Science.gov

Sample records for affect physical properties

  1. Spray characteristics affected by physical properties of adjuvants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four drift adjuvants, Array, In-Place, Vector and Control, were tested and physical properties and spray spectrum parameters measured. Array had the highest conductivity, indicating a good potential for the electrostatic charging, and the highest shear viscosity. All adjuvants had very similar neut...

  2. Deacetylation affects the physical properties and bioactivity of acemannan, an extracted polysaccharide from Aloe vera.

    PubMed

    Chokboribal, Jaroenporn; Tachaboonyakiat, Wanpen; Sangvanich, Polkit; Ruangpornvisuti, Vithaya; Jettanacheawchankit, Suwimon; Thunyakitpisal, Pasutha

    2015-11-20

    Acemannan, an acetylated polymannose from Aloe vera, induces tissue repair. We investigated the role of acemannan's acetyl-groups on its physical and biological properties. Deacetylated acemannan (DeAcAM) was prepared and characterized. The physical properties and microscopic structure of DeAcAM were evaluated using water solubility, contact angle, X-ray diffraction, and scanning-electron microscopy. The activity of DeAcAM on cell proliferation and gene expression were assessed. Acemannan and DeAcAM structures were simulated and the acemannan tetramer diad and its completely deacetylated structure were also determined. Increased acemannan deacetylation reduced its water solubility and hydrophilicity. Complete deacetylation altered acemannan's conformation to a partial crystal structure. The bioactivity of acemannan was reduced corresponding to its deacetylation. Acemannan induced cell proliferation, and VEGF and Collagen I expression; however, 100% DeAcAM did not. The simulated structures of the acemannan diad and the completely deacetylated diad were different. We conclude acetyl-groups affect acemannan's structure and physical/biological properties. PMID:26344314

  3. Hydration kinetics and physical properties of split chickpea as affected by soaking temperature and time.

    PubMed

    Johnny, Saeed; Razavi, Seyed M A; Khodaei, Diako

    2015-12-01

    In this study, some physical properties (principal dimensions, mean diameters, sphericity, area, density and electrical conductivity) of split chickpea were measured as function of soaking time (up to 360 min) and temperature (25-65 °C). Initially, the water absorption rate was high and then it showed a progressive decrease at all temperatures, whereas solid loss exhibited a power function of temperature (P < 0.05). The Peleg model was predicted well the kinetic of split chickpea soaking. No significant difference (P < 0.05) was observed in Peleg rate constant (K1) and Peleg capacity constant (K2) at all temperatures except for K1 at 25 °C. The discrepancy for K1 was in relation to permeability characteristics of split chickpea at temperature of 25 °C. As temperature increased from 25 to 65 °C, the K1 value decreased from 0.04620 to 0.00945 g h(-1), whereas the K2 value increased from 0.08597 to 0.11320 g(-1). Plot for K1 exhibited a slope changes around 45 °C corresponding to gelatinization temperature of split chickpeas. The effect of temperature and time on physical properties of split chickpea during soaking was monitored by regression equations. It was concluded that physical properties of split chickpea affected by its water absorption especially at higher temperatures. PMID:26604418

  4. Do stone bunds affect soil physical properties? - A case study in northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Schürz, Christoph; Schwen, Andreas; Strohmeier, Stefan; Klik, Andreas

    2013-04-01

    Central issue of rain fed agriculture systems in the Ethiopian highlands is to store rain water in the soil during the rainy season (June to September). The aim is to maximize plant available water and to reduce surface runoff and soil erosion. Stone bunds are a common practice for soil and water conservation, influencing the translation processes of surface runoff. However, changes in surface hydrology affect the temporal and spatial properties of soil physical parameters. The objective of this research is to find a relationship between the spatial distribution of soil properties and the location of the stone bunds, but also to monitor the temporal behavior of those soil parameters, to better understand the impact of stone bunds on soil water movement. The research area is located in the Gumara Watershed, Maksegnit in Northern Ethiopia. There two representative transects were selected: One transect crosses three fields with conservation measures applied perpendicular to the stone bunds at a length of approximately 71 m. The second transect crosses a similar hill slope without conservation structures at a length of 55 m. During the rainy season in 2012 soil physical properties were monitored in specific spatial and temporal intervals. The measurements included bulk density, soil texture and volumetric water content. Tension infiltrometer tests were conducted to determine saturated and near saturated hydraulic conductivity for areas near stone bunds and the center of the fields on one hand, but also to derive van Genuchten parameters for those points inversely with Hydrus 2D. Slope steepness and stone cover along the transects were assessed, using survey and photogrammetric analysis. Preliminary results show an increase in the water content of topsoils within a range of approximately 2 m above the stone bunds but only random fluctuations in the field without conservation measures. At depths greater than 20 cm no significant differences in water content were found

  5. Soil physical and hydrological properties as affected by long-term addition of various organic amendments

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Völkel, Jörg; Mercier, Vincent; Labat, Christophe; Houot, Sabine

    2014-05-01

    The use of organic residues as soil amendments in agriculture not only reduces the amount of waste needing to be disposed of; it may also lead to improvements in soil properties, including physical and hydrological ones. The present study examines a long-term experiment called "Qualiagro", run jointly by INRA and Veolia Environment in Feucherolles, France (near Paris). It was initiated in 1998 on a loess-derived silt loam (787 g/kg silt, 152 g/kg clay) and includes ten treatments: four types of organic amendments and a control (CNT) each at two levels of mineral nitrogen (N) addition: minimal (Nmin) and optimal (Nopt). The amendments include three types of compost and farmyard manure (FYM), which were applied every other year at a rate of ca. 4 t carbon ha-1. The composts include municipal solid waste compost (MSW), co-compost of green wastes and sewage sludge (GWS), and biowaste compost (BIO). The plots are arranged in a randomized block design and have a size of 450 m²; each treatment is replicated four times (total of 40 plots). Ca. 15 years after the start of the experiment soil organic carbon (OC) had continuously increased in the amended plots, while it remained stable or decreased in the control plots. This compost- or manure-induced increase in OC plays a key role, affecting numerous dependant soil properties like bulk density, porosity and water retention. The water holding capacity (WHC) of a soil is of particular interest to farmers in terms of water supply for plants, but also indicates soil quality and functionality. Addition of OC may affect WHC in different ways: carbon-induced aggregation may increase larger-pore volume and hence WHC at the wet end while increased surface areas may lead to an increased retention of water at the dry end. Consequently it is difficult to predict (e.g. with pedotransfer functions) the impact on the amount of water available for plants (PAW), which was experimentally determined for the soils, along with the entire range

  6. Ozone gas affects the physical and chemical properties of wheat (Triticum aestivum L.) starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone can oxidize hydroxyl groups present at C2, C3, and C6 positions on the starch molecule and affect its physicochemical properties. In this experiment, bread wheat flour and isolated wheat starch were treated with ozone gas (1,500 ppm, gas flow rate 2.5 L/minutes) for 45 minutes and 30 minutes, ...

  7. Salt matters: How salt affects the rheological and physical properties of gelatine for analogue modelling

    NASA Astrophysics Data System (ADS)

    Brizzi, S.; Funiciello, F.; Corbi, F.; Di Giuseppe, E.; Mojoli, G.

    2016-06-01

    Gelatine is extensively used as analogue material for the easiness to tune its physical and rheological properties. The addition of salt to gelatine is generally adopted to increase the density of the material, improving the scaling of the models. However, the way the addition of salt changes the rheological properties of gelatine is generally underestimated. Here, we investigate both rheological and physical properties (i.e., density and transparency) of type A pig-skin 2.5 wt.% gelatine at T = 10 °C as a function of salt concentration, cNaCl, and ageing time. We established a standard preparation recipe and measuring protocol, yielding to uniform samples with reproducible behaviour. Rheometric measurements show that the presence of salt weakens the gelatine structure, with a decrease of both material rigidity and viscosity as cNaCl increases. Salted gelatine behaviour moves from viscoelastic to dominantly elastic as the ageing time increases. Density and cloudiness also increase with cNaCl. Finally, we present results from subduction interplate seismicity models performed with pure and salted gelatines, showing that the modified material may improve the modelling performance and open new perspectives in experimental tectonics.

  8. Insights on how the activity of an endoglucanase is affected by physical properties of insoluble celluloses.

    PubMed

    Bragatto, Juliano; Segato, Fernando; Cota, Junio; Mello, Danilo B; Oliveira, Marcelo M; Buckeridge, Marcos S; Squina, Fabio M; Driemeier, Carlos

    2012-05-31

    Cellulose physical properties like crystallinity, porosity, and particle size are known to influence cellulase activity, but knowledge is still insufficient for activity prediction from such measurable substrate characteristics. With the aim of illuminating enzyme-substrate relationships, this work evaluates a purified hyperthermophilic endo-1,4-beta-glucanase (from Pyrococcus furiosus) acting on 13 celluloses characterized for crystallinity and crystal width (by X-ray diffraction), wet porosity (by thermoporometry), and particle size (by light scattering). Activities are analyzed by the Michaelis-Menten kinetic equation, which is justified by low enzyme-substrate affinity. Michaelis-Menten coefficients K(m) and k(cat) are reinterpreted in the context of heterogeneous cellulose hydrolysis. For a set of as-received and milled microcrystalline celluloses, activity is successfully described as a function of accessible substrate concentration, with accessibility proportional to K(m)(-1). Accessibility contribution from external particle areas, pore areas, and crystalline packing are discriminated to have comparable magnitudes, implying that activity prediction demands all these substrate properties to be considered. Results additionally suggest that looser crystalline packing increases the lengths of released cello-oligomers as well as the maximum endoglucanase specific activity (k(cat)). PMID:22577872

  9. Chlorinated degreasing solvents: Physical-chemical properties affecting aquifer contamination and remediation

    SciTech Connect

    Jackson, R.E.; Dwarakanath, V.

    1999-09-30

    Chlorinated degreasing solvents are multicomponent liquids containing not only the chlorinated hydrocarbons with which their name is associated (e.g., trichloroethylene or [TCE], perchloroethylene or [PCE], 1,1,1-trichloroethane [TCA]) but also a number of organic additives included as corrosion inhibitors and antioxidants. The additives, such as 1,4-dioxane, are likely to be of significant public-health importance as ground water contaminants due to their toxicity, solubility, and mobility. Following their use in vapor degreasing systems by industry, chlorinated degreasing solvents will also contain about 25% solubilized oil and grease. A number of physical-chemical properties become especially important in the light of the multicomponent nature of these solvents. First, the higher aqueous solubility and lower sorption of the additives makes it reasonable to expect that faster moving plumes of these solvent additives will precede plumes of the chlorinated hydrocarbons. Second, due to high losses of chlorinated hydrocarbons by volatilization from vapor degreasers during years in the middle of the century, it is probable that background concentrations of these hydrocarbons are present in ground water flow systems due to their downwind washout. Finally, the solubilized oil and grease may cause profound changes to the wettability of aquifer materials contacted by the solvents during their subsurface migration. It is argued, therefore, that the wettability of aquifer materials contaminated by chlorinated degreasing solvents needs to be experimentally determined before remediation of DNAPL at each site, rather than being simply assumed as water wet.

  10. EMPIRICAL MODELING OF PHYSICAL PROPERTIES OF CASEIN FILMS AS AFFECTED BY PLASTICIZER CONTENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Casein films have the potential to be used to improve the quality and safety of food or to be used as biodegradable packaging. Plasticizers are incorporated into protein films to lower the glass transition temperature (Tg) and to improve tensile properties relative to pure films. The extent that p...

  11. Physical-Mechanical Properties of Nitrodopes Affected by Ultra-Violet Radiation

    PubMed Central

    Cakić, Suzana; Raskovic, Ljiljana; Lačnjevac, Časlav; Rajkovic, Milos; Barać, Miroljub; Stojanovic, Miodrag

    2007-01-01

    The FTIR spectroscopy has been employed in this research work to monitor the process of nitrodope photodegradation, by measuring surfaces of bands typical of a nitro group. Nitric esters are subject to degradation, which is reflected on a quantitative ratio of the surfaces of the IR bands that originate from the nitric ester. The obtained results show that the length of the UV rays' activity on the samples over the time periods of 240, 480 and 960 minutes directly affects the spectrum appearance of the same sample before and after the irradiation. The longer the action time of the UV rays and the higher a mass percentage of nitrocellulose in the nitrodope is, the smaller the bands' surfaces become, i.e. the level of degradation is higher. In order to confirm the degradation of nitrodope, the degree of crosslinking has also been examined by determining the König hardness and also the mean viscosity molar mass has been defined repeatedly applying the capillary viscosimetry method.

  12. Factors affecting the physical properties of edible composite film prepared from zein and wheat gluten.

    PubMed

    Guo, Xingfeng; Lu, Yanan; Cui, Heping; Jia, Xiangxing; Bai, Hongchao; Ma, Yuxiang

    2012-01-01

    The effects of zein ratio, concentration of glycerol, liquid-solid ratio, ethanol concentration, pH and heat-treatment temperature on the properties of zein/wheat gluten composite films were researched. The results showed that elongation (E) increased with an increase in glycerol or ethanol concentrations, but it first increased and then decreased with increasing zein/wheat gluten ratio, heat-treatment temperature, pH and the ratio of liquid to solid; Tensile strength (TS) increased with the increase in heat-treatment temperature and pH, and decreased with the increase in glycerol or ethanol concentrations, and it reached a maximum value when the ratio of zein/wheat gluten was 20%, but had a minimum value when the ratio of liquid to solid was 8:1; Water Vapor Permeability (WVP) increased with an increase of glycerol concentration and the ratio of liquid to solid and ethanol concentration, but it decreased with increasing zein/wheat gluten ratio, heat treatment temperature, and pH of the film forming solution. PMID:22453930

  13. Variables Affecting Physics Achievement

    ERIC Educational Resources Information Center

    Lawrenz, Frances; Wood, Nathan B.; Kirchhoff, Allison; Kim, Nam Keol; Eisenkraft, Arthur

    2009-01-01

    Much research has focused on student views about physics concepts, with an emphasis on the identification of alternative conceptions, and how curricula and professional development may ameliorate the situation. However, there has been little work on determining the extent of, and in separating, the student and teacher/classroom level variables…

  14. Drying Characteristics and Physical and Nutritional Properties of Shrimp Meat as Affected by Different Traditional Drying Techniques.

    PubMed

    Akonor, P T; Ofori, H; Dziedzoave, N T; Kortei, N K

    2016-01-01

    The influence of different drying methods on physical and nutritional properties of shrimp meat was investigated in this study. Peeled shrimps were dried separately using an air-oven dryer and a tunnel solar dryer. The drying profile of shrimp meat was determined in the two drying systems by monitoring moisture loss over the drying period. Changes in color, proximate composition, and rehydration capacity were assessed. The rate of moisture removal during solar drying was faster than the air-oven drying. The development of red color during drying was comparable among the two methods, but solar-dried shrimps appeared darker (L (⁎) = 47.4) than the air-oven-dried (L (⁎) = 49.0). Chemical analysis indicated that protein and fat made up nearly 20% and 2% (wb) of the shrimp meat, respectively. Protein and ash content of shrimp meat dried under the two dryer types were comparable but fat was significantly (p < 0.05) higher in oven-dried meat (2.1%), compared to solar-dried meat (1.5%). Although rehydration behavior of shrimp from the two drying systems followed a similar pattern, solar-dried shrimp absorbed moisture more rapidly. The results have demonstrated that different approaches to drying may affect the physical and nutritional quality of shrimp meat differently. PMID:27034924

  15. Drying Characteristics and Physical and Nutritional Properties of Shrimp Meat as Affected by Different Traditional Drying Techniques

    PubMed Central

    Ofori, H.; Dziedzoave, N. T.; Kortei, N. K.

    2016-01-01

    The influence of different drying methods on physical and nutritional properties of shrimp meat was investigated in this study. Peeled shrimps were dried separately using an air-oven dryer and a tunnel solar dryer. The drying profile of shrimp meat was determined in the two drying systems by monitoring moisture loss over the drying period. Changes in color, proximate composition, and rehydration capacity were assessed. The rate of moisture removal during solar drying was faster than the air-oven drying. The development of red color during drying was comparable among the two methods, but solar-dried shrimps appeared darker (L⁎ = 47.4) than the air-oven-dried (L⁎ = 49.0). Chemical analysis indicated that protein and fat made up nearly 20% and 2% (wb) of the shrimp meat, respectively. Protein and ash content of shrimp meat dried under the two dryer types were comparable but fat was significantly (p < 0.05) higher in oven-dried meat (2.1%), compared to solar-dried meat (1.5%). Although rehydration behavior of shrimp from the two drying systems followed a similar pattern, solar-dried shrimp absorbed moisture more rapidly. The results have demonstrated that different approaches to drying may affect the physical and nutritional quality of shrimp meat differently. PMID:27034924

  16. Physical properties of asteroids

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.

    1986-01-01

    The physical properties of asteroids were studied by telescopic observations and laboratory and theoretical work. Spectrophotometry from 0.3 to 1.1 microns and 1.2, 1.6 and 2.2 micron photometry allow spectral-compositional classification of asteroids. Based on laboratory data and telescopic observations, it was found that infrared measurements at 1.2, 1.6 and 2.2 microns provide a relatively rapid and accurate method for the classification of minor planets and are important in comparing asteroids with meteorites. This technique was proven and employed in an expanded survey of Apollo-Amor-Aten and other unusual asteroids recently scanned by IRAS.

  17. Physical properties of DDGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many research studies have examined chemical properties and nutritional characteristics of DDGS, especially in terms of utilization as livestock feed ingredients, their digestibilities, and resulting animal performance. Up until just a few years ago, however, no information was available regarding ...

  18. [PHYSICAL PROPERTIES OF PLASTER BANDAGES].

    PubMed

    Antabak, Anko; Barisić, Branimir; Andabak, Matej; Bradić, Lucija; Brajcinović, Melita; Haramina, Tatjana; Haluzan, Damir; Fuchs, Nino; Durkovir, Selena; Curković, Selena; Luetić, Tomislav; Sisko, Jerko; Prlić, Ivica

    2015-01-01

    The physical properties of plaster bandages are a very important factor in achieving the basic functions of immobilization (maintaining bone fragments in the best possible position), which directly affects the speed and quality of fracture healing. This paper compares the differences between the physical properties of plaster bandages (mass, specific weight, drying rate, elasticity and strength) and records the differences in plaster modeling of fast bonding 10 cm wide plaster bandages, from three different manufacturers: Safix plus (Hartmann, Germany), Cellona (Lohman Rauscher, Austria) and Gipsan (Ivo Lola Ribar ltd., Croatia). Plaster tiles from ten layers of plaster, dimension 10 x 10 cm were made. The total number of tiles from each manufacturer was 48. The water temperature of 22 °C was used for the first 24 tiles and 34 'C was used for the remainder. The average specific weight of the original packaging was: Cellona (0.52 g/cm3), Gipsan (0.50 g/cm3), Safix plus (0.38 g/cm3). Three days after plaster tile modeling an average specific weight of the tiles was: Gipsan (1.15 g/cm3), Safix plus (1.00 g/cm3), Cellona (1.10 g/cm3). The average humidity of 50% for Safix plus and Cellona plaster tiles was recorded 18 hours after modeling, while for the Gipsan plaster tiles, this humidity value was seen after 48 hours. On the third day after plaster modeling the average humidity of the plaster tiles was 30% for Gipsan, 24% for Safix and 16% for Cellona. Cellona plaster tiles made with 34 °C water achieved the highest elasticity (11.75±3.18 MPa), and Gipsan plaster tiles made with 22 °C had the lowest (7.21±0.9 MPa). Cellona plaster tiles made with 34 °C water showed maximum material strength (4390±838 MPa), and Gipsan plaster tiles made with 22 °C water showed the lowest material strength (771±367 MPa). The rigidity and strength of Cellona and Gipsan plaster are higher in tiles made in warmer water, and for Safix plus are higher in tiles made in cooler water

  19. Physical properties of asteroids

    NASA Technical Reports Server (NTRS)

    Veeder, Glenn J.

    1988-01-01

    Infrared photometry at 1.2, 1.6 and 2.2 micrometer provides a relatively rapid and accurate method for the classification of asteroids and is important for comparison with laboratory measurements of meteorites and other possible compositional analogues. Extension beyond the visual is espicially useful for minerals which have strong characteristic infrared colors such as olivine in the A class asteroids. Radiometry at long infrared wavelengths is important for deriving basic physical parameters (via thermal models) such as size and albedo which in turn enables the conversion of relative colors to absolute reflectances. In particular, albedos are the only way to distinguish among the otherwise ambiguous E, M and P classes of asteroids. Infrared observations of 15 asteroids were made at the NASA infrared Telescope Facility (IRTF) on Mauna Kea in 1987. Researchers completed the analysis of 22 Aten, Apollo and Amor asteroids. Results include albedos and diameters for these objects as well as the identification of the first known class M and Class E near-Earth asteroids. The standard thermal model appears to be inadequate for some of these small asteroids because of their coarse regolith, so researchers constructed a rotating thermal model for such asteroids. They have identified a subtle systematic difference between the sub-populations of large and small IRAS asteroids as well as several anomalous objects.

  20. Physical metallurgical basis for heat-affected zone and base-plate properties of a microalloyed HSLA steel. Final report 1984-1986

    SciTech Connect

    Nichting, R.A.; Brown, E.L.

    1986-12-01

    The overall objective of this study was to elucidate the processing structure/property relationship associated with the heat-affected zone (HAZ) produced in an HSLA microalloyed steel during arc welding. Single-pass submerged arc welds on a Nb-V microalloyed steel were made with variable heat input. The thermal cycle as a function of heat input and position in the HAZ was determined experimentally in the course of welding. In addition, weld simulations were produced for selected heat inputs and HAZ locations. The evolution of austenite and transformation product microstructure as well as the state of microalloy precipitation was monitored as a function of heat input and HAZ location primarily via light and electron microscopy on specimens from actual welds and simulation specimens. These observations were utilized to support efforts to model austenite microstructure evolution and continuous-cooling transformation behavior in the HAZ. Charpy-impact-toughness testing was performed on actual weld HAZ specimens and specimens of selected simulation specimens. Impact transition curves were determined, and the microsctructure through which fracture propagated was correlated with impact transition energies and fracture surface morphology determined via scanning electron microscopy.

  1. Dynamic molecular crystals with switchable physical properties.

    PubMed

    Sato, Osamu

    2016-06-21

    The development of molecular materials whose physical properties can be controlled by external stimuli - such as light, electric field, temperature, and pressure - has recently attracted much attention owing to their potential applications in molecular devices. There are a number of ways to alter the physical properties of crystalline materials. These include the modulation of the spin and redox states of the crystal's components, or the incorporation within the crystalline lattice of tunable molecules that exhibit stimuli-induced changes in their molecular structure. A switching behaviour can also be induced by changing the molecular orientation of the crystal's components, even in cases where the overall molecular structure is not affected. Controlling intermolecular interactions within a molecular material is also an effective tool to modulate its physical properties. This Review discusses recent advances in the development of such stimuli-responsive, switchable crystalline compounds - referred to here as dynamic molecular crystals - and suggests how different approaches can serve to prepare functional materials. PMID:27325090

  2. Cesium Eluate Physical Property Determination

    SciTech Connect

    Baich, M.A.

    2001-02-13

    Two bench-scale process simulations of the proposed cesium eluate evaporation process of concentrating eluate produced in the Hanford Site Waste Treatment Plant were conducted. The primary objective of these experiments was to determine the physical properties and the saturation concentration of the eluate evaporator bottoms while producing condensate approximately 0.50 molar HN03.

  3. Physical properties of psyllium seed

    NASA Astrophysics Data System (ADS)

    Ahmadi, R.; Kalbasi-Ashtari, A.; Gharibzahedi, S.

    2012-02-01

    Physical properties ie dimensions, volume, surface area, sphericity, true density, porosity, angle of repose, terminal velocity, static and dynamic friction coefficients on plywood, stainless steel, glass and galvanized iron sheet, force required for initiating seed rupture in horizontal and vertical orientations of psyllium seed at a moisture content of 7.2% (w.b.)were determined.

  4. Chemical and physical properties affecting strontium distribution coefficients of surficial-sediment samples at the Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Liszewski, M.J.; Rosentreter, J.J.; Miller, Karl E.; Bartholomay, R.C.

    2000-01-01

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, conducted a study to determine strontium distribution coefficients (K(d)s) of surficial sediments at the Idaho National Engineering and Environmental Laboratory (INEEL). Batch experiments using synthesized aqueous solutions were used to determine K(d)s, which describe the distribution of a solute between the solution and solid phase, of 20 surficial-sediment samples from the INEEL. The K(d)s for the 20 surficial-sediment samples ranged from 36 to 275 ml/g. Many properties of both the synthesized aqueous solutions and sediments used in the experiments also were determined. Solution properties determined were initial and equilibrium concentrations of calcium, magnesium, and strontium, pH and specific conductance, and initial concentrations of potassium and sodium. Sediment properties determined were grain-size distribution, bulk mineralogy, whole-rock major-oxide and strontium and barium concentrations, and Brunauer-Emmett-Teller (BET) surface area. Solution and sediment properties were correlated with strontium K(d)s of the 20 surficial sediments using Pearson correlation coefficients. Solution properties with the strongest correlations with strontium K(d)s were equilibrium pH and equilibrium calcium concentration correlation coefficients, 0.6598 and -0.6518, respectively. Sediment properties with the strongest correlations with strontium K(d)s were manganese oxide (MnO), BET surface area, and the >4.75-mm-grain-size fraction correlation coefficients, 0.7054, 0.7022, and -0.6660, respectively. Effects of solution properties on strontium K(d)s were interpreted as being due to competition among similarly charged and sized cations in solution for strontium-sorption sites; effects of sediment properties on strontium K(d)s were interpreted as being surface-area related. Multivariate analyses of these solution and sediment properties resulted in r2 values of 0

  5. Teaching Affective Qualities in Physical Education

    ERIC Educational Resources Information Center

    Heidorn, Brent; Welch, Mindy M.

    2010-01-01

    Physical educators at all levels have observed learners in a school-based physical education setting as well as physical activity or sport settings outside of organized school curricula demonstrating behaviors deemed inappropriate or inconsistent with professional standards. Because sport is such a public, social, and international phenomenon,…

  6. Physical and Dynamical Properties of Asteroid Families

    NASA Astrophysics Data System (ADS)

    Zappalà, V.; Cellino, A.; dell'Oro, A.; Paolicchi, P.

    2002-03-01

    The availability of a number of statistically reliable asteroid families and the independent confirmation of their likely collisional origin from dedicated spectroscopic campaigns has been a major breakthrough, making it possible to develop detailed studies of the physical properties of these groupings. Having been produced in energetic collisional events, families are an invaluable source of information on the physics governing these phenomena. In particular, they provide information about the size distribution of the fragments, and on the overall properties of the original ejection velocity fields. Important results have been obtained during the last 10 years on these subjects, with important implications for the general understanding of the collisional history of the asteroid main belt, and the origin of near-Earth asteroids. Some important problems have been raised from these studies and are currently debated. In particular, it has been difficult so far to reconcile the inferred properties of family-forming events with current understanding of the physics of catastrophic collisional breakup. Moreover, the contribution of families to the overall asteroid inventory, mainly at small sizes, is currently controversial. Recent investigations are also aimed at understanding which kind of dynamical evolution might have affected family members since the time of their formation. In addition to potential consequences on the interpretation of current data, there is some speculative possibility of obtaining some estimate of the ages of these groupings. Physical characterization of families will likely represent a prerequisite for further advancement in understanding the properties and history of the asteroid population.

  7. Changes in the electro-physical properties of MCT epitaxial films affected by a plasma volume discharge induced by an avalanche beam in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Grigoryev, D. V.; Voitsekhovskii, A. V.; Lozovoy, K. A.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    In this paper the influence of the plasma volume discharge of nanosecond duration formed in a non-uniform electric field at atmospheric pressure on samples of epitaxial films HgCdTe (MCT) films are discussed. The experimental data show that the action of pulses of nanosecond volume discharge in air at atmospheric pressure leads to changes in the electrophysical properties of MCT epitaxial films due to formation of a near-surface high- conductivity layer of the n-type conduction. The preliminary results show that it is possible to use such actions in the development of technologies for the controlled change of the properties of MCT.

  8. Regenerator matrix physical property data

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.

