution. For parasite transmission to occur, environmental conditions must be permissive, and given the many constraints on the competency of parasites, vectors and hosts, it is rather remarkable that these parasites are so prevalent and successful. Over the last decade, a rapidly growing body of literature has begun to clarify how environmental factors affect birds and the insects that vector their hematozoan parasites. Moreover, several studies have modeled how anthropogenic effects such as global climate change, deforestation and urbanization will impact the dynamics of parasite transmission. This review highlights recent research that impacts our understanding of how habitat and environmental changes can affect the distribution, diversity, prevalence and parasitemia of these avian blood parasites. Given the importance of environmental factors on transmission, it remains essential that researchers studying avian hematozoa document abiotic factors such as temperature, moisture and landscape elements. Ultimately, this continued research has the potential to inform conservation policies and help avert the loss of bird species and threatened habitats. PMID:26835250

  12. Rationale for the Coadministration of Albendazole and Ivermectin to Humans for Malaria Parasite Transmission Control

    PubMed Central

    Kobylinski, Kevin C.; Alout, Haoues; Foy, Brian D.; Clements, Archie; Adisakwattana, Poom; Swierczewski, Brett E.; Richardson, Jason H.

    2014-01-01

    Recently there have been calls for the eradication of malaria and the elimination of soil-transmitted helminths (STHs). Malaria and STHs overlap in distribution, and STH infections are associated with increased risk for malaria. Indeed, there is evidence that suggests that STH infection may facilitate malaria transmission. Malaria and STH coinfection may exacerbate anemia, especially in pregnant women, leading to worsened child development and more adverse pregnancy outcomes than these diseases would cause on their own. Ivermectin mass drug administration (MDA) to humans for malaria parasite transmission suppression is being investigated as a potential malaria elimination tool. Adding albendazole to ivermectin MDAs would maximize effects against STHs. A proactive, integrated control platform that targets malaria and STHs would be extremely cost-effective and simultaneously reduce human suffering caused by multiple diseases. This paper outlines the benefits of adding albendazole to ivermectin MDAs for malaria parasite transmission suppression. PMID:25070998

  13. New discoveries in the transmission biology of sleeping sickness parasites: applying the basics.

    PubMed

    MacGregor, Paula; Matthews, Keith R

    2010-09-01

    The sleeping sickness parasite, Trypanosoma brucei, must differentiate in response to the changing environments that it encounters during its complex life cycle. One developmental form, the bloodstream stumpy stage, plays an important role in infection dynamics and transmission of the parasite. Recent advances have shed light on the molecular mechanisms by which these stumpy forms differentiate as they are transmitted from the mammalian host to the insect vector of sleeping sickness, tsetse flies. These molecular advances now provide improved experimental tools for the study of stumpy formation and function within the mammalian bloodstream. They also offer new routes to therapy via high-throughput screens for agents that accelerate parasite development. Here, we shall discuss the recent advances that have been made and the prospects for future research now available.

  14. Endangered light-footed clapper rail affects parasite community structure in coastal wetlands

    USGS Publications Warehouse

    Whitney, Kathleen L.; Hechinger, Ryan F.; Kuris, Armand M.; Lafferty, Kevin D.

    2007-01-01

    An extinction necessarily affects community members that have obligate relationships with the extinct species. Indirect or cascading effects can lead to even broader changes at the community or ecosystem level. However, it is not clear whether generalist parasites should be affected by the extinction of one of their hosts. We tested the prediction that loss of a host species could affect the structure of a generalist parasite community by investigating the role of endangered Light-footed Clapper Rails (Rallus longirostris levipes) in structuring trematode communities in four tidal wetlands in southern California, USA (Carpinteria Salt Marsh, Mugu Lagoon) and Mexico (Estero de Punta Banda, Bahia Falsa–San Quintín). We used larval trematode parasites in first intermediate host snails (Cerithidea californica) as windows into the adult trematodes that parasitize Clapper Rails. Within and among wetlands, we found positive associations between Clapper Rails and four trematode species, particularly in the vegetated marsh habitat where Clapper Rails typically occur. This suggests that further loss of Clapper Rails is likely to affect the abundance of several competitively dominant trematode species in wetlands with California horn snails, with possible indirect effects on the trematode community and changes in the impacts of these parasites on fishes and invertebrates.

  15. An optimised multi-host trematode life cycle: fishery discards enhance trophic parasite transmission to scavenging birds.

    PubMed

    Born-Torrijos, Ana; Poulin, Robert; Pérez-Del-Olmo, Ana; Culurgioni, Jacopo; Raga, Juan Antonio; Holzer, Astrid Sibylle

    2016-10-01

    Overlapping distributions of hosts and parasites are critical for successful completion of multi-host parasite life cycles and even small environmental changes can impact on the parasite's presence in a host or habitat. The generalist Cardiocephaloides longicollis was used as a model for multi-host trematode life cycles in marine habitats. This parasite was studied to quantify parasite dispersion and transmission dynamics, effects of biological changes and anthropogenic impacts on life cycle completion. We compiled the largest host dataset to date, by analysing 3351 molluscs (24 species), 2108 fish (25 species) and 154 birds (17 species) and analysed the resultant data based on a number of statistical models. We uncovered extremely low host specificity at the second intermediate host level and a preference of the free-swimming larvae for predominantly demersal but also benthic fish. The accumulation of encysted larvae in the brain with increasing fish size demonstrates that parasite numbers level off in fish larger than 140mm, consistent with parasite-induced mortality at these levels. The highest infection rates were detected in host species and sizes representing the largest fraction of Mediterranean fishery discards (up to 67% of the total catch), which are frequently consumed by seabirds. Significantly higher parasite densities were found in areas with extensive fishing activity than in those with medium and low activity, and in fish from shallow lagoons than in fish from other coastal areas. For the first time, C. longicollis was also detected in farmed fish in netpens. Fishing generally drives declines in parasite abundance, however, our study suggests an enhanced transmission of generalist parasites such as C. longicollis, an effect that is further amplified by the parasite's efficient host-finding mechanisms and its alteration of fish host behaviour by larvae encysted in the brain. The anthropogenic impact on the distribution of trophically

  16. Transmission of molecularly undetectable circulating parasite clones leads to high infection complexity in mosquitoes post feeding.

    PubMed

    Grignard, Lynn; Gonçalves, Bronner P; Early, Angela M; Daniels, Rachel F; Tiono, Alfred B; Guelbéogo, Wamdaogo M; Ouédraogo, Alphonse; van Veen, Elke M; Lanke, Kjerstin; Diarra, Amidou; Nebie, Issa; Sirima, Sodiomon B; Targett, Geoff A; Volkman, Sarah K; Neafsey, Daniel E; Wirth, Dyann F; Bousema, Teun; Drakeley, Chris

    2018-05-05

    Plasmodium falciparum malaria infections often comprise multiple distinct parasite clones. Few datasets have directly assessed infection complexity in humans and mosquitoes they infect. Examining parasites using molecular tools may provide insights into the selective transmissibility of isolates. Using capillary electrophoresis genotyping and next generation amplicon sequencing, we analysed complexity of parasite infections in human blood and in the midguts of mosquitoes that became infected in membrane feeding experiments using the same blood material in two West African settings. Median numbers of clones in humans and mosquitoes were higher in samples from Burkina Faso (4.5, interquartile range 2-8 for humans; and 2, interquartile range 1-3 for mosquitoes) than in The Gambia (2, interquartile range 1-3 and 1, interquartile range 1-3, for humans and mosquitoes, respectively). Whilst the median number of clones was commonly higher in human blood samples, not all transmitted alleles were detectable in the human peripheral blood. In both study sample sets, additional parasite alleles were identified in mosquitoes compared with the matched human samples (10-88.9% of all clones/feeding assay, n = 73 feeding assays). The results are likely due to preferential amplification of the most abundant clones in peripheral blood but confirm the presence of low density clones that produce transmissible sexual stage parasites. Copyright © 2018. Published by Elsevier Ltd.

  17. Does interspecies hybridization affect the host specificity of parasites in cyprinid fish?

    PubMed

    Simková, Andrea; Dávidová, Martina; Papoušek, Ivo; Vetešník, Lukáš

    2013-04-12

    Host specificity varies among parasite species. Some parasites are strictly host-specific, others show a specificity for congeneric or non-congeneric phylogenetically related host species, whilst some others are non-specific (generalists). Two cyprinids, Cyprinus carpio and Carassius gibelio, plus their respective hybrids were investigated for metazoan parasites. The aim of this study was to analyze whether interspecies hybridization affects host specificity. The different degrees of host specificity within a phylogenetic framework were taken into consideration (i.e. strict specialist, intermediate specialist, and intermediate generalist). Fish were collected during harvesting the pond and identified using meristic traits and molecular markers. Metazoan parasite species were collected. Host specificity of parasites was determined using the following classification: strict specialist, intermediate specialist, intermediate generalist and generalist. Parasite species richness was compared between parental species and their hybrids. The effect of host species on abundance of parasites differing in host specificity was tested. Hybrids harbored more different parasite species but their total parasite abundance was lower in comparison with parental species. Interspecies hybridization affected the host specificity of ecto- and endoparasites. Parasite species exhibiting different degrees of host specificity for C. carpio and C. gibelio were also present in hybrids. The abundance of strict specialists of C. carpio was significantly higher in parental species than in hybrids. Intermediate generalists parasitizing C. carpio and C. gibelio as two phylogenetically closely related host species preferentially infected C. gibelio when compared to C. carpio, based on prevalence and maximum intensity of infection. Hybrids were less infected by intermediate generalists when compared to C. gibelio. This finding does not support strict co-adaptation between host and parasite genotypes

  18. On the study of the transmission networks of blood parasites from SW Spain: diversity of avian haemosporidians in the biting midge Culicoides circumscriptus and wild birds.

    PubMed

    Ferraguti, Martina; Martínez-de la Puente, Josué; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2013-07-15

    Blood-sucking flying insects play a key role in the transmission of pathogens of vector-borne diseases. However, at least for the case of avian malaria parasites, the vast majority of studies focus on the interaction between parasites and vertebrate hosts, but there is a lack of information regarding the interaction between the parasites and the insect vectors. Here, we identified the presence of malaria and malaria-like parasite lineages harbored by the potential vector Culicoides circumscriptus (Kieffer). Also, we identified some nodes of the transmission network connecting parasite lineages, potential insect vectors and avian hosts by comparing Haemoproteus and Plasmodium lineages isolated from insects with those infecting wild birds in this and previous studies. Using a molecular approach, we analysed the presence of blood parasites in a total of 97 biting midges trapped in the Doñana National Park (SW Spain) and surrounding areas. Also, 123 blood samples from 11 bird species were analyzed for the presence of blood parasite infections. Blood parasites Haemoproteus and Plasmodium were identified by amplification of a 478 bp fragment of the mitochondrial cytochrome b gen. Thirteen biting midges harboured blood parasites including six Haemoproteus and two Plasmodium lineages, supporting the potential role of these insects on parasite transmission. Moreover, ten (8.1%) birds carried blood parasites. Seven Plasmodium and one Haemoproteus lineages were isolated from birds. Overall, six new Haemoproteus lineages were described in this study. Also, we identified the transmission networks of some blood parasites. Two Haemoproteus lineages, hCIRCUM03 and GAGLA03, were identical to those isolated from Corvus monedula in southern Spain and Garrulus glandarius in Bulgaria, respectively. Furthermore, the new Haemoproteus lineage hCIRCUM05 showed a 99% similarity with a lineage found infecting captive penguins in Japan. The comparison of the parasite lineages isolated in

  19. Dog-walking behaviours affect gastrointestinal parasitism in park-attending dogs.

    PubMed

    Smith, Anya F; Semeniuk, Christina A D; Kutz, Susan J; Massolo, Alessandro

    2014-09-04

    In urban parks, dogs, wildlife and humans can be sympatric, introducing the potential for inter- and intra-specific transmission of pathogens among hosts. This study was conducted to determine the prevalence of zoonotic and non-zoonotic gastrointestinal parasites in dogs in Calgary city parks, and assess if dog-walking behaviour, park management, history of veterinary care, and dog demographics were associated with parasitism in dogs From June to September 2010, 645 questionnaires were administered to dog owners in nine city parks to determine behavioural and demographic factors, and corresponding feces from 355 dogs were collected. Dog feces were analyzed for helminth and some protozoan species using a modified sugar flotation technique and microscopic examination, a subsample was analyzed for Giardia spp. and Cryptosporidium spp. using a direct immunofluorescence assay. Descriptive and multivariate statistics were conducted to determine associations among behaviours, demographics, and parasite prevalence and infection intensities Parasite prevalence was 50.2%. Giardia spp. (24.7%), Cryptosporidium spp. (14.7%), and Cystoisospora spp. (16.8%) were the most prevalent parasites. Helminth prevalence was low (4.1%). Presence of Giardia spp. was more likely in intact and young dogs; and infection with any parasite and Giardia spp. intensity were both positively associated with dogs visiting multiple parks coupled with a high frequency of park use and off-leash activity, and with being intact and young. Cryptosporidium spp. intensity was associated with being intact and young, and having visited the veterinarian within the previous year Our results indicate a higher overall prevalence of protozoa in dogs than previously found in Calgary. The zoonotic potential of some parasites found in park-attending dogs may be of interest for public health. These results are relevant for informing park managers, the public health sector, and veterinarians.

  20. Predators and patterns of within-host growth can mediate both among-host competition and evolution of transmission potential of parasites.

    PubMed

    Auld, Stuart K J R; Hall, Spencer R; Housley Ochs, Jessica; Sebastian, Mathew; Duffy, Meghan A

    2014-08-01

    Parasite prevalence shows tremendous spatiotemporal variation. Theory indicates that this variation might stem from life-history characteristics of parasites and key ecological factors. Here, we illustrate how the interaction of an important predator and the schedule of transmission potential of two parasites can explain parasite abundance. A field survey showed that a noncastrating fungus (Metschnikowia bicuspidata) commonly infected a dominant zooplankton host (Daphnia dentifera), while a castrating bacterial parasite (Pasteuria ramosa) was rare. This result seemed surprising given that the bacterium produces many more infectious propagules (spores) than the fungus upon host death. The fungus's dominance can be explained by the schedule of within-host growth of parasites (i.e., how transmission potential changes over the course of infection) and the release of spores from "sloppy" predators (Chaoborus spp., who consume Daphnia prey whole and then later regurgitate the carapace and parasite spores). In essence, sloppy predators create a niche that the faster-schedule fungus currently occupies. However, a selection experiment showed that the slower-schedule bacterium can evolve into this faster-schedule, predator-mediated niche (but pays a cost in maximal spore yield to do so). Hence, our study shows how parasite life history can interact with predation to strongly influence the ecology, epidemiology, and evolution of infectious disease.

  1. Migratory behavior of birds affects their coevolutionary relationship with blood parasites.

    PubMed

    Jenkins, Tania; Thomas, Gavin H; Hellgren, Olof; Owens, Ian P F

    2012-03-01

    Host traits, such as migratory behavior, could facilitate the dispersal of disease-causing parasites, potentially leading to the transfer of infections both across geographic areas and between host species. There is, however, little quantitative information on whether variation in such host attributes does indeed affect the evolutionary outcome of host-parasite associations. Here, we employ Leucocytozoon blood parasites of birds, a group of parasites closely related to avian malaria, to study host-parasite coevolution in relation to host behavior using a phylogenetic comparative approach. We reconstruct the molecular phylogenies of both the hosts and parasites and use cophylogenetic tools to assess whether each host-parasite association contributes significantly to the overall congruence between the two phylogenies. We find evidence for a significant fit between host and parasite phylogenies in this system, but show that this is due only to associations between nonmigrant parasites and their hosts. We also show that migrant bird species harbor a greater genetic diversity of parasites compared with nonmigrant species. Taken together, these results suggest that the migratory habits of birds could influence their coevolutionary relationship with their parasites, and that consideration of host traits is important in predicting the outcome of coevolutionary interactions. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  2. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes

    PubMed Central

    Vos, Martijn W.; Stone, Will J. R.; Koolen, Karin M.; van Gemert, Geert-Jan; van Schaijk, Ben; Leroy, Didier; Sauerwein, Robert W.; Bousema, Teun; Dechering, Koen J.

    2015-01-01

    Current first-line treatments for uncomplicated falciparum malaria rapidly clear the asexual stages of the parasite, but do not fully prevent parasite transmission by mosquitoes. The standard membrane feeding assay (SMFA) is the biological gold standard assessment of transmission reducing activity (TRA), but its throughput is limited by the need to determine mosquito infection status by dissection and microscopy. Here we present a novel dissection-free luminescence based SMFA format using a transgenic Plasmodium falciparum reporter parasite without resistance to known antimalarials and therefore unrestricted in its utility in compound screening. Analyses of sixty-five compounds from the Medicines for Malaria Venture validation and malaria boxes identified 37 compounds with high levels of TRA (>80%); different assay modes allowed discrimination between gametocytocidal and downstream modes of action. Comparison of SMFA data to published assay formats for predicting parasite infectivity indicated that individual in vitro screens show substantial numbers of false negatives. These results highlight the importance of the SMFA in the screening pipeline for transmission reducing compounds and present a rapid and objective method. In addition we present sixteen diverse chemical scaffolds from the malaria box that may serve as a starting point for further discovery and development of malaria transmission blocking drugs. PMID:26687564

  3. Optimal temperature for malaria transmission is dramaticallylower than previously predicted

    USGS Publications Warehouse

    Mordecai, Eerin A.; Paaijmans, Krijin P.; Johnson, Leah R.; Balzer, Christian; Ben-Horin, Tal; de Moor, Emily; McNally, Amy; Pawar, Samraat; Ryan, Sadie J.; Smith, Thomas C.; Lafferty, Kevin D.

    2013-01-01

    The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.

  4. Micro-epidemiological structuring of Plasmodium falciparum parasite populations in regions with varying transmission intensities in Africa.

    PubMed Central

    Omedo, Irene; Mogeni, Polycarp; Bousema, Teun; Rockett, Kirk; Amambua-Ngwa, Alfred; Oyier, Isabella; C. Stevenson, Jennifer; Y. Baidjoe, Amrish; de Villiers, Etienne P.; Fegan, Greg; Ross, Amanda; Hubbart, Christina; Jeffreys, Anne; N. Williams, Thomas; Kwiatkowski, Dominic; Bejon, Philip

    2017-01-01

    Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites.  Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametize such models. Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 P. falciparum isolates from two Kenyan sites (Kilifi county and Rachuonyo South district) and one Gambian site (Kombo coastal districts) to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and distance in space and time for parasite pairs. Results: Using 107, 177 and 82 SNPs that were successfully genotyped in 133, 1602, and 1034 parasite isolates from The Gambia, Kilifi and Rachuonyo South district, respectively, we show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes.  Genetic relatedness of sample pairs is predicted by relatedness in space and time. Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population. PMID:28612053

  5. Pork as a source of transmission of Toxoplasma gondii to humans: a parasite burden study in pig tissues after infection with different strains of Toxoplasma gondii as a function of time and different parasite stages.

    PubMed

    Gisbert Algaba, Ignacio; Verhaegen, Bavo; Jennes, Malgorzata; Rahman, Mizanur; Coucke, Wim; Cox, Eric; Dorny, Pierre; Dierick, Katelijne; De Craeye, Stéphane

    2018-06-01

    Toxoplasma gondii is an ubiquitous apicomplexan parasite which can infect any warm-blooded animal including humans. Humans and carnivores/omnivores can also become infected by consumption of raw or undercooked infected meat containing muscle cysts. This route of transmission is considered to account for at least 30% of human toxoplasmosis cases. To better assess the role of pork as a source of infection for humans, the parasite burden resulting from experimental infection with different parasite stages and different strains of T. gondii during the acute and chronic phases was studied. The parasite burden in different tissues was measured with a ISO 17025 validated Magnetic Capture-quantitative PCR. A high burden of infection was found in heart and lungs during the acute phase of infection and heart and brain were identified as the most parasitised tissues during the chronic phase of infection, independent of the parasite stage and the strain used. Remarkably, a higher parasite burden was measured in different tissues following infection with oocysts of a type II strain compared with a tissue cyst infection with three strains of either type II or a type I/II. However, these results could have been affected by the use of different strains and euthanasia time points. The parasite burden resulting from a tissue cyst infection was not significantly different between the two strains. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  6. Reciprocal Trophic Interactions and Transmission of Blood Parasites between Mosquitoes and Frogs

    PubMed Central

    Ferguson, Laura V.; Smith, Todd G.

    2012-01-01

    The relationship between mosquitoes and their amphibian hosts is a unique, reciprocal trophic interaction. Instead of a one-way, predator-prey relationship, there is a cyclical dance of avoidance and attraction. This has prompted spatial and temporal synchrony between organisms, reflected in emergence time of mosquitoes in the spring and choice of habitat for oviposition. Frog-feeding mosquitoes also possess different sensory apparatuses than do their mammal-feeding counterparts. The reciprocal nature of this relationship is exploited by various blood parasites that use mechanical, salivary or trophic transmission to pass from mosquitoes to frogs. It is important to investigate the involvement of mosquitoes, frogs and parasites in this interaction in order to understand the consequences of anthropogenic actions, such as implementing biocontrol efforts against mosquitoes, and to determine potential causes of the global decline of amphibian species. PMID:26466534

  7. Combining epidemiology with basic biology of sand flies, parasites, and hosts to inform leishmaniasis transmission dynamics and control.

    PubMed

    Courtenay, Orin; Peters, Nathan C; Rogers, Matthew E; Bern, Caryn

    2017-10-01

    Quantitation of the nonlinear heterogeneities in Leishmania parasites, sand fly vectors, and mammalian host relationships provides insights to better understand leishmanial transmission epidemiology towards improving its control. The parasite manipulates the sand fly via production of promastigote secretory gel (PSG), leading to the "blocked sand fly" phenotype, persistent feeding attempts, and feeding on multiple hosts. PSG is injected into the mammalian host with the parasite and promotes the establishment of infection. Animal models demonstrate that sand flies with the highest parasite loads and percent metacyclic promastigotes transmit more parasites with greater frequency, resulting in higher load infections that are more likely to be both symptomatic and efficient reservoirs. The existence of mammalian and sand fly "super-spreaders" provides a biological basis for the spatial and temporal clustering of clinical leishmanial disease. Sand fly blood-feeding behavior will determine the efficacies of indoor residual spraying, topical insecticides, and bed nets. Interventions need to have sufficient coverage to include transmission hot spots, especially in the absence of field tools to assess infectiousness. Interventions that reduce sand fly densities in the absence of elimination could have negative consequences, for example, by interfering with partial immunity conferred by exposure to sand fly saliva. A deeper understanding of both sand fly and host biology and behavior is essential to ensuring effectiveness of vector interventions.

  8. Optimal temperature for malaria transmission is dramatically lower than previously predicted

    USGS Publications Warehouse

    Mordecai, Erin A.; Paaijmans, Krijn P.; Johnson, Leah R.; Balzer, Christian; Ben-Horin, Tal; de Moor, Emily; McNally, Amy; Pawar, Samraat; Ryan, Sadie J.; Smith, Thomas C.; Lafferty, Kevin D.

    2013-01-01

    The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.

  9. Leishmania HASP and SHERP Genes Are Required for In Vivo Differentiation, Parasite Transmission and Virulence Attenuation in the Host

    PubMed Central

    Doehl, Johannes S. P.; Sádlová, Jovana; Aslan, Hamide; Pružinová, Kateřina; Votýpka, Jan; Kamhawi, Shaden; Volf, Petr

    2017-01-01

    Differentiation of extracellular Leishmania promastigotes within their sand fly vector, termed metacyclogenesis, is considered to be essential for parasites to regain mammalian host infectivity. Metacyclogenesis is accompanied by changes in the local parasite environment, including secretion of complex glycoconjugates within the promastigote secretory gel and colonization and degradation of the sand fly stomodeal valve. Deletion of the stage-regulated HASP and SHERP genes on chromosome 23 of Leishmania major is known to stall metacyclogenesis in the sand fly but not in in vitro culture. Here, parasite mutants deficient in specific genes within the HASP/SHERP chromosomal region have been used to investigate their role in metacyclogenesis, parasite transmission and establishment of infection. Metacyclogenesis was stalled in HASP/SHERP mutants in vivo and, although still capable of osmotaxis, these mutants failed to secrete promastigote secretory gel, correlating with a lack of parasite accumulation in the thoracic midgut and failure to colonise the stomodeal valve. These defects prevented parasite transmission to a new mammalian host. Sand fly midgut homogenates modulated parasite behaviour in vitro, suggesting a role for molecular interactions between parasite and vector in Leishmania development within the sand fly. For the first time, stage-regulated expression of the small HASPA proteins in Leishmania (Leishmania) has been demonstrated: HASPA2 is expressed only in extracellular promastigotes and HASPA1 only in intracellular amastigotes. Despite its lack of expression in amastigotes, replacement of HASPA2 into the null locus background delays onset of pathology in BALB/c mice. This HASPA2-dependent effect is reversed by HASPA1 gene addition, suggesting that the HASPAs may have a role in host immunomodulation. PMID:28095465

  10. Ecology of the gastrointestinal parasites of Colobus vellerosus at Boabeng-Fiema, Ghana: possible anthropozoonotic transmission.

    PubMed

    Teichroeb, Julie A; Kutz, Susan J; Parkar, Unaiza; Thompson, R C Andrew; Sicotte, Pascale

    2009-11-01

    Parasite richness and prevalence in wild animals can be used as indicators of population and ecosystem health. In this study, the gastrointestinal parasites of ursine colobus monkeys (Colobus vellerosus) at the Boabeng-Fiema Monkey Sanctuary (BFMS), Ghana, were investigated. BFMS is a sacred grove where monkeys and humans have long lived in relatively peaceful proximity. Fecal samples (n = 109) were collected opportunistically from >27 adult and subadult males in six bisexual groups and one all-male band from July 2004 to August 2005. Using fecal floatation, we detected three protozoans (two Entamoeba sp., Isospora sp.), five nematodes (Ascaris sp., Enterobius sp., Trichuris sp., two strongyle sp.), and one digenean trematode. Using fluorescein labeled antibodies, we detected an additional protozoan (Giardia sp.), and with PCR techniques, we characterized this as G. duodenalis Assemblage B and also identified a protistan (Blastocystis sp., subtype 2). The most prevalent parasite species were G. duodenalis and Trichuris sp. Parasites were more prevalent in the long wet season than the long dry. Parasite prevalence did not vary by age, and average parasite richness did not differ by rank for males whose status remained unchanged. However, males that changed rank tended to show higher average parasite richness when they were lower ranked. Individuals that spent more time near human settlements had a higher prevalence of Isospora sp. that morphologically resembled the human species I. belli. The presence of this parasite and G. duodenalis Assemblage B indicates possible anthropozoonotic and/or zoonotic transmission between humans and colobus monkeys at this site.

  11. Parasite and nutrient enrichment effects on Daphnia interspecific competition.

    PubMed

    Decaestecker, Ellen; Verreydt, Dino; De Meester, Luc; Declerck, Steven A J

    2015-05-01

    Increased productivity due to nutrient enrichment is hypothesized to affect density-dependent processes, such as transmission success of horizontally transmitting parasites. Changes in nutrient availability can also modify the stoichiometry and condition of individual hosts, which may affect their susceptibility for parasites as well as the growth conditions for parasites within the host. Consequently, if not balanced by increased host immuno-competence or life history responses, changes in the magnitude of parasite effects with increasing nutrient availability are expected. If these parasite effects are host-species specific, this may lead to shifts in the host community structure. We here used the Daphnia- parasite model system to study the effect of nutrient enrichment on parasite-mediated competition in experimental mesocosms. In the absence of parasites, D. magna was competitively dominant to D. pulex at both low and high nutrient levels. Introduction of parasites resulted in infections of D. magna, but not of D. pulex and, as such, reversed the competitive hierarchy between these two species. Nutrient addition resulted in an increased prevalence and infection intensity of some of the parasites on D. magna. However, there was no evidence that high nutrient levels enhanced negative effects of parasites on the hosts. Costs associated with parasite infections may have been compensated by better growth conditions for D. magna in the presence of high nutrient levels.

  12. Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics

    PubMed Central

    Rimbach, Rebecca; Bisanzio, Donal; Galvis, Nelson; Link, Andrés; Di Fiore, Anthony; Gillespie, Thomas R.

    2015-01-01

    Elevated risk of disease transmission is considered a major cost of sociality, although empirical evidence supporting this idea remains scant. Variation in spatial cohesion and the occurrence of social interactions may have profound implications for patterns of interindividual parasite transmission. We used a social network approach to shed light on the importance of different aspects of group-living (i.e. within-group associations versus physical contact) on patterns of parasitism in a neotropical primate, the brown spider monkey (Ateles hybridus), which exhibits a high degree of fission–fusion subgrouping. We used daily subgroup composition records to create a ‘proximity’ network, and built a separate ‘contact’ network using social interactions involving physical contact. In the proximity network, connectivity between individuals was homogeneous, whereas the contact network highlighted high between-individual variation in the extent to which animals had physical contact with others, which correlated with an individual's age and sex. The gastrointestinal parasite species richness of highly connected individuals was greater than that of less connected individuals in the contact network, but not in the proximity network. Our findings suggest that among brown spider monkeys, physical contact impacts the spread of several common parasites and supports the idea that pathogen transmission is one cost associated with social contact. PMID:25870396

  13. Parasitic helminths of the pig: factors influencing transmission and infection levels.

    PubMed

    Nansen, P; Roepstorff, A

    1999-06-01

    The occurrence of parasitic helminth species as well as infection intensities are markedly influenced by the type of swine production system used. The present review focusses mainly on the situation in temperate climate regions. Generally, over the past decades there has been a decrease in the number of worm species and worm loads in domestic pigs due to a gradual change from traditional to modern, intensive production systems. The reasons for some species being apparently more influenced by management changes than others are differences in the basic biological requirements of the pre-infective developmental stages, together with differences in transmission characteristics and immunogenicity of the different worm species. Control methods relevant for the different production systems are discussed. Outdoor rearing and organic pig production may in the future be confronted with serious problems because of particularly favourable conditions for helminth transmission. In addition, in organic farms preventive usage of anthelmintics is not permitted.

  14. Body size, trophic level, and the use of fish as transmission routes by parasites.

    PubMed

    Poulin, R; Leung, T L F

    2011-07-01

    Within food webs, trophically transmitted helminth parasites use predator-prey links for their own transfer from intermediate prey hosts, in which they occur as larval or juvenile stages, to predatory definitive hosts, in which they reach maturity. In large taxa that can be used as intermediate and/or definitive hosts, such as fish, a host species' position within a trophic network should determine whether its parasite fauna consists mostly of adult or larval helminths, since vulnerability to predation determines an animal's role in predator-prey links. Using a large database on the helminth parasites of 303 fish species, we tested whether the proportion of parasite species in a host that occur as larval or juvenile stages is best explained by their trophic level or by their body size. Independent of fish phylogeny or habitat, only fish body length emerged as a significant predictor of the proportion of parasites in a host that occur as larval stages from our multivariate analyses. On average, the proportion of larval helminth taxa in fish shorter than 20 cm was twice as high as that for fish over 100 cm in length. This is consistent with the prediction that small fishes, being more vulnerable to predation, make better hosts for larval parasites. However, trophic level and body length are strongly correlated among fish species, and they may have separate though confounded effects on the parasite fauna exploiting a given species. Helminths show varying levels of host specificity toward their intermediate host when the latter is the downstream host involved in trophic transmission toward an upstream definitive host. Given this broad physiological compatibility of many helminths with fish hosts, our results indicate that fish body length, as a proxy for vulnerability to predators, is a better predictor of their use by helminth larvae than their trophic level based on diet content.

  15. Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics.

    PubMed

    Rimbach, Rebecca; Bisanzio, Donal; Galvis, Nelson; Link, Andrés; Di Fiore, Anthony; Gillespie, Thomas R

    2015-05-26

    Elevated risk of disease transmission is considered a major cost of sociality, although empirical evidence supporting this idea remains scant. Variation in spatial cohesion and the occurrence of social interactions may have profound implications for patterns of interindividual parasite transmission. We used a social network approach to shed light on the importance of different aspects of group-living (i.e. within-group associations versus physical contact) on patterns of parasitism in a neotropical primate, the brown spider monkey (Ateles hybridus), which exhibits a high degree of fission-fusion subgrouping. We used daily subgroup composition records to create a 'proximity' network, and built a separate 'contact' network using social interactions involving physical contact. In the proximity network, connectivity between individuals was homogeneous, whereas the contact network highlighted high between-individual variation in the extent to which animals had physical contact with others, which correlated with an individual's age and sex. The gastrointestinal parasite species richness of highly connected individuals was greater than that of less connected individuals in the contact network, but not in the proximity network. Our findings suggest that among brown spider monkeys, physical contact impacts the spread of several common parasites and supports the idea that pathogen transmission is one cost associated with social contact. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Fishing out marine parasites? Impacts of fishing on rates of parasitism in the ocean.

    PubMed

    Wood, Chelsea L; Lafferty, Kevin D; Micheli, Fiorenza

    2010-06-01

    Among anthropogenic effects on the ocean, fishing is one of the most pervasive and extends deepest into the past. Because fishing reduces the density of fish (reducing transmission efficiency of directly transmitted parasites), selectively removes large fish (which tend to carry more parasites than small fish), and reduces food web complexity (reducing transmission efficiency of trophically transmitted parasites), the removal of fish from the world's oceans over the course of hundreds of years may be driving a longterm, global decline in fish parasites. There has been growing recognition in recent years that parasites are a critical part of biodiversity and that their loss could substantially alter ecosystem function. Such a loss may be among the last major ecological effects of industrial fishing to be recognized by scientists.

  17. Viruses of parasites as actors in the parasite-host relationship: A "ménage à trois".

    PubMed

    Gómez-Arreaza, Amaranta; Haenni, Anne-Lise; Dunia, Irene; Avilán, Luisana

    2017-02-01

    The complex parasite-host relationship involves multiple mechanisms. Moreover, parasites infected by viruses modify this relationship adding more complexity to the system that now comprises three partners. Viruses infecting parasites were described several decades ago. However, until recently little was known about the viruses involved and their impact on the resulting disease caused to the hosts. To clarify this situation, we have concentrated on parasitic diseases caused to humans and on how virus-infected parasites could alter the symptoms inflicted on the human host. It is clear that the effect caused to the human host depends on the virus and on the parasite it has infected. Consequently, the review is divided as follows: Viruses with a possible effect on the virulence of the parasite. This section reviews pertinent articles showing that infection of parasites by viruses might increase the detrimental effect of the tandem virus-parasite on the human host (hypervirulence) or decrease virulence of the parasite (hypovirulence). Parasites as vectors affecting the transmission of viruses. In some cases, the virus-infected parasite might facilitate the transfer of the virus to the human host. Parasites harboring viruses with unidentified effects on their host. In spite of recently renewed interest in parasites in connection with their viruses, there still remains a number of cases in which the effect of the virus of a given parasite on the human host remains ambiguous. The triangular relationship between the virus, the parasite and the host, and the modulation of the pathogenicity and virulence of the parasites by viruses should be taken into account in the rationale of fighting against parasites. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Plastome-Genome Interactions Affect Plastid Transmission in Oenothera

    PubMed Central

    Chiu, W. L.; Sears, B. B.

    1993-01-01

    Plastids of Oenothera, the evening primrose, can be transmitted to the progeny from both parents. In a constant nuclear background, the frequency of biparental plastid transmission is determined by the types of plastid genomes (plastomes) involved in the crosses. In this study, the impact of nuclear genomes on plastid inheritance was analyzed. In general, the transmission efficiency of each plastome correlated strongly with its compatibility with the nuclear genome of the progeny, suggesting that plastome-genome interactions can influence plastid transmission by affecting the efficiency of plastid multiplication after fertilization. Lower frequencies of plastid transmission from the paternal side were observed when the pollen had poor vigor due to an incompatible plastome-genome combination, indicating that plastome-genome interactions may also affect the input of plastids at fertilization. Parental traits that affect the process of fertilization can also have an impact on plastid transmission. Crosses using maternal parents with long styles or pollen with relatively low growth capacity resulted in reduced frequencies of paternal plastid transmission. These observations suggest that degeneration of pollen plastids may occur as the time interval between pollination and fertilization is lengthened. PMID:8462856

  19. SEASONAL AND DEMOGRAPHIC FACTORS INFLUENCING GASTROINTESTINAL PARASITISM IN UNGULATES OF ETOSHA NATIONAL PARK

    PubMed Central

    Turner, Wendy C.; Getz, Wayne M.

    2011-01-01

    Host-parasite dynamics can be strongly affected by seasonality and age-related host immune responses. We investigated how observed variation in the prevalence and intensity of parasite egg or oocyst shedding in four co-occurring ungulate species may reflect underlying seasonal variation in transmission and host immunity. This study was conducted July 2005–October 2006 in Etosha National Park, Namibia, using indices of parasitism recorded from 1,022 fecal samples collected from plains zebra (Equus quagga), springbok (Antidorcas marsupialis), blue wildebeest (Connochaetes taurinus), and gemsbok (Oryx gazella). The presence and intensity of strongyle nematodes, Strongyloides spp. and Eimeria spp. parasites, were strongly seasonal for most host-parasite combinations, with more hosts infected in the wet season than the dry season. Strongyle intensity in zebra was significantly lower in juveniles than adults, and in springbok hosts, Eimeria spp. intensity was significantly greater in juveniles than adults. These results provide evidence that acquired immunity is less protective against strongyle nematodes than Eimeria spp. infections. The seasonal patterns in parasitism further indicate that the long dry season may limit development and survival of parasite stages in the environment and, as a result, host contact and parasite transmission. PMID:20966262

  20. Detecting local transmission of avian malaria and related haemosporidian parasites (Apicomlexa, Haemosporida) at a Special Protection Area of Natura 2000 network.

    PubMed

    Dimitrov, Dimitar; Ilieva, Mihaela; Ivanova, Karina; Brlík, Vojtěch; Zehtindjiev, Pavel

    2018-05-05

    Avian haemosporidian parasites (Apicomplexa, Haemosporida) are widespread pathogens that cause malaria (Plasmodium spp.) and other haemosporidioses (Haemoproteus spp. and Leucocytozoon spp.) in birds. The Special Protection Area Durankulak Lake (SPA DL) is a coastal lake in northeast Bulgaria, part of the Natura 2000 network that was declared as important area for wintering, breeding and migratory birds. Despite a number of conservation efforts outlined for the SPAs of Natura 2000 network, the potential threats and influences of haemosporidians and other parasites on occurring birds were not considered. In the present study, we aim to investigate the richness of haemosporidian parasites in birds captured in the protected area and to report the parasite species/DNA lineages that undergo local transmission in the region. We used both microscopic examination and PCR-based methods to diagnose haemosporidian infections in juvenile (captured in the year of hatching) and adult birds. The overall prevalence of haemosporidian parasites was significantly higher in the adult birds compared to juveniles. We identified five out of 21 recorded cytochrome b (cyt b) parasite lineages that are locally transmitted in the SPA DL (one of the genus Haemoproteus Kruse, 1890 and four of genus Plasmodium Marchiafava and Celli, 1885): cyt b lineages hRW2 of Haemoproteus belopolskyi, pSGS1 of Plasmodium relictum, pCOLL1, pYWT4 and pPADOM01 of Plasmodium (Haemamoeba) spp. It is likely that the majority of the parasites with local transmission are widespread host generalists and that host exchange is rather frequent among the birds inhabiting SPA DL.

  1. Fishing out marine parasites? Impacts of fishing on rates of parasitism in the ocean

    USGS Publications Warehouse

    Wood, Chelsea L.; Lafferty, Kevin D.; Micheli, Fiorenza

    2010-01-01

    Among anthropogenic effects on the ocean, fishing is one of the most pervasive and extends deepest into the past. Because fishing reduces the density of fish (reducing transmission efficiency of directly transmitted parasites), selectively removes large fish (which tend to carry more parasites than small fish), and reduces food web complexity (reducing transmission efficiency of trophically transmitted parasites), the removal of fish from the world’s oceans over the course of hundreds of years may be driving a long-term, global decline in fish parasites. There has been growing recognition in recent years that parasites are a critical part of biodiversity and that their loss could substantially alter ecosystem function. Such a loss may be among the last major ecological effects of industrial fishing to be recognized by scientists.

  2. Host allometry influences the evolution of parasite host-generalism: theory and meta-analysis.

    PubMed

    Walker, Josephine G; Hurford, Amy; Cable, Jo; Ellison, Amy R; Price, Stephen J; Cressler, Clayton E

    2017-05-05

    Parasites vary widely in the diversity of hosts they infect: some parasite species are specialists-infecting just a single host species, while others are generalists, capable of infecting many. Understanding the factors that drive parasite host-generalism is of basic biological interest, but also directly relevant to predicting disease emergence in new host species, identifying parasites that are likely to have unidentified additional hosts, and assessing transmission risk. Here, we use mathematical models to investigate how variation in host body size and environmental temperature affect the evolution of parasite host-generalism. We predict that parasites are more likely to evolve a generalist strategy when hosts are large-bodied, when variation in host body size is large, and in cooler environments. We then explore these predictions using a newly updated database of over 20 000 fish-macroparasite associations. Within the database we see some evidence supporting these predictions, but also highlight mismatches between theory and data. By combining these two approaches, we establish a theoretical basis for interpreting empirical data on parasites' host specificity and identify key areas for future work that will help untangle the drivers of parasite host-generalism.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Authors.

  3. Molecular identification and transmission studies of X-cell parasites from Atlantic cod Gadus morhua (Gadiformes: Gadidae) and the northern black flounder Pseudopleuronectes obscurus (Pleuronectiformes: Pleuronectidae)

    PubMed Central

    2011-01-01

    Background Epidermal pseudotumours from Hippoglossoides dubius and Acanthogobius flavimanus in Japan and gill lesions in Limanda limanda from the UK have been shown to be caused by phylogenetically related protozoan parasites, known collectively as X-cells. However, the phylogenetic position of the X-cell group is not well supported within any of the existing protozoan phyla and they are currently thought to be members of the Alveolata. Ultrastructural features of X-cells in fish pseudotumours are somewhat limited and no typical environmental stages, such as spores or flagellated cells, have been observed. The life cycles for these parasites have not been demonstrated and it remains unknown how transmission to a new host occurs. In the present study, pseudobranchial pseudotumours from Atlantic cod, Gadus morhua, in Iceland and epidermal pseudotumours from the northern black flounder, Pseudopleuronectes obscurus, in Japan were used in experimental transmission studies to establish whether direct transmission of the parasite is achievable. In addition, X-cells from Atlantic cod were sequenced to confirm whether they are phylogenetically related to other X-cells and epidermal pseudotumours from the northern black flounder were analysed to establish whether the same parasite is responsible for infecting different flatfish species in Japan. Results Phylogenetic analyses of small subunit ribosomal DNA (SSU rDNA) sequence data from Atlantic cod X-cells show that they are a related parasite that occupies a basal position to the clade containing other X-cell parasites. The X-cell parasite causing epidermal pseudotumours in P. obscurus is the same parasite that causes pseudotumours in H. dubius. Direct, fish to fish, transmission of the X-cell parasites used in this study, via oral feeding or injection, was not achieved. Non-amoeboid X-cells are contained within discrete sac-like structures that are loosely attached to epidermal pseudotumours in flatfish; these X-cells are

  4. Influence of Hepatozoon parasites on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens☆

    PubMed Central

    Ferguson, Laura V.; Kirk Hillier, N.; Smith, Todd G.

    2012-01-01

    Hepatozoon species are heteroxenous parasites that commonly infect the blood of vertebrates and various organs of arthropods. Despite their ubiquity, little is known about how these parasites affect host phenotype, including whether or not these parasites induce changes in hosts to increase transmission success. The objectives of this research were to investigate influences of the frog blood parasite Hepatozoon clamatae and the snake blood parasite Hepatozoon sipedon on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens, respectively. During development of H. sipedon in C. pipiens, significantly fewer infected mosquitoes fed on uninfected snakes compared to uninfected mosquitoes. When H. sipedon was mature in C. pipiens, the number of infected and uninfected C. pipiens that fed on snakes was not significantly different. Higher numbers of mosquitoes fed on naturally infected snakes and frogs compared to laboratory-reared, uninfected control animals. However, experiments using only laboratory-raised frogs revealed that infection did not significantly affect host choice by C. territans. Behaviour of C. pipiens in the presence of H. sipedon may increase transmission success of the parasite and provide the first evidence of phenotypic changes in the invertebrate host of Hepatozoon parasites. PMID:24533317

  5. Influence of Hepatozoon parasites on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens.

    PubMed

    Ferguson, Laura V; Kirk Hillier, N; Smith, Todd G

    2013-12-01

    Hepatozoon species are heteroxenous parasites that commonly infect the blood of vertebrates and various organs of arthropods. Despite their ubiquity, little is known about how these parasites affect host phenotype, including whether or not these parasites induce changes in hosts to increase transmission success. The objectives of this research were to investigate influences of the frog blood parasite Hepatozoon clamatae and the snake blood parasite Hepatozoon sipedon on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens, respectively. During development of H. sipedon in C. pipiens, significantly fewer infected mosquitoes fed on uninfected snakes compared to uninfected mosquitoes. When H. sipedon was mature in C. pipiens, the number of infected and uninfected C. pipiens that fed on snakes was not significantly different. Higher numbers of mosquitoes fed on naturally infected snakes and frogs compared to laboratory-reared, uninfected control animals. However, experiments using only laboratory-raised frogs revealed that infection did not significantly affect host choice by C. territans. Behaviour of C. pipiens in the presence of H. sipedon may increase transmission success of the parasite and provide the first evidence of phenotypic changes in the invertebrate host of Hepatozoon parasites.

  6. Manipulative parasites may not alter intermediate host distribution but still enhance their transmission: field evidence for increased vulnerability to definitive hosts and non-host predator avoidance.

    PubMed

    Lagrue, C; Güvenatam, A; Bollache, L

    2013-02-01

    Behavioural alterations induced by parasites in their intermediate hosts can spatially structure host populations, possibly resulting in enhanced trophic transmission to definitive hosts. However, such alterations may also increase intermediate host vulnerability to non-host predators. Parasite-induced behavioural alterations may thus vary between parasite species and depend on each parasite definitive host species. We studied the influence of infection with 2 acanthocephalan parasites (Echinorhynchus truttae and Polymorphus minutus) on the distribution of the amphipod Gammarus pulex in the field. Predator presence or absence and predator species, whether suitable definitive host or dead-end predator, had no effect on the micro-distribution of infected or uninfected G. pulex amphipods. Although neither parasite species seem to influence intermediate host distribution, E. truttae infected G. pulex were still significantly more vulnerable to predation by fish (Cottus gobio), the parasite's definitive hosts. In contrast, G. pulex infected with P. minutus, a bird acanthocephalan, did not suffer from increased predation by C. gobio, a predator unsuitable as host for P. minutus. These results suggest that effects of behavioural changes associated with parasite infections might not be detectable until intermediate hosts actually come in contact with predators. However, parasite-induced changes in host spatial distribution may still be adaptive if they drive hosts into areas of high transmission probabilities.

  7. Prevalence of intestinal parasites among food handlers in Western Iran.

    PubMed

    Kheirandish, Farnaz; Tarahi, Mohammad Javad; Ezatpour, Behrouz

    2014-01-01

    Parasitic infection is one of the problems that affect human health, especially in developing countries. In this study, all of the fast food shops, restaurants, and roast meat outlets of Khorramabad (Western Iran) and all the staff employed by them, some 210 people, were selected through a census and their stools were examined for the presence of parasites. The parasitological tests of direct wet-mount, Lugol's iodine staining, formaldehyde-ether sedimentation and Trichrome staining techniques were performed on the samples. The data was analyzed with a chi-square test and logistic regression was selected as the analytical model. The results showed 19 (9%) stool specimens were positive for different intestinal parasites. These intestinal parasites included Giardia lamblia 2.9%, Entamoeba coli 4.3%, Blastocystis sp. 1.4%, and Hymenolepis nana 0.5%. There was a significant difference between the presence of a valid health card, awareness of transmission of intestinal parasites, participation in training courses in environmental health with intestinal parasites (p < 0.05). No statistically significant difference was found between the rate of literacy and gender among patients infected with intestinal parasites (p > 0.05). To control parasitic infection in food handlers, several strategies are recommended such as stool examinations every three months, public education, application of health regulations, controlling the validity of health cards and training on parasitic infection transmission. In this regard, the findings of the present study can be used as a basis to develop preventive programs targeting food handlers because the spread of disease via them is a common problem worldwide.

  8. GASTROINTESTINAL PARASITES IN CAPTIVE AND FREE-RANGING BIRDS AND POTENTIAL CROSS-TRANSMISSION IN A ZOO ENVIRONMENT.

    PubMed

    Carrera-Játiva, Patricio D; Morgan, Eric R; Barrows, Michelle; Wronski, Torsten

    2018-03-01

    Gastrointestinal parasites are commonly reported in wild birds, but transmission amongst avifauna in zoological settings, and between these captive birds and wild birds in surrounding areas, remains poorly understood. A survey was undertaken to investigate the occurrence of gastrointestinal parasites in captive and free-ranging birds at Bristol Zoo Gardens between May and July 2016. A total of 348 fecal samples from 32 avian species were examined using the Mini-FLOTAC flotation method. Parasites were detected in 31% (45/145) of samples from captive birds and in 65.5% (133/203) of samples from free-ranging birds. Parasites of captive individuals included ascarids ( Heterakis spp. and other morphotypes), capillarids, oxyurids, strongyles, a trematode, and protozoans ( Eimeria spp., Isospora spp., Caryospora sp., and Entamoeba spp.). Parasites of free-ranging birds included ascarids ( Ascaridia spp., Porrocaecum spp., and other morphotypes), capillarids, oxyurids, strongyles ( Syngamus spp. and other morphotypes), cestodes ( Choanotaenia spp., Hymenolepis spp., and other morphotypes), a trematode, and protozoans ( Eimeria spp., Isospora spp., Entamoeba spp.). Similar types of parasites were detected in captive and free-ranging birds, but capillarid ova morphology was similar only between closely related species, eg in corvids (captive azure-winged magpies [ Cyanipica cyana] and wild jackdaws [ Corvus monedula]) and between wild columbids (collared doves [ Streptopelia decaocto], rock doves [ Columba livia], and wood pigeons [ Columba palumbus]). The prevalence and intensity of nematodes and coccidia in birds housed outdoors did not differ statistically from species housed indoors. Results indicate that captive and free-ranging birds may share parasites when closely related, but this would need to be confirmed by the study of adult specimens and molecular tests. Determining which parasites are present in captive and free-ranging species in zoological parks will support

  9. Parasitism of Nematodes by the Fungus Hirsutella rhossiliensis as Affected by Certain Organic Amendments

    PubMed Central

    Jaffee, B. A.; Ferris, H.; Stapleton, J. J.; Norton, M. V. K.; Muldoon, A. E.

    1994-01-01

    Experiments were conducted to determine whether the addition of organic matter to soil increased numbers of bacterivorous nematodes and parasitic activity of the nematophagous fungus Hirsutella rhossiliensis. In a peach orchard on loamy sand, parasitism of the plant-parasitic nematode Criconemella xenoplax by H. rhossiliensis was slightly suppressed and numbers of C. xenoplax were not affected by addition of 73 metric tons of composted chicken manure/ha. In the laboratory, numbers of bacterivorous nematodes (especially Acrobeloides spp.) and fungivorous nematodes increased but parasitism of nematodes by H. rhossiliensis usually decreased with addition of wheat straw or composted cow manure to a loamy sand naturally infested with H. rhossiliensis. These results do not support the hypothesis that organic amendments will enhance parasitism of nematodes by H. rhossiliensis. PMID:19279878

  10. Transmission dynamics of parasitic sea lice from farm to wild salmon.

    PubMed

    Krkosek, Martin; Lewis, Mark A; Volpe, John P

    2005-04-07

    Marine salmon farming has been correlated with parasitic sea lice infestations and concurrent declines of wild salmonids. Here, we report a quantitative analysis of how a single salmon farm altered the natural transmission dynamics of sea lice to juvenile Pacific salmon. We studied infections of sea lice (Lepeophtheirus salmonis and Caligus clemensi) on juvenile pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) as they passed an isolated salmon farm during their seaward migration down two long and narrow corridors. Our calculations suggest the infection pressure imposed by the farm was four orders of magnitude greater than ambient levels, resulting in a maximum infection pressure near the farm that was 73 times greater than ambient levels and exceeded ambient levels for 30 km along the two wild salmon migration corridors. The farm-produced cohort of lice parasitizing the wild juvenile hosts reached reproductive maturity and produced a second generation of lice that re-infected the juvenile salmon. This raises the infection pressure from the farm by an additional order of magnitude, with a composite infection pressure that exceeds ambient levels for 75 km of the two migration routes. Amplified sea lice infestations due to salmon farms are a potential limiting factor to wild salmonid conservation.

  11. Transmission dynamics of parasitic sea lice from farm to wild salmon

    PubMed Central

    Krkošek, Martin; Lewis, Mark A; Volpe, John P

    2005-01-01

    Marine salmon farming has been correlated with parasitic sea lice infestations and concurrent declines of wild salmonids. Here, we report a quantitative analysis of how a single salmon farm altered the natural transmission dynamics of sea lice to juvenile Pacific salmon. We studied infections of sea lice (Lepeophtheirus salmonis and Caligus clemensi ) on juvenile pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) as they passed an isolated salmon farm during their seaward migration down two long and narrow corridors. Our calculations suggest the infection pressure imposed by the farm was four orders of magnitude greater than ambient levels, resulting in a maximum infection pressure near the farm that was 73 times greater than ambient levels and exceeded ambient levels for 30 km along the two wild salmon migration corridors. The farm-produced cohort of lice parasitizing the wild juvenile hosts reached reproductive maturity and produced a second generation of lice that re-infected the juvenile salmon. This raises the infection pressure from the farm by an additional order of magnitude, with a composite infection pressure that exceeds ambient levels for 75 km of the two migration routes. Amplified sea lice infestations due to salmon farms are a potential limiting factor to wild salmonid conservation. PMID:15870031

  12. [Challenge and strategy of prevention and control of important parasitic diseases under the Belt and Road Initiative].

    PubMed

    Chun-Li, Cao; Jia-Gang, Guo

    2018-04-17

    China was once a country with the heaviest burden of parasitic diseases. Under the leadership of the Communist Party and national authority, after more than 60 years' efforts of prevention and control, the remarkable results have been achieved in China. However, affected by the social and economic development and environmental changes, the prevention and control of parasitic diseases, especially imported parasitic diseases, are facing new challenges, and the parasitic diseases, such as malaria, schistosomiasis, leishmaniasis, filariasis and trypanosomiasis, appear increasingly. With the development of the Belt and Road Initiative, the transmission risks of these diseases are more increased. The purpose of this paper is to describe the experience and results of parasitic disease prevention and control in China, understand the present parasitic disease epidemic situation of the Belt and Road Initiative related countries, analyze the transmission risks of important parasitic diseases, and present some relevant suggestions, so as to provide the evidence for the health administrative department formulating the prevention and control strategies of such parasitic diseases timely and effectively.

  13. Methodological issues affecting the study of fish parasites. III. Effect of fish preservation method.

    PubMed

    Kvach, Yuriy; Ondračková, Markéta; Janáč, Michal; Jurajda, Pavel

    2018-03-05

    The aim of this study was to evaluate the influence of preservation method on the results of parasite community studies. Two host species, European perch Perca fluviatilis and European bitterling Rhodeus amarus, were examined for parasites after having been subjected to 4 different storage treatments: freezing, preservation in 4% formaldehyde or 70% ethanol and transportation of live (fresh) fish as a control. Preservation prior to dissection resulted in a loss of information, leading to incomplete quantitative data (all preservation treatments), qualitative data (ethanol and formaldehyde preservation) and a lowered ability to determine parasites to species level based on morphology compared to dissecting fresh fish. Of the more abundant taxa, only crustaceans and acanthocephalans provided relatively even results between treatments. We conclude that preservation media, such as ethanol or formaldehyde, significantly affects the ability to obtain precise parasite community data; hence, we recommend the use of freshly sacrificed fish for parasite community studies whenever possible. Alternatively, freezing may prove acceptable for evaluating parasite community taxonomic composition.

  14. Early-Life Diet Affects Host Microbiota and Later-Life Defenses Against Parasites in Frogs.

    PubMed

    Knutie, Sarah A; Shea, Lauren A; Kupselaitis, Marinna; Wilkinson, Christina L; Kohl, Kevin D; Rohr, Jason R

    2017-10-01

    Food resources can affect the health of organisms by altering their symbiotic microbiota and affecting energy reserves for host defenses against parasites. Different diets can vary in their macronutrient content and therefore they might favor certain bacterial communities of the host and affect the development and maintenance of the immune system, such as the inflammatory or antibody responses. Thus, testing the effect of diet, especially for animals with wide diet breadths, on host-associated microbiota and defenses against parasites might be important in determining infection and disease risk. Here, we test whether the early-life diet of Cuban tree frogs (Osteopilus septentrionalis) affects early- and later-life microbiota as well as later-life defenses against skin-penetrating, gut worms (Aplectana hamatospicula). We fed tadpoles two ecologically common diets: a diet of conspecifics or a diet of algae (Arthrospira sp.). We then: (1) characterized the gut microbiota of tadpoles and adults; and (2) challenged adult frogs with parasitic worms and measured host resistance (including the antibody-mediated immune response) and tolerance of infections. Tadpole diet affected bacterial communities in the guts of tadpoles but did not have enduring effects on the bacterial communities of adults. In contrast, tadpole diet had enduring effects on host resistance and tolerance of infections in adult frogs. Frogs that were fed a conspecific-based diet as tadpoles were more resistant to worm penetration compared with frogs that were fed an alga-based diet as tadpoles, but less resistant to worm establishment, which may be related to their suppressed antibody response during worm establishment. Furthermore, frogs that were fed a conspecific-based diet as tadpoles were more tolerant to the effect of parasite abundance on host mass during worm establishment. Overall, our study demonstrates that the diet of Cuban tree frog tadpoles affects the gut microbiota and defenses against

  15. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    PubMed Central

    Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

  16. Control of parasites in cultured marine finfishes in Southeast Asia--an overview.

    PubMed

    Seng, L T

    1997-10-01

    Mariculture in Southeast Asia began in the 1970s and expanded rapidly during the 1980s, with the commercial hatchery production of the seabass Lates calcarifer. Other important cultured species were Epinephelus coioides, Epinephelus malabaricus, Lutjanus johni, and Lutjanus argentimaculatus. Intensification in the polyculture of these species and the large-scale international movement of fingerlings or juveniles, as well as the rapid expansion and concentration of fish farms, have caused severe problems resulting from parasitic infections. Infections in maricultured fish are predominantly caused by monoxenous parasites, in particular the capsalid and diplectanid monogeneans. Heteroxenous blood parasites also successfully maintained transmission in the culture system despite their requirement for an intermediate host. Prophylactic chemical treatments helped to reduce parasitic infection but did not eliminate them and once introduced into the floating netcage culture system, these parasites managed to maintain their transmission successfully. Despite the current lack of information regarding the biology of many parasites affecting cultured marine fishes, it nevertheless is possible to develop methodologies to produce an integrated health management system specifically designed to the needs of the mariculture practiced in the Southeast Asian region. This system is important and should include a sequence of prophylaxes, adequate nutrition, sanitation, immunization and an effective system of marketing for farmed fishes.

  17. Molecular evidence for host-parasite co-speciation between lizards and Schellackia parasites.

    PubMed

    Megía-Palma, Rodrigo; Martínez, Javier; Cuervo, José J; Belliure, Josabel; Jiménez-Robles, Octavio; Gomes, Verónica; Cabido, Carlos; Pausas, Juli G; Fitze, Patrick S; Martín, José; Merino, Santiago

    2018-05-05

    Current and past parasite transmission may depend on the overlap of host distributions, potentially affecting parasite specificity and co-evolutionary processes. Nonetheless, parasite diversification may take place in sympatry when parasites are transmitted by vectors with low mobility. Here, we test the co-speciation hypothesis between lizard final hosts of the Family Lacertidae, and blood parasites of the genus Schellackia, which are potentially transmitted by haematophagous mites. The effects of current distributional overlap of host species on parasite specificity are also investigated. We sampled 27 localities on the Iberian Peninsula and three in northern Africa, and collected blood samples from 981 individual lizards of seven genera and 18 species. The overall prevalence of infection by parasites of the genus Schellackia was ∼35%. We detected 16 Schellackia haplotypes of the 18S rRNA gene, revealing that the genus Schellackia is more diverse than previously thought. Phylogenetic analyses showed that Schellackia haplotypes grouped into two main monophyletic clades, the first including those detected in host species endemic to the Mediterranean region and the second those detected in host genera Acanthodactylus, Zootoca and Takydromus. All but one of the Schellackia haplotypes exhibited a high degree of host specificity at the generic level and 78.5% of them exclusively infected single host species. Some host species within the genera Podarcis (six species) and Iberolacerta (two species) were infected by three non-specific haplotypes of Schellackia, suggesting that host switching might have positively influenced past diversification of the genus. However, the results supported the idea that current host switching is rare because there existed a significant positive correlation between the number of exclusive parasite haplotypes and the number of host species with current sympatric distribution. This result, together with significant support for host-parasite

  18. Effects of shortened host life span on the evolution of parasite life history and virulence in a microbial host-parasite system

    PubMed Central

    Nidelet, Thibault; Koella, Jacob C; Kaltz, Oliver

    2009-01-01

    Background Ecological factors play an important role in the evolution of parasite exploitation strategies. A common prediction is that, as shorter host life span reduces future opportunities of transmission, parasites compensate with an evolutionary shift towards earlier transmission. They may grow more rapidly within the host, have a shorter latency time and, consequently, be more virulent. Thus, increased extrinsic (i.e., not caused by the parasite) host mortality leads to the evolution of more virulent parasites. To test these predictions, we performed a serial transfer experiment, using the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. We simulated variation in host life span by killing hosts after 11 (early killing) or 14 (late killing) days post inoculation; after killing, parasite transmission stages were collected and used for a new infection cycle. Results After 13 cycles (≈ 300 generations), parasites from the early-killing treatment were less infectious, but had shorter latency time and higher virulence than those from the late-killing treatment. Overall, shorter latency time was associated with higher parasite loads and thus presumably with more rapid within-host replication. Conclusion The analysis of the means of the two treatments is thus consistent with theory, and suggests that evolution is constrained by trade-offs between virulence, transmission and within-host growth. In contrast, we found little evidence for such trade-offs across parasite selection lines within treatments; thus, to some extent, these traits may evolve independently. This study illustrates how environmental variation (experienced by the host) can lead to the evolution of distinct parasite strategies. PMID:19320981

  19. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    PubMed Central

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  20. Stress and sex in malaria parasites: Why does commitment vary?

    PubMed

    Carter, Lucy M; Kafsack, Björn F C; Llinás, Manuel; Mideo, Nicole; Pollitt, Laura C; Reece, Sarah E

    2013-01-01

    For vector-borne parasites such as malaria, how within- and between-host processes interact to shape transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmission to occur, specialized sexual stages (gametocytes) must be produced. Despite the central role that gametocytes play in disease transmission, explanations of why parasites adjust gametocyte production in response to in-host factors remain controversial. We propose that evolutionary theory developed to explain variation in reproductive effort in multicellular organisms, provides a framework to understand gametocyte investment strategies. We examine why parasites adjust investment in gametocytes according to the impact of changing conditions on their in-host survival. We then outline experiments required to determine whether plasticity in gametocyte investment enables parasites to maintain fitness in a variable environment. Gametocytes are a target for anti-malarial transmission-blocking interventions so understanding plasticity in investment is central to maximizing the success of control measures in the face of parasite evolution.

  1. 9 CFR 311.25 - Parasites not transmissible to man; tapeworm cysts in sheep; hydatid cysts; flukes; gid bladder...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Parasites not transmissible to man; tapeworm cysts in sheep; hydatid cysts; flukes; gid bladder-worms. 311.25 Section 311.25 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS...

  2. [Parasitic zoonotic disease agents in human and animal drinking water].