    1980-01-01

    Among several cellular ceramic structures manufactured by various suppliers for regenerator application in a gas turbine engine, three have the best potential for achieving durability and performance objectives for use in gas turbines, Stirling engines, and waste heat recovery systems: (1) an aluminum-silicate sinusoidal flow passage made from a corrugated wate paper process; (2) an extruded isosceles triangle flow passage; and (3) a second generation matrix incorporating a square flow passage formed by an embossing process. Key physical and thermal property data for these configurations presented include: heat transfer and pressure drop characteristics, compressive strength, tensile strength and elasticity, thermal expansion characteristics, chanical attack, and thermal stability.

  9. Physical properties of asteroid families

    NASA Astrophysics Data System (ADS)

    Masiero, J.; DeMeo, F.; Kasuga, T.; Parker, A.

    2014-07-01

    Asteroid families are created when a parent body undergoes a cratering or collisional disruption event, forming a population of smaller asteroids that initially have orbital elements similar to the parent. Members of asteroid families should also show a compositional similarity indicative of their lineage. This can be observed by comparing colors, spectra, and albedos of family members to each other and to the background population, and can be used to improve family associations by rejecting background objects and extending the search space. In this talk, we review the new data that has become available over the last decade from large-scale surveys of asteroid physical properties, recent work using these datasets to investigate family properties, and how this wealth of information has expanded our understanding of the formation and evolution of asteroid families. This work will be detailed in an upcoming chapter of the ''Asteroids IV'' book in 2015.

  10. Psychometric properties of the Affect Phobia Test.

    PubMed

    Frankl, My; Philips, Björn; Berggraf, Lene; Ulvenes, Pål; Johansson, Robert; Wennberg, Peter

    2016-10-01

    The aim of this study was to make the first evaluation of the psychometric properties of the Affect Phobia Test, using the Swedish translation - a test developed to screen the ability to experience, express and regulate emotions. Data was collected from a clinical sample (N = 82) of patients with depression and/or anxiety participating in randomized controlled trial of Internet-based affect-focused treatment, and a university student sample (N = 197). The internal consistency for the total score was satisfactory (Clinical sample α = 0.88/Student sample α = 0.84) as well as for all the affective domains, except Anger/Assertion (α = 0.44/0.36), Sadness/Grief (α = 0.24/0.46) and Attachment/Closeness (α = 0.67/0.69). Test retest reliability was satisfactory (ICC > 0.77) for the total score and for all the affective domains except for Sadness/Grief (ICC = 0.04). The exploratory factor analysis resulted in a six-factor solution and did only moderately match the test's original affective domains. An empirical cut-off between the clinical and the university student sample were calculated and yielded a cut-off of 72 points. As expected, the Affect Phobia test showed negative significant correlations in the clinical group with measures on depression (rxy  = -0.229; p < 0.01) and anxiety (rxy  = -0.315; p < 0.05). The conclusion is that the psychometric properties are satisfactory for the total score of the Affect Phobia Test but not for some of the test's affective domains. Consequently the domains should not be used as subscales. The test can discriminate between individuals who seek help for psychological problems and those who do not. PMID:27461917

  11. What Is Beautiful Feels Good: Affective Reactions to Physical Attractiveness.

    ERIC Educational Resources Information Center

    Carducci, Bernardo J.; Ogan, Tamra A.

    Previous research has consistently demonstrated that variations in physical attractiveness elicit different evaluative and behavioral responses. To assess differences in affective responses to variations in physical attractiveness and the affect of sex on those responses, 76 college students (31 male and 45 female) viewed colored slides of an…

  12. Physical parameters affecting living cells in space.

    PubMed

    Langbein, D

    1986-01-01

    The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present. PMID:11537842

  13. Physical properties and mantle dynamics

    SciTech Connect

    Shankland, T.J.; Johnson, P.A.; McCall, K.R.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Because planetary interiors are remote, laboratory methods and associated theory are an essential step for interpreting geophysical measurements in terms of quantities that are needed for understanding Earth--temperature, composition, stress state, history, and hazards. One objective is the study of minerals and rocks as materials using experimental methods; another is to develop new methods, as in high pressure research, codes for computation in rock/soil physics, or nuclear-based analysis. Accomplishments include developing a single-crystal x-ray diffraction apparatus with application to materials at extremely high pressure and temperature; P-V-T equations of state and seismic velocity measurements for understanding the composition of Earth`s outer 1,000 km; creating computational tools to explain complex stress-strain histories of rocks; and measuring tungsten/thorium ratios W/Th that agree with the hypothesis that Earth accreted heterogeneously. Work performed in this project applies to geosciences, geothermal energy, mineral and rock properties, seismic detection, and isotope dating.

  14. How forest fire affects the chemical properties of Andisols

    NASA Astrophysics Data System (ADS)

    Neris, Jonay; Hernández-Moreno, José Manuel; Tejedor, Marisa; Jiménez, Concepción

    2013-04-01

    Forest fires affect soil physical, chemical and mineralogical properties. However, the magnitude of these changes depends on both fire properties, such as the peak temperature reached and duration or depth achieved; and initial soil properties (soil type) as for example soil moisture, organic matter content or soil structure characteristics. Although many works have studied the effects of fire on the chemical properties of different soil types, its effects on Andisols properties have been omitted until now. Taking into account the high susceptibility to drying processes showed by the properties of Andisols affected by land use changes, it could be expected that the fire effects on their chemical properties may differ from those shown by other types of soil. In this study, the main chemical properties in addition to the specific andic properties of burned pine forest Andisols were compared to their unburned control. The chemical properties of ashes found after fire at the soil surface were also studied. The results show a slightly increase in EC and pH after the fire due mainly to the higher content of cations of the soil solution. Ashes derived from the vegetation and soil organic matter consumption by fire could be the main source of these elements in the soils after a fire, as they showed a high cation content. However, the rise in EC and pH is lower than the reported by most authors for other soil types. This behaviour could be related to the higher organic matter content of this soils, even after fire, and the buffering effect of organic compounds on the soil EC and pH changes after the fire. As other authors have shown, a decrease in both the total and active organic content after the fire was also observed as a result of the fire event. The specific andic properties of Andisols were also affected. The P retention of these soils slightly declines as a consequence of fire, while the content of short-range-order products was also modified, but no statistically

  15. Coating agents affected toward magnetite nanoparticles properties

    NASA Astrophysics Data System (ADS)

    Petcharoen, Karat; Sirivat, Anuvat

    2012-02-01

    Magnetite nanoparticles --MNPs-- are innovative materials used in biological and medical applications. They respond to magnetic field through the superparamagnetic behavior at room temperature. In this study, the MNPs were synthesized via the chemical co-precipitation method using various coating agents. Fatty acids, found naturally in the animal fats, can be used as a coating agent. Oleic acid and hexanoic acid were chosen as the surface modification agents to study the improvement in the suspension of MNPs in water and the magnetite properties. Suspension stability, particle size, and electrical conductivity of MNPs are critically affected by the modification process. The well-dispersed MNPs in water can be improved by the surface modification and the oleic acid coated MNPs possess excellent suspension stability over 1 week. The particle size of MNPs increases up to 40 nm using oleic acid coated MNPs. The electrical conductivity of the smallest particle size is 1.3x10-3 S/cm, which is 5 times higher than that of the largest particle, suggesting potential applications as a biomedical material under both of the electrical and magnetic fields.

  16. Gender Differences in Introductory University Physics Performance: The Influence of High School Physics Preparation and Affect

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra

    2006-12-01

    The attrition of females studying physics after high school has been a continuing concern for the physics education community. If females are well prepared, feel confident, and do well in introductory college physics, they may be inclined to study physics further. This quantitative study uses HLM to identify factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that predict female and male performance in introductory college physics. The study includes controls for student demographic and academic background characteristics, and the final dataset consists of 1973 surveys from 54 introductory college physics classes. The results highlight high school physics and affective experiences that differentially predict female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believe that high school physics would help in university physics. There were also experiences that similarly predict female and male performance. The results paint a dynamic picture of the factors from high school physics and the affective domain that influence the future physics performance of females and males. The implication is that there are many aspects to the teaching of physics in high school that, although widely used and thought to be effective, need reform in their implementation in order to be fully beneficial to females and/or males in college.

  17. Synthesis and physical properties of pennycress estolides and esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new series of pennycress (Thlasphi arvense L.) based free-acid estolides was synthesized by an acid-catalyzed condensation reaction, followed by an esterification reaction to produce the 2-ethylhexyl (2-EH) esters of the initial estolides. The physical properties of the estolides are highly affect...

  18. Tillage effects on soil physical properties, sugarbeet yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage influences the soil-water-plant ecosystem thereby affecting crop yield and quality. The effects of tillage on soil physical properties, sugarbeet (Beta vulgaris L.) yield and quality were evaluated. A field study comprises of three tillage practices: no tillage (NT) shallow (ST) of 10-cm and...

  19. Physical properties of cumin and caraway seeds

    NASA Astrophysics Data System (ADS)

    Zare, D.; Bakhshipour, A.; Chen, G.

    2013-12-01

    Physical properties of cumin and caraway seeds were measured and compared at constant moisture content of 7.5% w.b. The average thousand mass of grain, mean length, mean width, mean thickness, equivalent diameter, geometric mean diameter, surface area, volume, sphericity, aspect ratio, true density, bulk density and porosity were measured for cumin and caraway. There are significant differences (p<0.01) in most physical properties of cumin and caraway, except porosity and sphericity

  20. Physical properties of immiscible polymers

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    The demixing of immiscible polymers in low gravity is discussed. Applications of knowledge gained in this research will provide a better understanding of the role of phase segregation in determining the properties of polymer blends made from immiscible polymers. Knowledge will also be gained regarding the purification of biological materials by partitioning between the two liquid phases formed by solution of the polymers polyethylene glycol and dextran in water. Testing of new apparatus for space flight, extension of affinity phase partitioning, refinement of polymer chemistry, and demixing of isopycnic polymer phases in a one gravity environment are discussed.

  1. The trinucleons: Physical observables and model properties

    SciTech Connect

    Gibson, B.F.

    1992-05-01

    Our progress in understanding the properties of {sup 3}H and {sup 3}He in terms of a nonrelativistic Hamiltonian picture employing realistic nuclear forces is reviewed. Trinucleon model properties are summarized for a number of contemporary force models, and predictions for physical observables are presented. Disagreement between theoretical model results and experimental results are highlighted.

  2. The trinucleons: Physical observables and model properties

    SciTech Connect

    Gibson, B.F.

    1992-01-01

    Our progress in understanding the properties of {sup 3}H and {sup 3}He in terms of a nonrelativistic Hamiltonian picture employing realistic nuclear forces is reviewed. Trinucleon model properties are summarized for a number of contemporary force models, and predictions for physical observables are presented. Disagreement between theoretical model results and experimental results are highlighted.

  3. Structure and physical properties of silkworm cocoons

    PubMed Central

    Chen, Fujia; Porter, David; Vollrath, Fritz

    2012-01-01

    Silkworm cocoons have evolved a wide range of different structures and combinations of physical and chemical properties in order to cope with different threats and environmental conditions. We present our observations and measurements on 25 diverse types of cocoons in a first attempt to correlate physical properties with the structure and morphology of the cocoons. These two architectural parameters appear to be far more important than the material properties of the silk fibres themselves. We consider tensile and compressive mechanical properties and gas permeation of the cocoon walls, and in each case identify mechanisms or models that relate these properties to cocoon structure, usually based upon non-woven fibre composites. These properties are of relevance also for synthetic non-woven composite materials and our studies will help formulate bio-inspired design principles for new materials. PMID:22552916

  4. Physical Properties of Centaur Objects

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Centaurs are objects in unstable orbits that cross the orbits of the giant planets. They are presumed to be recent additions to the planetary zone of the Solar System, having been dynamically perturbed from the Kulper Disk by the gravitational action of Neptune. Telescopic observations of Centaurs are important because they give us a view of the composition (and in some cases cometary activity) of large bodies that are normally to far from the Sun to be studied in detail. This paper reports on physical observations, primarily through spectroscopy, of the compositions of a small number of Centaurs that have been studied to date. In particular, the composition of 5145 Pholus is reviewed, following the published work of Crulkshank et al., in which compositional models that fit the spectrum well included H2O ice, the organic solid Titan tholin, a light hydrocarbon ice (e.g., CH3OH), the silicate mineral olivine, and amorphous carbon. The Centaur 1997 CU(26) shows evidence for H2O ice, but nothing else is yet identified.

  5. Tillage system affects microbiological properties of soil

    NASA Astrophysics Data System (ADS)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  6. Physical properties of molten carbonate electrolyte

    SciTech Connect

    Kojima, T.; Yanagida, M.; Tanimoto, K.

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  7. Food properties affecting the digestion and absorption of carbohydrates.

    PubMed

    Björck, I; Granfeldt, Y; Liljeberg, H; Tovar, J; Asp, N G

    1994-03-01

    Carbohydrate foods differ considerably in their effects on postprandial glucose and insulin responses. Qualitative differences among starchy foods are particularly intriguing because of the dominance of starch in human diets. This paper focuses on food properties in cereal (eg, pasta, bread, Arepas, and porridge) and legume products (eg, red kidney beans and lentils) that affect metabolic responses to starch. Studies in healthy subjects have found that postprandial blood glucose and insulin responses are greatly affected by food structure. Any process that disrupts the physical or botanical structure of food ingredients will increase the plasma glucose and insulin responses. The glycemic responses to bread products were reduced by the use of ingredients with an intact botanical or physical structure or a high amylose content or by enrichment with viscous dietary fiber. However, the important of a moderate increase in the amylose-amylopectin ratio and the naturally occurring levels of viscous cereal fiber is less clear. The rate of starch digestion in vitro was shown to be a key determinant of metabolic responses to most products. Assuming the sample preparation mimics chewing, in vitro enzymic procedures can be used to facilitate ranking. One such procedure, based on chewed rather than artificially disintegrated products, was recently developed and correlates well with glycemic and insulinemic indices for several starchy foods. PMID:8116553

  8. Do cluster properties affect the quenching rate?

    NASA Astrophysics Data System (ADS)

    Raichoor, A.; Andreon, S.

    2014-10-01

    The quenching rate is known to depend on galaxy stellar mass and environment, however, possible dependences on the hosting halo properties, such as mass, richness, and dynamical status, are still debated. The determination of these dependences is hampered by systematics, induced by noisy estimates of cluster mass or by the lack of control on galaxy stellar mass, which may mask existing trends or introduce fake trends. We studied a sample of local clusters (20 with 0.02 < z < 0.1 and log (M200/M⊙) ≳ 14), selected independent of the galaxy properties under study, having homogeneous optical photometry and X-ray estimated properties. Using those top quality measurements of cluster mass, hence of cluster scale, richness, iron abundance, and cooling time/presence of a cool-core, we study the simultaneous dependence of quenching on these cluster properties on galaxy stellar mass M and normalised cluster-centric distance r/r200. We found that the quenching rate can be completely described by two variables only, galaxy stellar mass and normalised cluster-centric distance, and is independent of halo properties (mass, richness, iron abundance, and central cooling time/presence of a cool-core). These halo properties change, in most cases, by less than 3% the probability that a galaxy is quenched, once the mass-size (M200 - r200) scaling relation is accounted for through cluster-centric distance normalisation. Appendix A is available in electronic form at http://www.aanda.org

  9. Physical Properties of Gas Hydrates: A Review

    DOE PAGESBeta

    Gabitto, Jorge F.; Tsouris, Costas

    2010-01-01

    Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16   m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less

  10. Physical Properties of Gas Hydrates: A Review

    SciTech Connect

    Gabitto, Jorge; Tsouris, Costas

    2010-01-01

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  11. Physical and chemical properties of refrigeration lubricants

    SciTech Connect

    Sunami, Motoshi

    1999-07-01

    The physical and chemical properties of refrigeration lubricants are discussed. Although much attention has been focused on the performance of candidate lubricants for use with hydrofluorocarbons (HFCs) in order to obtain satisfactory lubrication performance in compressors, the properties of the lubricants themselves have not been well discussed. In this paper, the properties of refrigeration lube base stocks and of lube-refrigerant mixtures are described, specifically the viscosity, density, and refrigerant solubility, the change in viscosity and density due to solution with HFCs, and the insulation properties of the base stocks and the refrigerant mixture.

  12. Factors Affecting the Textural Properties of Pork

    ERIC Educational Resources Information Center

    Holmer, Sean Frederick

    2009-01-01

    Research concerning rate and extent of tenderization has focused on beef or lamb. However, it is critical to understand these processes in pork, especially as retailers move towards minimally processed or non-enhanced product. The objectives of this experiment were to evaluate the textural properties of pork (firmness and tenderness) by examining…

  13. Aerosol physical properties from satellite horizon inversion

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.

    1973-01-01

    The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.

  14. Physical properties of cytoplasmic intermediate filaments.

    PubMed

    Block, Johanna; Schroeder, Viktor; Pawelzyk, Paul; Willenbacher, Norbert; Köster, Sarah

    2015-11-01

    Intermediate filaments (IFs) constitute a sophisticated filament system in the cytoplasm of eukaryotes. They form bundles and networks with adapted viscoelastic properties and are strongly interconnected with the other filament types, microfilaments and microtubules. IFs are cell type specific and apart from biochemical functions, they act as mechanical entities to provide stability and resilience to cells and tissues. We review the physical properties of these abundant structural proteins including both in vitro studies and cell experiments. IFs are hierarchical structures and their physical properties seem to a large part be encoded in the very specific architecture of the biopolymers. Thus, we begin our review by presenting the assembly mechanism, followed by the mechanical properties of individual filaments, network and structure formation due to electrostatic interactions, and eventually the mechanics of in vitro and cellular networks. This article is part of a Special Issue entitled: Mechanobiology. PMID:25975455

  15. Physical Properties of Cometary Nucleus Candidates

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Hillman, John (Technical Monitor)

    2003-01-01

    In this proposal we aim to study the physical properties of the Centaurs and the dead comets, these being the precursors to, and the remnants from, the active cometary nuclei. The nuclei themselves are very difficult to study, because of the contaminating effects of near-nucleus coma. Systematic investigation of the nuclei both before they enter the zone of strong sublimation and after they have depleted their near-surface volatiles should neatly bracket the properties of these objects, revealing evolutionary effects.

  16. City snow's physicochemical property affects snow disposal

    NASA Astrophysics Data System (ADS)

    Dovbysh, V. O.; Sharukha, A. V.; Evtin, P. V.; Vershinina, S. V.

    2015-10-01

    At the present day the industrial cities run into severe problem: fallen snow in a city it's a concentrator of pollutants and their quantity is constantly increasing by technology development. Pollution of snow increases because of emission of gases to the atmosphere by cars and factories. Large accumulation of polluted snow engenders many vexed ecological problems. That's why we need a new, non-polluting, scientifically based method of snow disposal. This paper investigates polluted snow's physicochemical property effects on snow melting. A distinctive feature of the ion accelerators with self-magnetically insulated diode is that there.

  17. Gender differences in introductory university physics performance: The influence of high school physics preparation and affect

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra Sana

    The attrition of females studying physics after high school is a concern to the science education community. Most undergraduate science programs require introductory physics coursework. Thus, success in introductory physics is necessary for students to progress to higher levels of science study. Success also influences attitudes; if females are well-prepared, feel confident, and do well in introductory physics, they may be inclined to study physics further. This quantitative study using multilevel modeling focused on determining factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that influenced female and male performance in introductory university physics. The study controlled for some university/course level characteristics as well as student demographic and academic background characteristics. The data consisted of 1973 surveys from 54 introductory physics courses within 35 universities across the US. The results highlight high school physics and affective experiences that differentially influenced female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects, cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believed that high school physics would help in university physics. There were also experiences that had a similar influence on female and male performance. Positively related to performance were: covering fewer topics for longer periods of time, the history of physics as a recurring topic, physics-related videos, and test/quiz questions that involved calculations and/or were drawn from standardized tests. Negatively related to performance were: student-designed projects, reading/discussing labs the day before performing them, microcomputer based laboratories, discussion after demonstrations, and family

  18. Waste Feed Evaporation Physical Properties Modeling

    SciTech Connect

    Daniel, W.E.

    2003-08-25

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software.

  19. Are physicians' ratings of pain affected by patients' physical attractiveness?

    PubMed

    Hadjistavropoulos, H D; Ross, M A; von Baeyer, C L

    1990-01-01

    The degree to which physical attractiveness and nonverbal expressions of pain influence physicians' perceptions of pain was investigated. Photographs of eight female university students were represented in four experimental conditions created by the manipulation of cosmetics, hairstyles, and facial expressions: (a) attractive-no pain, (b) attractive-pain, (c) unattractive-no pain, and (d) unattractive-pain. Each photograph was accompanied by a brief description of the patient's pain problem that was standard across conditions. Medical residents (N = 60) viewed the photographs and rated each patient's pain, distress, negative affective experience, health, personality, blame for the situation, and the physician's own solicitude for the patient. The results showed that physicians' ratings of pain were influenced both by attractiveness of patients and by nonverbal expressions of pain. Unattractive patients, and patients who were expressing pain, were perceived as experiencing more pain, distress, and negative affective experiences than attractive patients and patients who were not expressing pain. Unattractive patients also received higher ratings of solicitude on the doctor's part and lower ratings of health than attractive patients. Physician's assessments of pain appear to be influenced by the physical attractiveness of the patient. PMID:2367884

  20. Physical Properties of Hanford Transuranic Waste

    SciTech Connect

    Berg, John C.

    2010-03-25

    The research described herein was undertaken to provide needed physical property descriptions of the Hanford transuranic tank sludges under conditions that might exist during retrieval, treatment, packaging and transportation for disposal. The work addressed the development of a fundamental understanding of the types of systems represented by these sludge suspensions through correlation of the macroscopic rheological properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of the work have advanced existing understanding of the sedimentation and aggregation properties of complex colloidal suspensions. Bench scale models were investigated with respect to their structural, colloidal and rheological properties that should be useful for the development and optimization of techniques to process the wastes at various DOE sites.

  1. Physical properties of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Clark, Pamela E.

    1988-01-01

    The global physical properties of Mercury are summarized with attention given to its figure and orbital parameters. The combination of properties suggests that Mercury has an extensive iron-rich core, possibly with a still-functioning dynamo, which is 42 percent of the interior by volume. Mercury's three major axes are comparable in size, indicating that the planet is a triaxial ellipsoid rather than an oblate spheroid. In terms of the domination of its surface by an intermediate plains terrane, it is more Venus- or Mars-like; however, due to the presence of a large metallic magnetic core, its interior may be more earth-like.

  2. F-Canyon Sludge Physical Properties

    SciTech Connect

    Poirier, M. R.; Hansen, P. R.; Fink, S. D.

    2005-08-22

    The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, D&D requested assistance from Savannah River National Laboratory (SRNL) personnel to determine the pertinent physical properties to effectively mobilize the sludge from these tanks (Tanks 804, 808, and 809). SDD provided SRNL with samples of the sludge from Tanks 804, 808, and 809. The authors measured the following physical properties for each tank: particle settling rate, shear strength (i.e., settled solids yield stress), slurry rheology (i.e., yield stress and consistency), total solids concentration in the sludge, soluble solids concentration of the sludge, sludge density, and particle size distribution.

  3. Physical properties of Dowell Chemical Seal Ring

    SciTech Connect

    Benny, H.L.

    1985-07-01

    This document outlines the tests, procedures, and results of an evaluation program for Dowell's Chemical Seal Ring.'' The testing reported here deals with the physical properties of density, compression, tensile strength, elongation, and a push-out/bond strength test. Dowell's Chemical Seal Ring'' is proposed as a gasket-like seal between grout layers in the annulus around the Exploratory Shaft steel liner. 4 refs., 1 fig., 4 tabs.

  4. Chemical and Physical Properties of Tantalum Powder

    NASA Astrophysics Data System (ADS)

    Purushotham, Y.; Balaji, T.; Kumar, Arbind; Govindaiah, R.; Sharma, M. K.; Sethi, V. C.; Prakash, T. L.

    The present work is intended to produce capacitor grade Tantalum powder by sodium reduction of potassium tantalum fluoride prepared from an indigenous ore source. The powder has been characterized for its chemical and physical properties, and compared with the commercially available powders. It is found that indigenous powder has higher impurity levels which could, however, be reduced to acceptance limits. The average particle size is within the prescribed limits.

  5. Physical and biological properties of Bazna waters

    PubMed Central

    TRÂMBIŢAŞ, DAN

    2013-01-01

    The healing properties of Bazna waters and their therapeutic indications have been well known since the 18th century. The objective of the present study was to characterize these waters from physical and biological points of view, and to further analyze the nitrogen compounds, especially NH4+. The following physical parameters of the water were analyzed: density (g/cm3), electric resistivity (Ω·m), electric conductivity (cm−1o−1), salinity, The pH analysis of the biological component was performed on samples from 4 basins. Nitrogen compounds were dosed in the form of ammonium ion (NH4+). The physical and chemical proprieties are similar across the basins. Flora and fauna biological components were identified. Ammonium ions were identified in large quantities, but this did not lead to hygienicaly unclean waters. PMID:26527972

  6. Affective Response to Physical Activity: Testing for Measurement Invariance of the Physical Activity Affect Scale across Active and Non-Active Individuals

    ERIC Educational Resources Information Center

    Carpenter, Laura C.; Tompkins, Sara Anne; Schmiege, Sarah J.; Nilsson, Renea; Bryan, Angela

    2010-01-01

    Affective responses to physical activity are assumed to play a role in exercise initiation and maintenance. The Physical Activity Affect Scale measures four dimensions of an individual's affective response to exercise. Group differences in the interpretation of scale items can impact the interpretability of mean differences, underscoring the need…

  7. Switchgrass affects on soil property changes in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capacity of perennial grasses to affect change in soil properties is well documented but soil property information on switchgrass (Panicum virgatum L.) managed for bioenergy is limited. Potential improvements in near-surface soil function are important should switchgrass be included as a perenn...

  8. Tillage effects on physical properties in two soils of the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage practices profoundly affect soil physical and hydraulic properties. It is essential to select a tillage practice that sustains the soil physical properties required for successful growth of agricultural crops. We evaluated the effects of conventional (CT) and strip (ST) tillage practices on ...

  9. Physical Effort Affects Heatstroke Thermoregulatory Response and Mortality in Rats.

    PubMed

    Geng, Yan; Peng, Na; Liu, Ya-Nan; Li, Xing-Gui; Li, Bing-Lin; Peng, Li-Qiong; Ma, Qiang; Su, Lei

    2015-08-01

    Animals suffering from heatstroke (HS) after physical effort may have different heat-related core temperature (Tc) responses compared with passive HS. In the present study, conscious and unrestrained rats were exposed to ambient temperature (Ta) of 39.5°C ± 0.2°C with or without running (run-heated or rest-heated, respectively) until HS onset, which was defined as the systolic blood pressure starting to drop. In comparison with rest-heated rats, run-heated rats had a significantly shorter latency of HS onset. Physical effort did not have significant influence on hyperthermia severity (43.3°C ± 0.2°C at rest-heated, and 43.4°C ± 0.2°C at run-heated), but it could significantly decrease the thermal load to develop HS (315.1°C ± 37.3°C·min for rest-heated, and 133.5 ± 21.4 °C·min for run-heated). Working component during heat exposure may contribute to a decreased survival rate of HS (46.9% at rest-heated and 31.3% at run-heated). Impaired heat dissipation during recovery may be responsible for relative poor survival of run-heated rats. In both groups, survival was affected by Tc at HS onset and thermal area. Hypothermia (Tc <35°C) developed after HS onset, with no significant difference in Tc,min between the rest-heated and run-heated groups. These thermoregulatory responses to HS after physical effort may provide insight into HS pathophysiology. PMID:26009815

  10. Coupled model of physical and biological processes affecting maize pollination

    NASA Astrophysics Data System (ADS)

    Arritt, R.; Westgate, M.; Riese, J.; Falk, M.; Takle, E.

    2003-04-01

    Controversy over the use of genetically modified (GM) crops has led to increased interest in evaluating and controlling the potential for inadvertent outcrossing in open-pollinated crops such as maize. In response to this problem we have developed a Lagrangian model of pollen dispersion as a component of a coupled end-to-end (anther to ear) physical-biological model of maize pollination. The Lagrangian method is adopted because of its generality and flexibility: first, the method readily accommodates flow fields of arbitrary complexity; second, each element of the material being transported can be identified by its source, time of release, or other properties of interest. The latter allows pollen viability to be estimated as a function of such factors as travel time, temperature, and relative humidity, so that the physical effects of airflow and turbulence on pollen dispersion can be considered together with the biological aspects of pollen release and viability. Predicted dispersion of pollen compares well both to observations and to results from a simpler Gaussian plume model. Ability of the Lagrangian model to handle complex air flows is demonstrated by application to pollen dispersion in the vicinity of an agricultural shelter belt. We also show results indicating that pollen viability can be quantified by an "aging function" that accounts for temperature, humidity, and time of exposure.

  11. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  12. Physical Factors Affecting Outflow Facility Measurements in Mice

    PubMed Central

    Boussommier-Calleja, Alexandra; Li, Guorong; Wilson, Amanda; Ziskind, Tal; Scinteie, Oana Elena; Ashpole, Nicole E.; Sherwood, Joseph M.; Farsiu, Sina; Challa, Pratap; Gonzalez, Pedro; Downs, J. Crawford; Ethier, C. Ross; Stamer, W. Daniel; Overby, Darryl R.

    2015-01-01

    Purpose Mice are commonly used to study conventional outflow physiology. This study examined how physical factors (hydration, temperature, and anterior chamber [AC] deepening) influence ocular perfusion measurements in mice. Methods Outflow facility (C) and pressure-independent outflow (Fu) were assessed by multilevel constant pressure perfusion of enucleated eyes from C57BL/6 mice. To examine the effect of hydration, seven eyes were perfused at room temperature, either immersed to the limbus in saline and covered with wet tissue paper or exposed to room air. Temperature effects were examined in 12 eyes immersed in saline at 20°C or 35°C. Anterior chamber deepening was examined in 10 eyes with the cannula tip placed in the anterior versus posterior chamber (PC). Posterior bowing of the iris (AC deepening) was visualized by three-dimensional histology in perfusion-fixed C57BL/6 eyes and by spectral-domain optical coherence tomography in living CD1 mice. Results Exposure to room air did not significantly affect C, but led to a nonzero Fu that was significantly reduced upon immersion in saline. Increasing temperature from 20°C to 35°C increased C by 2.5-fold, more than could be explained by viscosity changes alone (1.4-fold). Perfusion via the AC, but not the PC, led to posterior iris bowing and increased outflow. Conclusions Insufficient hydration contributes to the appearance of pressure-independent outflow in enucleated mouse eyes. Despite the large lens, AC deepening may artifactually increase outflow in mice. Temperature-dependent metabolic processes appear to influence conventional outflow regulation. Physical factors should be carefully controlled in any outflow studies involving mice. PMID:26720486

  13. Physical Properties of the Glycoprotein Mucin

    NASA Astrophysics Data System (ADS)

    Matthews, Garrett; Davis, William; Superfine, Richard; Boucher, Richard

    2003-03-01

    Epithelial cell surfaces are covered by a protective gel known as mucus. The physiological function of this gel depends on its rheological properties, and these properties are largely derived from the secreted glycoprotein mucin. The genetic disease Cystic Fibrosis (CF) is characterized by the adhesion of thick, viscous mucus on these tissues. In the lungs, this results in the interruption of mucus transport thus compromising the first line of defense against pathogens in these tissues. In order to restore the flow of tracheobronchial mucus out of the body, knowledge of the molecular and physical properties of mucin and mucin solutions would be greatly beneficial. The present model for these molecules is that of a long linear strand consisting of highly glycosylated regions linked by cystein-rich globular regions. It is thought that the globular regions may interact either through intermolecular disulfide bonds or through hydrophobic interactions. It has also been speculated that the glycosylated regions may have lectin-like interactions. In the present work, single mucin molecules were imaged at high resolution using atomic force microscopy (AFM). Phase mode imaging was used to map the interactions between functionalized AFM tips and the molecular topography. Additionally, using force-distance curves with the AFM, the adhesion between mucin bound tips and cell surface glycocalyx and glycocalyx-like model surfaces, was measured. And, finally, the viscoelastic properties of mucin solutions were measured using the recently developed technique, single particle tracking microrheology. A model is being developed that will incorporate the properties of mucins beginning at the single molecule and ending with the bulk viscoelastic properties.

  14. HYDRAULIC AND PHYSICAL PROPERTIES OF MCU SALTSTONE

    SciTech Connect

    Dixon, K; Mark Phifer, M

    2008-03-19

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone., Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement or lime to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of MCU (Modular Caustic Side Solvent Extraction Unit) saltstone relative to two permeating fluids. These fluids included simulated groundwater equilibrated with vault concrete and simulated saltstone pore fluid. Samples of the MCU saltstone were prepared by the Savannah River National Laboratory (SRNL) and allowed to cure for twenty eight days prior to testing. These samples included two three-inch diameter by six inch long mold samples and three one-inch diameter by twelve inch long mold samples.

  15. Spitzer Local Volume Legacy (LVL) SEDs and physical properties

    NASA Astrophysics Data System (ADS)

    Cook, David O.; Dale, Daniel A.; Johnson, Benjamin D.; Van Zee, Liese; Lee, Janice C.; Kennicutt, Robert C.; Calzetti, Daniela; Staudaher, Shawn M.; Engelbracht, Charles W.

    2014-11-01

    We present the panchromatic spectral energy distributions (SEDs) of the Local Volume Legacy (LVL) survey which consists of 258 nearby galaxies (D < 11 Mpc). The wavelength coverage spans the ultraviolet to the infrared (1500 Å-24 μm) which is utilized to derive global physical properties (i.e. star formation rate, stellar mass, internal extinction due to dust). With these data, we find colour-colour relationships and correlated trends between observed and physical properties (i.e. optical magnitudes and dust properties, optical colour and specific star formation rate, and ultraviolet-infrared colour and metallicity). The SEDs are binned by different galaxy properties to reveal how each property affects the observed shape of these SEDs. In addition, due to the volume-limited nature of LVL, we utilize the dwarf-dominated galaxy sample to test star formation relationships established with higher mass galaxy samples. We find good agreement with the star-forming `main-sequence' relationship, but find a systematic deviation in the infrared `main sequence' at low luminosities. This deviation is attributed to suppressed polycyclic aromatic hydrocarbon (PAH) formation in low-metallicity environments and/or the destruction of PAHs in more intense radiation fields occurring near a suggested threshold in star formation rates (sSFR) at a value of log(sSFR) ˜ -10.2.

  16. Physical Properties of Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Mohammed, T. E.; Schmitt, D. R.

    2015-12-01

    The effect of fractures on the physical properties of porous media is of considerable interest to oil and gas exploration as well as enhanced geothermal systems and carbon capture and storage. This work represents an attempt to study the effect fractures have on multiple physical properties of rocks. An experimental technique to make simultaneous electric and ultrasonic measurements on cylindrical core plugs is developed. Aluminum end caps are mounted with ultrasonic transducers to transmit pules along the axis of the cylinder while non-polarizing electrodes are mounted on the sides of the core to make complex conductivity measurements perpendicular to the cylinder axis. Electrical measurements are made by applying a sinusoidal voltage across the measurement circuit that consist of a resister and the sample in series. The magnitude and phase of the signal across the sample is recorded relative to the input signal across a range of frequencies. Synthetic rock analogs are constructed using sintered glass beads with fractures imbedded in them. The fracture location, size and orientation are controlled and each fractured specimen has an unfractured counterpart. Porosity, Permeability, electrical conductivity and ultrasonic velocity measurements are conducted on each sample with the complex electrical conductivities recorded at frequencies from 10hz to 1 Mhz. These measurements allow us to examine the changes induced by these mesoscale fractures on the embedding porous medium. Of particular interest is the effect of fracture orientation on electrical conductivity of the rock. Seismic anisotropy caused by fractures is a well understood phenomenon with many rock physics models dedicated to its understanding. The effect of fractures on electrical conductivity is less well understood with electrical anisotropy scarcely investigated in the literature. None the less, using electrical conductivity to characterize fractures can add an extra constraint to characterization based

  17. Descriptors, physical properties, and drug-likeness.

    PubMed

    Brüstle, Matthias; Beck, Bernd; Schindler, Torsten; King, William; Mitchell, Timothy; Clark, Timothy

    2002-08-01

    We have investigated techniques for distinguishing between drugs and nondrugs using a set of molecular descriptors derived from semiempirical molecular orbital (AM1) calculations. The "drug" data set of 2105 compounds was derived from the World Drug Index (WDI) using a procedure designed to select real drugs. The "nondrug" data set was the Maybridge database. We have first investigated the dimensionality of physical properties space based on a set of 26 descriptors that we have used successfully to build absorption, distribution, metabolism, and excretion-related quantitative structure-property relationship models. We discuss the general nature of the descriptors for physical property space and the ability of these descriptors to distinguish between drugs and nondrugs. The third most significant principal component of this set of descriptors serves as a useful numerical index of drug-likeness, but no others are able to distinguish between drugs and nondrugs. We have therefore extended our set of descriptors to a total of 66 and have used recursive partitioning to identify the descriptors that can distinguish between drugs and nondrugs. This procedure pointed to two of the descriptors that play an important role in the principal component found above and one more from the set of 40 extra descriptors. These three descriptors were then used to train a Kohonen artificial neural net for the entire Maybridge data set. Projecting the drug database onto the map obtained resulted in a clear distinction not only between drugs and nondrugs but also, for instance, between hormones and other drugs. Projection of 42 131 compounds from the WDI onto the Kohonen map also revealed pronounced clustering in the regions of the map assigned as druglike. PMID:12139446

  18. Determining Physical Properties of the Cell Cortex.

    PubMed

    Saha, Arnab; Nishikawa, Masatoshi; Behrndt, Martin; Heisenberg, Carl-Philipp; Jülicher, Frank; Grill, Stephan W

    2016-03-29

    Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell- and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example, the characteristic time of stress relaxation (the Maxwell time τM) in the actomyosin sets the timescale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length λ) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer in vivo directly from laser ablation experiments. For this we investigate the cortical response to laser ablation in the one-cell-stage Caenorhabditis elegans embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse-grained physical description of the cortex in terms of a two-dimensional thin film of an active viscoelastic gel. To determine the Maxwell time τM, the hydrodynamic length λ, the ratio of active stress ζΔμ, and per-area friction γ, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best-fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. Our method provides an accurate and robust means for measuring physical parameters of the actomyosin cortical layer. It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights into the active mechanics processes that govern tissue-scale morphogenesis. PMID

  19. High Strength Stainless Steel Properties that Affect Resistance Welding

    SciTech Connect

    Kanne, W.R.

    2001-08-01

    This report discusses results of a study on selected high strength stainless steel alloy properties that affect resistance welding. The austenitic alloys A-286, JBK-75 (Modified A-286), 21-6-9, 22-13-5, 316 and 304L were investigated and compared. The former two are age hardenable, and the latter four obtain their strength through work hardening. Properties investigated include corrosion and its relationship to chemical cleaning, the effects of heat treatment on strength and surface condition, and the effect of mechanical properties on strength and weldability.

  20. Impact of Methylation on the Physical Properties of DNA

    PubMed Central

    Pérez, Alberto; Castellazzi, Chiara Lara; Battistini, Federica; Collinet, Kathryn; Flores, Oscar; Deniz, Ozgen; Ruiz, Maria Luz; Torrents, David; Eritja, Ramon; Soler-López, Montserrat; Orozco, Modesto

    2012-01-01

    There is increasing evidence for the presence of an alternative code imprinted in the genome that might contribute to gene expression regulation through an indirect reading mechanism. In mammals, components of this coarse-grained regulatory mechanism include chromatin structure and epigenetic signatures, where d(CpG) nucleotide steps are key players. We report a comprehensive experimental and theoretical study of d(CpG) steps that provides a detailed description of their physical characteristics and the impact of cytosine methylation on these properties. We observed that methylation changes the physical properties of d(CpG) steps, having a dramatic effect on enriched CpG segments, such as CpG islands. We demonstrate that methylation reduces the affinity of DNA to assemble into nucleosomes, and can affect nucleosome positioning around transcription start sites. Overall, our results suggest a mechanism by which the basic physical properties of the DNA fiber can explain parts of the cellular epigenetic regulatory mechanisms. PMID:22824278

  1. 7 CFR 1955.105 - Real property affected (CONACT).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 14 2011-01-01 2011-01-01 false Real property affected (CONACT). 1955.105 Section 1955.105 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS...

  2. 7 CFR 1955.105 - Real property affected (CONACT).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Real property affected (CONACT). 1955.105 Section 1955.105 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS...

  3. Physical Properties of Thin Film Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Bouras, N.; Djebbouri, M.; Outemzabet, R.; Sali, S.; Zerrouki, H.; Zouaoui, A.; Kesri, N.

    2005-10-01

    The physics and chemistry of semiconducting materials is a continuous question of debate. We can find a large stock of well-known properties but at the same time, many things are not understood. In recent years, porous silicon (PS-Si), diselenide of copper and indium (CuInSe2 or CIS) and metal oxide semiconductors like tin oxide (SnO2) and zinc oxide (ZnO) have been subjected to extensive studies because of the rising interest their potential applications in fields such as electronic components, solar panels, catalysis, gas sensors, in biocompatible materials, in Li-based batteries, in new generation of MOSFETS. Bulk structure and surface and interface properties play important roles in all of these applications. A deeper understanding of these fundamental properties would impact largely on technological application performances. In our laboratory, thin films of undoped and antimony-doped films of tin oxide have been deposited by chemical vapor deposition. Spray pyrolysis was used for ZnO. CIS was prepared by flash evaporation or close-space vapor transport. Some of the deposition parameters have been varied, such as substrate temperature, time of deposition (or anodization), and molar concentration of bath preparation. For some samples, thermal annealing was carried out under oxygen (or air), under nitrogen gas and under vacuum. Deposition and post-deposition parameters are known to strongly influence film structure and electrical resistivity. We investigated the influence of film thickness and thermal annealing on structural optical and electrical properties of the films. Examination of SnO2 by x-ray diffraction showed that the main films are polycrystalline with rutile structure. The x-ray spectra of ZnO indicated a hexagonal wurtzite structure. Characterizations of CIS films with compositional analysis, x-ray diffraction, scanning microscopy, spectrophotometry, and photoluminescence were carried out.

  4. Physical Properties of the Uranian Satellites

    NASA Technical Reports Server (NTRS)

    Brown, R. H.

    1984-01-01

    Recent work on the satellites of Uranus revealed many of their basic physical properties. Radiometric measurements showed that the Ariel, Umbriel, Titania and Oberon have diameters which range from 1630 to 1110 km and albedos which range from 0.30 to 0.18. Spectrophotometric observations of Miranda suggest that it may have the highest albedo of the known Uranian satellites and a diameter of about 500 km. Near-infrared measurements show that Ariel, Titania and Oberon have the largest known opposition surges. All five known satellites of Uranus have surfaces which are composed of water ice contaminated with small amounts of dark material. The dark material on the surfaces of Ariel, Umbriel, Titania and Oberon is spectrally bland and has spectral similarities to carbon black, charcoal, carbonaceous chondritic material and other dark, spectrally neutral materials. Recent density determinations suggest that there may be large density differences among Ariel, Umbriel, Titania and Oberon, with density increasing with distance from Uranus.

  5. Physical Properties of Hanford Transuranic Waste Sludge

    SciTech Connect

    Poloski, A.; Berg, Dr.

    2003-06-01

    Since the start of this project in March of 2004 two main goals have been achieved. First, the laboratory facilities of the Center for Surfaces, Polymers and Colloids (SPC) at the University of Washington have been updated with the purchase and installation of two state-of-the-art analysis tools. Second, a study of the sedimentation behavior of high density colloidal solids in complex media has been performed. The results of this study were presented at the 78th ACS Colloid and Surface Science Symposium at Yale University in New Haven, CT, and have been submitted for publication to the Journal of Colloid and Interface Science. Both the new equipment and the results of the initial study will help to gain insight into the physical properties of Hanford transuranic waste sludge.

  6. Physical properties of the Uranian satellites

    SciTech Connect

    Brown, R.H.

    1984-10-01

    Recent work on the satellites of Uranus revealed many of their basic physical properties. Radiometric measurements showed that the Ariel, Umbriel, Titania and Oberon have diameters which range from 1630 to 1110 km and albedos which range from 0.30 to 0.18. Spectrophotometric observations of Miranda suggest that it may have the highest albedo of the known Uranian satellites and a diameter of about 500 km. Near-infrared measurements show that Ariel, Titania and Oberon have the largest known opposition surges. All five known satellites of Uranus have surfaces which are composed of water ice contaminated with small amounts of dark material. The dark material on the surfaces of Ariel, Umbriel, Titania and Oberon is spectrally bland and has spectral similarities to carbon black, charcoal, carbonaceous chondritic material and other dark, spectrally neutral materials. Recent density determinations suggest that there may be large density differences among Ariel, Umbriel, Titania and Oberon, with density increasing with distance from Uranus.

  7. The Relationship of Freshmen's Physics Achievement and Their Related Affective Characteristics

    ERIC Educational Resources Information Center

    Gungor, Almer (Abak); Eryilmaz, Ali; Fakioglu, Turgut

    2007-01-01

    The purpose of this study was to determine the best-fitting structural equation model between the freshmen's physics achievement and selected affective characteristics related to physics. These characteristics are students' situational interest in physics, personal interest in physics, aspiring extra activities related to physics, importance of…

  8. Acoustic Imaging of Snowpack Physical Properties

    NASA Astrophysics Data System (ADS)

    Kinar, N. J.; Pomeroy, J. W.

    2011-12-01

    Measurements of snowpack depth, density, structure and temperature have often been conducted by the use of snowpits and invasive measurement devices. Previous research has shown that acoustic waves passing through snow are capable of measuring these properties. An experimental observation device (SAS2, System for the Acoustic Sounding of Snow) was used to autonomously send audible sound waves into the top of the snowpack and to receive and process the waves reflected from the interior and bottom of the snowpack. A loudspeaker and microphone array separated by an offset distance was suspended in the air above the surface of the snowpack. Sound waves produced from a loudspeaker as frequency-swept sequences and maximum length sequences were used as source signals. Up to 24 microphones measured the audible signal from the snowpack. The signal-to-noise ratio was compared between sequences in the presence of environmental noise contributed by wind and reflections from vegetation. Beamforming algorithms were used to reject spurious reflections and to compensate for movement of the sensor assembly during the time of data collection. A custom-designed circuit with digital signal processing hardware implemented an inversion algorithm to relate the reflected sound wave data to snowpack physical properties and to create a two-dimensional image of snowpack stratigraphy. The low power consumption circuit was powered by batteries and through WiFi and Bluetooth interfaces enabled the display of processed data on a mobile device. Acoustic observations were logged to an SD card after each measurement. The SAS2 system was deployed at remote field locations in the Rocky Mountains of Alberta, Canada. Acoustic snow properties data was compared with data collected from gravimetric sampling, thermocouple arrays, radiometers and snowpit observations of density, stratigraphy and crystal structure. Aspects for further research and limitations of the acoustic sensing system are also discussed.

  9. Charcoal's physical properties are key to understanding its environmental behavior

    NASA Astrophysics Data System (ADS)

    Masiello, Caroline; Brewer, Catherine; Dugan, Brandon; Liu, Zuolin; Gonnermann, Helge; Zygourakis, Kyriacos; Davies, Christian; Panzacchi, Pietro; Gao, Xiaodong; Pyle, Lacey

    2014-05-01

    Charcoal is a highly porous, low density material whose physical properties play a key role in its soil behavior and its environmental fate. In considering biochar, some of its most sought-after environmental effects are a result of its physical characteristics, not its chemical or biological properties. For example, the ability of biochar to retain soil water is widely attributed to its porosity. However, charcoal physical properties are so poorly understood that they are sometimes not characterized at all in the current literature. Here we outline a suite of basic physical properties of charcoal and the likely environmental effects of their variations, with a focus on the interactions between charcoal and water. The most basic physical property of charcoal, its particle size, likely plays a role in its ability to alter the rate of drainage in soils. Particle morphology is also relevant, affecting how particles of soil and char can pack together. Bulk densities of charcoal and soil mixtures can be used to generate a simple estimate of the efficiency of char-soil packing. Charcoal density is an additionally important property and can be measured in a number of ways. Density almost certainly controls the tendency of chars to sink or float, and to erode or remain on the land surface. However, charcoal density can vary by almost a factor of 10 depending on the measurement technique used. We discuss two simple techniques available for measuring char density and the value of information provided by each approach. Finally, we report a simple, fast technique to measure total char porosity, including all pores from nanometers to 10s of micrometers in size. Porosity is at least one of the key controls on the ability of biochar to improve plant-available water, and techniques to measure it have previously been limited to the smallest fraction of pores (N2 sorption) or have required expensive, hazardous procedures (Hg porosimetry). We show that char porosity varies primarily

  10. Does Physics Teaching Affect Gender-based Science Anxiety?

    ERIC Educational Resources Information Center

    Udo, M. K.; Ramsey, G. P.; Reynolds-Alpert, S.; Mallow, J. V.

    2001-01-01

    Presents the results of a study designed to measure the level of science anxiety in students enrolled in physics courses at Loyola University in Chicago. The leading factors contributing to science anxiety include nonscience anxiety and gender. Concludes that the teaching of an introductory physics course can reduce acute levels of science…

  11. Affective Learning Profiles in Compulsory High School Physical Education: An Instructional Communication Perspective

    ERIC Educational Resources Information Center

    Webster, Collin A.; Mindrila, Diana; Weaver, Glenn

    2013-01-01

    Affective learning is a major focus of the national K-12 physical education (PE) content standards (National Association for Sport and Physical Education [NASPE, 2004]). Understanding how students might fit into different affective learning subgroups would help extend affective learning theory in PE and suggest possible intervention strategies for…

  12. Affective and Physical Changes Associated with Oral Contraceptive Use.

    ERIC Educational Resources Information Center

    Wiener, Alane L.; And Others

    Although investigations of the physiological effects of oral contraceptives suggest that affective changes may accompany their use, empirical documentation of these effects has not been consistent. This study examined physiological and affective changes accompanying use of a low-dosage oral contraceptive while controlling for possible expectancy…

  13. Negative Experiences in Physical Education and Sport: How Much Do They Affect Physical Activity Participation Later in Life?

    ERIC Educational Resources Information Center

    Cardinal, Bradley J.; Yan, Zi; Cardinal, Marita K.

    2013-01-01

    People's feelings toward physical activity are often influenced by memories of their childhood experiences in physical education and sport. Unfortunately, many adults remember negative experiences, which may affect their desire to maintain a physically active lifestyle. A survey that asked 293 students about recollections from their childhood…

  14. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemical properties. Studies of physical and chemical properties must be reported under this subpart if... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reporting physical and chemical properties. 716.50 Section 716.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  15. Physical properties of molten lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Anzai, Y.; Terashima, K.; Kimura, S.

    1993-12-01

    The physical properties of molten Li2B4O7 were studied for growing high-quality single crystals. We found that the density, θ, surface tension, λ, and volume thermal expansion coefficient of the melt, β, varied as θ=2.444-0.000414 T g/cm 3, λ=249-0.045 T mN/m and β = 2.1 x 10 -4 K -1, respectively, for temperatures of 1190 to 1373 K. The temperature dependence of the viscosity did not show a simple exponential relationship. It was found that the flow unit volume at the melting point (1190 K) was 10 times larger than that at 1373 K. The viscosity and density displayed relaxation after the starting material was completely melted, showing that a minimum of 15 h was required for the melt to become stable at 1223 K. Our results suggest that for growing high-quality Li 2B 4O 7 single crystals the melt should be held more than 15 h before the pulling process is started.

  16. Physical properties of defined lipopolysaccharide salts

    SciTech Connect

    Coughlin, R.T.; Haug, A.; McGroarty, E.J.

    1983-01-01

    The electron spin resonance probes 5-doxylstearate and 4-(dodecyldimethylammonia)-1-oxy-2,2,6,6-tetramethylpiperidine bromide were used to characterize the fluidity of the acyl chain and head-group regions, respectively, of defined salts of lipopolysaccharide (LPS) from Escherichia coli K12. The removal of the weakly bound divalent cations from native LPS by electrodialysis and their replacement by sodium had little effect on the midpoint of the lipid-phase transition or on head-group mobility. In contrast, lipopolysaccharide acyl chain mobility increased following electrodialysis. The replacement of most of the remaining cations with sodium resulted in a further dramatic increase in mobility in both the polar and nonpolar regions of lipopolysaccharide. Head-group mobility of the sodium salt of LPS was shown to be reduced with the addition of divalent cations. Furthermore, evidence is presented which suggests that low magnesium concentrations may induce phase separations in the sodium salt. The magnesium salt of lipopolysaccharide closely resembled the native form in both head-group and acyl chain mobility although the cation charge to phosphorus ratio in the magnesium salt was greater than that detected in the native isolate. Analyses of other lipopolysaccharide salts support our hypothesis that many of the observed differences in the physical and pathological properties of lipopolysaccharide salts may simply be explained by the degree of charge neutralization.

  17. Physical properties of Planck Cold Dust Clumps

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Liu, T.; Meng, F.; Yuan, J.; Zhang, T.; Chen, P.; Hu, R.; Li, D.; Qin, S.; Ju, B.

    2016-05-01

    To explore physical properties of Planck cold dust clumps, 674 of the pilot samples were observed at the 13.7 m telescope of Purple Mountain Observatory (PMO) in J = 1 - 0 transitions of CO, 13CO and C18O. HCO+, HCN and N2H+ emissions were also observed with PMO 13.7 m and IRAM 30 m telescopes. They are real cold and quiescent with mean Tk ˜ 10 K and mean FWHM of 13CO (1-0) 1.27 km s-1. Column density ranges from 1020 to 1022 cm-2. Gas of the Planck clumps extends molecular space in the Milky Way. Turbulence dominates in cores. Filament structure is the majority and most of the cores are starless. Ten percent of the cores show asymmetric emission features including blue- and red- profiles. Planck clumps include different cold or low luminosity sources. Dense cores constitute an ideal sample for studying initial state of star formation while the diffuse clumps are suitable for investigating the formation of cores.

  18. Physical properties of defined lipopolysaccharide salts.

    PubMed

    Coughlin, R T; Haug, A; McGroarty, E J

    1983-04-12

    The electron spin resonance probes 5-doxylstearate and 4-(dodecyldimethylammonio)-1-oxy-2,2,6,6-tetramethylpiperidine bromide were used to characterize the fluidity of the acyl chain and head-group regions, respectively, of defined salts of lipopolysaccharide (LPS) from Escherichia coli K12. The removal of the weakly bound divalent cations from native LPS by electrodialysis and their replacement by sodium had little effect on the midpoint of the lipid-phase transition or on head-group mobility. In contrast, lipopolysaccharide acyl chain mobility increased following electrodialysis. The replacement of most of the remaining cations with sodium resulted in a further dramatic increase in mobility in both the polar and nonpolar regions of lipopolysaccharide. Head-group mobility of the sodium salt of LPS was shown to be reduced with the addition of divalent cations. Furthermore, evidence is presented which suggests that low magnesium concentrations may induce phase separations in the sodium salt. The magnesium salt of lipopolysaccharide closely resembled the native form in both head-group and acyl chain mobility although the cation charge to phosphorus ratio in the magnesium salt was greater than that detected in the native isolate. Analyses of other lipopolysaccharide salts support our hypothesis that many of the observed differences in the physical and pathological properties of lipopolysaccharide salts may simply be explained by the degree of charge neutralization. PMID:6303400

  19. Physical Activity Affects Brain Integrity in HIV + Individuals

    PubMed Central

    Ortega, Mario; Baker, Laurie M.; Vaida, Florin; Paul, Robert; Basco, Brian; Ances, Beau M.