    PubMed

    Karanis, P

    2000-08-01

    Human- and veterinary important parasites of the subkingdom of protozoans and helminths infect humans and animals by ingestion of parasites in contaminated water. The parasites are excreted from the body of infected humans, livestock, zoo animals, companion animals or wild animals in the feces. Recreational waters, agricultural practices and wild animals serve as vehicles of transmission of the parasites in the water supplies. The following topics are addressed: a) the life cycles of parasitic diseases-causing agents with proven or potential transmission via water b) the development and the current research status of the analytical techniques for the detection of parasitic diseases-causing agents from water c) the occurrence of Cryptosporidium and Giardia in surface water supplies and in treated water d) the possible water sources and transmission ways of the parasites into the water supplies e) the behaviour and the possibilities for the removal or elimination of the parasites by water treatment.

  3. Parasitic gastro-enteritis in lambs — A model for estimating the timing of the larval emergence peak

    NASA Astrophysics Data System (ADS)

    Starr, J. R.; Thomas, R. J.

    1980-09-01

    The life history of the nematode parasites of domestic ruminants usually involves the development and survival of free-living stages on pasture. The pasture is, therefore, the site of deposition, development and transmission of nematode infection and meteorological factors affecting the pasture will affect the parasites. Recently Thomas and Starr (1978) discussed an empirical technique for forecasting the timing of the summer wave of gastro-intestinal parasitism in North-East England in the lamb crop using meteorological data and in particular estimates of the duration of “surface wetness”. This paper presents an attempt to model “surface wetness” and the temperature limitation to nematode development.

  4. [Establishment of response system to emergency parasitic disease affairs in China].

    PubMed

    Chun-Li, C; Le-Ping, S; Qing-Biao, H; Bian-Li, X U; Bo, Z; Jian-Bing, L; Dan-Dan, L; Shi-Zhu, L I; Oning, X; Xiao-Nong, Z

    2017-08-14

    China's prevention and control of parasitic diseases has made remarkable achievements. However, the prevalence and transmission of parasitic diseases is impacted by the complicated natural and social factors of environment, natural disasters, population movements, and so on. Therefore, there are still the risks of the outbreak of emergency parasitic diseases affairs, which may affect the control effectiveness of parasitic diseases and endanger the social stability seriously. In this article, we aim at the analysis of typical cases of emergency parasitic disease affairs and their impacts on public health security in China in recently years, and we also elaborate the disposal characteristics of emergency parasitic disease affairs, and propose the establishment of response system to emergency parasitic disease affairs in China, including the organizational structure and response flow path, and in addition, point out that, in the future, we should strengthen the system construction and measures of the response system to emergency parasitic disease affairs, so as to control the risk and harm of parasitic disease spread as much as possible and to realize the early intervention and proper disposal of emergency parasitic disease affairs.

  5. Can the common brain parasite, Toxoplasma gondii, influence human culture?

    PubMed Central

    Lafferty, Kevin D

    2006-01-01

    The latent prevalence of a long-lived and common brain parasite, Toxoplasma gondii, explains a statistically significant portion of the variance in aggregate neuroticism among populations, as well as in the ‘neurotic’ cultural dimensions of sex roles and uncertainty avoidance. Spurious or non-causal correlations between aggregate personality and aspects of climate and culture that influence T. gondii transmission could also drive these patterns. A link between culture and T. gondii hypothetically results from a behavioural manipulation that the parasite uses to increase its transmission to the next host in the life cycle: a cat. While latent toxoplasmosis is usually benign, the parasite's subtle effect on individual personality appears to alter the aggregate personality at the population level. Drivers of the geographical variation in the prevalence of this parasite include the effects of climate on the persistence of infectious stages in soil, the cultural practices of food preparation and cats as pets. Some variation in culture, therefore, may ultimately be related to how climate affects the distribution of T. gondii, though the results only explain a fraction of the variation in two of the four cultural dimensions, suggesting that if T. gondii does influence human culture, it is only one among many factors. PMID:17015323

  6. Allee effect from parasite spill-back.

    PubMed

    Krkošek, Martin; Ashander, Jaime; Frazer, L Neil; Lewis, Mark A

    2013-11-01

    The exchange of native pathogens between wild and domesticated animals can lead to novel disease threats to wildlife. However, the dynamics of wild host-parasite systems exposed to a reservoir of domesticated hosts are not well understood. A simple mathematical model reveals that the spill-back of native parasites from domestic to wild hosts may cause a demographic Allee effect in the wild host population. A second model is tailored to the particulars of pink salmon (Oncorhynchus gorbuscha) and salmon lice (Lepeophtheirus salmonis), for which parasite spill-back is a conservation and fishery concern. In both models, parasite spill-back weakens the coupling of parasite and wild host abundance-particularly at low host abundance-causing parasites per host to increase as a wild host population declines. These findings show that parasites shared across host populations have effects analogous to those of generalist predators and can similarly cause an unstable equilibrium in a focal host population that separates persistence and extirpation. Allee effects in wildlife arising from parasite spill-back are likely to be most pronounced in systems where the magnitude of transmission from domestic to wild host populations is high because of high parasite abundance in domestic hosts, prolonged sympatry of domestic and wild hosts, a high transmission coefficient for parasites, long-lived parasite larvae, and proximity of domesticated populations to wildlife migration corridors.

  7. Ecomorphology and disease: cryptic effects of parasitism on host habitat use, thermoregulation, and predator avoidance.

    PubMed

    Goodman, Brett A; Johnson, Pieter T J

    2011-03-01

    Parasites can cause dramatic changes in the phenotypes of their hosts, sometimes leading to a higher probability of predation and parasite transmission. Because an organism's morphology directly affects its locomotion, even subtle changes in key morphological traits may affect survival and behavior. However, despite the ubiquity of parasites in natural communities, few studies have incorporated parasites into ecomorphological research. Here, we evaluated the effects of parasite-induced changes in host phenotype on the habitat use, thermal biology, and simulated predator-escape ability of Pacific chorus frogs (Pseudacris regilla) in natural environments. Frogs with parasite-induced limb malformations were more likely to use ground microhabitats relative to vertical refugia and selected less-angled perches closer to the ground in comparison with normal frogs. Although both groups had similar levels of infection, malformed frogs used warmer microhabitats, which resulted in higher body temperatures. Likely as a result of their morphological abnormalities, malformed frogs allowed a simulated predator to approach closer before escaping and escaped shorter distances relative to normal frogs. These data indicate that parasite-induced morphological changes can significantly alter host behavior and habitat use, highlighting the importance of incorporating the ubiquitous, albeit cryptic, role of parasites into ecomorphological research.

  8. Short-sighted evolution of virulence in parasitic honeybee workers ( Apis mellifera capensis Esch.)

    NASA Astrophysics Data System (ADS)

    Moritz, Robin F. A.; Pirk, Christian W. W.; Hepburn, H. Randall; Neumann, Peter

    2008-06-01

    The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.

  9. Malaria transmission potential could be reduced with current and future climate change.

    PubMed

    Murdock, C C; Sternberg, E D; Thomas, M B

    2016-06-21

    Several studies suggest the potential for climate change to increase malaria incidence in cooler, marginal transmission environments. However, the effect of increasing temperature in warmer regions where conditions currently support endemic transmission has received less attention. We investigate how increases in temperature from optimal conditions (27 °C to 30 °C and 33 °C) interact with realistic diurnal temperature ranges (DTR: ± 0 °C, 3 °C, and 4.5 °C) to affect the ability of key vector species from Africa and Asia (Anopheles gambiae and An. stephensi) to transmit the human malaria parasite, Plasmodium falciparum. The effects of increasing temperature and DTR on parasite prevalence, parasite intensity, and mosquito mortality decreased overall vectorial capacity for both mosquito species. Increases of 3 °C from 27 °C reduced vectorial capacity by 51-89% depending on species and DTR, with increases in DTR alone potentially halving transmission. At 33 °C, transmission potential was further reduced for An. stephensi and blocked completely in An. gambiae. These results suggest that small shifts in temperature could play a substantial role in malaria transmission dynamics, yet few empirical or modeling studies consider such effects. They further suggest that rather than increase risk, current and future warming could reduce transmission potential in existing high transmission settings.

  10. Experimental infection and transmission of Leishmania by Lutzomyia cruzi (Diptera: Psychodidae): Aspects of the ecology of parasite-vector interactions

    PubMed Central

    Murat, Paula Guerra; de Medeiros, Márcio José; Souza, Alda Izabel; de Oliveira, Alessandra Gutierrez

    2017-01-01

    Several parameters should be addressed before incriminating a vector for Leishmania transmission. Those may include its ability to become infected by the same Leishmania species found in humans, the degree of attractiveness for reservoirs and humans and capacity to sustain parasite infection under laboratory conditions. This study evaluated the vectorial capacity of Lutzomyia cruzi for Leishmania infantum and gathered information on its ability to harbor L. amazonensis. Laboratory-reared Lu. cruzi were infected experimentally by feeding them on dogs infected naturally with L. infantum and hamsters infected with L. amazonensis. Sand fly attractiveness to dogs and humans was determined using wild caught insects. The expected daily survival of infected Lu. cruzi, the duration of the gonotrophic cycle, and the extrinsic incubation period were also investigated for both parasites. Vector competence was investigated for both Leishmania species. The mean proportion of female sand flies that fed on hosts was 0.40. For L. infantum and L. amazonensis, Lu. cruzi had experimental infection rates of 10.55% and 41.56%, respectively. The extrinsic incubation period was 3 days for both Leishmania species, regardless of the host. Survival expectancy of females infected with L. infantum and L. amazonensis after completing the gonotrophic cycle was 1.32 and 0.43, respectively. There was no association between L. infantum infection and sand fly longevity, but L. amazonensis–infected flies had significantly greater survival probabilities. Furthermore, egg-laying was significantly detrimental to survival. Lu. cruzi was found to be highly attracted to both dogs and humans. After a bloodmeal on experimentally infected hosts, both parasites were able to survive and develop late-stage infections in Lu. cruzi. However, transmission was demonstrated only for L. amazonensis–infected sand flies. In conclusion, Lu. cruzi fulfilled several of the requirements of vectorial capacity for L

  11. Experimental infection and transmission of Leishmania by Lutzomyia cruzi (Diptera: Psychodidae): Aspects of the ecology of parasite-vector interactions.

    PubMed

    Falcão de Oliveira, Everton; Oshiro, Elisa Teruya; Fernandes, Wagner de Souza; Murat, Paula Guerra; Medeiros, Márcio José de; Souza, Alda Izabel; Oliveira, Alessandra Gutierrez de; Galati, Eunice Aparecida Bianchi

    2017-02-01

    Several parameters should be addressed before incriminating a vector for Leishmania transmission. Those may include its ability to become infected by the same Leishmania species found in humans, the degree of attractiveness for reservoirs and humans and capacity to sustain parasite infection under laboratory conditions. This study evaluated the vectorial capacity of Lutzomyia cruzi for Leishmania infantum and gathered information on its ability to harbor L. amazonensis. Laboratory-reared Lu. cruzi were infected experimentally by feeding them on dogs infected naturally with L. infantum and hamsters infected with L. amazonensis. Sand fly attractiveness to dogs and humans was determined using wild caught insects. The expected daily survival of infected Lu. cruzi, the duration of the gonotrophic cycle, and the extrinsic incubation period were also investigated for both parasites. Vector competence was investigated for both Leishmania species. The mean proportion of female sand flies that fed on hosts was 0.40. For L. infantum and L. amazonensis, Lu. cruzi had experimental infection rates of 10.55% and 41.56%, respectively. The extrinsic incubation period was 3 days for both Leishmania species, regardless of the host. Survival expectancy of females infected with L. infantum and L. amazonensis after completing the gonotrophic cycle was 1.32 and 0.43, respectively. There was no association between L. infantum infection and sand fly longevity, but L. amazonensis-infected flies had significantly greater survival probabilities. Furthermore, egg-laying was significantly detrimental to survival. Lu. cruzi was found to be highly attracted to both dogs and humans. After a bloodmeal on experimentally infected hosts, both parasites were able to survive and develop late-stage infections in Lu. cruzi. However, transmission was demonstrated only for L. amazonensis-infected sand flies. In conclusion, Lu. cruzi fulfilled several of the requirements of vectorial capacity for L. infantum

  12. Parasitic diseases and urban development.

    PubMed Central

    Mott, K. E.; Desjeux, P.; Moncayo, A.; Ranque, P.; de Raadt, P.

    1990-01-01

    The distribution and epidemiology of parasitic diseases in both urban and periurban areas of endemic countries have been changing as development progresses. The following different scenarios involving Chagas disease, lymphatic filariasis, leishmaniasis and schistosomiasis are discussed: (1) infected persons entering nonendemic urban areas without vectors; (2) infected persons entering nonendemic urban areas with vectors; (3) infected persons entering endemic urban areas; (4) non-infected persons entering endemic urban areas; (5) urbanization or domestication of natural zoonotic foci; and (6) vectors entering nonendemic urban areas. Cultural and social habits from the rural areas, such as type of house construction and domestic water usage, are adopted by migrants to urban areas and increase the risk of disease transmission which adversely affects employment in urban populations. As the urban health services must deal with the rise in parasitic diseases, appropriate control strategies for the urban setting must be developed and implemented. PMID:2127380

  13. Geographical location and age affects the incidence of parasitic infestations in school children.

    PubMed

    Rayan, Paran; Verghese, Susan; McDonnell, Pauline Ann

    2010-01-01

    Environmental factors affect the dissemination and distribution of intestinal parasites in human communities. To comprehend the prevalence of parasitic infestation and to examine whether geographical location and age also influence the prevalence of infection, fecal samples from 195 school children (rural = 95; male = 39; female = 56) (urban = 100; male = 60; female = 40) of five age groups ranging from 5 to 11 years in two different socio-economic zones (rural and urban) were screened for specific intestinal parasites using standard histological techniques. Percentage incidences of parasitic species found in fecal wet mounts and concentrates in rural children were Entamoeba coli (25.3%), Giardia lamblia (17.9%), Blastocystis hominis (14.7%), Entamoeba histolytica (4.2%), Iodamoeba butschlii (1.1%), Hymenolepis nana (1.1%) and Ascaris lumbricoides (1.1%). Whereas the percentage incidences among urban children were E. coli (26%), A. lumbricoides (21%), B. hominis (18%), G. lamblia (14%), T. trichiura (8%), I. butschlii (4%) and A. duodenale (1%). Such findings may be related to dietary differences, living conditions and the greater use of natural anti-helminthic medicinal plants in rural communities. These results are important for both epidemiological data collection and for correlating dietary differences to intestinal parasitic diseases. We chose to investigate whether geographical location and age affect the prevalence and distribution of intestinal parasites among school children from two separate regions (rural and urban) in areas surrounding, Chennai, Tamil Nadu, India. A study of the prevalence of parasitic infestations was undertaken among primary school children, in rural and urban communities around Chennai, Tamil Nadu, India. Faecal sample collection, direct microscopic techniques, macroscopic examination and concentration techniques for identifying the parasites. Percentage incidences of parasitic species found in faecal wet mounts and concentrates were

  14. Role of parasitic vaccines in integrated control of parasitic diseases in livestock

    PubMed Central

    Sharma, Neelu; Singh, Veer; Shyma, K. P.

    2015-01-01

    Parasitic infections adversely affect animal’s health and threaten profitable animal production, thus affecting the economy of our country. These infections also play a major role in the spread of zoonotic diseases. Parasitic infections cause severe morbidity and mortality in animals especially those affecting the gastrointestinal system and thus affect the economy of livestock owner by decreasing the ability of the farmer to produce economically useful animal products. Due to all these reasons proper control of parasitic infection is critically important for sustained animal production. The most common and regularly used method to control parasitic infection is chemotherapy, which is very effective but has several disadvantages like drug resistance and drug residues. Integrated approaches to control parasitic infections should be formulated including grazing management, biological control, genetic resistance of hosts, and parasitic vaccines. India ranks first in cattle and buffalo population, but the majority of livestock owners have fewer herds, so other measures like grazing management, biological control, genetic resistance of hosts are not much practical to use. The most sustainable and economical approach to control parasitic infection in our country is to vaccinate animals, although vaccines increase the initial cost, but the immunity offered by the vaccine are long lived. Thus, vaccination of animals for various clinical, chronic, subclinical parasitic infections will be a cheaper and effective alternative to control parasitic infection for long time and improve animal production. PMID:27047140

  15. Human behavior and opportunities for parasite transmission in communities surrounding long-tailed macaque populations in Bali, Indonesia.

    PubMed

    Lane-DeGraaf, Kelly E; Putra, I G A Arta; Wandia, I Nengah; Rompis, Aida; Hollocher, Hope; Fuentes, Agustin

    2014-02-01

    Spatial overlap and shared resources between humans and wildlife can exacerbate parasite transmission dynamics. In Bali, Indonesia, an agricultural-religious temple system provides sanctuaries for long-tailed macaques (Macaca fascicularis), concentrating them in areas in close proximity to humans. In this study, we interviewed individuals in communities surrounding 13 macaque populations about their willingness to participate in behaviors that would put them at risk of exposure to gastrointestinal parasites to understand if age, education level, or occupation are significant determinants of exposure behaviors. These exposure risk behaviors and attitudes include fear of macaques, direct contact with macaques, owning pet macaques, hunting and eating macaques, and overlapping water uses. We find that willingness to participate in exposure risk behaviors are correlated with an individual's occupation, age, and/or education level. We also found that because the actual risk of infection varies across populations, activities such as direct macaque contact and pet ownership, could be putting individuals at real risk in certain contexts. Thus, we show that human demographics and social structure can influence willingness to participate in behaviors putting them at increased risk for exposure to parasites. © 2013 Wiley Periodicals, Inc.

  16. Habitat-based constraints on food web structure and parasite life cycles.

    PubMed

    Rossiter, Wayne; Sukhdeo, Michael V K

    2014-04-01

    Habitat is frequently implicated as a powerful determinant of community structure and species distributions, but few studies explicitly evaluate the relationship between habitat-based patterns of species' distributions and the presence or absence of trophic interactions. The complex (multi-host) life cycles of parasites are directly affected by these factors, but almost no data exist on the role of habitat in constraining parasite-host interactions at the community level. In this study the relationship(s) between species abundances, distributions and trophic interactions (including parasitism) were evaluated in the context of habitat structure (classic geomorphic designations of pools, riffles and runs) in a riverine community (Raritan River, Hunterdon County, NJ, USA). We report 121 taxa collected over a 2-year period, and compare the observed food web patterns to null model expectations. The results show that top predators are constrained to particular habitat types, and that species' distributions are biased towards pool habitats. However, our null model (which incorporates cascade model assumptions) accurately predicts the observed patterns of trophic interactions. Thus, habitat strongly dictates species distributions, and patterns of trophic interactions arise as a consequence of these distributions. Additionally, we find that hosts utilized in parasite life cycles are more overlapping in their distributions, and this pattern is more pronounced among those involved in trophic transmission. We conclude that habitat structure may be a strong predictor of parasite transmission routes, particularly within communities that occupy heterogeneous habitats.

  17. Parasite Zoonoses and Wildlife: Emerging Issues

    PubMed Central

    Thompson, R.C. Andrew; Kutz, Susan J.; Smith, Andrew

    2009-01-01

    The role of wildlife as important sources, reservoirs and amplifiers of emerging human and domestic livestock pathogens, in addition to well recognized zoonoses of public health significance, has gained considerable attention in recent years. However, there has been little attention given to the transmission and impacts of pathogens of human origin, particularly protozoan, helminth and arthropod parasites, on wildlife. Substantial advances in molecular technologies are greatly improving our ability to follow parasite flow among host species and populations and revealing valuable insights about the interactions between cycles of transmission. Here we present several case studies of parasite emergence, or risk of emergence, in wildlife, as a result of contact with humans or anthropogenic activities. For some of these parasites, there is growing evidence of the serious consequences of infection on wildlife survival, whereas for others, there is a paucity of information about their impact. PMID:19440409

  18. Comparison of two commercial vaccines against visceral leishmaniasis in dogs from endemic areas: IgG, and subclasses, parasitism, and parasite transmission by xenodiagnosis.

    PubMed

    Fernandes, Consuelo Barreto; Junior, Jairo Torres Magalhães; de Jesus, Clauceane; Souza, Bárbara Maria Paraná da Silva; Larangeira, Daniela Farias; Fraga, Deborah Bittencourt Mothé; Tavares Veras, Patricia Sampaio; Barrouin-Melo, Stella Maria

    2014-03-05

    The incidence of zoonotic canine visceral leishmaniasis (CVL) would decrease if dogs were effectively vaccinated; however, additional data on the efficacy of canine vaccines are required for their approved preventative use. To prospectively evaluate vaccination outcomes using two products commercially available in Brazil, with respect to adverse reactions (reactogenicity), humoral response, disease signs, parasitism, and parasite infectiousness in naturally exposed pet dogs in an endemic area of visceral leishmaniasis (VL). From 2010 to 2012, healthy dogs were vaccinated with Leishmune(®) (50 animals) or Leish-Tec(®) (50 animals). Each dog was examined to identify clinical signs during peri- and post-vaccination procedures every 2 months for 11 months to identify the presence of parasites or parasite DNA in splenic samples using culturing or PCR, respectively. Levels of anti-Leishmania IgG, IgG1, and IgG2 were quantified in sera by ELISA and infectiousness was assessed by xenodiagnosis. Adverse effects occurred in 2.2% (1/45) and 13.0% (6/46) of the animals in the Leishmune(®) and Leish-Tec(®) groups, respectively. IgG levels peaked on the 21st day following the first dose of Leishmune(®) and on the 21st day after the second dose of Leish-Tec(®). The final seropositivity rate for IgG was 32.5% (13/40) and 30.9% (13/42) in the Leishmune(®) and Leish-Tec(®) groups, respectively. The Leishmune(®) group presented higher levels of IgG1 and IgG2 compared to the Leish-Tec(®) group (p<0.001), and ELISA reactivity in both vaccinated groups was significantly lower (p<0.001) than in infected positive control dogs. Parasitism was observed in 12.2% (5/41) of the Leishmune(®) group, and 7.9% (3/38) of the Leish-Tec(®) group, with xenodiagnostic transmission rates of Leishmania to Lutzomyia longipalpis of 5.1% (2/39), and 5.4% (2/37), respectively. No significant differences were observed in dogs vaccinated with Leishmune(®) or Leish-Tec(®), with respect to LVC

  19. Interacting parasites

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2010-01-01

    Parasitism is the most popular life-style on Earth, and many vertebrates host more than one kind of parasite at a time. A common assumption is that parasite species rarely interact, because they often exploit different tissues in a host, and this use of discrete resources limits competition (1). On page 243 of this issue, however, Telfer et al. (2) provide a convincing case of a highly interactive parasite community in voles, and show how infection with one parasite can affect susceptibility to others. If some human parasites are equally interactive, our current, disease-by-disease approach to modeling and treating infectious diseases is inadequate (3).

  20. Empirical Support for Optimal Virulence in a Castrating Parasite

    PubMed Central

    Jensen, Knut Helge; Little, Tom; Skorping, Arne; Ebert, Dieter

    2006-01-01

    The trade-off hypothesis for the evolution of virulence predicts that parasite transmission stage production and host exploitation are balanced such that lifetime transmission success (LTS) is maximised. However, the experimental evidence for this prediction is weak, mainly because LTS, which indicates parasite fitness, has been difficult to measure. For castrating parasites, this simple model has been modified to take into account that parasites convert host reproductive resources into transmission stages. Parasites that kill the host too early will hardly benefit from these resources, while postponing the killing of the host results in diminished returns. As predicted from optimality models, a parasite inducing castration should therefore castrate early, but show intermediate levels of virulence, where virulence is measured as time to host killing. We studied virulence in an experimental system where a bacterial parasite castrates its host and produces spores that are not released until after host death. This permits estimating the LTS of the parasite, which can then be related to its virulence. We exposed replicate individual Daphnia magna (Crustacea) of one host clone to the same amount of bacterial spores and followed individuals until their death. We found that the parasite shows strong variation in the time to kill its host and that transmission stage production peaks at an intermediate level of virulence. A further experiment tested for the genetic basis of variation in virulence by comparing survival curves of daphniids infected with parasite spores obtained from early killing versus late killing infections. Hosts infected with early killer spores had a significantly higher death rate as compared to those infected with late killers, indicating that variation in time to death was at least in part caused by genetic differences among parasites. We speculate that the clear peak in lifetime reproductive success at intermediate killing times may be caused by the

  1. The evolution of reduced antagonism--A role for host-parasite coevolution.

    PubMed

    Gibson, A K; Stoy, K S; Gelarden, I A; Penley, M J; Lively, C M; Morran, L T

    2015-11-01

    Why do some host-parasite interactions become less antagonistic over evolutionary time? Vertical transmission can select for reduced antagonism. Vertical transmission also promotes coevolution between hosts and parasites. Therefore, we hypothesized that coevolution itself may underlie transitions to reduced antagonism. To test the coevolution hypothesis, we selected for reduced antagonism between the host Caenorhabditis elegans and its parasite Serratia marcescens. This parasite is horizontally transmitted, which allowed us to study coevolution independently of vertical transmission. After 20 generations, we observed a response to selection when coevolution was possible: reduced antagonism evolved in the copassaged treatment. Reduced antagonism, however, did not evolve when hosts or parasites were independently selected without coevolution. In addition, we found strong local adaptation for reduced antagonism between replicate host/parasite lines in the copassaged treatment. Taken together, these results strongly suggest that coevolution was critical to the rapid evolution of reduced antagonism. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  2. Parasitism and the biodiversity-functioning relationship

    USGS Publications Warehouse

    Frainer, André; McKie, Brendan G.; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D.

    2018-01-01

    Biodiversity affects ecosystem functioning.Biodiversity may decrease or increase parasitism.Parasites impair individual hosts and affect their role in the ecosystem.Parasitism, in common with competition, facilitation, and predation, could regulate BD-EF relationships.Parasitism affects host phenotypes, including changes to host morphology, behavior, and physiology, which might increase intra- and interspecific functional diversity.The effects of parasitism on host abundance and phenotypes, and on interactions between hosts and the remaining community, all have potential to alter community structure and BD-EF relationships.Global change could facilitate the spread of invasive parasites, and alter the existing dynamics between parasites, communities, and ecosystems.Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions – parasitism – has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite–host interactions should be incorporated into the BD-EF framework.

  3. Dressed for success: the surface coats of insect-borne protozoan parasites.

    PubMed

    Roditi, Isabel; Liniger, Matthias

    2002-03-01

    Three major human diseases, malaria, sleeping sickness and leishmaniasis, are caused by protozoan parasites that are transmitted by blood-sucking insects. These insects are not mere 'flying syringes' that mechanically transfer parasites from one mammal to the next. Instead, they provide a specific environment--albeit not a particularly hospitable one--in which the parasites differentiate, proliferate and migrate to the correct tissues to ensure transmission to the next mammalian host. Recent studies on the role of parasite surface molecules in insect vectors have delivered some surprises and could provide insights on ways to interrupt transmission.

  4. Potential effect of climate change on malaria transmission in Africa.

    PubMed

    Tanser, Frank C; Sharp, Brian; le Sueur, David

    2003-11-29

    Climate change is likely to affect transmission of vector-borne diseases such as malaria. We quantitatively estimated current malaria exposure and assessed the potential effect of projected climate scenarios on malaria transmission. We produced a spatiotemporally validated (against 3791 parasite surveys) model of Plasmodium falciparum malaria transmission in Africa. Using different climate scenarios from the Hadley Centre global climate model (HAD CM3) climate experiments, we projected the potential effect of climate change on transmission patterns. Our model showed sensitivity and specificity of 63% and 96%, respectively (within 1 month temporal accuracy), when compared with the parasite surveys. We estimate that on average there are 3.1 billion person-months of exposure (445 million people exposed) in Africa per year. The projected scenarios would estimate a 5-7% potential increase (mainly altitudinal) in malaria distribution with surprisingly little increase in the latitudinal extents of the disease by 2100. Of the overall potential increase (although transmission will decrease in some countries) of 16-28% in person-months of exposure (assuming a constant population), a large proportion will be seen in areas of existing transmission. The effect of projected climate change indicates that a prolonged transmission season is as important as geographical expansion in correct assessment of the effect of changes in transmission patterns. Our model constitutes a valid baseline against which climate scenarios can be assessed and interventions planned.

  5. Regional variation in immature Ixodes scapularis parasitism on North American songbirds: implications for transmission of the Lyme pathogen, Borrelia burgdorferi.

    PubMed

    Brinkerhoff, R Jory; Folsom-O'Keefe, Corrine M; Streby, Henry M; Bent, Stephen J; Tsao, Kimberly; Diuk-Wasser, Maria A

    2011-03-01

    Borrelia burgdorferi, the etiological agent of Lyme disease, is transmitted among hosts by the black-legged tick, Ixodes scapularis, a species that regularly parasitizes various vertebrate hosts, including birds, in its immature stages. Lyme disease risk in the United States is highest in the Northeast and in the upper Midwest where I. scapularis ticks are most abundant. Because birds might be important to the range expansion of I. scapularis and B. burgdorferi, we explored spatial variation in patterns of I. scapularis parasitism on songbirds, as well as B. burgdorferi infection in bird-derived I. scapularis larvae. We sampled birds at 23 sites in the eastern United States to describe seasonal patterns of I. scapularis occurrence on birds, and we screened a subset of I. scapularis larvae for presence of B. burgdorferi. Timing of immature I. scapularis occurrence on birds is consistent with regional variation in host-seeking activity with a generally earlier peak in larval parasitism on birds in the Midwest. Significantly more I. scapularis larvae occurred on birds that were contemporaneously parasitized by nymphs in the Midwest than the Northeast, and the proportion of birds that yielded B. burgdorferi-infected larvae was also higher in the Midwest. We conclude that regional variation in immature I. scapularis phenology results in different temporal patterns of parasitism on birds, potentially resulting in differential importance of birds to B. burgdorferi transmission dynamics among regions.

  6. Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores.

    PubMed

    Poelman, Erik H; Zheng, Si-Jun; Zhang, Zhao; Heemskerk, Nanda M; Cortesero, Anne-Marie; Dicke, Marcel

    2011-12-06

    Plants are exposed to a suite of herbivorous attackers that often arrive sequentially. Herbivory affects interactions between the host plants and subsequently attacking herbivores. Moreover, plants may respond to herbivory by emitting volatile organic compounds (VOCs) that attract carnivorous natural enemies of the herbivores. However, information borne by VOCs is ubiquitous and may attract carnivores, such as parasitoids, that differ in their effectiveness at releasing the plant from its herbivorous attackers. Furthermore, the development of parasitoids within their herbivorous hosts, attacking a given host plant, may influence the elicitation of defensive reactions in the host plant. This may, in turn, affect the behavior of subsequent herbivores attacking the host plant. Here, we show that the species identity of a parasitoid had a more significant effect on defense responses of Brassica oleracea plants than the species identity of the herbivorous hosts of the parasitoids. Consequently, B. oleracea plants that were damaged by caterpillars (Pieris spp.) parasitized by different parasitoid species varied in the degree to which diamondback moths (Plutella xylostella) selected the plants for oviposition. Attracting parasitoids in general benefitted the plants by reducing diamondback moth colonization. However, the species of parasitoid that parasitized the herbivore significantly affected the magnitude of this benefit by its species-specific effect on herbivore-plant interactions mediated by caterpillar regurgitant. Our findings show that information-mediated indirect defense may lead to unpredictable consequences for plants when considering trait-mediated effects of parasitized caterpillars on the host plant and their consequences because of community-wide responses to induced plants.

  7. Mobile phones and malaria: modeling human and parasite travel

    PubMed Central

    Buckee, Caroline O.; Wesolowski, Amy; Eagle, Nathan; Hansen, Elsa; Snow, Robert W.

    2013-01-01

    Human mobility plays an important role in the dissemination of malaria parasites between regions of variable transmission intensity. Asymptomatic individuals can unknowingly carry parasites to regions where mosquito vectors are available, for example, undermining control programs and contributing to transmission when they travel. Understanding how parasites are imported between regions in this way is therefore an important goal for elimination planning and the control of transmission, and would enable control programs to target the principal sources of malaria. Measuring human mobility has traditionally been difficult to do on a population scale, but the widespread adoption of mobile phones in low-income settings presents a unique opportunity to directly measure human movements that are relevant to the spread of malaria. Here, we discuss the opportunities for measuring human mobility using data from mobile phones, as well as some of the issues associated with combining mobility estimates with malaria infection risk maps to meaningfully estimate routes of parasite importation. PMID:23478045

  8. Multihost Bartonella parasites display covert host specificity even when transmitted by generalist vectors.

    PubMed

    Withenshaw, Susan M; Devevey, Godefroy; Pedersen, Amy B; Fenton, Andy

    2016-11-01

    Many parasites infect multiple sympatric host species, and there is a general assumption that parasite transmission between co-occurring host species is commonplace. Such between-species transmission could be key to parasite persistence within a disease reservoir and is consequently an emerging focus for disease control. However, while a growing body of theory indicates the potential importance of between-species transmission for parasite persistence, conclusive empirical evidence from natural communities is lacking, and the assumption that between-species transmission is inevitable may therefore be wrong. We investigated the occurrence of between-species transmission in a well-studied multihost parasite system. We identified the flea-borne Bartonella parasites infecting sympatric populations of Apodemus sylvaticus (wood mice) and Myodes glareolus (bank voles) in the UK and confirmed that several Bartonella species infect both rodent species. However, counter to previous knowledge, genetic characterization of these parasites revealed covert host specificity, where each host species is associated with a distinct assemblage of genetic variants, indicating that between-species transmission is rare. Limited between-species transmission could result from rare encounters between one host species and the parasites infecting another and/or host-parasite incompatibility. We investigated the occurrence of such encounter and compatibility barriers by identifying the flea species associated with each rodent host, and the Bartonella variants carried by individual fleas. We found that the majority of fleas were host-generalists but the assemblage of Bartonella variants in fleas tended to reflect the assemblage of Bartonella variants in the host species they were collected from, thus providing evidence of encounter barriers mediated by limited between-species flea transfer. However, we also found several fleas that were carrying variants never found in the host species from which

  9. The Chagas disease domestic transmission cycle in Guatemala: Parasite-vector switches and lack of mitochondrial co-diversification between Triatoma dimidiata and Trypanosoma cruzi subpopulations suggest non-vectorial parasite dispersal across the Motagua valley.

    PubMed

    Pennington, Pamela M; Messenger, Louisa Alexandra; Reina, Jeffrey; Juárez, José G; Lawrence, Gena G; Dotson, Ellen M; Llewellyn, Martin S; Cordón-Rosales, Celia

    2015-11-01

    can be explained by multiple parasite-host switches between vector populations and selection or bottleneck processes across the Motagua Valley, with a possible role for didelphids in domestic transmission. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Cooperation and conflict in host manipulation: interactions among macro-parasites and micro-organisms.

    PubMed

    Cézilly, Frank; Perrot-Minnot, Marie-Jeanne; Rigaud, Thierry

    2014-01-01

    Several parasite species are known to manipulate the phenotype of their hosts in ways that enhance their own transmission. Co-occurrence of manipulative parasites, belonging to the same species or to more than one species, in a single host has been regularly observed. Little is known, however, on interactions between co-occurring manipulative parasites with same or different transmission routes. Several models addressing this problem have provided predictions on how cooperation and conflict between parasites could emerge from multiple infections. Here, we review the empirical evidence in favor of the existence of synergistic or antagonistic interactions between co-occurring parasites, and highlight the neglected role of micro-organisms. We particularly discuss the actual importance of selective forces shaping the evolution of interactions between manipulative parasites in relation to parasite prevalence in natural populations, efficiency in manipulation, and type of transmission (i.e., horizontal versus vertical), and we emphasize the potential for future research.

  11. Are fish immune systems really affected by parasites? an immunoecological study of common carp (Cyprinus carpio)

    PubMed Central

    2011-01-01

    Background The basic function of the immune system is to protect an organism against infection in order to minimize the fitness costs of being infected. According to life-history theory, energy resources are in a trade-off between the costly demands of immunity and other physiological demands. Concerning fish, both physiology and immunity are influenced by seasonal changes (i.e. temporal variation) associated to the changes of abiotic factors (such as primarily water temperature) and interactions with pathogens and parasites. In this study, we investigated the potential associations between the physiology and immunocompetence of common carp (Cyprinus carpio) collected during five different periods of a given year. Our sampling included the periods with temporal variability and thus, it presented a different level in exposure to parasites. We analyzed which of two factors, seasonality or parasitism, had the strongest impact on changes in fish physiology and immunity. Results We found that seasonal changes play a key role in affecting the analyzed measurements of physiology, immunity and parasitism. The correlation analysis revealed the relationships between the measures of overall host physiology, immunity and parasite load when temporal variability effect was removed. When analyzing separately parasite groups with different life-strategies, we found that fish with a worse condition status were infected more by monogeneans, representing the most abundant parasite group. The high infection by cestodes seems to activate the phagocytes. A weak relationship was found between spleen size and abundance of trematodes when taking into account seasonal changes. Conclusions Even if no direct trade-off between the measures of host immunity and physiology was confirmed when taking into account the seasonality, it seems that seasonal variability affects host immunity and physiology through energy allocation in a trade-off between life important functions, especially reproduction

  12. Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics.

    PubMed

    Gehman, Alyssa-Lois M; Hall, Richard J; Byers, James E

    2018-01-23

    Host-parasite systems have intricately coupled life cycles, but each interactor can respond differently to changes in environmental variables like temperature. Although vital to predicting how parasitism will respond to climate change, thermal responses of both host and parasite in key traits affecting infection dynamics have rarely been quantified. Through temperature-controlled experiments on an ectothermic host-parasite system, we demonstrate an offset in the thermal optima for survival of infected and uninfected hosts and parasite production. We combine experimentally derived thermal performance curves with field data on seasonal host abundance and parasite prevalence to parameterize an epidemiological model and forecast the dynamical responses to plausible future climate-warming scenarios. In warming scenarios within the coastal southeastern United States, the model predicts sharp declines in parasite prevalence, with local parasite extinction occurring with as little as 2 °C warming. The northern portion of the parasite's current range could experience local increases in transmission, but assuming no thermal adaptation of the parasite, we find no evidence that the parasite will expand its range northward under warming. This work exemplifies that some host populations may experience reduced parasitism in a warming world and highlights the need to measure host and parasite thermal performance to predict infection responses to climate change.

  13. Host allometry influences the evolution of parasite host-generalism: theory and meta-analysis

    PubMed Central

    Hurford, Amy; Ellison, Amy R.

    2017-01-01

    Parasites vary widely in the diversity of hosts they infect: some parasite species are specialists—infecting just a single host species, while others are generalists, capable of infecting many. Understanding the factors that drive parasite host-generalism is of basic biological interest, but also directly relevant to predicting disease emergence in new host species, identifying parasites that are likely to have unidentified additional hosts, and assessing transmission risk. Here, we use mathematical models to investigate how variation in host body size and environmental temperature affect the evolution of parasite host-generalism. We predict that parasites are more likely to evolve a generalist strategy when hosts are large-bodied, when variation in host body size is large, and in cooler environments. We then explore these predictions using a newly updated database of over 20 000 fish–macroparasite associations. Within the database we see some evidence supporting these predictions, but also highlight mismatches between theory and data. By combining these two approaches, we establish a theoretical basis for interpreting empirical data on parasites' host specificity and identify key areas for future work that will help untangle the drivers of parasite host-generalism. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289257

  14. Prevalence of intestinal parasites among inmates in Midwest Brazil

    PubMed Central

    França, Adriana de Oliveira; Fernandes, Henrique Jorge; Mendes, Rinaldo Pôncio; de Carvalho, Lídia Raquel; Higa, Minoru German; Ferreira, Eduardo de Castro; Dorval, Maria Elizabeth Cavalheiros

    2017-01-01

    Background Intestinal parasitic infections constitute a public health issue in developing countries, with prevalence rates as high as 90%, a figure set to escalate as the socioeconomic status of affected populations deteriorates. Investigating the occurrence of these infections among inmates is critical, since this group is more vulnerable to the spread of a number of infectious illnesses. Methods This cross-sectional, analytical, quantitative study was conducted in July 2015 at prison facilities located in Midwest Brazil to estimate the prevalence of parasitic infection among inmates. For detection of parasites, 510 stool samples were examined by ether centrifugation and spontaneous sedimentation. Results Eight parasitic species were detected, with an overall prevalence of 20.2% (103/510). Giardia lamblia and Entamoeba histolytica/dispar were the most frequent pathogenic parasites. Endolimax nana was the predominant non-pathogenic species. Nearly half of the subjects (53/103; 51.4%) were positive for mixed infection. Logistic regression revealed that inmates held in closed conditions were more likely to contract parasitic infections than those held in a semi-open regime (OR = 1.97; 95% CI = 1.19–3.25; p = 0.0085). A higher prevalence of parasitic infections was observed among individuals who had received no prophylactic antiparasitic treatment in previous years (OR = 10.2; 95% CI = 5.86–17.66; p < 0.001). The other factors investigated had no direct association with the presence of intestinal parasites. Conclusion Infections caused by directly transmissible parasites were detected. Without adequate treatment and prophylactic guidance, inmates tend to remain indefinitely infected with intestinal parasites, whether while serving time in prison or after release. PMID:28934218

  15. Malaria transmission blocking immunity and sexual stage vaccines for interrupting malaria transmission in Latin America

    PubMed Central

    Arévalo-Herrera, Myriam; Solarte, Yezid; Marin, Catherin; Santos, Mariana; Castellanos, Jenniffer; Beier, John C; Valencia, Sócrates Herrera

    2016-01-01

    Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America. PMID:21881775

  16. Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity

    PubMed Central

    Dunne, Jennifer A.; Lafferty, Kevin D.; Dobson, Andrew P.; Hechinger, Ryan F.; Kuris, Armand M.; Martinez, Neo D.; McLaughlin, John P.; Mouritsen, Kim N.; Poulin, Robert; Reise, Karsten; Stouffer, Daniel B.; Thieltges, David W.; Williams, Richard J.; Zander, Claus Dieter

    2013-01-01

    Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites “dominate” food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites' roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites' feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic organization

  17. Parasites affect food web structure primarily through increased diversity and complexity.

    PubMed

    Dunne, Jennifer A; Lafferty, Kevin D; Dobson, Andrew P; Hechinger, Ryan F; Kuris, Armand M; Martinez, Neo D; McLaughlin, John P; Mouritsen, Kim N; Poulin, Robert; Reise, Karsten; Stouffer, Daniel B; Thieltges, David W; Williams, Richard J; Zander, Claus Dieter

    2013-01-01

    Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites "dominate" food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites' roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites' feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic organization

  18. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites.

    PubMed

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E; Yoshida, Shigeto

    2014-10-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Density-dependent topographical specialization in Gyrodactylus anisopharynx (Monogenoidea, Gyrodactylidae): boosting transmission or evading competition?

    PubMed

    Pie, Marcio R; Engers, Kerlen B; Boeger, Walter A

    2006-06-01

    Viviparous gyrodactylids are remarkable monogenoid ectoparasites, not only because of their speciousness, but also due to their unusually wide range of hosts. Although many factors have been proposed to determine the location where gyrodactylids attach to their hosts, little is known about how their preference for specific host body regions changes over the course of infection. In this study, we investigate the dynamics of topographical specialization of the parasite Gyrodactylus anisopharynx on 2 of its natural freshwater fish hosts (Corydoras paleatus and C. ehrhardti), as well as a naïve host (C. schwartzi). We recorded the spatial location of this parasite from the foundation of the infrapopulation to its extinction to assess how topographical specialization is affected by host species, the size and the age of the infrapopulation, and the possibility of transmission among hosts. Our results indicate that topographical specialization is negatively correlated with infrapopulation size and only marginally affected by infrapopulation age. Also, the degree of specialization was different among host species, but seemed unaffected by the possibility of transmission among hosts. Therefore, observed changes in spatial specialization of G. anisopharynx do not appear to represent adaptive responses to maximize their transmission. Rather, mechanisms such as increased competition and/ or local immune responses might cause parasites to occupy less favorable regions of the body of their hosts with increasing density.

  20. Evolution of parasitism and mutualism between filamentous phage M13 and Escherichia coli.

    PubMed

    Shapiro, Jason W; Williams, Elizabeth S C P; Turner, Paul E

    2016-01-01

    Background. How host-symbiont interactions coevolve between mutualism and parasitism depends on the ecology of the system and on the genetic and physiological constraints of the organisms involved. Theory often predicts that greater reliance on horizontal transmission favors increased costs of infection and may result in more virulent parasites or less beneficial mutualists. We set out to understand transitions between parasitism and mutualism by evolving the filamentous bacteriophage M13 and its host Escherichia coli. Results. The effect of phage M13 on bacterial fitness depends on the growth environment, and initial assays revealed that infected bacteria reproduce faster and to higher density than uninfected bacteria in 96-well microplates. These data suggested that M13 is, in fact, a facultative mutualist of E. coli. We then allowed E. coli and M13 to evolve in replicated environments, which varied in the relative opportunity for horizontal and vertical transmission of phage in order to assess the evolutionary stability of this mutualism. After 20 experimental passages, infected bacteria from treatments with both vertical and horizontal transmission of phage had evolved the fastest growth rates. At the same time, phage from these treatments no longer benefited the ancestral bacteria. Conclusions. These data suggest a positive correlation between the positive effects of M13 on E. coli hosts from the same culture and the negative effects of the same phage toward the ancestral bacterial genotype. The results also expose flaws in applying concepts from the virulence-transmission tradeoff hypothesis to mutualism evolution. We discuss the data in the context of more recent theory on how horizontal transmission affects mutualisms and explore how these effects influence phages encoding virulence factors in pathogenic bacteria.

  1. Timing of host feeding drives rhythms in parasite replication

    PubMed Central

    Cumnock, Katherine; Schneider, David; Subudhi, Amit; Savill, Nicholas J.

    2018-01-01

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host’s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host’s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  2. Measuring changes in Plasmodium falciparum transmission: Precision, accuracy and costs of metrics

    PubMed Central

    Tusting, Lucy S.; Bousema, Teun; Smith, David L.; Drakeley, Chris

    2016-01-01

    As malaria declines in parts of Africa and elsewhere, and as more countries move towards elimination, it is necessary to robustly evaluate the effect of interventions and control programmes on malaria transmission. To help guide the appropriate design of trials to evaluate transmission-reducing interventions, we review eleven metrics of malaria transmission, discussing their accuracy, precision, collection methods and costs, and presenting an overall critique. We also review the non-linear scaling relationships between five metrics of malaria transmission; the entomological inoculation rate, force of infection, sporozoite rate, parasite rate and the basic reproductive number, R0. Our review highlights that while the entomological inoculation rate is widely considered the gold standard metric of malaria transmission and may be necessary for measuring changes in transmission in highly endemic areas, it has limited precision and accuracy and more standardised methods for its collection are required. In areas of low transmission, parasite rate, sero-conversion rates and molecular metrics including MOI and mFOI may be most appropriate. When assessing a specific intervention, the most relevant effects will be detected by examining the metrics most directly affected by that intervention. Future work should aim to better quantify the precision and accuracy of malaria metrics and to improve methods for their collection. PMID:24480314

  3. Host partitioning by parasites in an intertidal crustacean community.

    PubMed

    Koehler, Anson V; Poulin, Robert

    2010-10-01

    Patterns of host use by parasites throughout a guild community of intermediate hosts can depend on several biological and ecological factors, including physiology, morphology, immunology, and behavior. We looked at parasite transmission in the intertidal crustacean community of Lower Portobello Bay, Dunedin, New Zealand, with the intent of: (1) mapping the flow of parasites throughout the major crustacean species, (2) identifying hosts that play the most important transmission role for each parasite, and (3) assessing the impact of parasitism on host populations. The most prevalent parasites found in 14 species of crustaceans (635 specimens) examined were the trematodes Maritrema novaezealandensis and Microphallus sp., the acanthocephalans Profilicollis spp., the nematode Ascarophis sp., and an acuariid nematode. Decapods were compatible hosts for M. novaezealandensis, while other crustaceans demonstrated lower host suitability as shown by high levels of melanized and immature parasite stages. Carapace thickness, gill morphology, and breathing style may contribute to the differential infection success of M. novaezealandensis and Microphallus sp. in the decapod species. Parasite-induced host mortality appears likely with M. novaezealandensis in the crabs Austrohelice crassa, Halicarcinus varius, Hemigrapsus sexdentatus, and Macrophthalmus hirtipes, and also with Microphallus sp. in A. crassa. Overall, the different parasite species make different use of available crustacean intermediate hosts and possibly contribute to intertidal community structure.

  4. Differential tolerances to ocean acidification by parasites that share the same host.

    PubMed

    MacLeod, C D; Poulin, R

    2015-06-01

    Ocean acidification is predicted to cause major changes in marine ecosystem structure and function over the next century, as species-specific tolerances to acidified seawater may alter previously stable relationships between coexisting organisms. Such differential tolerances could affect marine host-parasite associations, as either host or parasite may prove more susceptible to the stressors associated with ocean acidification. Despite their important role in many ecological processes, parasites have not been studied in the context of ocean acidification. We tested the effects of low pH seawater on the cercariae and, where possible, the metacercariae of four species of marine trematode parasite. Acidified seawater (pH 7.6 and 7.4, 12.5 °C) caused a 40-60% reduction in cercarial longevity and a 0-78% reduction in metacercarial survival. However, the reduction in longevity and survival varied distinctly between parasite taxa, indicating that the effects of reduced pH may be species-specific. These results suggest that ocean acidification has the potential to reduce the transmission success of many trematode species, decrease parasite abundance and alter the fundamental regulatory role of multi-host parasites in marine ecosystems. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  5. Canine and feline parasitic zoonoses in China

    PubMed Central

    2012-01-01

    Canine and feline parasitic zoonoses have not been given high priority in China, although the role of companion animals as reservoirs for zoonotic parasitic diseases has been recognized worldwide. With an increasing number of dogs and cats under unregulated conditions in China, the canine and feline parasitic zoonoses are showing a trend towards being gradually uncontrolled. Currently, canine and feline parasitic zoonoses threaten human health, and cause death and serious diseases in China. This article comprehensively reviews the current status of major canine and feline parasitic zoonoses in mainland China, discusses the risks dogs and cats pose with regard to zoonotic transmission of canine and feline parasites, and proposes control strategies and measures. PMID:22839365

  6. Vertical Transmission of Hepatozoon in the Garter Snake Thamnophis elegans.

    PubMed

    Kauffman, Kiera L; Sparkman, Amanda; Bronikowski, Anne M; Palacios, Maria G

    2017-01-01

    Vertical transmission of blood parasites has been demonstrated in humans and some domestic species, but it has not been well documented in wild populations. We assessed whether Hepatozoon blood parasites are vertically transmitted in naturally infected individuals of the viviparous western terrestrial garter snake ( Thamnophis elegans ). Blood smears were taken from nine wild-caught gravid female snakes at capture, preparturition, and postparturition, and then from their laboratory-born offspring at age 2 mo and 1 yr. All infected offspring were born to four infected females, although not all offspring in a given litter were necessarily infected. Parasites were not detected in offspring born to the five uninfected mothers. The highest parasite loads were found in neonates at 2 mo of age. Parasite prevalence did not vary between sexes in offspring, but females showed higher loads than did males when 2 mo old. This study supports vertical transmission of Hepatozoon in naturally infected viviparous snakes and suggests that vertical transmission of hematozoan parasites might be an overlooked mode of transmission in wildlife.

  7. The many roads to parasitism: a tale of convergence.

    PubMed

    Poulin, Robert

    2011-01-01

    Parasitic organisms account for a large portion of living species. They have arisen on multiple independent occasions in many phyla, and thus encompass a huge biological diversity. This review uses several lines of evidence to argue that this vast diversity can be reduced to a few evolutionary end points that transcend phylogenetic boundaries. These represent peaks in the adaptive landscape reached independently by different lineages undergoing convergent evolution. Among eukaryotic parasites living in or on animals, six basic parasitic strategies are identified based on the number of hosts used per parasite generation, the fitness loss incurred by the host, and the transmission routes used by the parasites. They are parasitoids, parasitic castrators, directly transmitted parasites, trophically transmitted parasites, vector-transmitted parasites and micropredators. These show evidence of convergence in morphology, physiology, reproduction, life cycles and transmission patterns. Parasite-host body size ratios, and the relationship between virulence and intensity of infection, are also associated with the different parasitic strategies, but not consistently so. At the population level, patterns of parasite distribution among hosts are not uniform across all parasitic strategies, but are distinctly different for parasitoids and castrators than for other parasites. To demonstrate that the above six strategies defined for animal parasites are universal, comparisons are made with parasites of plants, in particular, plant-parasitic nematodes and parasitic angiosperms; these are shown to follow the same evolutionary trajectories seen among animal parasites, despite huge physiological and ecological differences between animals and plants. Beyond demonstrating the inevitable convergence of disparate lineages across biological hyperspace towards a limited set of adaptive strategies, this synthesis also provides a unifying framework for the study of parasitism. Copyright

  8. Asynchrony in host and parasite phenology may decrease disease risk in livestock under climate warming: Nematodirus battus in lambs as a case study.

    PubMed

    Gethings, Owen J; Rose, Hannah; Mitchell, Siân; Van Dijk, Jan; Morgan, Eric R

    2015-09-01

    Mismatch in the phenology of trophically linked species as a result of climate warming has been shown to have far-reaching effects on animal communities, but implications for disease have so far received limited attention. This paper presents evidence suggestive of phenological asynchrony in a host-parasite system arising from climate change, with impacts on transmission. Diagnostic laboratory data on outbreaks of infection with the pathogenic nematode Nematodirus battus in sheep flocks in the UK were used to validate region-specific models of the effect of spring temperature on parasite transmission. The hatching of parasite eggs to produce infective larvae is driven by temperature, while the availability of susceptible hosts depends on lambing date, which is relatively insensitive to inter-annual variation in spring temperature. In southern areas and in warmer years, earlier emergence of infective larvae in spring was predicted, with decline through mortality before peak availability of susceptible lambs. Data confirmed model predictions, with fewer outbreaks recorded in those years and regions. Overlap between larval peaks and lamb availability was not reduced in northern areas, which experienced no decreases in the number of reported outbreaks. Results suggest that phenological asynchrony arising from climate warming may affect parasite transmission, with non-linear but predictable impacts on disease burden. Improved understanding of complex responses of host-parasite systems to climate change can contribute to effective adaptation of parasite control strategies.

  9. Fishing drives declines in fish parasite diversity and has variable effects on parasite abundance.

    PubMed

    Wood, Chelsea L; Sandin, Stuart A; Zgliczynski, Brian; Guerra, Ana Sofía; Micheli, Fiorenza

    2014-07-01

    Despite the ubiquity and ecological importance of parasites, relatively few studies have assessed their response to anthropogenic environmental change. Heuristic models have predicted both increases and decreases in parasite abundance in response to human disturbance, with empirical support for both. However, most studies focus on one or a few selected parasite species. Here, we assess the abundance of parasites of seven species of coral reef fishes collected from three fished and three unfished islands of the Line Islands archipelago in the central equatorial Pacific. Because we chose fish hosts that spanned different trophic levels, taxonomic groups, and body sizes, we were able to compare parasite responses across a broad cross section of the total parasite community in the presence and absence of fishing, a major human impact on marine ecosystems. We found that overall parasite species richness was substantially depressed on fished islands, but that the response of parasite abundance varied among parasite taxa: directly transmitted parasites were significantly more abundant on fished than on unfished islands, while the reverse was true for trophically transmitted parasites. This probably arises because trophically transmitted parasites require multiple host species, some of which are the top predators most sensitive to fishing impacts. The increase in directly transmitted parasites appeared to be due to fishing-driven compensatory increases in the abundance of their hosts. Together, these results provide support for the predictions of both heuristic models, and indicate that the direction of fishing's impact on parasite abundance is mediated by parasite traits, notably parasite transmission strategies.

  10. Interactive effects of wildfire, forest management, and isolation on amphibian and parasite abundance

    USGS Publications Warehouse

    Hossack, Blake R.; Corn, P. Stephen; Winsor H. Lowe,; R. Kenneth Honeycutt,; Sean A. Parks,

    2013-01-01

    Projected increases in wildfire and other climate-driven disturbances will affect populations and communities worldwide, including host–parasite relationships. Research in temperate forests has shown that wildfire can negatively affect amphibians, but this research has occurred primarily outside of managed landscapes where interactions with human disturbances could result in additive or synergistic effects. Furthermore, parasites represent a large component of biodiversity and can affect host fitness and population dynamics, yet they are rarely included in studies of how vertebrate hosts respond to disturbance. To determine how wildfire affects amphibians and their parasites, and whether effects differ between protected and managed landscapes, we compared abundance of two amphibians and two nematodes relative to wildfire extent and severity around wetlands in neighboring protected and managed forests (Montana, USA). Population sizes of adult, male long-toed salamanders (Ambystoma macrodactylum) decreased with increased burn severity, with stronger negative effects on isolated populations and in managed forests. In contrast, breeding population sizes of Columbia spotted frogs (Rana luteiventris) increased with burn extent in both protected and managed protected forests. Path analysis showed that the effects of wildfire on the two species of nematodes were consistent with differences in their life history and transmission strategies and the responses of their hosts. Burn severity indirectly reduced abundance of soil-transmitted Cosmocercoides variabilis through reductions in salamander abundance. Burn severity also directly reduced C. variabilis abundance, possibly though changes in soil conditions. For the aquatically transmitted nematode Gyrinicola batrachiensis, the positive effect of burn extent on density of Columbia spotted frog larvae indirectly increased parasite abundance. Our results show that effects of wildfire on amphibians depend upon burn extent

  11. Effects of invasive parasites on bumble bee declines.

    PubMed

    Meeus, Ivan; Brown, Mark J F; De Graaf, Dirk C; Smagghe, Guy

    2011-08-01

    Bumble bees are a group of pollinators that are both ecologically and economically important and declining worldwide. Numerous mechanisms could be behind this decline, and the spread of parasites from commercial colonies into wild populations has been implicated recently in North America. Commercial breeding may lead to declines because commercial colonies may have high parasite loads, which can lead to colonization of native bumble bee populations; commercial rearing may allow higher parasite virulence to evolve; and global movement of commercial colonies may disrupt spatial patterns in local adaptation between hosts and parasites. We assessed parasite virulence, transmission mode, and infectivity. Microparasites and so-called honey bee viruses may pose the greatest threat to native bumble bee populations because certain risk factors are present; for example, the probability of horizontal transmission of the trypanosome parasite Crithidia bombi is high. The microsporidian parasite Nosema bombi may play a role in declines of bumble bees in the United States. Preliminary indications that C. bombi and the neogregarine Apicystis bombi may not be native in parts of South America. We suggest that the development of molecular screening protocols, thorough sanitation efforts, and cooperation among nongovernmental organizations, governments, and commercial breeders might immediately mitigate these threats. © 2011 Society for Conservation Biology.

  12. Parasites affect food web structure primarily through increased diversity and complexity

    USGS Publications Warehouse

    Dunne, Jennifer A.; Lafferty, Kevin D.; Dobson, Andrew P.; Hechinger, Ryan F.; Kuris, Armand M.; Martinez, Neo D.; McLaughlin, John P.; Mouritsen, Kim N.; Poulin, Robert; Reise, Karsten; Stouffer, Daniel B.; Thieltges, David W.; Williams, Richard J.; Zander, Claus Dieter

    2013-01-01

    Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites ‘‘dominate’’ food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites’ roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites’ feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic

  13. Manipulative parasites in the world of veterinary science: implications for epidemiology and pathology.

    PubMed

    Lagrue, Clément; Poulin, Robert

    2010-04-01

    One of the most complex and least understood transmission strategies displayed by pathogenic parasites is that of manipulation of host behaviour. A wide variety of parasites alter their host's behaviour, including species of medical and veterinary importance, such as Diplostomum spathaceum, Echinococcus spp. and Toxoplasma gondii. The manipulative ability of these parasites has implications for pathology and transmission dynamics. Domestic animals are hosts for manipulative pathogens, either by being the target host and acquiring the parasite as a result of vector-host manipulation, or by having their behaviour changed by manipulative parasites. This review uses several well-known pathogens to demonstrate how host manipulation by parasites is potentially important in epidemiology. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Ecological multiplex interactions determine the role of species for parasite spread amplification

    PubMed Central

    Stella, Massimo; Selakovic, Sanja; Antonioni, Alberto

    2018-01-01

    Despite their potential interplay, multiple routes of many disease transmissions are often investigated separately. As a unifying framework for understanding parasite spread through interdependent transmission paths, we present the ‘ecomultiplex’ model, where the multiple transmission paths among a diverse community of interacting hosts are represented as a spatially explicit multiplex network. We adopt this framework for designing and testing potential control strategies for Trypanosoma cruzi spread in two empirical host communities. We show that the ecomultiplex model is an efficient and low data-demanding method to identify which species enhances parasite spread and should thus be a target for control strategies. We also find that the interplay between predator-prey and host-parasite interactions leads to a phenomenon of parasite amplification, in which top predators facilitate T. cruzi spread, offering a mechanistic interpretation of previous empirical findings. Our approach can provide novel insights in understanding and controlling parasite spreading in real-world complex systems. PMID:29683427

  15. Host lignin composition affects haustorium induction in the parasitic plants Phtheirospermum japonicum and Striga hermonthica.

    PubMed

    Cui, Songkui; Wada, Syogo; Tobimatsu, Yuki; Takeda, Yuri; Saucet, Simon B; Takano, Toshiyuki; Umezawa, Toshiaki; Shirasu, Ken; Yoshida, Satoko

    2018-04-01

    Parasitic plants in the family Orobanchaceae are destructive weeds of agriculture worldwide. The haustorium, an essential parasitic organ used by these plants to penetrate host tissues, is induced by host-derived phenolic compounds called haustorium-inducing factors (HIFs). The origin of HIFs remains unknown, although the structures of lignin monomers resemble that of HIFs. Lignin is a natural phenylpropanoid polymer, commonly found in secondary cell walls of vascular plants. We therefore investigated the possibility that HIFs are derived from host lignin. Various lignin-related phenolics, quinones and lignin polymers, together with nonhost and host plants that have different lignin compositions, were tested for their haustorium-inducing activity in two Orobanchaceae species, a facultative parasite, Phtheirospermum japonicum, and an obligate parasite, Striga hermonthica. Lignin-related compounds induced haustoria in P. japonicum and S. hermonthica with different specificities. High concentrations of lignin polymers induced haustorium formation. Treatment with laccase, a lignin degradation enzyme, promoted haustorium formation at low concentrations. The distinct lignin compositions of the host and nonhost plants affected haustorium induction, correlating with the response of the different parasitic plants to specific types of lignin-related compounds. Our study provides valuable insights into the important roles of lignin biosynthesis and degradation in the production of HIFs. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  16. Spatial and temporal variation in biting rates and parasite transmission potentials of onchocerciasis vectors in Ecuador.

    PubMed

    Vieira, J C; Brackenboro, L; Porter, C H; Basáñez, M-G; Collins, R C

    2005-03-01

    The influence of spatial and temporal factors on onchocerciasis transmission by Simulium exiguum s.l. and S. quadrivittatum in Ecuador was investigated to help develop sampling protocols for entomological surveillance of ivermectin programmes. Flies were collected in alternate months (November 1995-November 1996) at four sites each in the hyperendemic communities of San Miguel and El Tigre. A fixed-effects analysis of variance was used to explore the influence on vector abundance of locality, site, month and hour. Infectivity rates detected by dissection and PCR assays were compared. Simulium exiguum s.l. predominated at El Tigre (75%) whereas S. quadrivittatum prevailed at San Miguel (62%). Vector abundance was highest on river banks and outside houses. Biting and infection rates peaked from March to July. Hourly activity patterns were bimodal in S. exiguum but unimodal in S. quadrivittatum. Annual transmission potentials (ATP) for both species combined were 385 and 733 third stage larvae/person in San Miguel and El Tigre respectively, with S. exiguum accounting for 80% of the combined ATP at both localities. We recommend protocols that may maximize detection of parasite transmission. Infection rates thus obtained must be linked with vector density estimates to assess meaningfully host exposure as treatment progresses.

  17. Prediction and prevention of parasitic diseases using a landscape genomics framework

    PubMed Central

    Schwabl, Philipp; Llewellyn, Martin; Landguth, Erin L.; Andersson, Björn; Kitron, Uriel; Costales, Jaime A.; Ocaña, Sofía; Grijalva, Mario J.

    2016-01-01

    Summary Substantial heterogeneity exists in the dispersal, distribution and transmission of parasitic species. Understanding and predicting how such features are governed by the ecological variation of landscape they inhabit is the central goal of spatial epidemiology. Genetic data can further inform functional connectivity among parasite, host and vector populations in a landscape. Gene flow correlates with the spread of epidemiologically relevant phenotypes among parasite and vector populations (e.g., virulence, drug and pesticide resistance), as well as invasion and re-invasion risk where parasite transmission is absent due to current or past intervention measures. However, the formal integration of spatial and genetic data (‘landscape genetics’) is scarcely ever applied to parasites. Here, we discuss the specific challenges and practical prospects for the use of landscape genetics and genomics to understand the biology and control of parasitic disease and present a practical framework for doing so. PMID:27863902

  18. Differential responses of Africanized and European honey bees (Apis mellifera) to viral replication following mechanical transmission or Varroa destructor parasitism.

    PubMed

    Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto; Goodwin, Paul H; Reyes-Quintana, Mariana; Koleoglu, Gun; Correa-Benítez, Adriana; Petukhova, Tatiana

    2015-03-01

    For the first time, adults and brood of Africanized and European honey bees (Apis mellifera) were compared for relative virus levels over 48 h following Varroa destructor parasitism or injection of V. destructor homogenate. Rates of increase of deformed wing virus (DWV) for Africanized versus European bees were temporarily lowered for 12h with parasitism and sustainably lowered over the entire experiment (48 h) with homogenate injection in adults. The rates were also temporarily lowered for 24h with parasitism but were not affected by homogenate injection in brood. Rates of increase of black queen cell virus (BQCV) for Africanized versus European bees were similar with parasitism but sustainably lowered over the entire experiment with homogenate injection in adults and were similar for parasitism and homogenate injection in brood. Analyses of sac brood bee virus and Israeli acute paralysis virus were limited as detection did not occur after both homogenate injection and parasitism treatment, or levels were not significantly higher than those following control buffer injection. Lower rates of replication of DWV and BQCV in Africanized bees shows that they may have greater viral resistance, at least early after treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The impact of conservation-driven translocations on blood parasite prevalence in the Seychelles warbler.

    PubMed

    Fairfield, Eleanor A; Hutchings, Kimberly; Gilroy, Danielle L; Kingma, Sjouke A; Burke, Terry; Komdeur, Jan; Richardson, David S

    2016-07-13

    Introduced populations often lose the parasites they carried in their native range, but little is known about which processes may cause parasite loss during host movement. Conservation-driven translocations could provide an opportunity to identify the mechanisms involved. Using 3,888 blood samples collected over 22 years, we investigated parasite prevalence in populations of Seychelles warblers (Acrocephalus sechellensis) after individuals were translocated from Cousin Island to four new islands (Aride, Cousine, Denis and Frégate). Only a single parasite (Haemoproteus nucleocondensus) was detected on Cousin (prevalence = 52%). This parasite persisted on Cousine (prevalence = 41%), but no infection was found in individuals hatched on Aride, Denis or Frégate. It is not known whether the parasite ever arrived on Aride, but it has not been detected there despite 20 years of post-translocation sampling. We confirmed that individuals translocated to Denis and Frégate were infected, with initial prevalence similar to Cousin. Over time, prevalence decreased on Denis and Frégate until the parasite was not found on Denis two years after translocation, and was approaching zero prevalence on Frégate. The loss (Denis) or decline (Frégate) of H. nucleocondensus, despite successful establishment of infected hosts, must be due to factors affecting parasite transmission on these islands.

  20. The effect of octopaminergic compounds on the behaviour and transmission of Gyrodactylus.

    PubMed

    Brooker, Adam J; Grano Maldonado, Mayra I; Irving, Stephen; Bron, James E; Longshaw, Matthew; Shinn, Andrew P

    2011-10-27

    The high transmission potential of species belonging to the monogenean parasite genus Gyrodactylus, coupled with their high fecundity, allows them to rapidly colonise new hosts and to increase in number. One gyrodactylid, Gyrodactylus salaris Malmberg, 1957, has been responsible for devastation of Altantic salmon (Salmo salar L.) populations in a number of Norwegian rivers. Current methods of eradicating G. salaris from river systems centre around the use of non-specific biocides, such as rotenone and aluminium sulphate.Although transmission routes in gyrodactylids have been studied extensively, the behaviour of individual parasites has received little attention. Specimens of Gyrodactylus gasterostei Gläser, 1974 and G. arcuatus Bychowsky, 1933, were collected from the skin of their host, the three-spined stickleback (Gasterosteus aculeatus L.), and permitted to attach to the substrate. The movements of individual parasites were recorded and analysed. The behaviour patterns of the two species were similar and parasites were more active in red light and darkness than in white light. Four octopaminergic compounds were tested and all four inhibited the movements of parasites. Treatment ultimately led to death at low concentrations (0.2 μM), although prolonged exposure was necessary in some instances. Octopaminergic compounds may affect the parasite's ability to locate and remain on its host and these or related compounds might provide alternative or supplementary treatments for the control of G. salaris infections. With more research there is potential for use of octopaminergic compounds, which have minimal effects on the host or its environment, as parasite-specific treatments against G. salaris infections.

  1. Parasite Removal, but Not Herbivory, Deters Future Parasite Attachment on Tomato

    PubMed Central

    Tjiurutue, Muvari Connie; Palmer-Young, Evan C.; Adler, Lynn S.

    2016-01-01

    Plants face many antagonistic interactions that occur sequentially. Often, plants employ defense strategies in response to the initial damage that are highly specific and can affect interactions with subsequent antagonists. In addition to herbivores and pathogens, plants face attacks by parasitic plants, but we know little about how prior herbivory compared to prior parasite attachment affects subsequent host interactions. If host plants can respond adaptively to these different damage types, we predict that prior parasitism would have a greater deterrent effect on subsequent parasites than would prior herbivory. To test the effects of prior parasitism and prior herbivory on subsequent parasitic dodder (Cuscuta spp.) preference, we conducted two separate greenhouse studies with tomato hosts (Solanum lycopersicum). In the first experiment, we tested the effects of previous dodder attachment on subsequent dodder preference on tomato hosts using three treatments: control plants that had no previous dodder attachment; dodder-removed plants that had an initial dodder seedling attached, removed and left in the same pot to simulate parasite death; and dodder-continuous plants with an initial dodder seedling that remained attached. In the second experiment, we tested the effects of previous caterpillar damage (Spodoptera exigua) and mechanical damage on future dodder attachment on tomato hosts. Dodder attached most slowly to tomato hosts that had dodder plants previously attached and then removed, compared to control plants or plants with continuous dodder attachment. In contrast, herbivory did not affect subsequent dodder attachment rate. These results indicate that dodder preference depended on the identity and the outcome of the initial attack, suggesting that early-season interactions have the potential for profound impacts on subsequent community dynamics. PMID:27529694

  2. Influence of climate on malaria transmission depends on daily temperature variation.

    PubMed

    Paaijmans, Krijn P; Blanford, Simon; Bell, Andrew S; Blanford, Justine I; Read, Andrew F; Thomas, Matthew B

    2010-08-24

    Malaria transmission is strongly influenced by environmental temperature, but the biological drivers remain poorly quantified. Most studies analyzing malaria-temperature relations, including those investigating malaria risk and the possible impacts of climate change, are based solely on mean temperatures and extrapolate from functions determined under unrealistic laboratory conditions. Here, we present empirical evidence to show that, in addition to mean temperatures, daily fluctuations in temperature affect parasite infection, the rate of parasite development, and the essential elements of mosquito biology that combine to determine malaria transmission intensity. In general, we find that, compared with rates at equivalent constant mean temperatures, temperature fluctuation around low mean temperatures acts to speed up rate processes, whereas fluctuation around high mean temperatures acts to slow processes down. At the extremes (conditions representative of the fringes of malaria transmission, where range expansions or contractions will occur), fluctuation makes transmission possible at lower mean temperatures than currently predicted and can potentially block transmission at higher mean temperatures. If we are to optimize control efforts and develop appropriate adaptation or mitigation strategies for future climates, we need to incorporate into predictive models the effects of daily temperature variation and how that variation is altered by climate change.

  3. Evolution of parasitism and mutualism between filamentous phage M13 and Escherichia coli

    PubMed Central

    Williams, Elizabeth S.C.P.; Turner, Paul E.

    2016-01-01

    Background. How host-symbiont interactions coevolve between mutualism and parasitism depends on the ecology of the system and on the genetic and physiological constraints of the organisms involved. Theory often predicts that greater reliance on horizontal transmission favors increased costs of infection and may result in more virulent parasites or less beneficial mutualists. We set out to understand transitions between parasitism and mutualism by evolving the filamentous bacteriophage M13 and its host Escherichia coli. Results. The effect of phage M13 on bacterial fitness depends on the growth environment, and initial assays revealed that infected bacteria reproduce faster and to higher density than uninfected bacteria in 96-well microplates. These data suggested that M13 is, in fact, a facultative mutualist of E. coli. We then allowed E. coli and M13 to evolve in replicated environments, which varied in the relative opportunity for horizontal and vertical transmission of phage in order to assess the evolutionary stability of this mutualism. After 20 experimental passages, infected bacteria from treatments with both vertical and horizontal transmission of phage had evolved the fastest growth rates. At the same time, phage from these treatments no longer benefited the ancestral bacteria. Conclusions. These data suggest a positive correlation between the positive effects of M13 on E. coli hosts from the same culture and the negative effects of the same phage toward the ancestral bacterial genotype. The results also expose flaws in applying concepts from the virulence-transmission tradeoff hypothesis to mutualism evolution. We discuss the data in the context of more recent theory on how horizontal transmission affects mutualisms and explore how these effects influence phages encoding virulence factors in pathogenic bacteria. PMID:27257543

  4. [Change of host's behavior including man under the influence of parasites].

    PubMed

    Sergiev, V P

    2010-01-01

    Directed modulation of hosts' behavior favouring transmission of pathogen was noted in many parasites and, above all, in helminthes, which life cycle includes the consequent change of several hosts. It turned out that parasites use the same neuromediators for change of behavior of both mammals and hosts belonging to other animal classes. In fishes as well as in mammals, monoamines-neurotransmitters assist in brain functioning. Norepinephrine, dopamine and serotonin affect the alimentation, motion activity, aggression and social behaviour. Changes in concentration ratio of serotonin and its metabolites in invaded species were more pronounced, which pointed to directed effects of pathogens on serotonin activity. The same effect of some pathogens on human behaviour does not have selective significance because humans are not an essential link in life cycle of many parasites. Although the mentioned effect on behaviour could lead to negative consequences. For examples, persons with latent toxoplasmosis are significantly more frequent become members or victims of traffic accidents due to decreased ability for concentration of attention.

  5. Methodological issues affecting the study of fish parasites. II. Sampling method affects ectoparasite studies.

    PubMed

    Kvach, Yuriy; Ondračková, Markéta; Janáč, Michal; Jurajda, Pavel

    2016-08-31

    In this study, we assessed the impact of sampling method on the results of fish ectoparasite studies. Common roach Rutilus rutilus were sampled from the same gravel pit in the River Dyje flood plain (Czech Republic) using 3 different sampling methods, i.e. electrofishing, beach seining and gill-netting, and were examined for ectoparasites. Not only did fish caught by electrofishing have more of the most abundant parasites (Trichodina spp., Gyrodactylus spp.) than those caught by beach seining or gill-netting, they also had relatively rich parasite infracommunities, resulting in a significantly different assemblage composition, presumably as parasites were lost through handling and 'manipulation' in the net. Based on this, we recommend electrofishing as the most suitable method to sample fish for parasite community studies, as data from fish caught with gill-nets and beach seines will provide a biased picture of the ectoparasite community, underestimating ectoparasite abundance and infracommunity species richness.

  6. Host and parasite life history interplay to yield divergent population genetic structures in two ectoparasites living on the same bat species.

    PubMed

    van Schaik, J; Dekeukeleire, D; Kerth, G

    2015-05-01

    Host-parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing-mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing-mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing-mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits. © 2015 John Wiley & Sons Ltd.

  7. Mouse models for pathogenic African trypanosomes: unravelling the immunology of host-parasite-vector interactions.

    PubMed

    Magez, S; Caljon, G

    2011-08-01

    African trypanosomiasis is a parasitic disease that affects a variety of mammals, including humans, on the sub-Saharan African continent. To understand the diverse parameters that govern the host-parasite-vector interactions, mouse models for the disease have proven to be a cornerstone. Despite the fact that most trypanosomes cannot be considered natural pathogens for rodents, experimental infections in mice have shed a tremendous amount of light on the general biology of these parasites and their interaction with and evasion of the mammalian immune system. Different aspects including inflammation, vaccine failure, antigenic variation, resistance/sensitivity to normal human serum and the influence of tsetse compounds on parasite transmission have all been addressed using mouse models. In more recent years, the introduction of various 'knock-out' mouse strains has allowed to analyse the implication of various cytokines, particularly TNF, IFNγ and IL-10, in the regulation of parasitaemia and induction of pathological conditions during infection. © 2011 Blackwell Publishing Ltd.

  8. Scanning and transmission electron microscopic observation of the parasitic form of Trichophyton violaceum in the infected hair from tinea capitis.

    PubMed

    Zhuang, Kaiwen; Ran, Xin; Lei, Song; Zhang, Chaoliang; Lama, Jebina; Ran, Yuping

    2014-01-01

    Trichophyton violaceum is a pathogen of tinea capitis and usually cause infection of scalp and hair in children. To investigate the parasitic form of T. violaceum in the human hair tissue, the infected hair strands were collected from a 9-year-old boy with tinea capitis due to T. violaceum and observed under both the scanning electron microscope (SEM) and transmission electron microscope (TEM). The SEM and TEM findings revealed that T. violaceum parasitically lives in the hair shaft in various forms and the morphological transformation of the fungus from hyphae into arthrospores was noted. The involved hair shaft was damaged to the great extent and its ultrastructural changes were evident. Those morphological characteristics of T. violaceum and the three-dimensional ultastructure changes of infected hairs give a better knowledge about the host-fungus relationship in tinea capitis. © 2014 Wiley Periodicals, Inc.

  9. Living on the Edge: Parasite Prevalence Changes Dramatically across a Range Edge in an Invasive Gecko.

    PubMed

    Coates, Andrew; Barnett, Louise K; Hoskin, Conrad; Phillips, Ben L

    2017-02-01

    Species interactions can determine range limits, and parasitism is the most intimate of such interactions. Intriguingly, the very conditions on range edges likely change host-parasite dynamics in nontrivial ways. Range edges are often associated with clines in host density and with environmental transitions, both of which may affect parasite transmission. On advancing range edges, founder events and fitness/dispersal costs of parasitism may also cause parasites to be lost on range edges. Here we examine the prevalence of three species of parasite across the range edge of an invasive gecko, Hemidactylus frenatus, in northeastern Australia. The gecko's range edge spans the urban-woodland interface at the edge of urban areas. Across this edge, gecko abundance shows a steep decline, being lower in the woodland. Two parasite species (a mite and a pentastome) are coevolved with H. frenatus, and these species become less prevalent as the geckos become less abundant. A third species of parasite (another pentastome) is native to Australia and has no coevolutionary history with H. frenatus. This species became more prevalent as the geckos become less abundant. These dramatic shifts in parasitism (occurring over 3.5 km) confirm that host-parasite dynamics can vary substantially across the range edge of this gecko host.

  10. Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi

    PubMed Central

    Tan, Cheong H; Vythilingam, Indra; Matusop, Asmad; Chan, Seng T; Singh, Balbir

    2008-01-01

    Background A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit. Methods Three different ecological sites in the forest, farm and longhouse in the Kapit district were selected for the study. Mosquitoes were collected by human landing collection at all sites and at the forest also by monkey-baited-traps situated on three different levels. All mosquitoes were identified and salivary glands and midguts of anopheline mosquitoes were dissected to determine the presence of malaria parasites. Results and Discussions Over an 11-month period, a total of 2,504 Anopheles mosquitoes comprising 12 species were caught; 1,035 at the farm, 774 at the forest and 425 at the longhouse. Anopheles latens (62.3%) and Anopheles watsonii (30.6%) were the predominant species caught in the forested ecotypes, while in the farm Anopheles donaldi (49.9%) and An. latens (35.6%) predominated. In the long house, An. latens (29.6%) and An. donaldi (22.8%) were the major Anopheline species. However, An. latens was the only mosquito positive for sporozoites and it was found to be attracted to both human and monkey hosts. In monkey-baited net traps, it preferred to bite monkeys at the canopy level than at ground level. An. latens was found biting early as 18.00 hours. Conclusion Anopheles latens is the main vector for P. knowlesi malaria parasites in the Kapit District of Sarawak, Malaysian Borneo. The study underscores the relationship between ecology, abundance and bionomics of anopheline fauna. The simio-anthropophagic and acrodendrophilic behaviour of An. latens makes it an efficient vector for the transmission of P. knowlesi parasites to both human and monkey hosts. PMID:18377652

  11. Prediction and Prevention of Parasitic Diseases Using a Landscape Genomics Framework.

    PubMed

    Schwabl, Philipp; Llewellyn, Martin S; Landguth, Erin L; Andersson, Björn; Kitron, Uriel; Costales, Jaime A; Ocaña, Sofía; Grijalva, Mario J

    2017-04-01

    Substantial heterogeneity exists in the dispersal, distribution and transmission of parasitic species. Understanding and predicting how such features are governed by the ecological variation of landscape they inhabit is the central goal of spatial epidemiology. Genetic data can further inform functional connectivity among parasite, host and vector populations in a landscape. Gene flow correlates with the spread of epidemiologically relevant phenotypes among parasite and vector populations (e.g., virulence, drug and pesticide resistance), as well as invasion and re-invasion risk where parasite transmission is absent due to current or past intervention measures. However, the formal integration of spatial and genetic data ('landscape genetics') is scarcely ever applied to parasites. Here, we discuss the specific challenges and practical prospects for the use of landscape genetics and genomics to understand the biology and control of parasitic disease and present a practical framework for doing so. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Impact of anthropogenic and natural environmental changes on Echinococcus transmission in Ningxia Hui Autonomous Region, the People’s Republic of China

    PubMed Central

    2012-01-01

    Echinococcus transmission is known to be affected by various environmental factors, which may be modified by human influence or natural events including global warming. Considerable population growth in the last fifty years in Ningxia Hui Autonomous Region (NHAR), the People’s Republic of China (PRC), has led to dramatic increases in deforestation and modified agricultural practices. In turn, this has resulted in many changes in the habitats for the definitive and intermediate hosts of both Echinococcus granulosus and E. multilocularis, which have increased the risks for transmission of both parasites, affecting echinococcosis prevalence and human disease. Ecological environmental changes due to anthropogenic activities and natural events drive Echinococcus transmission and NHAR provides a notable example illustrating how human activity can impact on a parasitic infection of major public health significance. It is very important to continually monitor these environmental (including climatic) factors that drive the distribution of Echinococcus spp. and their impact on transmission to humans because such information is necessary to formulate reliable future public health policy for echinococcosis control programs and to prevent disease spread. PMID:22827890

  13. Controlling and Coordinating Development in Vector-Transmitted Parasites

    PubMed Central

    Matthews, Keith R.

    2013-01-01

    Vector-borne parasites cause major human diseases of the developing world, including malaria, human African trypanosomiasis, Chagas disease, leishmaniasis, filariasis, and schistosomiasis. Although the life cycles of these parasites were defined over 100 years ago, the strategies they use to optimize their successful transmission are only now being understood in molecular terms. Parasites are now known to monitor their environment in both their host and vector and in response to other parasites. This allows them to adapt their developmental cycles and to counteract any unfavorable conditions they encounter. Here, I review the interactions that parasites engage in with their hosts and vectors to maximize their survival and spread. PMID:21385707

  14. Speciation in parasites: a population genetics approach.

    PubMed

    Huyse, Tine; Poulin, Robert; Théron, André

    2005-10-01

    Parasite speciation and host-parasite coevolution should be studied at both macroevolutionary and microevolutionary levels. Studies on a macroevolutionary scale provide an essential framework for understanding the origins of parasite lineages and the patterns of diversification. However, because coevolutionary interactions can be highly divergent across time and space, it is important to quantify and compare the phylogeographic variation in both the host and the parasite throughout their geographical range. Furthermore, to evaluate demographic parameters that are relevant to population genetics structure, such as effective population size and parasite transmission, parasite populations must be studied using neutral genetic markers. Previous emphasis on larger-scale studies means that the connection between microevolutionary and macroevolutionary events is poorly explored. In this article, we focus on the spatial fragmentation of parasites and the population genetics processes behind their diversification in an effort to bridge the micro- and macro-scales.

  15. Whole-Killed Blood-Stage Vaccine-Induced Immunity Suppresses the Development of Malaria Parasites in Mosquitoes.

    PubMed

    Zhu, Feng; Liu, Taiping; Zhao, Chenhao; Lu, Xiao; Zhang, Jian; Xu, Wenyue

    2017-01-01

    As a malaria transmission-blocking vaccine alone does not confer a direct benefit to the recipient, it is necessary to develop a vaccine that not only blocks malaria transmission but also protects vaccinated individuals. In this study we observed that a whole-killed blood-stage vaccine (WKV) not only conferred protection against the blood-stage challenge but also markedly inhibited the transmission of different strains of the malaria parasite. Although the parasitemia is much lower in WKV-immunized mice challenged with malaria parasites, the gametocytemia is comparable between control and immunized mice during the early stages of infection. The depletion of CD4 + T cells prior to the adoptive transfer of parasites into WKV-immunized mice has no effect on the development of the malaria parasite in the mosquito, but the adoptive transfer of the serum from the immunized mice into the parasite-inoculated mice remarkably suppresses the development of malaria parasites in mosquitoes. Furthermore, immunized mice challenged with the malaria parasite generate higher levels of parasite-specific Abs and the inflammatory cytokines MCP-1 and IFN-γ. However, the adoptive transfer of parasite-specific IgG or the depletion of MCP-1, but not IFN-γ, to some extent is closely associated with the suppression of malaria parasite development in mosquitoes. These data strongly suggest that WKV-induced immune responses confer protection against the mosquito stage, which is largely dependent on malaria parasite-specific Abs and MCP-1. This finding sheds new light on blocking malaria transmission through the immunization of individuals with the WKV. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Generalists at the interface: Nematode transmission between wild and domestic ungulates.

    PubMed

    Walker, Josephine G; Morgan, Eric R

    2014-12-01

    Many parasitic nematode species are generalists capable of infecting multiple host species. The complex life cycle of nematodes, involving partial development outside of the host, facilitates transmission of these parasites between host species even when there is no direct contact between hosts. Infective nematode larvae persist in the environment, and where grazing or water sources are shared ingestion of parasite larvae deposited by different host species is likely. In this paper we examine the extent to which nematode parasite species have been observed in sympatric wild and domestic ungulates. First, using existing host-parasite databases, we describe expected overlap of 412 nematode species between 76 wild and 8 domestic ungulate host species. Our results indicate that host-specific parasites make up less than half of the nematode parasites infecting any particular ungulate host species. For wild host species, between 14% (for common warthog) and 76% (for mouflon) of parasitic nematode species are shared with domestic species. For domestic host species, between 42% (for horse) and 77% (for llamas/alpacas) of parasitic nematode species are shared with wild species. We also present an index of liability to describe the risk of cross-boundary parasites to each host species. We then examine specific examples from the literature in which transmission of nematode parasites between domestic and wild ungulates is described. However, there are many limitations in the existing data due to geographical bias and certain host species being studied more frequently than others. Although we demonstrate that many species of parasitic nematode are found in both wild and domestic hosts, little work has been done to demonstrate whether transmission is occurring between species or whether similar strains circulate separately. Additional research on cross-species transmission, including the use of models and of genetic methods to define strains, will provide evidence to answer this

  17. Generalists at the interface: Nematode transmission between wild and domestic ungulates

    PubMed Central

    Walker, Josephine G.; Morgan, Eric R.

    2014-01-01

    Many parasitic nematode species are generalists capable of infecting multiple host species. The complex life cycle of nematodes, involving partial development outside of the host, facilitates transmission of these parasites between host species even when there is no direct contact between hosts. Infective nematode larvae persist in the environment, and where grazing or water sources are shared ingestion of parasite larvae deposited by different host species is likely. In this paper we examine the extent to which nematode parasite species have been observed in sympatric wild and domestic ungulates. First, using existing host–parasite databases, we describe expected overlap of 412 nematode species between 76 wild and 8 domestic ungulate host species. Our results indicate that host-specific parasites make up less than half of the nematode parasites infecting any particular ungulate host species. For wild host species, between 14% (for common warthog) and 76% (for mouflon) of parasitic nematode species are shared with domestic species. For domestic host species, between 42% (for horse) and 77% (for llamas/alpacas) of parasitic nematode species are shared with wild species. We also present an index of liability to describe the risk of cross-boundary parasites to each host species. We then examine specific examples from the literature in which transmission of nematode parasites between domestic and wild ungulates is described. However, there are many limitations in the existing data due to geographical bias and certain host species being studied more frequently than others. Although we demonstrate that many species of parasitic nematode are found in both wild and domestic hosts, little work has been done to demonstrate whether transmission is occurring between species or whether similar strains circulate separately. Additional research on cross-species transmission, including the use of models and of genetic methods to define strains, will provide evidence to answer

  18. Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: a cross sectional survey at two sites of different malaria transmission intensities in Rwanda.

    PubMed

    Kateera, Fredrick; Nsobya, Sam L; Tukwasibwe, Stephen; Mens, Petra F; Hakizimana, Emmanuel; Grobusch, Martin P; Mutesa, Leon; Kumar, Nirbhay; van Vugt, Michele

    2016-04-26

    Malaria remains a public health challenge in sub-Saharan Africa with Plasmodium falciparum being the principal cause of malaria disease morbidity and mortality. Plasmodium falciparum virulence is attributed, in part, to its population-level genetic diversity-a characteristic that has yet to be studied in Rwanda. Characterizing P. falciparum molecular epidemiology in an area is needed for a better understand of malaria transmission and to inform choice of malaria control strategies. In this health-facility based survey, malaria case clinical profiles and parasite densities as well as parasite genetic diversity were compared among P. falciparum-infected patients identified at two sites of different malaria transmission intensities in Rwanda. Data on demographics and clinical features and finger-prick blood samples for microscopy and parasite genotyping were collected(.) Nested PCR was used to genotype msp-2 alleles of FC27 and 3D7. Patients' variables of age group, sex, fever (both by patient report and by measured tympanic temperatures), parasite density, and bed net use were found differentially distributed between the higher endemic (Ruhuha) and lower endemic (Mubuga) sites. Overall multiplicity of P. falciparum infection (MOI) was 1.73 but with mean MOI found to vary significantly between 2.13 at Ruhuha and 1.29 at Mubuga (p < 0.0001). At Ruhuha, expected heterozygosity (EH) for FC27 and 3D7 alleles were 0.62 and 0.49, respectively, whilst at Mubuga, EH for FC27 and 3D7 were 0.26 and 0.28, respectively. In this study, a higher geometrical mean parasite counts, more polyclonal infections, higher MOI, and higher allelic frequency were observed at the higher malaria-endemic (Ruhuha) compared to the lower malaria-endemic (Mubuga) area. These differences in malaria risk and MOI should be considered when choosing setting-specific malaria control strategies, assessing p. falciparum associated parameters such as drug resistance, immunity and impact of used

  19. Patterns of parasite transmission in polar seas: Daily rhythms of cercarial emergence from intertidal snails

    NASA Astrophysics Data System (ADS)

    Prokofiev, Vladimir V.; Galaktionov, Kirill V.; Levakin, Ivan A.

    2016-07-01

    Trematodes are common parasites in intertidal ecosystems. Cercariae, their dispersive larvae, ensure transmission of infection from the first intermediate molluscan host to the second intermediate (invertebrates and fishes) or the final (fishes, marine birds and mammals) host. Trematode transmission in polar seas, while interesting in many respects, is poorly studied. This study aimed to elucidate the patterns of cercarial emergence from intertidal snails at the White Sea and Barents Sea. The study, involving cercariae of 12 species, has provided the most extensive material obtained so far in high latitude seas (66-69° N). The experiments were conducted in situ. Multichannel singular spectral analysis (MSSA) used for processing primary data made it possible to estimate the relative contribution of different oscillations into the analysed time series and to separate the daily component from the other oscillatory components and the noise. Cercarial emergence had pronounced daily rhythms, which did not depend on the daily tidal schedule but were regulated by thermo- and photoperiod. Daily emergence maximums coincided with periods favourable for infecting the second intermediate hosts. Cercarial daily emergence rhythms differed in species using the same molluscan hosts which can be explained by cercarial host searching behaviour. Daily cercarial output (DCO) correlated negatively with larval volume and positively with that of the molluscan host except in cercariae using ambuscade behaviour. In the Barents Sea cercariae emerged from their molluscan hosts at lower temperatures than in the warmer White Sea but the daily emergence period was prolonged. Thus, DCO of related species were similar in these two seas and comparable with DCO values reported for boreal seas. Local temperature adaptations in cercarial emergence suggests that in case of Arctic climate warming trematode transmission in coastal ecosystems is likely to be intensified not because of the increased

  20. The impact of conservation-driven translocations on blood parasite prevalence in the Seychelles warbler

    PubMed Central

    Fairfield, Eleanor A.; Hutchings, Kimberly; Gilroy, Danielle L.; Kingma, Sjouke A.; Burke, Terry; Komdeur, Jan; Richardson, David S.

    2016-01-01

    Introduced populations often lose the parasites they carried in their native range, but little is known about which processes may cause parasite loss during host movement. Conservation-driven translocations could provide an opportunity to identify the mechanisms involved. Using 3,888 blood samples collected over 22 years, we investigated parasite prevalence in populations of Seychelles warblers (Acrocephalus sechellensis) after individuals were translocated from Cousin Island to four new islands (Aride, Cousine, Denis and Frégate). Only a single parasite (Haemoproteus nucleocondensus) was detected on Cousin (prevalence = 52%). This parasite persisted on Cousine (prevalence = 41%), but no infection was found in individuals hatched on Aride, Denis or Frégate. It is not known whether the parasite ever arrived on Aride, but it has not been detected there despite 20 years of post-translocation sampling. We confirmed that individuals translocated to Denis and Frégate were infected, with initial prevalence similar to Cousin. Over time, prevalence decreased on Denis and Frégate until the parasite was not found on Denis two years after translocation, and was approaching zero prevalence on Frégate. The loss (Denis) or decline (Frégate) of H. nucleocondensus, despite successful establishment of infected hosts, must be due to factors affecting parasite transmission on these islands. PMID:27405249

  1. Parasitic diseases in the abdomen: imaging findings.

    PubMed

    Lim, Jae Hoon

    2008-01-01

    Parasitic diseases of the liver and biliary tract include echinococcosis, schistosomiasis, toxocariasis, clonorchiasis, and opisthorchiasis, affecting millions people in some endemic areas. Amebiasis and ascariasis are believed to be the most common bowel lumen indwelling parasitic diseases, affecting billions people worldwide, but sometimes these parasites migrate inadvertently to the liver and biliary tract, resulting in liver abscess or obstructive jaundice. Imaging findings of these parasitic diseases are fairly characteristic and easy to recognize if radiologists are aware of the findings, especially in endemic areas. Because of increased immigration and frequent travelling, some patients with "exotic" parasitic diseases may be encountered in non-endemic areas, and the diagnosis may be delayed or difficult, and it is often made only after operation. This feature section was designed to provide the detailed imaging features of common parasitic diseases affecting the abdominal organs and peritoneal cavity, based on pathology-image correlation.

  2. Body Condition Peaks at Intermediate Parasite Loads in the Common Bully Gobiomorphus cotidianus

    PubMed Central

    Maceda-Veiga, Alberto; Green, Andy J.; Poulin, Robert; Lagrue, Clément

    2016-01-01

    Most ecologists and conservationists perceive parasitic infections as deleterious for the hosts. Their effects, however, depend on many factors including host body condition, parasite load and the life cycle of the parasite. More research into how multiple parasite taxa affect host body condition is required and will help us to better understand host-parasite coevolution. We used body condition indices, based on mass-length relationships, to test the effects that abundances and biomasses of six parasite taxa (five trematodes, Apatemon sp., Tylodelphys sp., Stegodexamene anguillae, Telogaster opisthorchis, Coitocaecum parvum, and the nematode Eustrongylides sp.) with different modes of transmission have on the body condition of their intermediate or final fish host, the common bully Gobiomorphus cotidianus in New Zealand. We used two alternative body condition methods, the Scaled Mass Index (SMI) and Fulton’s condition factor. General linear and hierarchical partitioning models consistently showed that fish body condition varied strongly across three lakes and seasons, and that most parasites did not have an effect on the two body condition indices. However, fish body condition showed a highly significant humpbacked relationship with the total abundance of all six parasite taxa, mostly driven by Apatemon sp. and S. anguillae, indicating that the effects of these parasites can range from positive to negative as abundance increases. Such a response was also evident in models including total parasite biomass. Our methodological comparison supports the SMI as the most robust mass-length method to examine the effects of parasitic infections on fish body condition, and suggests that linear, negative relationships between host condition and parasite load should not be assumed. PMID:28030606

  3. Look what the cat dragged in: do parasites contribute to human cultural diversity?

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2005-01-01

    If human culture emerges from the modal personality of a population, can global variation in parasitism that affects personality lead to cultural diversity among nations? The answer could help explain why people seem to vary so much from one land to another. Thomas et al. (2005) review how parasites manipulate behaviour, including human behaviour. To quote them, “The rabies virus lives in the brain, affording the virus ample opportunity to directly affect host behaviour. Rabid animals do show changes in behaviour, including increased aggression and biting.” Rabies affects a wide range of mammals and the aggressive biting associated with furious rabies appears to increase transmission. The personality transformation of infected humans can be horrifying, transforming loved ones into thrashing, baying beasts. Not coincidentally, in Europe, past periods of rabies outbreaks correspond to increases in werewolf trials. Although rabies can have a dramatic effect, the present rarity of human rabies cases and the availability of a vaccine, means that the behavioural effects of rabies are primarily an illustrative curiosity.

  4. Everyday and exotic foodborne parasites

    PubMed Central

    Lee, Marilyn B

    2000-01-01

    Everyday foodborne parasites, which are endemic in Canada, include the protozoans Entamoeba histolytica, Giardia lamblia and Cryptosporidium parvum. However, these parasites are most frequently acquired through unfiltered drinking water, homosexual activity or close personal contact such as in daycare centres and occasionally via a food vehicle. It is likely that many foodborne outbreaks from these protozoa go undetected. Transmission of helminth infections, such as tapeworms, is rare in Canada because of effective sewage treatment. However, a common foodborne parasite of significance is Toxoplasma gondii. Although infection can be acquired from accidental ingestion of oocysts from cat feces, infection can also result from consumption of tissue cysts in undercooked meat, such as pork or lamb. Congenital transmission poses an immense financial burden, costing Canada an estimated $240 million annually. Also of concern is toxoplasmosis in AIDS patients, which may lead to toxoplasmosis encephalitis, the second most common AIDS-related opportunistic infection of the central nervous system. Exotic parasites (ie, those acquired from abroad or from imported food) are of growing concern because more Canadians are travelling and the number of Canada's trading partners is increasing. Since 1996, over 3000 cases of Cyclospora infection reported in the United States and Canada were epidemiologically associated with importation of Guatemalan raspberries. Unlike toxoplasmosis, where strategies for control largely rest with individual practices, control of cyclosporiasis rests with government policy, which should prohibit the importation of foods at high risk. PMID:18159283

  5. Shifting from wild to domestic hosts: the effect on the transmission of Trypanosoma congolense to tsetse flies.

    PubMed

    Chitanga, Simbarashe; Namangala, Boniface; De Deken, Reginald; Marcotty, Tanguy

    2013-01-01

    The epidemiology and impact of animal African trypanosomosis are influenced by the transmissibility and the pathogenicity of the circulating trypanosome strains in a particular biotope. The transmissibility of 22 Trypanosoma congolense strains isolated from domestic and wild animals was evaluated in a total of 1213 flies. Multivariate mixed models were used to compare infection and maturation rates in function of trypanosome origin (domestic or sylvatic) and pathogenicity. Both trypanosome pathogenicity and origin significantly affected the ability to establish a midgut infection in tsetse flies but not the maturation rates. The interaction between pathogenicity and origin was not significant. Since being pathogenic and having a domestic origin both increased transmissibility, dominant lowly pathogenic trypanosomes from domestic environments and highly pathogenic trypanosomes from sylvatic environments presented similar levels of transmissibility: 12% and 15%, respectively. Blood meals with parasite concentration ranging from 0.05 to 50trypanosomes/μl blood for 3 strains of T. congolense were provided to different batches of tsetse flies to evaluate the relationship between the parasite load in blood meals and the likelihood for a fly to become infected. A linear relationship between parasite load and transmissibility was observed at low parasitaemia and a plateau was observed for meals containing more than 5trypanosomes/μl. Maximum transmission was reached with 12.5trypanosomes/μl blood. About 50% of the flies were refractory to T. congolense, whatever their concentration in the blood meal. The results suggest that the dose-transmissibility relationship presents a similar profile for different T. congolense isolates. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Parasitism affects vaccine efficacy against Streptococcus iniae in Nile tilapia

    USDA-ARS?s Scientific Manuscript database

    Tilapia culture worldwide is estimated to be US$ 5 billion and is important to domestic and global food security. Parasites and bacteria co-occur in both extensive and intensive production of tilapia. The effect of parasitism on vaccine performance in fish is little studied. The objective of this ...

  7. Parasitic Pneumonia and Lung Involvement

    PubMed Central

    Cheepsattayakorn, Ruangrong

    2014-01-01

    Parasitic infestations demonstrated a decline in the past decade as a result of better hygiene practices and improved socioeconomic conditions. Nevertheless, global immigration, increased numbers of the immunocompromised people, international traveling, global warming, and rapid urbanization of the cities have increased the susceptibility of the world population to parasitic diseases. A number of new human parasites, such as Plasmodium knowlesi, in addition to many potential parasites, have urged the interest of scientific community. A broad spectrum of protozoal parasites frequently affects the respiratory system, particularly the lungs. The diagnosis of parasitic diseases of airway is challenging due to their wide varieties of clinical and roentgenographic presentations. So detailed interrogations of travel history to endemic areas are critical for clinicians or pulmonologists to manage this entity. The migrating adult worms can cause mechanical airway obstruction, while the larvae can cause airway inflammation. This paper provides a comprehensive review of both protozoal and helminthic infestations that affect the airway system, particularly the lungs, including clinical and roentgenographic presentations, diagnostic tests, and therapeutic approaches. PMID:24995332

  8. Childhood parasitic infections endemic to the United States.

    PubMed

    Barry, Meagan A; Weatherhead, Jill E; Hotez, Peter J; Woc-Colburn, Laila

    2013-04-01

    Endemic parasitic infections in the United States are more frequent than is commonly perceived. Intestinal parasitic infection with Cryptosporidium, Dientamoeba, and Giardia occurs most often in children in northern states during the summer months. Zoonotic Toxocara and Toxoplasma parasitic infections are more frequent in southern states, in African Americans, and in populations with lower socioeconomic status. Approximately 300, 000 people in the United States have Trypanosoma cruzi infection. Local, vector-borne transmission of T cruzi and Leishmania infections has been documented in southern states. Parasitic diseases endemic to the United States are not uncommon but are understudied. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. The effects of parasite age and intensity on variability in acanthocephalan-induced behavioural manipulation.

    PubMed

    Franceschi, Nathalie; Bauer, Alexandre; Bollache, Loïc; Rigaud, Thierry

    2008-08-01

    Numerous parasites with complex life cycles are able to manipulate the behaviour of their intermediate host in a way that increases their trophic transmission to the definitive host. Pomphorhynchus laevis, an acanthocephalan parasite, is known to reverse the phototactic behaviour of its amphipod intermediate host, Gammarus pulex, leading to an increased predation by fish hosts. However, levels of behavioural manipulation exhibited by naturally-infected gammarids are extremely variable, with some individuals being strongly manipulated whilst others are almost not affected by infection. To investigate parasite age and parasite intensity as potential sources of this variation, we carried out controlled experimental infections on gammarids using parasites from two different populations. We first determined that parasite intensity increased with exposure dose, but found no relationship between infection and host mortality. Repeated measures confirmed that the parasite alters host behaviour only when it reaches the cystacanth stage which is infective for the definitive host. They also revealed, we believe for the first time, that the older the cystacanth, the more it manipulates its host. The age of the parasite is therefore a major source of variation in parasite manipulation. The number of parasites within a host was also a source of variation. Manipulation was higher in hosts infected by two parasites than in singly infected ones, but above this intensity, manipulation did not increase. Since the development time of the parasite was also different according to parasite intensity (it was longer in doubly infected hosts than in singly infected ones, but did not increase more in multi-infected hosts), individual parasite fitness could depend on the compromise between development time and manipulation efficiency. Finally, the two parasite populations tested induced slightly different degrees of behavioural manipulation.

  10. Transmission of the haplosporidian parasite MSX Haplosporidium nelsoni to the eastern oyster Crassostrea virginica in an upweller system.

    PubMed

    Sunila, I; Karolus, J; Lang, E P; Mroczka, M E; Volk, J

    2000-08-31

    The haplosporidian oyster parasite MSX (Multinucleated Sphere X) Haplosporidium nelsoni was transmitted to eastern oysters Crassostrea virginica. Hatchery-raised, MSX-free juvenile oysters were placed in upweller tanks. Water to the tanks was filtered through a screen with 1 mm2 openings and originated from the water column overlaying naturally infected oysters beds (MSX prevalence 17 to 57%). MSX was diagnosed by histopathological analysis. MSX-disease (57% prevalence) with increased mortality (19%) was observed 11 wk after the beginning of the exposure and mortality of 80% after 16 wk. The study demonstrates transmission of MSX via water-borne infectious agents capable of passing through a 1 mm filter.

  11. Parasitic contamination of vegetables in Jos, Nigeria.

    PubMed

    Damen, J G; Banwat, E B; Egah, D Z; Allanana, J A

    2007-09-01

    Intestinal parasites are very common in developing countries including Nigeria. There are diverse ways of their transmission; the study attempts to determine the level of intestinal parasitic contamination on vegetables sold in Jos. Sample of 200 each of Tomatoes (Lycopersium sativus), Letus (Loctus satival) Carrot (Davcus carota L) Cabbage (Brassica Denceal) and Green leafy vegetables were analyzed using standardized Centrifugal-floatation technique methods. Of the 1250 samples of vegetables examined, 450 (36.0%) were positive for intestinal parasites, cabbage recorded the highest prevalence of 64% while tomatoes had the least prevalence of 20%. Vegetables in Jos are heavily contaminated with intestinal parasites and there is need for public enlightenment campaign on the danger of consuming inadequately washed and prepared vegetables.

  12. Parasite Microbiome Project: Systematic Investigation of Microbiome Dynamics within and across Parasite-Host Interactions.

    PubMed

    Dheilly, Nolwenn M; Bolnick, Daniel; Bordenstein, Seth; Brindley, Paul J; Figuères, Cédric; Holmes, Edward C; Martínez Martínez, Joaquín; Phillips, Anna J; Poulin, Robert; Rosario, Karyna

    2017-01-01

    Understanding how microbiomes affect host resistance, parasite virulence, and parasite-associated diseases requires a collaborative effort between parasitologists, microbial ecologists, virologists, and immunologists. We hereby propose the Parasite Microbiome Project to bring together researchers with complementary expertise and to study the role of microbes in host-parasite interactions. Data from the Parasite Microbiome Project will help identify the mechanisms driving microbiome variation in parasites and infected hosts and how that variation is associated with the ecology and evolution of parasites and their disease outcomes. This is a call to arms to prevent fragmented research endeavors, encourage best practices in experimental approaches, and allow reliable comparative analyses across model systems. It is also an invitation to foundations and national funding agencies to propel the field of parasitology into the microbiome/metagenomic era.

  13. Does habitat disturbance affect stress, body condition and parasitism in two sympatric lemurs?

    PubMed Central

    Rakotoniaina, Josué H; Kappeler, Peter M; Ravoniarimbinina, Pascaline; Pechouskova, Eva; Hämäläinen, Anni M; Grass, Juliane; Kirschbaum, Clemens; Kraus, Cornelia

    2016-01-01

    Abstract Understanding how animals react to human-induced changes in their environment is a key question in conservation biology. Owing to their potential correlation with fitness, several physiological parameters are commonly used to assess the effect of habitat disturbance on animals’ general health status. Here, we studied how two lemur species, the fat-tailed dwarf lemur (Cheirogaleus medius) and the grey mouse lemur (Microcebus murinus), respond to changing environmental conditions by comparing their stress levels (measured as hair cortisol concentration), parasitism and general body condition across four habitats ordered along a gradient of human disturbance at Kirindy Forest, Western Madagascar. These two species previously revealed contrasting responses to human disturbance; whereas M. murinus is known as a resilient species, C. medius is rarely encountered in highly disturbed habitats. However, neither hair cortisol concentrations nor parasitism patterns (prevalence, parasite species richness and rate of multiple infections) and body condition varied across the gradient of anthropogenic disturbance. Our results indicate that the effect of anthropogenic activities at Kirindy Forest is not reflected in the general health status of both species, which may have developed a range of behavioural adaptations to deal with suboptimal conditions. Nonetheless, a difference in relative density among sites suggests that the carrying capacity of disturbed habitat is lower, and both species respond differently to environmental changes, with C. medius being more negatively affected. Thus, even for behaviourally flexible species, extended habitat deterioration could hamper long-term viability of populations. PMID:27656285

  14. Infection with schistosome parasites in snails leads to increased predation by prawns: implications for human schistosomiasis control.

    PubMed

    Swartz, Scott J; De Leo, Giulio A; Wood, Chelsea L; Sokolow, Susanne H

    2015-12-01

    Schistosomiasis - a parasitic disease that affects over 200 million people across the globe - is primarily transmitted between human definitive hosts and snail intermediate hosts. To reduce schistosomiasis transmission, some have advocated disrupting the schistosome life cycle through biological control of snails, achieved by boosting the abundance of snails' natural predators. But little is known about the effect of parasitic infection on predator-prey interactions, especially in the case of schistosomiasis. Here, we present the results of laboratory experiments performed on Bulinus truncatus and Biomphalaria glabrata snails to investigate: (i) rates of predation on schistosome-infected versus uninfected snails by a sympatric native river prawn, Macrobrachium vollenhovenii, and (ii) differences in snail behavior (including movement, refuge-seeking and anti-predator behavior) between infected and uninfected snails. In predation trials, prawns showed a preference for consuming snails infected with schistosome larvae. In behavioral trials, infected snails moved less quickly and less often than uninfected snails, and were less likely to avoid predation by exiting the water or hiding under substrate. Although the mechanism by which the parasite alters snail behavior remains unknown, these results provide insight into the effects of parasitic infection on predator-prey dynamics and suggest that boosting natural rates of predation on snails may be a useful strategy for reducing transmission in schistosomiasis hotspots. © 2015. Published by The Company of Biologists Ltd.

  15. Parasite-Vector Interaction of Chagas Disease: A Mini-Review.

    PubMed

    de Oliveira, Ana Beatriz Bortolozo; Alevi, Kaio Cesar Chaboli; Imperador, Carlos Henrique Lima; Madeira, Fernanda Fernandez; Azeredo-Oliveira, Maria Tercília Vilela de

    2018-03-01

    Trypanosoma cruzi is a protozoan of great importance to public health: it has infected millions of people in the world and is the etiologic agent of Chagas disease, which can cause cardiac and gastrointestinal disorders in patients and may even lead to death. The main vector of transmission of this parasite is triatomine bugs, which have a habit of defecating while feeding on blood and passing the parasite to their own hosts through their feces. Although it has been argued that T. cruzi is not pathogenic for this vector, other studies indicate that the success of the infection depends on several molecules and factors, including the insect's intestinal microbiota, which may experience changes as a result of infection that include decreased fitness. Moreover, the effects of infection depend on the insect species, the parasite strain, and environmental conditions involved. However, the parasite-vector interaction is still underexplored. A deeper understanding of this relationship is an important tool for discovering new approaches to T. cruzi transmission and Chagas disease.

  16. Snail-borne parasitic diseases: an update on global epidemiological distribution, transmission interruption and control methods.

    PubMed

    Lu, Xiao-Ting; Gu, Qiu-Yun; Limpanont, Yanin; Song, Lan-Gui; Wu, Zhong-Dao; Okanurak, Kamolnetr; Lv, Zhi-Yue

    2018-04-09

    Snail-borne parasitic diseases, such as angiostrongyliasis, clonorchiasis, fascioliasis, fasciolopsiasis, opisthorchiasis, paragonimiasis and schistosomiasis, pose risks to human health and cause major socioeconomic problems in many tropical and sub-tropical countries. In this review we summarize the core roles of snails in the life cycles of the parasites they host, their clinical manifestations and disease distributions, as well as snail control methods. Snails have four roles in the life cycles of the parasites they host: as an intermediate host infected by the first-stage larvae, as the only intermediate host infected by miracidia, as the first intermediate host that ingests the parasite eggs are ingested, and as the first intermediate host penetrated by miracidia with or without the second intermediate host being an aquatic animal. Snail-borne parasitic diseases target many organs, such as the lungs, liver, biliary tract, intestines, brain and kidneys, leading to overactive immune responses, cancers, organ failure, infertility and even death. Developing countries in Africa, Asia and Latin America have the highest incidences of these diseases, while some endemic parasites have developed into worldwide epidemics through the global spread of snails. Physical, chemical and biological methods have been introduced to control the host snail populations to prevent disease. In this review, we summarize the roles of snails in the life cycles of the parasites they host, the worldwide distribution of parasite-transmitting snails, the epidemiology and pathogenesis of snail-transmitted parasitic diseases, and the existing snail control measures, which will contribute to further understanding the snail-parasite relationship and new strategies for controlling snail-borne parasitic diseases.

  17. Phenotypic plasticity in reproductive effort: malaria parasites respond to resource availability

    PubMed Central

    Repton, Charlotte; O'Donnell, Aidan J.; Schneider, Petra; Reece, Sarah E.

    2017-01-01

    The trade-off between survival and reproduction is fundamental in the life history of all sexually reproducing organisms. This includes malaria parasites, which rely on asexually replicating stages for within-host survival and on sexually reproducing stages (gametocytes) for between-host transmission. The proportion of asexual stages that form gametocytes (reproductive effort) varies during infections—i.e. is phenotypically plastic—in response to changes in a number of within-host factors, including anaemia. However, how the density and age structure of red blood cell (RBC) resources shape plasticity in reproductive effort and impacts upon parasite fitness is controversial. Here, we examine how and why the rodent malaria parasite Plasmodium chabaudi alters its reproductive effort in response to experimental perturbations of the density and age structure of RBCs. We show that all four of the genotypes studied increase reproductive effort when the proportion of RBCs that are immature is elevated during host anaemia, and that the responses of the genotypes differ. We propose that anaemia (counterintuitively) generates a resource-rich environment in which parasites can afford to allocate more energy to reproduction (i.e. transmission) and that anaemia also exposes genetic variation to selection. From an applied perspective, adaptive plasticity in parasite reproductive effort could explain the maintenance of genetic variation for virulence and why anaemia is often observed as a risk factor for transmission in human infections. PMID:28768894

  18. Parasites in marine food webs

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2013-01-01

    Most species interactions probably involve parasites. This review considers the extent to which marine ecologists should consider parasites to fully understand marine communities. Parasites are influential parts of food webs in estuaries, temperate reefs, and coral reefs, but their ecological importance is seldom recognized. Though difficult to observe, parasites can have substantial biomass, and they can be just as common as free-living consumers after controlling for body mass and trophic level. Parasites have direct impacts on the energetics of their hosts and some affect host behaviors, with ecosystem-level consequences. Although they cause disease, parasites are sensitive components of ecosystems. In particular, they suffer secondary extinctions due to biodiversity loss. Some parasites can also return to a system after habitat restoration. For these reasons, parasites can make good indicators of ecosystem integrity. Fishing can indirectly increase or decrease parasite populations and the effects of climate change on parasites are likely to be equally as complex.

  19. Transcriptional Profiling Defines Histone Acetylation as a Regulator of Gene Expression during Human-to-Mosquito Transmission of the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Ngwa, Che J.; Kiesow, Meike J.; Papst, Olga; Orchard, Lindsey M.; Filarsky, Michael; Rosinski, Alina N.; Voss, Till S.; Llinás, Manuel; Pradel, Gabriele

    2017-01-01

    Transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by the intraerythrocytic gametocytes, which, once taken up during a blood meal, become activated to initiate sexual reproduction. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they are crucial for spreading the tropical disease. During gametocyte maturation, different repertoires of genes are switched on and off in a well-coordinated sequence, pointing to regulatory mechanisms of gene expression. While epigenetic gene control has been studied during erythrocytic schizogony of P. falciparum, little is known about this process during human-to-mosquito transmission of the parasite. To unveil the potential role of histone acetylation during gene expression in gametocytes, we carried out a microarray-based transcriptome analysis on gametocytes treated with the histone deacetylase inhibitor trichostatin A (TSA). TSA-treatment impaired gametocyte maturation and lead to histone hyper-acetylation in these stages. Comparative transcriptomics identified 294 transcripts, which were more than 2-fold up-regulated during gametocytogenesis following TSA-treatment. In activated gametocytes, which were less sensitive to TSA, the transcript levels of 48 genes were increased. TSA-treatment further led to repression of ~145 genes in immature and mature gametocytes and 7 genes in activated gametocytes. Up-regulated genes are mainly associated with functions in invasion, cytoadherence, and protein export, while down-regulated genes could particularly be assigned to transcription and translation. Chromatin immunoprecipitation demonstrated a link between gene activation and histone acetylation for selected genes. Among the genes up-regulated in TSA-treated mature gametocytes was a gene encoding the ring finger (RING)-domain protein PfRNF1, a putative E3 ligase of the ubiquitin-mediated signaling pathway. Immunochemistry demonstrated PfRNF1

  20. Effects of transmission-blocking vaccines simultaneously targeting pre- and post-fertilization antigens in the rodent malaria parasite Plasmodium yoelii.

    PubMed

    Zheng, Li; Pang, Wei; Qi, Zanmei; Luo, Enjie; Cui, Liwang; Cao, Yaming

    2016-08-08

    Transmission-blocking vaccine (TBV) is a promising strategy for interrupting the malaria transmission cycle. Current TBV candidates include both pre- and post-fertilization antigens expressed during sexual development of the malaria parasites. We tested whether a TBV design combining two sexual-stage antigens has better transmission-blocking activity. Using the rodent malaria model Plasmodium yoelii, we pursued a DNA vaccination strategy with genes encoding the gametocyte antigen Pys48/45 and the major ookinete surface protein Pys25. Immunization of mice with DNA constructs expression either Pys48/45 or Pys25 elicited strong antibody responses, which specifically recognized a ~45 and ~25 kDa protein from gametocyte and ookinete lysates, respectively. Immune sera from mice immunized with DNA constructs expressing Pys48/45 and Pys25 individually and in combination displayed evident transmission-blocking activity in in vitro ookinete culture and direct mosquito feeding experiments. With both assays, the Pys25 sera had higher transmission-blocking activity than the Pys48/45 sera. Intriguingly, compared with the immunization with the individual DNA vaccines, immunization with both DNA constructs produced lower antibody responses against individual antigens. The resultant immune sera from the composite vaccination had significantly lower transmission-blocking activity than those from Pys25 DNA immunization group, albeit the activity was substantially higher than that from the Pys48 DNA vaccination group. This result suggested that vaccination with the two DNA constructs did not achieve a synergistic effect, but rather caused interference in inducing antigen-specific antibody responses. This result has important implications for future design of composite vaccines targeting different sexual antigens.

  1. Sexual reproduction and genetic exchange in parasitic protists.

    PubMed

    Weedall, Gareth D; Hall, Neil

    2015-02-01

    A key part of the life cycle of an organism is reproduction. For a number of important protist parasites that cause human and animal disease, their sexuality has been a topic of debate for many years. Traditionally, protists were considered to be primitive relatives of the 'higher' eukaryotes, which may have diverged prior to the evolution of sex and to reproduce by binary fission. More recent views of eukaryotic evolution suggest that sex, and meiosis, evolved early, possibly in the common ancestor of all eukaryotes. However, detecting sex in these parasites is not straightforward. Recent advances, particularly in genome sequencing technology, have allowed new insights into parasite reproduction. Here, we review the evidence on reproduction in parasitic protists. We discuss protist reproduction in the light of parasitic life cycles and routes of transmission among hosts.

  2. MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits.

    PubMed

    Westerdahl, Helena; Stjernman, Martin; Råberg, Lars; Lannefors, Mimi; Nilsson, Jan-Åke

    2013-01-01

    Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.

  3. MHC-I Affects Infection Intensity but Not Infection Status with a Frequent Avian Malaria Parasite in Blue Tits

    PubMed Central

    Westerdahl, Helena; Stjernman, Martin; Råberg, Lars; Lannefors, Mimi; Nilsson, Jan-Åke

    2013-01-01

    Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts. PMID:24023631

  4. The role of host abundance in regulating populations of freshwater mussels with parasitic larvae

    Treesearch

    Wendell R. Haag; James A. Stoeckel

    2015-01-01

    Host–parasite theory makes predictions about the influence of host abundance, competition for hosts, and parasite transmission on parasite population size, but many of these predictions are not well tested empirically. We experimentally examined these factors in ponds using two species of freshwater mussels with parasitic larvae that infect host fishes via different...

  5. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity

    PubMed Central

    Bertels, Frederic; Marzel, Alex; Leventhal, Gabriel; Mitov, Venelin; Fellay, Jacques; Günthard, Huldrych F; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Battegay, Manuel; Rauch, Andri; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Schmid, Patrick; Scherrer, Alexandra U; Müller, Viktor; Bonhoeffer, Sebastian; Kouyos, Roger; Regoes, Roland R

    2018-01-01

    Abstract Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as “per-parasite pathogenicity”. Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence—measured as the rate of decline of CD4+ T cells—and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor–recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5–30%), and that of the per-parasite pathogenicity is 17% (4–29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12–46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor. PMID:29029206

  6. Transmission dynamics: critical questions and challenges

    PubMed Central

    2017-01-01

    This article overviews the dynamics of disease transmission in one-host–one-parasite systems. Transmission is the result of interacting host and pathogen processes, encapsulated with the environment in a ‘transmission triangle’. Multiple transmission modes and their epidemiological consequences are often not understood because the direct measurement of transmission is difficult. However, its different components can be analysed using nonlinear transmission functions, contact matrices and networks. A particular challenge is to develop such functions for spatially extended systems. This is illustrated for vector transmission where a ‘perception kernel’ approach is developed that incorporates vector behaviour in response to host spacing. A major challenge is understanding the relative merits of the large number of approaches to quantifying transmission. The evolution of transmission mode itself has been a rather neglected topic, but is important in the context of understanding disease emergence and genetic variation in pathogens. Disease impacts many biological processes such as community stability, the evolution of sex and speciation, yet the importance of different transmission modes in these processes is not understood. Broader approaches and ideas to disease transmission are important in the public health realm for combating newly emerging infections. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289255

  7. Prevalence and genetic diversity of the intestinal parasites Blastocystis sp. and Cryptosporidium spp. in household dogs in France and evaluation of zoonotic transmission risk.

    PubMed

    Osman, Marwan; Bories, Jessica; El Safadi, Dima; Poirel, Marie-Thérèse; Gantois, Nausicaa; Benamrouz-Vanneste, Sadia; Delhaes, Laurence; Hugonnard, Marine; Certad, Gabriela; Zenner, Lionel; Viscogliosi, Eric

    2015-11-30

    Several parasites including the protozoa Blastocystis sp. and Cryptosporidium spp. may be causative agents of gastrointestinal symptoms in domestic dogs, and there may be a potential risk of transmission to owners. While France is one of the largest European countries in terms of its canine population, little data is available about the molecular epidemiology of these two parasites. The purpose of this study was to determine the prevalence of intestinal parasites in household dogs in France, and to evaluate the zoonotic risk of Blastocystis sp. and Cryptosporidium spp. by genotyping the corresponding isolates. To this end, 116 faecal samples were collected from household dogs regardless of breed, age or gender, living in the Lyons area, France. Various intestinal protozoa and helminths were identified by light microscopy. Screening for Blastocystis sp. and Cryptosporidium spp. were subsequently performed by PCR targeting the small subunit (SSU) rDNA coding region, followed by direct sequencing of the PCR products and analysis of the sequences obtained for genotyping. The overall prevalence of dogs infected with at least one gastrointestinal parasite was 42.2% (49/116). After light microscopy examination of faecal samples, the most common parasites found were the protozoa Giardia sp. (25.0%) and Cystoisospora sp. (19.8%). Using molecular methods, four dogs (3.4%) were shown to be infected by Blastocystis sp. and carried either subtype (ST) 2, commonly identified in various animal groups, or ST10, frequently found in bovids. Three dogs (2.6%) were positive for C. canis, infecting humans episodically. The low prevalence of both parasites, combined with the identification of C. canis and Blastocystis sp. ST2 and ST10 in the canine population, strongly suggests that dogs play a negligible role as zoonotic reservoirs for both parasites and do not seem to be natural hosts of Blastocystis sp. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Parasites in food webs: the ultimate missing links

    PubMed Central

    Lafferty, Kevin D; Allesina, Stefano; Arim, Matias; Briggs, Cherie J; De Leo, Giulio; Dobson, Andrew P; Dunne, Jennifer A; Johnson, Pieter T J; Kuris, Armand M; Marcogliese, David J; Martinez, Neo D; Memmott, Jane; Marquet, Pablo A; McLaughlin, John P; Mordecai, Erin A; Pascual, Mercedes; Poulin, Robert; Thieltges, David W

    2008-01-01

    Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists. PMID:18462196

  9. Parasites in food webs: the ultimate missing links.

    PubMed

    Lafferty, Kevin D; Allesina, Stefano; Arim, Matias; Briggs, Cherie J; De Leo, Giulio; Dobson, Andrew P; Dunne, Jennifer A; Johnson, Pieter T J; Kuris, Armand M; Marcogliese, David J; Martinez, Neo D; Memmott, Jane; Marquet, Pablo A; McLaughlin, John P; Mordecai, Erin A; Pascual, Mercedes; Poulin, Robert; Thieltges, David W

    2008-06-01

    Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.

  10. Parasites in food webs: the ultimate missing links

    USGS Publications Warehouse

    Lafferty, Kevin D.; Allesina, Stefano; Arim, Matias; Briggs, Cherie J.; De Leo, Giulio A.; Dobson, Andrew P.; Dunne, Jennifer A.; Johnson, Pieter T.J.; Kuris, Armand M.; Marcogliese, David J.; Martinez, Neo D.; Memmott, Jane; Marquet, Pablo A.; McLaughlin, John P.; Mordecai, Eerin A.; Pascual, Mercedes; Poulin, Robert; Thieltges, David W.

    2008-01-01

    Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.

  11. Parasite diversity of Nyctiphanes simplex and Nematoscelis difficilis (Crustacea: Euphausiacea) along the northwestern coast of Mexico.