    2015-01-01

    Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV−) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV +) individuals. Seventy HIV + individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV + individuals were classified as physically active (any energy expended above resting expenditure, n = 22) or sedentary (n = 48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV + individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p = .034). Physically active HIV + individuals performed better on executive (p = .040, unadjusted; p = .043, adjusted) but not motor function (p = .17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson’s r = 0.45, p = 0.035) but not motor (r = 0.21; p = .35) performance. In adjusted analyses the physically active HIV + individuals had larger putamen volumes (p = .019). A positive relationship exists between PA and brain integrity in HIV + individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV + individuals. PMID:26581799

  20. Physical properties of suspended dust in Iceland

    NASA Astrophysics Data System (ADS)

    Dagsson Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Skrabalova, Lenka; Sigurdardottir, Gudmunda; Branis, Martin; Hladil, Jindrich; Chadimova, Leona; Skala, Roman; Navratil, Tomas; Menar, Sibylle von Lowis of; Thorsteinsson, Throstur

    2014-05-01

    Atmospheric Dust Measurements (ADMI 2013) of one of the most active dust sources in Iceland (Mælifellsandur) were conducted during season with high precipitation on August 8th-18th, 2013. We measured mass concentrations (PM2.5 and PM10), particle size distributions in size range 0.3-10μm and number concentrations during rather small dust event. Dust samples of the event were analyzed (morpho-textural observations, optical and scanning-electron microscopy). Two TSI 8520 DustTrak Aerosol Monitors (light-scattering laser photometers that measure aerosol mass concentrations in range 0.001 to 100 mg/m3) and one TSI Optical Particle Sizer (OPS) 3330 (optical scattering from single particle up to 16 different channels - 0.3 to 10 μm - measuring particle size distribution) were used. We measured a dust event which occurred during wet and low wind/windless conditions as result of surface heating in August 2013. Maximum particle number concentration (PM~0.3-10 µm) reached 149954 particles cm-3 min-1 while mass concentration (PM<10 µm) was 1757 µg m-3 min-1. Suspended dust was very fine with the highest number of particles in size range 0.3-0.337 µm, followed by particles 1.5-5 µm in diameter. Close-to-ultrafine particle size distributions showed a significant increase in number with the severity of the dust event. Number concentrations were well correlated with mass concentrations. The mineralogy and geochemical compositions showed that glaciogenic dust contains sharp-tipped shards with bubbles and 80 % of the particulate matter is volcanic glass rich in heavy metals. Wet dust particles were mobilized within < 4 hours. Here we introduced a comprehensive study on physical properties of the Icelandic dust aerosol and the first scientific study of particle size distributions in an Icelandic dust event including findings on initiation of dust suspension.

  1. Moisture dependent physical properties of lathyrus.

    PubMed

    Kenghe, Rajendra Narayan; Nimkar, Prabhakar Manohar; Shirkole, Shivanand Shankarrao

    2013-10-01

    The moisture dependent physical properties of different lathyrus varieties namely NLK-40, Pratik and Ratan were studied at moisture content of 7.33 to 30.29, 6.75 to 29.95 and 7.90 to 30.90% (d.b.), respectively. The grain size, thousand grain weight, angle of repose, grain volume and surface area were found increased linearly. The grain size was found increased from 4.43 to 4.70, 4.96 to 5.32 and 5.08 to 5.49 mm. Thousand grain weight was found increased from 64.6 to 103.5, 69.1 to 105.3 and 85.3 to 125.6 g. The angle repose was increased from 28.3 to 35.4, 29.5 to 35.8 and 26.9 to 33.5°. The grain volume was increased from 9.13 to 10.38,11.73 to 13.24 and 12.22 to 14.15 mm(3) whereas, surface area increased from 54.78 to 62.29, 70.38 to 79.45 and 73.31 to 84.88 mm(2),respectively with the corresponding increase in moisture content, for NLK-40, Pratik and Ratan. The sphericity and porosity increased initially and then found decreased with increase in further moisture content. The bulk density values decreased linearly from 827.5 to 697.2, 851.3 to 726.3 and 856.0 to 727.4 kg/m(3). The true density values were found decreased from 1288.3 to 1074.3, 1324.0 to 1118.4 and 1277.7 to 1102.5 kg/m(3), respectively for these varieties with the corresponding increase in moisture content. PMID:24425992

  2. How Molecular Structure Affects Mechanical Properties of an Advanced Polymer

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    2000-01-01

    density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.

  3. Determinants affecting physical activity levels in animal models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C L.; Wade, Charles E.

    2002-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play an underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multifactorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked, making it difficult to determine whether a single, combination, or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to the ventral medial hypothalamus, and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  4. Determinants Affecting Physical Activity Levels In Animal Models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C. L.; Wade, Charles E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play all underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multi-factorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked making it difficult to determine whether a single, combination or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to tile ventral medial hypothalamus and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  5. Emergent Properties of Patch Shapes Affect Edge Permeability to Animals

    PubMed Central

    Nams, Vilis O.

    2011-01-01

    Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance. PMID:21747965

  6. Biochar physico-chemical properties as affected by environmental exposure.

    PubMed

    Sorrenti, Giovambattista; Masiello, Caroline A; Dugan, Brandon; Toselli, Moreno

    2016-09-01

    To best use biochar as a sustainable soil management and carbon (C) sequestration technique, we must understand the effect of environmental exposure on its physical and chemical properties because they likely vary with time. These properties play an important role in biochar's environmental behavior and delivery of ecosystem services. We measured biochar before amendment and four years after amendment to a commercial nectarine orchard at rates of 5, 15 and 30tha(-1). We combined two pycnometry techniques to measure skeletal (ρs) and envelope (ρe) density and to estimate the total pore volume of biochar particles. We also examined imbibition, which can provide information about soil hydraulic conductivity. Finally, we investigated the chemical properties, surface, inner layers atomic composition and C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy (XPS). Ageing increased biochar skeletal density and reduced the water imbibition rate within fragments as a consequence of partial pore clogging. However, porosity and the volume of water stored in particles remained unchanged. Exposure reduced biochar pH, EC, and total C, but enhanced total N, nitrate-N, and ammonium-N. X-ray photoelectron spectroscopy analyses showed an increase of O, Si, N, Na, Al, Ca, Mn, and Fe surface (0-5nm) atomic composition (at%) and a reduction of C and K in aged particles, confirming the interactions of biochar with soil inorganic and organic phases. Oxidation of aged biochar fragments occurred mainly in the particle surface, and progressively decreased down to 75nm. Biochar surface chemistry changes included the development of carbonyl and carboxylate functional groups, again mainly on the particle surface. However, changes were noticeable down to 75nm, while no significant changes were measured in the deepest layer, up to 110nm. Results show unequivocal shifts in biochar physical and chemical properties/characteristics over short (~years) timescales. PMID

  7. Do Stretch Durations Affect Muscle Mechanical and Neurophysiological Properties?

    PubMed

    Opplert, J; Genty, J-B; Babault, N

    2016-08-01

    The aim of the study was to determine whether stretching durations influence acute changes of mechanical and neurophysiological properties of plantar flexor muscles. Plantar flexors of 10 active males were stretched in passive conditions on an isokinetic dynamometer. Different durations of static stretching were tested in 5 randomly ordered experimental trials (1, 2, 3, 4 and 10×30-s). Fascicle stiffness index, evoked contractile properties and spinal excitability (Hmax/Mmax) were examined before (PRE), immediately after (POST0) and 5 min after (POST5) stretching. No stretch duration effect was recorded for any variable. Moreover, whatever the stretching duration, stiffness index, peak twitch torque and rate of force development were significantly lower at POST0 and POST5 as compared to PRE (P<0.05). Electromechanical delay was longer at POST0 and POST5 as compared to PRE (P<0.05). Whatever the stretch duration, no significant changes of Hmax/Mmax ratio were recorded. In conclusion, 30 s of static stretching to maximum tolerated discomfort is sufficient enough to alter mechanical properties of plantar flexor muscles, but 10×30 s does not significantly affect these properties further. Stretching does not impair spinal excitability. PMID:27191211

  8. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reporting physical and chemical properties. 716.50 Section 716.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies...

  9. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reporting physical and chemical properties. 716.50 Section 716.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies...

  10. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reporting physical and chemical properties. 716.50 Section 716.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies...

  11. Characterization and nultivariate analysis of physical properties of processing peaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization of physical properties of fruits represents the first vital step to ensure optimal performance of fruit processing operations and is also a prerequisite in the development of new processing equipment. In this study, physical properties of engineering significance to processing of th...

  12. Einstein's Math Errors Profoundly Affect Mathematical and Physical Theory

    NASA Astrophysics Data System (ADS)

    Pressler, David

    2008-04-01

    Einstein treats time as a vector, however, time has no direction associated with it; it is a scalar, it only has magnitude and is specified completely by giving it a number or units. Vectors possess both magnitude and direction. To mathematically equate time with direction is ambiguous and commits a Fallacy of Ambiguity. It is physically impossible to have space with more than three directions. Any theory where time is represented as a forth direction does not represent reality, i.e., (x, y, z, t). Einstein defines the speed of light as a constant, in the equation c = d (distance)/t (time). In this direct proportion Einstein changes the time factor (denominator), when time slows down due to motion but he does not change the distance factor (numerator). This is an error. In reality, time slows down when space contracts in all three directions, in the system of Cartesian coordinates (x, y, z,); or C-Space. Pressler's Law of C-Space: The speed of light will always be measured as a constant, c, in all three directions, in ones own inertial reference frame and the speed of light will always be measured to be different in all other inertial reference frames which are at a different gravity or kinetic energy level. Time is exactly defined as the rate of physical process; how fast things take place. This new paradigm shift redefines the Michelson-Morley where both mirrors move inward toward the center of the interferometer.

  13. Introduction to physical properties and elasticity models: Chapter 20

    USGS Publications Warehouse

    Dvorkin, Jack; Helgerud, Michael B.; Waite, William F.; Kirby, Stephen H.; Nur, Amos

    2003-01-01

    Estimating the in situ methane hydrate volume from seismic surveys requires knowledge of the rock physics relations between wave speeds and elastic moduli in hydrate/sediment mixtures. The elastic moduli of hydrate/sediment mixtures depend on the elastic properties of the individual sedimentary particles and the manner in which they are arranged. In this chapter, we present some rock physics data currently available from literature. The unreferenced values in Table I were not measured directly, but were derived from other values in Tables I and II using standard relationships between elastic properties for homogeneous, isotropic material. These derivations allow us to extend the list of physical property estimates, but at the expense of introducing uncertainties due to combining property values measured under different physical conditions. This is most apparent in the case of structure II (sII) hydrate for which very few physical properties have been measured under identical conditions.

  14. Einstein's Math Errors Profoundly Affects Mathematical and Physical Theory

    NASA Astrophysics Data System (ADS)

    Pressler, David

    2007-05-01

    Einstein treats time as a vector, however time is a scalar. Vectors possess both magnitude and direction. To mathematically equate time with direction is a Fallacy of Ambiguity. It is physically impossible to have space with more than three directions. Any theory where time is represented as a forth direction does not represent reality, i.e., (x, y, z, t). The entire math used in the Special and General Theories of Relativity is meaningless, unreasonable and ambiguous. Second. Einstein defines the speed of light as a constant, in the equation c = d (distance)/t (time). In this direct proportion, c being the constant, change one factor and the other must change as well. Einstein changes the time factor in this formula when time slows down but he does not change the distance factor. In reality, time slows down when space contracts in all three directions or in the system of Cartesian coordinates (x, y, z,) being length, width, and height. The author defines this contraction as C-Space. Pressler's Law of C-Space: The speed of light will always be measured as a constant, c, in all three directions, in ones own inertial reference frame and the speed of light will always be measured to be different in all other inertial reference frames which are at a different gravity or kinetic energy levels. Time is defined as the rate of physical process; how fast things take place. Gravity is the distortion of space in all three directions, c-space. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.D2.2

  15. Mechanical Properties of Heat Affected Zone of High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  16. A Comparison of Video-Based and Interaction-Based Affect Detectors in Physics Playground

    ERIC Educational Resources Information Center

    Kai, Shiming; Paquette, Luc; Baker, Ryan S.; Bosch, Nigel; D'Mello, Sidney; Ocumpaugh, Jaclyn; Shute, Valerie; Ventura, Matthew

    2015-01-01

    Increased attention to the relationships between affect and learning has led to the development of machine-learned models that are able to identify students' affective states in computerized learning environments. Data for these affect detectors have been collected from multiple modalities including physical sensors, dialogue logs, and logs of…

  17. Does UV irradiation affect polymer properties relevant to tissue engineering?

    NASA Astrophysics Data System (ADS)

    Fischbach, Claudia; Tessmar, Jörg; Lucke, Andrea; Schnell, Edith; Schmeer, Georg; Blunk, Torsten; Göpferich, Achim

    2001-10-01

    For most tissue engineering approaches aiming at the repair or generation of living tissues the interaction of cells and polymeric biomaterials is of paramount importance. Prior to contact with cells or tissues, biomaterials have to be sterilized. However, many sterilization procedures such as steam autoclave or heat sterilization are known to strongly affect polymer properties. UV irradiation is used as an alternative sterilization method in many tissue engineering laboratories on a routine basis, however, potential alterations of polymer properties have not been extensively considered. In this study we investigated the effects of UV irradiation on spin-cast films made from biodegradable poly( D, L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers (Me.PEG-PLA) which have recently been developed for controlled cell-biomaterial interaction. After 2 h of UV irradiation, which is sufficient for sterilization, no alterations in cell adhesion to polymer films were detected, as demonstrated with 3T3-L1 preadipocytes. This correlated with unchanged film topography and molecular weight distribution. However, extended UV irradiation for 5-24 h elicited drastic responses regarding Me.PEG-PLA polymer properties and interactions with biological elements: Large increases in unspecific protein adsorption and subsequent cell adhesion were observed. Changes in polymer surface properties could be correlated with the observed alterations in cell/protein-polymer interactions. Atomic force microscopy analysis of polymer films revealed a marked "smoothing" of the polymer surface after UV irradiation. Investigations using GPC, 1H-NMR, mass spectrometry, and a PEG-specific colorimetric assay demonstrated that polymer film composition was time-dependently affected by exposure to UV irradiation, i.e., that large amounts of PEG were lost from the copolymer surface. The data indicate that sterilization using UV irradiation for 2 h is an appropriate technique for the

  18. Factors affecting mechanical properties of biomass pellet from compost.

    PubMed

    Zafari, A; Kianmehr, M H

    2014-01-01

    Effectiveness of a densification process to create strong and durable bonding in pellets can be determined by testing the mechanical properties such as compressive strength (CS) and durability. Mechanical properties of pellet from composted municipal solid waste were determined at different raw material and densification conditions. Ground compost samples were compressed with three levels of moisture content (35%, 40% and 45% (wb)), piston compaction speed (2, 6 and 10 mm/s), die length (8, 10 and 12mm) and raw material particle size (0.3, 0.9 and 1.5mm) into cylindrical pellets utilizing opened-end dies under axial stress from a vertical piston applied by a hydraulic press. The effects of independent variables on mechanical properties were determined using response surface methodology based on Box-Behnken design (BBD). All independent variables affected the durability significantly. However, different piston speed and die length not produce any significant difference on CS of pellets. Also in this research the electron photography method was used to identify the binding mechanism of compost particles. PMID:24600888

  19. Physical properties of mixed dairy food proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixed food protein gels are complex systems, which changes functional behaviors such as gelling properties and viscosity depending on the miscibility of the proteins. We have noted that differences in co-solubility of mixed proteins created unique network structures and gel properties. The effects o...

  20. Fire effects on physical properties of Andisols (Tenerife, Canary Islands)

    NASA Astrophysics Data System (ADS)

    Neris, J.; Tejedor, M.; Jiménez, C.

    2012-04-01

    Forest fires modify the main properties of affected soils. Soil physical properties of Andisols with pine forest burned were evaluated. Five burned zones were compared to unburned counterparts. Soil texture, structure, bulk density, water retention capacity and water repellency were determined. As most studies report, soils showed an increase in the sand and/or silt content related to a noticeably reduction in clay content in the zones affected by fire. According to these reports, cementation processes involving Al and Si hydroxides as cements during the fire are the main factors controlling this behaviour. Regarding to soil structure, aggregation and aggregate stability decreased considerably in burned zones, as is usually reported. The decrease in soil binding such as organic matter, clay content and short-range order products explains this trend. Nevertheless, bulk density and water retention capacity, some of the main characteristic properties of Andisols, showed contradictory patterns compared to most studies. Water retention capacity at -33 kPa increases considerably after fire, whereas at -1500 kPa no major changes were observed. Preliminary conclusions indicate that the high water retention of ashes included into the soil explains this trend at -33 kPa. On the other side, the decrease in organic matter and clay content offsets the water retention increase at -1500 kPa due the ash incorporation. In opposition to most studies, an important reduction in bulk density was observed in burned soils. Some authors have reported that the desiccation process leads to a loss of aggregation resulting in low-density microaggregates in Andisols of Tenerife. These soils are known locally as "dusty-soils". Finally, a decrease of soil water repellency was also observed in most zones after fire, despite a large number of studies reporting the opposite. The soil organic matter decline might be the key factor of this trend.

  1. Physical processes affecting the sedimentary environments of Long Island Sound

    USGS Publications Warehouse

    Signell, R.P.; Knebel, H. J.; List, J.H.; Farris, A.S.

    1997-01-01

    A modeling study was undertaken to simulate the bottom tidal-, wave-, and wind-driven currents in Long Island Sound in order to provide a general physical oceanographic framework for understanding the characteristics and distribution of seafloor sedimentary environments. Tidal currents are important in the funnel-shaped eastern part of the Sound, where a strong gradient of tidal-current speed was found. This current gradient parallels the general westward progression of sedimentary environments from erosion or non-deposition, through bedload transport and sediment sorting, to fine-grained deposition. Wave-driven currents, meanwhile, appear to be important along the shallow margins of the basin, explaining the occurrence of relatively coarse sediments in regions where tidal currents alone are not strong enough to move sediment. Finally, westerly wind events are shown to locally enhance bottom currents along the axial depression of the sound, providing a possible explanation for the relatively coarse sediments found in the depression despite tide- and wave-induced currents below the threshold of sediment movement. The strong correlation between the near-bottom current intensity based on the model results and the sediment response as indicated by the distribution of sedimentary environments provides a framework for predicting the long-term effects of anthropogenic activities.

  2. Mechanical and physical properties of plasma-sprayed stabilized zirconia

    NASA Technical Reports Server (NTRS)

    Siemers, P. A.; Mehan, R. L.

    1983-01-01

    Physical and mechanical properties were determined for plasma-sprayed MgO- or Y2O3-stabilized ZrO2 thermal barrier coatings. Properties were determined for the ceramic coating in both the freestanding condition and as-bonded to a metal substrate. The properties of the NiCrAlY bond coating were also investigated.

  3. Physical exercise affects attentional orienting behavior through noradrenergic mechanisms.

    PubMed

    Robinson, Andrea M; Buttolph, Thomas; Green, John T; Bucci, David J

    2015-06-01

    Spontaneously hypertensive rats (SHRs), a commonly used animal model of attention-deficit/hyperactivity disorder, exhibit little habituation of the orienting response to repeated presentations of a nonreinforced visual stimulus. However, SHRs that have access to a running wheel for 5, 10, or 21 days exhibit robust habituation that is indistinguishable from normo-active rats. Two days of exercise, in comparison, is not sufficient to affect habituation. Here we tested the hypothesis that the effect of exercise on orienting behavior in SHRs is mediated by changes in noradrenergic function. In Experiment 1, we found that 5, 10, or 21 days of access to a running wheel, but not 2 days, significantly reduced levels of the norepinephrine transporter in medial prefrontal cortex. In Experiment 2, we tested for a causal relationship between changes in noradrenergic function and orienting behavior by blocking noradrenergic receptors during exercise. Rats that received propranolol (beta adrenergic/noradrenergic receptor blocker) during 10 days of exercise failed to exhibit an exercise-induced reduction in orienting behavior. The results inform a growing literature regarding the effects of exercise on behavior and the potential use of exercise as a treatment for mental disorders. PMID:26030434

  4. Physical, chemical and kinetic factors affecting prion infectivity

    PubMed Central

    Properzi, Francesca; Badhan, Anjna; Klier, Steffi; Schmidt, Christian; Klöhn, Peter C.; Wadsworth, Jonathan D. F.; Clarke, Anthony R.; Jackson, Graham S.; Collinge, John

    2016-01-01

    ABSTRACT The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process. PMID:27282252

  5. Physical, chemical and kinetic factors affecting prion infectivity.

    PubMed

    Properzi, Francesca; Badhan, Anjna; Klier, Steffi; Schmidt, Christian; Klöhn, Peter C; Wadsworth, Jonathan D F; Clarke, Anthony R; Jackson, Graham S; Collinge, John

    2016-05-01

    The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process. PMID:27282252

  6. Biochemical basis of physical properties of respiratory tract secretions.

    PubMed

    Lopez-Vidriero, M T

    1987-01-01

    The physical properties of respiratory tract secretion (RTS) play a prominent rôle in the non-specific defence mechanisms of the lung. Viscosity and elasticity, that is flow and deformation, are only two of the physical properties of RTS. Spinability, pourability, adhesiveness and tackiness are starting to be recognised as physical properties of RTS and its is likely that they may be relevant in the pathogenesis of airways obstruction. RTS is a gel, which consists of a cross-linked polymer network dispersed in a liquid solvent. The polymeric structure of the epithelial glycoprotein can be explained in terms of covalent (disulphide) linkages and/or physical entanglement between glycoproteins subunits. Other constituents of RTS such as proteins, lipids, ions and water can influence the physical properties of RTS. PMID:3322857

  7. Physical and mechanical properties of icebergs

    SciTech Connect

    Gammon, P.H.; Bobby, W.; Gagnon, R.E.; Russell, W.E.

    1983-05-01

    Physical and mechanical characteristics of iceberg ice were studied from samples collected near the shores of eastern Newfoundland. Although the physical characteristics show considerable diversity, iceberg ice has some common features and is generally porous, lacks significant concentrations of dissolved materials, contains internal cracks and has an irregular interlocking grain structure. A review of mechanical testing of ice was carried out and an experimental setup was devised to reduce effects of improper contact between specimen and loading apparatus. Uniaxial compressive strength for iceberg ice was determined and compared with that for lake ice. The strength of iceberg ice was higher than that of lake ice but Young's Modulus for lake ice was higher.

  8. Physics teachers' perspectives on factors that affect urban physics participation and accessibility

    NASA Astrophysics Data System (ADS)

    Kelly, Angela M.

    2013-06-01

    The accessibility of secondary physics in U.S. urban school districts is a complex issue. Many schools do not offer a physics option, and for those that do, access is often restricted by various school policies and priorities that do not promote physics participation for all. To analyze this problem in greater depth, I adopted a qualitative phenomenological methodology to explore urban physics teachers’ views on school- and district-based conditions that may marginalize traditionally underrepresented students. Teachers from three large urban districts shared concerns and suggestions regarding administrative commitment, student preparedness for physics, reform initiatives and testing mandates, promoting physics enrollments, and implementing high quality instruction. Data from interviews and focus groups provided contextual insights into ways in which physics study may be improved and encouraged for urban youth. Teachers believed expanding access could be facilitated with differentiated levels of physics, incorporating mathematical applications with multiple representations, educating students and counselors on the ramifications of choosing or not choosing elective sciences, well-designed grant-funded initiatives, and flexibility with prerequisites and science course sequencing. Teachers experienced frustration with standardized testing, lack of curricular autonomy, shifting administrative directives, and top-down reforms that did not incorporate their feedback in the decision-making processes. Data from this study revealed that physics teacher networks, often housed at local universities, have been a key resource for establishing supportive professional communities to share best practices that may influence school-based reforms that promote physics participation in urban schools.

  9. Can Programmed or Self-Selected Physical Activity Affect Physical Fitness of Adolescents?

    PubMed Central

    Neto, Cláudio F.; Neto, Gabriel R.; Araújo, Adenilson T.; Sousa, Maria S. C.; Sousa, Juliana B. C.; Batista, Gilmário R.; Reis, Victor M. M. R.

    2014-01-01

    The aim of this study was to verify the effects of programmed and self-selected physical activities on the physical fitness of adolescents. High school adolescents, aged between 15 and 17 years, were divided into two experimental groups: a) a self-selected physical activity group (PAS) with 55 students (aged 15.7 ± 0.7 years), who performed physical activities with self-selected rhythm at the following sports: basketball, volleyball, handball, futsal and swimming; and b) a physical fitness training group (PFT) with 53 students (aged 16.0 ± 0.7 years), who performed programmed physical fitness exercises. Both types of activity were developed during 60 min classes. To assess physical fitness the PROESP-BR protocol was used. The statistical analysis was performed by repeated measures ANOVA. The measurements of pre and post-tests showed significantly different values after PFT in: 9 minute running test, medicine ball throw, horizontal jump, abdominal endurance, running speed and flexibility. After PAS differences were detected in abdominal endurance, agility, running speed and flexibility. The intervention with programmed physical activity promoted more changes in the physical abilities; however, in the self-selected program, agility was improved probably because of the practice of sports. Therefore, physical education teachers can use PFT to improve cardiorespiratory fitness and power of lower and upper limbs and PAS to improve agility of high school adolescents. PMID:25713652

  10. Ferric Phosphate Hydroxide Microstructures Affect Their Magnetic Properties

    PubMed Central

    Zhao, Junhong; Zhang, Youjuan; Run, Zhen; Li, Pengwei; Guo, Qifei; Pang, Huan

    2015-01-01

    Uniformly sized and shape-controlled nanoparticles are important due to their applications in catalysis, electrochemistry, ion exchange, molecular adsorption, and electronics. Several ferric phosphate hydroxide (Fe4(OH)3(PO4)3) microstructures were successfully prepared under hydrothermal conditions. Using controlled variations in the reaction conditions, such as reaction time, temperature, and amount of hexadecyltrimethylammonium bromide (CTAB), the crystals can be grown as almost perfect hyperbranched microcrystals at 180 °C (without CTAB) or relatively monodisperse particles at 220 °C (with CTAB). The large hyperbranched structure of Fe4(OH)3(PO4)3 with a size of ∼19 μm forms with the “fractal growth rule” and shows many branches. More importantly, the magnetic properties of these materials are directly correlated to their size and micro/nanostructure morphology. Interestingly, the blocking temperature (TB) shows a dependence on size and shape, and a smaller size resulted in a lower TB. These crystals are good examples that prove that physical and chemical properties of nano/microstructured materials are related to their structures, and the precise control of the morphology of such functional materials could allow for the control of their performance. PMID:26246988

  11. PHYSICAL PROPERTY MEASUREMENTS OF LABORATORY PREPARED SALTSTONE GROUT

    SciTech Connect

    Hansen, E.; Cozzi, A.; Edwards, T.

    2014-05-05

    were essentially the same for the salt grout without admixture. When Daratard 17 was added, the Bingham Plastic yield stress increased for the 10 minute mix. The simulant salt used in this task had similar physical properties of the Tank 50 3Q13 salt grout and is recommended for future use, if the salt solution in Tank 50 does not change. The design basis physical properties used to size the pumps and mixers at SPF were obtained from DPST-85-312. The grouts characterized in this report are bounded by the design basis density and Bingham Plastic yield stress. The opposite is true for the plastic viscosity. Steady state pressure drop calculations were performed for the design basis values using the flow rate for the clean cap and salt grouts and they bound the pressure drop of the grouts characterized in this report. A comparison of the lab prepared samples to PI ProcessBook data, specifically average pressure drop, indicate that the lab prepared samples are more viscous in nature than what is processed in the facility. This difference could be due to the applied shear rates which could be lower in the lab as compared to the facility and that fact the SPF added flush water, making this comparison more difficult. A perfunctory review of the PI ProcessBook data was discussed. It may be possible that the frequency that the distributed control system alters the grout pump speed to maintain grout hopper volume can negatively affect the efficiency of the grout pump.

  12. The importance of physical activity and sleep for affect on stressful days: Two intensive longitudinal studies.

    PubMed

    Flueckiger, Lavinia; Lieb, Roselind; Meyer, Andrea H; Witthauer, Cornelia; Mata, Jutta

    2016-06-01

    We investigated the potential stress-buffering effect of 3 health behaviors-physical activity, sleep quality, and snacking-on affect in the context of everyday life in young adults. In 2 intensive longitudinal studies with up to 65 assessment days over an entire academic year, students (Study 1, N = 292; Study 2, N = 304) reported stress intensity, sleep quality, physical activity, snacking, and positive and negative affect. Data were analyzed using multilevel regression analyses. Stress and positive affect were negatively associated; stress and negative affect were positively associated. The more physically active than usual a person was on a given day, the weaker the association between stress and positive affect (Study 1) and negative affect (Studies 1 and 2). The better than usual a person's sleep quality had been during the previous night, the weaker the association between stress and positive affect (Studies 1 and 2) and negative affect (Study 2). The association between daily stress and positive or negative affect did not differ as a function of daily snacking (Studies 1 and 2). On stressful days, increasing physical activity or ensuring high sleep quality may buffer adverse effects of stress on affect in young adults. These findings suggest potential targets for health-promotion and stress-prevention programs, which could help reduce the negative impact of stress in young adults. (PsycINFO Database Record PMID:26709860

  13. Structure and physical properties of transparent ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Krumin', A. E.; Shternberg, A. R.