    PubMed

    Gómez-Gutiérrez, Jaime; Robinson, Carlos J; Kawaguchi, So; Nicol, Stephen

    2010-02-17

    The diversity of parasites found on Nyctiphanes simplex and Nematoscelis difficilis (Order Euphausiacea) was compared during 10 oceanographic cruises made off both coasts of the Baja California peninsula, Mexico. We tested the hypothesis that N. simplex has a more diverse parasitic assemblage than N. difficilis because it is a neritic species, has larger population abundance, and tends to form denser and more compact swarms than N. difficilis. These biological and behavioral features may enhance parasite transmission within swarms. We detected 6 types of ectoparasites: (1) epibiotic diatoms Licmophora sp.; (2) Ephelotidae suctorian ciliates; (3) Foettingeriidae exuviotrophic apostome ciliates; (4) an unidentified epicaridean cryptoniscus larvae (isopoda); and 2 castrators: (5) the ectoparasitic Dajidae isopod Notophryxus lateralis and (6) the ellobiopsid mesoparasite Thalassomyces fagei. We also detected 7 types of endoparasites: (1) an undescribed Collinia ciliate (Apostomatida); 3 types of Cestoda: (2) a Tetrarhynchobothruium sp. (Trypanorhyncha), (3) Echinobothrium sp. (Diphyllidea: Echinobothyriidae), and (4) unidentified metacestode; (5) a Trematoda Paronatrema-like metacercaria (Syncoeliidae); (6) the nematode Anisakis simplex (L3); and (7) Polymorphidae acantocephalan larvae (acanthor, acanthella, and cystacanth larval stages). N. simplex is affected by all types of parasites, except the isopod N. lateralis, having a considerably larger parasitic diversity and prevalence rates than N. difficilis, which is only infested with 3 types of ectoparasites and T. fagei. Euphausiid swarming is an adaptive behavior for reproduction, protection against predators, and increased efficiency in food searching, but has a negative effect due to parasitism. Although the advantages of aggregation must overcome the reduction of population and individual fitness induced by parasites, we demonstrated that all types of parasites can affect approximately 14% of N. simplex

  12. Coastal ecosystems on a tipping point: Global warming and parasitism combine to alter community structure and function.

    PubMed

    Mouritsen, Kim N; Sørensen, Mikkel M; Poulin, Robert; Fredensborg, Brian L

    2018-05-16

    Mounting evidence suggests that the transmission of certain parasites is facilitated by increasing temperatures, causing their host population to decline. However, no study has yet addressed how temperature and parasitism may combine to shape the functional structure of a whole host community in the face of global warming. Here, we apply an outdoor mesocosm approach supported by field surveys to elucidate this question in a diverse intertidal community of amphipods infected by the pathogenic microphallid trematode, Maritrema novaezealandensis. Under present temperature (17°C) and level of parasitism, the parasite had little impact on the host community. However, elevating the temperature to 21°C in the presence of parasites induced massive structural changes: amphipod abundances decreased species-specifically, affecting epibenthic species but leaving infaunal species largely untouched. In effect, species diversity dropped significantly. In contrast, four degree higher temperatures in the absence of parasitism had limited influence on the amphipod community. Further elevating temperatures (19-25°C) and parasitism, simulating a prolonged heat-wave scenario, resulted in an almost complete parasite-induced extermination of the amphipod community at 25°C. In addition, at 19°C, just two degrees above the present average, a similar temperature-parasite synergistic impact on community structure emerged as seen at 21°C under lower parasite pressure. The heat-wave temperature of 25°C per se affected the amphipod community in a comparable way: species diversity declined and the infaunal species were favoured at the expense of epibenthic species. Our experimental findings are corroborated by field data demonstrating a strong negative relationship between current amphipod species richness and the level of Maritrema parasitism across 12 sites. Hence, owing to the synergistic impact of temperature and parasitism, our study predicts that coastal amphipod communities will

  13. The role of the ratio of vector and host densities in the evolution of transmission modes in vector-borne diseases. The example of sylvatic Trypanosoma cruzi.

    PubMed

    Pelosse, Perrine; Kribs-Zaleta, Christopher M

    2012-11-07

    Pathogens may use different routes of transmission to maximize their spread among host populations. Theoretical and empirical work conducted on directly transmitted diseases suggest that horizontal (i.e., through host contacts) and vertical (i.e., from mother to offspring) transmission modes trade off, on the ground that highly virulent pathogens, which produce larger parasite loads, are more efficiently transmitted horizontally, and that less virulent pathogens, which impair host fitness less significantly, are better transmitted vertically. Other factors than virulence such as host density could also select for different transmission modes, but they have barely been studied. In vector-borne diseases, pathogen transmission rate is strongly affected by host-vector relative densities and by processes of saturation in contacts between hosts and vectors. The parasite Trypanosoma cruzi which is transmitted by triatomine bugs to several vertebrate hosts is responsible for Chagas' disease in Latin America. It is also widespread in sylvatic cycles in the southeastern U.S. in which it typically induces no mortality costs to its customary hosts. Besides classical transmission via vector bites, alternative ways to generate infections in hosts such as vertical and oral transmission (via the consumption of vectors by hosts) have been reported in these cycles. The two major T. cruzi strains occurring in the U.S. seem to exhibit differential efficiencies at vertical and classical horizontal transmissions. We investigated whether the vector-host ratio affects the outcome of the competition between the two parasite strains using an epidemiological two-strain model considering all possible transmission routes for sylvatic T. cruzi. We were able to show that the vector-host ratio influences the evolution of transmission modes providing that oral transmission is included in the model as a possible transmission mode, that oral and classical transmissions saturate at different vector

  14. Review of Parasitic Zoonoses in Egypt

    PubMed Central

    Youssef, Ahmed I.; Uga, Shoji

    2014-01-01

    This review presents a comprehensive picture of the zoonotic parasitic diseases in Egypt, with particular reference to their relative prevalence among humans, animal reservoirs of infection, and sources of human infection. A review of the available literature indicates that many parasitic zoonoses are endemic in Egypt. Intestinal infections of parasitic zoonoses are widespread and are the leading cause of diarrhea, particularly among children and residents of rural areas. Some parasitic zoonoses are confined to specific geographic areas in Egypt, such as cutaneous leishmaniasis and zoonotic babesiosis in the Sinai. Other areas have a past history of a certain parasitic zoonoses, such as visceral leishmaniasis in the El-Agamy area in Alexandria. As a result of the implementation of control programs, a marked decrease in the prevalence of other zoonoses, such as schistosomiasis and fascioliasis has been observed. Animal reservoirs of parasitic zoonoses have been identified in Egypt, especially in rodents, stray dogs and cats, as well as vectors, typically mosquitoes and ticks, which constitute potential risks for disease transmission. Prevention and control programs against sources and reservoirs of zoonoses should be planned by public health and veterinary officers based on reliable information from systematic surveillance. PMID:24808742

  15. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism?

    PubMed

    Leung, Tommy L F

    2017-02-01

    specific life cycles and transmission modes which reflect certain aspects of the host's ecology. The study of fossil parasites can be conducted using existing techniques in palaeontology and palaeoecology, and microscopic examination of potential material such as coprolites may uncover more fossil evidence of parasitism. However, I also urge caution when interpreting fossils as examples of parasites or parasitism-induced traces. I point out a number of cases where parasitism has been spuriously attributed to some fossil specimens which, upon re-examination, display traits which are just as (if not more) likely to be found in free-living taxa. The study of parasite fossils can provide a more complete picture of the ecosystems and evolution of life throughout Earth's history. © 2015 Cambridge Philosophical Society.

  16. Spatial Patterns of Plasmodium falciparum Clinical Incidence, Asymptomatic Parasite Carriage and Anopheles Density in Two Villages in Mali

    PubMed Central

    Sissoko, Mahamadou S.; van den Hoogen, Lotus L.; Samake, Yacouba; Tapily, Amadou; Diarra, Adama Z.; Coulibaly, Maimouna; Bouare, Madama; Gaudart, Jean; Knight, Philip; Sauerwein, Robert W.; Takken, Willem; Bousema, Teun; Doumbo, Ogobara K.

    2015-01-01

    Heterogeneity in malaria exposure is most readily recognized in areas with low-transmission patterns. By comparison, little research has been done on spatial patterns in malaria exposure in high-endemic settings. We determined the spatial clustering of clinical malaria incidence, asymptomatic parasite carriage, and Anopheles density in two villages in Mali exposed to low- and mesoendemic-malaria transmission. In the two study areas that were < 1 km2 in size, we observed evidence for spatial clustering of Anopheles densities or malaria parasite carriage during the dry season. Anopheles density and malaria prevalence appeared associated in some of our detected hotspots. However, many households with high parasite prevalence or high Anopheles densities were located outside the identified hotspots. Our findings indicate that within small villages exposed to low- or mesoendemic-malaria transmission, spatial patterns in mosquito densities and parasite carriage are best detected in the dry season. Considering the high prevalence of parasite carriage outside detected hotspots, the suitability of the area for targeting control efforts to households or areas of more intense malaria transmission may be limited. PMID:26324728

  17. Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite.

    PubMed

    Boldbaatar, Damdinsuren; Battsetseg, Badgar; Matsuo, Tomohide; Hatta, Takeshi; Umemiya-Shirafuji, Rika; Xuan, Xuenan; Fujisaki, Kozo

    2008-08-01

    A cDNA encoding the vitellogenin receptor of the ixodid tick, Haemaphysalis longicornis Neumann (HlVgR) was cloned and characterized. The full-length cDNA is 5631 bp, including an intact ORF encoding an expected protein with 1782 amino acids. The deduced amino acid sequence of the HlVgR cDNA revealed two ligand-binding domains with four class A cysteine-rich repeats in the first domain and eight in the second domain similar to those of insect VgRs. The immunoblot analysis detected approximately 197 kDa protein in both tick ovary and egg. The developmental expression profile demonstrated that HlVgR mRNA exists throughout the ovarian development, and the transcriptional level is especially high in the previtellogenic period. Immuno electron microscopy analysis demonstrated that the localization of HlVgR is detected on the external surface of oocyte plasma membrane. RNAi showed that eggs of HlVgR dsRNA-injected adult ticks had not developed into fully mature oocytes and laid abnormal eggs. The Babesia parasite DNA was not detected in the eggs of HlVgR dsRNA-injected tick that fed on Babesia gibsoni infected dog, whereas it was detected in the eggs of PBS-injected ticks and noninjected ticks. Expression of HlVgR was increased by the vitellogenic hormone 20-hydroxyecdysone. These results indicate that HlVgR, which is produced by the developing oocytes, is essential for Vg uptake, egg development in the H. longicornis tick, and transovarial transmission of Babesia parasites.

  18. Longitudinal Modeling of the Association Between Transmissible Risk, Affect During Drug Use and Development of Substance Use Disorder.

    PubMed

    Tarter, Ralph E; Kirisci, Levent; Reynolds, Maureen; Horner, Michelle; Zhai, ZuWei; Gathuru, Irene; Vanyukov, Michael

    2015-01-01

    This longitudinal investigation examined the hypothesis that subjective experience during consumption of preferred drugs mediates the association of transmissible risk for substance use disorder (SUD) measured in childhood and adolescence, and SUD diagnosis in adulthood. Transmissible risk denotes the psychological characteristics having intergenerational continuity between parents and their biological children. The transmissible liability index (TLI) was administered to four hundred eighty-three 10 to 12-year-old boys (baseline). Follow-up evaluations were conducted when the boys attained 12-14, 16, 19, and 22 years of age, using age-specific versions of the TLI. Frequency of consumption of the participants' three most preferred drugs, affect on an ordinary day, affect while under influence of the preferred substances, and presence/absence of current SUD were assessed at 22 years of age. Consumption frequency of preferred drugs among boys mediates the association of transmissible risk during childhood, and adolescence and SUD diagnosis in adulthood. Severity of negative affect on a drug-free day predicts frequency of consumption of preferred drugs, which, in turn, predicts severity of negative affect during the drug use event. Neither affect on a drug-free day nor affect during the drug use event mediates the association of transmissible risk and SUD. Affect on drug-free days, and while under influence of preferred substances, covary with consumption frequency; however, affect is not related to transmissible SUD risk or SUD outcome.

  19. Hidden reservoir of resistant parasites: the missing link in the elimination of falciparum malaria.

    PubMed

    Abdul-Ghani, Rashad; Mahdy, Mohammed A K; Beier, John C; Basco, Leonardo K

    2017-02-06

    To successfully eliminate malaria, an integrated system that includes a number of approaches and interventions-aimed at overcoming the threat of antimalarial drug resistance-is required. Significant progress has been made in reducing malaria incidence through large-scale use of artemisinin-based combination therapies and insecticide-treated nets. To consolidate these gains, attention should be paid to the missing links in the elimination of malaria. One of these gaps is the residual reservoir of submicroscopic resistant parasites, which remains after case management or other control measures have been carried out. Therefore, the present opinion piece highlights the importance of exploring the role that submicroscopic resistant parasites could play in hindering malaria elimination by allowing the persistence of transmission, particularly in areas of low transmission or in the pre-elimination and/or elimination phase. If malaria elimination interventions are to be effective, the relative role of the hidden reservoir of resistant parasites needs to be assessed, particularly in regions that are low-transmission settings and/or in pre-elimination and/or elimination phases. Various ongoing studies are focusing on the role of submicroscopic malaria infections in malaria transmission but overlook the possible build-up of resistance to antimalarial drugs among submicroscopic parasite populations. This is an important factor as it may eventually limit the effectiveness of malaria elimination strategies. An evidence-based estimation of the "true" reservoir of resistant parasites can help target the existing and emerging foci of resistant parasites before they spread. Emergence and spread of artemisinin-resistant Plasmodium falciparum malaria in Southeast Asia underline the need to contain drug resistance.

  20. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG.

    PubMed

    Rogers, Matthew E; Ilg, Thomas; Nikolaev, Andrei V; Ferguson, Michael A J; Bates, Paul A

    2004-07-22

    Sand flies are the exclusive vectors of the protozoan parasite Leishmania, but the mechanism of transmission by fly bite has not been determined nor incorporated into experimental models of infection. In sand flies with mature Leishmania infections the anterior midgut is blocked by a gel of parasite origin, the promastigote secretory gel. Here we analyse the inocula from Leishmania mexicana-infected Lutzomyia longipalpis sand flies. Analysis revealed the size of the infectious dose, the underlying mechanism of parasite delivery by regurgitation, and the novel contribution made to infection by filamentous proteophosphoglycan (fPPG), a component of promastigote secretory gel found to accompany the parasites during transmission. Collectively these results have important implications for understanding the relationship between the parasite and its vector, the pathology of cutaneous leishmaniasis in humans and also the development of effective vaccines and drugs. These findings emphasize that to fully understand transmission of vector-borne diseases the interaction between the parasite, its vector and the mammalian host must be considered together.

  1. Optimal killing for obligate killers: the evolution of life histories and virulence of semelparous parasites.

    PubMed Central

    Ebert, D; Weisser, W W

    1997-01-01

    Many viral, bacterial and protozoan parasites of invertebrates first propagate inside their host without releasing any transmission stages and then kill their host to release all transmission stages at once. Life history and the evolution of virulence of these obligately killing parasites are modelled, assuming that within-host growth is density dependent. We find that the parasite should kill the host when its per capita growth rate falls to the level of the host mortality rate. The parasite should kill its host later when the carrying capacity, K, is higher, but should kill it earlier when the parasite-independent host mortality increases or when the parasite has a higher birth rate. When K(t), for parasite growth, is not constant over the duration of an infection, but increases with time, the parasite should kill the host around the stage when the growth rate of the carrying capacity decelerates strongly. In case that K(t) relates to host body size, this deceleration in growth is around host maturation. PMID:9263465

  2. Host age modulates within-host parasite competition

    PubMed Central

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-01-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. PMID:25994010

  3. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity

    PubMed Central

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M.; Ruecker, Andrea; Kumar, T.R. Santha; Rubiano, Kelly; Ferreira, Pedro E.; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P.; Ng, Caroline L.; Murithi, James M.; Corey, Victoria C.; Duffy, Sandra; Lieberman, Ori J.; Veiga, M. Isabel; Sinden, Robert E.; Alano, Pietro; Delves, Michael J.; Sim, Kim Lee; Winzeler, Elizabeth A.; Egan, Timothy J.; Hoffman, Stephen L.; Avery, Vicky M.; Fidock, David A.

    2017-01-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress P. berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR/Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 as a determinant of parasite resistance to HHQs. Hemoglobin and heme fractionation assays suggest a mode of action that results in reduced hemozoin levels and might involve inhibition of host hemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs including lumefantrine, confirming that HHQs have a different mode of action than other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria. PMID:28808258

  4. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity.

    PubMed

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M; Ruecker, Andrea; Kumar, T R Santha; Rubiano, Kelly; Ferreira, Pedro E; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P; Ng, Caroline L; Murithi, James M; Corey, Victoria C; Duffy, Sandra; Lieberman, Ori J; Veiga, M Isabel; Sinden, Robert E; Alano, Pietro; Delves, Michael J; Lee Sim, Kim; Winzeler, Elizabeth A; Egan, Timothy J; Hoffman, Stephen L; Avery, Vicky M; Fidock, David A

    2017-10-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.

  5. Uncovering the transmission dynamics of Plasmodium vivax using population genetics

    PubMed Central

    Barry, Alyssa E.; Waltmann, Andreea; Koepfli, Cristian; Barnadas, Celine; Mueller, Ivo

    2015-01-01

    Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes. PMID:25891915

  6. How coupling affects closely packed rectenna arrays used for wireless power transmission

    NASA Astrophysics Data System (ADS)

    Walls, Deidra; Choi, Sang H.; Yoon, Hargsoon; Geddis, Demetris; Song, Kyo D.

    2017-04-01

    The development of power transmission by microwave beam power harvesting attracts manufactures for use of wireless power transmission. Optimizing maximum conversion efficiency is affected by many design parameters, and has been mainly focused previously. Combining several rectennas in one array potentially aides in the amount of microwave energy that can be harvested for energy conversion. Closely packed rectenna arrays is the result of the demand to minimize size and weight for flexibility. This paper specifically focuses on the coupling effects on power; mutual coupling, comparing sparameters and gain total while varying effective parameters. This paper investigates how coupling between each dipole positively and negatively affects the microwave energy, harvesting, and the design limitations.

  7. Information and Guidelines for Identification of Children with Parasitic Intestinal Infections.

    ERIC Educational Resources Information Center

    Doi, Lorraine

    This report presents (1) information on the incidence, causes, development, transmission, control and prevention of parasitic infections and (2) a report of how Hawaiian Follow Through Students infected by parasites were identified and provided with treatment. The students were enrolled in kindgergarten through third grade classes at three…

  8. Extracellular vesicles in parasitic diseases

    PubMed Central

    Marcilla, Antonio; Martin-Jaular, Lorena; Trelis, Maria; de Menezes-Neto, Armando; Osuna, Antonio; Bernal, Dolores; Fernandez-Becerra, Carmen; Almeida, Igor C.; del Portillo, Hernando A.

    2014-01-01

    Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens. PMID:25536932

  9. Heterogeneities in Leishmania infantum Infection: Using Skin Parasite Burdens to Identify Highly Infectious Dogs

    PubMed Central

    Calvo-Bado, Leo; Garcez, Lourdes M.; Quinnell, Rupert J.

    2014-01-01

    Background The relationships between heterogeneities in host infection and infectiousness (transmission to arthropod vectors) can provide important insights for disease management. Here, we quantify heterogeneities in Leishmania infantum parasite numbers in reservoir and non-reservoir host populations, and relate this to their infectiousness during natural infection. Tissue parasite number was evaluated as a potential surrogate marker of host transmission potential. Methods Parasite numbers were measured by qPCR in bone marrow and ear skin biopsies of 82 dogs and 34 crab-eating foxes collected during a longitudinal study in Amazon Brazil, for which previous data was available on infectiousness (by xenodiagnosis) and severity of infection. Results Parasite numbers were highly aggregated both between samples and between individuals. In dogs, total parasite abundance and relative numbers in ear skin compared to bone marrow increased with the duration and severity of infection. Infectiousness to the sandfly vector was associated with high parasite numbers; parasite number in skin was the best predictor of being infectious. Crab-eating foxes, which typically present asymptomatic infection and are non-infectious, had parasite numbers comparable to those of non-infectious dogs. Conclusions Skin parasite number provides an indirect marker of infectiousness, and could allow targeted control particularly of highly infectious dogs. PMID:24416460

  10. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum.

    PubMed

    Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias

    2017-12-14

    Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Impacts of Climate Change on Malaria Transmission in Africa

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A. B.; Endo, N.; Yamana, T. K.

    2017-12-01

    Malaria is a major vector-borne parasitic disease transmitted to humans by Anopheles spp mosquitoes. Africa is the hotspot for malaria transmission where more than 90% of malaria deaths occur every year. Malaria transmission is an intricate function of climatic factors, which non-linearly affect the development of vectors and parasites. We project that the risk of malaria will increase towards the end of the 21st century in east Africa, but decrease in west Africa. We combine a novel malaria transmission simulator, HYDREMATS, that has been developed based on comprehensive multi-year field surveys both in East Africa and West Africa, and the most reliable climate projections through regional dynamical downscaling and rigorous selection of GCMs from among CMIP5 models. We define a bell-shaped relation between malaria intensity and temperature, centered around a temperature of 30°C. Future risks of malaria are projected for two highly populated regions in Africa: the highlands in East Africa and the fringes of the desert in West Africa. In the highlands of East Africa, temperature is substantially colder than this optimal temperature; warmer future climate exacerbate malaria conditions. In the Sahel fringes in West Africa, temperature is around this optimal temperature; warming is not likely to exacerbate and might even reduce malaria burden. Unlike the highlands of East Africa, which receive significant amounts of annual rainfall, dry conditions also limit malaria transmission in the Sahel fringes in West Africa. This disproportionate risk of malaria due to climate change should guide strategies for climate adaptation over Africa.

  12. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity.

    PubMed

    Bertels, Frederic; Marzel, Alex; Leventhal, Gabriel; Mitov, Venelin; Fellay, Jacques; Günthard, Huldrych F; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Battegay, Manuel; Rauch, Andri; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Schmid, Patrick; Scherrer, Alexandra U; Müller, Viktor; Bonhoeffer, Sebastian; Kouyos, Roger; Regoes, Roland R

    2018-01-01

    Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as "per-parasite pathogenicity". Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence-measured as the rate of decline of CD4+ T cells-and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor-recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5-30%), and that of the per-parasite pathogenicity is 17% (4-29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12-46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Zoonotic Transmission of Waterborne Disease: A Mathematical Model.

    PubMed

    Waters, Edward K; Hamilton, Andrew J; Sidhu, Harvinder S; Sidhu, Leesa A; Dunbar, Michelle

    2016-01-01

    Waterborne parasites that infect both humans and animals are common causes of diarrhoeal illness, but the relative importance of transmission between humans and animals and vice versa remains poorly understood. Transmission of infection from animals to humans via environmental reservoirs, such as water sources, has attracted attention as a potential source of endemic and epidemic infections, but existing mathematical models of waterborne disease transmission have limitations for studying this phenomenon, as they only consider contamination of environmental reservoirs by humans. This paper develops a mathematical model that represents the transmission of waterborne parasites within and between both animal and human populations. It also improves upon existing models by including animal contamination of water sources explicitly. Linear stability analysis and simulation results, using realistic parameter values to describe Giardia transmission in rural Australia, show that endemic infection of an animal host with zoonotic protozoa can result in endemic infection in human hosts, even in the absence of person-to-person transmission. These results imply that zoonotic transmission via environmental reservoirs is important.

  14. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, Mirelle B.; Lafferty, Kevin D.; van Oosterhout, Cock; Cable, Joanne

    2011-01-01

    Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.

  15. Sex and death: the effects of innate immune factors on the sexual reproduction of malaria parasites.

    PubMed

    Ramiro, Ricardo S; Alpedrinha, João; Carter, Lucy; Gardner, Andy; Reece, Sarah E

    2011-03-01

    Malaria parasites must undergo a round of sexual reproduction in the blood meal of a mosquito vector to be transmitted between hosts. Developing a transmission-blocking intervention to prevent parasites from mating is a major goal of biomedicine, but its effectiveness could be compromised if parasites can compensate by simply adjusting their sex allocation strategies. Recently, the application of evolutionary theory for sex allocation has been supported by experiments demonstrating that malaria parasites adjust their sex ratios in response to infection genetic diversity, precisely as predicted. Theory also predicts that parasites should adjust sex allocation in response to host immunity. Whilst data are supportive, the assumptions underlying this prediction - that host immune responses have differential effects on the mating ability of males and females - have not yet been tested. Here, we combine experimental work with theoretical models in order to investigate whether the development and fertility of male and female parasites is affected by innate immune factors and develop new theory to predict how parasites' sex allocation strategies should evolve in response to the observed effects. Specifically, we demonstrate that reactive nitrogen species impair gametogenesis of males only, but reduce the fertility of both male and female gametes. In contrast, tumour necrosis factor-α does not influence gametogenesis in either sex but impairs zygote development. Therefore, our experiments demonstrate that immune factors have complex effects on each sex, ranging from reducing the ability of gametocytes to develop into gametes, to affecting the viability of offspring. We incorporate these results into theory to predict how the evolutionary trajectories of parasite sex ratio strategies are shaped by sex differences in gamete production, fertility and offspring development. We show that medical interventions targeting offspring development are more likely to be 'evolution

  16. Sex and Death: The Effects of Innate Immune Factors on the Sexual Reproduction of Malaria Parasites

    PubMed Central

    Ramiro, Ricardo S.; Alpedrinha, João; Carter, Lucy; Gardner, Andy; Reece, Sarah E.

    2011-01-01

    Malaria parasites must undergo a round of sexual reproduction in the blood meal of a mosquito vector to be transmitted between hosts. Developing a transmission-blocking intervention to prevent parasites from mating is a major goal of biomedicine, but its effectiveness could be compromised if parasites can compensate by simply adjusting their sex allocation strategies. Recently, the application of evolutionary theory for sex allocation has been supported by experiments demonstrating that malaria parasites adjust their sex ratios in response to infection genetic diversity, precisely as predicted. Theory also predicts that parasites should adjust sex allocation in response to host immunity. Whilst data are supportive, the assumptions underlying this prediction – that host immune responses have differential effects on the mating ability of males and females – have not yet been tested. Here, we combine experimental work with theoretical models in order to investigate whether the development and fertility of male and female parasites is affected by innate immune factors and develop new theory to predict how parasites' sex allocation strategies should evolve in response to the observed effects. Specifically, we demonstrate that reactive nitrogen species impair gametogenesis of males only, but reduce the fertility of both male and female gametes. In contrast, tumour necrosis factor-α does not influence gametogenesis in either sex but impairs zygote development. Therefore, our experiments demonstrate that immune factors have complex effects on each sex, ranging from reducing the ability of gametocytes to develop into gametes, to affecting the viability of offspring. We incorporate these results into theory to predict how the evolutionary trajectories of parasite sex ratio strategies are shaped by sex differences in gamete production, fertility and offspring development. We show that medical interventions targeting offspring development are more likely to be

  17. Parasitism and the Biodiversity-Functioning Relationship.

    PubMed

    Frainer, André; McKie, Brendan G; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D

    2018-04-01

    Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions - parasitism - has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite-host interactions should be incorporated into the BD-EF framework. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Cranberry Resistance to Dodder Parasitism: Induced Chemical Defenses and Behavior of a Parasitic Plant.

    PubMed

    Tjiurutue, Muvari Connie; Sandler, Hilary A; Kersch-Becker, Monica F; Theis, Nina; Adler, Lynn A

    2016-02-01

    Parasitic plants are common in many ecosystems, where they can structure community interactions and cause major economic damage. For example, parasitic dodder (Cuscuta spp.) can cause up to 80-100 % yield loss in heavily infested cranberry (Vaccinium macrocarpon) patches. Despite their ecological and economic importance, remarkably little is known about how parasitic plants affect, or are affected by, host chemistry. To examine chemically-mediated interactions between dodder and its cranberry host, we conducted a greenhouse experiment asking whether: (1) dodder performance varies with cranberry cultivar; (2) cultivars differ in levels of phytohormones, volatiles, or phenolics, and whether such variation correlates with dodder parasitism; (3) dodder parasitism induced changes in phytohormones, volatiles, or phenolics, and whether the level of inducible response varied among cultivars. We used five cranberry cultivars to assess host attractiveness to dodder and dodder performance. Dodder performance did not differ across cultivars, but there were marginally significant differences in host attractiveness to dodder, with fewer dodder attaching to Early Black than to any other cultivar. Dodder parasitism induced higher levels of salicylic acid (SA) across cultivars. Cultivars differed in overall levels of flavonols and volatile profiles, but not phenolic acids or proanthocyanidins, and dodder attachment induced changes in several flavonols and volatiles. While cultivars differed slightly in resistance to dodder attachment, we did not find evidence of chemical defenses that mediate these interactions. However, induction of several defenses indicates that parasitism alters traits that could influence subsequent interactions with other species, thus shaping community dynamics.

  19. Experimental shifts in intraclutch egg color variation do not affect egg rejection in a host of a non-egg-mimetic avian brood parasite.

    PubMed

    Croston, Rebecca; Hauber, Mark E

    2015-01-01

    Avian brood parasites lay their eggs in the nests of other birds, and impose the costs associated with rearing parasitic young onto these hosts. Many hosts of brood parasites defend against parasitism by removing foreign eggs from the nest. In systems where parasitic eggs mimic host eggs in coloration and patterning, extensive intraclutch variation in egg appearances may impair the host's ability to recognize and reject parasitic eggs, but experimental investigation of this effect has produced conflicting results. The cognitive mechanism by which hosts recognize parasitic eggs may vary across brood parasite hosts, and this may explain variation in experimental outcome across studies investigating egg rejection in hosts of egg-mimicking brood parasites. In contrast, for hosts of non-egg-mimetic parasites, intraclutch egg color variation is not predicted to co-vary with foreign egg rejection, irrespective of cognitive mechanism. Here we tested for effects of intraclutch egg color variation in a host of nonmimetic brood parasite by manipulating egg color in American robins (Turdus migratorius), hosts of brown-headed cowbirds (Molothrus ater). We recorded robins' behavioral responses to simulated cowbird parasitism in nests where color variation was artificially enhanced or reduced. We also quantified egg color variation within and between unmanipulated robin clutches as perceived by robins themselves using spectrophotometric measures and avian visual modeling. In unmanipulated nests, egg color varied more between than within robin clutches. As predicted, however, manipulation of color variation did not affect rejection rates. Overall, our results best support the scenario wherein egg rejection is the outcome of selective pressure by a nonmimetic brood parasite, because robins are efficient rejecters of foreign eggs, irrespective of the color variation within their own clutch.

  20. Malaria transmission rates estimated from serological data.

    PubMed Central

    Burattini, M. N.; Massad, E.; Coutinho, F. A.

    1993-01-01

    A mathematical model was used to estimate malaria transmission rates based on serological data. The model is minimally stochastic and assumes an age-dependent force of infection for malaria. The transmission rates estimated were applied to a simple compartmental model in order to mimic the malaria transmission. The model has shown a good retrieving capacity for serological and parasite prevalence data. PMID:8270011

  1. Host age modulates within-host parasite competition.

    PubMed

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Ecosystem energetic implications of parasite and free-living biomass in three estuaries

    USGS Publications Warehouse

    Kuris, Armand M.; Hechinger, Ryan F.; Shaw, Jenny C.; Whitney, Kathleen L.; Aguirre-Macedo, Leopoldina; Boch, Charlie A.; Dobson, Andrew P.; Dunham, Eleca J.; Fredensborg, Brian L.; Huspeni, Todd C.; Lorda, Julio; Mababa, Luzviminda; Mancini, Frank T.; Mora, Adrienne B.; Pickering, Maria; Talhouk, Nadia L.; Torchin, Mark E.; Lafferty, Kevin D.

    2008-01-01

    Parasites can have strong impacts but are thought to contribute little biomass to ecosystems. We quantified the biomass of free-living and parasitic species in three estuaries on the Pacific coast of California and Baja California. Here we show that parasites have substantial biomass in these ecosystems. We found that parasite biomass exceeded that of top predators. The biomass of trematodes was particularly high, being comparable to that of the abundant birds, fishes, burrowing shrimps and polychaetes. Trophically transmitted parasites and parasitic castrators subsumed more biomass than did other parasitic functional groups. The extended phenotype biomass controlled by parasitic castrators sometimes exceeded that of their uninfected hosts. The annual production of free-swimming trematode transmission stages was greater than the combined biomass of all quantified parasites and was also greater than bird biomass. This biomass and productivity of parasites implies a profound role for infectious processes in these estuaries.

  3. Effects of a hurricane on fish parasites.

    PubMed

    Overstreet, R M

    2007-09-01

    Hurricanes, also called tropical cyclones, can dramatically affect life along their paths, including a temporary losing or reducing in number of parasites of fishes. Hurricane Katrina in the northern Gulf of Mexico in August 2005 provides many examples involving humans and both terrestrial and aquatic animals and plants. Fishes do not provide much of an indicator of hurricane activity because most species quickly repopulate the area. Fish parasites, however, serve as a good indicator of the overall biodiversity and environmental health. The reasons for the noted absence or reduction of parasites in fishes are many, and specific parasites provide indications of different processes. The powerful winds can produce perturbations of the sediments harboring intermediate hosts. The surge of high salinity water can kill or otherwise affect low salinity intermediate hosts or free-living stages. Both can introduce toxicants into the habitat and also interfere with the timing and processes involved with host-parasite interrelationships. All these have had a major influence on fish parasite populations of fishes in coastal Mississippi, especially for those parasites incorporating intermediate hosts in their life cycles. The length of time for a parasite to become re-established can vary considerably, depending on its life cycle as well as the associated biota, habitat, and environmental conditions, and each parasite provides a special indicator of environmental health.

  4. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, M.B.; Lafferty, K.D.; van, Oosterhout C.; Cable, J.

    2011-01-01

    Background: Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings: Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance: These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density. ?? 2011 Johnson et al.

  5. Canine transmissible venereal tumour: a review.

    PubMed

    Ganguly, B; Das, U; Das, A K

    2016-03-01

    Canine transmissible venereal tumour (CTVT) is a contagious venereal tumour of dogs, commonly observed in dogs that are in close contact with one another, or in stray and wild dogs that exhibit unrestrained sexual activity. CTVT represents a unique, naturally transmissible, contagious tumour, where the mutated tumour cell itself is the causative agent and perpetuates as a parasitic allograft in the host. Clinical history, signalment and cytological features are often obvious for establishing a diagnosis though biopsy and histological examination may be needed in atypical cases. Most cases are curable with three intravenous injections of vincristine sulphate at weekly intervals. The role of stray and wild dogs makes the disease difficult to control and necessitates sustained animal birth control in stray dogs along with prompt therapy of the affected dogs. This review captures the manifold developments in different areas embracing this fascinating tumour, including its biology, diagnosis and therapeutic alternatives. © 2013 John Wiley & Sons Ltd.

  6. Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission.

    PubMed

    Olds, Cassandra L; Mwaura, Stephen; Odongo, David O; Scoles, Glen A; Bishop, Richard; Daubenberger, Claudia

    2016-09-02

    Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination.

  7. Seasonality and the evolutionary divergence of plant parasites.

    PubMed

    Hamelin, Frédéric M; Castel, Magda; Poggi, Sylvain; Andrivon, Didier; Mailleret, Ludovic

    2011-12-01

    The coexistence of closely related plant parasites is widespread. Yet, understanding the ecological determinants of evolutionary divergence in plant parasites remains an issue. Niche differentiation through resource specialization has been widely researched, but it hardly explains the coexistence of parasites exploiting the same host plant. Time-partitioning has so far received less attention, although in temperate climates, parasites may specialize on either the early or the late season. Accordingly, we investigated whether seasonality can also promote phenotypic divergence. For plant parasites, seasonality generally engenders periodic host absence. To account for abrupt seasonal events, we made use of an epidemic model that combines continuous and discrete dynamics. Based on the assumption of a trade-off between in-season transmission and inter-season survival, we found through an "evolutionary invasion analysis" that evolutionary divergence of the parasite phenotype can occur. Since such a trade-off has been reported, this study provides further ecological bases for the coexistence of closely related plant parasites. Moreover, this study provides original insights into the coexistence of sibling plant pathogens which perform either a single or several infection cycles within a season (mono- and polycyclic diseases, or uni- and multivoltine life cycles).

  8. Parasite infection rates of impala (Aepyceros melampus) in fenced game reserves in relation to reserve characteristics

    USGS Publications Warehouse

    Ezenwa, V.O.

    2004-01-01

    Under certain conditions reserves can pose a threat to wildlife conservation by increasing the transmission of parasites and pathogens. In this study, I investigated associations between reserve characteristics including area, density and species richness and parasite infection rates in impala (Aepyceros melampus). Using coprological methods to measure gastrointestinal parasitism rates of impala inhabiting five fully or partially fenced game reserves in central Kenya, I found that bovid species richness was correlated with parasite taxa richness across reserves, and that prevalence rates of multi-host strongyle nematodes were higher in reserves with more species. In addition, reserve size was also implicated as a potential predictor of infection risk. Overall, these results suggest that wildlife inhabiting highly diverse and small reserves may suffer from higher than normal rates of infection. Given the potential debilitating effects increases in parasitism can have on wildlife, these results underscore the importance of considering parasite transmission dynamics in the management of small, fenced protected areas. ?? 2003 Elsevier Ltd. All rights reserved.

  9. Coexistence of two species of haplosporidian parasites in a population of the marine amphipod Parhyale hawaiensis with evidence for parasite phagocytosis and transmission mode.

    PubMed

    Ismail, Tarek Gad El-Kareem

    2011-04-01

    The amphipod Parhyale hawaiensis live hiding underneath stones and shingles along the shore line in supra-littoral zone of Sharm El-Nagha site, Hurghada city, Red Sea. The collected specimens of P. hawaiensis are infected with two protozoan parasites, Urosporidium sp. and Haplosporidium sp. which invade many organs of both females and males. The life cycle of the parasites was described in addition to their histopathological effects on host's tissues. The study showed some evidence for the defense reaction of the host as engulfing and degraded stages of parasites by granulocytes. The two parasite species coexist at different prevalence's in one host population and bi-infected individuals were few.

  10. Revisiting Trypanosoma rangeli Transmission Involving Susceptible and Non-Susceptible Hosts

    PubMed Central

    Ferreira, Luciana de Lima; Pereira, Marcos Horácio; Guarneri, Alessandra Aparecida

    2015-01-01

    Trypanosoma rangeli infects several triatomine and mammal species in South America. Its transmission is known to occur when a healthy insect feeds on an infected mammal or when an infected insect bites a healthy mammal. In the present study we evaluated the classic way of T. rangeli transmission started by the bite of a single infected triatomine, as well as alternative ways of circulation of this parasite among invertebrate hosts. The number of metacyclic trypomastigotes eliminated from salivary glands during a blood meal was quantified for unfed and recently fed nymphs. The quantification showed that ~50,000 parasites can be liberated during a single blood meal. The transmission of T. rangeli from mice to R. prolixus was evaluated using infections started through the bite of a single infected nymph. The mice that served as the blood source for single infected nymphs showed a high percentage of infection and efficiently transmitted the infection to new insects. Parasites were recovered by xenodiagnosis in insects fed on mice with infections that lasted approximately four months. Hemolymphagy and co-feeding were tested to evaluate insect-insect T. rangeli transmission. T. rangeli was not transmitted during hemolymphagy. However, insects that had co-fed on mice with infected conspecifics exhibited infection rates of approximately 80%. Surprisingly, 16% of the recipient nymphs became infected when pigeons were used as hosts. Our results show that T. rangeli is efficiently transmitted between the evaluated hosts. Not only are the insect-mouse-insect transmission rates high, but parasites can also be transmitted between insects while co-feeding on a living host. We show for the first time that birds can be part of the T. rangeli transmission cycle as we proved that insect-insect transmission is feasible during a co-feeding on these hosts. PMID:26469403

  11. The coevolutionary dynamics of obligate ant social parasite systems--between prudence and antagonism.

    PubMed

    Brandt, Miriam; Foitzik, Susanne; Fischer-Blass, Birgit; Heinze, Jürgen

    2005-05-01

    In this synthesis we apply coevolutionary models to the interactions between socially parasitic ants and their hosts. Obligate social parasite systems are ideal models for coevolution, because the close phylogenetic relationship between these parasites and their hosts results in similar evolutionary potentials, thus making mutual adaptations in a stepwise fashion especially likely to occur. The evolutionary dynamics of host-parasite interactions are influenced by a number of parameters, for example the parasite's transmission mode and rate, the genetic structure of host and parasite populations, the antagonists' migration rates, and the degree of mutual specialisation. For the three types of obligate ant social parasites, queen-tolerant and queen-intolerant inquilines and slavemakers, several of these parameters, and thus the evolutionary trajectory, are likely to differ. Because of the fundamental differences in lifestyle between these social parasite systems, coevolution should further select for different traits in the parasites and their hosts. Queen-tolerant inquilines are true parasites that exert a low selection pressure on their host, because of their rarity and the fact that they do not conduct slave raids to replenish their labour force. Due to their high degree of specialisation and the potential for vertical transmission, coevolutionary theory would predict interactions between these workerless parasites and their hosts to become even more benign over time. Queen-intolerant inquilines that kill the host queen during colony take-over are best described as parasitoids, and their reproductive success is limited by the existing worker force of the invaded host nest. These parasites should therefore evolve strategies to best exploit this fixed resource. Slavemaking ants, by contrast, act as parasites only during colony foundation, while their frequent slave raids follow a predator prey dynamic. They often exploit a number of host species at a given site, and

  12. Experimental Shifts in Intraclutch Egg Color Variation Do Not Affect Egg Rejection in a Host of a Non-Egg-Mimetic Avian Brood Parasite

    PubMed Central

    Croston, Rebecca; Hauber, Mark E.

    2015-01-01

    Avian brood parasites lay their eggs in the nests of other birds, and impose the costs associated with rearing parasitic young onto these hosts. Many hosts of brood parasites defend against parasitism by removing foreign eggs from the nest. In systems where parasitic eggs mimic host eggs in coloration and patterning, extensive intraclutch variation in egg appearances may impair the host’s ability to recognize and reject parasitic eggs, but experimental investigation of this effect has produced conflicting results. The cognitive mechanism by which hosts recognize parasitic eggs may vary across brood parasite hosts, and this may explain variation in experimental outcome across studies investigating egg rejection in hosts of egg-mimicking brood parasites. In contrast, for hosts of non-egg-mimetic parasites, intraclutch egg color variation is not predicted to co-vary with foreign egg rejection, irrespective of cognitive mechanism. Here we tested for effects of intraclutch egg color variation in a host of nonmimetic brood parasite by manipulating egg color in American robins (Turdus migratorius), hosts of brown-headed cowbirds (Molothrus ater). We recorded robins’ behavioral responses to simulated cowbird parasitism in nests where color variation was artificially enhanced or reduced. We also quantified egg color variation within and between unmanipulated robin clutches as perceived by robins themselves using spectrophotometric measures and avian visual modeling. In unmanipulated nests, egg color varied more between than within robin clutches. As predicted, however, manipulation of color variation did not affect rejection rates. Overall, our results best support the scenario wherein egg rejection is the outcome of selective pressure by a nonmimetic brood parasite, because robins are efficient rejecters of foreign eggs, irrespective of the color variation within their own clutch. PMID:25831051

  13. Disease and the extended phenotype: parasites control host performance and survival through induced changes in body plan.

    PubMed

    Goodman, Brett A; Johnson, Pieter T J

    2011-01-01

    By definition, parasites harm their hosts. However, some forms of parasite-induced alterations increase parasite transmission between hosts, such that manipulated hosts can be considered extensions of the parasite's phenotype. While well accepted in principle, surprisingly few studies have quantified how parasite manipulations alter host performance and survival under field and laboratory conditions. By interfering with limb development, the trematode Ribeiroia ondatrae causes particularly severe morphological alterations within amphibian hosts that provide an ideal system to evaluate parasite-induced changes in phenotype. Here, we coupled laboratory performance trials with a capture-mark-recapture study of 1388 Pacific chorus frogs (Pseudacris regilla) to quantify the effects of parasite-induced malformations on host locomotion, foraging, and survival. Malformations, which affected ∼ 50% of metamorphosing frogs in nature, caused dramatic reductions in all measures of organismal function. Malformed frogs exhibited significantly shorter jumping distances (41% reduction), slower swimming speeds (37% reduction), reduced endurance (66% reduction), and lower foraging success relative to infected hosts without malformations. Furthermore, while normal and malformed individuals had comparable survival within predator-free exclosures, deformed frogs in natural populations had 22% lower biweekly survival than normal frogs and rarely recruited to the adult population over a two-year period. Our results highlight the ability of parasites to deeply alter multiple dimensions of host phenotype with important consequences for performance and survival. These patterns were best explained by malformation status, rather than infection per se, helping to decouple the direct and indirect effects of parasitism on host fitness.

  14. Disease and the Extended Phenotype: Parasites Control Host Performance and Survival through Induced Changes in Body Plan

    PubMed Central

    Goodman, Brett A.; Johnson, Pieter T. J.

    2011-01-01

    Background By definition, parasites harm their hosts. However, some forms of parasite-induced alterations increase parasite transmission between hosts, such that manipulated hosts can be considered extensions of the parasite's phenotype. While well accepted in principle, surprisingly few studies have quantified how parasite manipulations alter host performance and survival under field and laboratory conditions. Methodology/Principal Findings By interfering with limb development, the trematode Ribeiroia ondatrae causes particularly severe morphological alterations within amphibian hosts that provide an ideal system to evaluate parasite-induced changes in phenotype. Here, we coupled laboratory performance trials with a capture-mark-recapture study of 1388 Pacific chorus frogs (Pseudacris regilla) to quantify the effects of parasite-induced malformations on host locomotion, foraging, and survival. Malformations, which affected ∼50% of metamorphosing frogs in nature, caused dramatic reductions in all measures of organismal function. Malformed frogs exhibited significantly shorter jumping distances (41% reduction), slower swimming speeds (37% reduction), reduced endurance (66% reduction), and lower foraging success relative to infected hosts without malformations. Furthermore, while normal and malformed individuals had comparable survival within predator-free exclosures, deformed frogs in natural populations had 22% lower biweekly survival than normal frogs and rarely recruited to the adult population over a two-year period. Conclusions/Significance Our results highlight the ability of parasites to deeply alter multiple dimensions of host phenotype with important consequences for performance and survival. These patterns were best explained by malformation status, rather than infection per se, helping to decouple the direct and indirect effects of parasitism on host fitness. PMID:21633498

  15. Regulation of gene expression in protozoa parasites.

    PubMed

    Gomez, Consuelo; Esther Ramirez, M; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  16. Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea

    PubMed Central

    Sapir, Amir; Dillman, Adler R.; Connon, Stephanie A.; Grupe, Benjamin M.; Ingels, Jeroen; Mundo-Ocampo, Manuel; Levin, Lisa A.; Baldwin, James G.; Orphan, Victoria J.; Sternberg, Paul W.

    2013-01-01

    The deep sea is Earth's largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over 2 years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes' intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host's body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep-sea biosphere. PMID:24575084

  17. Specialized fungal parasites reduce fitness of their lichen hosts.

    PubMed

    Merinero, Sonia; Gauslaa, Yngvar

    2018-01-25

    Understanding to what extent parasites affect host fitness is a focus of research on ecological interactions. Fungal parasites usually affect the functions of vascular plants. However, parasitic interactions comprising effects of fungal parasites on the fitness of lichen hosts are less well known. This study assesses the effects of the abundance of two highly specialized gall-forming fungi on growth of their two respective lichen hosts and tests whether these fungal parasites reduce lichen fitness. The relative biomass and thallus area growth rates, and change in specific thallus mass of Lobaria pulmonaria and L. scrobiculata were compared between lichens with and without galls of the lichenicolous fungi Plectocarpon lichenum and P. scrobiculatae, cultivated in a growth chamber for 14 d. By estimating the thallus area occupied by the galls, it was also assessed whether growth rates varied with effective photosynthetic lichen surface area. Plectocarpon galls significantly reduced relative growth rates of the lichen hosts. Growth rates decreased with increasing cover of parasitic galls. The presence of Plectocarpon-galls per se, not the reduced photosynthetic thallus surface due to gall induction, reduced relative growth rates in infected hosts. Specific thallus mass in the hosts changed in species-specific ways. This study shows that specialized fungal parasites can reduce lichen fitness by reducing their growth rates. Higher parasite fitness correlated with lower host fitness, supporting the view that these associations are antagonistic. By reducing hosts' growth rates, these parasites in their symptomatic life stage may affect important lichen functions. This fungal parasite-lichen study widens the knowledge on the ecological effects of parasitism on autotrophic hosts and expands our understanding of parasitic interactions across overlooked taxonomic groups. © The Authors 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All

  18. A New Pathogen Transmission Mechanism in the Ocean: The Case of Sea Otter Exposure to the Land-Parasite Toxoplasma gondii

    PubMed Central

    Mazzillo, Fernanda F. M.; Shapiro, Karen; Silver, Mary W.

    2013-01-01

    Toxoplasma gondii is a land-derived parasite that infects humans and marine mammals. Infections are a significant cause of mortality for endangered southern sea otters (Enhydra lutris nereis), but the transmission mechanism is poorly understood. Otter exposure to T. gondii has been linked to the consumption of marine turban snails in kelp (Macrocystis pyrifera) forests. It is unknown how turban snails acquire oocysts, as snails scrape food particles attached to surfaces, whereas T. gondii oocysts enter kelp beds as suspended particles via runoff. We hypothesized that waterborne T. gondii oocysts attach to kelp surfaces when encountering exopolymer substances (EPS) forming the sticky matrix of biofilms on kelp, and thus become available to snails. Results of a dietary composition analysis of field-collected snails and of kelp biofilm indicate that snails graze the dense kelp-biofilm assemblage composed of pennate diatoms and bacteria inserted within the EPS gel-like matrix. To test whether oocysts attach to kelp blades via EPS, we designed a laboratory experiment simulating the kelp forest canopy in tanks spiked with T. gondii surrogate microspheres and controlled for EPS and transparent exopolymer particles (TEP - the particulate form of EPS). On average, 19% and 31% of surrogates were detected attached to kelp surfaces covered with EPS in unfiltered and filtered seawater treatments, respectively. The presence of TEP in the seawater did not increase surrogate attachment. These findings support a novel transport mechanism of T. gondii oocysts: as oocysts enter the kelp forest canopy, a portion adheres to the sticky kelp biofilms. Snails grazing this biofilm encounter oocysts as ‘bycatch’ and thereby deliver the parasite to sea otters that prey upon snails. This novel mechanism can have health implications beyond T. gondii and otters, as a similar route of pathogen transmission may be implicated with other waterborne pathogens to marine wildlife and humans

  19. Intensive Farming: Evolutionary Implications for Parasites and Pathogens

    PubMed Central

    Nilsen, Frank; Ebert, Dieter; Skorping, Arne

    2010-01-01

    An increasing number of scientists have recently raised concerns about the threat posed by human intervention on the evolution of parasites and disease agents. New parasites (including pathogens) keep emerging and parasites which previously were considered to be ‘under control’ are re-emerging, sometimes in highly virulent forms. This re-emergence may be parasite evolution, driven by human activity, including ecological changes related to modern agricultural practices. Intensive farming creates conditions for parasite growth and transmission drastically different from what parasites experience in wild host populations and may therefore alter selection on various traits, such as life-history traits and virulence. Although recent epidemic outbreaks highlight the risks associated with intensive farming practices, most work has focused on reducing the short-term economic losses imposed by parasites, such as application of chemotherapy. Most of the research on parasite evolution has been conducted using laboratory model systems, often unrelated to economically important systems. Here, we review the possible evolutionary consequences of intensive farming by relating current knowledge of the evolution of parasite life-history and virulence with specific conditions experienced by parasites on farms. We show that intensive farming practices are likely to select for fast-growing, early-transmitted, and hence probably more virulent parasites. As an illustration, we consider the case of the fish farming industry, a branch of intensive farming which has dramatically expanded recently and present evidence that supports the idea that intensive farming conditions increase parasite virulence. We suggest that more studies should focus on the impact of intensive farming on parasite evolution in order to build currently lacking, but necessary bridges between academia and decision-makers. PMID:21151485

  20. Control of human parasitic diseases: Context and overview.

    PubMed

    Molyneux, David H

    2006-01-01

    The control of parasitic diseases of humans has been undertaken since the aetiology and natural history of the infections was recognized and the deleterious effects on human health and well-being appreciated by policy makers, medical practitioners and public health specialists. However, while some parasitic infections such as malaria have proved difficult to control, as defined by a sustained reduction in incidence, others, particularly helminth infections can be effectively controlled. The different approaches to control from diagnosis, to treatment and cure of the clinically sick patient, to control the transmission within the community by preventative chemotherapy and vector control are outlined. The concepts of eradication, elimination and control are defined and examples of success summarized. Overviews of the health policy and financing environment in which programmes to control or eliminate parasitic diseases are positioned and the development of public-private partnerships as vehicles for product development or access to drugs for parasite disease control are discussed. Failure to sustain control of parasites may be due to development of drug resistance or the failure to implement proven strategies as a result of decreased resources within the health system, decentralization of health management through health-sector reform and the lack of financial and human resources in settings where per capita government expenditure on health may be less than $US 5 per year. However, success has been achieved in several large-scale programmes through sustained national government investment and/or committed donor support. It is also widely accepted that the level of investment in drug development for the parasitic diseases of poor populations is an unattractive option for pharmaceutical companies. The development of partnerships to specifically address this need provides some hope that the intractable problems of the treatment regimens for the trypanosomiases and

  1. Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes.

    PubMed

    Goodman, Christopher D; Siregar, Josephine E; Mollard, Vanessa; Vega-Rodríguez, Joel; Syafruddin, Din; Matsuoka, Hiroyuki; Matsuzaki, Motomichi; Toyama, Tomoko; Sturm, Angelika; Cozijnsen, Anton; Jacobs-Lorena, Marcelo; Kita, Kiyoshi; Marzuki, Sangkot; McFadden, Geoffrey I

    2016-04-15

    Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control. Copyright © 2016, American Association for the Advancement of Science.

  2. When More Transmission Equals Less Disease: Reconciling the Disconnect between Disease Hotspots and Parasite Transmission

    PubMed Central

    Park, Andrew W.; Magori, Krisztian; White, Brad A.; Stallknecht, David E.

    2013-01-01

    The assumed straightforward connection between transmission intensity and disease occurrence impacts surveillance and control efforts along with statistical methodology, including parameter inference and niche modeling. Many infectious disease systems have the potential for this connection to be more complicated–although demonstrating this in any given disease system has remained elusive. Hemorrhagic disease (HD) is one of the most important diseases of white-tailed deer and is caused by viruses in the Orbivirus genus. Like many infectious diseases, the probability or severity of disease increases with age (after loss of maternal antibodies) and the probability of disease is lower upon re-infection compared to first infection (based on cross-immunity between virus strains). These broad criteria generate a prediction that disease occurrence is maximized at intermediate levels of transmission intensity. Using published US field data, we first fit a statistical model to predict disease occurrence as a function of seroprevalence (a proxy for transmission intensity), demonstrating that states with intermediate seroprevalence have the highest level of case reporting. We subsequently introduce an independently parameterized mechanistic model supporting the theory that high case reporting should come from areas with intermediate levels of transmission. This is the first rigorous demonstration of this phenomenon and illustrates that variation in transmission rate (e.g. along an ecologically-controlled transmission gradient) can create cryptic refuges for infectious diseases. PMID:23579922

  3. The evolution of trophic transmission

    USGS Publications Warehouse

    Lafferty, Kevin D.

    1999-01-01

    Parasite increased trophic transmission (PITT) is one of the more fascinating tales of parasite evolution. The implications of this go beyond cocktail party anecdotes and science fiction plots as the phenomenon is pervasive and likely to be ecologically and evolutionarily important. Although the subject has already received substantial review, Kevin Lafferty here focuses on evolutionary aspects that have not been fully explored, specifically: (1) How strong should PITT be? (2) How might sexual selection and limb autotomy facilitate PITT? (3) How might infrapopulation regulation in final hosts be important in determining avoidance of infected prey? And (4) what happens when more than one species of parasite is in the same intermediate host?

  4. Autonomy and integration in complex parasite life cycles.

    PubMed

    Benesh, Daniel P

    2016-12-01

    Complex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.

  5. Stability of within-host–parasite communities in a wild mammal system

    PubMed Central

    Knowles, Sarah C. L.; Fenton, Andy; Petchey, Owen L.; Jones, Trevor R.; Barber, Rebecca; Pedersen, Amy B.

    2013-01-01

    Simultaneous infection by multiple parasite species is ubiquitous in nature. Interactions among co-infecting parasites may have important consequences for disease severity, transmission and community-level responses to perturbations. However, our current view of parasite interactions in nature comes primarily from observational studies, which may be unreliable at detecting interactions. We performed a perturbation experiment in wild mice, by using an anthelminthic to suppress nematodes, and monitored the consequences for other parasite species. Overall, these parasite communities were remarkably stable to perturbation. Only one non-target parasite species responded to deworming, and this response was temporary: we found strong, but short-lived, increases in the abundance of Eimeria protozoa, which share an infection site with the dominant nematode species, suggesting local, dynamic competition. These results, providing a rare and clear experimental demonstration of interactions between helminths and co-infecting parasites in wild vertebrates, constitute an important step towards understanding the wider consequences of similar drug treatments in humans and animals. PMID:23677343

  6. Parasites in the Wadden Sea food web

    NASA Astrophysics Data System (ADS)

    Thieltges, David W.; Engelsma, Marc Y.; Wendling, Carolin C.; Wegner, K. Mathias

    2013-09-01

    While the free-living fauna of the Wadden Sea has received much interest, little is known on the distribution and effects of parasites in the Wadden Sea food web. However, recent studies on this special type of trophic interaction indicate a high diversity of parasites in the Wadden Sea and suggest a multitude of effects on the hosts. This also includes effects on specific predator-prey relationships and the general structure of the food web. Focussing on molluscs, a major group in the Wadden Sea in terms of biomass and abundance and an important link between primary producers and predators, we review existing studies and exemplify the ecological role of parasites in the Wadden Sea food web. First, we give a brief inventory of parasites occurring in the Wadden Sea, ranging from microparasites (e.g. protozoa, bacteria) to macroparasites (e.g. helminths, parasitic copepods) and discuss the effects of spatial scale on heterogeneities in infection levels. We then demonstrate how parasites can affect host population dynamics by acting as a strong mortality factor, causing mollusc mass mortalities. In addition, we will exemplify how parasites can mediate the interaction strength of predator-prey relationships and affect the topological structure of the Wadden Sea food web as a whole. Finally, we highlight some ongoing changes regarding parasitism in the Wadden Sea in the course of global change (e.g. species introduction, climate change) and identify important future research questions to entangle the role of parasites in the Wadden Sea food web.

  7. The parasitic copepod Lernaeocera branchialis negatively affects cardiorespiratory function in Gadus morhua.

    PubMed

    Behrens, J W; Seth, H; Axelsson, M; Buchmann, K

    2014-05-01

    The parasitic copepod Lernaeocera branchialis had a negative effect on cardiorespiratory function in Atlantic cod Gadus morhua such that it caused pronounced cardiac dysfunction with irregular rhythm and reduced stroke amplitude compared with uninfected fish. In addition, parasite infection depressed the postprandial cardiac output and oxygen consumption. © 2014 The Fisheries Society of the British Isles.

  8. Recolonizing gray wolves increase parasite infection risk in their prey.

    PubMed

    Lesniak, Ines; Heckmann, Ilja; Franz, Mathias; Greenwood, Alex D; Heitlinger, Emanuel; Hofer, Heribert; Krone, Oliver

    2018-02-01

    The recent recolonization of Central Europe by the European gray wolf ( Canis lupus ) provides an opportunity to study the dynamics of parasite transmission for cases when a definitive host returns after a phase of local extinction. We investigated whether a newly established wolf population increased the prevalence of those parasites in ungulate intermediate hosts representing wolf prey, whether some parasite species are particularly well adapted to wolves, and the potential basis for such adaptations. We recorded Sarcocystis species richness in wolves and Sarcocystis prevalence in ungulates harvested in study sites with and without permanent wolf presence in Germany using microscopy and DNA metabarcoding. Sarcocystis prevalence in red deer ( Cervus elaphus ) was significantly higher in wolf areas (79.7%) than in control areas (26.3%) but not in roe deer ( Capreolus capreolus ) (97.2% vs. 90.4%) or wild boar ( Sus scrofa ) (82.8% vs. 64.9%). Of 11 Sarcocystis species, Sarcocystis taeniata and Sarcocystis grueneri occurred more often in wolves than expected from the Sarcocystis infection patterns of ungulate prey. Both Sarcocystis species showed a higher increase in prevalence in ungulates in wolf areas than other Sarcocystis species, suggesting that they are particularly well adapted to wolves, and are examples of "wolf specialists". Sarcocystis species richness in wolves was significantly higher in pups than in adults. "Wolf specialists" persisted during wolf maturation. The results of this study demonstrate that (1) predator-prey interactions influence parasite prevalence, if both predator and prey are part of the parasite life cycle, (2) mesopredators do not necessarily replace the apex predator in parasite transmission dynamics for particular parasites of which the apex predator is the definitive host, even if meso- and apex predators were from the same taxonomic family (here: Canidae, e.g., red foxes Vulpes vulpes ), and (3) age-dependent immune maturation

  9. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism

    USDA-ARS?s Scientific Manuscript database

    The common parasite Toxoplasma gondii induces behavioral alterations in its hosts including phenotypes increasing the likelihood of its transmission in rodents and reports of psychobehavioral alterations in humans. We have found that elevated levels of dopamine are associated with the encysted stage...

  10. Isolation of Intestinal Parasites of Public Health Importance from Cockroaches (Blattella germanica) in Jimma Town, Southwestern Ethiopia.

    PubMed

    Hamu, Haji; Debalke, Serkadis; Zemene, Endalew; Birlie, Belay; Mekonnen, Zeleke; Yewhalaw, Delenasaw

    2014-01-01

    Cockroaches are claimed to be mechanical transmitters of disease causing microorganisms such as intestinal parasites, bacteria, fungi, and viruses. This study assessed the potential of the German cockroach Blattella germanica in the mechanical transmission of intestinal parasites of public health importance. A total of 2010 cockroaches were collected from 404 households in Jimma Town, southwestern Ethiopia. All the collected cockroaches were identified to species as B. germanica. The contents of their gut and external body parts were examined for the presence of intestinal parasites. Overall, 152 (75.6%) of the 210 batches were found to harbor at least one species of human intestinal parasite. Ascaris lumbricoides, Trichuris trichiura, Taenia spp, Strongyloides-like parasite, Entamoeba histolytica/dispar/moshkovski, Giardia duodenalis and Balantidium coli were detected from gut contents. Moreover, parasites were also isolated from the external surface in 22 (10.95%) of the batches. There was significant difference in parasite carriage rate of the cockroaches among the study sites (P = 0.013). In conclusion, B. germanica was found to harbor intestinal parasites of public health importance. Hence, awareness on the potential role of cockroaches in the mechanical transmission of human intestinal parasites needs to be created. Moreover, further identification of the Strongyloides-like worm is required using molecular diagnostics.

  11. Cardiac Involvement with Parasitic Infections

    PubMed Central

    Hidron, Alicia; Vogenthaler, Nicholas; Santos-Preciado, José I.; Rodriguez-Morales, Alfonso J.; Franco-Paredes, Carlos; Rassi, Anis

    2010-01-01

    Summary: Parasitic infections previously seen only in developing tropical settings can be currently diagnosed worldwide due to travel and population migration. Some parasites may directly or indirectly affect various anatomical structures of the heart, with infections manifested as myocarditis, pericarditis, pancarditis, or pulmonary hypertension. Thus, it has become quite relevant for clinicians in developed settings to consider parasitic infections in the differential diagnosis of myocardial and pericardial disease anywhere around the globe. Chagas' disease is by far the most important parasitic infection of the heart and one that it is currently considered a global parasitic infection due to the growing migration of populations from areas where these infections are highly endemic to settings where they are not endemic. Current advances in the treatment of African trypanosomiasis offer hope to prevent not only the neurological complications but also the frequently identified cardiac manifestations of this life-threatening parasitic infection. The lack of effective vaccines, optimal chemoprophylaxis, or evidence-based pharmacological therapies to control many of the parasitic diseases of the heart, in particular Chagas' disease, makes this disease one of the most important public health challenges of our time. PMID:20375355

  12. Diptera vectors of avian Haemosporidian parasites: untangling parasite life cycles and their taxonomy.

    PubMed

    Santiago-Alarcon, Diego; Palinauskas, Vaidas; Schaefer, Hinrich Martin

    2012-11-01

    Haemosporida is a large group of vector-borne intracellular parasites that infect amphibians, reptiles, birds, and mammals. This group includes the different malaria parasites (Plasmodium spp.) that infect humans around the world. Our knowledge on the full life cycle of these parasites is most complete for those parasites that infect humans and, to some extent, birds. However, our current knowledge on haemosporidian life cycles is characterized by a paucity of information concerning the vector species responsible for their transmission among vertebrates. Moreover, our taxonomic and systematic knowledge of haemosporidians is far from complete, in particular because of insufficient sampling in wild vertebrates and in tropical regions. Detailed experimental studies to identify avian haemosporidian vectors are uncommon, with only a few published during the last 25 years. As such, little knowledge has accumulated on haemosporidian life cycles during the last three decades, hindering progress in ecology, evolution, and systematic studies of these avian parasites. Nonetheless, recently developed molecular tools have facilitated advances in haemosporidian research. DNA can now be extracted from vectors' blood meals and the vertebrate host identified; if the blood meal is infected by haemosporidians, the parasite's genetic lineage can also be identified. While this molecular tool should help to identify putative vector species, detailed experimental studies on vector competence are still needed. Furthermore, molecular tools have helped to refine our knowledge on Haemosporida taxonomy and systematics. Herein we review studies conducted on Diptera vectors transmitting avian haemosporidians from the late 1800s to the present. We also review work on Haemosporida taxonomy and systematics since the first application of molecular techniques and provide recommendations and suggest future research directions. Because human encroachment on natural environments brings human

  13. Other vector-borne parasitic diseases: animal helminthiases, bovine besnoitiosis and malaria.

    PubMed

    Duvallet, G; Boireau, P

    2015-08-01

    The parasitic diseases discussed elsewhere in this issue of the Scientific and Technical Review are not the only ones to make use of biological vectors (such as mosquitoes or ticks) or mechanical vectors (such as horse flies or Stomoxys flies). The authors discuss two major groups of vector-borne parasitic diseases: firstly, helminthiasis, along with animal filariasis and onchocerciasis, which are parasitic diseases that often take a heavytoll on artiodactylsthroughoutthe world; secondly, parasitic diseases caused by vector-borne protists, foremost of which is bovine besnoitiosis (or anasarca of cattle), which has recently spread through Europe by a dual mode of transmission (direct and by vector). Other protists, such as Plasmodium and Hepatozoon, are also described briefly.

  14. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine.

    PubMed

    Theisen, Michael; Jore, Matthijs M; Sauerwein, Robert

    2017-04-01

    Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which are essential for the transmission to the mosquito vector. A vaccine targeting the sexual stages of the parasite and thus blocking transmission will be instrumental for the eradication of malaria. One of the leading transmission blocking vaccine candidates is the sexual stage antigen Pfs48/45. Areas covered: PubMed was searched to review the progress and future prospects for clinical development of a Pfs48/45-based subunit vaccine. We will focus on biological function, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production of recombinant protein and preclinical studies. Expert commentary: Pfs48/45 is one of the lead-candidates for a transmission blocking vaccine and should be further explored in clinical trials.

  15. Social learning of a brood parasite by its host

    PubMed Central

    Feeney, William E.; Langmore, Naomi E.

    2013-01-01

    Arms races between brood parasites and their hosts provide model systems for studying the evolutionary repercussions of species interactions. However, how naive hosts identify brood parasites as enemies remains poorly understood, despite its ecological and evolutionary significance. Here, we investigate whether young, cuckoo-naive superb fairy-wrens, Malurus cyaneus, can learn to recognize cuckoos as a threat through social transmission of information. Naive individuals were initially unresponsive to a cuckoo specimen, but after observing conspecifics mob a cuckoo, they made more whining and mobbing alarm calls, and spent more time physically mobbing the cuckoo. This is the first direct evidence that naive hosts can learn to identify brood parasites as enemies via social learning. PMID:23760171

  16. Social learning of a brood parasite by its host.

    PubMed

    Feeney, William E; Langmore, Naomi E

    2013-08-23

    Arms races between brood parasites and their hosts provide model systems for studying the evolutionary repercussions of species interactions. However, how naive hosts identify brood parasites as enemies remains poorly understood, despite its ecological and evolutionary significance. Here, we investigate whether young, cuckoo-naive superb fairy-wrens, Malurus cyaneus, can learn to recognize cuckoos as a threat through social transmission of information. Naive individuals were initially unresponsive to a cuckoo specimen, but after observing conspecifics mob a cuckoo, they made more whining and mobbing alarm calls, and spent more time physically mobbing the cuckoo. This is the first direct evidence that naive hosts can learn to identify brood parasites as enemies via social learning.

  17. The Ecology of Parasite-Host Interactions at Montezuma Well National Monument, Arizona - Appreciating the Importance of Parasites

    USGS Publications Warehouse

    O'Brien, Chris; van Riper, Charles

    2009-01-01

    Although parasites play important ecological roles through the direct interactions they have with their hosts, historically that fact has been underappreciated. Today, scientists have a growing appreciation of the scope of such impacts. Parasites have been reported to dominate food webs, alter predator-prey relationships, act as ecosystem engineers, and alter community structure. In spite of this growing awareness in the scientific community, parasites are still often neglected in the consideration of the management and conservation of resources and ecosystems. Given that at least half of the organisms on earth are probably parasitic, it should be evident that the ecological functions of parasites warrant greater attention. In this report, we explore different aspects of parasite-host relationships found at a desert spring pond within Montezuma Well National Monument, Arizona. In three separate but related chapters, we explore interactions between a novel amphipod host and two parasites. First, we identify how host behavior responds to this association and how this association affects interactions with both invertebrate non-host predators and a vertebrate host predator. Second, we look at the human dimension, investigating how human recreation can indirectly affect patterns of disease by altering patterns of vertebrate host space use. Finally - because parasites and diseases are of increasing importance in the management of wildlife species, especially those that are imperiled or of management concern - the third chapter argues that research would benefit from increased attention to the statistical analysis of wildlife disease studies. This report also explores issues of statistical parasitology, providing information that may better inform those designing research projects and analyzing data from studies of wildlife disease. In investigating the nature of parasite-host interactions, the role that relationships play in ecological communities, and how human

  18. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax.

    PubMed

    Loy, Dorothy E; Liu, Weimin; Li, Yingying; Learn, Gerald H; Plenderleith, Lindsey J; Sundararaman, Sesh A; Sharp, Paul M; Hahn, Beatrice H

    2017-02-01

    Plasmodium falciparum and Plasmodium vivax account for more than 95% of all human malaria infections, and thus pose a serious public health challenge. To control and potentially eliminate these pathogens, it is important to understand their origins and evolutionary history. Until recently, it was widely believed that P. falciparum had co-evolved with humans (and our ancestors) over millions of years, whilst P. vivax was assumed to have emerged in southeastern Asia following the cross-species transmission of a parasite from a macaque. However, the discovery of a multitude of Plasmodium spp. in chimpanzees and gorillas has refuted these theories and instead revealed that both P. falciparum and P. vivax evolved from parasites infecting wild-living African apes. It is now clear that P. falciparum resulted from a recent cross-species transmission of a parasite from a gorilla, whilst P. vivax emerged from an ancestral stock of parasites that infected chimpanzees, gorillas and humans in Africa, until the spread of the protective Duffy-negative mutation eliminated P. vivax from human populations there. Although many questions remain concerning the biology and zoonotic potential of the P. falciparum- and P. vivax-like parasites infecting apes, comparative genomics, coupled with functional parasite and vector studies, are likely to yield new insights into ape Plasmodium transmission and pathogenesis that are relevant to the treatment and prevention of human malaria. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. Where are the parasites in food webs?

    PubMed Central

    2012-01-01

    This review explores some of the reasons why food webs seem to contain relatively few parasite species when compared to the full diversity of free living species in the system. At present, there are few coherent food web theories to guide scientific studies on parasites, and this review posits that the methods, directions and questions in the field of food web ecology are not always congruent with parasitological inquiry. For example, topological analysis (the primary tool in food web studies) focuses on only one of six important steps in trematode life cycles, each of which requires a stable community dynamic to evolve. In addition, these transmission strategies may also utilize pathways within the food web that are not considered in traditional food web investigations. It is asserted that more effort must be focused on parasite-centric models, and a central theme is that many different approaches will be required. One promising approach is the old energetic perspective, which considers energy as the critical resource for all organisms, and the currency of all food web interactions. From the parasitological point of view, energy can be used to characterize the roles of parasites at all levels in the food web, from individuals to populations to community. The literature on parasite energetics in food webs is very sparse, but the evidence suggests that parasite species richness is low in food webs because parasites are limited by the quantity of energy available to their unique lifestyles. PMID:23092160

  20. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India.

    PubMed

    Cator, Lauren J; Thomas, Shalu; Paaijmans, Krijn P; Ravishankaran, Sangamithra; Justin, Johnson A; Mathai, Manu T; Read, Andrew F; Thomas, Matthew B; Eapen, Alex

    2013-03-02

    Environmental temperature is an important driver of malaria transmission dynamics. Both the parasite and vector are sensitive to mean ambient temperatures and daily temperature variation. To understand transmission ecology, therefore, it is important to determine the range of microclimatic temperatures experienced by malaria vectors in the field. A pilot study was conducted in the Indian city of Chennai to determine the temperature variation in urban microclimates and characterize the thermal ecology of the local transmission setting. Temperatures were measured in a range of probable indoor and outdoor resting habitats of Anopheles stephensi in two urban slum malaria sites. Mean temperatures and daily temperature fluctuations in local transmission sites were compared with standard temperature measures from the local weather station. The biological implications of the different temperatures were explored using temperature-dependent parasite development models to provide estimates of the extrinsic incubation period (EIP) of Plasmodium vivax and Plasmodium falciparum. Mean daily temperatures within the urban transmission sites were generally warmer than those recorded at the local weather station. The main reason was that night-time temperatures were higher (and hence diurnal temperature ranges smaller) in the urban settings. Mean temperatures and temperature variation also differed between specific resting sites within the transmission environments. Most differences were of the order of 1-3°C but were sufficient to lead to important variation in predicted EIPs and hence, variation in estimates of transmission intensity. Standard estimates of environmental temperature derived from local weather stations do not necessarily provide realistic measures of temperatures within actual transmission environments. Even the small differences in mean temperatures or diurnal temperature ranges reported in this study can lead to large variations in key mosquito and/or parasite

  1. The cost of promiscuity: sexual transmission of Nosema microsporidian parasites in polyandrous honey bees

    PubMed Central

    Roberts, K. E.; Evison, S. E. F.; Baer, B.; Hughes, W. O. H.

    2015-01-01

    Multiple mating (and insemination) by females with different males, polyandry, is widespread across animals, due to material and/or genetic benefits for females. It reaches particularly high levels in some social insects, in which queens can produce significantly fitter colonies by being polyandrous. It is therefore a paradox that two thirds of eusocial hymenopteran insects appear to be exclusively monandrous, in spite of the fitness benefits that polyandry could provide. One possible cost of polyandry could be sexually transmitted parasites, but evidence for these in social insects is extremely limited. Here we show that two different species of Nosema microsporidian parasites can transmit sexually in the honey bee Apis mellifera. Honey bee males that are infected by the parasite have Nosema spores in their semen, and queens artificially inseminated with either Nosema spores or the semen of Nosema-infected males became infected by the parasite. The emergent and more virulent N. ceranae achieved much higher rates of infection following insemination than did N. apis. The results provide the first quantitative evidence of a sexually transmitted disease (STD) in social insects, indicating that STDs may represent a potential cost of polyandry in social insects. PMID:26123939

  2. Sub-millimeter-Wave Equivalent Circuit Model for External Parasitics in Double-Finger HEMT Topologies

    NASA Astrophysics Data System (ADS)

    Karisan, Yasir; Caglayan, Cosan; Sertel, Kubilay

    2018-02-01

    We present a novel distributed equivalent circuit that incorporates a three-way-coupled transmission line to accurately capture the external parasitics of double-finger high electron mobility transistor (HEMT) topologies up to 750 GHz. A six-step systematic parameter extraction procedure is used to determine the equivalent circuit elements for a representative device layout. The accuracy of the proposed approach is validated in the 90-750 GHz band through comparisons between measured data (via non-contact probing) and full-wave simulations, as well as the equivalent circuit response. Subsequently, a semi-distributed active device model is incorporated into the proposed parasitic circuit to demonstrate that the three-way-coupled transmission line model effectively predicts the adverse effect of parasitic components on the sub-mmW performance in an amplifier setting.

  3. Comparing mechanisms of host manipulation across host and parasite taxa

    USGS Publications Warehouse

    Lafferty, Kevin D.; Shaw, Jenny C.

    2013-01-01

    Parasites affect host behavior in several ways. They can alter activity, microhabitats or both. For trophically transmitted parasites (the focus of our study), decreased activity might impair the ability of hosts to respond to final-host predators, and increased activity and altered microhabitat choice might increase contact rates between hosts and final-host predators. In an analysis of trophically transmitted parasites, more parasite groups altered activity than altered microhabitat choice. Parasites that infected vertebrates were more likely to impair the host’s reaction to predators, whereas parasites that infected invertebrates were more likely to increase the host’s contact with predators. The site of infection might affect how parasites manipulate their hosts. For instance, parasites in the central nervous system seem particularly suited to manipulating host behavior. Manipulative parasites commonly occupy the body cavity, muscles and central nervous systems of their hosts. Acanthocephalans in the data set differed from other taxa in that they occurred exclusively in the body cavity of invertebrates. In addition, they were more likely to alter microhabitat choice than activity. Parasites in the body cavity (across parasite types) were more likely to be associated with increased host contact with predators. Parasites can manipulate the host through energetic drain, but most parasites use more sophisticated means. For instance, parasites target four physiological systems that shape behavior in both invertebrates and vertebrates: neural, endocrine, neuromodulatory and immunomodulatory. The interconnections between these systems make it difficult to isolate specific mechanisms of host behavioral manipulation.

  4. Parasites of native and exotic freshwater fishes in south-western Australia.

    PubMed

    Lymbery, A J; Hassan, M; Morgan, D L; Beatty, S J; Doupé, R G

    2010-05-01

    In this study, 1429 fishes of 18 different species (12 native and six exotic) were sampled from 29 localities to compare the levels of parasitism between native and exotic fish species and to examine the relationship between environmental degradation and parasite diversity. Forty-four putative species of parasites were found and most of these appear to be native parasites, which have not previously been described. Two parasite species, Lernaea cyprinacea and Ligula intestinalis, are probably introduced. Both were found on or in a range of native fish species, where they may cause severe disease. Levels of parasitism and parasite diversity were significantly greater in native fishes than in exotic species, and this may contribute to an enhanced demographic performance and competitive ability in invading exotics. Levels of parasitism and parasite diversity in native fishes were negatively related to habitat disturbance, in particular to a suite of factors that indicate increased human use of the river and surrounding environment. This was due principally to the absence in more disturbed habitats of a number of species of endoparasites with complex life cycles, involving transmission between different host species.

  5. Spatial variation in the parasite communities and genomic structure of urban rats in New York City.

    PubMed

    Angley, L P; Combs, M; Firth, C; Frye, M J; Lipkin, I; Richardson, J L; Munshi-South, J

    2018-02-01

    Brown rats (Rattus norvegicus) are a globally distributed pest. Urban habitats can support large infestations of rats, posing a potential risk to public health from the parasites and pathogens they carry. Despite the potential influence of rodent-borne zoonotic diseases on human health, it is unclear how urban habitats affect the structure and transmission dynamics of ectoparasite and microbial communities (all referred to as "parasites" hereafter) among rat colonies. In this study, we use ecological data on parasites and genomic sequencing of their rat hosts to examine associations between spatial proximity, genetic relatedness and the parasite communities associated with 133 rats at five sites in sections of New York City with persistent rat infestations. We build on previous work showing that rats in New York carry a wide variety of parasites and report that these communities differ significantly among sites, even across small geographical distances. Ectoparasite community similarity was positively associated with geographical proximity; however, there was no general association between distance and microbial communities of rats. Sites with greater overall parasite diversity also had rats with greater infection levels and parasite species richness. Parasite community similarity among sites was not linked to genetic relatedness of rats, suggesting that these communities are not associated with genetic similarity among host individuals or host dispersal among sites. Discriminant analysis identified site-specific associations of several parasite species, suggesting that the presence of some species within parasite communities may allow researchers to determine the sites of origin for newly sampled rats. The results of our study help clarify the roles that colony structure and geographical proximity play in determining the ecology of R. norvegicus as a significant urban reservoir of zoonotic diseases. Our study also highlights the spatial variation present in urban

  6. Assembly of the Genome of the Disease Vector Aedes aegypti onto a Genetic Linkage Map Allows Mapping of Genes Affecting Disease Transmission

    PubMed Central

    Juneja, Punita; Osei-Poku, Jewelna; Ho, Yung S.; Ariani, Cristina V.; Palmer, William J.; Pain, Arnab; Jiggins, Francis M.

    2014-01-01

    The mosquito Aedes aegypti transmits some of the most important human arboviruses, including dengue, yellow fever and chikungunya viruses. It has a large genome containing many repetitive sequences, which has resulted in the genome being poorly assembled — there are 4,758 scaffolds, few of which have been assigned to a chromosome. To allow the mapping of genes affecting disease transmission, we have improved the genome assembly by scoring a large number of SNPs in recombinant progeny from a cross between two strains of Ae. aegypti, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were corrected, we were able to assign 60% of the genome sequence to chromosomes and approximately order the scaffolds along the chromosome. We found that there are very large regions of suppressed recombination around the centromeres, which can extend to as much as 47% of the chromosome. To illustrate the utility of this new genome assembly, we mapped a gene that makes Ae. aegypti resistant to the human parasite Brugia malayi, and generated a list of candidate genes that could be affecting the trait. PMID:24498447

  7. Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii

    PubMed Central

    Martins-Duarte, Erica S.; Dubar, Faustine; Lawton, Philippe; França da Silva, Cristiane; C. Soeiro, Maria de Nazaré; de Souza, Wanderley; Biot, Christophe; Vommaro, Rossiane C.

    2015-01-01

    Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is a worldwide disease whose clinical manifestations include encephalitis and congenital malformations in newborns. Previously, we described the synthesis of new ethyl-ester derivatives of the antibiotic ciprofloxacin with ~40-fold increased activity against T. gondii in vitro, compared with the original compound. Cipro derivatives are expected to target the parasite’s DNA gyrase complex in the apicoplast. The activity of these compounds in vivo, as well as their mode of action, remained thus far uncharacterized. Here, we examined the activity of the Cipro derivatives in vivo, in a model of acute murine toxoplasmosis. In addition, we investigated the cellular effects T. gondii tachyzoites in vitro, by immunofluorescence and transmission electron microscopy (TEM). When compared with Cipro treatment, 7-day treatments with Cipro derivatives increased mouse survival significantly, with 13–25% of mice surviving for up to 60 days post-infection (vs. complete lethality 10 days post-infection, with Cipro treatment). Light microscopy examination early (6 and 24h) post-infection revealed that 6-h treatments with Cipro derivatives inhibited the initial event of parasite cell division inside host cells, in an irreversible manner. By TEM and immunofluorescence, the main cellular effects observed after treatment with Cipro derivatives and Cipro were cell scission inhibition - with the appearance of ‘tethered’ parasites – malformation of the inner membrane complex, and apicoplast enlargement and missegregation. Interestingly, tethered daughter cells resulting from Cipro derivatives, and also Cipro, treatment did not show MORN1 cap or centrocone localization. The biological activity of Cipro derivatives against C. parvum, an apicomplexan species that lacks the apicoplast, is, approximately, 50 fold lower than that in T. gondii tachyzoites, supporting that these compounds targets the apicoplast. Our results show

  8. Paratenic hosts as regular transmission route in the acanthocephalan Pomphorhynchus laevis: potential implications for food webs

    NASA Astrophysics Data System (ADS)

    Médoc, Vincent; Rigaud, Thierry; Motreuil, Sébastien; Perrot-Minnot, Marie-Jeanne; Bollache, Loïc

    2011-10-01

    Although trophically transmitted parasites are recognized to strongly influence food-web dynamics through their ability to manipulate host phenotype, our knowledge of their host spectrum is often imperfect. This is particularly true for the facultative paratenic hosts, which receive little interest. We investigated the occurrence and significance both in terms of ecology and evolution of paratenic hosts in the life cycle of the fish acanthocephalan Pomphorhynchus laevis. This freshwater parasite uses amphipods as intermediate hosts and cyprinids and salmonids as definitive hosts. Within a cohort of parasite larvae, usually reported in amphipod intermediate hosts, more than 90% were actually hosted by small-sized fish. We demonstrated experimentally, using one of these fish, that they get infected through the consumption of parasitized amphipods and contribute to the parasite's transmission to a definitive host, hence confirming their paratenic host status. A better knowledge of paratenic host spectrums could help us to understand the fine tuning of transmission strategies, to better estimate parasite biomass, and could improve our perception of parasite subwebs in terms of host-parasite and predator-parasite links.

  9. Lysophosphatidylcholine: A Novel Modulator of Trypanosoma cruzi Transmission

    PubMed Central

    Silva-Neto, Mário A. C.; Carneiro, Alan B.; Silva-Cardoso, Livia; Atella, Georgia C.

    2012-01-01

    Lysophosphatidylcholine is a bioactive lipid that regulates a large number of cellular processes and is especially present during the deposition and infiltration of inflammatory cells and deposition of atheromatous plaque. Such molecule is also present in saliva and feces of the hematophagous organism Rhodnius prolixus, a triatominae bug vector of Chagas disease. We have recently demonstrated that LPC is a modulator of Trypanosoma cruzi transmission. It acts as a powerful chemoattractant for inflammatory cells at the site of the insect bite, which will provide a concentrated population of cells available for parasite infection. Also, LPC increases macrophage intracellular calcium concentrations that ultimately enhance parasite invasion. Finally, LPC inhibits NO production by macrophages stimulated by live T. cruzi, and thus interferes with the immune system of the vertebrate host. In the present paper, we discuss the main signaling mechanisms that are likely used by such molecule and their eventual use as targets to block parasite transmission and the pathogenesis of Chagas disease. PMID:22132309

  10. Age-structured gametocyte allocation links immunity to epidemiology in malaria parasites.

    PubMed

    Paul, Richard E; Bonnet, Sarah; Boudin, Christian; Tchuinkam, Timoleon; Robert, Vincent

    2007-09-12

    Despite a long history of attempts to model malaria epidemiology, the over-riding conclusion is that a detailed understanding of host-parasite interactions leading to immunity is required. It is still not known what governs the duration of an infection and how within-human parasite dynamics relate to malaria epidemiology. Immunity to Plasmodium falciparum develops slowly and requires repeated exposure to the parasite, which thus generates age-structure in the host-parasite interaction. An age-structured degree of immunity would present the parasite with humans of highly variable quality. Evolutionary theory suggests that natural selection will mould adaptive phenotypes that are more precise (less variant) in "high quality" habitats, where lifetime reproductive success is best. Variability in malaria parasite gametocyte density is predicted to be less variable in those age groups who best infect mosquitoes. Thus, the extent to which variation in gametocyte density is a simple parasite phenotype reflecting the complex within-host parasite dynamics is addressed. Gametocyte densities and corresponding infectiousness to mosquitoes from published data sets and studies in both rural and urban Cameroon are analysed. The mean and variation in gametocyte density according to age group are considered and compared with transmission success (proportion of mosquitoes infected). Across a wide range of settings endemic for malaria, the age group that infected most mosquitoes had the least variation in gametocyte density, i.e. there was a significant relationship between the variance rather than the mean gametocyte density and age-specific parasite transmission success. In these settings, the acquisition of immunity over time was evident as a decrease in asexual parasite densities with age. By contrast, in an urban setting, there were no such age-structured relationships either with variation in gametocyte density or asexual parasite density. Gametocyte production is seemingly

  11. Vulnerability and diet breadth predict larval and adult parasite diversity in fish of the Bothnian Bay.

    PubMed

    Locke, Sean A; Marcogliese, David J; Valtonen, E Tellervo

    2014-01-01

    Recent studies of aquatic food webs show that parasite diversity is concentrated in nodes that likely favour transmission. Various aspects of parasite diversity have been observed to be correlated with the trophic level, size, diet breadth, and vulnerability to predation of hosts. However, no study has attempted to distinguish among all four correlates, which may have differential importance for trophically transmitted parasites occurring as larvae or adults. We searched for factors that best predict the diversity of larval and adult endoparasites in 4105 fish in 25 species studied over a three-year period in the Bothnian Bay, Finland. Local predator-prey relationships were determined from stomach contents, parasites, and published data in 8,229 fish in 31 species and in seals and piscivorous birds. Fish that consumed more species of prey had more diverse trophically transmitted adult parasites. Larval parasite diversity increased with the diversity of both prey and predators, but increases in predator diversity had a greater effect. Prey diversity was more strongly associated with the diversity of adult parasites than with that of larvae. The proportion of parasite species present as larvae in a host species was correlated with the diversity of its predators. There was a notable lack of association with the diversity of any parasite guild and fish length, trophic level, or trophic category. Thus, diversity is associated with different nodal properties in larval and adult parasites, and association strengths also differ, strongly reflecting the life cycles of parasites and the food chains they follow to complete transmission.

  12. Gold nanoparticles - against parasites and insect vectors.

    PubMed

    Benelli, Giovanni

    2018-02-01

    Nanomaterials are currently considered for many biological, biomedical and environmental purposes, due to their outstanding physical and chemical properties. The synthesis of gold nanoparticles (Au NPs) is of high interest for research in parasitology and entomology, since these nanomaterials showed promising applications, ranging from detection techniques to drug development, against a rather wide range of parasites of public health relevance, as well as on insect vectors. Here, I reviewed current knowledge about the bioactivity of Au NPs on selected insect species of public health relevance, including major mosquito vectors, such as Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The toxicity of Au NPs against helminths was reviewed, covering Schistosoma mansoni trematodes as well as Raillietina cestodes. Furthermore, I summarized the information available on the antiparasitic role of Au NPs in the fight against malaria, leishmaniosis, toxoplasmosis, trypanosomiasis, cryptosporidiosis, and microsporidian parasites affecting human and animals health. Besides, I examined the employ of Au NPs as biomarkers, tools for diagnostics and adjuvants for the induction of transmission blocking immunity in malaria vaccine research. In the final section, major challenges and future outlooks for further research are discussed, with special reference to the pressing need of further knowledge about the effect of Au NPs on other arthropod vectors, such as ticks, tsetse flies, tabanids, sandflies and blackflies, and related ecotoxicology assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Landscape Context Affects Aphid Parasitism by Lysiphlebus testaceipes (Hymenoptera: Aphidiinae) in Wheat Fields.

    PubMed

    Elliott, Norman C; Brewer, Michael J; Giles, Kristopher L

    2018-04-12

    Winter wheat is Oklahoma's most widely grown crop, and is planted during September and October, grows from fall through spring, and is harvested in June. Winter wheat fields are typically interspersed in a mosaic of habitats in other uses, and we hypothesized that the spatial and temporal composition and configuration of landscape elements, which contribute to agroecosystem diversity also influence biological control of common aphid pests. The parasitoid Lysiphlebus testaceipes (Cresson; Hymenoptera: Aphidiinae) is highly effective at reducing aphid populations in wheat in Oklahoma, and though a great deal is known about the biology and ecology of L. testaceipes, there are gaps in knowledge that limit predicting when and where it will be effective at controlling aphid infestations in wheat. Our objective was to determine the influence of landscape structure on parasitism of cereal aphids by L. testaceipes in wheat fields early in the growing season when aphid and parasitoid colonization occurs and later in the growing season when aphid and parasitoid populations are established in wheat fields. Seventy fields were studied during the three growing seasons. Significant correlations between parasitism by L. testaceipes and landscape variables existed for patch density, fractal dimension, Shannon's patch diversity index, percent wheat, percent summer crops, and percent wooded land. Correlations between parasitism and landscape variables were generally greatest at a 3.2 km radius surrounding the wheat field. Correlations between parasitism and landscape variables that would be expected to increase with increasing landscape diversity were usually positive. Subsequent regression models for L. testaceipes parasitism in wheat fields in autumn and spring showed that landscape variables influenced parasitism and indicated that parasitism increased with increasing landscape diversity. Overall, results indicate that L. testaceipes utilizes multiple habitats throughout the year

  14. The role of wild canids and felids in spreading parasites to dogs and cats in Europe. Part II: Helminths and arthropods.

    PubMed

    Otranto, Domenico; Cantacessi, Cinzia; Dantas-Torres, Filipe; Brianti, Emanuele; Pfeffer, Martin; Genchi, Claudio; Guberti, Vittorio; Capelli, Gioia; Deplazes, Peter

    2015-09-30

    Over the last few decades, ecological factors, combined with everchanging landscapes mainly linked to human activities (e.g. encroachment and tourism) have contributed to modifications in the transmission of parasitic diseases from domestic to wildlife carnivores and vice versa. In the first of this two-part review article, we have provided an account of diseases caused by protozoan parasites characterised by a two-way transmission route between domestic and wild carnivore species. In this second and final part, we focus our attention on parasitic diseases caused by helminth and arthropod parasites shared between domestic and wild canids and felids in Europe. While a complete understanding of the biology, ecology and epidemiology of these parasites is particularly challenging to achieve, especially given the complexity of the environments in which these diseases perpetuate, advancements in current knowledge of transmission routes is crucial to provide policy-makers with clear indications on strategies to reduce the impact of these diseases on changing ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A comparison of two methods for quantifying parasitic nematode fecundity

    USDA-ARS?s Scientific Manuscript database

    Accurate measures of nematode fecundity can provide important information for investigating parasite life history evolution, transmission potential, and effects on host health. Understanding differences among fecundity assessment protocols and standardizing methods, where possible, will enable compa...

  16. Development of malaria transmission-blocking vaccines: from concept to product.

    PubMed

    Wu, Yimin; Sinden, Robert E; Churcher, Thomas S; Tsuboi, Takafumi; Yusibov, Vidadi

    2015-06-01

    Despite decades of effort battling against malaria, the disease is still a major cause of morbidity and mortality. Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. In the 1950s, Huff et al. first demonstrated the induction of transmission-blocking immunity in chickens by repeated immunizations with Plasmodium gallinaceum-infected red blood cells. Since then, significant progress has been made in identification of parasite antigens responsible for transmission-blocking activity. Recombinant technologies accelerated evaluation of these antigens as vaccine candidates, and it is possible to induce effective transmission-blocking immunity in humans both by natural infection and now by immunization with recombinant vaccines. This chapter reviews the efforts to produce TBVs, summarizes the current status and advances and discusses the remaining challenges and approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Parasite infracommunities of a specialized marine fish species in a compound community dominated by generalist parasites.

    PubMed

    Lanfranchi, A L; Rossin, M A; Timi, J T

    2009-12-01

    The structure and composition of parasite communities of Mullus argentinae were analysed under two alternative hypotheses in a sample of 75 specimens caught off Mar del Plata, Argentina (38 degrees 27'S, 57 degrees 90'W). The first, based on the dominance of trophically transmitted larval parasites of low host-specificity among fish species in the region, predicts that infracommunities will be random subsets of regionally available species. The second, based on previous studies on other mullids, predicts that infracommunities will be dominated by adult digeneans. The parasite fauna of goatfishes was mainly composed of endoparasites, with metacercariae of Prosorhynchus australis accounting for most individual parasites and greatly affecting infracommunity descriptors. Its importance was reinforced by the low number of trophically transmitted larval parasites. Both hypotheses were refuted; parasite communities were not dominated either by trophically transmitted larval parasites of low host-specificity or by adult digeneans. Prosorhynchus australis was the only species displaying any degree of phylogenetic specificity. Therefore, the influence of phylogenetic factors seems to exceed that of ecological ones in determining the observed structure of infracommunities. However, it is precisely host ecology that allows P. australis to become the determinant of infracommunity structure by constraining the acquisition of other parasites. Studies aiming to determine the relative importance of evolutionary and ecological processes as structuring forces of parasite communities should take into account not only the identity and specificity of their component parasites, but also their availability in the compound community.

  18. Knockout of the Rodent Malaria Parasite Chitinase PbCHT1 Reduces Infectivity to Mosquitoes

    PubMed Central

    Dessens, Johannes T.; Mendoza, Jacqui; Claudianos, Charles; Vinetz, Joseph M.; Khater, Emad; Hassard, Stuart; Ranawaka, Gaya R.; Sinden, Robert E.

    2001-01-01

    During mosquito transmission, malaria ookinetes must cross a chitin-containing structure known as the peritrophic matrix (PM), which surrounds the infected blood meal in the mosquito midgut. In turn, ookinetes produce multiple chitinase activities presumably aimed at disrupting this physical barrier to allow ookinete invasion of the midgut epithelium. Plasmodium chitinase activities are demonstrated targets for human and avian malaria transmission blockade with the chitinase inhibitor allosamidin. Here, we identify and characterize the first chitinase gene of a rodent malaria parasite, Plasmodium berghei. We show that the gene, named PbCHT1, is a structural ortholog of PgCHT1 of the avian malaria parasite Plasmodium gallinaceum and a paralog of PfCHT1 of the human malaria parasite Plasmodium falciparum. Targeted disruption of PbCHT1 reduced parasite infectivity in Anopheles stephensi mosquitoes by up to 90%. Reductions in infectivity were also observed in ookinete feeds—an artificial situation where midgut invasion occurs before PM formation—suggesting that PbCHT1 plays a role other than PM disruption. PbCHT1 null mutants had no residual ookinete-derived chitinase activity in vitro, suggesting that P. berghei ookinetes express only one chitinase gene. Moreover, PbCHT1 activity appeared insensitive to allosamidin inhibition, an observation that raises questions about the use of allosamidin and components like it as potential malaria transmission-blocking drugs. Taken together, these findings suggest a fundamental divergence among rodent, avian, and human malaria parasite chitinases, with implications for the evolution of Plasmodium-mosquito interactions. PMID:11349074

  19. Filtering out parasites: sand crabs (Lepidopa benedicti) are infected by more parasites than sympatric mole crabs (Emerita benedicti)

    PubMed Central

    2017-01-01

    Two digging decapod crustaceans, the sand crab species Lepidopa benedicti and the mole crab species Emerita benedicti, both live in the swash zone of fine sand beaches. They were examined for two parasites that infect decapod crustaceans in the region, an unidentified nematode previously shown to infect L. benedicti, and cestode tapeworm larvae, Polypocephalus sp., previously shown to infect shrimp (Litopenaeus setiferus). Lepidopa benedicti were almost always infected with both parasite species, while E. benedicti were rarely infected with either parasite species. This difference in infection pattern suggests that tapeworms are ingested during sediment feeding in L. benedicti, which E. benedicti avoid by filter feeding. Larger L. benedicti had more Polypocephalus sp. larvae. The thoracic ganglia, which make up the largest proportion of neural tissue, contained the largest numbers of Polypocephalus sp. larvae. Intensity of Polypocephalus sp. infection was not correlated with how long L. benedicti remained above sand in behavioural tests, suggesting that Polypocephalus sp. do not manipulate the sand crabs in a way that facilitates trophic transmission of the parasite. Litopenaeus setiferus may be a primary host for Polypocephalus sp., and L. benedict may be a secondary, auxiliary host. PMID:28951818

  20. Vulnerability to changes in malaria transmission due to climate change in West Africa

    NASA Astrophysics Data System (ADS)

    Yamana, T. K.; Eltahir, E. A.

    2012-12-01

    Malaria transmission in West Africa is strongly tied to climate; temperature affects the development rate of the malaria parasite, as well as the survival of the mosquitoes that transmit the disease, and rainfall is tied to mosquito abundance, as the vector lays its eggs in rain-fed water pools. As a result, the environmental suitability for malaria transmission in this region is expected to change as temperatures rise and rainfall patterns are altered. The vulnerability to changes in transmission varies throughout West Africa. Areas where malaria prevalence is already very high will be less sensitive to changes in transmission. Increases in environmental suitability for malaria transmission in the most arid regions may still be insufficient to allow sustained transmission. However, areas were malaria transmission currently occurs at low levels are expected to be the most sensitive to changes in environmental suitability for transmission. Here, we use data on current environment and malaria transmission rates to highlight areas in West Africa that we expect to be most vulnerable to an increase in malaria under certain climate conditions. We then analyze climate predictions from global climate models in vulnerable areas, and make predictions for the expected change in environmental suitability for malaria transmission using the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a mechanistic model developed to simulate village-scale response of malaria transmission to environmental variables in West Africa.

  1. Parasites, ecosystems and sustainability: an ecological and complex systems perspective.

    PubMed

    Horwitz, Pierre; Wilcox, Bruce A

    2005-06-01

    Host-parasite relationships can be conceptualised either narrowly, where the parasite is metabolically dependent on the host, or more broadly, as suggested by an ecological-evolutionary and complex systems perspective. In this view Host-parasite relationships are part of a larger set of ecological and co-evolutionary interdependencies and a complex adaptive system. These interdependencies affect not just the hosts, vectors, parasites, the immediate agents, but also those indirectly or consequentially affected by the relationship. Host-parasite relationships also can be viewed as systems embedded within larger systems represented by ecological communities and ecosystems. So defined, it can be argued that Host-parasite relationships may often benefit their hosts and contribute significantly to the structuring of ecological communities. The broader, complex adaptive system view also contributes to understanding the phenomenon of disease emergence, the ecological and evolutionary mechanisms involved, and the role of parasitology in research and management of ecosystems in light of the apparently growing problem of emerging infectious diseases in wildlife and humans. An expanded set of principles for integrated parasite management is suggested by this perspective.

  2. Female-biased infection and transmission of the gastrointestinal nematode Trichuris arvicolae infecting the common vole, Microtus arvalis.

    PubMed

    Sanchez, Andreas; Devevey, Godefroy; Bize, Pierre

    2011-11-01

    Previous studies addressing the importance of host gender in parasite transmission have shed light on males as the more important hosts, with the higher transmission potential of males being explained by the fact that they often harbour higher parasite loads than females. However, in some systems females are more heavily infected than males and may be responsible for driving infection under such circumstances. Using a wild population of common voles (Microtus arvalis), we showed that females were more frequently infected by the intestinal nematode Trichuris arvicolae than males (i.e. prevalence based on the presence of eggs in the faeces) and that females were shedding greater numbers of parasite eggs per gram of faeces (EPG) than males. By applying an anthelmintic treatment to either male or female voles, we demonstrated that treating females significantly reduced parasite burdens (i.e. prevalence and EPG) of both male and female hosts, while treating males only reduced parasite burden in males. These findings indicate that in this female-biased infection system females play a more important role than males in driving the dynamics of parasite transmission. Copyright © 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  3. Estimating malaria transmission from humans to mosquitoes in a noisy landscape.

    PubMed

    Reiner, Robert C; Guerra, Carlos; Donnelly, Martin J; Bousema, Teun; Drakeley, Chris; Smith, David L

    2015-10-06

    A basic quantitative understanding of malaria transmission requires measuring the probability a mosquito becomes infected after feeding on a human. Parasite prevalence in mosquitoes is highly age-dependent, and the unknown age-structure of fluctuating mosquito populations impedes estimation. Here, we simulate mosquito infection dynamics, where mosquito recruitment is modelled seasonally with fractional Brownian noise, and we develop methods for estimating mosquito infection rates. We find that noise introduces bias, but the magnitude of the bias depends on the 'colour' of the noise. Some of these problems can be overcome by increasing the sampling frequency, but estimates of transmission rates (and estimated reductions in transmission) are most accurate and precise if they combine parity, oocyst rates and sporozoite rates. These studies provide a basis for evaluating the adequacy of various entomological sampling procedures for measuring malaria parasite transmission from humans to mosquitoes and for evaluating the direct transmission-blocking effects of a vaccine. © 2015 The Authors.

  4. Estimating malaria transmission from humans to mosquitoes in a noisy landscape

    PubMed Central

    Reiner, Robert C.; Guerra, Carlos; Donnelly, Martin J.; Bousema, Teun; Drakeley, Chris; Smith, David L.

    2015-01-01

    A basic quantitative understanding of malaria transmission requires measuring the probability a mosquito becomes infected after feeding on a human. Parasite prevalence in mosquitoes is highly age-dependent, and the unknown age-structure of fluctuating mosquito populations impedes estimation. Here, we simulate mosquito infection dynamics, where mosquito recruitment is modelled seasonally with fractional Brownian noise, and we develop methods for estimating mosquito infection rates. We find that noise introduces bias, but the magnitude of the bias depends on the ‘colour' of the noise. Some of these problems can be overcome by increasing the sampling frequency, but estimates of transmission rates (and estimated reductions in transmission) are most accurate and precise if they combine parity, oocyst rates and sporozoite rates. These studies provide a basis for evaluating the adequacy of various entomological sampling procedures for measuring malaria parasite transmission from humans to mosquitoes and for evaluating the direct transmission-blocking effects of a vaccine. PMID:26400195

  5. Reported off-leash frequency and perception of risk for gastrointestinal parasitism are not associated in owners of urban park-attending dogs: A multifactorial investigation.

    PubMed

    Smith, Anya F; Semeniuk, Christina A D; Rock, Melanie J; Massolo, Alessandro

    2015-07-01

    Associations between park use and infections with gastrointestinal (GI) parasites in dogs (Canis familiaris) have been previously observed, suggesting park use may pose risks for infection in dogs, and potentially, in humans. This study was conducted to establish the overall level of perceived risk of parasitism in dogs, the frequency of unleashing dogs in parks, and to determine if dog owners' risk perceptions of parasite transmission among humans and dogs are associated with the reported frequency of unleashing dogs. From June to September 2010, 635 surveys were administered to dog owners in nine city parks in Calgary, Alberta, by the lead author to explore dog-walking behaviors in parks under differing leashing regulations. From these, a subset of 316 questionnaires were analyzed to examine associations between behavioral and dog demographic factors, risk perception and acceptability of perceived risks of dog and human parasitism, and education regarding parasitism in dogs and humans. Multivariate statistics were conducted using three separate Chi-Square Automatic Interaction Detection (CHAID) decision trees to model risk perception of dogs becoming parasitized while in the park, risk perception of zoonotic transmission, and off-leash frequency. Predictors included recreational behaviors, dog demographics, risk perception of park-based and zoonotic transmission, education regarding parasites, and leashing regulations (e.g. on-leash, off-leash, or mixed management parks). The perceived risk of park-based transmission was relatively higher than perception of zoonotic transmission and the majority of people unleashed their dogs at least some of the time. Risk perception was not associated with off-leash frequency in dogs and risk perception and off-leash frequency were associated with factors other than each other. The results suggest owners may underestimate the potential risks for parasitism related to some dog-walking behaviours, and are relevant for public and

  6. Linking parasite populations in hosts to parasite populations in space through Taylor's law and the negative binomial distribution

    PubMed Central

    Poulin, Robert; Lagrue, Clément

    2017-01-01

    The spatial distribution of individuals of any species is a basic concern of ecology. The spatial distribution of parasites matters to control and conservation of parasites that affect human and nonhuman populations. This paper develops a quantitative theory to predict the spatial distribution of parasites based on the distribution of parasites in hosts and the spatial distribution of hosts. Four models are tested against observations of metazoan hosts and their parasites in littoral zones of four lakes in Otago, New Zealand. These models differ in two dichotomous assumptions, constituting a 2 × 2 theoretical design. One assumption specifies whether the variance function of the number of parasites per host individual is described by Taylor's law (TL) or the negative binomial distribution (NBD). The other assumption specifies whether the numbers of parasite individuals within each host in a square meter of habitat are independent or perfectly correlated among host individuals. We find empirically that the variance–mean relationship of the numbers of parasites per square meter is very well described by TL but is not well described by NBD. Two models that posit perfect correlation of the parasite loads of hosts in a square meter of habitat approximate observations much better than two models that posit independence of parasite loads of hosts in a square meter, regardless of whether the variance–mean relationship of parasites per host individual obeys TL or NBD. We infer that high local interhost correlations in parasite load strongly influence the spatial distribution of parasites. Local hotspots could influence control and conservation of parasites. PMID:27994156

  7. Habitat selection for parasite-free space by hosts of parasitic cowbirds

    USGS Publications Warehouse

    Forsman, J.T.; Martin, T.E.

    2009-01-01

    Choice of breeding habitat can have a major impact on fitness. Sensitivity of habitat choice to environmental cues predicting reproductive success, such as density of harmful enemy species, should be favored by natural selection. Yet, experimental tests of this idea are in short supply. Brown-headed cowbirds Molothrus ater commonly reduce reproductive success of a wide diversity of birds by parasitizing their nests. We used song playbacks to simulate high cowbird density and tested whether cowbird hosts avoid such areas in habitat selection. Host species that made settlement decisions during manipulations were significantly less abundant in the cowbird treatment as a group. In contrast, hosts that settled before manipulations started and non-host species did not respond to treatments. These results suggest that hosts of cowbirds can use vocal cues to assess parasitism risk among potential habitat patches and avoid high risk habitats. This can affect community structure by affecting habitat choices of species with differential vulnerability.

  8. Transmission of Helminths between Species of Ruminants in Austria Appears More Likely to Occur than Generally Assumed

    PubMed Central

    Winter, Jakob; Rehbein, Steffen; Joachim, Anja

    2018-01-01

    Helminth infections of the gastrointestinal tract and lungs can lead to devastating economical losses to the pastoral based animal production. Farm animals can suffer from malnutrition, tissue damage, and blood loss resulting in impaired production traits and reproduction parameters. In Austria, pastures grazed by sheep, goats, and cattle overlap with the habitats of several species of wild cervids (roe deer, red deer, sika deer, and fallow deer) and bovids (mouflon, chamois, and ibex), and transmission of parasites between different ruminant species seems likely. A complete and updated overview on the occurrence of helminths of domestic and wild ruminants in Austria is presented. Based on these data, intersections of the host spectrum of the determined parasites were depicted. The “liability index” was applied to identify the ruminant species, which most likely transmit parasites between each other. A degree for host specificity was calculated for each parasite species based on the average taxonomic distance of their host species. Of the 73 identified helminth species 42 were identified as generalists, and 14 transmission experiments supported the assumed broad host specificity for 14 generalists and 1 specialist helminth species. Overall, 61 helminths were found to infect more than one host species, and 4 were found in all 10 ruminant species investigated. From these analyses, it can be concluded that a number of helminth parasites of the gastrointestinal tract and the lungs are potentially transmitted between domestic and wild ruminants in Austria. For some parasites and host species, experimental evidence is in support for possible transmission, while for other such studies are lacking. Host preference of different genotypes of the same parasite species may have a confounding effect on the evaluation of cross-transmission, but so far this has not been evaluated systematically in helminths in Austria. Further studies focusing on experimental cross-transmission

  9. Plant and Insect Viruses in Managed and Natural Environments: Novel and Neglected Transmission Pathways.

    PubMed

    Jones, Roger A C

    2018-01-01

    The capacity to spread by diverse transmission pathways enhances a virus' ability to spread effectively and survive when circumstances change. This review aims to improve understanding of how plant and insect viruses spread through natural and managed environments by drawing attention to 12 novel or neglected virus transmission pathways whose contribution is underestimated. For plant viruses, the pathways reviewed are vertical and horizontal transmission via pollen, and horizontal transmission by parasitic plants, natural root grafts, wind-mediated contact, chewing insects, and contaminated water or soil. For insect viruses, they are transmission by plants serving as passive "vectors," arthropod vectors, and contamination of pollen and nectar. Based on current understanding of the spatiotemporal dynamics of virus spread, the likely roles of each pathway in creating new primary infection foci, enlarging previously existing infection foci, and promoting generalized virus spread are estimated. All pathways except transmission via parasitic plants, root grafts, and wind-mediated contact transmission are likely to produce new primary infection foci. All 12 pathways have the capability to enlarge existing infection foci, but only to a limited extent when spread occurs via virus-contaminated soil or vertical pollen transmission. All pathways except those via parasitic plant, root graft, contaminated soil, and vertical pollen transmission likely contribute to generalized virus spread, but to different extents. For worst-case scenarios, where mixed populations of host species occur under optimal virus spread conditions, the risk that host species jumps or virus emergence events will arise is estimated to be "high" for all four insect virus pathways considered, and, "very high" or "moderate" for plant viruses transmitted by parasitic plant and root graft pathways, respectively. To establish full understanding of virus spread and thereby optimize effective virus disease

  10. Chitinases of the avian malaria parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of the mosquito midgut.

    PubMed

    Vinetz, J M; Valenzuela, J G; Specht, C A; Aravind, L; Langer, R C; Ribeiro, J M; Kaslow, D C

    2000-04-07

    The Plasmodium ookinete produces chitinolytic activity that allows the parasite to penetrate the chitin-containing peritrophic matrix surrounding the blood meal in the mosquito midgut. Since the peritrophic matrix is a physical barrier that the parasite must cross to invade the mosquito, and the presence of allosamidin, a chitinase inhibitor, in a blood meal prevents the parasite from invading the midgut epithelium, chitinases (3.2.1.14) are potential targets of malaria parasite transmission-blocking interventions. We have purified a chitinase of the avian malaria parasite Plasmodium gallinaceum and cloned the gene, PgCHT1, encoding it. PgCHT1 encodes catalytic and substrate-binding sites characteristic of family 18 glycohydrolases. Expressed in Escherichia coli strain AD494 (DE3), recombinant PgCHT1 was found to hydrolyze polymeric chitin, native chitin oligosaccharides, and 4-methylumbelliferone derivatives of chitin oligosaccharides. Allosamidin inhibited recombinant PgCHT1 with an IC(50) of 7 microM and differentially inhibited two chromatographically separable P. gallinaceum ookinete-produced chitinase activities with IC(50) values of 7 and 12 microM, respectively. These two chitinase activities also had different pH activity profiles. These data suggest that the P. gallinaceum ookinete uses products of more than one chitinase gene to initiate mosquito midgut invasion.

  11. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India

    PubMed Central

    2013-01-01

    Background Environmental temperature is an important driver of malaria transmission dynamics. Both the parasite and vector are sensitive to mean ambient temperatures and daily temperature variation. To understand transmission ecology, therefore, it is important to determine the range of microclimatic temperatures experienced by malaria vectors in the field. Methods A pilot study was conducted in the Indian city of Chennai to determine the temperature variation in urban microclimates and characterize the thermal ecology of the local transmission setting. Temperatures were measured in a range of probable indoor and outdoor resting habitats of Anopheles stephensi in two urban slum malaria sites. Mean temperatures and daily temperature fluctuations in local transmission sites were compared with standard temperature measures from the local weather station. The biological implications of the different temperatures were explored using temperature-dependent parasite development models to provide estimates of the extrinsic incubation period (EIP) of Plasmodium vivax and Plasmodium falciparum. Results Mean daily temperatures within the urban transmission sites were generally warmer than those recorded at the local weather station. The main reason was that night-time temperatures were higher (and hence diurnal temperature ranges smaller) in the urban settings. Mean temperatures and temperature variation also differed between specific resting sites within the transmission environments. Most differences were of the order of 1-3°C but were sufficient to lead to important variation in predicted EIPs and hence, variation in estimates of transmission intensity. Conclusions Standard estimates of environmental temperature derived from local weather stations do not necessarily provide realistic measures of temperatures within actual transmission environments. Even the small differences in mean temperatures or diurnal temperature ranges reported in this study can lead to large

  12. Predictors of host specificity among behavior-manipulating parasites.

    PubMed

    Fredensborg, B L

    2014-07-01

    A trade-off between resource-specialization and the breadth of the ecological niche is one of the most fundamental biological characteristics. A true generalist (Jack-of-all-trades) displays a broad ecological niche with little resource specialization while the opposite is true for a resource-specialist that has a restricted ecological niche that it masters. Parasites that manipulate hosts' behavior are often thought to represent resource-specialists based on a few spectacular examples of manipulation of the host's behavior. However, the determinants of which, and how many, hosts a manipulating parasite can exploit (i.e., niche breadth) are basically unknown. Here, I present an analysis based on published records of the use of hosts by 67 species from 38 genera of helminths inducing parasite increased trophic transmission, a widespread strategy of parasites that has been reported from many taxa of parasites and hosts. Using individual and multivariate analyses, I examined the effect of the host's and parasite's taxonomy, location of the parasite in the host, type of behavioral change, and the effect of debilitation on host-specificity, measured as the mean taxonomic relatedness of hosts that a parasite can manipulate. Host-specificity varied substantially across taxa suggesting great variation in the level of resource-specialization among manipulating parasites. Location of the parasite, level of debilitation, and type of host were all significant predictors of host-specificity. More specifically, hosts' behavioral modification that involves interaction with the central nervous system presumably restricts parasites to more closely related hosts than does manipulation of the host's behavior via debilitation of the host's physiology. The results of the analysis suggest that phylogenetic relatedness of hosts is a useful measure of host-specificity in comparative studies of the complexity of interactions taking place between manipulating parasites and their hosts.

  13. Resource-driven changes to host population stability alter the evolution of virulence and transmission.

    PubMed

    Hite, Jessica L; Cressler, Clayton E

    2018-05-05

    What drives the evolution of parasite life-history traits? Recent studies suggest that linking within- and between-host processes can provide key insight into both disease dynamics and parasite evolution. Still, it remains difficult to understand how to pinpoint the critical factors connecting these cross-scale feedbacks, particularly under non-equilibrium conditions; many natural host populations inherently fluctuate and parasites themselves can strongly alter the stability of host populations. Here, we develop a general model framework that mechanistically links resources to parasite evolution across a gradient of stable and unstable conditions. First, we dynamically link resources and between-host processes (host density, stability, transmission) to virulence evolution, using a 'non-nested' model. Then, we consider a 'nested' model where population-level processes (transmission and virulence) depend on resource-driven changes to individual-level (within-host) processes (energetics, immune function, parasite production). Contrary to 'non-nested' model predictions, the 'nested' model reveals complex effects of host population dynamics on parasite evolution, including regions of evolutionary bistability; evolution can push parasites towards strongly or weakly stabilizing strategies. This bistability results from dynamic feedbacks between resource-driven changes to host density, host immune function and parasite production. Together, these results highlight how cross-scale feedbacks can provide key insights into the structuring role of parasites and parasite evolution.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).

  14. Growth rate, transmission mode and virulence in human pathogens.

    PubMed

    Leggett, Helen C; Cornwallis, Charlie K; Buckling, Angus; West, Stuart A

    2017-05-05

    The harm that pathogens cause to hosts during infection, termed virulence, varies across species from negligible to a high likelihood of rapid death. Classic theory for the evolution of virulence is based on a trade-off between pathogen growth, transmission and host survival, which predicts that higher within-host growth causes increased transmission and higher virulence. However, using data from 61 human pathogens, we found the opposite correlation to the expected positive correlation between pathogen growth rate and virulence. We found that (i) slower growing pathogens are significantly more virulent than faster growing pathogens, (ii) inhaled pathogens and pathogens that infect via skin wounds are significantly more virulent than pathogens that are ingested, but (iii) there is no correlation between symptoms of infection that aid transmission (such as diarrhoea and coughing) and virulence. Overall, our results emphasize how virulence can be influenced by mechanistic life-history details, especially transmission mode, that determine how parasites infect and exploit their hosts.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Authors.

  15. Bumble bee parasite strains vary in resistance to phytochemicals

    PubMed Central

    Palmer-Young, Evan C.; Sadd, Ben M.; Stevenson, Philip C.; Irwin, Rebecca E.; Adler, Lynn S.

    2016-01-01

    Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains. C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53–22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals—either within bees or during parasite transmission via flowers—could influence infection in nature. Flowers that produce antiparasitic phytochemicals, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline. PMID:27883009

  16. Bumble bee parasite strains vary in resistance to phytochemicals.

    PubMed

    Palmer-Young, Evan C; Sadd, Ben M; Stevenson, Philip C; Irwin, Rebecca E; Adler, Lynn S

    2016-11-24

    Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains. C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53-22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals-either within bees or during parasite transmission via flowers-could influence infection in nature. Flowers that produce antiparasitic phytochemicals, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline.

  17. Immunodominance: a new hypothesis to explain parasite escape and host/parasite equilibrium leading to the chronic phase of Chagas' disease?

    PubMed

    Rodrigues, M M; Alencar, B C G de; Claser, C; Tzelepis, F

    2009-03-01

    Intense immune responses are observed during human or experimental infection with the digenetic protozoan parasite Trypanosoma cruzi. The reasons why such immune responses are unable to completely eliminate the parasites are unknown. The survival of the parasite leads to a parasite-host equilibrium found during the chronic phase of chagasic infection in most individuals. Parasite persistence is recognized as the most likely cause of the chagasic chronic pathologies. Therefore, a key question in Chagas' disease is to understand how this equilibrium is established and maintained for a long period. Understanding the basis for this equilibrium may lead to new approaches to interventions that could help millions of individuals at risk for infection or who are already infected with T. cruzi. Here, we propose that the phenomenon of immunodominance may be significant in terms of regulating the host-parasite equilibrium observed in Chagas' disease. T. cruzi infection restricts the repertoire of specific T cells generating, in some cases, an intense immunodominant phenotype and in others causing a dramatic interference in the response to distinct epitopes. This immune response is sufficiently strong to maintain the host alive during the acute phase carrying them to the chronic phase where transmission usually occurs. At the same time, immunodominance interferes with the development of a higher and broader immune response that could be able to completely eliminate the parasite. Based on this, we discuss how we can interfere with or take advantage of immunodominance in order to provide an immunotherapeutic alternative for chagasic individuals.

  18. Secondary metabolites in floral nectar reduce parasite infections in bumblebees

    PubMed Central

    Richardson, Leif L.; Adler, Lynn S.; Leonard, Anne S.; Andicoechea, Jonathan; Regan, Karly H.; Anthony, Winston E.; Manson, Jessamyn S.; Irwin, Rebecca E.

    2015-01-01

    The synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees. We hypothesized that nectar secondary metabolites could reduce bee parasite infection. We inoculated individual bumblebees with Crithidia bombi, an intestinal parasite, and tested effects of eight naturally occurring nectar chemicals on parasite population growth. Secondary metabolites strongly reduced parasite load, with significant effects of alkaloids, terpenoids and iridoid glycosides ranging from 61 to 81%. Using microcolonies, we also investigated costs and benefits of consuming anabasine, the compound with the strongest effect on parasites, in infected and uninfected bees. Anabasine increased time to egg laying, and Crithidia reduced bee survival. However, anabasine consumption did not mitigate the negative effects of Crithidia, and Crithidia infection did not alter anabasine consumption. Our novel results highlight that although secondary metabolites may not rescue survival in infected bees, they may play a vital role in mediating Crithidia transmission within and between colonies by reducing Crithidia infection intensities. PMID:25694627

  19. A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.

    PubMed

    Talman, Arthur M; Blagborough, Andrew M; Sinden, Robert E

    2010-02-10

    The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.

  20. The Rheopathobiology of Plasmodium vivax and Other Important Primate Malaria Parasites.

    PubMed

    Russell, Bruce M; Cooke, Brian M

    2017-04-01

    Our current understanding of how malaria parasites remodel their host red blood cells (RBCs) and ultimately cause disease is largely based on studies of Plasmodium falciparum. In this review, we expand our knowledge to include what is currently known about pathophysiological changes to RBCs that are infected by non-falciparum malaria parasites. We highlight the potential folly of making generalizations about the rheology of malaria infection, and emphasize the need for more systematic studies into the erythrocytic biology of non-falciparum malaria parasites. We propose that a better understanding of the mechanisms that underlie the changes to RBCs induced by malaria parasites other than P. falciparum may be highly informative for the development of therapeutics that specifically disrupt the altered rheological profile of RBCs infected with either sexual- or asexual-stage parasites, resulting in drugs that block transmission, reduce disease severity, and help delay the onset of resistance to current and future anti-malaria drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [The occurrence of tumors in the minnow Phoxinus phoxinus (L.), their influence upon the parasite fauna, component community of parasites, and organism of the host].

    PubMed

    Dorovskikh, G N; Sedriseva, V A; Stepanov, V G; Boznak, E I

    2006-01-01

    The occurrence of tumors, their influence upon the organism of Phoxinus phoxinus (L.), its parasite fauna, and parasite component community were investigated in the upstream of the Pechora River. According to the data obtained, tumors could occur in the fishes of every age group, but one-year (0+) or two-year (1+) old minnow is affected by tumors more frequently. The tumors lesion extensiveness ranges from 0.02 to 3 %. From 1 to 3 tumors were recorded on one fish specimen. The investigated tumors were in progressive stage (Georgiev, 2000), since the vascular ingrowth and dissemination (in few cases) of the tumors were observed. Tumors are colored in intensive-black and taupe. The taupe tumors usually have a compact capsule at its peripheries, which isolates affected tissue from muscle fibers. In the intensive-black tumors the invasion of tumor cells to the adjacent transversal striated musculature is observed. Distinct symptoms of necrosis are revealed in all slides of the new growths. Blood vessels are formed in most tumors, and the blood flow is recorded before the completion of the vessels forming, that apparently supplies the tumors feeding. Metastases in different organs revealed in several minnow specimens. Tumor affected individuals of the minnow has parasite species complex practically identical (by species list and quantity) with the same of the even-aged unaffected fishes. However, the parasite component communities of the affected individuals are characterized by 4 groups of species, while the parasite component communities of the intact individuals--by 3 groups. The parasite communities of affected and unaffected one-year fishes are similar by the number of the groups of species, but differ in the number of species.

  2. Toward the development of effective transmission-blocking vaccines for malaria.

    PubMed

    Nikolaeva, Daria; Draper, Simon J; Biswas, Sumi

    2015-05-01

    The continued global burden of malaria can in part be attributed to a complex lifecycle, with both human hosts and mosquito vectors serving as transmission reservoirs. In preclinical models of vaccine-induced immunity, antibodies to parasite sexual-stage antigens, ingested in the mosquito blood meal, can inhibit parasite survival in the insect midgut as judged by ex vivo functional studies such as the membrane feeding assay. In an era of renewed political momentum for malaria elimination and eradication campaigns, such observations have fueled support for the development and implementation of so-called transmission-blocking vaccines. While leading candidates are being evaluated using a variety of promising vaccine platforms, the field is also beginning to capitalize on global '-omics' data for the rational genome-based selection and unbiased characterization of parasite and mosquito proteins to expand the candidate list. This review covers the progress and prospects of these recent developments.

  3. Schistosomiasis-an endemic parasitic waterborne disease.

    PubMed

    Drudge-Coates, Lawrence; Turner, Bruce

    Schistosomiasis (or bilharzia) is a chronic waterborne disease caused by parasitic worms or schistosoma in the tropics and sub tropics. Five main species exist, and common to all is its transmission to humans as a result of exposure to infested fresh water, into which the cercariae of the parasite are released by freshwater snails. With the rise of tourism and travel, more people are travelling to countries where schistosomiasis is a risk. Schistosoma haematobium is responsible for urogenital schistosomiasis, in which manifestations range from acute hypersensitivity reactions to bladder disease in the detection of which the nurse cystoscopist can have a significant role. Treatment is highly effective, and the diagnosis should be considered in individuals with possible clinical illness who have travelled to or lived in endemic areas.

  4. Potential economic impact of parasites on the cattle industry of Mexico

    USDA-ARS?s Scientific Manuscript database

    Parasitic diseases remain an important factor affecting the productivity of cattle in Mexico. Economic losses caused by cattle parasites in Mexico were estimated on an annual basis considering the total number of animals at risk and the potential detrimental effects of parasitism on milk production,...

  5. Relative host body condition and food availability influence epidemic dynamics: a Poecilia reticulata-Gyrodactylus turnbulli host-parasite model.

    PubMed

    Tadiri, Christina P; Dargent, Felipe; Scott, Marilyn E

    2013-03-01

    Understanding disease transmission is important to species management and human health. Host body condition, nutrition and disease susceptibility interact in a complex manner, and while the individual effects of these variables are well known, our understanding of how they interact and translate to population dynamics is limited. Our objective was to determine whether host relative body condition influences epidemic dynamics, and how this relationship is affected by food availability. Poecilia reticulata (guppies) of roughly similar size were selected and assembled randomly into populations of 10 guppies assigned to 3 different food availability treatments, and the relative condition index (Kn) of each fish was calculated. We infected 1 individual per group ('source' fish) with Gyrodactyus turnbulli and counted parasites on each fish every other day for 10 days. Epidemic parameters for each population were analysed using generalized linear models. High host Kn-particularly that of the 'source' fish-exerted a positive effect on incidence, peak parasite burden, and the degree of parasite aggregation. Low food availability increased the strength of the associations with peak burden and aggregation. Our findings suggest that host Kn and food availability interact to influence epidemic dynamics, and that the condition of the individual that brings the parasite into the host population has a profound impact on the spread of infection.