    1987-10-01

    Transparent ferroelectric ceramics (TFCs) are currently being used in the design of various solid-state optoelectronic devices. This paper examines the composition and structure of TFCs as well as requirements on the preparation of TFCs and criteria for the search for new TFC compositions. The properties of TFCs are examined, including the electrooptical effect, optical and electrooptical properties in the infrared, nonlinear-optical properties, the effect of radiation on the physical properties of TFCs, and phase-transition characteristics.

  14. Do Physical Activity Facilities near Schools Affect Physical Activity in High School Girls?

    PubMed Central

    Trilk, Jennifer L.; Ward, Dianne S.; Dowda, Marsha; Pfeiffer, Karin A.; Porter, Dwayne E.; Hibbert, James; Pate, Russell R.

    2011-01-01

    Objective To investigate associations between the number of physical activity facilities within walking distance of school and physical activity behavior in 12th grade girls during after-school hours. Methods Girls (N=1394) from 22 schools completed a self-report to determine physical activity after 3:00 pm. The number of physical activity facilities within a 0.75-mile buffer of the school was counted with a Geographic Information System. Associations between the number of facilities and girls’ physical activity were examined using linear mixed-model analysis of variance. Results Overall, girls who attended schools with ≥ 5 facilities within the buffer reported more physical activity per day than girls in schools with < 5 facilities. In addition, girls who attended rural schools with ≥ 5 facilities reported ~12% more physical activity per day than girls who attended rural schools with < 5 facilities. No difference existed for girls in urban/suburban schools with ≥ 5 vs. < 5 facilities. Conclusion When school siting decisions are made, the number of physical activity facilities surrounding the school should be considered to encourage physical activity in 12th grade girls. PMID:21334248

  15. [Making tablets of powdered milk and the physical properties].

    PubMed

    Shibata, Mitsuho; Otsubo, Kazumitsu; Nakane, Shota; Niwa, Toshiyuki; Danjo, Kazumi

    2011-01-01

    Compressed baby milk powder has proven to be very convenient for parents due to the ease with which it can be handled, and the fact that use of a measuring scoop is not necessary. The purpose of this study was to develop a compressed baby milk powder and analyze the resulting physical properties. The basic production process consisted of the following steps: 1) molding milk powder by low compression pressure, 2) humidification at 25°C·97%RH and 3) drying with use of a desiccant. No chemical additives were used for solidification; therefore the chemical composition of the compressed milk powder is identical to the base milk powder. The important properties of the compressed milk powder are both ready solubility and the strength of the solid. The compressed milk powder obtained at low pressure was too brittle for practical use, but the strength was increased by humidification followed by drying. During the humidification process, the powder particles located close to the surface of the compressed milk powder partially dissolve resulting in bridging structures between the particles, leading to an increase in strength. Both specific surface area and the volume ratio of the compressed milk powder decreased. Testing showed that caking between the particles occurred following humidification, and that the volume of caking affected the ease with which the compressed milk powder dissolves in water. PMID:21963978

  16. Method of a Generalized Physical Property in the Crystal Physics Problems

    NASA Astrophysics Data System (ADS)

    Davydov, V. N.; Lugina, N. É.

    2016-06-01

    A method is proposed for determining the crystallographic directions in crystals of various point symmetry, along which the combination of physical properties of various ranks and Curie symmetry gets a predetermined value. The method is demonstrated for the combination of the second-rank tensors describing optical and thermal properties of crystals of the monoclinic system. The possibility of using the proposed method for the physical properties of high ranks is demonstrated.

  17. Almandine: Crystal Chemistry, Defects, Inclusions and Physical Properties

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Brearley, A. J.; Dachs, E.; Tippelt, G.

    2013-12-01

    -related reactions. These phases are often magnetite (spinel), rutile and ilmenite. It is probably not possible to synthesize true stoichiometric almandine in the laboratory, as OH- and/or Fe3+, for example, are present. Various physical properties including magnetic, electrical conductivity and diffusion behavior, as well as color, can be measurably affected by these 'extra components' in garnet.

  18. Fuel and physical properties of biodiesel components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats or used oils. Specifically, biodiesel is the methyl or other alkyl esters of these oils or fats. Biodiesel also contains minor components such as free fatty acids and acylglycerols. Important fuel properties of biodi...

  19. Prediction of Solvent Physical Properties using the Hierarchical Clustering Method

    EPA Science Inventory

    Recently a QSAR (Quantitative Structure Activity Relationship) method, the hierarchical clustering method, was developed to estimate acute toxicity values for large, diverse datasets. This methodology has now been applied to the estimate solvent physical properties including sur...

  20. Seven types of nonsexual romantic physical affection among Brigham young university students.

    PubMed

    Gulledge, Andrew K; Stahmann, Robert F; Wilson, Colwick M

    2004-10-01

    College students from Brigham Young University (N= 186; 68 men, 118 women, M age=22.7 yr., SD=3.5) completed a survey regarding nonsexual, romantic physical affection-defined as any touch intended to arouse feelings of love in the giver or the recipient. Respondents included both dating and married individuals, although this was not specified on the questionnaire. This descriptive study reports the mean, median, mode, and standard deviation for each of the seven physical affection types: backrubs/massages, caressing/stroking, cuddling/holding, holding hands, hugging, kissing on the face, and kissing on the lips. Grouped frequency distributions further describe the amounts of each type of physical affection. Although physical affection has been underrepresented in the literature, studies have shown it to be associated with relationship satisfaction, partner satisfaction, psychological intimacy, feeling understood, the development of attachment bonds, modulating cardiovascular arousal, and easier conflict resolution. PMID:15587229

  1. Predicting Soil Biological and Physical Properties Using Hydrological Properties

    NASA Astrophysics Data System (ADS)

    Geiger, L.; Hofmockel, K.; Kaleita, A.; Hargreaves, S.

    2012-12-01

    Soil biological and chemical properties vary at different spatial scales, which make predicting processes associated with these properties difficult. However, soil biological and chemical properties are important to fertility and ecosystem functioning. In this study, we used a Self Organizing Map (SOM) to determine whether soil hydrological characteristics can be used to characterize the distribution of a suite of soil biological and chemical properties. From a row crop field in south-central Iowa, we generated 36 sampling locations via a SOM, which were grouped into three categories according to hydrological properties by the SOM. Soil samples were then analyzed for microbial biomass, carbon and nitrogen mineralization potential, and organic and inorganic pools of carbon and nitrogen. We found that sampling locations in category 1 (potholes and toe slopes) had greater microbial biomass, total carbon, total nitrogen, and extractable organic carbon than compared locations in the two well-drained categories. Nitrogen and carbon mineralization and inorganic nitrogen pools did not differ significantly among the categories. These results demonstrate that hydrological characteristics can be used to predict relatively stable biological and chemical soil properties. However, prediction of nitrogen and carbon fluxes remains a challenge.

  2. Soil carbon dioxide fluxes in relation to physical properties as influenced by management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among greenhouse gases, carbon dioxide (CO2) is one of the most significant contributors to regional and global warming as well as climatic change. However, CO2 flux from the soil surface to the atmosphere can be affected by modifications in soil physical properties resulting from changes in land ma...

  3. Tillage depth effects on soil physical properties, sugarbeet yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage depth influences the soil-water-plant ecosystem, thereby affecting crop yield and quality. The effects of tillage depth on soil physical properties and sugarbeet (Beta vulgaris L.) yield and quality were evaluated. A field study comprised of two tillage depths: shallow (ST) of 10-cm and deep...

  4. Microwave techniques for physical property measurements

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1993-01-01

    Industrial processing of metals and ceramics is now being streamlined by the development of theoretical models. High temperature thermophysical properties of these materials are required to successfully apply these theories. Unfortunately, there is insufficient experimental data available for many of these properties, particularly in the molten state. Microwave fields can be used to measure specific heat, thermal diffusivity, thermal conductivity and dielectric constants at high temperatures. We propose to (1) develop a microwave flash method (analogous to the laser flash technique) that can simultaneously measure the thermal diffusivity and specific heat of insulators and semiconductors at high temperatures, (2) an appropriate theory and experimental apparatus to demonstrate the measurement of the specific heat of a metal using a new microwave ac specific heat technique, and (3) experimental methods for noncontact measurement of the real and imaginary dielectric constants.

  5. Walk on the Bright Side: Physical Activity and Affect in Major Depressive Disorder

    PubMed Central

    Mata, Jutta; Thompson, Renee J.; Jaeggi, Susanne M.; Buschkuehl, Martin; Jonides, John; Gotlib, Ian H.

    2014-01-01

    Although prescribed exercise has been found to improve affect and reduce levels of depression, we do not know how self-initiated everyday physical activity influences levels of positive affect (PA) and negative affect (NA) in depressed persons. Fifty-three individuals diagnosed with Major Depressive Disorder (MDD) and 53 never-depressed controls participated in a seven-day experience sampling study. Participants were prompted randomly eight times per day and answered questions about their physical activity and affective state. Over the week, the two groups of participants did not differ in average level of physical activity. As expected, participants with MDD reported lower average PA and higher average NA than did never-depressed controls. Both participants with MDD and controls reported higher levels of PA at prompts after physical activity than at prompts after inactive periods; moreover, for both groups of participants, PA increased from a prompt after an inactive period to a subsequent prompt at which activity was reported. Depressed participants in particular showed a dose-response effect of physical activity on affect: longer duration and/or higher intensity of physical activity increased their PA significantly more than did short duration and/or lower intensity physical activity. Physical activity did not influence NA in either group. In contrast to previous treatment studies that examined the effects of prescribed structured exercise, this investigation showed that self-initiated physical activity influences PA. These findings also underscore the importance of distinguishing between PA and NA to gain a more comprehensive understanding of the effects of physical activity on affect in MDD. PMID:21553939

  6. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  7. 4.4 Physical Properties of the Most Important Radionuclides

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.4 Physical Properties of the Most Important Radionuclides' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy'.

  8. Psychometric Properties of the Commitment to Physical Activity Scale

    ERIC Educational Resources Information Center

    DeBate, Rita DiGioacchino; Huberty, Jennifer; Pettee, Kelley

    2009-01-01

    Objective: To assess psychometric properties of the Commitment to Physical Activity Scale (CPAS). Methods: Girls in third to fifth grades (n = 932) completed the CPAS before and after a physical activity intervention. Psychometric measures included internal consistency, factor analysis, and concurrent validity. Results: Three CPAS factors emerged:…

  9. Maternal nutrient restriction affects properties of skeletal muscle in offspring

    PubMed Central

    Zhu, Mei J; Ford, Stephen P; Means, Warrie J; Hess, Bret W; Nathanielsz, Peter W; Du, Min

    2006-01-01

    Maternal nutrient restriction (NR) affects fetal development with long-term consequences on postnatal health of offspring, including predisposition to obesity and diabetes. Most studies have been conducted in fetuses in late gestation, and little information is available on the persistent impact of NR from early to mid-gestation on properties of offspring skeletal muscle, which was the aim of this study. Pregnant ewes were subjected to 50% NR from day 28–78 of gestation and allowed to deliver. The longissimus dorsi muscle was sampled from 8-month-old offspring. Maternal NR during early to mid-gestation decreased the number of myofibres in the offspring and increased the ratio of myosin IIb to other isoforms by 17.6 ± 4.9% (P < 0.05) compared with offspring of ad libitum fed ewes. Activity of carnitine palmitoyltransferase-1, a key enzyme controlling fatty acid oxidation, was reduced by 24.7 ± 4.5% (P < 0.05) in skeletal muscle of offspring of NR ewes and would contribute to increased fat accumulation observed in offspring of NR ewes. Intramuscular triglyceride content (IMTG) was increased in skeletal muscle of NR lambs, a finding which may be linked to predisposition to diabetes in offspring of NR mothers, since enhanced IMTG predisposes to insulin resistance in skeletal muscle. Proteomic analysis by two-dimensional gel electrophoresis demonstrated downregulation of several catabolic enzymes in 8-month-old offspring of NR ewes. These data demonstrate that the early to mid-gestation period is important for skeletal muscle development. Impaired muscle development during this stage of gestation affects the number and composition of fibres in offspring which may lead to long-term physiological consequences, including predisposition to obesity and diabetes. PMID:16763001

  10. Nanoscale chemical interaction enhances the physical properties of bioglass composites.

    PubMed

    Ravarian, Roya; Zhong, Xia; Barbeck, Mike; Ghanaati, Shahram; Kirkpatrick, Charles James; Murphy, Ciara M; Schindeler, Aaron; Chrzanowski, Wojciech; Dehghani, Fariba

    2013-10-22

    Bioglasses are favorable biomaterials for bone tissue engineering; however, their applications are limited due to their brittleness. In addition, the early failure in the interface is a common problem of composites of bioglass and a polymer with high mechanical strength. This effect is due to the phase separation, nonhomogeneous mixture, nonuniform mechanical strength, and different degradation properties of two compounds. To address these issues, in this study a nanoscale interaction between poly(methyl methacrylate) (PMMA) and bioactive glass was formed via silane coupling agent (3-trimethoxysilyl)propyl methacrylate (MPMA). A monolith was produced at optimum composition from this hybrid by the sol-gel method at 50 °C with a rapid gelation time (<50 min) that possessed superior physicochemical properties compared to pure bioglass and physical mixture. For instance, the Young's modulus of bioglass was decreased 40-fold and the dissolution rate of silica was retarded 1.5-fold by integration of PMMA. Prolonged dissolution of silica fosters bone integration due to the continuous dissolution of bioactive silica. The primary osteoblast cells were well anchored and cell migration was observed on the surface of the hybrid. The in vivo studies in mice demonstrated that the integrity of the hybrids was maintained in subcutaneous implantation. They induced mainly a mononuclear phagocytic tissue reaction with a low level of inflammation, while bioglass provoked a tissue reaction with TRAP-positive multinucleated giant cells. These results demonstrated that the presence of a nanoscale interaction between bioglass and PMMA affects the properties of bioglass and broadens its potential applications for bone replacement. PMID:24001050

  11. Modelling the historical changes in physical soil properties caused by wind erosion process

    NASA Astrophysics Data System (ADS)

    Lackóová, Lenka

    2016-04-01

    Soil physical properties could be significantly affected by land degradation processes. Spatial variation modelling of physical soil properties in time is important in areas where wind erosion occurs regularly. The objectives of this study were to determine the changes of spatial variability of sand, silt and clay % contents in selected area in Slovakia over 45 years using topsoil physical properties at European scale (using LUCAS topsoil) and historical Complex Soil Survey Data. The Complex Soil Survey was made in the period 1960-1970 for the whole of the Slovak Republic, using a unified methodology to build an important soil properties database including physical topsoil properties. Spatial model distribution using regression kriging algorithm created by Soil Science and Conservation Research Institute was used for comparison with LUCAS topsoil particle size distribution datasets and their derived products of clay, sand and silt % content. The results of this study will show the effects of wind erosion in long time scale. Continual total mass removal during wind erosion can produce dramatic changes in the texture of the soil surface. Fine particles are removed, which tend to concentrate sand as erosion continues. Wind erosion physically removes the most fertile portion of the soil which may lead to lower productivity or destroying the characteristics of topsoil beneficial to plant growth. Historical changes of physical soil properties are discussed in this study.

  12. Effects of Vermicompost and Water Treatment Residuals on Soil Physical Properties and Wheat Yield

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mahmoud M.; Mahmoud, Essawy K.; Ibrahim, Doaa A.

    2015-04-01

    The application of vermicompost and water treatment residuals to improve the physical properties in the salt affected soils is a promising technology to meet the requirements of high plant growth and cost-effective reclamation. Therefore, the aim of this study was to investigate the effect of vermicompost and its mixtures with water treatment residuals on selected physical properties of saline sodic soil and on wheat yield. The treatments were vermicompost, water treatment residuals, vermicompost + water treatment residuals (1:1 and 2:1 wet weight ratio) at levels of 5 and 10 g dry weight kg-1 dry soil. The considered physical properties included aggregate stability, mean weight diameter, pore size distribution and dry bulk density. The addition of vermicompost and water treatment residuals had significant positive effects on the studied soil physical properties, and improved the grain yield of wheat. The treatment of (2 vermicompost + 1 water treatment residuals) at level of 5 g kg-1 soil gave the best grain yield. Combination of vermicompost and water treatment residuals improved the water treatment residuals efficiency in ameliorating the soil physical properties, and could be considered as an ameliorating material for the reclamation of salt affected soils.

  13. Rock physics properties of some lunar samples

    NASA Technical Reports Server (NTRS)

    Warren, N.; Trice, R.; Anderson, O. L.; Soga, N.

    1973-01-01

    Linear strains and acoustic velocity data for lunar samples under uniaxial and hydrostatic loading are presented. Elastic properties are presented for 60335,20; 15555,68; 15498,23; and 12063,97. Internal friction data are summarized for a number of artificial lunar glasses with compositions similar to lunar rocks 12009, 12012, 14305, 15021, and 15555. Zero porosity model-rock moduli are calculated for a number of lunar model-rocks, with mineralogies similar to Apollo 12, 14, and 16 rocks. Model-rock calculations indicate that rock types in the troctolitic composition range may provide reasonable modeling of the lunar upper mantle. Model calculations involving pore crack effects are compatible with a strong dependence of rock moduli on pore strain, and therefore of rock velocities on nonhydrostatic loading. The high velocity of rocks under uniaxial loading appears to be compatible with, and may aid in, interpretation of near-surface velocity profiles observed in the active seismic experiment.

  14. Structures and physical properties of R2TX3 compounds

    NASA Astrophysics Data System (ADS)

    Pan, Zhi-Yan; Cao, Chong-De; Bai, Xiao-Jun; Song, Rui-Bo; Zheng, Jian-Bang; Duan, Li-Bing

    2013-05-01

    Rare-earth compounds have been an attractive subject based on the unique electronic structures of the rare-earth elements. Novel ternary intermetallic compounds R2TX3 (R = rare-earth element or U, T = transition-metal element, X = Si, Ge, Ga, In) are a significant branch of this research field due to their complex and intriguing physical properties, such as magnetic order at low temperature, spin-glass behavior, Kondo effect, heavy fermion behavior, and so on. The unique physical properties of R2TX3 compounds are related to distinctive electronic structures, crystal structures, microinteraction, and external environment. Most R2TX3 compounds crystallize in AlB2-type or derived AlB2-type structures and exhibit many similar properties. This paper gives a concise review of the structures and physical properties of these compounds. Spin glass, magnetic susceptibility, resistivity, and specific heat of R2TX3 compounds are discussed.

  15. Physical Properties of Asteroid (1917) Cuyo

    NASA Astrophysics Data System (ADS)

    Rożek, A.; Lowry, S. C.; Duddy, S. R.; Snodgrass, C.; Weissman, P. R.; Wolters, S. D.; Fitzsimmons, A.; Green, S. F.; Hicks, M. D.; Rozitis, B.

    2013-09-01

    Asteroid (1917) Cuyo is a Near-Earth Asteroid (NEA) from the Amor group. It is orbitting the Sun on a highly elongated orbit with semimajor axis 2.15 AU and eccentricity 0.504. At a low delta-V (8.6 kms-1) it could be a potential target for future spacecraft missions. Radar observations indicated a slight elongation of the object with a "breadth ratio" of the asteroid's mean cross section estimated to be 1.14 [7]. Further studies showed its rotation period to be 2.6905 ± 0.0007h [11], and it was classified as 'Sr' type in the Bus-DeMeo taxonomy [8]. Cuyo was observed as part of our ESO Large Programme. The programme includes ongoing optical photometric monitoring of selected NEAs, thermal-IR observations, and optical-NIR spectroscopy. Among the principal aims of the programme are the physical characterisation of NEAs, shape modelling, and search for YORP-induced changes in rotation periods. Here we present our latest results and analysis from our observational monitoring of (1917) Cuyo. We are conducting a broad study of this asteroid, including optical photometry and spectroscopy, and thermal-IR observations. This work is ongoing and we shall present our latest results at the meeting.

  16. Momentary Affective States Are Associated with Momentary Volume, Prospective Trends, and Fluctuation of Daily Physical Activity

    PubMed Central

    Kanning, Martina K.; Schoebi, Dominik

    2016-01-01

    Several interventions aiming to enhance physical activity in everyday life showed mixed effects. Affective constructs are thought to potentially support health behavior change. However, little is known about within-subject associations between momentary affect and subsequent physical activity in everyday life. This study analyzed the extent to which three dimensions of affective states (valence, calmness, and energetic arousal) were associated with different components of daily activity trajectories. Sixty-five undergraduates’ students (Age: M = 24.6; SD = 3.2; females: 57%) participated in this study. Physical activity was assessed objectively through accelerometers during 24 h. Affective states assessments were conducted randomly every 45 min using an e-diary with a six-item mood scale that was especially designed for ambulatory assessment. We conducted three-level multi-level analyses to investigate the extent to which momentary affect accounted for momentary volume, prospective trends, and stability vs. fluctuation of physical activity in everyday life. All three affect dimensions were significantly associated with momentary activity volumes and prospective trends over 45 min periods. Physical activity didn’t fluctuate freely, but featured significant autocorrelation across repeated measurements, suggesting some stability of physical activity across 5-min assessments. After adjusting for the autoregressive structure in physical activity assessments, only energetic arousal remained a significant predictor. Feeling energized and awake was associated with an increased momentary volume of activity and initially smaller but gradually growing decreases in subsequent activity within the subsequent 45 min. Although not related to trends in physical activity, higher valence predicted lower stability in physical activity across subsequent 45 min, suggesting more short-term fluctuations in daily activity the more participants reported positive affective valence. The

  17. Physical transport properties of marine microplastic pollution

    NASA Astrophysics Data System (ADS)

    Ballent, A.; Purser, A.; Mendes, P. de Jesus; Pando, S.; Thomsen, L.

    2012-12-01

    Given the complexity of quantitative collection, knowledge of the distribution of microplastic pollution in many regions of the world ocean is patchy, both spatially and temporally, especially for the subsurface environment. However, with knowledge of typical hydrodynamic behavior of waste plastic material, models predicting the dispersal of pelagic and benthic plastics from land sources into the ocean are possible. Here we investigate three aspects of plastic distribution and transport in European waters. Firstly, we assess patterns in the distribution of plastics found in fluvial strandlines of the North Sea and how distribution may be related to flow velocities and distance from source. Second, we model transport of non-buoyant preproduction pellets in the Nazaré Canyon of Portugal using the MOHID system after assessing the density, settling velocity, critical and depositional shear stress characteristics of such waste plastics. Thirdly, we investigate the effect of surface turbulences and high pressures on a range of marine plastic debris categories (various densities, degradation states and shapes tested) in an experimental water column simulator tank and pressure laboratory. Plastics deposited on North Sea strandlines varied greatly spatially, as a function of material composition and distance from source. Model outputs indicated that such dense production pellets are likely transported up and down canyon as a function of tidal forces, with only very minor net down canyon movement. Behaviour of plastic fragments under turbulence varied greatly, with the dimensions of the material, as well as density, playing major determining roles. Pressure was shown to affect hydrodynamic behaviours of only low density foam plastics at pressures ≥ 60 bar.

  18. Prediction of pollutant physical properties by computer (SPARC)

    SciTech Connect

    Karickhoff, S.W.; Careirra, L.A.; Hilal, S.H.

    1995-12-31

    The SPARC system provides estimates of key chemical parameters required in the description of physical/chemical processes that affect the speciation, transport and transformation of organic pollutants in the environment. The span in chemical parameters includes ionization pKa`s and equilibrium constants for interphase distribution (gas/liquid, liquid/liquid, liquid/solid, etc.). Predictive capability extends to essentially any organic solute and derives strictly from molecular structure input. Solvents capability includes water and essentially any organic solvent. Reaction conditions span ranges typical of environmental application. All parameter calculations derive from a common set of core models describing intra/intermolecular interactions. In this presentation, salvation models will be highlighted. These include both inner and outer shell interactions. Results of these salvation models in estimating solute activities and activity-derived properties (solubilities, vapor pressures, distribution coefficients) will be given for a wide range of solutes, solvents and solvent mixtures. The extension of these salvation models to sorption on natural sorbents will be presented.

  19. How vision affects kinematic properties of pantomimed prehension movements.

    PubMed

    Fukui, Takao; Inui, Toshio

    2013-01-01

    When performing the reach-to-grasp movement, fingers open wider than the size of a target object and then stop opening. The recorded peak grip aperture (PGA) is significantly larger when this action is performed without vision during the movement than with vision, presumably due to an error margin that is retained in order to avoid collision with the object. People can also pretend this action based on an internal target representation (i.e., pantomimed prehension), and previous studies have shown that kinematic differences exist between natural and pantomimed prehension. These differences are regarded as a reflection of variations in information processing in the brain through the dorsal and ventral streams. Pantomimed action is thought to be mediated by the ventral stream. This implies that visual information during the movement, which is essential to the dorsal stream, has little effect on the kinematic properties of pantomimed prehension. We investigated whether an online view of the external world affects pantomimed grasping, and more specifically, whether the dorsal stream is involved in its execution. Participants gazed at a target object and were then subjected to a 3-s visual occlusion, during which time the experimenter removed the object. The participants were then required to pretend to make a reach-to-grasp action toward the location where the object had been presented. Two visual conditions (full vision and no vision) were imposed during the pantomimed action by manipulating shutter goggles. The PGA showed significant differences between the two visual conditions, whereas no significant difference was noted for terminal grip aperture, which was recorded at the movement end. This suggests the involvement of the dorsal stream in pantomimed action and implies that pantomimed prehension is a good probe for revealing the mechanism of interaction between the ventral and dorsal streams, which is also linked to embodied cognition. PMID:23404470

  20. Photometric Redshift with Bayesian Priors on Physical Properties of Galaxies

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayuki

    2015-03-01

    We present a proof-of-concept analysis of photometric redshifts with Bayesian priors on physical properties of galaxies. This concept is particularly suited for upcoming/on-going large imaging surveys, in which only several broadband filters are available and it is hard to break some of the degeneracies in the multi-color space. We construct model templates of galaxies using a stellar population synthesis code and apply Bayesian priors on physical properties such as stellar mass and star formation rate. These priors are a function of redshift and they effectively evolve the templates with time in an observationally motivated way. We demonstrate that the priors help reduce the degeneracy and deliver significantly improved photometric redshifts. Furthermore, we show that a template error function, which corrects for systematic flux errors in the model templates as a function of rest-frame wavelength, delivers further improvements. One great advantage of our technique is that we simultaneously measure redshifts and physical properties of galaxies in a fully self-consistent manner, unlike the two-step measurements with different templates often performed in the literature. One may rightly worry that the physical priors bias the inferred galaxy properties, but we show that the bias is smaller than systematic uncertainties inherent in physical properties inferred from the spectral energy distribution fitting and hence is not a major issue. We will extensively test and tune the priors in the on-going Hyper Suprime-Cam survey and will make the code publicly available in the future.

  1. SAPHYR: the Swiss Atlas of PHYsical properties of Rocks

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Zappone, A. S.; Kissling, E.

    2015-12-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR) is a multi-year project, aiming to compile a comprehensive data set on physical properties of rocks exposed in Switzerland and surrounding areas. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public, such as industrial, engineering, land and resource planning companies, as well as academic institutions. Since the early sixties worldwide geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. In combination with efforts to investigate deep structure of the continental crust by controlled source seismology, laboratories capable to reproduce pressure and temperature conditions to depth of 50km and more collected measurements of various parameters on a wide variety of rock types. In recent years, the increasing interest on non-traditional energy supply, (deep geothermal energy, shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. The idea to organize those laboratory data into a geographically referenced database (GIS) is supported by the Swiss Commission for Geophysics. The data refer to density and porosity, seismic, magnetic, thermal properties, permeability and electrical properties. An effort has been placed on collecting samples and measuring the physical properties of lithologies that are poorly documented in literature. The phase of laboratory measurements is still in progress. At present SAPHYR focuses towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology, boreholes data and seismic surveys, combined with lab determined pressure and temperature derivatives. An early version of the final product is presented here.