  6. Assessing the role of landscape connectivity on Opisthorchis viverrini transmission dynamics.

    PubMed

    Wang, Yi-Chen; Yuen, Roy; Feng, Chen-Chieh; Sithithaworn, Paiboon; Kim, Ick-Hoi

    2017-08-01

    Opisthorchis viverrini (Ov) is one of the most important human parasitic diseases in Southeast Asia. Although the concept of connectivity is widely used to comprehend disease dispersal, knowledge of the influences of landscape connectivity on Ov transmission is still rudimentary. This study aimed to investigate the role of landscape connectivity in Ov transmission between the human and the first intermediate snail hosts. Fieldwork was conducted in three villages respectively in Kamalasai District, Kalasin Province, Phu Wiang District, Khon Kaen Province, and Nong Saeng District, Udon Thani Province. Bithynia snails were collected to examine parasitic infections, water samples were analyzed for fecal contamination, and locations of septic tanks and connections between habitat patches with observable water movement were surveyed. Euclidean distance, topological link and distance, and graph measures were employed to quantify the connectivity between human and snail habitats. The findings showed that snail patches with higher fecal contents were generally located nearer to septic tanks. The statistically significant results for the topological link and distance measures highlighted the importance of water in functionally facilitating Ov transmission. Graph measures revealed differences in landscape connectivity across the sites. The site with the largest landscape component size and the most mutually connected snail patches coincided with the presence of Ov parasite, reinforcing its higher risk for human to snail transmission. The site with the dissected landscape structure potentially limited the transmission. This study underscored the potential effect of landscape connectivity on Ov transmission, contributing to the understanding of the spatial variation of Ov infection risk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Multifunctional Thioredoxin-Like Protein from the Gastrointestinal Parasitic Nematodes Strongyloides ratti and Trichuris suis Affects Mucosal Homeostasis

    PubMed Central

    Hansmann, Jan; Winter, Dominic; Schramm, Guido; Erttmann, Klaus D.; Liebau, Eva

    2016-01-01

    The cellular redox state is important for the regulation of multiple functions and is essential for the maintenance of cellular homeostasis and antioxidant defense. In the excretory/secretory (E/S) products of Strongyloides ratti and Trichuris suis sequences for thioredoxin (Trx) and Trx-like protein (Trx-lp) were identified. To characterize the antioxidant Trx-lp and its interaction with the parasite's mucosal habitat, S. ratti and T. suis Trx-lps were cloned and recombinantly expressed. The primary antioxidative activity was assured by reduction of insulin and IgM. Further analysis applying an in vitro mucosal 3D-cell culture model revealed that the secreted Trx-lps were able to bind to monocytic and intestinal epithelial cells and induce the time-dependent release of cytokines such as TNF-α, IL-22, and TSLP. In addition, the redox proteins also possessed chemotactic activity for monocytic THP-1 cells and fostered epithelial wound healing activity. These results confirm that the parasite-secreted Trx-lps are multifunctional proteins that can affect the host intestinal mucosa. PMID:27872753

  8. Human Parasitic Diseases in Bulgaria in Between 2013-2014.

    PubMed

    Rainova, Iskra; Harizanov, Rumen; Kaftandjiev, Iskren; Tsvetkova, Nina; Mikov, Ognyan; Kaneva, Eleonora

    2018-01-20

    In Bulgaria, more than 20 autochthonous human parasitic infections have been described and some of them are widespread. Over 50 imported protozoan and helminthic infections represent diagnostic and therapeutic challenges and pose epidemiological risks due to the possibility of local transmission. To establish the distribution of autochthonous and imported parasitic diseases among the population of the country over a 2-year period (2013-2014) and to evaluate their significance in the public health system. Cross sectional study. We used the annual reports by regional health inspectorates and data from the National Reference Laboratory at the National Centre of Infectious and Parasitic Diseases on all individuals infected with parasitic diseases in the country. Prevalence was calculated for parasitic diseases with few or absent clinical manifestations (oligosymptomatic or asymptomatic infections). Incidence per 100.000 was calculated for diseases with an overt clinical picture or those that required hospitalisation and specialised medical interventions (e.g. surgery). During the research period, parasitological studies were conducted on 1441.244 persons, and parasitic infections were diagnosed in 22.039 individuals. Distribution of various parasitic pathogens among the population displayed statistically significant differences in prevalence for some intestinal parasites (enterobiasis 0.81%, giardiasis 0.34% and blastocystosis 0.22%). For certain zoonotic diseases such as cystic echinococcosis (average incidence of 3.99 per 100.000) and trichinellosis (average incidence of 0.8 per 100.000), the incidence exceeds several times the annual incidence recorded in the European Union. Parasitic diseases still pose a substantial problem with social and medical impacts on the residents of our country. Improved efficiency regarding autochthonous and imported parasitic diseases is essential in providing the public health system the tools it needs to combat these diseases

  9. Deception and Manipulation: The Arms of Leishmania, a Successful Parasite

    PubMed Central

    Cecílio, Pedro; Pérez-Cabezas, Begoña; Santarém, Nuno; Maciel, Joana; Rodrigues, Vasco; Cordeiro da Silva, Anabela

    2014-01-01

    Leishmania spp. are intracellular parasitic protozoa responsible for a group of neglected tropical diseases, endemic in 98 countries around the world, called leishmaniasis. These parasites have a complex digenetic life cycle requiring a susceptible vertebrate host and a permissive insect vector, which allow their transmission. The clinical manifestations associated with leishmaniasis depend on complex interactions between the parasite and the host immune system. Consequently, leishmaniasis can be manifested as a self-healing cutaneous affliction or a visceral pathology, being the last one fatal in 85–90% of untreated cases. As a result of a long host–parasite co-evolutionary process, Leishmania spp. developed different immunomodulatory strategies that are essential for the establishment of infection. Only through deception and manipulation of the immune system, Leishmania spp. can complete its life cycle and survive. The understanding of the mechanisms associated with immune evasion and disease progression is essential for the development of novel therapies and vaccine approaches. Here, we revise how the parasite manipulates cell death and immune responses to survive and thrive in the shadow of the immune system. PMID:25368612

  10. Surface antigens of Plasmodium falciparum gametocytes--a new class of transmission-blocking vaccine targets?

    PubMed

    Sutherland, Colin J

    2009-08-01

    The re-establishment of elimination and eradication on the malaria control agenda has led to calls for renewed effort in the development of parasite transmission-blocking interventions. Vaccines are ideally suited to this task, but progress towards an anti-gamete transmission-blocking vaccine, designed to act on parasites in blood-fed mosquitoes, has been slow. Recent work has confirmed that the surface of the gametocyte-infected erythrocyte presents antigens to the host immune system, and elicits specific humoral immune responses to these antigens, termed gametocyte surface antigens (GSAs). Likely candidate molecules, including antigens encoded by sub-telomeric multi-gene families, are discussed, and a hypothetical group of parasite molecules involved in spatial and temporal signal transduction in the human host is proposed, the tropins and circadins. The next steps for development of anti-gametocyte transmission-blocking vaccines for P. falciparum and the other human malaria species are considered.

  11. Malaria parasite rates in Southern Rhodesia: May-September 1956.

    PubMed

    ALVES, W

    1958-01-01

    The author reports on malaria parasite rates found in the indigenous population of Southern Rhodesia after seven years of insecticide spraying. Although there is little or no overt malaria in sprayed areas, larvae of Anopheles gambiae are still found in certain foci. It is thought possible that the parasite rate is now so low that for practical purposes a break in transmission has been achieved, but the author points out that a dangerous potential source of infection exists in immigrant labour from other territories. Immigrants are now being treated on entry with up to 450 mg of amodiaquine and 45 mg of primaquine.

  12. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission

    PubMed Central

    Plouffe, David M.; Wree, Melanie; Du, Alan Y.; Meister, Stephan; Li, Fengwu; Patra, Kailash; Lubar, Aristea; Okitsu, Shinji L.; Flannery, Erika L.; Kato, Nobutaka; Tanaseichuk, Olga; Comer, Eamon; Zhou, Bin; Kuhen, Kelli; Zhou, Yingyao; Leroy, Didier; Schreiber, Stuart L.; Scherer, Christina A.; Vinetz, Joseph; Winzeler, Elizabeth A.

    2016-01-01

    Summary Preventing transmission is an important element of malaria control. However, most of the current available methods to assay for malaria transmission blocking are relatively low throughput and cannot be applied to large chemical libraries. We have developed a high-throughput and cost-effective assay, the Saponin-lysis Sexual Stage Assay (SaLSSA), for identifying small molecules with transmission-blocking capacity. SaLSSA analysis of 13,983 unique compounds uncovered that >90% of well-characterized antimalarials, including endoperoxides and 4-aminoquinolines, as well as compounds active against asexual blood stages, lost most of their killing activity when parasites developed into metabolically quiescent stage V gametocytes. On the other hand, we identified compounds with consistent low nanomolar transmission-blocking activity, some of which showed cross-reactivity against asexual blood and liver stages. The data clearly emphasize substantial physiological differences between sexual and asexual parasites and provide a tool and starting points for the discovery and development of transmission-blocking drugs. PMID:26749441

  13. A Lack of Parasitic Reduction in the Obligate Parasitic Green Alga Helicosporidium

    PubMed Central

    Pombert, Jean-François; Blouin, Nicolas Achille; Lane, Chris; Boucias, Drion; Keeling, Patrick J.

    2014-01-01

    The evolution of an obligate parasitic lifestyle is often associated with genomic reduction, in particular with the loss of functions associated with increasing host-dependence. This is evident in many parasites, but perhaps the most extreme transitions are from free-living autotrophic algae to obligate parasites. The best-known examples of this are the apicomplexans such as Plasmodium, which evolved from algae with red secondary plastids. However, an analogous transition also took place independently in the Helicosporidia, where an obligate parasite of animals with an intracellular infection mechanism evolved from algae with green primary plastids. We characterised the nuclear genome of Helicosporidium to compare its transition to parasitism with that of apicomplexans. The Helicosporidium genome is small and compact, even by comparison with the relatively small genomes of the closely related green algae Chlorella and Coccomyxa, but at the functional level we find almost no evidence for reduction. Nearly all ancestral metabolic functions are retained, with the single major exception of photosynthesis, and even here reduction is not complete. The great majority of genes for light-harvesting complexes, photosystems, and pigment biosynthesis have been lost, but those for other photosynthesis-related functions, such as Calvin cycle, are retained. Rather than loss of whole function categories, the predominant reductive force in the Helicosporidium genome is a contraction of gene family complexity, but even here most losses affect families associated with genome maintenance and expression, not functions associated with host-dependence. Other gene families appear to have expanded in response to parasitism, in particular chitinases, including those predicted to digest the chitinous barriers of the insect host or remodel the cell wall of Helicosporidium. Overall, the Helicosporidium genome presents a fascinating picture of the early stages of a transition from free

  14. Vector species richness increases haemorrhagic disease prevalence through functional diversity modulating the duration of seasonal transmission.

    PubMed

    Park, Andrew W; Cleveland, Christopher A; Dallas, Tad A; Corn, Joseph L

    2016-06-01

    Although many parasites are transmitted between hosts by a suite of arthropod vectors, the impact of vector biodiversity on parasite transmission is poorly understood. Positive relationships between host infection prevalence and vector species richness (SR) may operate through multiple mechanisms, including (i) increased vector abundance, (ii) a sampling effect in which species of high vectorial capacity are more likely to occur in species-rich communities, and (iii) functional diversity whereby communities comprised species with distinct phenologies may extend the duration of seasonal transmission. Teasing such mechanisms apart is impeded by a lack of appropriate data, yet could highlight a neglected role for functional diversity in parasite transmission. We used statistical modelling of extensive host, vector and microparasite data to test the hypothesis that functional diversity leading to longer seasonal transmission explained variable levels of disease in a wildlife population. We additionally developed a simple transmission model to guide our expectation of how an increased transmission season translates to infection prevalence. Our study demonstrates that vector SR is associated with increased levels of disease reporting, but not via increases in vector abundance or via a sampling effect. Rather, the relationship operates by extending the length of seasonal transmission, in line with theoretical predictions.

  15. microRNAs in parasites and parasite infection

    PubMed Central

    Zheng, Yadong; Cai, Xuepeng; Bradley, Janette E.

    2013-01-01

    miRNAs, a subclass of small regulatory RNAs, are present from ancient unicellular protozoans to parasitic helminths and parasitic arthropods. The miRNA-silencing mechanism appears, however, to be absent in a number of protozoan parasites. Protozoan miRNAs and components of their silencing machinery possess features different from other eukaryotes, providing some clues on the evolution of the RNA-induced silencing machinery. miRNA functions possibly associate with neoblast biology, development, physiology, infection and immunity of parasites. Parasite infection can alter host miRNA expression that can favor both parasite clearance and infection. miRNA pathways are, thus, a potential target for the therapeutic control of parasitic diseases. PMID:23392243

  16. An Overview of Trypanosoma brucei Infections: An Intense Host-Parasite Interaction.

    PubMed

    Ponte-Sucre, Alicia

    2016-01-01

    Trypanosoma brucei rhodesiense and T. brucei gambiense , the causative agents of Human African Trypanosomiasis, are transmitted by tsetse flies. Within the vector, the parasite undergoes through transformations that prepares it to infect the human host. Sequentially these developmental stages are the replicative procyclic (in which the parasite surface is covered by procyclins) and trypo-epimastigote forms, as well as the non-replicative, infective, metacyclic form that develops in the vector salivary glands. As a pre-adaptation to their life in humans, metacyclic parasites begin to express and be densely covered by the Variant Surface Glycoprotein (VSG). Once the metacyclic form invades the human host the parasite develops into the bloodstream form. Herein the VSG triggers a humoral immune response. To avoid this humoral response, and essential for survival while in the bloodstream, the parasite changes its cover periodically and sheds into the surroundings the expressed VSG, thus evading the consequences of the immune system activation. Additionally, tools comparable to quorum sensing are used by the parasite for the successful parasite transmission from human to insect. On the other hand, the human host promotes clearance of the parasite triggering innate and adaptive immune responses and stimulating cytokine and chemokine secretion. All in all, the host-parasite interaction is extremely active and leads to responses that need multiple control sites to develop appropriately.

  17. High Levels of Asymptomatic and Subpatent Plasmodium falciparum Parasite Carriage at Health Facilities in an Area of Heterogeneous Malaria Transmission Intensity in the Kenyan Highlands

    PubMed Central

    Stresman, Gillian H.; Stevenson, Jennifer C.; Ngwu, Nnenna; Marube, Elizabeth; Owaga, Chrispin; Drakeley, Chris; Bousema, Teun; Cox, Jonathan

    2014-01-01

    In endemic settings, health facility surveys provide a convenient approach to estimating malaria transmission intensity. Typically, testing for malaria at facilities is performed on symptomatic attendees, but asymptomatic infections comprise a considerable proportion of the parasite reservoir. We sampled individuals attending five health facilities in the western Kenyan highlands. Malaria prevalence by rapid diagnostic test (RDT) was 8.6–32.9% in the health facilities. Of all polymerase chain reaction-positive participants, 46.4% (95% confidence interval [95% CI] = 42.6–50.2%) of participants had infections that were RDT-negative and asymptomatic, and 55.9% of those infections consisted of multiple parasite clones as assessed by merozoite surface protein-2 genotyping. Subpatent infections were more common in individuals reporting the use of non-artemisinin–based antimalarials in the 2 weeks preceding the survey (odds ratio = 2.49, 95% CI = 1.04–5.92) compared with individuals not reporting previous use of antimalarials. We observed a large and genetically complex pool of subpatent parasitemia in the Kenya highlands that must be considered in malaria interventions. PMID:25331807

  18. Does Magnetic Field Affect Malaria Parasite Replication in Human Red Blood Cells?

    NASA Technical Reports Server (NTRS)

    Chanturiya, Alexandr N.; Glushakova, Svetlana; Yin, Dan; Zimmerberg, Joshua

    2004-01-01

    Digestion of red blood cell (RBC) hemoglobin by the malaria parasite results in the formation of paramagnetic hemazoin crystals inside the parasite body. A number of reports suggest that magnetic field interaction with hamazoin crystals significantly reduces the number of infected cells in culture, and thus magnetic field can be used to combat malaria. We studies the effects of magnetic filed on the Plasmodium falciparum asexual life cycle inside RBCs under various experimental conditions. No effect was found during prolonged exposure of infected RBCs to constant magnetic fields up to 6000 Gauss. Infected RBCs were also exposed, under temperature-controlled conditions, to oscillating magnetic fields with frequencies in the range of 500-20000 kHz, and field strength 30-600 Gauss. This exposure often changed the proportion of different parasite stages in treated culture compared to controls. However, no significant effect on parasitemia was observed in treated cultures. This result indicates that the magnetic field effect on Plasmodium falciparum is negligible, or that hypothetical negative and positive effects on different stages within one 48-hour compensate each other.

  19. Transmission of Neospora caninum between wild and domestic animals

    USGS Publications Warehouse

    Gondim, L.F.P.; McAllister, M.M.; Mateus-Pinilla, N. E.; Pitt, W.; Mech, L.D.; Nelson, M.E.; Lenarz, M.S.

    2004-01-01

    Neospora caninum is a protozoan parasite that can cause abortions in cows. N. caninum antibody seroprevalence was detected in 64/164 (39%) free-ranging gray wolves from Minnesota, 30/150 (20%) white-tailed deer, and 8/61 (13%) moose. These data are consistent with a sylvatic transmission cycle of N. caninum between cervids and canids. Infection of canids increases the risk of transmitting the parasite to domestic livestock.

  20. Effects of Age, Hemoglobin Type and Parasite Strain on IgG Recognition of Plasmodium falciparum–Infected Erythrocytes in Malian Children

    PubMed Central

    Zeituni, Amir E.; Miura, Kazutoyo; Diakite, Mahamadou; Doumbia, Saibou; Moretz, Samuel E.; Diouf, Ababacar; Tullo, Gregory; Lopera-Mesa, Tatiana M.; Bess, Cameron D.; Mita-Mendoza, Neida K.; Anderson, Jennifer M.; Fairhurst, Rick M.; Long, Carole A.

    2013-01-01

    Background Naturally-acquired antibody responses to antigens on the surface of Plasmodium falciparum-infected red blood cells (iRBCs) have been implicated in antimalarial immunity. To profile the development of this immunity, we have been studying a cohort of Malian children living in an area with intense seasonal malaria transmission. Methodology/Principal Findings We collected plasma from a sub-cohort of 176 Malian children aged 3-11 years, before (May) and after (December) the 2009 transmission season. To measure the effect of hemoglobin (Hb) type on antibody responses, we enrolled age-matched HbAA, HbAS and HbAC children. To quantify antibody recognition of iRBCs, we designed a high-throughput flow cytometry assay to rapidly test numerous plasma samples against multiple parasite strains. We evaluated antibody reactivity of each plasma sample to 3 laboratory-adapted parasite lines (FCR3, D10, PC26) and 4 short-term-cultured parasite isolates (2 Malian and 2 Cambodian). 97% of children recognized ≥1 parasite strain and the proportion of IgG responders increased significantly during the transmission season for most parasite strains. Both strain-specific and strain-transcending IgG responses were detected, and varied by age, Hb type and parasite strain. In addition, the breadth of IgG responses to parasite strains increased with age in HbAA, but not in HbAS or HbAC, children. Conclusions/Significance Our assay detects both strain-specific and strain-transcending IgG responses to iRBCs. The magnitude and breadth of these responses varied not only by age, but also by Hb type and parasite strain used. These findings indicate that studies of acquired humoral immunity should account for Hb type and test large numbers of diverse parasite strains. PMID:24124591

  1. Refined stratified-worm-burden models that incorporate specific biological features of human and snail hosts provide better estimates of Schistosoma diagnosis, transmission, and control.

    PubMed

    Gurarie, David; King, Charles H; Yoon, Nara; Li, Emily

    2016-08-04

    Schistosoma parasites sustain a complex transmission process that cycles between a definitive human host, two free-swimming larval stages, and an intermediate snail host. Multiple factors modify their transmission and affect their control, including heterogeneity in host populations and environment, the aggregated distribution of human worm burdens, and features of parasite reproduction and host snail biology. Because these factors serve to enhance local transmission, their inclusion is important in attempting accurate quantitative prediction of the outcomes of schistosomiasis control programs. However, their inclusion raises many mathematical and computational challenges. To address these, we have recently developed a tractable stratified worm burden (SWB) model that occupies an intermediate place between simpler deterministic mean worm burden models and the very computationally-intensive, autonomous agent models. To refine the accuracy of model predictions, we modified an earlier version of the SWB by incorporating factors representing essential in-host biology (parasite mating, aggregation, density-dependent fecundity, and random egg-release) into demographically structured host communities. We also revised the snail component of the transmission model to reflect a saturable form of human-to-snail transmission. The new model allowed us to realistically simulate overdispersed egg-test results observed in individual-level field data. We further developed a Bayesian-type calibration methodology that accounted for model and data uncertainties. The new model methodology was applied to multi-year, individual-level field data on S. haematobium infections in coastal Kenya. We successfully derived age-specific estimates of worm burden distributions and worm fecundity and crowding functions for children and adults. Estimates from the new SWB model were compared with those from the older, simpler SWB with some substantial differences noted. We validated our new SWB

  2. Humanized Mouse Models for the Study of Human Malaria Parasite Biology, Pathogenesis, and Immunity.

    PubMed

    Minkah, Nana K; Schafer, Carola; Kappe, Stefan H I

    2018-01-01

    Malaria parasite infection continues to inflict extensive morbidity and mortality in resource-poor countries. The insufficiently understood parasite biology, continuously evolving drug resistance and the lack of an effective vaccine necessitate intensive research on human malaria parasites that can inform the development of new intervention tools. Humanized mouse models have been greatly improved over the last decade and enable the direct study of human malaria parasites in vivo in the laboratory. Nevertheless, no small animal model developed so far is capable of maintaining the complete life cycle of Plasmodium parasites that infect humans. The ultimate goal is to develop humanized mouse systems in which a Plasmodium infection closely reproduces all stages of a parasite infection in humans, including pre-erythrocytic infection, blood stage infection and its associated pathology, transmission as well as the human immune response to infection. Here, we discuss current humanized mouse models and the future directions that should be taken to develop next-generation models for human malaria parasite research.

  3. Climate, environment and transmission of malaria.

    PubMed

    Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Zaramella, Marco; Caputo, Annamaria; Garavelli, Pietro Luigi

    2016-06-01

    Malaria, the most common parasitic disease in the world, is transmitted to the human host by mosquitoes of the genus Anopheles. The transmission of malaria requires the interaction between the host, the vector and the parasite.The four species of parasites responsible for human malaria are Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae and Plasmodium vivax. Occasionally humans can be infected by several simian species, like Plasmodium knowlesi, recognised as a major cause of human malaria in South-East Asia since 2004. While P. falciparum is responsible for most malaria cases, about 8% of estimated cases globally are caused by P. vivax. The different Plasmodia are not uniformly distributed although there are areas of species overlap. The life cycle of all species of human malaria parasites is characterised by an exogenous sexual phase in which multiplication occurs in several species of Anopheles mosquitoes, and an endogenous asexual phase in the vertebrate host. The time span required for mature oocyst development in the salivary glands is quite variable (7-30 days), characteristic of each species and influenced by ambient temperature. The vector Anopheles includes 465 formally recognised species. Approximately 70 of these species have the capacity to transmit Plasmodium spp. to humans and 41 are considered as dominant vector capable of transmitting malaria. The intensity of transmission is dependent on the vectorial capacity and competence of local mosquitoes. An efficient system for malaria transmission needs strong interaction between humans, the ecosystem and infected vectors. Global warming induced by human activities has increased the risk of vector-borne diseases such as malaria. Recent decades have witnessed changes in the ecosystem and climate without precedent in human history although the emphasis in the role of temperature on the epidemiology of malaria has given way to predisposing conditions such as ecosystem changes, political

  4. Reef fishes have higher parasite richness at unfished Palmyra Atoll compared to fished Kiritimati Island

    USGS Publications Warehouse

    Lafferty, Kevin D.; Shaw, Jenny C.; Kuris, Armand M.

    2008-01-01

    We compared parasite communities at two coral atolls in the Line Islands chain of the central Pacific (Kiritimati Island and Palmyra Atoll). Palmyra Atoll is relatively pristine while Kiritimati Island is heavily fished. At each island, we sampled five fish species for helminth and arthropod endoparasites: Chromis margaritifer, Plectroglyphidodon dickii,Paracirrhites arcatus, Acanthurus nigricans, and Lutjanus bohar. The surveys found monogeneans, digeneans, cestodes, nematodes, acanthocephalans, and copepods. Parasite richness was higher at Palmyra compared to Kiritimati for all five fish species. Fishes from Palmyra also tended to have more parasites species per host, higher parasite prevalence, and higher parasite abundance than did fishes from Kiritimati. The lower parasitism at Kiritimati may result from a simplified food web due to over fishing. Low biodiversity could impair parasite transmission by reducing the availability of hosts required by parasites with complex life cycles. Most notably, the lower abundances of larval shark tapeworms at Kiritimati presumably reflect the fact that fishing has greatly depleted sharks there in comparison to Palmyra.

  5. Egg size matching by an intraspecific brood parasite

    USGS Publications Warehouse

    Lemons, Patrick R.; Sedinger, James S.

    2011-01-01

    Avian brood parasitism provides an ideal system with which to understand animal recognition and its affect on fitness. This phenomenon of laying eggs in the nests of other individuals has classically been framed from the perspective of interspecific brood parasitism and host recognition of parasitic eggs. Few examples exist of strategies adopted by intraspecific brood parasites to maximize success of parasitic eggs. Intraspecific brood parasitism within precocial birds can be a risky strategy in that hatch synchrony is essential to reproductive success. Given that egg size is positively correlated with incubation time, parasitic birds would benefit by recognizing and selecting hosts with a similar egg size. Intraspecific brood parasitism is an alternative reproductive strategy in black brant (Branta bernicla nigricans), a colonial nesting goose with precocial young. Based on a randomization test, parasitic eggs in this study differed less in size from eggs in their host's nests than did random eggs placed in random nests. Parasitic eggs were remarkably similar in size to hosts’ eggs, differing by <2% of volume on average from host eggs, whereas randomly paired eggs in random nests differed by nearly 8%. The precision with which parasitic brant match the egg size of hosts in our study supports our hypothesis that brant match egg size of hosts, thereby maximizing hatching success of their parasitic eggs.

  6. Biodiversity inhibits parasites: Broad evidence for the dilution effect.

    PubMed

    Civitello, David J; Cohen, Jeremy; Fatima, Hiba; Halstead, Neal T; Liriano, Josue; McMahon, Taegan A; Ortega, C Nicole; Sauer, Erin Louise; Sehgal, Tanya; Young, Suzanne; Rohr, Jason R

    2015-07-14

    Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked. For example, the dilution effect hypothesis posits that these patterns are causally related; diverse host communities inhibit the spread of parasites via several mechanisms, such as by regulating populations of susceptible hosts or interfering with parasite transmission. However, the generality of the dilution effect hypothesis remains controversial, especially for zoonotic diseases of humans. Here we provide broad evidence that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species. The magnitude of these effects was independent of host density, study design, and type and specialization of parasites, indicating that dilution was robust across all ecological contexts examined. However, the magnitude of dilution was more closely related to the frequency, rather than density, of focal host species. Importantly, observational studies overwhelmingly documented dilution effects, and there was also significant evidence for dilution effects of zoonotic parasites of humans. Thus, dilution effects occur commonly in nature, and they may modulate human disease risk. A second analysis identified similar effects of diversity in plant-herbivore systems. Thus, although there can be exceptions, our results indicate that biodiversity generally decreases parasitism and herbivory. Consequently, anthropogenic declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production.

  7. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting

    PubMed Central

    2010-01-01

    Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P

  8. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting.

    PubMed

    Harris, Ivor; Sharrock, Wesley W; Bain, Lisa M; Gray, Karen-Ann; Bobogare, Albino; Boaz, Leonard; Lilley, Ken; Krause, Darren; Vallely, Andrew; Johnson, Marie-Louise; Gatton, Michelle L; Shanks, G Dennis; Cheng, Qin

    2010-09-07

    Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥ 38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect

  9. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity

    PubMed Central

    Bashey, Farrah

    2015-01-01

    Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases. PMID:26150667

  10. Stability of Cucumber Necrosis Virus at the Quasi-6-Fold Axis Affects Zoospore Transmission.

    PubMed

    Sherman, Michael B; Kakani, Kishore; Rochon, D'Ann; Jiang, Wen; Voss, Neil R; Smith, Thomas J

    2017-10-01

    Cucumber necrosis virus (CNV) is a member of the genus Tombusvirus and has a monopartite positive-sense RNA genome. CNV is transmitted in nature via zoospores of the fungus Olpidium bornovanus As with other members of the Tombusvirus genus, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation blocks the virus from zoospore transmission while not significantly affecting replication in plants (K. Kakani, R. Reade, and D. Rochon, J Mol Biol 338:507-517, 2004, https://doi.org/10.1016/j.jmb.2004.03.008). P73 lies immediately adjacent to a putative zinc binding site (M. Li et al., J Virol 87:12166-12175, 2013, https://doi.org/10.1128/JVI.01965-13) that is formed by three icosahedrally related His residues in the N termini of the C subunit at the quasi-6-fold axes. To better understand how this buried residue might affect vector transmission, we determined the cryo-electron microscopy structure of wild-type CNV in the native and swollen state and of the transmission-defective mutant, P73G, under native conditions. With the wild-type CNV, the swollen structure demonstrated the expected expansion of the capsid. However, the zinc binding region at the quasi-6-fold at the β-annulus axes remained intact. By comparison, the zinc binding region of the P73G mutant, even under native conditions, was markedly disordered, suggesting that the β-annulus had been disrupted and that this could destabilize the capsid. This was confirmed with pH and urea denaturation experiments in conjunction with electron microscopy analysis. We suggest that the P73G mutation affects the zinc binding and/or the β-annulus, making it more fragile under neutral/basic pH conditions. This, in turn, may affect zoospore transmission. IMPORTANCE Cucumber necrosis virus (CNV), a member of the genus Tombusvirus , is transmitted in nature via zoospores of the fungus Olpidium bornovanus While a number of plant viruses are transmitted via insect vectors

  11. Stability of Cucumber Necrosis Virus at the Quasi-6-Fold Axis Affects Zoospore Transmission

    PubMed Central

    Sherman, Michael B.; Kakani, Kishore; Rochon, D'Ann; Jiang, Wen; Voss, Neil R.

    2017-01-01

    ABSTRACT Cucumber necrosis virus (CNV) is a member of the genus Tombusvirus and has a monopartite positive-sense RNA genome. CNV is transmitted in nature via zoospores of the fungus Olpidium bornovanus. As with other members of the Tombusvirus genus, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation blocks the virus from zoospore transmission while not significantly affecting replication in plants (K. Kakani, R. Reade, and D. Rochon, J Mol Biol 338:507–517, 2004, https://doi.org/10.1016/j.jmb.2004.03.008). P73 lies immediately adjacent to a putative zinc binding site (M. Li et al., J Virol 87:12166–12175, 2013, https://doi.org/10.1128/JVI.01965-13) that is formed by three icosahedrally related His residues in the N termini of the C subunit at the quasi-6-fold axes. To better understand how this buried residue might affect vector transmission, we determined the cryo-electron microscopy structure of wild-type CNV in the native and swollen state and of the transmission-defective mutant, P73G, under native conditions. With the wild-type CNV, the swollen structure demonstrated the expected expansion of the capsid. However, the zinc binding region at the quasi-6-fold at the β-annulus axes remained intact. By comparison, the zinc binding region of the P73G mutant, even under native conditions, was markedly disordered, suggesting that the β-annulus had been disrupted and that this could destabilize the capsid. This was confirmed with pH and urea denaturation experiments in conjunction with electron microscopy analysis. We suggest that the P73G mutation affects the zinc binding and/or the β-annulus, making it more fragile under neutral/basic pH conditions. This, in turn, may affect zoospore transmission. IMPORTANCE Cucumber necrosis virus (CNV), a member of the genus Tombusvirus, is transmitted in nature via zoospores of the fungus Olpidium bornovanus. While a number of plant viruses are transmitted via insect

  12. Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing

    PubMed Central

    Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K.; Utzinger, Jürg; Raso, Giovanna

    2015-01-01

    Background Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. Methodology We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d’Ivoire and validated against readily available survey data from school-aged children. Principal Findings Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d’Ivoire. Conclusions/Significance A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs

  13. Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing.

    PubMed

    Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K; Utzinger, Jürg; Raso, Giovanna

    2015-11-01

    Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d'Ivoire and validated against readily available survey data from school-aged children. Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d'Ivoire. A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail

  14. Host behaviour–parasite feedback: an essential link between animal behaviour and disease ecology

    PubMed Central

    Archie, Elizabeth A.; Craft, Meggan E.; Hawley, Dana M.; Martin, Lynn B.; Moore, Janice; White, Lauren

    2016-01-01

    Animal behaviour and the ecology and evolution of parasites are inextricably linked. For this reason, animal behaviourists and disease ecologists have been interested in the intersection of their respective fields for decades. Despite this interest, most research at the behaviour–disease interface focuses either on how host behaviour affects parasites or how parasites affect behaviour, with little overlap between the two. Yet, the majority of interactions between hosts and parasites are probably reciprocal, such that host behaviour feeds back on parasites and vice versa. Explicitly considering these feedbacks is essential for understanding the complex connections between animal behaviour and parasite ecology and evolution. To illustrate this point, we discuss how host behaviour–parasite feedbacks might operate and explore the consequences of feedback for studies of animal behaviour and parasites. For example, ignoring the feedback of host social structure on parasite dynamics can limit the accuracy of predictions about parasite spread. Likewise, considering feedback in studies of parasites and animal personalities may provide unique insight about the maintenance of variation in personality types. Finally, applying the feedback concept to links between host behaviour and beneficial, rather than pathogenic, microbes may shed new light on transitions between mutualism and parasitism. More generally, accounting for host behaviour–parasite feedbacks can help identify critical gaps in our understanding of how key host behaviours and parasite traits evolve and are maintained. PMID:27053751

  15. Host behaviour-parasite feedback: an essential link between animal behaviour and disease ecology.

    PubMed

    Ezenwa, Vanessa O; Archie, Elizabeth A; Craft, Meggan E; Hawley, Dana M; Martin, Lynn B; Moore, Janice; White, Lauren

    2016-04-13

    Animal behaviour and the ecology and evolution of parasites are inextricably linked. For this reason, animal behaviourists and disease ecologists have been interested in the intersection of their respective fields for decades. Despite this interest, most research at the behaviour-disease interface focuses either on how host behaviour affects parasites or how parasites affect behaviour, with little overlap between the two. Yet, the majority of interactions between hosts and parasites are probably reciprocal, such that host behaviour feeds back on parasites and vice versa. Explicitly considering these feedbacks is essential for understanding the complex connections between animal behaviour and parasite ecology and evolution. To illustrate this point, we discuss how host behaviour-parasite feedbacks might operate and explore the consequences of feedback for studies of animal behaviour and parasites. For example, ignoring the feedback of host social structure on parasite dynamics can limit the accuracy of predictions about parasite spread. Likewise, considering feedback in studies of parasites and animal personalities may provide unique insight about the maintenance of variation in personality types. Finally, applying the feedback concept to links between host behaviour and beneficial, rather than pathogenic, microbes may shed new light on transitions between mutualism and parasitism. More generally, accounting for host behaviour-parasite feedbacks can help identify critical gaps in our understanding of how key host behaviours and parasite traits evolve and are maintained. © 2016 The Author(s).

  16. Update on pathology of ocular parasitic disease

    PubMed Central

    Das, Dipankar; Ramachandra, Varsha; Islam, Saidul; Bhattacharjee, Harsha; Biswas, Jyotirmay; Koul, Akanksha; Deka, Panna; Deka, Apurba

    2016-01-01

    Parasites are a group of eukaryotic organisms that may be free-living or form a symbiotic or parasitic relationship with the hosts. Consisting of over 800,000 recognized species, parasites may be unicellular (Protozoa) or multicellular (helminths and arthropods). The association of parasites with human population started long before the emergence of civilization. Parasitic zoonotic diseases are prevalent worldwide including India. Appropriate epidemiological data are lacking on existing zoonotic parasitic diseases, and newer diseases are emerging in our scenario. Systemic diseases such as cysticercosis, paragonimiasis, hydatidosis, and toxoplasmosis are fairly common. Acquired Toxoplasma infections are rising in immune-deficient individuals. Amongst the ocular parasitic diseases, various protozoas such as Cystoidea, trematodes, tissue flagellates, sporozoas etc. affect humans in general and eyes in particular, in different parts of the world. These zoonoses seem to be a real health related problem globally. Recent intensification of research throughout the world has led to specialization in biological fields, creating a conducive situation for researchers interested in this subject. The basics of parasitology lie in morphology, pathology, and with recent updates in molecular parasitology, the scope has extended further. The current review is to address the recent update in ophthalmic parasites with special reference to pathology and give a glimpse of further research in this field. PMID:27958200

  17. Update on pathology of ocular parasitic disease.

    PubMed

    Das, Dipankar; Ramachandra, Varsha; Islam, Saidul; Bhattacharjee, Harsha; Biswas, Jyotirmay; Koul, Akanksha; Deka, Panna; Deka, Apurba

    2016-11-01

    Parasites are a group of eukaryotic organisms that may be free-living or form a symbiotic or parasitic relationship with the hosts. Consisting of over 800,000 recognized species, parasites may be unicellular (Protozoa) or multicellular (helminths and arthropods). The association of parasites with human population started long before the emergence of civilization. Parasitic zoonotic diseases are prevalent worldwide including India. Appropriate epidemiological data are lacking on existing zoonotic parasitic diseases, and newer diseases are emerging in our scenario. Systemic diseases such as cysticercosis, paragonimiasis, hydatidosis, and toxoplasmosis are fairly common. Acquired Toxoplasma infections are rising in immune-deficient individuals. Amongst the ocular parasitic diseases, various protozoas such as Cystoidea, trematodes, tissue flagellates, sporozoas etc. affect humans in general and eyes in particular, in different parts of the world. These zoonoses seem to be a real health related problem globally. Recent intensification of research throughout the world has led to specialization in biological fields, creating a conducive situation for researchers interested in this subject. The basics of parasitology lie in morphology, pathology, and with recent updates in molecular parasitology, the scope has extended further. The current review is to address the recent update in ophthalmic parasites with special reference to pathology and give a glimpse of further research in this field.

  18. Helminth Parasites Alter Protection against Plasmodium Infection

    PubMed Central

    Salazar-Castañon, Víctor H.; Legorreta-Herrera, Martha

    2014-01-01

    More than one-third of the world's population is infected with one or more helminthic parasites. Helminth infections are prevalent throughout tropical and subtropical regions where malaria pathogens are transmitted. Malaria is the most widespread and deadliest parasitic disease. The severity of the disease is strongly related to parasite density and the host's immune responses. Furthermore, coinfections between both parasites occur frequently. However, little is known regarding how concomitant infection with helminths and Plasmodium affects the host's immune response. Helminthic infections are frequently massive, chronic, and strong inductors of a Th2-type response. This implies that infection by such parasites could alter the host's susceptibility to subsequent infections by Plasmodium. There are a number of reports on the interactions between helminths and Plasmodium; in some, the burden of Plasmodium parasites increased, but others reported a reduction in the parasite. This review focuses on explaining many of these discrepancies regarding helminth-Plasmodium coinfections in terms of the effects that helminths have on the immune system. In particular, it focuses on helminth-induced immunosuppression and the effects of cytokines controlling polarization toward the Th1 or Th2 arms of the immune response. PMID:25276830

  19. Helminth parasites alter protection against Plasmodium infection.

    PubMed

    Salazar-Castañon, Víctor H; Legorreta-Herrera, Martha; Rodriguez-Sosa, Miriam

    2014-01-01

    More than one-third of the world's population is infected with one or more helminthic parasites. Helminth infections are prevalent throughout tropical and subtropical regions where malaria pathogens are transmitted. Malaria is the most widespread and deadliest parasitic disease. The severity of the disease is strongly related to parasite density and the host's immune responses. Furthermore, coinfections between both parasites occur frequently. However, little is known regarding how concomitant infection with helminths and Plasmodium affects the host's immune response. Helminthic infections are frequently massive, chronic, and strong inductors of a Th2-type response. This implies that infection by such parasites could alter the host's susceptibility to subsequent infections by Plasmodium. There are a number of reports on the interactions between helminths and Plasmodium; in some, the burden of Plasmodium parasites increased, but others reported a reduction in the parasite. This review focuses on explaining many of these discrepancies regarding helminth-Plasmodium coinfections in terms of the effects that helminths have on the immune system. In particular, it focuses on helminth-induced immunosuppression and the effects of cytokines controlling polarization toward the Th1 or Th2 arms of the immune response.

  20. Mechanisms of cellular invasion by intracellular parasites.

    PubMed

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  1. Fish Parasites: A Growing Concern During Pregnancy.

    PubMed

    Villazanakretzer, Diana L; Napolitano, Peter G; Cummings, Kelly F; Magann, Everett F

    2016-04-01

    Intestinal parasitic worms affect more than 2 billion people worldwide according to the World Health Organization. Fish-borne parasitic infections are becoming more common with the increasing popularity of sushi, sashimi, Carpaccio, tartare, gefilte, and ceviche. The ingestion of these parasites can cause serve anemia, malabsorption, severe abdominal pain, nausea, vomiting, strong allergic reactions, and gastric ulcers. Knowledge about fish parasites and pregnancy is limited. A literature search on PubMed and Web of Science used the search terms "fish parasites" OR "diphyllobothrium" OR "anisakiasis" OR "pseudoterranova" OR ("food borne parasites" AND "fish") AND "pregnancy" OR "maternal" OR "fetus" OR "fetal" OR "newborn" OR "neonatal" OR "childbirth." No limit was put on the number of years searched. There were 281 publications identified. The abstracts of all of these publications were read. After exclusion of the articles that were not relevant to pregnancy, pregnancy outcome, and fish parasites, there were 24 articles that became the basis of this review. The pathophysiology, altered maternal immunity related to the infection, limited information about fish-borne parasitic infections and pregnancy, and treatments are discussed. The main impact of a fish-borne parasitic infection on pregnant women is anemia and altered immunity, which may increase the risk of a maternal infection. The primary fetal effects include intrauterine growth restriction and preterm delivery.

  2. Regional parasite density in the skin of dogs with symptomatic canine leishmaniosis.

    PubMed

    Saridomichelakis, Manolis N; Koutinas, Alexander F; Olivry, Thierry; Dunston, Stan M; Farmaki, Rania; Koutinas, Christos K; Petanides, Theodoros

    2007-08-01

    In canine leishmaniosis, the parasitic density of the skin may be important for the infection of sandflies, and increased accumulation of inflammatory cells infected with Leishmania is believed to occur in dermal areas subjected to mechanical trauma. Parasite density and inflammatory responses in the upper and lower dermis of three body sites: flank (control site), dorsal muzzle (sandfly feeding site), and footpads (mechanical stress sites) were thus investigated in 15 dogs with symptomatic leishmaniosis. Parasite density did not differ between the control and tested sites or between the upper and lower dermis, apart from the footpads where it was higher in the upper dermis, and there was no correlation with severity of the macroscopic lesions or inflammatory infiltrate, except for the lower footpad dermis. No selective accumulation of the parasite in the muzzle that would favour its transmission to sandflies occurred, and the mechanical stress imposed on the footpads was not associated with increased parasitic density, or with inflammatory infiltrate.

  3. Secondary metabolites in floral nectar reduce parasite infections in bumblebees.

    PubMed

    Richardson, Leif L; Adler, Lynn S; Leonard, Anne S; Andicoechea, Jonathan; Regan, Karly H; Anthony, Winston E; Manson, Jessamyn S; Irwin, Rebecca E

    2015-03-22

    The synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees. We hypothesized that nectar secondary metabolites could reduce bee parasite infection. We inoculated individual bumblebees with Crithidia bombi, an intestinal parasite, and tested effects of eight naturally occurring nectar chemicals on parasite population growth. Secondary metabolites strongly reduced parasite load, with significant effects of alkaloids, terpenoids and iridoid glycosides ranging from 61 to 81%. Using microcolonies, we also investigated costs and benefits of consuming anabasine, the compound with the strongest effect on parasites, in infected and uninfected bees. Anabasine increased time to egg laying, and Crithidia reduced bee survival. However, anabasine consumption did not mitigate the negative effects of Crithidia, and Crithidia infection did not alter anabasine consumption. Our novel results highlight that although secondary metabolites may not rescue survival in infected bees, they may play a vital role in mediating Crithidia transmission within and between colonies by reducing Crithidia infection intensities. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change.

    PubMed

    Galaktionov, K V

    2017-07-01

    This review analyses the scarce available data on biodiversity and transmission of helminths in Arctic coastal ecosystems and the potential impact of climate changes on them. The focus is on the helminths of seabirds, dominant parasites in coastal ecosystems. Their fauna in the Arctic is depauperate because of the lack of suitable intermediate hosts and unfavourable conditions for species with free-living larvae. An increasing proportion of crustaceans in the diet of Arctic seabirds would result in a higher infection intensity of cestodes and acanthocephalans, and may also promote the infection of seabirds with non-specific helminths. In this way, the latter may find favourable conditions for colonization of new hosts. Climate changes may alter the composition of the helminth fauna, their infection levels in hosts and ways of transmission in coastal communities. Immigration of boreal invertebrates and fish into Arctic seas may allow the circulation of helminths using them as intermediate hosts. Changing migratory routes of animals would alter the distribution of their parasites, facilitating, in particular, their trans-Arctic transfer. Prolongation of the seasonal 'transmission window' may increase the parasitic load on host populations. Changes in Arctic marine food webs would have an overriding influence on the helminths' circulation. This process may be influenced by the predicted decreased of salinity in Arctic seas, increased storm activity, coastal erosion, ocean acidification, decline of Arctic ice, etc. Greater parasitological research efforts are needed to assess the influence of factors related to Arctic climate change on the transmission of helminths.

  5. The impact of socio-cultural factors on transmission of Taenia spp. and Echinococcus granulosus in Kosovo.

    PubMed

    Alishani, M; Sherifi, K; Rexhepi, A; Hamidi, A; Armua-Fernandez, M T; Grimm, F; Hegglin, D; Deplazes, P

    2017-11-01

    Echinococcus granulosus sensu latu (s.l.) and Taenia hydatigena are common parasites of ruminant intermediate hosts in the Balkans. Transmission is linked mainly to home slaughtering and the feeding of infected organs to dogs. In Kosovo, many old sheep are slaughtered particularly during Eid al-Adha (Feast of Sacrifice). To determine whether this tradition could affect parasite transmission, we compared the probability of 504 dogs to contract taenid infections after deworming during one period before Eid al-Adha and a similar period beginning with this event. Initially, taeniid eggs were detected in 6·2% (CI 4·2-8·6) of the dogs. The prevalence before Eid al-Adha was significantly lower (1·2%, CI 0·4-2·6) as compared with the prevalence after the event (4·3%, CI 2·6-6·3). A comparable trend was apparent at species level for T. hydatigena and E. granulosus. These results indicate that the pronounced increase of taeniid infections, including E. granulosus s.l., after Eid al-Adha is linked to traditional home slaughtering that occurs during this celebration. This particular epidemiological situation provides an opportunity for implementing focussed control activities.

  6. Parasitic contamination of fresh vegetables sold at central markets in Khartoum state, Sudan.

    PubMed

    Mohamed, Mona Ali; Siddig, Emmanuel Edwar; Elaagip, Arwa Hassan; Edris, Ali Mahmoud Mohammed; Nasr, Awad Ahmed

    2016-03-11

    Fresh vegetables are considered as vital nutrients of a healthy diet as they supply the body with essential supplements. The consumption of raw vegetables is the main way for transmission of intestinal parasitic organisms. This study was aimed at detecting the parasitic contamination in fresh vegetables sold in two central open-aired markets in Khartoum state, Sudan. In this prospective cross-sectional study, a total of 260 fresh vegetable samples and 50 water samples used to sprinkle vegetable(s) were collected from two central open-aired markets (namely; Elshaabi and Central markets) during November 2011 to May 2012. The samples were microscopically examined for detection of parasitic life forms using standardized parasitological techniques for protozoans and helminthes worms. Of the 260 fresh vegetable samples, 35 (13.5 %) were microscopically positive for intestinal parasites whereas 7/50 (14 %) of water samples used to sprinkle vegetable(s) were found positives. Remarkably, high level of contamination in fresh vegetable samples was recorded in lettuce (Lactuca sativa) 36.4 % (4/11) while cayenne pepper (Capsicum annuum) and cucumber (Cucumis sativus) were not contaminated. The identified protozoans and helminthes were Entamoeba histolytica/dispar, Entamoeba coli, Giardia lamblia, Ascaris lumbricoides, Strongyloides stercoralis, T. trichiura and hookworms. The most predominant parasite encountered was E. histolytica/dispar (42.9 %) whereas both T. trichiura and A. lumbricoides (2.9 %) were the least detected parasites. None of the fresh vegetables had single parasitic contamination. The highest percentages found in water samples used to sprinkle vegetable(s) was for Strongyloides larvae 60 % (3/5). It is worth-mentioned that the rate of contamination in Elshaabi market was higher compared with Central market. However, there was no significant correlation between the type of vegetables and existence of parasites in both markets and a high significant

  7. Inferring Plasmodium vivax Transmission Networks from Tempo-Spatial Surveillance Data

    PubMed Central

    Shi, Benyun; Liu, Jiming; Zhou, Xiao-Nong; Yang, Guo-Jing

    2014-01-01

    Background The transmission networks of Plasmodium vivax characterize how the parasite transmits from one location to another, which are informative and insightful for public health policy makers to accurately predict the patterns of its geographical spread. However, such networks are not apparent from surveillance data because P. vivax transmission can be affected by many factors, such as the biological characteristics of mosquitoes and the mobility of human beings. Here, we pay special attention to the problem of how to infer the underlying transmission networks of P. vivax based on available tempo-spatial patterns of reported cases. Methodology We first define a spatial transmission model, which involves representing both the heterogeneous transmission potential of P. vivax at individual locations and the mobility of infected populations among different locations. Based on the proposed transmission model, we further introduce a recurrent neural network model to infer the transmission networks from surveillance data. Specifically, in this model, we take into account multiple real-world factors, including the length of P. vivax incubation period, the impact of malaria control at different locations, and the total number of imported cases. Principal Findings We implement our proposed models by focusing on the P. vivax transmission among 62 towns in Yunnan province, People's Republic China, which have been experiencing high malaria transmission in the past years. By conducting scenario analysis with respect to different numbers of imported cases, we can (i) infer the underlying P. vivax transmission networks, (ii) estimate the number of imported cases for each individual town, and (iii) quantify the roles of individual towns in the geographical spread of P. vivax. Conclusion The demonstrated models have presented a general means for inferring the underlying transmission networks from surveillance data. The inferred networks will offer new insights into how to

  8. Parasites of ornamental fish commercialized in Macapá, Amapá State (Brazil).

    PubMed

    Hoshino, Érico de Melo; Hoshino, Maria Danielle Figueiredo Guimarães; Tavares-Dias, Marcos

    2018-02-19

    This study investigated the parasites fauna of four freshwater ornamental fish species in aquarium shops of Macapá, Amapá State, in addition to survey the commercialized fish species and sanitary conditions of aquarium shops. Different native and non-native ornamental fish species were found in aquarium shops, mainly Poecilidae. We examined 30 specimens of Xiphophorus maculatus, 30 Danio rerio, 30 Paracheirodon axelrodi, and 30 Corydoras ephippifer for parasites. Of the 120 fish examined, 22.5% were parasitized by one or more species and a total of 438 parasites were collected and identified. Parasites such as: Ichthyophthirius multifiliis, Monogenea, undermined Digenea metacercariae, Acanthostomum sp. metacercariae, Camallanus spp., Bothriocephalus acheilognathi and Echinorhynchus sp. infected the hosts examined. Endoparasites in the larval stage showed the greatest diversity and Camallanus spp. was found in all hosts species examined. Paracheirodon axelrodi (43.3%) was the most parasitized host, while C. ephippifer (6.7%) was the least parasitized. Despite the low ectoparasites level, six species of endoparasites was observed, demonstrating that prophylactic and quarantine procedures were not fully adequate. Therefore, failures in prophylactic procedures on any link in the production industry of ornamental fish may cause parasite transmission to ornamental fish captured in different environments and localities.

  9. Parasites of ornamental fish commercialized in Macapá, Amapá State (Brazil).

    PubMed

    Hoshino, Érico de Melo; Hoshino, Maria Danielle Figueiredo Guimarães; Tavares-Dias, Marcos

    2018-01-01

    This study investigated the parasites fauna of four freshwater ornamental fish species in aquarium shops of Macapá, Amapá State, in addition to survey the commercialized fish species and sanitary conditions of aquarium shops. Different native and non-native ornamental fish species were found in aquarium shops, mainly Poecilidae. We examined 30 specimens of Xiphophorus maculatus, 30 Danio rerio, 30 Paracheirodon axelrodi, and 30 Corydoras ephippifer for parasites. Of the 120 fish examined, 22.5% were parasitized by one or more species and a total of 438 parasites were collected and identified. Parasites such as: Ichthyophthirius multifiliis, Monogenea, undermined Digenea metacercariae, Acanthostomum sp. metacercariae, Camallanus spp., Bothriocephalus acheilognathi and Echinorhynchus sp. infected the hosts examined. Endoparasites in the larval stage showed the greatest diversity and Camallanus spp. was found in all hosts species examined. Paracheirodon axelrodi (43.3%) was the most parasitized host, while C. ephippifer (6.7%) was the least parasitized. Despite the low ectoparasites level, six species of endoparasites was observed, demonstrating that prophylactic and quarantine procedures were not fully adequate. Therefore, failures in prophylactic procedures on any link in the production industry of ornamental fish may cause parasite transmission to ornamental fish captured in different environments and localities.

  10. The path to host extinction can lead to loss of generalist parasites.

    PubMed

    Farrell, Maxwell J; Stephens, Patrick R; Berrang-Ford, Lea; Gittleman, John L; Davies, T Jonathan

    2015-07-01

    Host extinction can alter disease transmission dynamics, influence parasite extinction and ultimately change the nature of host-parasite systems. While theory predicts that single-host parasites are among the parasite species most susceptible to extinction following declines in their hosts, documented parasite extinctions are rare. Using a comparative approach, we investigate how the richness of single-host and multi-host parasites is influenced by extinction risk among ungulate and carnivore hosts. Host-parasite associations for free-living carnivores (order Carnivora) and terrestrial ungulates (orders Perissodactyla + Cetartiodactyla minus cetaceans) were merged with host trait data and IUCN Red List status to explore the distribution of single-host and multi-host parasites among threatened and non-threatened hosts. We find that threatened ungulates harbour a higher proportion of single-host parasites compared to non-threatened ungulates, which is explained by decreases in the richness of multi-host parasites. However, among carnivores threat status is not a significant predictor of the proportion of single-host parasites, or the richness of single-host or multi-host parasites. The loss of multi-host parasites from threatened ungulates may be explained by decreased cross-species contact as hosts decline and habitats become fragmented. Among carnivores, threat status may not be important in predicting patterns of parasite specificity because host decline results in equal losses of both single-host parasites and multi-host parasites through reduction in average population density and frequency of cross-species contact. Our results contrast with current models of parasite coextinction and highlight the need for updated theories that are applicable across host groups and account for both inter- and intraspecific contact. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  11. Malaria parasite rates in Southern Rhodesia: May-September 1956

    PubMed Central

    Alves, William

    1958-01-01

    The author reports on malaria parasite rates found in the indigenous population of Southern Rhodesia after seven years of insecticide spraying. Although there is little or no overt malaria in sprayed areas, larvae of Anopheles gambiae are still found in certain foci. It is thought possible that the parasite rate is now so low that for practical purposes a break in transmission has been achieved, but the author points out that a dangerous potential source of infection exists in immigrant labour from other territories. Immigrants are now being treated on entry with up to 450 mg of amodiaquine and 45 mg of primaquine. PMID:13585061

  12. Relationship of parasites and pathologies to contaminant body burden in sentinel bivalves: NOAA Status and Trends 'Mussel Watch' Program.

    PubMed

    Kim, Yungkul; Powell, Eric N; Wade, Terry L; Presley, Bobby J

    2008-03-01

    The 1995-1998 database from NOAA's National Status and Trends 'Mussel Watch' Program was used to compare the distributional patterns of parasites and pathologies with contaminant body burdens. Principal components analysis (PCA) resolved five groups of contaminants in both mussels and oysters: one dominated by polycyclic aromatic hydrocarbons (PAHs), one dominated by pesticides, and three dominated by metals. Metals produced a much more complex picture of spatial trends in body burden than did either the pesticides or PAHs. Contrasted to the relative simplicity of the contaminant groupings, PCA exposed a suite of parasite/pathology groups with few similarities between the sentinel bivalve taxa. Thus, the relationship between parasites/pathologies and contaminants differs significantly between taxa despite the similarity in contaminant pattern. Moreover, the combined effects of many contaminants and parasites may be important, leading to complex biological-contaminant interactions with synergies both of biological and chemical origin. Overall, correlations between parasites/pathologies and contaminants were more frequent with metals, frequent with pesticides, and less frequent with PAHs in mussels. In oysters, correlations with pesticides and metals were about equally frequent, but correlations with PAHs were still rare. In mytilids, correlations with metals predominated. Negative and positive correlations with metals occurred with about the same frequency in both taxa. The majority of correlations with pesticides were negative in oysters; not so for mytilids. Of the many significant correlations involving parasites, few involved single-celled eukaryotes or prokaryotes. The vast majority involved multi-cellular eukaryotes and nearly all of them either cestodes, trematode sporocysts, or trematode metacercariae. The few correlations for single-celled parasites all involved proliferating protozoa or protozoa reaching high body burdens through transmission. The tendency

  13. Molecular identification of Theileria parasites of northwestern Chinese Cervidae

    PubMed Central

    2014-01-01

    Background Theileria and Babesia protozoan parasites are transmitted mainly by tick vectors. These parasites cause heavy economic losses to the live-stock industry, as well as affecting the health of wild animals in parasite-endemic areas. Identification of infectious agents in wild animals is not only crucial for species preservation, but also provides valuable information on parasite epidemiology. Here, we conducted a molecular surveillance study in Northwestern China to assess the prevalence of blood pathogens in cervids. Methods PCR analysis and microscopic evaluation of blood smears to detect Theileria- and Babesia-related diseases in Cervidae were conducted, in which 22 blood samples from red deer (n = 22) in Qilian Mountain and 20 from sika deer (n = 20) in Long Mountain were collected and tested for the presence of Theileria and Babesia. The 18S rRNA gene was amplified, and selected polymerase chain reaction (PCR)-positive samples were sequenced for species identification. Results PCR revealed that 9.1% of the Qilian Mountain samples and 20% of the Long Mountain samples were positive for Theileria uilenbergi; 90.09% of the Qilian Mountain samples (n = 22) were positive for T. capreoli, but all of the Long Mountain samples (n = 20) were negative for T. capreoli; no other Theileria or Babesia species were found. PCR showed that T. uilenbergi and T. capreoli were present in red deer in Qilian Mountain, while only T. uilenbergi was found in sika Deer in Long Mountain. The 18S rRNA gene sequences were aligned against the corresponding GenBank sequences of known isolates of Theileria and Babesia and subjected to phylogenetic analysis. The phylogenetic tree showed that the newly isolated Theileria spp. could be classified as belonging to two clades: one group belonged to the same clade as T. uilenbergi, the other to a clade containing T. capreoli. Conclusions Our results provide important data to increase understanding of the epidemiology of

  14. Molecular identification of Theileria parasites of northwestern Chinese Cervidae.

    PubMed

    Li, Youquan; Chen, Ze; Liu, Zhijie; Liu, Junlong; Yang, Jifei; Li, Qian; Li, Yaqiong; Cen, Shuangqing; Guan, Guiquan; Ren, Qiaoyun; Luo, Jianxun; Yin, Hong

    2014-05-14

    Theileria and Babesia protozoan parasites are transmitted mainly by tick vectors. These parasites cause heavy economic losses to the live-stock industry, as well as affecting the health of wild animals in parasite-endemic areas. Identification of infectious agents in wild animals is not only crucial for species preservation, but also provides valuable information on parasite epidemiology. Here, we conducted a molecular surveillance study in Northwestern China to assess the prevalence of blood pathogens in cervids. PCR analysis and microscopic evaluation of blood smears to detect Theileria- and Babesia-related diseases in Cervidae were conducted, in which 22 blood samples from red deer (n = 22) in Qilian Mountain and 20 from sika deer (n = 20) in Long Mountain were collected and tested for the presence of Theileria and Babesia. The 18S rRNA gene was amplified, and selected polymerase chain reaction (PCR)-positive samples were sequenced for species identification. PCR revealed that 9.1% of the Qilian Mountain samples and 20% of the Long Mountain samples were positive for Theileria uilenbergi; 90.09% of the Qilian Mountain samples (n = 22) were positive for T. capreoli, but all of the Long Mountain samples (n = 20) were negative for T. capreoli; no other Theileria or Babesia species were found. PCR showed that T. uilenbergi and T. capreoli were present in red deer in Qilian Mountain, while only T. uilenbergi was found in sika Deer in Long Mountain. The 18S rRNA gene sequences were aligned against the corresponding GenBank sequences of known isolates of Theileria and Babesia and subjected to phylogenetic analysis. The phylogenetic tree showed that the newly isolated Theileria spp. could be classified as belonging to two clades: one group belonged to the same clade as T. uilenbergi, the other to a clade containing T. capreoli. Our results provide important data to increase understanding of the epidemiology of Cervidae theileriosis, and will assist with

  15. The evolution of complex life cycles when parasite mortality is size- or time-dependent.

    PubMed

    Ball, M A; Parker, G A; Chubb, J C

    2008-07-07

    In complex cycles, helminth larvae in their intermediate hosts typically grow to a fixed size. We define this cessation of growth before transmission to the next host as growth arrest at larval maturity (GALM). Where the larval parasite controls its own growth in the intermediate host, in order that growth eventually arrests, some form of size- or time-dependent increase in its death rate must apply. In contrast, the switch from growth to sexual reproduction in the definitive host can be regulated by constant (time-independent) mortality as in standard life history theory. We here develop a step-wise model for the evolution of complex helminth life cycles through trophic transmission, based on the approach of Parker et al. [2003a. Evolution of complex life cycles in helminth parasites. Nature London 425, 480-484], but which includes size- or time-dependent increase in mortality rate. We assume that the growing larval parasite has two components to its death rate: (i) a constant, size- or time-independent component, and (ii) a component that increases with size or time in the intermediate host. When growth stops at larval maturity, there is a discontinuous change in mortality to a constant (time-independent) rate. This model generates the same optimal size for the parasite larva at GALM in the intermediate host whether the evolutionary approach to the complex life cycle is by adding a new host above the original definitive host (upward incorporation), or below the original definitive host (downward incorporation). We discuss some unexplored problems for cases where complex life cycles evolve through trophic transmission.