  2. Physical Properties of Hanford Transuranic Waste Sludge

    SciTech Connect

    Berg, John C.

    2005-06-01

    Equipment that was purchased in the abbreviated year 1 of this project has been used during year 2 to study the fundamental behavior of materials that simulate the behavior of the Hanford transuranic waste sludge. Two significant results have been found, and each has been submitted for publication. Both studies found non-DLVO behavior in simulant systems. These separate but related studies were performed concurrently. It was previously shown in Rassat et al.'s report Physical and Liquid Chemical Simulant Formulations for Transuranic Wastes in Hanford Single-Shell Tanks that colloidal clays behave similarly to transuranic waste sludge (PNNL-14333, National Technical Information Service, U.S. Dept. of Commerce). Rassat et al. also discussed the pH and salt content of actual waste materials. It was shown that these materials exist at high pHs, generally above 10, and at high salt content, approximately 1.5 M from a mixture of different salts. A type of clay commonly studied, due to its uniformity, is a synthetic hectorite, Laponite. Therefore the work performed over the course of the last year was done mainly using suspensions of Laponite at high pH and involving high salt concentrations. One study was titled ''Relating Clay Rheology to Colloidal Parameters''. It has been submitted to the Journal of Colloid and INterface Science and is currently in the review process. The idea was to gain the ability to use measurable quantities to predict the flow behavior of clay systems, which should be similar to transuranic waste sludge. Leong et al. had previously shown that the yield stress of colloidal slurries of titania and alumina could be predicted, given the measurement of the accessible parameter zeta potential (Leong YK et al. J Chem Soc Faraday Trans, 19 (1993) 2473). Colloidal clays have a fundamentally different morphology and surface charge distribution than the spheroidal, uniformly charged colloids previously studied. This study was therefore performed in order to

  3. Examining the construct validity of affective judgments of physical activity measures.

    PubMed

    Chmielewski, Michael; Sala, Margarita; Tang, Rui; Baldwin, Austin

    2016-09-01

    Affective judgments of physical activity have emerged as important predictors of physical activity and interventions targeting affective judgments are a promising approach to improving regular physical activity. Currently, measures assessing a variety of potentially distinct constructs are treated as interchangeable assessments of affective judgments of physical activity. Moreover, little is known about the construct validity of the purported measures of this construct. We review several components of construct validity; highlighting their importance for health psychology research. Then, we examine the construct validity of a wide variety of affective judgment of physical activity measures in MTurk and student samples. Cronbach's alpha for the included measures was uniformly high; however, several scales contained excessively redundant items that ultimately lessen their construct validity. Moreover, dependability estimates for the majority of measures was poor, indicating high levels of transient measurement error. The included measures significantly predicted levels of physical activity; however, their relative predictive power was strongly associated with their dependability. In general, the affective judgment measures demonstrated poor convergent validity suggesting they are not interchangeable and best viewed as assessing distinct, albeit related, constructs. Another important limitation of these measures is that they exhibited poor discriminant validity from exercise self-efficacy, which represents an important theoretical and empirical issue for the field of health behavior research. Overall, the current findings indicate the available affective judgments of physical activity measures are suboptimal, have considerable construct validity limitations, and thereby prevent the further advancement of science, theory, and intervention development in this promising area of research. (PsycINFO Database Record PMID:27537007

  4. 7 CFR 1955.105 - Real property affected (CONACT).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... planting, cultivating, growing, producing, harvesting, or storing a controlled substance (see 21 CFR Part... AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Disposal of Inventory Property... and Waste Disposal (WWD); Reserve Conservation and Development (RC&D); Watershed (WS);...

  5. Effect of composition on physical properties of food powders

    NASA Astrophysics Data System (ADS)

    Szulc, Karolina; Lenart, Andrzej

    2016-04-01

    The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.

  6. Physical properties of fixed prosthodontic, resin composite luting agents.

    PubMed

    White, S N; Yu, Z

    1993-01-01

    This study determined and compared physical properties of six fixed prosthodontic resin composite luting agents and one control. Inorganic filler content, compressive strength, diametral tensile strength, film thickness, and Knoop hardness were determined. The amounts of filler and the physical properties varied widely among materials. One material, which contained a minimal amount of filler, underwent so much plastic deformation that its strengths could not be measured. All other materials demonstrated high strengths. The materials with the least filler demonstrated the least resistance to indentation. The material with the lowest film thickness had not set at the time of measurement, 10 minutes after mixing. Most materials had unacceptable film thicknesses. Only one material demonstrated acceptable physical properties throughout the study. PMID:8240650

  7. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    SciTech Connect

    Lambert, D.; Pickenheim, B.; Hay, M.

    2011-06-20

    The Defense Waste Processing Facility (DWPF) is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and

  8. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    SciTech Connect

    Pickenheim, B.; Bibler, N.

    2010-06-08

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be

  9. Investigating correlation between legal and physical property: possibilities and constraints

    NASA Astrophysics Data System (ADS)

    Dimopoulou, E.; Kitsakis, D.; Tsiliakou, E.

    2015-06-01

    Contemporary urban environment is characterized by complexity and mixed use of space, in which overlapping land parcels and different RRRs (Rights, Restrictions and Responsibilities) are frequent phenomena. Internationally, real property legislation either focuses on surface property or has introduced individual 3D real property units. The former approach merely accommodates issues related to subdivision, expropriation and transactions on part of the real property above or below surface, while the latter provides for defining and registering 3D real property units. National laws require two-dimensional real property descriptions and only a limited number of jurisdictions provide for threedimensional data presentation and recording. International awareness on 3D Cadastre may be apparent through the proposals for transition of existing cadastral systems to 3D along with legal amendments improving national 3D Cadastre legislation. Concurrently the use of appropriate data sources and the correct depiction of 3D property units' boundaries and spatial relationships need to be addressed. Spatial relations and constraints amongst real world objects could be modeled geometrically and topologically utilizing numerous modeling tools, e.g. CityGML, BIM and further sophisticated 3D software or by adapting international standards, e.g. LADM. A direct correlation between legal and physical property should be based on consistent geometry between physical and legal space, improving the accuracy that legal spaces' volumes or locations are defined. To address these issues, this paper investigates correlation possibilities and constraints between legal and physical space of typical 3D property cases. These cases comprise buildings or their interior spaces with mixed use, as well as complex structures described by explicit facade patterns, generated by procedural or by BIM ready 3D models. The 3D models presented are evaluated, regarding compliancy to physical or legal reality.

  10. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    PubMed

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. PMID:27459206

  11. Physical properties of Aten, Apollo and Amor asteroids

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy-Ann; Tholen, David J.; Veeder, Glenn J.

    1989-01-01

    Data available on the physical properties of a group of planet-crossing asteroids, the Aten, Apollo, and Amor objects (AAAO) (include data on the taxonomy, mineralogical surface composition, diameter, rotation rate, shape, and surface texture) are presented together with the type of observations used for obtaining these data. These data show that the population of the AAAO is diverse in all of their physical characteristics. This diversity implies that the AAAO come from multiple sources and had different evolutionary histories.

  12. Physical properties about metal matrix FGM of molybdenum and copper

    SciTech Connect

    Nakano, Kouichi; Nishida, Shinichi

    1995-11-01

    Metal matrix composites (MMC) have been made trials to produce by a lot of fabrication processes such as the powder metallurgical method, the plasma spraying, the diffusion bonding, the physical vapor deposition method, the hot isostatic pressing (HIP) etc. In the most cases of these processes, dissimilar materials are combined or bonded directly. The various physical properties are discontinuous at the bonded interface of the dissimilar materials. In order to overcome the problem, functionally gradient materials (FGM) have been considered recently, and have attracted the authors. Its compositions are prepared so that physical properties continuously vary across the bond interface of the dissimilar metals. In this study, a FGM is produced by a new process based on HIP. Copper and molybdenum, which are distinct in the thermo-physical property to each other, are the constitutents for the FGM. This composition have been confirmed by absorbed electron and characteristics X-ray images of each mixed layer for FGM to be uniform or continuous. The following items have been investigated and compared with the linear law of mixture rule: Vickers hardness, thermal expansion, and thermal conductivity at a one-dimensional non-steady state. Those physical properties have been identified to depend on the mixing ratios of copper and molybdenum. Pretty good agreements have been obtained between the experimental data and the calculated values according to the linear law of mixture rule.

  13. Effects of Tillage, Rotation and Cover Crop on the Physical Properties of a Silt-Loam Soil

    NASA Astrophysics Data System (ADS)

    Haruna, Samuel Idoko; Nkongolo, Nsalambi Vakanda

    2015-04-01

    Soil and crop management practices can affect the physical properties and have a direct impact on soil sustainability and crop performance. The objective of this study was to investigate how soil physical properties were affected by three years of tillage, cover crop and crop rotation treatments in a corn and soybean field. The study was conducted on a Waldron siltyloam soil at Lincoln University of Missouri. Soil physical properties studied were soil bulk density, volumetric and gravimetric water contents, volumetric air content, total pore space, air-filled and water-filled pore space, gas diffusion coefficient and pore tortuosity factor. Results showed significant interactions (p<0.05) between cover crop and crop rotation for bulk density, gravimetric and total pore space in 2013. In addition, cover crop also significantly interacted (p<0.05) with tillage for bulk density and total pore space. All soil physical properties studied were significantly affected by the depth of sampling (p<0.0001), except for bulk density, the pore tortuosity factor and total pore space in 2012, and gravimetric and volumetric in 2013. Overall, soil physical properties were significantly affected by the treatments, with the effects changing from one year to another. Addition of a cover crop improved soil physical properties better in rotation than in monoculture.

  14. Electrical Insulation Paper and Its Physical Properties at Cryogenic Temperatures

    SciTech Connect

    Tuncer, Enis; Polyzos, Georgios; Sauers, Isidor; James, David Randy

    2011-01-01

    Paper is widely used in various engineering applications due to its physical properties and ease of manufacture. As a result paper has been selected or designed as an electrical insulation material for parts and components in high voltage technology. In the current study we select a paper employed in conventional transformers as the electrical insulation material. The potential of this paper is investigated at cryogenic temperatures to determine its physical properties for high temperature superconducting power applications. Dielectric measurements were performed using impedance spectroscopy at a constant frequency. Dielectric breakdown tests were performed on samples at 77 K using a liquid nitrogen bath.

  15. Use of ultrasound to monitor physical properties of soybean oil

    NASA Astrophysics Data System (ADS)

    Baêsso, R. M.; Oliveira, P. A.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2016-07-01

    The study of the monitoring physical properties of soybean oil was performed. The pulse-echo method allowed measuring the density and viscosity of the oil in real time and accurately. The physical property values were related to the acoustic time of flight ratio, dimensionless parameter that can be obtained from any reference. In our case, we used the time of flight at 20°C as reference and a fixed distance between the transducer and the reflector. Ultrasonic monitoring technique employed here has shown promising in the analysis of edible oils.

  16. A system for recording physical properties of clouds

    NASA Technical Reports Server (NTRS)

    Purgold, G. C.; Whitlock, C. H.

    1990-01-01

    Characterization of the physical properties of clouds is an important objective of the FIRE Project intensive field operations (IFO) planned for 1990 thru 1992. Physical properties observed from satellites will be directly compared to ground based observations during this period. The technical information is provided which is required to record local cloud parameters such as type of clouds, direction of travel, layering, and cloud fraction data. Such information should be very useful in analyzing other cloud and meteorological data. A system of the type described was deployed as part of the First Global Surface Radiation Budget Experiment in April 1989.

  17. Aerosol physical properties in the stratosphere (APPS) radiometer design

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Woodin, E. A.; Anderson, T. J.; Magee, R. J.; Karthas, G. W.

    1977-01-01

    The measurement concepts and radiometer design developed to obtain earth-limb spectral radiance measurements for the Aerosol Physical Properties in the Stratosphere (APPS) measurement program are presented. The measurements made by a radiometer of this design can be inverted to yield vertical profiles of Rayleigh scatterers, ozone, nitrogen dioxide, aerosol extinction, and aerosol physical properties, including a Junge size-distribution parameter, and a real and imaginary index of refraction. The radiometer design provides the capacity for remote sensing of stratospheric constituents from space on platforms such as the space shuttle and satellites, and therefore provides for global measurements on a daily basis.

  18. Spatial variability of snow physical properties across northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Courville, Z.; Polashenski, C.; Dibb, J. E.; Domine, F.

    2013-12-01

    In the late spring and early summer of 2013, researchers on the SAGE (Sunlight Absorption on the Greenland ice sheet Experiment) Traverse, embarked on a 4000 km ground traverse across northwestern Greenland in an attempt to quantify spatial variability of snow chemistry, snow physical properties, and snow reflectance. The field team targeted sites first visited by Carl Benson during his series of traverses from 1952 to 1955 as part of his pioneering work to characterize the Greenland Ice Sheet. This route now represents a rapidly changing and variable area of Greenland, as the route passes through several of the ice sheet facies first delimited by Benson. Along the traverse, the SAGE field team made ground-based albedo measurements using a hand-held spectroradiometer and collected snow physical property samples to determine snow specific surface area (SSA) from shallow, 2m pits. In addition, snow density and stratigraphy were measured. Snow layers in the near-surface and at the previous season's melt layer were targeted for sampling. Here we present preliminary snow physical property results from the upper portion of the snow pits and relate these to surface albedo data collected over the route. Further measurements of snow properties in the 2012 melt layer will be analyzed to assess the potential role of snow chemical (see Dibb et al. for a discussion of chemical analysis) and physical property driven albedo feedbacks could have played in contributing to that event. Route of 2013 SAGE Traverse in northwestern Greenland.

  19. Impact of Wetting/Oven-Drying Cycles on the Mechanical and Physical Properties of Birch Plywood

    NASA Astrophysics Data System (ADS)

    Sooru, M.; Kasepuu, K.; Kask, R.; Lille, H.

    2015-11-01

    The objective of this study was to explore some physical and mechanical properties and the dimensional stability of birch (Betula sp.) nine-ply veneers glued with phenol-formaldehyde (PF) after 10 cycles of soaking/oven-drying. The properties to be determined were bending strength (BS), modulus of elasticity in bending (MOE), Janka hardness (JH) and thickness swelling (TS), which were tested according to the European Standards (EN). An analytical equation was used for approximation of the change in the physical and mechanical properties of the samples depending on the number of cycles. It was shown that the values of the studied properties were affected most by the first soaking and drying cycles after which BS and MOE decreased continuously while the values of JH and TS stabilized. After 10 cycles the final values of BS, MOE, JH and TS accounted for 75-81%, 95%, 82% and 98.5% of the initial values, respectively.

  20. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    USGS Publications Warehouse

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  1. Structure and physical properties of biomembranes and model membranes

    NASA Astrophysics Data System (ADS)

    Hianik, T.

    2006-12-01

    Biomembranes belong to the most important structures of the cell and the cell organels. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equillibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the biomembranes is also due to their unique physical properties. From physical point of view the biomembranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid scrystal of smectic type. The biomembranes are characterized by anisotropy of structural and physical properties. The complex structure of biomembranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of biomembranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes (BLM), supported bilayer lipid membranes (sBLM) and liposomes are most known. This work is focused on the introduction into the "physical word" of the biomembranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the biomembranes and their models areare stepwise presented. The most focus is on the properties of lipid monolayers, BLM, sBLM and liposomes that were most detailed studied. This contribution has tutorial character that may be usefull for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be usefull also for specialists working in the field of biomembranes and model membranes.

  2. Factors affecting the dielectric properties of agricultural and food products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of materials are defined, and the major factors that influence these properties of agricultural and food materials, namely, frequency of the applied radio-frequency and microwave electric fields, water content, temperature, and density of the materials are discussed on the bas...

  3. Fractal Scaling of Particle Size Distribution and Relationships with Topsoil Properties Affected by Biological Soil Crusts

    PubMed Central

    Gao, Guang-Lei; Ding, Guo-Dong; Wu, Bin; Zhang, Yu-Qing; Qin, Shu-Gao; Zhao, Yuan-Yuan; Bao, Yan-Feng; Liu, Yun-Dong; Wan, Li; Deng, Ji-Feng

    2014-01-01

    Background Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. Methodology/Principal Findings To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust), as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05); and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R2 = 0.494∼0.955, P<0.01). Conclusions/Significance Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions. PMID:24516668

  4. Characterization of physical and aerodynamic properties of walnuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to study the physical and aerodynamic properties of freshly harvested walnuts. Measurements were carried out for three walnut varieties, Tulare, Howard and Chandler cultivated in California, USA. The nuts treated with and without Ethephon were collected from mechan...

  5. IMPROVED PHYSICAL PROPERTIES OF ZEIN USING GLYOXAL AS A CROSSLINKER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of crosslinkers glyoxal, methylglyoxal and formaldehyde on physical properties of zein films was studied. Zein was solubilized in 90%(v/v) aqueous ethanol and the pH was adjusted with either hydrochloric acid or sodium hydroxide. Crosslinkers were added to 0.3, 1, 3 and 6%(w/w by zein w...

  6. Physical property characterization of 183-H Basin sludge

    SciTech Connect

    Biyani, R.K.; Delegard, C.H.

    1995-09-20

    This document describes the characterization of 183-H Basin sludge physical properties, e.g. bulk density of sludge and absorbent, and determination of free liquids. Calcination of crucible-size samples of sludge was also done and the resulting `loss-on-ignition` was compared to the theoretical weight loss based on sludge analysis obtained from Weston Labs.

  7. Effect of adjuvant physical properties on spray characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of adjuvant physical properties on spray characteristics were studied. Dynamic surface tension was measured with a Sensa Dyne surface tensiometer 6000 using the maximum bubble pressure method. Viscosity was measured with a Brookfield synchro-lectric viscometer model LVT using a UL adap...

  8. Physical and Chemical Properties of Anthropogenic Aerosols: An overview

    EPA Science Inventory

    A wide variety of anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is complex. Combustion aerosols can c...

  9. Physical Properties of Meteorite Falls in Relation to Planetary Defense

    NASA Astrophysics Data System (ADS)

    Ostrowski, D.; Sears, D. W. G.; Bryson, K.; Agrawal, P.

    2015-07-01

    NASA ARC has set up a new lab to study a suite of physical properties of all types of meteorite falls. This is aide to the Planetary Defense initiative at Ames in determining how to deflect or the impact outcome of potentially hazardous bodies.

  10. Mechanical and physical properties of modern boron fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1978-01-01

    The results of accurate measurements of the modern boron fiber's Young's modulus, flexural modulus, shear modulus, and Poisson's ratio are reported. Physical property data concerning fiber density, thermal expansion, and resistance obtained during the course of the mechanical studies are also given.

  11. IMPROVED PHYSICAL PROPERTIES OF ZEIN USING GLYOXAL AS A CROSSLINKER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of crosslinkers glyoxal, methylglyoxal and formaldehyde on physical properties of zein films was studied. Crosslinker concentrations varied from 0.3 to 6% by zein weight. Films crosslinked with glyoxal and formaldehyde showed a significant increase in tensile strength under certain pH c...

  12. Spectral Reflectance Estimates of Surface Soil Physical and Chemical Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical diffuse reflectance sensing in visible and near-infrared wavelength ranges is one approach to rapidly quantify soil properties for site-specific management. The objectives of this study were (1) to determine the accuracy of the reflectance approach for estimating physical and chemical proper...

  13. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    PubMed

    Cook, Daniel L; Bookstein, Fred L; Gennari, John H

    2011-01-01

    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration. PMID:22216106

  14. Factors Affecting the Link between Physical Discipline and Child Externalizing Problems in Black and White Families

    ERIC Educational Resources Information Center

    Lau, Anna S.; Litrownik, Alan J.; Newton, Rae R.; Black, Maureen M.; Everson, Mark D.

    2006-01-01

    We examined contextual factors that may affect the impact of physical discipline on later child behavior problems among high-risk Black and White families. We examined race, parental warmth, and early child problems as potential moderators of the discipline-behavior problem link. The sample included 442 White and Black children and their…

  15. Pretend and Physical Play: Links to Preschoolers' Affective Social Competence

    ERIC Educational Resources Information Center

    Lindsey, Eric W.; Colwell, Malinda J.

    2013-01-01

    This study investigated different forms of pretend and physical play as predictors of preschool children's "affective social competence" (ASC). Data were collected from 122 preschool children (57 boys, 65 girls; 86 European American, 9 African American, 17 Hispanic, and 10 other ethnicity) over a 2-year period. Children participated…

  16. School and Classroom Goal Structures: Effects on Affective Responses in Physical Education

    ERIC Educational Resources Information Center

    Barkoukis, Vassilis; Koidou, Eirini; Tsorbatzoudis, Haralambos; Grouios, George

    2012-01-01

    The current study examined the relative impact of school and classroom goal structures on students' affective responses and the mediating role of motivation. The sample of the study consisted of 368 high school students, who completed measures of school and classroom goal structures, motivational regulations in physical education, boredom, and…

  17. Sociocultural and Motivational Factors Affecting Asian American Females Studying Physics and Engineering in High School

    ERIC Educational Resources Information Center

    Sha, Saliha L.

    2012-01-01

    This quantitative study investigated whether and to what extent the motivational and sociocultural factors affect female Asian American high school physics students' achievement, their intended major in college, and their planned career goals at work fields. A survey of 62 questions, extracted from subscales of AAMAS,STPQ and PSE, were…

  18. Process Formulations And Curing Conditions That Affect Saltstone Properties

    SciTech Connect

    Reigel, M. M.; Pickenheim, B. R.; Daniel, W. E.

    2012-09-28

    The first objective of this study was to analyze saltstone fresh properties to determine the feasibility of reducing the formulation water to premix (w/p) ratio while varying the amount of extra water and admixtures used during processing at the Saltstone Production Facility (SPF). The second part of this study was to provide information for understanding the impact of curing conditions (cure temperature, relative humidity (RH)) and processing formulation on the performance properties of cured saltstone.

  19. Influence of surface and subsurface tillage on soil physical properties and soil/plant relationships of planted loblolly pine

    SciTech Connect

    D. L. Kelting; H. L. Allen

    2000-05-01

    Soil tillage can improve tree survival and growth by reducing competing vegetation, increasing nutrient availability, improving planting quality, and improving soil physical properties. The authors conducted a tillage study with competition control and nutrient amendments to isolate the physical effects of tillage on tree growth. The objectives of this study were to understand: (1) how tillage affects soil physical properties; (2) the relationships between these properties and root growth; (3) linkages between root growth response and aboveground growth; and (4) tillage effects on aboveground growth. Four replicates of a 2x2 factorial combination of surface (disking) and subsurface (subsoiling) were installed on a well-drained, clay-textured subsoil, soil located on the Piedmont of North Carolina. Disking improved soil physical properties (reduced bulk density and increased aeration porosity) in the surface 20-cm of soil. Subsoiling improved soil physical properties at all depths in the planting row, with improvements still noted at 60-cm from the planting row in the surface 10-cm of soil. Rooting patterns followed the changes in soil physical properties. Despite improvements in soil physical properties and changes in rooting patterns, aboveground tree growth was not affected by tillage. The results of this study point to the need for better diagnostics for identifying sites were tillage is appropriate in situations where fertilization and vegetation control are planned. Potential factors to consider are presence and abundance of old root channels, soil shrink/swell capacity, soil structure, presence and depth to root restricting layers, and historical precipitation records.

  20. Physical Properties of Five Brands of K-Files

    PubMed Central

    Izadi, Arash; Shahravan, Arash; Shabani Nejad, Hoda

    2016-01-01

    Introduction: Endodontic K-files are major tools for cleaning and shaping of the root canal systems. As there are various K-files available in Iranian market, the physical properties of the five available brands were investigated to assist the clinician when selecting suitable endodontic K-files according to the intended application. Materials and Methods: Physical properties (including debris creation, machinery defect and corrosion) of the selected K-files were investigated by a scanning electron microscope (SEM) under ×250 magnification. For evaluating the flutes number, a stereomicroscope was used with ×40 magnification. Results: Maximum and minimum debris and corrosion were observed in the Larmrose and Perfect K-files, respectively. Dentsply showed the least machinery defects. Other brands had intermediary properties. In addition, Larmrose K-files showed the maximum flutes number compared to the other brands. Conclusion: According to the results, none of the K-files had the ideal properties. More studies regarding the physical properties of the K-files and their clinical efficacy are suggested. PMID:27141219

  1. Process depending morphology and resulting physical properties of TPU

    SciTech Connect

    Frick, Achim Spadaro, Marcel

    2015-12-17

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix or of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.

  2. Physical and mechanical properties of the lunar soil (a review)

    NASA Astrophysics Data System (ADS)

    Slyuta, E. N.

    2014-09-01

    We review the data on the physical and mechanical properties of the lunar soil that were acquired in the direct investigations on the lunar surface carried out in the manned and automatic missions and in the laboratory examination of the lunar samples returned to the Earth. In justice to the American manned program Apollo, we show that a large volume of the data on the properties of the lunar soil was also obtained in the Soviet automatic program Lunokhod and with the automatic space stations Luna-16, -20, and -24 that returned the lunar soil samples to the Earth. We consider all of the main physical and mechanical properties of the lunar soil, such as the granulometric composition, density and porosity, cohesion and adhesion, angle of internal friction, shear strength of loose soil, deformation characteristics (the deformation modulus and Poisson ratio), compressibility, and the bearing capacity, and show the change of some properties versus the depth. In most cases, the analytical dependence of the main parameters is presented, which is required in developing reliable engineering models of the lunar soil. The main physical and mechanical properties are listed in the summarizing table, and the currently available models and simulants of the lunar soil are reviewed.

  3. Process depending morphology and resulting physical properties of TPU

    NASA Astrophysics Data System (ADS)

    Frick, Achim; Spadaro, Marcel

    2015-12-01

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix or of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.

  4. Cyclic cryopreservation affects the nanoscale material properties of trabecular bone.

    PubMed

    Landauer, Alexander K; Mondal, Sumona; Yuya, Philip A; Kuxhaus, Laurel

    2014-11-01

    Tissues such as bone are often stored via freezing, or cryopreservation. During an experimental protocol, bone may be frozen and thawed a number of times. For whole bone, the mechanical properties (strength and modulus) do not significantly change throughout five freeze-thaw cycles. Material properties at the trabecular and lamellar scales are distinct from whole bone properties, thus the impact of freeze-thaw cycling at this scale is unknown. To address this, the effect of repeated freezing on viscoelastic material properties of trabecular bone was quantified via dynamic nanoindentation. Vertebrae from five cervine spines (1.5-year-old, male) were semi-randomly assigned, three-to-a-cycle, to 0-10 freeze-thaw cycles. After freeze-thaw cycling, the vertebrae were dissected, prepared and tested. ANOVA (factors cycle, frequency, and donor) on storage modulus, loss modulus, and loss tangent, were conducted. Results revealed significant changes between cycles for all material properties for most cycles, no significant difference across most of the dynamic range, and significant differences between some donors. Regression analysis showed a moderate positive correlation between cycles and material property for loss modulus and loss tangent, and weak negative correlation for storage modulus, all correlations were significant. These results indicate that not only is elasticity unpredictably altered, but also that damping and viscoelasticity tend to increase with additional freeze-thaw cycling. PMID:25278046

  5. Biomedically relevant chemical and physical properties of coal combustion products.

    PubMed Central

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

  6. The Influence of Fuelbed Physical Properties on Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Urbanski, S. P.; Lincoln, E.; Baker, S. P.; Richardson, M.