  16. Trichinella spiralis: Adaptation and parasitism

    PubMed Central

    Zarlenga, Dante; Wang, Zhengyuan; Mitreva, Makedonka

    2016-01-01

    Publication of the genome from the clade I organism, Trichinella spiralis, has provided us an avenue to address more holistic problems in parasitology; namely the processes of adaptation and the evolution of parasitism. Parasitism among nematodes has evolved in multiple, independent events. Deciphering processes that drive species diversity and adaptation are keys to understanding parasitism and advancing control strategies. Studies have been put forth on morphological and physiological aspects of parasitism and adaptation in nematodes; however, data is now coming available to investigate adaptation, host switching and parasitism at the genomic level. Herein we compare proteomic data from the clade I parasite, Trichinella spiralis with data from Brugia malayi (clade III), Meloidogyne hapla and Meloidogyne incognita (clade IV), and free-living nematodes belonging to the genera Caenorhabditis and Pristionchus (clade V). We explore changes in protein family birth/death and expansion/reduction over the course of metazoan evolution using Homo sapiens, Drosophila melanogaster and Saccharomyces cerevisiae as out-groups for the phylum Nematoda. We further examine relationships between these changes and the ability and/or result of nematodes adapting to their environments. Data are consistent with gene loss occurring in conjunction with nematode specialization resulting from parasitic worms acclimating to well-defined, environmental niches. We observed evidence for independent, lateral gene transfer events involving conserved genes that may have played a role in the evolution of nematode parasitism. In general, parasitic nematodes gained proteins through duplication and lateral gene transfer, and lost proteins through random mutation and deletions. Data suggest independent acquisition rather than ancestral inheritance among the Nematoda followed by selective gene loss over evolutionary time. Data also show that parasitism and adaptation affected a broad range of proteins

  17. Transmission models and management of lymphatic filariasis elimination.

    PubMed

    Michael, Edwin; Gambhir, Manoj

    2010-01-01

    The planning and evaluation of parasitic control programmes are complicated by the many interacting population dynamic and programmatic factors that determine infection trends under different control options. A key need is quantification about the status of the parasite system state at any one given timepoint and the dynamic change brought upon that state as an intervention program proceeds. Here, we focus on the control and elimination of the vector-borne disease, lymphatic filariasis, to show how mathematical models of parasite transmission can provide a quantitative framework for aiding the design of parasite elimination and monitoring programs by their ability to support (1) conducting rational analysis and definition of endpoints for different programmatic aims or objectives, including transmission endpoints for disease elimination, (2) undertaking strategic analysis to aid the optimal design of intervention programs to meet set endpoints under different endemic settings and (3) providing support for performing informed evaluations of ongoing programs, including aiding the formation of timely adaptive management strategies to correct for any observed deficiencies in program effectiveness. The results also highlight how the use of a model-based framework will be critical to addressing the impacts of ecological complexities, heterogeneities and uncertainties on effective parasite management and thereby guiding the development of strategies to resolve and overcome such real-world complexities. In particular, we underscore how this approach can provide a link between ecological science and policy by revealing novel tools and measures to appraise and enhance the biological controllability or eradicability of parasitic diseases. We conclude by emphasizing an urgent need to develop and apply flexible adaptive management frameworks informed by mathematical models that are based on learning and reducing uncertainty using monitoring data, apply phased or sequential

  18. PfCDPK1 is critical for malaria parasite gametogenesis and mosquito infection

    PubMed Central

    Bansal, Abhisheka; Molina-Cruz, Alvaro; Brzostowski, Joseph; Liu, Poching; Luo, Yan; Gunalan, Karthigayan; Li, Yuesheng; Ribeiro, José M. C.; Miller, Louis H.

    2018-01-01

    Efforts to knock out Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) from asexual erythrocytic stage have not been successful, indicating an indispensable role of the enzyme in asexual growth. We recently reported generation of a transgenic parasite with mutant CDPK1 [Bansal A, et al. (2016) MBio 7:e02011-16]. The mutant CDPK1 (T145M) had reduced activity of transphosphorylation. We reasoned that CDPK1 could be disrupted in the mutant parasites. Consistent with this assumption, CDPK1 was successfully disrupted in the mutant parasites using CRISPR/Cas9. We and others could not disrupt PfCDPK1 in the WT parasites. The CDPK1 KO parasites show a slow growth rate compared with the WT and the CDPK1 T145M parasites. Additionally, the CDPK1 KO parasites show a defect in both male and female gametogenesis and could not establish an infection in mosquitoes. Complementation of the KO parasite with full-length PfCDPK1 partially rescued the asexual growth defect and mosquito infection. Comparative global transcriptomics of WT and the CDPK1 KO schizonts using RNA-seq show significantly high transcript expression of gametocyte-specific genes in the CDPK1 KO parasites. This study conclusively demonstrates that CDPK1 is a good target for developing transmission-blocking drugs. PMID:29311293

  19. PfCDPK1 is critical for malaria parasite gametogenesis and mosquito infection.

    PubMed

    Bansal, Abhisheka; Molina-Cruz, Alvaro; Brzostowski, Joseph; Liu, Poching; Luo, Yan; Gunalan, Karthigayan; Li, Yuesheng; Ribeiro, José M C; Miller, Louis H

    2018-01-23

    Efforts to knock out Plasmodium falciparum calcium-dependent protein kinase 1 ( Pf CDPK1) from asexual erythrocytic stage have not been successful, indicating an indispensable role of the enzyme in asexual growth. We recently reported generation of a transgenic parasite with mutant CDPK1 [Bansal A, et al. (2016) MBio 7:e02011-16]. The mutant CDPK1 (T145M) had reduced activity of transphosphorylation. We reasoned that CDPK1 could be disrupted in the mutant parasites. Consistent with this assumption, CDPK1 was successfully disrupted in the mutant parasites using CRISPR/Cas9. We and others could not disrupt Pf CDPK1 in the WT parasites. The CDPK1 KO parasites show a slow growth rate compared with the WT and the CDPK1 T145M parasites. Additionally, the CDPK1 KO parasites show a defect in both male and female gametogenesis and could not establish an infection in mosquitoes. Complementation of the KO parasite with full-length Pf CDPK1 partially rescued the asexual growth defect and mosquito infection. Comparative global transcriptomics of WT and the CDPK1 KO schizonts using RNA-seq show significantly high transcript expression of gametocyte-specific genes in the CDPK1 KO parasites. This study conclusively demonstrates that CDPK1 is a good target for developing transmission-blocking drugs. Copyright © 2018 the Author(s). Published by PNAS.

  20. Experimental Infection and Clearance of Coccidian Parasites in Mercury-Exposed Zebra Finches.

    PubMed

    Ebers Smith, Jessica H; Cristol, Daniel A; Swaddle, John P

    2018-01-01

    Mercury is a globally distributed, persistent environmental contaminant that affects the health of many taxa. It can suppress the immune system, which often plays a role in defense against parasites. However, there have been few investigations of whether mercury affects the abilities of animals to resist parasitic infection. Here, we exposed zebra finches to a lifetime dietary exposure of methylmercury (1.2 μg/g wet weight) and experimentally infected them with coccidian parasites to examine the effect of methylmercury exposure on parasitic infection. The mercury-exposed birds did not have an altered immune response (heterophil:lymphocyte ratio) nor a reduced ability to clear the infection. However, mercury-exposed birds tended to have higher parasite loads at the time when we expected the greatest immune response (2-3 weeks post-infection). Although mercury did not greatly influence the infection-course of this parasite in captivity, responses may be more accentuated in the wild where birds face additional immune challenges.

  1. Low genetic variation in the salmon and trout parasite Loma salmonae (Microsporidia) supports marine transmission and clarifies species boundaries.

    PubMed

    Brown, Amanda M V; Kent, Michael L; Adamson, Martin L

    2010-07-26

    Loma salmonae is a microsporidian parasite prevalent in wild and farmed salmon species of the genus Oncorhynchus. This study compared ribosomal RNA (rDNA) and elongation factor-1 alpha (EF-1alpha) gene sequences to look for variation that may provide a basis for distinguishing populations. Specimens were collected from laboratory, captive (sea netpen farm and freshwater hatchery) and wild populations of fish. The host range included rainbow trout O. mykiss, Pacific salmon Oncorhynchus spp. and brook trout Salvelinus fontinalis from British Columbia, Prince Edward Island, Canada, from California, Colorado, Idaho, U.S.A. and from Chile. Both loci suggested that a variant in S. fontinalis (named 'SV') was a separate species. This was supported by the absence of similar variants in the source material (isolated from laboratory-held O. tshawytscha) and high divergence (1.4 to 2.3% in the rDNA and EF-1alpha) from L. salmonae in the type host and locality (0. mykiss in California). L. salmonae from freshwater and anadromous Oncorhynchus spp. were distinguished, providing a basis on which to evaluate possible sources of infection and suggesting geographic boundaries are important. Higher genetic variation occurred among samples of freshwater origin and from a sea netpen farm in Chile, suggesting these environments may present greater population diversity. Invariance in rDNA sequence across 17 samples from anadromous salmon in rivers, lakes, ocean, farms and hatcheries supports the hypothesis that marine transmission occurs and effectively prevents population substructuring caused by freshwater transmission.

  2. Parasite burden and severity of malaria in Tanzanian children.

    PubMed

    Gonçalves, Bronner P; Huang, Chiung-Yu; Morrison, Robert; Holte, Sarah; Kabyemela, Edward; Prevots, D Rebecca; Fried, Michal; Duffy, Patrick E

    2014-05-08

    Severe Plasmodium falciparum malaria is a major cause of death in children. The contribution of the parasite burden to the pathogenesis of severe malaria has been controversial. We documented P. falciparum infection and disease in Tanzanian children followed from birth for an average of 2 years and for as long as 4 years. Of the 882 children in our study, 102 had severe malaria, but only 3 had more than two episodes. More than half of first episodes of severe malaria occurred after a second infection. Although parasite levels were higher on average when children had severe rather than mild disease, most children (67 of 102) had high-density infection (>2500 parasites per 200 white cells) with only mild symptoms before severe malaria, after severe malaria, or both. The incidence of severe malaria decreased considerably after infancy, whereas the incidence of high-density infection was similar among all age groups. Infections before and after episodes of severe malaria were associated with similar parasite densities. Nonuse of bed nets, placental malaria at the time of a woman's second or subsequent delivery, high-transmission season, and absence of the sickle cell trait increased severe-malaria risk and parasite density during infections. Resistance to severe malaria was not acquired after one or two mild infections. Although the parasite burden was higher on average during episodes of severe malaria, a high parasite burden was often insufficient to cause severe malaria even in children who later were susceptible. The diverging rates of severe disease and high-density infection after infancy, as well as the similar parasite burdens before and after severe malaria, indicate that naturally acquired resistance to severe malaria is not explained by improved control of parasite density. (Funded by the National Institute of Allergy and Infectious Diseases and others.).

  3. The origin of parasitism gene in nematodes: evolutionary analysis through the construction of domain trees.

    PubMed

    Yang, Yizi; Luo, Damin

    2013-01-01

    Inferring evolutionary history of parasitism genes is important to understand how evolutionary mechanisms affect the occurrences of parasitism genes. In this study, we constructed multiple domain trees for parasitism genes and genes under free-living conditions. Further analyses of horizontal gene transfer (HGT)-like phylogenetic incongruences, duplications, and speciations were performed based on these trees. By comparing these analyses, the contributions of pre-adaptations were found to be more important to the evolution of parasitism genes than those of duplications, and pre-adaptations are as crucial as previously reported HGTs to parasitism. Furthermore, speciation may also affect the evolution of parasitism genes. In addition, Pristionchus pacificus was suggested to be a common model organism for studies of parasitic nematodes, including root-knot species. These analyses provided information regarding mechanisms that may have contributed to the evolution of parasitism genes.

  4. Human Parasitic Diseases in Bulgaria in Between 2013-2014

    PubMed Central

    Rainova, Iskra; Harizanov, Rumen; Kaftandjiev, Iskren; Tsvetkova, Nina; Mikov, Ognyan; Kaneva, Eleonora

    2018-01-01

    Background: In Bulgaria, more than 20 autochthonous human parasitic infections have been described and some of them are widespread. Over 50 imported protozoan and helminthic infections represent diagnostic and therapeutic challenges and pose epidemiological risks due to the possibility of local transmission. Aims: To establish the distribution of autochthonous and imported parasitic diseases among the population of the country over a 2-year period (2013-2014) and to evaluate their significance in the public health system. Study Design: Cross sectional study. Methods: We used the annual reports by regional health inspectorates and data from the National Reference Laboratory at the National Centre of Infectious and Parasitic Diseases on all individuals infected with parasitic diseases in the country. Prevalence was calculated for parasitic diseases with few or absent clinical manifestations (oligosymptomatic or asymptomatic infections). Incidence per 100.000 was calculated for diseases with an overt clinical picture or those that required hospitalisation and specialised medical interventions (e.g. surgery). Results: During the research period, parasitological studies were conducted on 1441.244 persons, and parasitic infections were diagnosed in 22.039 individuals. Distribution of various parasitic pathogens among the population displayed statistically significant differences in prevalence for some intestinal parasites (enterobiasis 0.81%, giardiasis 0.34% and blastocystosis 0.22%). For certain zoonotic diseases such as cystic echinococcosis (average incidence of 3.99 per 100.000) and trichinellosis (average incidence of 0.8 per 100.000), the incidence exceeds several times the annual incidence recorded in the European Union. Conclusion: Parasitic diseases still pose a substantial problem with social and medical impacts on the residents of our country. Improved efficiency regarding autochthonous and imported parasitic diseases is essential in providing the public

  5. Parasitic zoonoses associated with dogs and cats: a survey of Portuguese pet owners' awareness and deworming practices.

    PubMed

    Pereira, André; Martins, Ângela; Brancal, Hugo; Vilhena, Hugo; Silva, Pedro; Pimenta, Paulo; Diz-Lopes, Duarte; Neves, Nuno; Coimbra, Mónica; Alves, Ana Catarina; Cardoso, Luís; Maia, Carla

    2016-05-10

    Parasitic diseases of companion animals comprise a group of globally distributed and rapidly spreading illnesses that are caused by a wide range of arthropods, helminths and protozoa. In addition to their veterinary importance, many of these parasites can also affect the human population, due to their zoonotic potential. The aim of the present work was to evaluate the knowledge of Portuguese pet owners regarding the zoonotic potential of parasites that dogs and cats can harbour, most common drugs, frequency of use and reasons for endo- and ectoparasite control. Seventy hundred and fifty multiple-choice questionnaires designed to obtain data knowledge about the meaning of zoonosis, knowledge about parasitic diseases and perception regarding their zoonotic potential, as well as the drugs, frequency and reason for deworming their animals were delivered to dog and/or cat owners from non-rural (i.e. urban or semi-urban) and rural parishes who attended veterinary medical centres from continental Portugal. A total of 536 (71.5 %) questionnaires were retrieved. Two hundred and ninety five (56.5 %) responders had heard of zoonosis/zoonoses, but only 184 (35.2 %) knew their meaning. Tick fever, mange, leishmaniosis and ascaridiosis/roundworms were the parasitic diseases from pets most frequently identified. The number of owners who recognized the different parasitoses, who stated to have heard about zoonoses and who were aware of the potential transmission of parasites from animals to humans was significantly higher in those with intermediate (i.e. ≥9 and ≤ 12 years of schooling) and/or higher academic degree (i.e. licentiate, master's and/or doctorate degrees). The combinations of febantel-pyrantel-praziquantel (23.5 %) and milbemycin-praziquantel (34.5 %) were the most widely endoparasitic drugs used in dogs and in cats, respectively. The most common ectoparasiticide used in dogs was a combination of imidacloprid-permethrin (33.4 %), while in cats it was

  6. Occurrence and seasonality of internal parasite infection in elephants, Loxodonta africana, in the Okavango Delta, Botswana

    PubMed Central

    Baines, Lydia; Morgan, Eric R.; Ofthile, Mphoeng; Evans, Kate

    2015-01-01

    It is known from studies in a wide range of wild and domestic animals, including elephants, that parasites can affect growth, reproduction and health. A total of 458 faecal samples from wild elephants were analysed using a combination of flotation and sedimentation methods. Coccidian oocysts (prevalence 51%), and nematode (77%) and trematode (24%) eggs were found. Species were not identified, though trematode egg morphology was consistent with that of the intestinal fluke Protofasciola robusta. The following factors were found to have a significant effect on parasite infection: month, year, sex, age, and group size and composition. There was some evidence of peak transmission of coccidia and nematodes during the rainy season, confirmed for coccidia in a parallel study of seven sympatric domesticated elephants over a three month period. Nematode eggs were more common in larger groups and nematode egg counts were significantly higher in elephants living in maternal groups (mean 1116 eggs per gram, standard deviation, sd 685) than in all-male groups (529, sd 468). Fluke egg prevalence increased with increasing elephant age. Preservation of samples in formalin progressively decreased the probability of detecting all types of parasite over a storage time of 1–15 months. Possible reasons for associations between other factors and infection levels are discussed. PMID:25830107

  7. Occurrence and seasonality of internal parasite infection in elephants, Loxodonta africana, in the Okavango Delta, Botswana.

    PubMed

    Baines, Lydia; Morgan, Eric R; Ofthile, Mphoeng; Evans, Kate

    2015-04-01

    It is known from studies in a wide range of wild and domestic animals, including elephants, that parasites can affect growth, reproduction and health. A total of 458 faecal samples from wild elephants were analysed using a combination of flotation and sedimentation methods. Coccidian oocysts (prevalence 51%), and nematode (77%) and trematode (24%) eggs were found. Species were not identified, though trematode egg morphology was consistent with that of the intestinal fluke Protofasciola robusta. The following factors were found to have a significant effect on parasite infection: month, year, sex, age, and group size and composition. There was some evidence of peak transmission of coccidia and nematodes during the rainy season, confirmed for coccidia in a parallel study of seven sympatric domesticated elephants over a three month period. Nematode eggs were more common in larger groups and nematode egg counts were significantly higher in elephants living in maternal groups (mean 1116 eggs per gram, standard deviation, sd 685) than in all-male groups (529, sd 468). Fluke egg prevalence increased with increasing elephant age. Preservation of samples in formalin progressively decreased the probability of detecting all types of parasite over a storage time of 1-15 months. Possible reasons for associations between other factors and infection levels are discussed.

  8. Application of Serological Tools and Spatial Analysis to Investigate Malaria Transmission Dynamics in Highland Areas of Southwest Uganda

    PubMed Central

    Lynch, Caroline A.; Cook, Jackie; Nanyunja, Sarah; Bruce, Jane; Bhasin, Amit; Drakeley, Chris; Roper, Cally; Pearce, Richard; Rwakimari, John B.; Abeku, Tarekegn A.; Corran, Patrick; Cox, Jonathan

    2016-01-01

    Serological markers, combined with spatial analysis, offer a comparatively more sensitive means by which to measure and detect foci of malaria transmission in highland areas than traditional malariometric indicators. Plasmodium falciparum parasite prevalence, seroprevalence, and seroconversion rate to P. falciparum merozoite surface protein-119 (MSP-119) were measured in a cross-sectional survey to determine differences in transmission between altitudinal strata. Clusters of P. falciparum parasite prevalence and high antibody responses to MSP-119 were detected and compared. Results show that P. falciparum prevalence and seroprevalence generally decreased with increasing altitude. However, transmission was heterogeneous with hotspots of prevalence and/or seroprevalence detected in both highland and highland fringe altitudes, including a serological hotspot at 2,200 m. Results demonstrate that seroprevalence can be used as an additional tool to identify hotspots of malaria transmission that might be difficult to detect using traditional cross-sectional parasite surveys or through vector studies. Our study findings identify ways in which malaria prevention and control can be more effectively targeted in highland or low transmission areas via serological measures. These tools will become increasingly important for countries with an elimination agenda and/or where malaria transmission is becoming patchy and focal, but receptivity to malaria transmission remains high. PMID:27022156

  9. Functional characterization and comparison of Plasmodium falciparum proteins as targets of transmission-blocking antibodies.

    PubMed

    Nikolaeva, Daria; Illingworth, Joseph J; Miura, Kazutoyo; Alanine, Daniel Gw; Brian, Iona J; Li, Yuanyuan; Fyfe, Alex J; Da, Dari F; Cohuet, Anna; Long, Carole A; Draper, Simon J; Biswas, Sumi

    2017-10-31

    Plasmodium falciparum malaria continues to evade control efforts, utilizing highly specialized sexual-stages to transmit infection between the human host and mosquito vector. In a vaccination model, antibodies directed to sexual-stage antigens, when ingested in the mosquito blood meal, can inhibit parasite growth in the midgut and consequently arrest transmission. Despite multiple datasets for the Plasmodium sexual-stage transcriptome and proteome, there have been no rational screens to identify candidate antigens for transmission-blocking vaccine (TBV) development. This study characterizes 12 proteins from across the P. falciparum sexual-stages as possible TBV targets. Recombinant proteins are heterologously expressed as full-length ectodomains in a mammalian HEK293 cell system. The proteins recapitulate native parasite epitopes as assessed by indirect fluorescence assay and a proportion exhibits immunoreactivity when tested against sera from individuals living in malaria-endemic Burkina Faso and Mali. Purified IgG generated to the mosquito-stage parasite antigen enolase demonstrates moderate inhibition of parasite development in the mosquito midgut by the ex vivo standard membrane feeding assay. The findings support the use of rational screens and comparative functional assessments in identifying proteins of the P. falciparum transmission pathway and establishing a robust pre-clinical TBV pipeline. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  10. Shiny cowbird parasitism in two avian communities in Puerto Rico

    USGS Publications Warehouse

    Wiley, J.W.

    1985-01-01

    The shiny cowbird (M. bonariensis), a brood parasite, has recently expanded its range from South America to Puerto Rico via the Lesser Antilles. This species is a host generalist and, on reaching Puerto Rico, encounteed avian species with no history of social parasitism. In mangrove habitat study areas, 42% of the resident non-raptorial land bird species were parasitized. Some species were heavily parasitized; e.g., yellow warbler (Dendroica petechia), 76% of nests parasitized black-whiskered vireo (Vireo altiloquus), 82%, Puerto Rican flycatcher (Myiarchus antillarum), 85%, yellow-shouldered blackbird (Agelaius xanthomus), 95%, troupial (Icterus icterus), 100%, black-cowled oriole (I. dominicensis), 100%. Others suffered low rates of parasitism (2-17% of nests examined); e.g., gray kingbird (Tyrannus dominicensis), red-legged thrush (Turdus plumbeus), bronze mannikin (Lonchura cucullata), northern mockingbird (Mimus polyglottos), greater antillean grackle (Quiscalus niger). Cowbird parasitism affected hosts by depressing nest success an average of 41% below non-parasitized nests and reducing host productivity. Parasitized host nests hatched 12% fewer eggs an fledged 67% fewer of their own chicks than non-parasitized pairs.

  11. A partition of Toxoplasma gondii genotypes across spatial gradients and among host species, and decreased parasite diversity towards areas of human settlement in North America

    USDA-ARS?s Scientific Manuscript database

    Toxoplasma gondii counts among the most consequential food-borne parasites, and although the parasite occurs in a wide range of wild and domesticated animals, farms may constitute a specific and important locus of transmission. If so, parasites in animals that inhabit agricultural landscapes might b...

  12. Host-parasite coevolution: genetic variation in a virus population and the interaction with a host gene.

    PubMed

    Wilfert, L; Jiggins, F M

    2010-07-01

    Host-parasite coevolution is considered to be an important factor in maintaining genetic variation in resistance to pathogens. Drosophila melanogaster is naturally infected by the sigma virus, a vertically transmitted and host-specific pathogen. In fly populations, there is a large amount of genetic variation in the transmission rate from parent to offspring, much of which is caused by major-effect resistance polymorphisms. We have found that there are similarly high levels of genetic variation in the rate of paternal transmission among 95 different isolates of the virus as in the host. However, when we examined a transmission-blocking gene in the host, we found that it was effective across virus isolates. Therefore, the high levels of genetic variation observed in this system do not appear to be maintained because of coevolution resulting from interactions between this host gene and parasite genes.

  13. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    PubMed

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after

  14. Increased ventilation by fish leads to a higher risk of parasitism.

    PubMed

    Mikheev, Victor N; Pasternak, Anna F; Valtonen, E Tellervo; Taskinen, Jouni

    2014-06-23

    the first experimental evidence that this physiological mechanism generates variation in transmission of parasites to fish hosts. Other factors that modify ventilation flow, e.g. physiological or social stressors, are expected to produce similar effects on the transmission success of the parasites penetrating fish hosts using the gills.

  15. A New Model of Progressive Visceral Leishmaniasis in Hamsters by Natural Transmission via Bites of Vector Sand Flies

    PubMed Central

    Aslan, Hamide; Dey, Ranadhir; Meneses, Claudio; Castrovinci, Philip; Jeronimo, Selma Maria Bezerra; Oliva, Gætano; Fischer, Laurent; Duncan, Robert C.; Nakhasi, Hira L.; Valenzuela, Jesus G.; Kamhawi, Shaden

    2013-01-01

    Background. Visceral leishmaniasis (VL) is transmitted by sand flies. Protection of needle-challenged vaccinated mice was abrogated in vector-initiated cutaneous leishmaniasis, highlighting the importance of developing natural transmission models for VL. Methods. We used Lutzomyia longipalpis to transmit Leishmania infantum or Leishmania donovani to hamsters. Vector-initiated infections were monitored and compared with intracardiac infections. Body weights were recorded weekly. Organ parasite loads and parasite pick-up by flies were assessed in sick hamsters. Results. Vector-transmitted L. infantum and L. donovani caused ≥5-fold increase in spleen weight compared with uninfected organs and had geometric mean parasite loads (GMPL) comparable to intracardiac inoculation of 107–108 parasites, although vector-initiated disease progression was slower and weight loss was greater. Only vector-initiated L. infantum infections caused cutaneous lesions at transmission and distal sites. Importantly, 45.6%, 50.0%, and 33.3% of sand flies feeding on ear, mouth, and testicular lesions, respectively, were parasite-positive. Successful transmission was associated with a high mean percent of metacyclics (66%–82%) rather than total GMPL (2.0 × 104–8.0 × 104) per midgut. Conclusions. This model provides an improved platform to study initial immune events at the bite site, parasite tropism, and pathogenesis and to test drugs and vaccines against naturally acquired VL. PMID:23288926

  16. Assessing the influence of geographic distance in parasite communities of an exotic lizard.

    PubMed

    Bezerra, Castiele Holanda; Pinheiro, Luan Tavares; de Melo, Gabriela Cavalcante; Zanchi-Silva, Djan; Queiroz, Murilo de Souza; dos Anjos, Luciano Alves; Harris, David James; Borges-Nojosa, Diva Maria

    2016-01-01

    The decay of similarity between biological communities with increasing geographical distance is a well-established pattern in ecology, but there are more complex factors acting on host population connections that influence this association for parasite communities, such as parasites' colonization ability and degree of connectivity between host populations. Here we aim to determine the helminth communities associated with different populations of the host lizard Hemidactylus mabouia, testing if the similarity of parasite communities decreases as the distance between them increases. For this, we collected samples of lizard populations in seven sites from Northeastern coast of Brazil and identified parasite species of helminths and pentastomids in each host, calculated the Sørensen indices of presence/absence and abundance of each pair of communities and related them to the geographical distance. We did not find a relationship of decaying similarity with increasing distance between the parasite communities of the host populations. This can be explained by factors such as the characteristics of the contact between the host populations, and by modes of transmission of most parasite species. Furthermore, it may be related to the exotic nature of the host in Brazil so that parasite communities have not reached equilibrium.

  17. Parasitological Evaluation of a Foodhandler Population Cohort in Panama: Risk Factors for Intestinal Parasitism.

    DTIC Science & Technology

    1990-06-01

    Infections " Infections Infected ’ Infected Sex Giardia lamblia 63 46ri 49 25% Male 135 69% Entamoeba coli 21 15%; 19 l0%Ascaris... Infections in Panama 251 TABLE I TABLE U1 BREAKDOWN OF STUDY POPULATION BY SEX . ETHNIC GROUP. OVA/PARASITE EXAM AND CULTURE RESULTS IN STUDY AGE...CARRIAGE BY SEX , ETHNIC GROUP AND TRANSMISSION RISK GROUP Number of Number Variable Individuals Infected AR RR (95% CI) Intestinal parasitism Sex Male 135

  18. Gastrointestinal and blood parasite determination in the guanaco (Lama guanicoe) under semi-captivity conditions.

    PubMed

    Correa, Loreto; Zapata, Beatriz; Soto-Gamboa, Mauricio

    2012-01-01

    The breeding of wild animals for commercial purposes is becoming more frequent nowadays. This situation has led to an increase in contact rates between wild and domestic animals, with subsequent reciprocal transmission of parasites. In this study, we characterized the gastrointestinal and blood parasites of a group of 15 semi-captive guanacos (Lama guanicoe). We characterized gastrointestinal parasites by analyzing fecal samples through the sedimentation-flotation technique and hemoparasites by using blood smears stained with Giemsa. We found several gastrointestinal parasites including Nematoda and protozoans. The most frequently found parasites were Nematodirus sp. and Eimeria sp. In contrast with previous studies, neither Cestoda nor Fasciola were found. The only hemoparasite detected was Mycoplasma haemolamae, a parasite already described in llamas and alpacas. We conclude that the most frequent gastrointestinal parasites of semi-captive guanacos were nematodes and protozoans. Also, the hemoparasite M. haemolamae seems to be prevalent among captive populations of South American camelids. Finally, captive guanacos share several parasites with the traditional livestock. Therefore, keeping captive or semi-captive guanacos without an adequate sanitary protocol might have adverse consequences to adjacent traditional cattle farming and/or for wild animals.

  19. Experimental evidence that parasites drive eco-evolutionary feedbacks.

    PubMed

    Brunner, Franziska S; Anaya-Rojas, Jaime M; Matthews, Blake; Eizaguirre, Christophe

    2017-04-04

    Host resistance to parasites is a rapidly evolving trait that can influence how hosts modify ecosystems. Eco-evolutionary feedbacks may develop if the ecosystem effects of host resistance influence selection on subsequent host generations. In a mesocosm experiment, using a recently diverged (<100 generations) pair of lake and stream three-spined sticklebacks, we tested how experimental exposure to a common fish parasite ( Gyrodactylus spp.) affects interactions between hosts and their ecosystems in two environmental conditions (low and high nutrients). In both environments, we found that stream sticklebacks were more resistant to Gyrodactylus and had different gene expression profiles than lake sticklebacks. This differential infection led to contrasting effects of sticklebacks on a broad range of ecosystem properties, including zooplankton community structure and nutrient cycling. These ecosystem modifications affected the survival, body condition, and gene expression profiles of a subsequent fish generation. In particular, lake juvenile fish suffered increased mortality in ecosystems previously modified by lake adults, whereas stream fish showed decreased body condition in stream fish-modified ecosystems. Parasites reinforced selection against lake juveniles in lake fish-modified ecosystems, but only under oligotrophic conditions. Overall, our results highlight the overlapping timescales and the interplay of host-parasite and host-ecosystem interactions. We provide experimental evidence that parasites influence host-mediated effects on ecosystems and, thereby, change the likelihood and strength of eco-evolutionary feedbacks.

  20. Experimental evidence that parasites drive eco-evolutionary feedbacks

    PubMed Central

    Brunner, Franziska S.; Anaya-Rojas, Jaime M.; Matthews, Blake; Eizaguirre, Christophe

    2017-01-01

    Host resistance to parasites is a rapidly evolving trait that can influence how hosts modify ecosystems. Eco-evolutionary feedbacks may develop if the ecosystem effects of host resistance influence selection on subsequent host generations. In a mesocosm experiment, using a recently diverged (<100 generations) pair of lake and stream three-spined sticklebacks, we tested how experimental exposure to a common fish parasite (Gyrodactylus spp.) affects interactions between hosts and their ecosystems in two environmental conditions (low and high nutrients). In both environments, we found that stream sticklebacks were more resistant to Gyrodactylus and had different gene expression profiles than lake sticklebacks. This differential infection led to contrasting effects of sticklebacks on a broad range of ecosystem properties, including zooplankton community structure and nutrient cycling. These ecosystem modifications affected the survival, body condition, and gene expression profiles of a subsequent fish generation. In particular, lake juvenile fish suffered increased mortality in ecosystems previously modified by lake adults, whereas stream fish showed decreased body condition in stream fish-modified ecosystems. Parasites reinforced selection against lake juveniles in lake fish-modified ecosystems, but only under oligotrophic conditions. Overall, our results highlight the overlapping timescales and the interplay of host–parasite and host–ecosystem interactions. We provide experimental evidence that parasites influence host-mediated effects on ecosystems and, thereby, change the likelihood and strength of eco-evolutionary feedbacks. PMID:28320947

  1. Molecular context of Schistosoma mansoni transmission in the molluscan environments: A mini-review.

    PubMed

    Famakinde, Damilare Olatunji

    2017-12-01

    Schistosoma mansoni, being transmitted by some freshwater Biomphalaria snails, is a major causative agent of human schistosomiasis. In the absence of effective vaccine and alternative drug designs to fight against the disease, and with the limitations of molluscicide application, developing more efficient strategies to interrupt the snail-mediated parasite transmission is being emphasized as potentially instrumental in the efforts toward schistosomiasis elimination, hence, necessitating thorough and comprehensive understanding of the fundamental mechanisms involved in the transmission process. Based on the current advances, this paper presents a concise exposition of the cellular, biochemical, genetic and immunological dynamics of the complex and statge-by-stage interactions between the parasite and its vector in their aquatic environment. It also highlights the possible crosstalk between the parasite's intracellular cyclic adenosine monophosphate (cAMP) and p38 mitogen-activated protein kinase (p38 MAPK) during the intramolluscan stage. Undoubtedly, decades of intensive investigation have untangled many S. mansoni-B. glabrata complexities, yet many aspects of the parasite-vector cycle which can help define potential control clues await further elucidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A world without parasites: exploring the hidden ecology of infection

    PubMed Central

    Johnson, Pieter TJ

    2016-01-01

    Parasites have historically been considered a scourge, deserving of annihilation. Although parasite eradications rank among humanity's greatest achievements, new research is shedding light on the collateral effects of parasite loss. Here, we explore a “world without parasites”: a thought experiment for illuminating the ecological roles that parasites play in ecosystems. While there is robust evidence for the effects of parasites on host individuals (eg affecting host vital rates), this exercise highlights how little we know about the influence of parasites on communities and ecosystems (eg altering energy flow through food webs). We present hypotheses for novel, interesting, and general effects of parasites. These hypotheses are largely untested, and should be considered a springboard for future research. While many uncertainties exist, the available evidence suggests that a world without parasites would be very different from the world we know, with effects extending from host individuals to populations, communities, and even ecosystems. PMID:28077932

  3. Oestrogenic pollutants promote the growth of a parasite in male sticklebacks.

    PubMed

    Macnab, Vicki; Katsiadaki, Ioanna; Tilley, Ceinwen A; Barber, Iain

    2016-05-01

    Aquatic environments are especially susceptible to anthropogenic chemical pollution. Yet although knowledge on the biological effects of pollutants on aquatic organisms is increasing, far less is known about how ecologically-important interspecific interactions are affected by chemicals. In particular, the consequences of anthropogenic pollution for the interaction of hosts and parasites are poorly understood. Here, we examine how exposure to 17β-oestradiol (E2)-a natural oestrogen and a model endocrine disrupting chemical (EDC) -affects infection susceptibility and emergent infection phenotypes in an experimental host-parasite system; three spined sticklebacks (Gasterosteus aculeatus) infected with the common, debilitating cestode Schistocephalus solidus. We exposed individual sticklebacks to a 0ngl(-1) (control), 10ngl(-1) or 100ngl(-1) E2 treatment before feeding them infective stages of S. solidus. E2 exposure significantly elevated vitellogenin (VTG) levels-a biomarker of exposure to xenoestrogens-in both female and male fish, and reduced their body condition. Susceptibility to parasite infection was unaffected by EDC exposure; however, E2 treatment and fish sex interacted significantly to determine the growth rate of parasites, which grew quickest in male hosts held under the higher (100ngl(-1)) E2 treatment. Tissue VTG levels and parasite mass correlated positively across the whole sample of experimentally infected fish, but separate regressions run on the male and female datasets demonstrated a significant relationship only among male fish. Hence, among males-but not females-elevated VTG levels elicited by E2 exposure led to more rapid parasite growth. We outline plausible physiological mechanisms that could explain these results. Our results demonstrate that oestrogenic pollutants can alter host-parasite interactions by promoting parasite growth, and that male hosts may be disproportionately affected. Because ecologically-relevant effects of infection on

  4. Trichuris suis ova therapy for allergic rhinitis does not affect allergen-specific cytokine responses despite a parasite-specific cytokine response.

    PubMed

    Bourke, C D; Mutapi, F; Nausch, N; Photiou, D M F; Poulsen, L K; Kristensen, B; Arnved, J; Rønborg, S; Roepstorff, A; Thamsborg, S; Kapel, C; Melbye, M; Bager, P

    2012-11-01

    Parasitic helminths have been shown to reduce inflammation in most experimental models of allergic disease, and this effect is mediated via cytokine responses. However, in humans, the effects of controlled helminth infection on cytokine responses during allergy have not been studied. The aim was to investigate whether infection with the nematode parasite Trichuris suis alters systemic cytokine levels, cellular cytokine responses to parasite antigens and pollen allergens and/or the cytokine profile of allergic individuals. In a randomized double-blinded placebo-controlled clinical trial (UMIN trial registry, Registration no. R000001298, Trial ID UMIN000001070, URL: http://www.umin.ac.jp/map/english), adults with grass pollen-induced allergic rhinitis received three weekly doses of 2500 Trichuris suis ova (n = 45) or placebo (n = 44) over 6 months. IFN-γ, TNF-α, IL-4, IL-5, IL-10 and IL-13 were quantified via cytometric bead array in plasma. Cytokines, including active TGF-β, were also quantified in supernatants from peripheral blood mononuclear cells cultured with parasite antigens or pollen allergens before, during and after the grass pollen season for a sub-cohort of randomized participants (T. suis ova-treated, n = 12, Placebo-treated, n = 10). Helminth infection induced a Th2-polarized cytokine response comprising elevated plasma IL-5 and parasite-specific IL-4, IL-5 and IL-13, and a global shift in the profile of systemic cytokine responses. Infection also elicited high levels of the regulatory cytokine IL-10 in response to T. suis antigens. Despite increased production of T. suis-specific cytokines in T. suis ova-treated participants, allergen-specific cytokine responses during the grass pollen season and the global profile of PBMC cytokine responses were not affected by T. suis ova treatment. This study suggests that cytokines induced by Trichuris suis ova treatment do not alter allergic reactivity to pollen during the peak of allergic rhinitis

  5. Dogs, cats, parasites, and humans in Brazil: opening the black box

    PubMed Central

    2014-01-01

    Dogs and cats in Brazil serve as primary hosts for a considerable number of parasites, which may affect their health and wellbeing. These may include endoparasites (e.g., protozoa, cestodes, trematodes, and nematodes) and ectoparasites (i.e., fleas, lice, mites, and ticks). While some dog and cat parasites are highly host-specific (e.g., Aelurostrongylus abstrusus and Felicola subrostratus for cats, and Angiostrongylus vasorum and Trichodectes canis for dogs), others may easily switch to other hosts, including humans. In fact, several dog and cat parasites (e.g., Toxoplasma gondii, Dipylidium caninum, Ancylostoma caninum, Strongyloides stercoralis, and Toxocara canis) are important not only from a veterinary perspective but also from a medical standpoint. In addition, some of them (e.g., Lynxacarus radovskyi on cats and Rangelia vitalii in dogs) are little known to most veterinary practitioners working in Brazil. This article is a compendium on dog and cat parasites in Brazil and a call for a One Health approach towards a better management of some of these parasites, which may potentially affect humans. Practical aspects related to the diagnosis, treatment, and control of parasitic diseases of dogs and cats in Brazil are discussed. PMID:24423244

  6. Filarial parasites develop faster and reproduce earlier in response to host immune effectors that determine filarial life expectancy.

    PubMed

    Babayan, Simon A; Read, Andrew F; Lawrence, Rachel A; Bain, Odile; Allen, Judith E

    2010-10-19

    Humans and other mammals mount vigorous immune assaults against helminth parasites, yet there are intriguing reports that the immune response can enhance rather than impair parasite development. It has been hypothesized that helminths, like many free-living organisms, should optimize their development and reproduction in response to cues predicting future life expectancy. However, immune-dependent development by helminth parasites has so far eluded such evolutionary explanation. By manipulating various arms of the immune response of experimental hosts, we show that filarial nematodes, the parasites responsible for debilitating diseases in humans like river blindness and elephantiasis, accelerate their development in response to the IL-5 driven eosinophilia they encounter when infecting a host. Consequently they produce microfilariae, their transmission stages, earlier and in greater numbers. Eosinophilia is a primary host determinant of filarial life expectancy, operating both at larval and at late adult stages in anatomically and temporally separate locations, and is implicated in vaccine-mediated protection. Filarial nematodes are therefore able to adjust their reproductive schedules in response to an environmental predictor of their probability of survival, as proposed by evolutionary theory, thereby mitigating the effects of the immune attack to which helminths are most susceptible. Enhancing protective immunity against filarial nematodes, for example through vaccination, may be less effective at reducing transmission than would be expected and may, at worst, lead to increased transmission and, hence, pathology.

  7. Parasite-mediated predation between native and invasive amphipods.

    PubMed Central

    MacNeil, Calum; Dick, Jaimie T A; Hatcher, Melanie J; Terry, Rebecca S; Smith, Judith E; Dunn, Alison M

    2003-01-01

    Parasites can structure biological communities directly through population regulation and indirectly by processes such as apparent competition. However, the role of parasites in the process of biological invasion is less well understood and mechanisms of parasite mediation of predation among hosts are unclear. Mutual predation between native and invading species is an important factor in determining the outcome of invasions in freshwater amphipod communities. Here, we show that parasites mediate mutual intraguild predation among native and invading species and may thereby facilitate the invasion process. We find that the native amphipod Gammarus duebeni celticus is host to a microsporidian parasite, Pleistophora sp. (new species), with a frequency of infection of 0-90%. However, the parasite does not infect three invading species, G. tigrinus, G. pulex and Crangonyx pseudogracilis. In field and laboratory manipulations, we show that the parasite exhibits cryptic virulence: the parasite does not affect host fitness in single-species populations, but virulence becomes apparent when the native and invading species interact. That is, infection has no direct effect on G. d. celticus survivorship, size or fecundity; however, in mixed-species experiments, parasitized natives show a reduced capacity to prey on the smaller invading species and are more likely to be preyed upon by the largest invading species. Thus, by altering dominance relationships and hierarchies of mutual predation, parasitism strongly influences, and has the potential to change, the outcome of biological invasions. PMID:12816645

  8. Development of a transmission-blocking malaria vaccine: progress, challenges, and the path forward.

    PubMed

    Nunes, Julia K; Woods, Colleen; Carter, Terrell; Raphael, Theresa; Morin, Merribeth J; Diallo, Diadier; Leboulleux, Didier; Jain, Sanjay; Loucq, Christian; Kaslow, David C; Birkett, Ashley J

    2014-09-29

    New interventions are needed to reduce morbidity and mortality associated with malaria, as well as to accelerate elimination and eventual eradication. Interventions that can break the cycle of parasite transmission, and prevent its reintroduction, will be of particular importance in achieving the eradication goal. In this regard, vaccines that interrupt malaria transmission (VIMT) have been highlighted as an important intervention, including transmission-blocking vaccines that prevent human-to-mosquito transmission by targeting the sexual, sporogonic, or mosquito stages of the parasite (SSM-VIMT). While the significant potential of this vaccine approach has been appreciated for decades, the development and licensure pathways for vaccines that target transmission and the incidence of infection, as opposed to prevention of clinical malaria disease, remain ill-defined. This article describes the progress made in critical areas since 2010, highlights key challenges that remain, and outlines important next steps to maximize the potential for SSM-VIMTs to contribute to the broader malaria elimination and eradication objectives. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Redox-Assisted Protein Folding Systems in Eukaryotic Parasites

    PubMed Central

    Haque, Saikh Jaharul; Majumdar, Tanmay

    2012-01-01

    Abstract Significance: The cysteine (Cys) residues of proteins play two fundamentally important roles. They serve as sites of post-translational redox modifications as well as influence the conformation of the protein through the formation of disulfide bonds. Recent Advances: Redox-related and redox-associated protein folding in protozoan parasites has been found to be a major mode of regulation, affecting myriad aspects of the parasitic life cycle, host-parasite interactions, and the disease pathology. Available genome sequences of various parasites have begun to complement the classical biochemical and enzymological studies of these processes. In this article, we summarize the reversible Cys disulfide (S-S) bond formation in various classes of strategically important parasitic proteins, and its structural consequence and functional relevance. Critical Issues: Molecular mechanisms of folding remain under-studied and often disconnected from functional relevance. Future Directions: The clinical benefit of redox research will require a comprehensive characterization of the various isoforms and paralogs of the redox enzymes and their concerted effect on the structure and function of the specific parasitic client proteins. Antioxid. Redox Signal. 17, 674–683. PMID:22122448

  10. The genetic architecture of susceptibility to parasites.

    PubMed

    Wilfert, Lena; Schmid-Hempel, Paul

    2008-06-30

    The antagonistic co-evolution of hosts and their parasites is considered to be a potential driving force in maintaining host genetic variation including sexual reproduction and recombination. The examination of this hypothesis calls for information about the genetic basis of host-parasite interactions - such as how many genes are involved, how big an effect these genes have and whether there is epistasis between loci. We here examine the genetic architecture of quantitative resistance in animal and plant hosts by concatenating published studies that have identified quantitative trait loci (QTL) for host resistance in animals and plants. Collectively, these studies show that host resistance is affected by few loci. We particularly show that additional epistatic interactions, especially between loci on different chromosomes, explain a majority of the effects. Furthermore, we find that when experiments are repeated using different host or parasite genotypes under otherwise identical conditions, the underlying genetic architecture of host resistance can vary dramatically - that is, involves different QTLs and epistatic interactions. QTLs and epistatic loci vary much less when host and parasite types remain the same but experiments are repeated in different environments. This pattern of variability of the genetic architecture is predicted by strong interactions between genotypes and corroborates the prevalence of varying host-parasite combinations over varying environmental conditions. Moreover, epistasis is a major determinant of phenotypic variance for host resistance. Because epistasis seems to occur predominantly between, rather than within, chromosomes, segregation and chromosome number rather than recombination via cross-over should be the major elements affecting adaptive change in host resistance.

  11. Fish hepatic glutathione-S-transferase activity is affected by the cestode parasites Schistocephalus solidus and Ligula intestinalis: evidence from field and laboratory studies.

    PubMed

    Frank, Sabrina Nadine; Faust, Steffen; Kalbe, Martin; Trubiroha, Achim; Kloas, Werner; Sures, Bernd

    2011-06-01

    The activity of hepatic glutathione-S-transferase (GST) was analysed in 3 different fish species with respect to fish sex and infection with parasites. In both sexes of laboratory bred three-spined sticklebacks (Gasterosteus aculeatus) experimentally infected with Schistocephalus solidus (Cestoda), a significantly lower GST-activity was found for infected fish compared to control. After field sampling of roach (Rutilus rutilus) from Lake Müggelsee (MS) and the Reservoir Listertalsperre (LTS), the GST-activity showed significantly lower values for males infected with Ligula intestinalis from MS (25%) and for infected females from LTS (55%). L. intestinalis-infected female chub (Leuciscus cephalus) from LTS also appeared to have a lower GST-activity. Thus, it could be shown that the presence of parasites significantly affects GST-activity in different fish species resulting in a decreased GST-activity due to infection. Our results therefore emphasize the need for more integrative approaches in environmental pollution research to clearly identify the possible effects of parasites in an effort to develop biomarkers for evaluating environmental health.

  12. Large-scale entomologic assessment of Onchocerca volvulus transmission by poolscreen PCR in Mexico.

    PubMed

    Rodríguez-Pérez, Mario A; Katholi, Charles R; Hassan, Hassan K; Unnasch, Thomas R

    2006-06-01

    To study the impact of mass Mectizan treatment on Onchocerca volvulus transmission in Mexico, entomological surveys were carried out in the endemic foci of Oaxaca, Southern Chiapas, and Northern Chiapas. Collected flies were screened by polymerase chain reaction (PCR) for O. volvulus parasites. The prevalence of infected and infective flies was estimated using the PoolScreen algorithm and with a novel probability-based method. O. volvulus infective larvae were not detected in flies from 6/13 communities. In 7/13 communities, infective flies were detected, with prevalences ranging from 1.6/10,000 to 29.0/10,000 and seasonal transmission potentials ranging from 0.4 to 3.3. Infected and infective flies were found in a community in Northern Chiapas, suggesting that, according to World Health Organization criteria, autochthonous transmission exists in this focus. These data suggest that O. volvulus transmission in Mexico has been suppressed or brought to a level that may be insufficient to sustain the parasite population.

  13. The population dynamics of the parasitic copepode Lernaeocera lusci (Bassett-Smith, 1896) on its definitive host

    NASA Astrophysics Data System (ADS)

    van Damme, P. A.; Hamerlynck, O.; Ollevier, F.

    1996-06-01

    The mesoparasitic copepod Lernaeocera lusci (Bassett-Smith, 1896) was recovered from first-year bib ( Trisopterus luscus L.) in the Voordelta (Southern Bight of the North Sea) from May until December 1989. Analysis of the seasonal abundance and of the population structure showed that transmission of infective stages to bib mainly occurred from June to September. From September to December the overall prevalence fluctuated around 70%. Maximum parasite population size (47/104m2) and the highest total egg number were recorded in September and October, respectively. It was found that total parasite mortality was significantly influenced by mortality of hosts carrying parasites. Natural mortality probably contributed a small percentage to total parasite mortality. Calculation of the temporal mean-variance regression equation revealed that the parasites were aggregated within the definitive host population.

  14. [Screening of parasitic diseases in the asymptomatic immigrant population].

    PubMed

    Goterris, Lidia; Bocanegra, Cristina; Serre-Delcor, Núria; Moure, Zaira; Treviño, Begoña; Zarzuela, Francesc; Espasa, Mateu; Sulleiro, Elena

    2016-07-01

    Parasitic diseases suppose an important health problem in people from high endemic areas, so these must be discarded properly. Usually, these infections develop asymptomatically but, in propitious situations, are likely to reactivate themselves and can cause clinical symptoms and/or complications in the receiving country. Moreover, in some cases it is possible local transmission. Early diagnosis of these parasitic diseases made by appropriate parasitological techniques and its specific treatment will benefit both, the individual and the community. These techniques must be selected according to geoepidemiological criteria, patient's origin, migration route or time spent outside the endemic area; but other factors must also be considered as its sensitivity and specificity, implementation experience and availability. Given the high prevalence of intestinal parasites on asymptomatic immigrants, it is recommended to conduct a study by coproparasitological techniques. Because of its potential severity, the screening of asymptomatic malaria with sensitive techniques such as PCR (polymerase chain reaction) is also advisable. Serological screening for Chagas disease should be performed on all Latin American immigrants, except for people from the Caribbean islands. Other important parasites, which should be excluded, are filariasis and urinary schistosomiasis, by using microscopic examination. The aim of this paper is to review the different techniques for the screening of parasitic diseases and its advices within the care protocols for asymptomatic immigrants. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  15. Methodological issues affecting the study of fish parasites. I. Duration of live fish storage prior to dissection.

    PubMed

    Kvach, Yuriy; Ondračková, Markéta; Janáč, Michal; Jurajda, Pavel

    2016-05-03

    We tested the ability of parasite species to respond quickly to artificial conditions (e.g. by changing abundance or even decreasing to extinction) while host fish species were being held alive prior to dissection. Prussian carp Carassius gibelio were sampled by electrofishing from 2 ponds alongside the River Dyje (Czech Republic) during 'cold' and 'warm' seasons. All fish were transported to the laboratory in aerated pond water and kept in a 1 m3 outdoor basin with aged tap water for 6 d. Twenty fish were dissected on consecutive days (total 120 fish for each site). Our results indicated that there was little change in parasite loading over the first 3 d of holding, suggesting no impact on parasitological studies undertaken over this period. From the fourth day, however, overall parasite abundance increased due to rapid reproduction of some parasite species, especially gyrodactylids in the cold season and dactylogyrids in the warm season. Parasite diversity appeared less stable in the warm season, with significant differences being registered as early as the second day. In addition to holding period, environmental conditions during fish holding will also play an important role in parasite community shifts.

  16. Effects of parasite pressure on parasite mortality and reproductive output in a rodent-flea system: inferring host defense trade-offs.

    PubMed

    Warburton, Elizabeth M; Kam, Michael; Bar-Shira, Enav; Friedman, Aharon; Khokhlova, Irina S; Koren, Lee; Asfur, Mustafa; Geffen, Eli; Kiefer, Daniel; Krasnov, Boris R; Degen, A Allan

    2016-09-01

    Evaluating host resistance via parasite fitness helps place host-parasite relationships within evolutionary and ecological contexts; however, few studies consider both these processes simultaneously. We investigated how different levels of parasite pressure affect parasite mortality and reproductive success in relationship to host defense efforts, using the rodent Gerbillus nanus and the flea Xenopsylla conformis as a host-parasite system. Fifteen immune-naïve male rodents were infested with 20, 50, or 100 fleas for four weeks. During this time number of new imagoes produced per adult flea (our flea reproductive output metric), flea mortality, and change in circulating anti-flea immunoglobulin G (our measure of adaptive immune defense) were monitored. Three hypotheses guided this work: (1) increasing parasite pressure would heighten host defenses; (2) parasite mortality would increase and parasite reproductive output would decrease with increasing investment in host defense; and (3) hosts under high parasite pressure could invest in behavioral and/or immune responses. We predicted that at high infestation levels (a) parasite mortality would increase; (b) flea reproductive output per individual would decrease; and (c) host circulating anti-flea antibody levels would increase. The hypotheses were partially supported. Flea mortality significantly increased and flea reproductive output significantly decreased as flea pressure increased. Host adaptive immune defense did not significantly change with increasing flea pressure. Therefore, we inferred that investment in host behavioral defense, either alone or in combination with density-dependent effects, may be more efficient at increasing flea mortality and decreasing flea reproductive output than antibody production during initial infestation in this system.

  17. A productivity model for parasitized, multibrooded songbirds

    USGS Publications Warehouse

    Powell, L.A.; Knutson, M.G.

    2006-01-01

    We present an enhancement of a simulation model to predict annual productivity for Wood Thrushes (Hylocichla mustelina) and American Redstarts (Setophaga ruticilla); the model includes effects of Brown-headed Cowbird (Molothrus ater) parasitism. We used species-specific data from the Driftless Area Ecoregion of Wisconsin, Minnesota, and Iowa to parameterize the model as a case study. The simulation model predicted annual productivity of 2.03 ?? 1.60 SD for Wood Thrushes and 1.56 ?? 1.31 SD for American Redstarts. Our sensitivity analysis showed that high parasitism lowered Wood Thrush annual productivity more than American Redstart productivity, even though parasitism affected individual nests of redstarts more severely. Annual productivity predictions are valuable for habitat managers, but productivity is not easily obtained from field studies. Our model provides a useful means of integrating complex life history parameters to predict productivity for songbirds that experience nest parasitism. ?? The Cooper Ornithological Society 2006.

  18. Paternity-parasitism trade-offs: a model and test of host-parasite cooperation in an avian conspecific brood parasite.

    PubMed

    Lyon, Bruce E; Hochachka, Wesley M; Eadie, John M

    2002-06-01

    Efforts to evaluate the evolutionary and ecological dynamics of conspecific brood parasitism in birds and other animals have focused on the fitness costs of parasitism to hosts and fitness benefits to parasites. However, it has been speculated recently that, in species with biparental care, host males might cooperate with parasitic females by allowing access to the host nest in exchange for copulations. We develop a cost-benefit model to explore the conditions under which such host-parasite cooperation might occur. When the brood parasite does not have a nest of her own, the only benefit to the host male is siring some of the parasitic eggs (quasi-parasitism). Cooperation with the parasite is favored when the ratio of host male paternity of his own eggs relative to his paternity of parasitic eggs exceeds the cost of parasitism. When the brood parasite has a nest of her own, a host male can gain additional, potentially more important benefits by siring the high-value, low-cost eggs laid by the parasite in her own nest. Under these conditions, host males should be even more likely to accept parasitic eggs in return for copulations with the parasitic female. We tested these predictions for American coots (Fulica americana), a species with a high frequency of conspecific brood parasitism. Multilocus DNA profiling indicated that host males did not sire any of the parasitic eggs laid in host nests, nor did they sire eggs laid by the parasite in her own nest. We used field estimates of the model parameters from a four-year study of coots to predict the minimum levels of paternity required for the costs of parasitism to be offset by the benefits of mating with brood parasites. Observed levels of paternity were significantly lower than those predicted under a variety of assumptions, and we reject the hypothesis that host males cooperated with parasitic females. Our model clarifies the specific costs and benefits that influence host-parasite cooperation and, more generally

  19. Medicinal plants: a source of anti-parasitic secondary metabolites.

    PubMed

    Wink, Michael

    2012-10-31

    This review summarizes human infections caused by endoparasites, including protozoa, nematodes, trematodes, and cestodes, which affect more than 30% of the human population, and medicinal plants of potential use in their treatment. Because vaccinations do not work in most instances and the parasites have sometimes become resistant to the available synthetic therapeutics, it is important to search for alternative sources of anti-parasitic drugs. Plants produce a high diversity of secondary metabolites with interesting biological activities, such as cytotoxic, anti-parasitic and anti-microbial properties. These drugs often interfere with central targets in parasites, such as DNA (intercalation, alkylation), membrane integrity, microtubules and neuronal signal transduction. Plant extracts and isolated secondary metabolites which can inhibit protozoan parasites, such as Plasmodium, Trypanosoma, Leishmania, Trichomonas and intestinal worms are discussed. The identified plants and compounds offer a chance to develop new drugs against parasitic diseases. Most of them need to be tested in more detail, especially in animal models and if successful, in clinical trials.

  20. Host density increases parasite recruitment but decreases host risk in a snail-trematode system

    USGS Publications Warehouse

    Buck, Julia C; Hechinger, R.F.; Wood, A.C.; Stewart, T.E.; Kuris, A.M.; Lafferty, Kevin D.

    2017-01-01

    Most species aggregate in local patches. High host density in patches increases contact rate between hosts and parasites, increasing parasite transmission success. At the same time, for environmentally-transmitted parasites, high host density can decrease infection risk to individual hosts, because infective stages are divided among all hosts in a patch, leading to safety in numbers. We tested these predictions using the California horn snail, Cerithideopsis californica (=Cerithidea californica), which is the first intermediate host for at least 19 digenean trematode species in California estuaries. Snails become infected by ingesting trematode eggs or through penetration by free-swimming miracidia that hatch from trematode eggs deposited with final-host (bird or mammal) feces. This complex life cycle decouples infective-stage production from transmission, raising the possibility of an inverse relationship between host density and infection risk. In a field survey, higher snail density was associated with increased trematode (infected snail) density, but decreased trematode prevalence, consistent with either safety in numbers, parasitic castration, or both. To determine the extent to which safety in numbers drove the negative snail density-trematode prevalence association, we manipulated uninfected snail density in 83 cages at eight sites within Carpinteria Salt Marsh (CA, USA). At each site, we quantified snail density and used data on final-host (bird and raccoon) distributions to control for between-site variation in infective-stage supply. After three months, overall trematode infections per cage increased with snail-biomass density. For egg-transmitted trematodes, per-snail infection risk decreased with snail-biomass density in the cage and surrounding area, whereas per-snail infection risk did not decrease for miracidium-transmitted trematodes. Furthermore, both trematode recruitment and infection risk increased with infective-stage input, but this was

  1. Food webs and fishing affect parasitism of the sea urchin Eucidaris galapagensis in the Galápagos

    USGS Publications Warehouse

    Sonnenholzner, Jorge I.; Lafferty, Kevin D.; Ladah, Lydia B.

    2011-01-01

    In the Galápagos Islands, two eulimid snails parasitize the common pencil sea urchin, Eucidaris galapagensis. Past work in the Galápagos suggests that fishing reduces lobster and fish densities and, due to this relaxation of predation pressure, indirectly increases urchin densities, creating the potential for complex indirect interactions between fishing and parasitic snails. To measure indirect effects of fishing on these parasitic snails, we investigated the spatial relationships among urchins, parasitic snails, commensal crabs, and large urchin predators (hogfish and lobsters). Parasitic snails had higher densities at sites where urchins were abundant, probably due to increased resource availability. Commensal crabs that shelter under urchin spines, particularly the endemic Mithrax nodosus, preyed on the parasitic snails in aquaria, and snails were less abundant at field sites where these crabs were common. In aquaria, hogfish and lobsters readily ate crabs, but crabs were protected from predation under urchin spines, leading to a facultative mutualism between commensal crabs and urchins. In the field, fishing appeared to indirectly increase the abundance of urchins and their commensal crabs by reducing predation pressure from fish and lobsters. Fished sites had fewer snails per urchin, probably due to increased predation from commensal crabs. However, because fished sites also tended to have more urchins, there was no significant net effect of fishing on the number of snails per square meter. These results suggest that fishing can have complex indirect effects on parasites by altering food webs.

  2. Trypanosome transmission by Corethrella wirthi (Diptera: Chaoboridae) to the green treefrog, Hyla cinerea (Anura: Hylidae).

    PubMed

    Johnson, R N; Young, D G; Butler, J F

    1993-09-01

    Seventy-two percent of 215 male green tree frog, Hyla cinerea (Schneider), captured in Alachua and Levy counties, FL, between April and mid-September 1978 and 1979 were infected with an undescribed Trypanosoma sp. None of the 31 female frogs captured concurrently was infected. Periodic sampling of the peripheral blood from the infected male frogs showed that the trypanosomes were present in high numbers only at night. Conspecific trypanosomes also were found in the mid and hind guts of female Corethrella wirthi Stone flies collected on or near male frogs in the field. Transmission of the parasite to uninfected frogs was demonstrated by exposure of male and female frogs to naturally infected flies and to parasites injected subdermally. This is the first report of parasite transmission by a species of Corethrella.

  3. Use of a Selective Inhibitor To Define the Chemotherapeutic Potential of the Plasmodial Hexose Transporter in Different Stages of the Parasite's Life Cycle▿

    PubMed Central

    Slavic, Ksenija; Delves, Michael J.; Prudêncio, Miguel; Talman, Arthur M.; Straschil, Ursula; Derbyshire, Elvira T.; Xu, Zhengyao; Sinden, Robert E.; Mota, Maria M.; Morin, Christophe; Tewari, Rita; Krishna, Sanjeev; Staines, Henry M.

    2011-01-01

    During blood infection, malarial parasites use d-glucose as their main energy source. The Plasmodium falciparum hexose transporter (PfHT), which mediates the uptake of d-glucose into parasites, is essential for survival of asexual blood-stage parasites. Recently, genetic studies in the rodent malaria model, Plasmodium berghei, found that the orthologous hexose transporter (PbHT) is expressed throughout the parasite's development within the mosquito vector, in addition to being essential during intraerythrocytic development. Here, using a d-glucose-derived specific inhibitor of plasmodial hexose transporters, compound 3361, we have investigated the importance of d-glucose uptake during liver and transmission stages of P. berghei. Initially, we confirmed the expression of PbHT during liver stage development, using a green fluorescent protein (GFP) tagging strategy. Compound 3361 inhibited liver-stage parasite development, with a 50% inhibitory concentration (IC50) of 11 μM. This process was insensitive to the external d-glucose concentration. In addition, compound 3361 inhibited ookinete development and microgametogenesis, with IC50s in the region of 250 μM (the latter in a d-glucose-sensitive manner). Consistent with our findings for the effect of compound 3361 on vector parasite stages, 1 mM compound 3361 demonstrated transmission blocking activity. These data indicate that novel chemotherapeutic interventions that target PfHT may be active against liver and, to a lesser extent, transmission stages, in addition to blood stages. PMID:21402842

  4. Use of a selective inhibitor to define the chemotherapeutic potential of the plasmodial hexose transporter in different stages of the parasite's life cycle.

    PubMed

    Slavic, Ksenija; Delves, Michael J; Prudêncio, Miguel; Talman, Arthur M; Straschil, Ursula; Derbyshire, Elvira T; Xu, Zhengyao; Sinden, Robert E; Mota, Maria M; Morin, Christophe; Tewari, Rita; Krishna, Sanjeev; Staines, Henry M

    2011-06-01

    During blood infection, malarial parasites use D-glucose as their main energy source. The Plasmodium falciparum hexose transporter (PfHT), which mediates the uptake of D-glucose into parasites, is essential for survival of asexual blood-stage parasites. Recently, genetic studies in the rodent malaria model, Plasmodium berghei, found that the orthologous hexose transporter (PbHT) is expressed throughout the parasite's development within the mosquito vector, in addition to being essential during intraerythrocytic development. Here, using a D-glucose-derived specific inhibitor of plasmodial hexose transporters, compound 3361, we have investigated the importance of D-glucose uptake during liver and transmission stages of P. berghei. Initially, we confirmed the expression of PbHT during liver stage development, using a green fluorescent protein (GFP) tagging strategy. Compound 3361 inhibited liver-stage parasite development, with a 50% inhibitory concentration (IC₅₀) of 11 μM. This process was insensitive to the external D-glucose concentration. In addition, compound 3361 inhibited ookinete development and microgametogenesis, with IC₅₀s in the region of 250 μM (the latter in a D-glucose-sensitive manner). Consistent with our findings for the effect of compound 3361 on vector parasite stages, 1 mM compound 3361 demonstrated transmission blocking activity. These data indicate that novel chemotherapeutic interventions that target PfHT may be active against liver and, to a lesser extent, transmission stages, in addition to blood stages.

  5. EVOLUTION. Fruit flies diversify their offspring in response to parasite infection.

    PubMed

    Singh, Nadia D; Criscoe, Dallas R; Skolfield, Shelly; Kohl, Kathryn P; Keebaugh, Erin S; Schlenke, Todd A

    2015-08-14

    The evolution of sexual reproduction is often explained by Red Queen dynamics: Organisms must continually evolve to maintain fitness relative to interacting organisms, such as parasites. Recombination accompanies sexual reproduction and helps diversify an organism's offspring, so that parasites cannot exploit static host genotypes. Here we show that Drosophila melanogaster plastically increases the production of recombinant offspring after infection. The response is consistent across genetic backgrounds, developmental stages, and parasite types but is not induced after sterile wounding. Furthermore, the response appears to be driven by transmission distortion rather than increased recombination. Our study extends the Red Queen model to include the increased production of recombinant offspring and uncovers a remarkable ability of hosts to actively distort their recombination fraction in rapid response to environmental cues. Copyright © 2015, American Association for the Advancement of Science.

  6. A weather-driven model of malaria transmission.

    PubMed

    Hoshen, Moshe B; Morse, Andrew P

    2004-09-06

    Climate is a major driving force behind malaria transmission and climate data are often used to account for the spatial, seasonal and interannual variation in malaria transmission. This paper describes a mathematical-biological model of the parasite dynamics, comprising both the weather-dependent within-vector stages and the weather-independent within-host stages. Numerical evaluations of the model in both time and space show that it qualitatively reconstructs the prevalence of infection. A process-based modelling structure has been developed that may be suitable for the simulation of malaria forecasts based on seasonal weather forecasts.

  7. The effect of dietary antioxidant supplementation in a vertebrate host on the infection dynamics and transmission of avian malaria to the vector.

    PubMed

    Delhaye, Jessica; Glaizot, Olivier; Christe, Philippe

    2018-05-09

    Host susceptibility to parasites is likely to be influenced by intrinsic factors, such as host oxidative status determined by the balance between pro-oxidant production and antioxidant defences. As a result, host oxidative status acts as an environmental factor for parasites and may constrain parasite development. We evaluated the role of host oxidative status on infection dynamics of an avian malarial parasite by providing canaries (Serinus canaria) with an antioxidant supplementation composed of vitamin E (a lipophilic antioxidant) and olive oil, a source of monounsaturated fatty acids. Another group received a standard, non-supplemented food. Half of the birds in each group where then infected with the haemosporidian parasite, Plasmodium relictum. We monitored the parasitaemia, haematocrit level, and red cell membrane resistance, as well as the transmission success of the parasite to its mosquito vector, Culex pipiens. During the acute phase, the negative effect of the infection was more severe in the supplemented group, as shown by a lower haematocrit level. Parasitaemia was lower in the supplemented group during the chronic phase only. Mosquitoes fed on supplemented hosts were more often infected than mosquitoes fed on the control group. These results suggest that dietary antioxidant supplementation conferred protection against Plasmodium in the long term, at the expense of a short-term negative effect. Malaria parasites may take advantage of antioxidants, as shown by the increased transmission rate in the supplemented group. Overall, our results suggest an important role of oxidative status in infection outcome and parasite transmission.

  8. The Evolution of Respiratory Cryptosporidiosis: Evidence for Transmission by Inhalation

    PubMed Central

    Sponseller, Jerlyn K.; Griffiths, Jeffrey K.

    2014-01-01

    SUMMARY The protozoan parasite Cryptosporidium infects all major vertebrate groups and causes significant diarrhea in humans, with a spectrum of diseases ranging from asymptomatic to life-threatening. Children and immunodeficient individuals are disproportionately affected, especially in developing countries, where cryptosporidiosis contributes substantially to morbidity and mortality in preschool-age children. Despite the enormous disease burden from cryptosporidiosis, no antiprotozoal agent or vaccine exists for effective treatment or prevention. Cryptosporidiosis involving the respiratory tract has been described for avian species and mammals, including immunocompromised humans. Recent evidence indicates that respiratory cryptosporidiosis may occur commonly in immunocompetent children with cryptosporidial diarrhea and unexplained cough. Findings from animal models, human case reports, and a few epidemiological studies suggest that Cryptosporidium may be transmitted via respiratory secretions, in addition to the more recognized fecal-oral route. It is postulated that transmission of Cryptosporidium oocysts may occur by inhalation of aerosolized droplets or by contact with fomites contaminated by coughing. Delineating the role of the respiratory tract in disease transmission may provide necessary evidence to establish further guidelines for prevention of cryptosporidiosis. PMID:24982322

  9. Vertical Transmission Selects for Reduced Virulence in a Plant Virus and for Increased Resistance in the Host

    PubMed Central

    Pagán, Israel; Montes, Nuria; Milgroom, Michael G.; García-Arenal, Fernando

    2014-01-01

    For the last three decades, evolutionary biologists have sought to understand which factors modulate the evolution of parasite virulence. Although theory has identified several of these modulators, their effect has seldom been analysed experimentally. We investigated the role of two such major factors—the mode of transmission, and host adaptation in response to parasite evolution—in the evolution of virulence of the plant virus Cucumber mosaic virus (CMV) in its natural host Arabidopsis thaliana. To do so, we serially passaged three CMV strains under strict vertical and strict horizontal transmission, alternating both modes of transmission. We quantified seed (vertical) transmission rate, virus accumulation, effect on plant growth and virulence of evolved and non-evolved viruses in the original plants and in plants derived after five passages of vertical transmission. Our results indicated that vertical passaging led to adaptation of the virus to greater vertical transmission, which was associated with reductions of virus accumulation and virulence. On the other hand, horizontal serial passages did not significantly modify virus accumulation and virulence. The observed increases in CMV seed transmission, and reductions in virus accumulation and virulence in vertically passaged viruses were due also to reciprocal host adaptation during vertical passages, which additionally reduced virulence and multiplication of vertically passaged viruses. This result is consistent with plant-virus co-evolution. Host adaptation to vertically passaged viruses was traded-off against reduced resistance to the non-evolved viruses. Thus, we provide evidence of the key role that the interplay between mode of transmission and host-parasite co-evolution has in determining the evolution of virulence. PMID:25077948

  10. Life history determines genetic structure and evolutionary potential of host-parasite interactions.

    PubMed

    Barrett, Luke G; Thrall, Peter H; Burdon, Jeremy J; Linde, Celeste C

    2008-12-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.

  11. Exploiting excess sharing: a more powerful test of linkage for affected sib pairs than the transmission/disequilibrium test.

    PubMed Central

    Wicks, J

    2000-01-01

    The transmission/disequilibrium test (TDT) is a popular, simple, and powerful test of linkage, which can be used to analyze data consisting of transmissions to the affected members of families with any kind pedigree structure, including affected sib pairs (ASPs). Although it is based on the preferential transmission of a particular marker allele across families, it is not a valid test of association for ASPs. Martin et al. devised a similar statistic for ASPs, Tsp, which is also based on preferential transmission of a marker allele but which is a valid test of both linkage and association for ASPs. It is, however, less powerful than the TDT as a test of linkage for ASPs. What I show is that the differences between the TDT and Tsp are due to the fact that, although both statistics are based on preferential transmission of a marker allele, the TDT also exploits excess sharing in identity-by-descent transmissions to ASPs. Furthermore, I show that both of these statistics are members of a family of "TDT-like" statistics for ASPs. The statistics in this family are based on preferential transmission but also, to varying extents, exploit excess sharing. From this family of statistics, we see that, although the TDT exploits excess sharing to some extent, it is possible to do so to a greater extent-and thus produce a more powerful test of linkage, for ASPs, than is provided by the TDT. Power simulations conducted under a number of disease models are used to verify that the most powerful member of this family of TDT-like statistics is more powerful than the TDT for ASPs. PMID:10788332

  12. Exploiting excess sharing: a more powerful test of linkage for affected sib pairs than the transmission/disequilibrium test.

    PubMed

    Wicks, J

    2000-06-01

    The transmission/disequilibrium test (TDT) is a popular, simple, and powerful test of linkage, which can be used to analyze data consisting of transmissions to the affected members of families with any kind pedigree structure, including affected sib pairs (ASPs). Although it is based on the preferential transmission of a particular marker allele across families, it is not a valid test of association for ASPs. Martin et al. devised a similar statistic for ASPs, Tsp, which is also based on preferential transmission of a marker allele but which is a valid test of both linkage and association for ASPs. It is, however, less powerful than the TDT as a test of linkage for ASPs. What I show is that the differences between the TDT and Tsp are due to the fact that, although both statistics are based on preferential transmission of a marker allele, the TDT also exploits excess sharing in identity-by-descent transmissions to ASPs. Furthermore, I show that both of these statistics are members of a family of "TDT-like" statistics for ASPs. The statistics in this family are based on preferential transmission but also, to varying extents, exploit excess sharing. From this family of statistics, we see that, although the TDT exploits excess sharing to some extent, it is possible to do so to a greater extent-and thus produce a more powerful test of linkage, for ASPs, than is provided by the TDT. Power simulations conducted under a number of disease models are used to verify that the most powerful member of this family of TDT-like statistics is more powerful than the TDT for ASPs.

  13. Prevalence of intestinal parasites among patients of a Ghanaian psychiatry hospital.

    PubMed

    Duedu, Kwabena O; Karikari, Yaw A; Attah, Simon K; Ayeh-Kumi, Patrick F

    2015-11-05

    Neglected tropical diseases are of major concern to sub-Saharan African countries. Though efforts to monitor the prevalence and control are in place, these are mostly restricted to groups within the population. This study was performed to determine the prevalence among patients of a Ghanaian psychiatric hospital and find out whether there is a reason for active monitoring in this population. A cross-sectional study was performed to determine the prevalence of intestinal parasites among patients of a Ghanaian psychiatric hospital. Stool samples were collected and analyzed in addition to data. Of the 111 patients studied, asymptomatic carriage of parasites was 13.5 % and was higher in males (18.8 %) than in females (4.8 %). Carriage of parasites decreased with age but increase with duration of admission. This is the first report of parasitic pathogens among patients of a psychiatric institution in Ghana. The data shows that there are risks of transmission of infectious diseases via the oral route hence, the need for regular monitoring and intervention is emphasized.

  14. Assessing the burden of intestinal parasites affecting newly arrived immigrants in Qatar.

    PubMed

    Abu-Madi, Marawan A; Behnke, Jerzy M; Ismail, Ahmed; Boughattas, Sonia

    2016-12-01

    In the last decades, the enormous influx of immigrants to industrialized countries has led to outbreaks of parasitic diseases, with enteric infections being amongst the most frequently encountered. In its strategy to control such infection, Qatar has established the Pre-Employment Certificate (PEC) program which requires medical inspection before arrival in Qatar and which is mandatory for immigrant workers travelling to the country. To assess the reliability of the PEC, we conducted a survey of intestinal parasites, based on examination of stool samples provided by immigrant workers (n = 2,486) recently arrived in Qatar. Overall prevalence of helminths was 7.0% and that of protozoa was 11.7%. Prevalence of combined helminths was highest among the western Asians and the highest prevalence of combined protozoan parasites was among workers from North to Saharan Africa. Analysis of temporal changes showed an increasing trend of protozoan infections over the investigated 3 years. A major contribution to this temporal change in prevalence came from Blastocystis hominis as well as from other protozoan species: Giardia duodenalis and Endolimax nana. Analysis of the temporal trend in species richness of the protozoan species showed a significant increase in the mean number of species harboured per subject across this period. The increase of protozoan infections over recent years raises some concerns. It suggests that screening protocols for applicants for visas/work permits needs to be revised giving more careful attention to the intestinal protozoan infections that potential immigrants may harbor.

  15. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites.

    PubMed

    Knutie, Sarah A; Wilkinson, Christina L; Kohl, Kevin D; Rohr, Jason R

    2017-07-20

    Changes in the early-life microbiota of hosts might affect infectious disease risk throughout life, if such disruptions during formative times alter immune system development. Here, we test whether an early-life disruption of host-associated microbiota affects later-life resistance to infections by manipulating the microbiota of tadpoles and challenging them with parasitic gut worms as adults. We find that tadpole bacterial diversity is negatively correlated with parasite establishment in adult frogs: adult frogs that had reduced bacterial diversity as tadpoles have three times more worms than adults without their microbiota manipulated as tadpoles. In contrast, adult bacterial diversity during parasite exposure is not correlated with parasite establishment in adult frogs. Thus, in this experimental setup, an early-life disruption of the microbiota has lasting reductions on host resistance to infections, which is possibly mediated by its effects on immune system development. Our results support the idea that preventing early-life disruption of host-associated microbiota might confer protection against diseases later in life.Early-life microbiota alterations can affect infection susceptibility later in life, in animal models. Here, Knutie et al. show that manipulating the microbiota of tadpoles leads to increased susceptibility to parasitic infection in adult frogs, in the absence of substantial changes in the adults' microbiota.

  16. Malaria parasites and related haemosporidians cause mortality in cranes: a study on the parasites diversity, prevalence and distribution in Beijing Zoo.

    PubMed

    Jia, Ting; Huang, Xi; Valkiūnas, Gediminas; Yang, Minghai; Zheng, Changming; Pu, Tianchun; Zhang, Yanyun; Dong, Lu; Suo, Xun; Zhang, Chenglin

    2018-06-18

    Malaria parasites and related haemosporidian parasites are widespread and may cause severe diseases in birds. These pathogens should be considered in projects aiming breeding of birds for purposes of sustained ex situ conservation. Cranes are the 'flagship species' for health assessment of wetland ecosystems, and the majority of species are endangered. Malaria parasites and other haemosporidians have been reported in cranes, but the host-parasite relationships remain insufficiently understood. Morbidity of cranes due to malaria has been reported in Beijing Zoo. This study report prevalence, diversity and distribution of malaria parasites and related haemosporidians in cranes in Beijing Zoo and suggest simple measures to protect vulnerable individuals. In all, 123 cranes (62 adults and 61 juveniles) belonging to 10 species were examined using PCR-based testing and microscopic examination of blood samples collected in 2007-2014. All birds were maintained in open-air aviaries, except for 19 chicks that were raised in a greenhouse with the aim to protect them from bites of blood-sucking insects. Bayesian phylogenetic analysis was used to identify the closely related avian haemosporidian parasites. Species of Plasmodium (5 lineages), Haemoproteus (1) and Leucocytozoon (2) were reported. Malaria parasites predominated (83% of all reported infections). The overall prevalence of haemosporidians in juveniles was approximately seven-fold higher than in adults, indicating high susceptibility of chicks and local transmission. Juvenile and adult birds hosted different lineages of Plasmodium, indicating that chicks got infection from non-parent birds. Plasmodium relictum (pSGS1) was the most prevalent malaria parasite. Mortality was not reported in adults, but 53% of infected chicks died, with reports of co-infection with Plasmodium and Leucocytozoon species. All chicks maintained in the greenhouse were non-infected and survived. Species of Leucocytozoon were undetectable by

  17. ZOONOTIC PARASITES, OUR ENVIROMENT AND CHANGE

    USDA-ARS?s Scientific Manuscript database

    Environmental changes arising from nature and human activity are affecting patterns for the occurrence and significance of many infectious diseases, including zoonotic parasites, which are those naturally transmitted between domestic animals or wildlife and people. As these changes continue, and pe...

  18. Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases.

    PubMed

    Short, Erica E; Caminade, Cyril; Thomas, Bolaji N

    2017-01-01

    The connection between our environment and parasitic diseases may not always be straightforward, but it exists nonetheless. This article highlights how climate as a component of our environment, or more specifically climate change, has the capability to drive parasitic disease incidence and prevalence worldwide. There are both direct and indirect implications of climate change on the scope and distribution of parasitic organisms and their associated vectors and host species. We aim to encompass a large body of literature to demonstrate how a changing climate will perpetuate, or perhaps exacerbate, public health issues and economic stagnation due to parasitic diseases. The diseases examined include those caused by ingested protozoa and soil helminths, malaria, lymphatic filariasis, Chagas disease, human African trypanosomiasis, leishmaniasis, babesiosis, schistosomiasis, and echinococcus, as well as parasites affecting livestock. It is our goal to impress on the scientific community the magnitude a changing climate can have on public health in relation to parasitic disease burden. Once impending climate changes are now upon us, and as we see these events unfold, it is critical to create management plans that will protect the health and quality of life of the people living in the communities that will be significantly affected.

  19. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts.

    PubMed

    Jacquin, Lisa; Mori, Quentin; Pause, Mickaël; Steffen, Mélanie; Medoc, Vincent

    2014-01-01

    Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation

  20. Inequalities in body size among mermithid nematodes parasitizing earwigs.

    PubMed

    Maure, Fanny; Poulin, Robert

    2016-12-01

    Variation among body sizes of adult parasitic worms determines the relative genetic contribution of individuals to the next generation as it affects the effective parasite population size. Here, we investigate inequalities in body size and how they are affected by intensity of infection in Mermis nigrescens (Mermithidae: Nematoda) parasitizing the European earwig Forficula auricularia in New Zealand. Among a population of pre-adult worms prior to their emergence from the host, we observed only modest inequalities in body length; however, among worms sharing the same individual host, inequalities in body sizes decreased with increasing intensity of infection. Thus, the more worms occurred in a host, the more the second-longest, third-longest and even fourth-longest worms approached the longest worm in body length. This pattern, also known from another mermithid species, suggests that worms sharing the same host may have infected it roughly simultaneously, when the host encountered a clump of eggs in the environment. Thus, the life history and mode of infection of the parasite may explain the modest inequalities in the sizes achieved by pre-adult worms, which are lower than those reported for endoparasitic helminths of vertebrates.

  1. Transmission-blocking interventions eliminate malaria from laboratory populations

    PubMed Central

    Blagborough, A. M.; Churcher, T. S.; Upton, L. M.; Ghani, A. C.; Gething, P. W.; Sinden, R. E.

    2013-01-01

    Transmission-blocking interventions aim to reduce the prevalence of infection in endemic communities by targeting Plasmodium within the insect host. Although many studies have reported the successful reduction of infection in the mosquito vector, direct evidence that there is an onward reduction in infection in the vertebrate host is lacking. Here we report the first experiments using a population, transmission-based study of Plasmodium berghei in Anopheles stephensi to assess the impact of a transmission-blocking drug upon both insect and host populations over multiple transmission cycles. We demonstrate that the selected transmission-blocking intervention, which inhibits transmission from vertebrate to insect by only 32%, reduces the basic reproduction number of the parasite by 20%, and in our model system can eliminate Plasmodium from mosquito and mouse populations at low transmission intensities. These findings clearly demonstrate that use of transmission-blocking interventions alone can eliminate Plasmodium from a vertebrate population, and have significant implications for the future design and implementation of transmission-blocking interventions within the field. PMID:23652000

  2. [Knowledge, attitude and practice (KAP) of foodborne parasitic diseases among middle school students in Xuzhou City].

    PubMed

    Qi, Zhou; Ya-Peng, Liu; Li, Li

    2017-12-26

    To investigate the status of knowledge, attitude and practice (KAP) of foodborne parasitic diseases among middle school students in Xuzhou City, so as to provide a reference to the health education. A total of four middle schools were selected and their students were investigated with the basic information questionnaire and questions of foodborne parasitic diseases. The awareness rates of parasitic diseases, hazards and transmission were 56.50%, 66.33% and 70.50% respectively. The awareness rates of transmission of the diseases in the senior high school students and urban students were higher than those in the junior middle school students and rural students ( χ 2 = 8.684, 8.470, both P < 0.05). The formation rates of not drinking raw water and not eating raw food were higher among the female students than those among the male students ( χ 2 = 7.675, 15.230, both P < 0.05). The formation rate of not eating raw food was higher among the senior high school students than that among the junior middle school students ( χ 2 = 49.276, P < 0.001), and the formation rates of washing hands before meals and not keeping pets were higher among the urban students than those among the rural students ( χ 2 = 5.833, 13.443, both P < 0.05). Totally 64.83% of the students would not eat food that might be infected with foodborne parasites, and the proportion of girls was higher than that of the boys ( χ 2 = 11.690, P < 0.05), and 20.5% of the students would suggest others not eating food that might be infected with foodborne parasites, and 81% of the students would plan to get rid of bad habits. The cognition of foodborne parasitic diseases is poor among the middle school students in Xuzhou City. The health education work on foodborne parasitic diseases should be strengthened.

  3. Reassessment of the potential economic impact of cattle parasites in Brazil

    USDA-ARS?s Scientific Manuscript database

    The profitability of livestock producers can be diminished significantly by the effects of parasites that affect cattle. Economic losses caused by parasites of cattle in Brazil were estimated on an annual basis considering the total number of animals at risk and the expected detrimental effects of p...

  4. Control of intestinal parasitic infections in Seychelles: a comprehensive and sustainable approach.

    PubMed Central

    Albonico, M.; Shamlaye, N.; Shamlaye, C.; Savioli, L.

    1996-01-01

    Intestinal parasitic infections have been perceived as a public health problem in Seychelles for decades. A comprehensive strategy to reduce morbidity and, in the long term, transmission of intestinal parasites has been implemented successfully since 1993. Management of the programme is integrated into the well established primary health care system, with control activities being undertaken through existing health facilities. The strategy is based on periodic chemotherapy of schoolchildren, intense health education and improvement of sanitation and safe water supply. The initial objectives of the control programme were met after 2 years of activities, with an overall reduction in prevalence of intestinal parasitic infections of 44%. The intensity of infection with Trichuris trichiura, the commonest parasite, was halved (from 780 to 370 eggs per g of faeces). The programme's integrated approach, in concert with political commitment and limited operational costs, is a warranty for the future sustainability of control activities. The programme can be seen as a model for other developing countries, even where health and socioeconomic conditions are different and the control of parasitic infections will need a much longer-term commitment. PMID:9060217

  5. Application of Radar Altimetry Methods to Monitoring of Parasitic Disease Transmission: Schistosomiasis in Poyang Lake, China

    NASA Astrophysics Data System (ADS)

    McCandless, M.; Ibaraki, M.; Shum, C.; Lee, H.; Liang, S.

    2008-12-01

    Schistosomiasis is the second-most prevalent tropical disease after malaria affecting two-hundred million people annually world-wide; it shortens lifespan on average by ten years in endemic areas and no vaccine exists. The current control methods of human host chemotherapy and application of molluscicides to the environment do not break the disease transmission cycle. Schistosomiasis transmission in southern China involves an amphibious intermediate host snail for which hydrology is a key factor because the adults need moist vegetation while the juveniles are fully aquatic. Thus, hydrology is a key factor in schistosomiasis transmission and understanding its role can inform control measures. Our objective is to integrate hydrologic, ecologic, and other environmental factors to determine the changes in available snail habitat through space and time. We use radar altimetry measurements to determine water level every 35 days when the Envisat (Environmental Satellite) passes over the lake. The radar altimetry readings have been calibrated to levels from in-situ gauging stations and will support remote analysis of disease transmission potential without the need for gauging station data. A geographic information system was used to combine key factors including water level, topography, and air temperature data to identify areas of available snail habitat. In order to accomplish this, we conducted three steps including: delineating the watershed, specifying potential snail habitat areas through topography and air temperature classification, and calculating the intersection between potential snail habitat and non-flooded areas in the watershed. Statistical analyses of total available habitat area are also conducted. These maps and statistics analyses can be used by public health agencies to monitor snail habitat trends over time. Coupling remote sensing of water levels with a geographic information system model will continue to be important as the hydrology of the lake

  6. Increased ventilation by fish leads to a higher risk of parasitism

    PubMed Central

    2014-01-01

    ventilation volume and parasitism represents the first experimental evidence that this physiological mechanism generates variation in transmission of parasites to fish hosts. Other factors that modify ventilation flow, e.g. physiological or social stressors, are expected to produce similar effects on the transmission success of the parasites penetrating fish hosts using the gills. PMID:24954703

  7. Heat-precipitation allows the efficient purification of a functional plant-derived malaria transmission-blocking vaccine candidate fusion protein.

    PubMed

    Beiss, Veronique; Spiegel, Holger; Boes, Alexander; Kapelski, Stephanie; Scheuermayer, Matthias; Edgue, Gueven; Sack, Markus; Fendel, Rolf; Reimann, Andreas; Schillberg, Stefan; Pradel, Gabriele; Fischer, Rainer

    2015-07-01

    Malaria is a vector-borne disease affecting more than two million people and accounting for more than 600,000 deaths each year, especially in developing countries. The most serious form of malaria is caused by Plasmodium falciparum. The complex life cycle of this parasite, involving pre-erythrocytic, asexual and sexual stages, makes vaccine development cumbersome but also offers a broad spectrum of vaccine candidates targeting exactly those stages. Vaccines targeting the sexual stage of P. falciparum are called transmission-blocking vaccines (TBVs). They do not confer protection for the vaccinated individual but aim to reduce or prevent the transmission of the parasite within a population and are therefore regarded as an essential tool in the fight against the disease. Malaria predominantly affects large populations in developing countries, so TBVs need to be produced in large quantities at low cost. Combining the advantages of eukaryotic expression with a virtually unlimited upscaling potential and a good product safety profile, plant-based expression systems represent a suitable alternative for the production of TBVs. We report here the high level (300 μg/g fresh leaf weight (FLW)) transient expression in Nicotiana benthamiana leaves of an effective TBV candidate based on a fusion protein F0 comprising Pfs25 and the C0-domain of Pfs230, and the implementation of a simple and cost-effective heat treatment step for purification that yields intact recombinant protein at >90% purity with a recovery rate of >70%. The immunization of mice clearly showed that antibodies raised against plant-derived F0 completely blocked the formation of oocysts in a malaria transmission-blocking assay (TBA) making F0 an interesting TBV candidate or a component of a multi-stage malaria vaccine cocktail. © 2015 Wiley Periodicals, Inc.

  8. Developing a mathematical model for the evaluation of the potential impact of a partially efficacious vaccine on the transmission dynamics of Schistosoma mansoni in human communities.

    PubMed

    Stylianou, Andria; Hadjichrysanthou, Christoforos; Truscott, James E; Anderson, Roy M

    2017-06-17

    There is currently no vaccine available to protect humans against infection with the schistosome digenean parasites, although candidate formulations for Schistosoma mansoni are under trial in animal models, including rodents and primates. Current strategies for the control of infection are based on mass drug administration (MDA) targeted at school-aged children of age 5 to 14 years. This approach is unlikely to eliminate exposure to infection except in settings with very low levels of transmission. A deterministic mathematical model for the transmission dynamics of the parasite is described and employed to investigate community level outcomes. The model is defined to encompass two different delivery strategies for the vaccination of the population, namely, infant (cohort) and mass vaccination. However, in this paper the focus is on vaccination delivered in a cohort immunisation programme where infants are immunised within the first year of life before acquiring infection. An analysis of the parasite's transmission dynamics following the administration of a partially protective vaccine is presented. The vaccine acts on parasite mortality, fecundity or/and establishment. A vaccine with an efficacy of over 60% can interrupt transmission in low and moderate transmission settings. In higher transmission intensity areas, greater efficacy or higher infant vaccination coverage is required. Candidate vaccines that act either on parasite mortality, fecundity or establishment within the human host, can be similarly effective. In all cases, however, the duration of protection is important. The community level impact of vaccines with all modes of action, declines if vaccine protection is of a very short duration. However, durations of protection of 5-10 years or more are sufficient, with high coverage and efficacy levels, to halt transmission. The time taken to break transmission may be 18 years or more after the start of the cohort vaccination, depending on the intensity of

  9. Malaria PCR Detection in Cambodian Low-Transmission Settings: Dried Blood Spots versus Venous Blood Samples

    PubMed Central

    Canier, Lydie; Khim, Nimol; Kim, Saorin; Eam, Rotha; Khean, Chanra; Loch, Kaknika; Ken, Malen; Pannus, Pieter; Bosman, Philippe; Stassijns, Jorgen; Nackers, Fabienne; Alipon, SweetC; Char, Meng Chuor; Chea, Nguon; Etienne, William; De Smet, Martin; Kindermans, Jean-Marie; Ménard, Didier

    2015-01-01

    In the context of malaria elimination, novel strategies for detecting very low malaria parasite densities in asymptomatic individuals are needed. One of the major limitations of the malaria parasite detection methods is the volume of blood samples being analyzed. The objective of the study was to compare the diagnostic accuracy of a malaria polymerase chain reaction assay, from dried blood spots (DBS, 5 μL) and different volumes of venous blood (50 μL, 200 μL, and 1 mL). The limit of detection of the polymerase chain reaction assay, using calibrated Plasmodium falciparum blood dilutions, showed that venous blood samples (50 μL, 200 μL, 1 mL) combined with Qiagen extraction methods gave a similar threshold of 100 parasites/mL, ∼100-fold lower than 5 μL DBS/Instagene method. On a set of 521 field samples, collected in two different transmission areas in northern Cambodia, no significant difference in the proportion of parasite carriers, regardless of the methods used was found. The 5 μL DBS method missed 27% of the samples detected by the 1 mL venous blood method, but most of the missed parasites carriers were infected by Plasmodium vivax (84%). The remaining missed P. falciparum parasite carriers (N = 3) were only detected in high-transmission areas. PMID:25561570

  10. Prevalence of Intestinal Parasites in Bakery Workers in Khorramabad, Lorestan Iran

    PubMed Central

    Kheirandish, F; Tarahi, MJ; Haghighi, A; Nazemalhosseini- Mojarad, E; Kheirandish, M

    2011-01-01

    Background Food contamination may occur through production, processing, distribution and preparation. In Iran especially in Khorramabad, 33° 29' 16" North, 48° 21' 21" East, due to kind of nutrition, culture and economic status of people, bread is a part of the main meal and the consumption of bread is high. In this study, the bakery workers were studied for determining of intestinal parasites prevalence. Methods The study was carried out during September to November 2010 in Khorramabad. All the 278 bakeries and the bakery workers including 816 people were studied in a census method and their feces were examined for the presence of parasites by direct wet-mount, Lugol's iodine solution, and formaldehyde-ether sedimentation, trichrome staining, and single round PCR (For discrimination of Entamoeba spp). Results Ninety-six (11.9%) stool specimens were positive for different intestinal parasites. Intestinal parasites included Giardia lamblia 3.7%, Entamoeba coli 5.5%, Blastocystis sp. 2.1%, Entamoeba dispar 0.4%, Hymenolepis nana 0.1%, and Blastocystis sp. 0.1%. Conclusion In order to reduce the contamination in these persons, some cases such as stool exam every three months with concentration methods, supervision and application of accurate health rules by health experts, training in transmission of parasites are recommended. PMID:22347316

  11. Practical parasitology courses and infection with intestinal parasites in students.

    PubMed

    Fallahi, Sh; Rostami, A; Mohammadi, M; Ebrahimzadeh, F; Pournia, Y

    2016-01-01

    Students who are working in research or educational laboratories of parasitology, as well as health care workers providing care for patients, are at the risk of becoming infected with parasites through accidental exposure. The main purpose of this study was to identify potential positive cases of intestinal parasitic infections among students who took practical parasitology courses compared with students who did not take any practical parasitology courses in Lorestan University of Medical Sciences, Khorramabad, Iran, in 2013-2014. A total of 310 subjects from various majors were invited to voluntarily participate in the study. Various demographic data were collected using questionnaires. Three stool samples were collected from each individual on alternate days. Saline wet mounts (SWM), formalin-ether sedimentation test (FEST), Sheather floatation test (SHFT) and trichrome and modified Ziehl-Neelsen staining methods were used to diagnose the presence of intestinal parasites. The prevalence rate of intestinal parasites (IPs) among the students was 11.93%. There was a significant difference between majors in the infection with IPs (P<0.05). The most frequently observed IPs were Blastocystis hominis (4.51%) and Giardia intestinalis (3.54%). The results of this study showed that the transmission of pathogenic parasites in the educational course of practical parasitology could occur and must be taken into careful consideration. Copyright © 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  12. Exosome-Mediated Pathogen Transmission by Arthropod Vectors.

    PubMed

    Hackenberg, Michael; Kotsyfakis, Michail

    2018-04-24

    Recent molecular and cellular studies have highlighted a potentially important role for tick exosomes in parasite transmission. Here we summarize evolving hypotheses about the largely unknown cellular events that may take place at the tick-host-pathogen interface, focusing on a potential role for arthropod exosomes in this tripartite interaction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Flow cytometry-assisted rapid isolation of recombinant Plasmodium berghei parasites exemplified by functional analysis of aquaglyceroporin

    PubMed Central

    Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W.A.

    2012-01-01

    The most critical bottleneck in the generation of recombinant Plasmodium berghei parasites is the mandatory in vivo cloning step following successful genetic manipulation. This study describes a new technique for rapid selection of recombinant P. berghei parasites. The method is based on flow cytometry to isolate isogenic parasite lines and represents a major advance for the field, in that it will speed the generation of recombinant parasites as well as cut down on animal use significantly. High expression of GFP during blood infection, a prerequisite for robust separation of transgenic lines by flow cytometry, was achieved. Isogenic recombinant parasite populations were isolated even in the presence of a 100-fold excess of wild-type (WT) parasites. Aquaglyceroporin (AQP) loss-of-function mutants and parasites expressing a tagged AQP were generated to validate this approach. aqp− parasites grow normally within the WT phenotypic range during blood infection of NMRI mice. Similarly, colonization of the insect vector and establishment of an infection after mosquito transmission were unaffected, indicating that AQP is dispensable for life cycle progression in vivo under physiological conditions, refuting its use as a suitable drug target. Tagged AQP localized to perinuclear structures and not the parasite plasma membrane. We suggest that flow-cytometric isolation of isogenic parasites overcomes the major roadblock towards a genome-scale repository of mutant and transgenic malaria parasite lines. PMID:23137753

  14. The virulence–transmission trade-off in vector-borne plant viruses: a review of (non-)existing studies

    PubMed Central

    Froissart, R.; Doumayrou, J.; Vuillaume, F.; Alizon, S.; Michalakis, Y.

    2010-01-01

    The adaptive hypothesis invoked to explain why parasites harm their hosts is known as the trade-off hypothesis, which states that increased parasite transmission comes at the cost of shorter infection duration. This correlation arises because both transmission and disease-induced mortality (i.e. virulence) are increasing functions of parasite within-host density. There is, however, a glaring lack of empirical data to support this hypothesis. Here, we review empirical investigations reporting to what extent within-host viral accumulation determines the transmission rate and the virulence of vector-borne plant viruses. Studies suggest that the correlation between within-plant viral accumulation and transmission rate of natural isolates is positive. Unfortunately, results on the correlation between viral accumulation and virulence are very scarce. We found only very few appropriate studies testing such a correlation, themselves limited by the fact that they use symptoms as a proxy for virulence and are based on very few viral genotypes. Overall, the available evidence does not allow us to confirm or refute the existence of a transmission–virulence trade-off for vector-borne plant viruses. We discuss the type of data that should be collected and how theoretical models can help us refine testable predictions of virulence evolution. PMID:20478886

  15. A transcriptional switch underlies commitment to sexual development in malaria parasites.

    PubMed

    Kafsack, Björn F C; Rovira-Graells, Núria; Clark, Taane G; Bancells, Cristina; Crowley, Valerie M; Campino, Susana G; Williams, April E; Drought, Laura G; Kwiatkowski, Dominic P; Baker, David A; Cortés, Alfred; Llinás, Manuel

    2014-03-13

    The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited, and disrupting this critical developmental transition remains a long-standing goal. Here we show that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as probable targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci prone to spontaneous activation. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first discovery of a transcriptional switch controlling a differentiation decision in protozoan parasites.

  16. Long-Term Disease Dynamics for a Specialized Parasite of Ant Societies: A Field Study

    PubMed Central

    Loreto, Raquel G.; Elliot, Simon L.; Freitas, Mayara L. R.; Pereira, Thairine M.; Hughes, David P.

    2014-01-01

    Many studies have investigated how social insects behave when a parasite is introduced into their colonies. These studies have been conducted in the laboratory, and we still have a limited understanding of the dynamics of ant-parasite interactions under natural conditions. Here we consider a specialized parasite of ant societies (Ophiocordyceps camponoti-rufipedis infecting Camponotus rufipes) within a rainforest. We first established that the parasite is unable to develop to transmission stage when introduced within the host nest. Secondly, we surveyed all colonies in the studied area and recorded 100% prevalence at the colony level (all colonies were infected). Finally, we conducted a long-term detailed census of parasite pressure, by mapping the position of infected dead ants and foraging trails (future hosts) in the immediate vicinity of the colonies over 20 months. We report new dead infected ants for all the months we conducted the census – at an average of 14.5 cadavers/month/colony. Based on the low infection rate, the absence of colony collapse or complete recovery of the colonies, we suggest that this parasite represents a chronic infection in the ant societies. We also proposed a “terminal host model of transmission” that links the age-related polyethism to the persistence of a parasitic infection. PMID:25133749

  17. Life history determines genetic structure and evolutionary potential of host–parasite interactions

    PubMed Central

    Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.

    2009-01-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns. PMID:18947899

  18. Parasitic Nematode Immunomodulatory Strategies: Recent Advances and Perspectives

    PubMed Central

    Cooper, Dustin; Eleftherianos, Ioannis

    2016-01-01

    More than half of the described species of the phylum Nematoda are considered parasitic, making them one of the most successful groups of parasites. Nematodes are capable of inhabiting a wide variety of niches. A vast array of vertebrate animals, insects, and plants are all identified as potential hosts for nematode parasitization. To invade these hosts successfully, parasitic nematodes must be able to protect themselves from the efficiency and potency of the host immune system. Innate immunity comprises the first wave of the host immune response, and in vertebrate animals it leads to the induction of the adaptive immune response. Nematodes have evolved elegant strategies that allow them to evade, suppress, or modulate host immune responses in order to persist and spread in the host. Nematode immunomodulation involves the secretion of molecules that are capable of suppressing various aspects of the host immune response in order to promote nematode invasion. Immunomodulatory mechanisms can be identified in parasitic nematodes infecting insects, plants, and mammals and vary greatly in the specific tactics by which the parasites modify the host immune response. Nematode-derived immunomodulatory effects have also been shown to affect, negatively or positively, the outcome of some concurrent diseases suffered by the host. Understanding nematode immunomodulatory actions will potentially reveal novel targets that will in turn lead to the development of effective means for the control of destructive nematode parasites. PMID:27649248

  19. Parasitic Nematode Immunomodulatory Strategies: Recent Advances and Perspectives.

    PubMed

    Cooper, Dustin; Eleftherianos, Ioannis

    2016-09-14

    More than half of the described species of the phylum Nematoda are considered parasitic, making them one of the most successful groups of parasites. Nematodes are capable of inhabiting a wide variety of niches. A vast array of vertebrate animals, insects, and plants are all identified as potential hosts for nematode parasitization. To invade these hosts successfully, parasitic nematodes must be able to protect themselves from the efficiency and potency of the host immune system. Innate immunity comprises the first wave of the host immune response, and in vertebrate animals it leads to the induction of the adaptive immune response. Nematodes have evolved elegant strategies that allow them to evade, suppress, or modulate host immune responses in order to persist and spread in the host. Nematode immunomodulation involves the secretion of molecules that are capable of suppressing various aspects of the host immune response in order to promote nematode invasion. Immunomodulatory mechanisms can be identified in parasitic nematodes infecting insects, plants, and mammals and vary greatly in the specific tactics by which the parasites modify the host immune response. Nematode-derived immunomodulatory effects have also been shown to affect, negatively or positively, the outcome of some concurrent diseases suffered by the host. Understanding nematode immunomodulatory actions will potentially reveal novel targets that will in turn lead to the development of effective means for the control of destructive nematode parasites.

  20. Growth and ontogeny of the tapeworm Schistocephalus solidus in its copepod first host affects performance in its stickleback second intermediate host

    PubMed Central

    2012-01-01

    Background For parasites with complex life cycles, size at transmission can impact performance in the next host, thereby coupling parasite phenotypes in the two consecutive hosts. However, a handful of studies with parasites, and numerous studies with free-living, complex-life-cycle animals, have found that larval size correlates poorly with fitness under particular conditions, implying that other traits, such as physiological or ontogenetic variation, may predict fitness more reliably. Using the tapeworm Schistocephalus solidus, we evaluated how parasite size, age, and ontogeny in the copepod first host interact to determine performance in the stickleback second host. Methods We raised infected copepods under two feeding treatments (to manipulate parasite growth), and then exposed fish to worms of two different ages (to manipulate parasite ontogeny). We assessed how growth and ontogeny in copepods affected three measures of fitness in fish: infection probability, growth rate, and energy storage. Results Our main, novel finding is that the increase in fitness (infection probability and growth in fish) with larval size and age observed in previous studies on S. solidus seems to be largely mediated by ontogenetic variation. Worms that developed rapidly (had a cercomer after 9 days in copepods) were able to infect fish at an earlier age, and they grew to larger sizes with larger energy reserves in fish. Infection probability in fish increased with larval size chiefly in young worms, when size and ontogeny are positively correlated, but not in older worms that had essentially completed their larval development in copepods. Conclusions Transmission to sticklebacks as a small, not-yet-fully developed larva has clear costs for S. solidus, but it remains unclear what prevents the evolution of faster growth and development in this species. PMID:22564512

  1. No Evidence for Lymphatic Filariasis Transmission in Big Cities Affected by Conflict Related Rural-Urban Migration in Sierra Leone and Liberia

    PubMed Central

    de Souza, Dziedzom K.; Sesay, Santigie; Moore, Marnijina G.; Ansumana, Rashid; Narh, Charles A.; Kollie, Karsor; Rebollo, Maria P.; Koudou, Benjamin G.; Koroma, Joseph B.; Bolay, Fatorma K.; Boakye, Daniel A.; Bockarie, Moses J.

    2014-01-01

    Background In West Africa, the principal vectors of lymphatic filariasis (LF) are Anopheles species with Culex species playing only a minor role in transmission, if any. Being a predominantly rural disease, the question remains whether conflict-related migration of rural populations into urban areas would be sufficient for active transmission of the parasite. Methodology/Principal Findings We examined LF transmission in urban areas in post-conflict Sierra Leone and Liberia that experienced significant rural-urban migration. Mosquitoes from Freetown and Monrovia, were analyzed for infection with Wuchereria bancrofti. We also undertook a transmission assessment survey (TAS) in Bo and Pujehun districts in Sierra Leone. The majority of the mosquitoes collected were Culex species, while Anopheles species were present in low numbers. The mosquitoes were analyzed in pools, with a maximum of 20 mosquitoes per pool. In both countries, a total of 1731 An. gambiae and 14342 Culex were analyzed for W. bancrofti, using the PCR. Two pools of Culex mosquitoes and 1 pool of An. gambiae were found infected from one community in Freetown. Pool screening analysis indicated a maximum likelihood of infection of 0.004 (95% CI of 0.00012–0.021) and 0.015 (95% CI of 0.0018–0.052) for the An. gambiae and Culex respectively. The results indicate that An. gambiae is present in low numbers, with a microfilaria prevalence breaking threshold value not sufficient to maintain transmission. The results of the TAS in Bo and Pujehun also indicated an antigen prevalence of 0.19% and 0.67% in children, respectively. This is well below the recommended 2% level for stopping MDA in Anopheles transmission areas, according to WHO guidelines. Conclusions We found no evidence for active transmission of LF in cities, where internally displaced persons from rural areas lived for many years during the more than 10 years conflict in Sierra Leone and Liberia. PMID:24516686

  2. Resistance of a rodent malaria parasite to a thymidylate synthase inhibitor induces an apoptotic parasite death and imposes a huge cost of fitness.

    PubMed

    Muregi, Francis W; Ohta, Isao; Masato, Uchijima; Kino, Hideto; Ishih, Akira

    2011-01-01

    The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite's apoptotic machinery may be exploited as a novel drug target in malaria and other protozoan

  3. Effects of supplemental feeding on gastrointestinal parasite infection in Rocky Mountain Elk (Cervus elaphus)

    USGS Publications Warehouse

    Hines, Alicia M.; Ezenwa, Vanessa O.; Cross, Paul C.; Rogerson, Jared D.

    2007-01-01

    The effects of management practices on the spread and impact of parasites and infectious diseases in wildlife and domestic animals are of increasing concern worldwide, particularly in cases where management of wild species can influence disease spill-over into domestic animals. In the Greater Yellowstone Ecosystem, USA, winter supplemental feeding of Rocky Mountain elk (Cervus elaphus) may enhance parasite and disease transmission by aggregating elk on feedgrounds. In this study, we tested the effect of supplemental feeding on gastrointestinal parasite infection in elk by comparing fecal egg/oocyst counts of fed and unfed elk. We collected fecal samples from fed and unfed elk at feedground and control sites from January to April 2006, and screened all samples for parasites. Six different parasite types were identified, and 48.7% of samples were infected with at least one parasite. Gastrointenstinal (GI) nematodes (Nematoda: Strongylida), Trichuris spp., and coccidia were the most common parasites observed. For all three of these parasites, fecal egg/oocyst counts increased from January to April. Supplementally fed elk had significantly higher GI nematode egg counts than unfed elk in January and February, but significantly lower counts in April. These patterns suggest that supplemental feeding may both increase exposure and decrease susceptibility of elk to GI nematodes, resulting in differences in temporal patterns of egg shedding between fed and unfed elk.

  4. A weather-driven model of malaria transmission

    PubMed Central

    Hoshen, Moshe B; Morse, Andrew P

    2004-01-01

    Background Climate is a major driving force behind malaria transmission and climate data are often used to account for the spatial, seasonal and interannual variation in malaria transmission. Methods This paper describes a mathematical-biological model of the parasite dynamics, comprising both the weather-dependent within-vector stages and the weather-independent within-host stages. Results Numerical evaluations of the model in both time and space show that it qualitatively reconstructs the prevalence of infection. Conclusion A process-based modelling structure has been developed that may be suitable for the simulation of malaria forecasts based on seasonal weather forecasts. PMID:15350206

  5. Toxoplasma gondii transmission by artificial insemination in sheep with experimentally contaminated frozen semen.

    PubMed

    Consalter, Angélica; Silva, Andressa F; Frazão-Teixeira, Edwards; Matos, Luis F; de Oliveira, Francisco C R; Leite, Juliana S; Silva, Franciele B F; Ferreira, Ana M R

    2017-03-01

    Toxoplasma gondii is a parasite considered one of the major causes of reproductive problems in sheep. Furthermore, the presence of the agent in ram semen urges the possibility of sexual transmission in this species. The aim of this study was to evaluate if ram's frozen semen spiked with T. gondii tachyzoites would be able to cause infection in sheep by laparoscopic artificial insemination (AI). Nine ewes tested seronegative to anti-T. gondii antibodies by the modified agglutination test (MAT) were superovulated and inseminated to collect embryos. Animals were divided into two groups: G1 (n = 5), ewes inseminated with semen containing 4 × 10 7 tachyzoites; and G2 (n = 4), ewes inseminated with tachyzoite-free semen (control group). To confirm infection, ewe's blood samples were collected on days -14, -7, 0, 7, 14, 21, 28, 35, 49 and 57 after AI for analysis by MAT and PCR. Tissue samples of these ewes were also collected for histopathology and immunohistochemistry (IHC). Seven days after AI, all ewes of group G1 had specific antibodies to T. gondii, while those of G2 were negative. Toxoplasma gondii DNA was detected in the blood of one ewe and parasites were observed in tissues of all five animals inseminated with contaminated semen, indicating that semen freezing protocol does not affect T. gondii transmission by artificial insemination in sheep. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Behavior favoring transmission in the viviparous monogenean Gyrodactylus turnbulli.

    PubMed

    Cable, J; Scott, E C G; Tinsley, R C; Harris, P D

    2002-02-01

    Transmission by Gyrodactylus turnbulli occurs most frequently when its hosts (Poecilia reticulata) come into close contact. This study is the first description of a specific migratory behavior that facilitates transmission of a gyrodactylid from dead hosts. Recently-dead guppies typically float at the water's surface; G. turnbulli moves off these fish into the water film, hanging motionless with the haptor held by surface tension. Because guppies are surface feeders, detached parasites in the water film are more likely to contact a new host.

  7. Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts

    PubMed Central

    Mandell, Michael A.

    2017-01-01

    In most natural infections or after recovery, small numbers of Leishmania parasites remain indefinitely in the host. Persistent parasites play a vital role in protective immunity against disease pathology upon reinfection through the process of concomitant immunity, as well as in transmission and reactivation, yet are poorly understood. A key question is whether persistent parasites undergo replication, and we devised several approaches to probe the small numbers in persistent infections. We find two populations of persistent Leishmania major: one rapidly replicating, similar to parasites in acute infections, and another showing little evidence of replication. Persistent Leishmania were not found in “safe” immunoprivileged cell types, instead residing in macrophages and DCs, ∼60% of which expressed inducible nitric oxide synthase (iNOS). Remarkably, parasites within iNOS+ cells showed normal morphology and genome integrity and labeled comparably with BrdU to parasites within iNOS− cells, suggesting that these parasites may be unexpectedly resistant to NO. Nonetheless, because persistent parasite numbers remain roughly constant over time, their replication implies that ongoing destruction likewise occurs. Similar results were obtained with the attenuated lpg2− mutant, a convenient model that rapidly enters a persistent state without inducing pathology due to loss of the Golgi GDP mannose transporter. These data shed light on Leishmania persistence and concomitant immunity, suggesting a model wherein a parasite reservoir repopulates itself indefinitely, whereas some progeny are terminated in antigen-presenting cells, thereby stimulating immunity. This model may be relevant to understanding immunity to other persistent pathogen infections. PMID:28096392

  8. Host specificity in parasitic plants-perspectives from mistletoes.

    PubMed

    Okubamichael, Desale Y; Griffiths, Megan E; Ward, David

    2016-01-01

    Host specificity has been investigated for centuries in mistletoes, viruses, insects, parasitoids, lice and flukes, yet it is poorly understood. Reviewing the numerous studies on mistletoe host specificity may contribute to our understanding of these plants and put into context the dynamics at work in root parasitic plants and animal parasites. The mechanisms that determine host specificity in mistletoes are not as well documented and understood as those in other groups of parasites. To rectify this, we synthesized the available literature and analyzed data compiled from herbaria, published monographs and our own field studies in South Africa. As for other groups of parasites, multiple factors influence mistletoe host specificity. Initially, pollination affects gene flow. Subsequently, seed dispersal vectors (birds and marsupials), host abundance and compatibility (genetic, morphological, physiological and chemical), history and environmental conditions affect the interaction of mistletoes and their hosts and determine host specificity. Mistletoe-host network analyses and a geographic mosaic approach combined with long-term monitoring of reciprocal transplant experiments, genetic analyses of confined mistletoe populations and comparative phylogenetic studies could provide further insights to our understanding of host specificity. Some of these approaches have been used to study animal-plant interactions and could be adopted to test and evaluate host specificity in mistletoes at local and larger geographic scales. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  9. Host specificity in parasitic plants—perspectives from mistletoes

    PubMed Central

    Okubamichael, Desale Y.; Griffiths, Megan E.; Ward, David

    2016-01-01

    Host specificity has been investigated for centuries in mistletoes, viruses, insects, parasitoids, lice and flukes, yet it is poorly understood. Reviewing the numerous studies on mistletoe host specificity may contribute to our understanding of these plants and put into context the dynamics at work in root parasitic plants and animal parasites. The mechanisms that determine host specificity in mistletoes are not as well documented and understood as those in other groups of parasites. To rectify this, we synthesized the available literature and analyzed data compiled from herbaria, published monographs and our own field studies in South Africa. As for other groups of parasites, multiple factors influence mistletoe host specificity. Initially, pollination affects gene flow. Subsequently, seed dispersal vectors (birds and marsupials), host abundance and compatibility (genetic, morphological, physiological and chemical), history and environmental conditions affect the interaction of mistletoes and their hosts and determine host specificity. Mistletoe–host network analyses and a geographic mosaic approach combined with long-term monitoring of reciprocal transplant experiments, genetic analyses of confined mistletoe populations and comparative phylogenetic studies could provide further insights to our understanding of host specificity. Some of these approaches have been used to study animal–plant interactions and could be adopted to test and evaluate host specificity in mistletoes at local and larger geographic scales. PMID:27658817

  10. Endemic Transmission of Visceral Leishmaniasis in Bhutan

    PubMed Central

    Yangzom, Thinley; Cruz, Israel; Bern, Caryn; Argaw, Daniel; den Boer, Margriet; Vélez, Iván Dario; Bhattacharya, Sujit K.; Molina, Ricardo; Alvar, Jorge

    2012-01-01

    Visceral leishmaniasis was first reported in Bhutan in 2006. We conducted studies of the parasite, possible vectors and reservoirs, and leishmanin skin test and risk factor surveys in three villages. Nineteen cases were reported from seven districts. Parasite typing yielded two novel microsatellite sequences, both related to Indian L. donovani. In one case village, 40 (18.5%) of 216 participants had positive leishmanin skin test results, compared with 3 (4.2%) of 72 in the other case village and 0 of 108 in the control village. Positive results were strongly associated with the village and increasing age. None of the tested dogs were infected. Eighteen sand flies were collected, 13 Phlebotomus species and 5 Sergentomyia species; polymerase chain reaction for leishmanial DNA was negative. This assessment suggests that endemic visceral leishmaniasis transmission has occurred in diverse locations in Bhutan. Surveillance, case investigations, and further parasite, vector, and reservoir studies are needed. The potential protective impact of bed nets should be evaluated. PMID:23091191

  11. Emergence of new genotype and diversity of Theileria orientalis parasites from bovines in India.

    PubMed

    George, Neena; Bhandari, Vasundhra; Reddy, D Peddi; Sharma, Paresh

    2015-12-01

    Bovine theileriosis is a serious threat to livestock worldwide. Uncertainty around species prevalence, antigenic diversity and genotypes of strains make it difficult to assess the impact of this parasite and to provide necessary treatment. We aimed to characterize genotypic diversity, phylogeny and prevalence of Theileria orientalis parasites from the states of Telangana and Andhra Pradesh, India by collecting bovine blood samples from the major districts of the two states. Bioinformatic analysis identified antigenic diversity among the prevalent parasite strains using major piroplasm surface protein (MPSP) gene. Our study revealed a prevalence rate of 4.8% (n=41/862) of T. orientalis parasites in bovine animals and a new genotype of T. orientalis parasite which was not previously reported in India. The emergence of these new genotypes could be an explanation for the frequent outbreaks of bovine theileriosis. Further, whole genome sequencing of T. orientalis strains will help to elucidate the genetic factors relevant for transmissibility and virulence as well as vaccine and new drug development. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Cultivation of parasites.

    PubMed

    Ahmed, Nishat Hussain

    2014-07-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites.

  13. Cultivation of parasites

    PubMed Central

    Ahmed, Nishat Hussain

    2014-01-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites. PMID

  14. Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases

    PubMed Central

    Short, Erica E; Caminade, Cyril; Thomas, Bolaji N

    2017-01-01

    The connection between our environment and parasitic diseases may not always be straightforward, but it exists nonetheless. This article highlights how climate as a component of our environment, or more specifically climate change, has the capability to drive parasitic disease incidence and prevalence worldwide. There are both direct and indirect implications of climate change on the scope and distribution of parasitic organisms and their associated vectors and host species. We aim to encompass a large body of literature to demonstrate how a changing climate will perpetuate, or perhaps exacerbate, public health issues and economic stagnation due to parasitic diseases. The diseases examined include those caused by ingested protozoa and soil helminths, malaria, lymphatic filariasis, Chagas disease, human African trypanosomiasis, leishmaniasis, babesiosis, schistosomiasis, and echinococcus, as well as parasites affecting livestock. It is our goal to impress on the scientific community the magnitude a changing climate can have on public health in relation to parasitic disease burden. Once impending climate changes are now upon us, and as we see these events unfold, it is critical to create management plans that will protect the health and quality of life of the people living in the communities that will be significantly affected. PMID:29317829

  15. The structure of parasite communities in fish hosts: ecology meets geography and climate.

    PubMed

    Poulin, R

    2007-09-01

    Parasite communities in fish hosts are not uniform in space: their diversity, composition and abundance vary across the geographical range of a host species. Increasingly urgently, we need to understand the geographic component of parasite communities to better predict how they will respond to global climate change. Patterns of geographical variation in the abundance of parasite populations, and in the diversity and composition of parasite communities, are explored here, and the ways in which they may be affected by climate change are discussed. The time has come to transform fish parasite ecology from a mostly descriptive discipline into a predictive science, capable of integrating complex ecological data to generate forecasts about the future state of host-parasite systems.

  16. Interruption of Onchocerca volvulus Transmission in the Abu Hamed Focus, Sudan

    PubMed Central

    Higazi, Tarig B.; Zarroug, Isam M. A.; Mohamed, Hanan A.; ElMubark, Wigdan A.; Deran, Tong Chor M.; Aziz, Nabil; Katabarwa, Moses; Hassan, Hassan K.; Unnasch, Thomas R.; Mackenzie, Charles D.; Richards, Frank; Hashim, Kamal

    2013-01-01

    Abu Hamed, Sudan, the northernmost location of onchocerciasis in the world, began community-directed treatment with ivermectin (CDTI) in 1998, with annual treatments enhanced to semiannual in 2007. We assessed the status of the parasite transmission in 2011 entomologically, parasitologically, and serologically. O-150 pool screening showed no parasite DNA in 17,537 black flies collected in 2011 (95% confidence interval upper limit [95% CI UL] = 0.023). Skin microfilariae, nodules, and signs of skin disease were absent in 536 individuals in seven local communities. Similarly, no evidence of Onchocerca volvulus Ov16 antibodies was found in 6,756 school children ≤ 10 years (95% CI UL = 0.03%). Because this assessment of the focus meets the 2001 World Health Organization (WHO) criteria for interrupted transmission, treatment was halted in 2012, and a post-treatment surveillance period was initiated in anticipation of declaration of disease elimination in this area. We provide the first evidence in East Africa that long-term CDTI alone can interrupt transmission of onchocerciasis. PMID:23690554

  17. Short report: secondary transmission in porcine cysticercosis: description and their potential implications for control sustainability.

    PubMed

    Gonzalez, Armando E; López-Urbina, Teresa; Tsang, Byron Y; Gavidia, César M; Garcia, Héctor H; Silva, María E; Ramos, Daphne D; Manzanedo, Rafael; Sánchez-Hidalgo, Lelia; Gilman, Robert H; Tsang, Victor C W

    2005-09-01

    Taenia solium taeniasis/cysticercosis is one of few potentially eradicable infectious diseases and is the target of control programs in several countries. The larval stage of this zoonotic cestode invades the human brain and is responsible for most cases of adult-onset epilepsy in the world. The pig is the natural intermediate host, harboring the larvae or cysticerci. Our current understanding of the life cycle implicates humans as the only definitive host and tapeworm carrier (developing taeniasis) and thus the sole source of infective eggs that are responsible for cysticercosis in both human and pigs through oral-fecal transmission. Here we show evidence of an alternative pig-to-pig route of transmission, previously not suspected to exist. In a series of four experiments, naive sentinel pigs were exposed to pigs that had been infected orally with tapeworm segments (containing infective eggs) and moved to a clean environment. Consistently in all four experiments, at least one of the sentinel pigs became seropositive or infected with parasite cysts with much lower cyst burdens than did primarily infected animals. Second-hand transmission of Taenia solium eggs could explain the overdispersed pattern of porcine cysticercosis, with few pigs harboring heavy parasite burdens and many more harboring small numbers of parasites. This route of transmission opens new avenues for consideration with respect to control strategies.

  18. De-embedding technique for accurate modeling of compact 3D MMIC CPW transmission lines

    NASA Astrophysics Data System (ADS)

    Pohan, U. H.; KKyabaggu, P. B.; Sinulingga, E. P.

    2018-02-01

    Requirement for high-density and high-functionality microwave and millimeter-wave circuits have led to the innovative circuit architectures such as three-dimensional multilayer MMICs. The major advantage of the multilayer techniques is that one can employ passive and active components based on CPW technology. In this work, MMIC Coplanar Waveguide(CPW)components such as Transmission Line (TL) are modeled in their 3D layouts. Main characteristics of CPWTL suffered from the probe pads’ parasitic and resonant frequency effects have been studied. By understanding the parasitic effects, then the novel de-embedding technique are developed accurately in order to predict high frequency characteristics of the designed MMICs. The novel de-embedding technique has shown to be critical in reducing the probe pad parasitic significantly from the model. As results, high frequency characteristics of the designed MMICs have been presented with minimumparasitic effects of the probe pads. The de-embedding process optimises the determination of main characteristics of Compact 3D MMIC CPW transmission lines.

  19. Evolutionary consequence of a change in life cycle complexity: A link between precocious development and evolution toward female-biased sex allocation in a hermaphroditic parasite.

    PubMed

    Kasl, Emily L; McAllister, Chris T; Robison, Henry W; Connior, Matthew B; Font, William F; Criscione, Charles D

    2015-12-01

    The evolutionary consequences of changes in the complex life cycles of parasites are not limited to the traits that directly affect transmission. For instance, mating systems that are altered due to precocious sexual maturation in what is typically regarded as an intermediate host may impact opportunities for outcrossing. In turn, reproductive traits may evolve to optimize sex allocation. Here, we test the hypothesis that sex allocation evolved toward a more female-biased function in populations of the hermaphroditic digenean trematode Alloglossidium progeneticum that can precociously reproduce in their second hosts. In these precocious populations, parasites are forced to self-fertilize as they remain encysted in their second hosts. In contrast, parasites in obligate three-host populations have more opportunities to outcross in their third host. We found strong support that in populations with precocious development, allocation to male resources was greatly reduced. We also identified a potential phenotypically plastic response in a body size sex allocation relationship that may be driven by the competition for mates. These results emphasize how changes in life cycle patterns that alter mating systems can impact the evolution of reproductive traits in parasites. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  20. Altered expression of an RBP-associated arginine methyltransferase 7 in Leishmania major affects parasite infection.

    PubMed

    Ferreira, Tiago R; Alves-Ferreira, Eliza V C; Defina, Tania P A; Walrad, Pegine; Papadopoulou, Barbara; Cruz, Angela K

    2014-10-08

    Protein arginine methylation is a widely conserved post-translational modification performed by arginine methyltransferases (PRMTs). However, its functional role in parasitic protozoa is still under-explored. The Leishmania major genome encodes five PRMT homologs, including PRMT7. Here we show that LmjPRMT7 expression and arginine monomethylation are tightly regulated in a lifecycle stage-dependent manner. LmjPRMT7 levels are higher during the early promastigote logarithmic phase, negligible at stationary and late-stationary phases and rise once more post-differentiation to intracellular amastigotes. Immunofluorescence and co-immunoprecipitation studies demonstrate that LmjPRMT7 is a cytosolic protein associated with several RNA-binding proteins (RBPs) from which Alba20 is monomethylated only in LmjPRMT7-expressing promastigote stages. In addition, Alba20 protein levels are significantly altered in stationary promastigotes of the LmjPRMT7 knockout mutant. Considering RBPs are well-known mammalian PRMT substrates, our data suggest that arginine methylation via LmjPRMT7 may modulate RBP function during Leishmania spp. lifecycle progression. Importantly, genomic deletion of the LmjPRMT7 gene leads to an increase in parasite infectivity both in vitro and in vivo, while lesion progression is significantly reduced in LmjPRMT7-overexpressing parasites. This study is the first to describe a role of Leishmania protein arginine methylation in host-parasite interactions. © 2014 John Wiley & Sons Ltd.