    2014-12-01

    Emissions from biomass fires can significantly degrade regional air quality and therefore are of major concern to air regulators and land managers in the U.S. and Canada. Accurately estimating emissions from different fire types in various ecosystems is crucial to predicting and mitigating the impact of fires on air quality. The physical properties of ecosystems' fuelbeds can heavily influence the combustion processes (e.g. flaming or smoldering) and the resultant emissions. However, despite recent progress in characterizing the composition of biomass smoke, significant knowledge gaps remain regarding the linkage between basic fuelbed physical properties and emissions. In laboratory experiments we examined the effects of fuelbed properties on combustion efficiency (CE) and emissions for an important fuel component of temperate and boreal forests - conifer needles. The bulk density (BD), depth (DZ), and moisture content (MC) of Ponderosa Pine needle fuelbeds were manipulated in 75 burns for which gas and particle emissions were measured. We found CE was negatively correlated with BD, DZ and MC and that the emission factors of species associated with smoldering combustion processes (CO, CH4, particles) were positively correlated with these fuelbed properties. The study indicates the physical properties of conifer needle fuelbeds have a significant effect on CE and hence emissions. However, many of the emission models used to predict and manage smoke impacts on air quality assume conifer litter burns by flaming combustion with a high CE and correspondingly low emissions of CO, CH4, particles, and organic compounds. Our results suggest emission models underestimate emissions from fires involving a large component of conifer needles. Additionally, our findings indicate that laboratory studies of emissions should carefully control fuelbed physical properties to avoid confounding effects that may obscure the effects being tested and lead to erroneous interpretations.

  7. Heavy metals concentration relationship with Perna viridis physical properties in Mengkabong Lagoon, Sabah, Malaysia.

    PubMed

    Abdullah, Noraini; Tair, Rohana; Abdullah, Mohd Harun

    2014-01-01

    Perna viridis (P. viridis) has been identified as a good biological indicator in identifying environmental pollution, especially when there are various types of Heavy Metals Accumulations (HMA) inside its tissue. Based on the potential of P. viridis to accumulate heavy metals and the data on its physical properties, this study proffers to determine the relationships between both properties. The similarities of the physical properties are used to mathematical model their relationships, which included the size (length, width, height) and weight (wet and dry) of P. viridis, whilst the heavy metals are focused on concentrations of Pb, Cu, Cr, Cd and Zn. The concentrations of metal elements are detected by using Flame Atomic Adsorption Spectrometry. Results show that the mean concentration of Pb, Cu, Cr, Cd, Zn, length, width, height, wet weight and dry weight are: 1.12 +/- 1.00, 2.36 +/- 1.65, 2.12 +/- 2.74, 0.44 +/- 0.41 and 16.52 +/- 10.64 mg kg(-1) (dry weight), 105.08 +/- 14.35, 41.64 +/- 4.64, 28.75 +/- 3.92 mm, 14.56 +/- 3.30 and 2.37 +/- 0.86 g, respectively. It is also found out that the relationships between the Heavy Metals Concentrations (HMA) and the physical properties can be represented using Multiple Linear Regressions (MLR) models, relating that the HMA of Zinc has affected significantly the physical growth properties of P. viridis. PMID:24783779

  8. In the mood for love or vice versa? Exploring the relations among sexual activity, physical affection, affect, and stress in the daily lives of mid-aged women.

    PubMed

    Burleson, Mary H; Trevathan, Wenda R; Todd, Michael

    2007-06-01

    How do physical affection, sexual activity, mood, and stress influence one another in the daily lives of mid-aged women? Fifty-eight women (M age, 47.6 yrs) recorded physical affection, several different sexual behaviors, stressful events, and mood ratings every morning for 36 weeks. Using multilevel modeling, we determined that physical affection or sexual behavior with a partner on one day significantly predicted lower negative mood and stress and higher positive mood on the following day. The relation did not hold for orgasm without a partner. Additionally, positive mood on one day predicted more physical affection and sexual activity with a partner, but fewer solo orgasms the following day. Negative mood was mostly unrelated to next-day sexual activity or physical affection. Sexual orientation, living with a partner, and duration of relationship moderated some of these effects. Results support a bidirectional causal model in which dyadic sexual interaction and physical affection improve mood and reduce stress, with improved mood and reduced stress in turn increasing the likelihood of future sex and physical affection. PMID:17109236

  9. Influence of wheat kernel physical properties on the pulverizing process.

    PubMed

    Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula

    2014-10-01

    The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel. PMID:25328207

  10. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization. PMID:18471849

  11. Soil properties affecting wheat yields following drilling-fluid application.

    PubMed

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates. PMID:16091622

  12. Swiss Atlas of PHYsical properties of Rocks (SAPHYR)

    NASA Astrophysics Data System (ADS)

    Zappone, Alba; Kissling, Eduard

    2015-04-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR), is a multi-year project, funded entirely by Swiss Commission for Geophysics (SGPK), with the aim to compile a comprehensive data set in digital form on physical properties of rocks exposed in Switzerland and surrounding regions. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public including industrial, engineering, land and resource planning companies, as well as academic institutions, or simply people interested in geology. Since the early sixties worldwide many scientists, i.e. geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. Particularly in the years in which seismic reflection and refraction crustal scale projects were investigating the deep structures of the Alps, laboratories capable to reproduce the pressure and temperature ranges of the continental crust were collecting measurements of various rock parameters on a wide variety of lithologies, developing in the meantime more and more sophisticated experimental methodologies. In recent years, the increasing interest of European Countries on non-traditional energy supply, (i.e. Deep Geothermal Energy and shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. SAPHYR aims to organize all those laboratory data into a geographically referenced database (GIS). The data refer to density, porosity, permeability, and seismic, magnetic, thermal and electric properties. In the past years, effort has been placed on collecting samples and measuring the physical properties of lithologies that were poorly documented in literature. The phase of laboratory measurements is still in progress. Recently, SAPHYR project focused towards developing

  13. Impact of physical maltreatment on the regulation of negative affect and aggression.

    PubMed

    Shackman, Jessica E; Pollak, Seth D

    2014-11-01

    Physically maltreated children are at risk for developing externalizing behavioral problems characterized by reactive aggression. The current experiment tested the relationships between individual differences in a neural index of social information processing, histories of child maltreatment, child negative affect, and aggressive behavior. Fifty boys (17 maltreated) performed an emotion recognition task while the P3b component of the event-related potential was recorded to index attention allocation to angry faces. Children then participated in a peer-directed aggression task. Negative affect was measured by recording facial electromyography, and aggression was indexed by the feedback that children provided to a putative peer. Physically maltreated children exhibited greater negative affect and more aggressive behavior, compared to nonmaltreated children, and this relationship was mediated by children's allocation of attention to angry faces. These data suggest that physical maltreatment leads to inappropriate regulation of both negative affect and aggression, which likely place maltreated children at increased risk for the development and maintenance of externalizing behavior disorders. PMID:24914736

  14. Impact of physical maltreatment on the regulation of negative affect and aggression

    PubMed Central

    SHACKMAN, JESSICA E.; POLLAK, SETH D.

    2015-01-01

    Physically maltreated children are at risk for developing externalizing behavioral problems characterized by reactive aggression. The current experiment tested the relationships between individual differences in a neural index of social information processing, histories of child maltreatment, child negative affect, and aggressive behavior. Fifty boys (17 maltreated) performed an emotion recognition task while the P3b component of the event-related potential was recorded to index attention allocation to angry faces. Children then participated in a peer-directed aggression task. Negative affect was measured by recording facial electromyography, and aggression was indexed by the feedback that children provided to a putative peer. Physically maltreated children exhibited greater negative affect and more aggressive behavior, compared to nonmaltreated children, and this relationship was mediated by children’s allocation of attention to angry faces. These data suggest that physical maltreatment leads to inappropriate regulation of both negative affect and aggression, which likely place maltreated children at increased risk for the development and maintenance of externalizing behavior disorders. PMID:24914736

  15. CONTINUOSLY STIRRED TANK REACTOR PARAMETERS THAT AFFECT SLUDGE BATCH 6 SIMULANT PROPERTIES

    SciTech Connect

    Newell, J.; Lambert, D.; Stone, M.; Fernandez, A.

    2010-05-28

    ). Precipitated MnO{sub 2} is combined with metal nitrates and fed into the CSTR. The metals are precipitated by a caustic NaOH stream. The rates at which these streams are added allows for pH adjustment of the mixture. A graphical representation of this process is given in Figure 1. In using the CSTR method for developing simulant, there are various parameters that can be adjusted in order to effectuate a physical change in the resulting simulant: pH, temperature, mixing speed, and flow rate. How will changing these parameters affect the physical properties of the sludge simulant? The ability to determine which parameter affects a particular property could allow one to develop a simulant that would better match the physical characteristics of HLW sludge.

  16. Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property

    ERIC Educational Resources Information Center

    Jungermann, Arnd H.

    2006-01-01

    In contrast to most other thermodynamic data, entropy values are not given in relation to a certain--more or less arbitrarily defined--zero level. They are listed in standard thermodynamic tables as absolute values of specific substances. Therefore these values describe a physical property of the listed substances. One of the main tasks of…

  17. Chemical control of physical properties in silicon nitride films

    NASA Astrophysics Data System (ADS)

    Xu, Xiangdong; Zhou, Dong; He, Qiong; Jiang, Yadong; Fan, Taijun; Huang, Long; Ao, Tianhong; He, Shaowei

    2013-06-01

    Amorphous hydrogenated silicon nitride ( a-SiN x H y ) films were prepared by plasma-enhanced chemical vapor deposition (PECVD). The physical properties and chemical structures of the resulting materials were systematically investigated. Results reveal that the a-SiN x H y films similarly consist of four kinds of Si-N groups, including Si3N4, H-Si-N3, H2-Si-N2, and Si3-Si-N. Deposition at 13.56 MHz and 300 ∘C with flow ratio of SiH4/NH3=30/30 sccm leads to the yield of Si0.39N0.38H0.23 films that exhibit excellent properties of high uniformity, high elastic modulus, moderate refractive index and optical band gap, low UV absorption, and ultralow residual stress (-0.17 MPa). Such Si0.39N0.38H0.23 films hold considerable promise for applications in solar cells and infrared sensors. In contrast, an increase of Si or N content in a-SiN x H y films will cause the degradation of the properties, so that the films are unsuitable for solar cells. Moreover, a new conception of network degree was proposed to evaluate and explain the properties of a-SiN x H y films. Particularly, this work discloses the relationships between the chemical structures and physical properties, and suggests a basic approach to the yield of a-SiN x H y films with controlled physical properties.

  18. Chemical and Physical Properties of Hi-Cal-2

    NASA Technical Reports Server (NTRS)

    Spakowski, A. E.; Allen, Harrison, Jr.; Caves, Robert M.

    1955-01-01

    As part of the Navy Project Zip to consider various boron-containing materials as possible high-energy fuels, the chemical and physical properties of Hi-Cal-2 prepared by the Callery Chemical Company were evaluated at the NACA Lewis laboratory. Elemental chemical analysis, heat of combustion, vapor pressure and decomposition, freezing point, density, self ignition temperature, flash point, and blow-out velocity were determined for the fuel. Although the precision of measurement of these properties was not equal to that obtained for hydrocarbons, this special release research memorandum was prepared to make the data available as soon as possible.

  19. Ellipsoids and lightcurves. [for deduction of physical properties of asteroids

    NASA Technical Reports Server (NTRS)

    Connelly, R.; Ostro, S. J.

    1984-01-01

    The determination of the light curve (LC) of a geometrically scattering ellipsoid is considered in relation to the problem of investigating the physical properties of asteroids. A simple concise formula is derived for the area of a projection of an ellipsoid, and this expression is used to obtain a general formula for the projected, visible, illuminated area of a triaxial ellipsoid for arbitrary sun-earth-asteroid geometry. It is found that the LC of an ellipsoid has special properties that can be exploited to test the hypothesis that a given optical or radar LC could be due to a geometrically scattering ellipsoid.

  20. Physical properties of simulated galaxy populations at z = 2 - II. Effects of cosmology, reionization and ISM physics

    NASA Astrophysics Data System (ADS)

    Haas, Marcel R.; Schaye, Joop; Booth, C. M.; Dalla Vecchia, Claudio; Springel, Volker; Theuns, Tom; Wiersma, Robert P. C.

    2013-11-01

    We use hydrodynamical simulations from the OverWhelmingly Large Simulations project to investigate the dependence of the physical properties of galaxy populations at redshift 2 on the assumed star formation law, the equation of state imposed on the unresolved interstellar medium, the stellar initial mass function, the reionization history and the assumed cosmology. This work complements that of Paper I, where we studied the effects of varying models for galactic winds driven by star formation and active galactic nucleus. The normalization of the matter power spectrum strongly affects the galaxy mass function, but has a relatively small effect on the physical properties of galaxies residing in haloes of a fixed mass. Reionization suppresses the stellar masses and gas fractions of low-mass galaxies, but by z = 2 the results are insensitive to the timing of reionization. The stellar initial mass function mainly determines the physical properties of galaxies through its effect on the efficiency of the feedback, while changes in the recycled mass and metal fractions play a smaller role. If we use a recipe for star formation that reproduces the observed star formation law independently of the assumed equation of state of the unresolved interstellar medium, then the latter is unimportant. The star formation law, i.e. the gas consumption time-scale as a function of surface density, determines the mass of dense, star-forming gas in galaxies, but affects neither the star formation rate nor the stellar mass. This can be understood in terms of self-regulation: the gas fraction adjusts until the outflow rate balances the inflow rate.

  1. Unique characterization of lunar samples by physical properties

    NASA Technical Reports Server (NTRS)

    Todd, T.; Richter, D. A.; Simmons, G.; Wang, H.

    1973-01-01

    The measurement of compressional velocity, shear velocity, static compressibility, and thermal expansion of (1) a suite of shocked rocks fron the Ries impact in Germany, (2) a suite of samples cracked by thermal cycling to high temperatures, (3) many terrestrial igneous rocks, and (4) lunar basalts, gabbroic anorthosites, and breccias, indicate that shock metamorphism is the primary cause for values of physical properties of lunar rocks being diffferent from their intrinsic values. Large scale thermal metamorphism, thermal cycling between temperatures of lunar day and night, large thermal gradients, or thermal fatigue could possibly cause minor cracking in the top few centimeters of the lunar regolith, but are probably not important mechanism for extensively changing values of physical properties of lunar rocks.-

  2. The Affect and Arousal Scales: Psychometric Properties of the Dutch Version and Multigroup Confirmatory Factor Analyses

    ERIC Educational Resources Information Center

    De Bolle, Marleen; De Fruyt, Filip; Decuyper, Mieke

    2010-01-01

    Psychometric properties of the Dutch version of the Affect and Arousal Scales (AFARS) were inspected in a combined clinical and population sample (N = 1,215). The validity of the tripartite structure and the relations between Negative Affect, Positive Affect, and Physiological Hyperarousal (PH) were investigated for boys and girls, younger (8-11…

  3. Role of physical properties of liquids in cavitation erosion

    NASA Technical Reports Server (NTRS)

    Thiruvengadam, A.

    1974-01-01

    The dependence of erosion rates on the ambient temperature of water is discussed. The assumption that the gas inside the bubble is compressed adiabatically during collapse gives better agreement with experiments than the assumption that the gas is isothermally compressed. Acoustic impedance is an important liquid parameter that governs the erosion intensity in vibratory devices. The investigation reveals that the major physical properties of liquids governing the intensity of erosion include density, sound speed, surface tension, vapor pressure, gas content, and nuclei distribution.

  4. Physical Properties of Modified Compositions of Strontium Ruthenates

    NASA Astrophysics Data System (ADS)

    Gulian, Armen; Nikoghosyan, Vahan

    2014-03-01

    We performed systematic research on ceramic materials Sr2RuO4 with Sulfur, Selenium or Tellurium added, in combination with other dopants such as: Au, Pt, Al, Zn, Mn, Ba, Na, Ca, Os, Co, Ni, Fe, and Ir. Data on resistive, magnetic, structural, compositional, morphological and other physical properties are obtained, and the most interesting results are presented, as well as corresponding synthesis conditions. ONR Grants N000141210768 and N000141210244 are acknowledged.

  5. Cesium Eluate Evaporation Solubility and Physical Property Behavior

    SciTech Connect

    Pierce, R.A.

    2003-06-12

    The baseline flowsheet for low activity waste (LAW) in the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) includes pretreatment of supernatant by removing cesium using ion exchange. When the ion exchange column is loaded, the cesium will be eluted with a 0.5M nitric acid (HNO3) solution to allow the column to be conditioned for re-use. The cesium eluate solution will then be concentrated in a vacuum evaporator to minimize storage volume and recycle HNO3. To prevent the formation of solids during storage of the evaporator bottoms, criteria have been set for limiting the concentration of the evaporator product to 80 percent of saturation at 25 degrees C. A fundamental element of predicting evaporator product solubility is to collect data that can be used to estimate key operating parameters. The data must be able to predict evaporator behavior for a range of eluate concentrations that are evaporated to the point of precipitation. Parameters that were selected for modeling include solubility, density, viscosity, thermal conductivity, and heat capacity. Of central importance is identifying the effect of varying feed components on overall solubility. The point of solubility defines the upper limit for eluate evaporation operations and liquid storage. The solubility point also defines those chemical compounds that have the greatest effects on physical properties. Third, solubility behavior identifies intermediate points where physical property data should be measured for the database. Physical property data (density, viscosity, thermal conductivity, and heat capacity) may be an integral part of tracking evaporator operations as they progress toward their end point. Once the data have been collected, statistical design software can develop mathematical equations that estimate solubility and other physical properties.

  6. Investigation of physical properties of TiO2 nanolayers

    NASA Astrophysics Data System (ADS)

    Struk, Przemyslaw; Pustelny, Tadeusz

    2015-12-01

    We present applications of titanium dioxide wide bandgap oxide semiconductor and its application in integrated optics devices. The paper is focus on research of physical properties TiO2 such as: spectral transmittance, refractive index, extinction coefficient in the UV-VIS-IR range of light as well as surface topography. In addition we show the numerical calculation and optical characterization of fabricated optical planar waveguide based on TiO2.

  7. Carboxymethyl modification of konjac glucomannan affects water binding properties.

    PubMed

    Xiao, Man; Dai, Shuhong; Wang, Le; Ni, Xuewen; Yan, Wenli; Fang, Yapeng; Corke, Harold; Jiang, Fatang

    2015-10-01

    The water binding properties of konjac glucomannan (KGM) and carboxymethyl konjac glucomannan (CMKGM) are important for their application in food, pharmaceutical, and chemical engineering fields. The equilibrium moisture content of CMKGM was lower than that of KGM at the relative humidity in the range 30-95% at 25°C. The water absorption and solubility of CMKGM in water solution were lower than that of KGM at 25°C. Carboxymethyl modification of KGM reduces the water adsorption, absorption, and solubility. Both carboxymethylation and deacetylation could confer hydrophobicity for CMKGM. These data provide the basis for expanding CMKGM application. PMID:26076594

  8. Synthesis and physical properties of some composite systems

    NASA Astrophysics Data System (ADS)

    Pu, Zhengcai

    There are four major parts in this dissertation: (1) investigation of filler-matrix interactions in poly(dimethylsiloxane)/zeolite (PDMS/zeolite) composites, (2) characterization of mechanical and thermal properties of 3-(trimethoxysilyl)propyl methacrylate coated silica (TPM-Si) filled poly(methyl acrylate) (PMA), (3) small angle x-ray scattering studies of chain penetration into cavities of a zeolite in poly(ethyl acrylate)/zeolite (PEA/zeolite) hybrid material, (4) study of hydrolysis kinetics and stability of bis(triethoxysilyl)ethane (BTESE) in water-ethanol solutions by Fourier transform infrared (FTIR) spectroscopy. In the first part of this study, two types of PDMS/zeolite composites with physically or chemically crosslinked networks were prepared through two different approaches: (1) blending hydroxyl-terminated linear PDMS with zeolite and crosslinking PDMS with tetraethylorthosilicate (TEOS); (2) mixing dichlorodimethylsilane with zeolite, and then hydrolyzing and polymerizing the dichlorodimethylsilane with water. The physical properties of the resulting composites, including mechanical properties, swelling properties, and small angle X-ray (SAXS), were measured and compared. It was shown that the PDMS/zeolite composites having PDMS networks differently crosslinked behave differently in many aspects. In the second part of the study, composites of PMA and of TPM-Si with randomly dispersed, regularly dispersed, and aggregated silica were prepared by blending methyl acrylate and TPM-Si, followed by free radical polymerization. Simple tension properties, equibiaxial extension properties, dynamic mechanical properties, and differential scanning calorimetry (DSC) properties of the resulting composites were investigated. It was shown that well-defined relationships exist between the physical properties of the composites and the preparation processes. In the third part of this study, small angle X-ray scattering (SAXS) intensities of PEA/zeolite hybrids were

  9. Affect and Subsequent Physical Activity: An Ambulatory Assessment Study Examining the Affect-Activity Association in a Real-Life Context.

    PubMed

    Niermann, Christina Y N; Herrmann, Christian; von Haaren, Birte; van Kann, Dave; Woll, Alexander

    2016-01-01

    Traditionally, cognitive, motivational, and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship. An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M = 45.2, SD = 8.1) was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA) performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested. Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect. The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent. However, in

  10. Affect and Subsequent Physical Activity: An Ambulatory Assessment Study Examining the Affect-Activity Association in a Real-Life Context

    PubMed Central

    Niermann, Christina Y. N.; Herrmann, Christian; von Haaren, Birte; van Kann, Dave; Woll, Alexander

    2016-01-01

    Traditionally, cognitive, motivational, and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship. An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M = 45.2, SD = 8.1) was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA) performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested. Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect. The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent. However, in

  11. Physical Properties of Biological Entities: An Introduction to the Ontology of Physics for Biology

    PubMed Central

    Cook, Daniel L.; Bookstein, Fred L.; Gennari, John H.

    2011-01-01

    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities—molecules, cells, organs—are well-established, there are no principled ontologies of physical properties—energies, volumes, flow rates—of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration. PMID:22216106

  12. Does severity of dermatochalasis in aging affect corneal biomechanical properties?

    PubMed Central

    Atalay, Kurşat; Gurez, Ceren; Kirgiz, Ahmet; Serefoglu Cabuk, Kubra

    2016-01-01

    Purpose The aim of this study was to investigate the possibility of a relationship between corneal biomechanical properties and different grades of dermatochalasis. Patients and methods Patients were assigned to four groups according to the severity of their dermatochalasis: normal (Group 1), mild (Group 2), moderate (Group 3), and severe (Group 4). An Ocular Response Analyzer device was used to measure corneal hysteresis (CH), corneal resistance factor (CRF), and corneal-compensated intraocular pressure (IOPcc). Results We found no significant differences in the mean values of the CH, CRF, and IOPcc of all groups (P=0.75, P=0.93, and P=0.11, respectively). However, CH and IOPcc were negatively correlated in Group 1, Group 2, and Group 3 patients (P=0.013, r=−0.49; P=0.015, r=−0.52; and P=0.011, r=−0.47, respectively), but this correlation was not apparent in the Group 4 patients (P=0.57, r=0.12). CRF and IOPcc were correlated, but only in Group 4 (P=0.001, r=0.66). Conclusion Severe dermatochalasis was associated with altered corneal biomechanical properties. Some of the important visual consequences of dermatochalasis and related diseases (such as floppy eyelid syndrome) can be understood by considering corneal biomechanical alterations. PMID:27274214

  13. Relationship between physical properties and sensory attributes of carbonated beverages.

    PubMed

    Kappes, S M; Schmidt, S J; Lee, S-Y

    2007-01-01

    Bulk sweeteners provide functional properties in beverages, including sweet taste, bulking, bitter masking, structure, and mouthfeel. Diet beverages come closer to the taste of regular beverages using a blend of high-intensity sweeteners; however, some properties, including bulking, structure, and mouthfeel, remain significantly different. Relating physical properties to sensory characteristics is an important step in understanding why mouthfeel differences are apparent in beverages sweetened with alternative sweeteners compared to bulk sweeteners. The objectives of this research were to (1) measure sweetener profile, Brix, refractive index, viscosity, a(w), carbonation, titratable acidity, and pH of commercial carbonated beverages; and (2) correlate the physical property measurements to descriptive analysis of the beverages. Correlation analysis, partial least squares, canonical correlation analysis, and cluster analysis were used to analyze the data. Brix, viscosity, and sweet taste were highly correlated among one another and were all negatively correlated to a(w). Carbonated and decarbonated pH were highly correlated to each other and were both negatively correlated to mouthcoating. Numbing, burn, bite, and carbonation were highly correlated to total acidity, citric acid, and ascorbic acid and negatively correlated to phosphoric acid. The mouthfeel difference between diet and regular lemon/lime carbonated beverages is small and may be related to overall differences between flavor, acid, and sweetener types and usage levels. This research is significant because it demonstrates the use of both sensory attributes and physical properties to identify types of ingredients and levels that may decrease the mouthfeel perception differences between regular and diet carbonated beverages, which could consequently lead to higher acceptance of diet beverages by the consumers of regular. PMID:17995891

  14. 12 CFR 617.7630 - Does this Federal requirement affect any state property laws?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... property laws? 617.7630 Section 617.7630 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Right of First Refusal § 617.7630 Does this Federal requirement affect any state property... first refusal under the law of the state in which the property is located....

  15. 12 CFR 617.7630 - Does this Federal requirement affect any state property laws?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... property laws? 617.7630 Section 617.7630 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Right of First Refusal § 617.7630 Does this Federal requirement affect any state property... first refusal under the law of the state in which the property is located....

  16. 12 CFR 617.7630 - Does this Federal requirement affect any state property laws?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... property laws? 617.7630 Section 617.7630 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Right of First Refusal § 617.7630 Does this Federal requirement affect any state property... first refusal under the law of the state in which the property is located....

  17. 12 CFR 617.7630 - Does this Federal requirement affect any state property laws?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... property laws? 617.7630 Section 617.7630 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Right of First Refusal § 617.7630 Does this Federal requirement affect any state property... first refusal under the law of the state in which the property is located....

  18. 12 CFR 617.7630 - Does this Federal requirement affect any state property laws?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... property laws? 617.7630 Section 617.7630 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Right of First Refusal § 617.7630 Does this Federal requirement affect any state property... first refusal under the law of the state in which the property is located....

  19. Rheological properties of ovalbumin hydrogels as affected by surfactants addition.

    PubMed

    Hassan, Natalia; Messina, Paula V; Dodero, Veronica I; Ruso, Juan M

    2011-04-01

    The gel properties of ovalbumin mixtures with three different surfactants (sodium perfluorooctanoate, sodium octanoate and sodium dodecanoate) have been studied by rheological techniques. The gel elasticities were determined as a function of surfactant concentration and surfactant type. The fractal dimension of the formed structures was evaluated from plots of storage modulus against surfactant concentration. The role of electrostatic, hydrophobic and disulfide SS interactions in these systems has been demonstrated to be the predominant. The viscosity of these structures tends to increase with surfactant concentration, except for the fluorinated one. Unfolded ovalbumin molecules tend to form fibrillar structures that tend to increase with surfactant concentration, except for the fluorinated one. This fact has been related to the particular nature of this molecule. PMID:21262258

  20. Protein composition affects variation in coagulation properties of buffalo milk.

    PubMed

    Bonfatti, V; Gervaso, M; Rostellato, R; Coletta, A; Carnier, P

    2013-07-01

    The aim of this study was to investigate the effects exerted by the content of casein and whey protein fractions on variation of pH, rennet-coagulation time (RCT), curd-firming time (K20), and curd firmness of Mediterranean buffalo individual milk. Measures of milk protein composition and assessment of genotypes at CSN1S1 and CSN3 were obtained by reversed-phase HPLC analysis of 621 individual milk samples. Increased content of αS1-casein (CN) was associated with delayed coagulation onset and increased K20, whereas average pH, RCT, and K20 decreased when β-CN content increased. Milk with low κ-CN content exhibited low pH and RCT relative to milk with high content of κ-CN. Increased content of glycosylated κ-CN was associated with unfavorable effects on RCT. Effects of milk protein composition on curd firmness were less important than those on pH, RCT, and K20. Likely, this occurred as a consequence of the very short RCT of buffalo milk, which guaranteed a complete strengthening of the curd even in the restricted 31 min time of analysis of coagulation properties and for samples initially showing soft curds. Effects of CSN1S1-CSN3 genotypes on coagulation properties were not to be entirely ascribed to existing variation in milk protein composition associated with polymorphisms at CSN1S1 and CSN3 genes. Although the role of detailed milk protein composition in variation of cheese yield needs to be further investigated, findings of this study suggest that modification of the relative content of specific CN fractions can relevantly influence the behavior of buffalo milk during processing. PMID:23684020

  1. How SN Ia host-galaxy properties affect cosmological parameters

    NASA Astrophysics Data System (ADS)

    Campbell, H.; Fraser, M.; Gilmore, G.

    2016-04-01

    We present a systematic study of the relationship between Type Ia Supernova (SN Ia) properties, and the characteristics of their host galaxies, using a sample of 581 SNe Ia from the full Sloan Digital Sky Survey II (SDSS-II) SN Survey. We also investigate the effects of this on the cosmological constraints derived from SNe Ia. Compared to previous studies, our sample is larger by a factor of >4, and covers a substantially larger redshift range (up to z ˜ 0.5), which is directly applicable to the volume of cosmological interest. We measure a significant correlation (>5σ) between the host-galaxy stellar-mass and the SN Ia Hubble Residuals (HR). We find a weak correlation (1.4σ) between the host-galaxy metallicity as measured from emission lines in the spectra, and the SN Ia HR. We also find evidence that the slope of the correlation between host-galaxy mass and HR is -0.11 mag/log(Mhost/M⊙) steeper in lower metallicity galaxies. We test the effects on a cosmological analysis using both the derived best-fitting correlations between host parameters and HR, and by allowing an additional free parameter in the fit to account for host properties which we then marginalize over when determining cosmological parameters. We see a shift towards more negative values of the equation-of-state parameter w, along with a shift to lower values of Ωm after applying mass or metallicity corrections. The shift in cosmological parameters with host-galaxy stellar-mass correction is consistent with previous studies. We find a best-fitting cosmology of Ω m =0.266_{-0.016}^{+0.016}, Ω _{Λ }=0.740_{-0.018}^{+0.018} and w=-1.151_{-0.121}^{+0.123} (statistical errors only).

  2. The effects of physical environments in medical wards on medication communication processes affecting patient safety.

    PubMed

    Liu, Wei; Manias, Elizabeth; Gerdtz, Marie

    2014-03-01

    Physical environments of clinical settings play an important role in health communication processes. Effective medication management requires seamless communication among health professionals of different disciplines. This paper explores how physical environments affect communication processes for managing medications and patient safety in acute care hospital settings. Findings highlighted the impact of environmental interruptions on communication processes about medications. In response to frequent interruptions and limited space within working environments, nurses, doctors and pharmacists developed adaptive practices in the local clinical context. Communication difficulties were associated with the ward physical layout, the controlled drug key and the medication retrieving device. Health professionals should be provided with opportunities to discuss the effects of ward environments on medication communication processes and how this impacts medication safety. Hospital administrators and architects need to consider health professionals' views and experiences when designing hospital spaces. PMID:24486620

  3. Characterization of the physical properties for solid granular materials

    SciTech Connect

    Tucker, Jonathan R.; Shadle, Lawrence J.; Guenther, Chris; Benyahia, Sofiane; Mei, Joseph S.; Banta, Larry

    2012-01-01

    Accurate prediction of the behavior of a system is strongly governed by the components within that system. For multiphase systems incorporating solid powder-like particles, there are many different physical properties which need to be known to some level of accuracy for proper design, modeling, or data analysis. In the past, the material properties were determined initially as a secondary part of the study or design. In an attempt to provide results with the least level of uncertainty, a procedure was developed and implemented to provide consistent analysis of several different types of materials. The properties that were characterized included particle sizing and size distributions, shape analysis, density (particle, skeletal and bulk), minimum fluidization velocities, void fractions, particle porosity, and assignment within the Geldart Classification. In the methods used for this experiment, a novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Materials of known properties were initially characterized to validate the accuracy and methodology, prior to testing materials of unknown properties. The procedures used yielded valid and accurate results, with a high level of repeatability. A database of these materials has been developed to assist in model validation efforts and future designs. It is also anticipated that further development of these procedures wil be expanded increasing the properties included in the database.

  4. Physical characteristics of indigestible solids affect emptying from the fasting human stomach.

    PubMed Central

    Meyer, B; Beglinger, C; Neumayer, M; Stalder, G A

    1989-01-01

    Gastric emptying of indigestible solids depends on their size. It is not clear whether physical characteristics other than particle size affect emptying of indigestible solids from the fasting human stomach. We studied gastric emptying of three differently shaped particles, (cubes, spheres, rods) of either hard or soft consistency during the fasting state in human volunteers. The shape of indigestible particles did not affect their emptying. The area under the gastric emptying curve (AUC: particles x hour) was for hard cubes 24.7 (2.2), for hard spheres 27.9 (1.6), for hard rods 26.9 (2.7). All soft particles emptied faster than their identically shaped hard counterparts, but there was no difference among the three shapes (AUC for soft cubes: 29.2 (3.0), for soft spheres 32.0 (1.8), for soft rods 34.1 (1.2). If gastric emptying of hard and soft particles was compared independently of their shape, soft particles emptied significantly faster than hard ones: AUC 31.8 (1.2) v 26.5 (1.3) (p less than 0.01). In conclusion, the consistency but not the shape significantly affects gastric emptying. Specific physical characteristics other than size and shape may affect gastric emptying of indigestible particles which may be of importance in the design of drugs. PMID:2599438

  5. Probing physical properties at the nanoscale using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ditzler, Lindsay Rachel

    Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating

  6. Physicochemical properties of foal meat as affected by cooking methods.

    PubMed

    Lorenzo, José M; Cittadini, Aurora; Munekata, Paulo E; Domínguez, Rubén

    2015-10-01

    The present study deals with the effect of four different cooking techniques (roasting, grilling, microwave baking and frying with olive oil) on physicochemical parameters (cooking loss, WHC, texture and colour) and lipid oxidation (by TBARS measurement) of foal meat. Thermal treatments induced water loss (P<0.001), being lower in foal steaks cooked in the grill (25.8%) and higher in foal samples cooked in the microwave (39.5%). As it was expected, all the cooking methods increased TBARS index, since high temperature during cooking seems to cause an increase of the lipid oxidation in foal steaks. Statistical analysis displayed that WHC was affected (P<0.001) by thermal treatment, since the smallest WHC values were observed in samples from microwave treatment. Thermal treatment also caused a significant (P<0.001) increase in the force needed to cut the foal steaks. Regarding colour parameter, cooking led to an increase of L*-value (lightness) and b*-value (yellowness), while a*-value (redness) markedly decreased in all samples. PMID:26042921

  7. Polymer crystallization in thin films: morphology and physical properties

    NASA Astrophysics Data System (ADS)

    Kelly, Giovanni; Albert, Julie

    Polymer crystallization has been studied both computationally and experimentally for decades, elucidating many of the mysteries surrounding crystallization kinetics and thermodynamics. However, many unanswered questions remain pertaining to the relationships between crystallization phenomena and material properties needed for specific applications that range from drug delivery and tissue engineering to optical devices and mechanically robust membranes. One of the especially interesting facets of polymer crystallization is the behavior observed when these long chain molecules are spatially confined in thin and ultrathin films. Confined geometry leads to chain configurations, and therefore thermal, mechanical, and optical properties, sometimes far removed from reported bulk values. This project aims to study the phenomena exhibited by linear semi-crystalline polymers in thin films as well as the way in which blending with homopolymers, block copolymers, and novel polymer chain architectures affect morphology, biodegradation, optical, thermal, and mechanical properties.

  8. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    PubMed Central

    Chevalier, N.R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  9. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    NASA Astrophysics Data System (ADS)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  10. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration.

    PubMed

    Chevalier, N R; Gazguez, E; Bidault, L; Guilbert, T; Vias, C; Vian, E; Watanabe, Y; Muller, L; Germain, S; Bondurand, N; Dufour, S; Fleury, V

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  11. Perturbation amplitude affects linearly estimated neuromechanical wrist joint properties.

    PubMed

    Klomp, Asbjorn; de Groot, Jurriaan H; de Vlugt, Erwin; Meskers, Carel G M; Arendzen, J Hans; van der Helm, Frans C T

    2014-04-01

    System identification techniques have been used to separate intrinsic muscular and reflexive contributions to joint impedance, which is an essential step in the proper choice of patient specific treatment. These techniques are, however, only well developed for linear systems. Assuming linearity prescribes the neuromuscular system to be perturbed only around predefined operating points. In this study, we test the validity of a commonly used linear model by analyzing the effects of flexion-extension displacement amplitude (2(°), 4(°), and 8(°)) on damping, stiffness, and reflex gain of the wrist joint, at different background torque levels (0, 1, and 2 N · m). With displacement amplitude, intrinsic damping increased, while intrinsic stiffness and reflex gains decreased. These changes were dependent on the level of wrist torque. The dependency of the neuromuscular system properties on even small variations in angular displacement is evident and has to be accounted for when comparing different studies and clinical interpretations using linear identification techniques. Knowledge of the behavior of the neuromuscular system around operating points is an essential step toward the development of nonlinear models that allow for discrimination between patients and controls in a larger range of loading conditions. PMID:24216632

  12. Phosphatidylcholine embedded microemulsions: physical properties and improved Caco-2 cell permeability.

    PubMed

    Spernath, Aviram; Aserin, Abraham; Ziserman, Lior; Danino, Dganit; Garti, Nissim

    2007-06-22

    The present study evaluates the effect of a solubilized model drug, diclofenac sodium salt (diclofenac), in our unique new U-type microemulsion system embedded with phosphatidylcholine (PC) in terms of microstructure transformations, physical properties of the system (viscosity, electrical conductivity), droplet sizes and shapes, and nucleation and growth of the droplets. The physical properties are correlated to the permeability of diclofenac through Caco-2 monolayer cells. The major findings reported are: (1) systems that are rich in surfactant and contain minimal oil phase form a microemulsion that enables high solubilization of diclofenac (20 wt.% diclofenac in the oil and surfactant concentrate can be fully diluted with water); (2) PC presence at the interface does not affect the size of the O/W droplets, while the presence of diclofenac at the interface decreases the O/W droplet size by an average of 50%; (3) diclofenac seems to increase incorporation of PC into the W/O interface; (4) diclofenac affects the physical properties of the microemulsion increasing the viscosity of the W/O microemulsion system and completely changing the conductivity profile of the system upon water dilution; (5) cryo-TEM images indicate that above 70 wt.% water the droplets are spherical; (6) diclofenac permeability through Caco-2 monolayer cells increases when PC is embedded into the interface. PMID:17475359

  13. Sodic Soil Properties and Sunflower Growth as Affected by Byproducts of Flue Gas Desulfurization

    PubMed Central

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2012-01-01

    The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO4, which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha−1) and two leaching levels (750 and 1200 m3 ha−1). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha−1 and water was supplied at 1200 m3·ha−1. Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage. PMID:23285042

  14. Sodic soil properties and sunflower growth as affected by byproducts of flue gas desulfurization.

    PubMed

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2012-01-01

    The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO(4), which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha(-1)) and two leaching levels (750 and 1200 m(3) ha(-1)). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha(-1) and water was supplied at 1200 m(3)·ha(-1). Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage. PMID:23285042

  15. HYDRAULIC AND PHYSICAL PROPERTIES OF SALTSTONE GROUTS AND VAULT CONCRETES

    SciTech Connect

    Dixon, K; John Harbour, J; Mark Phifer, M

    2008-11-25

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone. Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement (dry premix) to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of three types of saltstone and two vault concretes. The saltstone formulations included saltstone premix batched with (1) Deliquification, Dissolution, and Adjustment (DDA) salt simulant (w/pm 0.60), (2) Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) salt simulant (w/pm 0.60), and (3) Salt Waste Processing Facility (SWPF) salt simulant (w/pm 0.60). The vault concrete formulations tested included the Vault 1/4 concrete and two variations of the Vault 2 concrete (Mix 1 and Mix 2). Wet properties measured for the saltstone formulations included yield stress, plastic viscosity, wet unit weight, bleed water volume, gel time, set time, and heat of hydration. Hydraulic and physical properties measured on the cured saltstone and concrete samples included saturated hydraulic conductivity, moisture retention, compressive strength, porosity, particle density, and dry bulk density. These properties

  16. The number comb for a soil physical properties dynamic measurement

    NASA Astrophysics Data System (ADS)

    Olechko, K.; Patiño, P.; Tarquis, A. M.

    2012-04-01

    We propose the prime numbers distribution extracted from the soil digital multiscale images and some physical properties time series as the precise indicator of the spatial and temporal dynamics under soil management changes. With this new indicator the soil dynamics can be studied as a critical phenomenon where each phase transition is estimated and modeled by the graph partitioning induced phase transition. The critical point of prime numbers distribution was correlated with the beginning of Andosols, Vertisols and saline soils physical degradation under the unsustainable soil management in Michoacan, Guanajuato and Veracruz States of Mexico. The data banks corresponding to the long time periods (between 10 and 28 years) were statistically compared by RISK 5.0 software and our own algorithms. Our approach makes us able to distill free-form natural laws of soils physical properties dynamics directly from the experimental data. The Richter (1987) and Schmidt and Lipson (2009) original approaches were very useful to design the algorithms to identify Hamiltonians, Lagrangians and other laws of geometric and momentum conservation especially for erosion case.

  17. Physical Origins of Thermal Properties of Cement Paste

    NASA Astrophysics Data System (ADS)

    Abdolhosseini Qomi, Mohammad Javad; Ulm, Franz-Josef; Pellenq, Roland J.-M.

    2015-06-01

    Despite the ever-increasing interest in multiscale porous materials, the chemophysical origin of their thermal properties at the nanoscale and its connection to the macroscale properties still remain rather obscure. In this paper, we link the atomic- and macroscopic-level thermal properties by combining tools of statistical physics and mean-field homogenization theory. We begin with analyzing the vibrational density of states of several calcium-silicate materials in the cement paste. Unlike crystalline phases, we indicate that calcium silicate hydrates (CSH) exhibit extra vibrational states at low frequencies (<2 THz ) compared to the vibrational states predicted by the Debye model. This anomaly is commonly referred to as the boson peak in glass physics. In addition, the specific-heat capacity of CSH in both dry and saturated states scales linearly with the calcium-to-silicon ratio. We show that the nanoscale-confining environment of CSH decreases the apparent heat capacity of water by a factor of 4. Furthermore, full thermal conductivity tensors for all phases are calculated via the Green-Kubo formalism. We estimate the mean free path of phonons in calcium silicates to be on the order of interatomic bonds. This satisfies the scale separability condition and justifies the use of mean-field homogenization theories for upscaling purposes. Upscaling schemes yield a good estimate of the macroscopic specific-heat capacity and thermal conductivity of cement paste during the hydration process, independent of fitting parameters.

  18. The spectral and physical properties of metal in meteorite assemblages - Implications of asteroid surface materials

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.

    1986-01-01

    One of the objectives of the present paper is related to a definition of the spectral contribution of the nickel-iron metal component in meteoritic assemblages. Another objective is the elucidation of the chemical, physical, and petrographic properties of the metal grains which affect the spectral signature in asteroid surface materials. It is pointed out that an improved understanding of the spectral and physical properties of metal in asteroid regoliths should permit an improved characterization of these objects, and, in particular, a better evaluation of the differentiated or undifferentiated nature of the S-type and M-type asteroids. Attention is given to the spectra of iron and nickel-iron metals, the spectral effects of metal in chondritic assemblages, the spectral reflectance of metal grains in ordinary chondrites, the nature of the surfaces of chondritic metal grains, the origin of coats on chondritic metal grains, and the fragmentation of metal on asteroid surfaces.

  19. A study of physical properties of ODPA-p-PDA polyimide films

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; St.clair, Terry L.

    1990-01-01

    Physical properties were investigated of ODPA-p-PDA polyimide films, including their lower molecular weight versions with phthalimide endcaps. Free volume, determined by low energy positron annihilation in the test films, was the major parameter of interest since all other physical properties are ostensibly related to it. It affects the dielectric constant as well as the saturation moisture pickup of the test films. An empirical relation was developed between the free volume and molecular weight of the test films, comparable to the Mark-Houwink relation between the polymer solution viscosity and the molecular weight. Development of such a relation constitutes a unique achievement since it enables researchers to estimate the molecular weight of an intractable polymer in solid state for the first time.

  20. QA/QC requirements for physical properties sampling and analysis

    SciTech Connect

    Innis, B.E.

    1993-07-21

    This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories also measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.

  1. Tuning Physical Properties of Nanocomplexes Through Microfluidics-Assisted Confinement

    PubMed Central

    Ho, Yi-Ping; Grigsby, Christopher L.; Zhao, Feng; Leong, Kam W.

    2011-01-01

    The future of genetic medicine hinges on successful intracellular delivery of nucleic acid-based therapeutics. While significant effort has concentrated on developing nano-carriers to improve the delivery aspects, scant attention has been paid to the synthetic process of poorly controlled nanocomplex formation. Proposed here is a reliable system to better control the complexation process, and thus the physical properties of the nanocomplexes, through microfluidics-assisted confinement (MAC) in picoliter droplets. We show that these homogeneous MAC-synthesized nanocomplexes exhibit narrower size distribution, lower cytotoxicity, and higher transfection efficiency compared to their bulk-synthesized counterparts. MAC represents a physical approach to control the energetic self-assembly of polyelectrolytes, thereby complementing the chemical innovations in nano-carrier design to optimize nucleic acid and peptide delivery. PMID:21506589

  2. Measurements of physical properties of model Titan atmospheres

    NASA Technical Reports Server (NTRS)

    Scattergood, T. W.; Chang, S.; Mckay, C.; Ohara, B.; Carle, G.

    1986-01-01

    One aspect of the study of Titan's atmosphere is the elucidation of the chemical and physical nature of the aerosols. In order to facilitate this, a program to produce laboratory synthesized model materials for Titan's aerosol and to study their chemical and physical properties is now in progress. Various processes, including electric discharge, photolysis by ultraviolet light, and irradiation by energetic particles, will be used to produce the materials. A first set of experiments where a nominal Titan mixture (97%N2, 3% CH4, 0.2% H2) was subjected to pulsed high temperature shocks yielded a reddish brown waxy solid. This material was subjected to pyrolysis/gas chromatography, a technique that has been proposed as a method for analysis of the Titan aerosols. Preliminary results show the material to consist of simple hydrocarbons but little else, at least up to temperatures of 600 C. Since the material was colored, compounds other than those mentioned above must be present.

  3. Growth and physical properties of molecular organic thin films

    NASA Astrophysics Data System (ADS)

    Fraxedas, J.

    2004-04-01

    Highly-oriented polycrystalline thin films of molecular organic materials consisting of small molecules can be easily obtained by physical and chemical vapour deposition methods. The crystallographic phase, orientation and morphology of the films critically depend on the interface and on the kinetics of growth and can be controlled, to a certain extent, by a judicious selection of the substrates and of the growth parameters. This article shortly explores the formation of organic-inorganic heterostructures as a function of coverage: from the most fundamental case, a single molecule on a surface, to thick films (thickness ˜ 1 μ m). The case of high-quality thick TTF-TCNQ films exemplifies the fact that the derived physical properties are essentially identical to those obtained from single crystals. Key words. Molecular organic materials thin films interfaces.

  4. Progress in physical properties of Chinese stock markets

    NASA Astrophysics Data System (ADS)

    Liang, Yuan; Yang, Guang; Huang, Ji-Ping

    2013-08-01

    In the past two decades, statistical physics was brought into the field of finance, applying new methods and concepts to financial time series and developing a new interdiscipline "econophysics". In this review, we introduce several commonly used methods for stock time series in econophysics including distribution functions, correlation functions, detrended fluctuation analysis method, detrended moving average method, and multifractal analysis. Then based on these methods, we review some statistical properties of Chinese stock markets including scaling behavior, long-term correlations, cross-correlations, leverage effects, antileverage effects, and multifractality. Last, based on an agent-based model, we develop a new option pricing model — financial market model that shows a good agreement with the prices using real Shanghai Index data. This review is helpful for people to understand and research statistical physics of financial markets.

  5. Finding human promoter groups based on DNA physical properties

    NASA Astrophysics Data System (ADS)

    Zeng, Jia; Cao, Xiao-Qin; Zhao, Hongya; Yan, Hong

    2009-10-01

    DNA rigidity is an important physical property originating from the DNA three-dimensional structure. Although the general DNA rigidity patterns in human promoters have been investigated, their distinct roles in transcription are largely unknown. In this paper, we discover four highly distinct human promoter groups based on similarity of their rigidity profiles. First, we find that all promoter groups conserve relatively rigid DNAs at the canonical TATA box [a consensus TATA(A/T)A(A/T) sequence] position, which are important physical signals in binding transcription factors. Second, we find that the genes activated by each group of promoters share significant biological functions based on their gene ontology annotations. Finally, we find that these human promoter groups correlate with the tissue-specific gene expression.

  6. Do government brochures affect physical activity cognition? A pilot study of Canada's physical activity guide to healthy active living.

    PubMed

    Kliman, Aviva M; Rhodes, Ryan

    2008-08-01

    Health Canada has published national physical activity (PA) guidelines, which are included in their 26-page Physical Activity Guide to Healthy Active Living (CPAG). To date, the use of CPAG as a motivational instrument for PA promotion has not been evaluated. The purpose of this study was to determine whether reading CPAG 1) increased motivational antecedents to engage in regular PA, and 2) increased regular PA intention and behaviour over 1 month. Participants included 130 randomly sampled Canadian adults (18 years or older) who were randomly mailed pack ages consisting of either 1) a questionnaire and a copy of CPAG, or 2) a questionnaire. Questionnaire items pertained to participants' sociodemographics, previous PA behaviours (Godin Leisure-Time Questionnaire) and PA motivation (theory of planned behaviour). Participants were then sent a follow-up questionnaire pertaining to their PA behaviours throughout the previous month. Results revealed significant interactions between the guide condition and previous activity status on instrumental behavioural beliefs about strength activities and subjective norms about endurance activities (p < 0.05), but all other factors were not significantly different. It was concluded that among previously inactive people, receiving this guide may change some informational/motivational constructs, but key motivational antecedents (affective attitude, perceived behavioural control) and outcomes (intention, behaviour) seem unaffected. PMID:18825580

  7. Predicting Macroscale Physical Properties Using Microscale Image Data

    NASA Astrophysics Data System (ADS)

    Fredrich, J. T.

    2003-12-01

    Geologic materials, including tight crystalline rocks, shales, and weakly consolidated sandstones and limestones, exhibit geometrically complex microscale structures that control physical and mechanical properties at the macroscale. The past decade has seen remarkable development of several new techniques that enable high-resolution three-dimensional imaging of the pore structure of complex geomaterials. This, coupled with advances in numerical simulation methods, computer hardware, and development of fast computer architectures, provides unprecedented opportunities for the prediction of bulk physical and/or mechanical properties directly from microscale image data. We present data obtained using the two highest fidelity methods for 3D imaging, synchrotron computed microtomography and laser scanning microscopy, and discuss the advantages and disadvantages that each method presents in the specific context of microscale imaging and subsequent use of 3D image data in numerical simulations. We also contrast the application of these modern techniques with conventional serial sectioning techniques. We directly apply the image data in massively parallel numerical simulations of single phase fluid flow. Using data obtained for several natural and synthetic sandstones at a range of resolutions and encompassing different solid volumes, we explore fundamental issues related to representative volumes and length scales necessary to characterize geometrically complex porous media and enable accurate prediction of physical properties at the macroscale. This work was performed at Sandia National Laboratories funded by the US DOE under Contract DE-AC04-94AL85000. Sandia is a multiprogam laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  8. Physical properties of coriander seeds at different moisture content

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Singh, K. K.; Kumar, R.

    2012-10-01

    Physical properties of coriander seeds were determined at moisture content of 3.5-17.7%, d.b. The major axis and 1 000 seeds mass were found to decrease nonlinearly with increase in seed moisture. The medium and minor axes, geometric mean diameter, sphericity, unit volume, surface area and angle of repose increased linearly. Bulk density decreased linearly, however the true density increased non-linearly. The coefficient of static friction increased nonlinearly for different surfaces with increase in moisture level and its maximum was found for plywood surface. The rupture force and energy absorbed decreased linearly with increasing moisture content.

  9. The clouds of Venus. [physical and chemical properties

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1975-01-01

    The physical and chemical properties of the clouds of Venus are reviewed, with special emphasis on data that are related to cloud dynamics. None of the currently-popular interpretations of cloud phenomena on Venus is consistent with all the data. Either a considerable fraction of the observational evidence is faulty or has been misinterpreted, or the clouds of Venus are much more complex than the current simplistic models. Several lines of attack are suggested to resolve some of the contradictions. A sound understanding of the clouds appears to be several years in the future.

  10. Physical properties of alternatives to the fully halogenated chlorofluorocarbons

    NASA Technical Reports Server (NTRS)

    Mclinden, Mark O.

    1990-01-01

    Presented here are recommended values and correlations of selected physical properties of several alternatives to the fully halogenated chlorocarbons. The quality of the data used in this compilation varies widely, ranging from well-documented, high accuracy measurements from published sources to completely undocumented values listed on anonymous data sheets. That some of the properties for some fluids are available only from the latter type of source is clearly not the desired state of affairs. While some would reject all such data, the compilation given here is presented in the spirit of laying out the present state of knowledge and making available a set of data in a timely manner, even though its quality is sometimes uncertain. The correlations presented here are certain to change quickly as additional information becomes available.

  11. Physical properties of superconducting single crystal iron sulfide

    NASA Astrophysics Data System (ADS)

    Rodriguez, Efrain E.; Borg, Christopher K. H.; Zhou, Xiuquan; Paglione, Johnpierre; University of Maryland Collaboration

    Recently, the simple binary tetragonal iron sulfide, FeS, was found to be a superconductor with a Tc = 5 K. We have prepared single crystals of tetragonal iron sulfide through hydrothermal de-intercalation of KxFe2-yS2. The KxFe2-yS2 single crystal precursors were grown by slow cooling of stoichiometric melts of K, Fe and S. The silver, plate-like FeS single crystals were highly crystalline with a superconducting transition temperature (Tc) of 4 K. The high quality of the FeS crystals revealed highly anisotropic nature of the magnetic and electronic properties intrinsic to FeS. The physical properties and thermal stability of single crystal FeS will be discussed in detail.

  12. Physical properties of inorganic PMW-PNN-PZT ceramics

    NASA Astrophysics Data System (ADS)

    Sin, Sang-Hoon; Yoo, Ju-hyun; Kim, Yong-Jin; Baek, Sam-ki; Ha, Jun-Soo; No, Chung-Han; Song, Hyun-Seon; Shin, Dong-Chan

    2015-07-01

    In this work, inorganic Pb(Mg1/2W1/2)0.03(Ni1/3Nb2/3)x(Zr0.5Ti0.5)0.97-xO3 (x = 0.02 ∼ 0.12) composition ceramics were fabricated by the conventional solid state reaction method. And then their micro structure and ferroelectric properties were investigated according to the amount of PNN substitution. Small amounts of Li2CO3 and CaCO3 were used in order to decrease the sintering temperature of the ceramics. The 0.10 mol PNN-substituted PMW-PNN- PZT ceramics sintered at 920°C showed the excellent physical properties of piezoelectric constant (d33), electromechanical coupling factor (kp), mechanical quality coefficient (Qm), and dielectric constant of 566 pC/N, 0.61, 73, and 2183, respectively.

  13. Physical properties of some Sn-based melts

    NASA Astrophysics Data System (ADS)

    Sidorov, V.; Uporov, S.; Rozitsina, E.; Yagodin, D.; Grushevskij, K.; Ilinykh, N.

    2011-05-01

    The physical properties (viscosity, density, electroresistivity and magnetic susceptibility) of pure tin, copper, silver, some binary (Sn - Ag, Sn - Cu, Sn - Bi, Sn - Zn) and ternary (Sn-Ag-Cu, Sn-BiAg, Sn-Bi-Zn) alloys with near eutectic compositions are investigated in wide temperature ranges. The irreversible decrease of viscosity in pure tin melt is discovered at 820 °С during heating. The similar anomaly with the following hysteresis of dynamic viscosity was fixed for binary and ternary alloys but at higher temperatures - 900 °С and 950 °С respectively. For all the systems it was shown that the alloys with eutectic compositions differ significantly in their electric and magnetic properties from hypo- and hypereutectic ones. Qualitative and quantitative metallographic analysis for Sn-3.8wt.%Ag-0.7wt.%Cu samples, heated low and above characteristic temperatures, showed the influence of melt overheating on crystallization kinetics.

  14. Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids

    NASA Technical Reports Server (NTRS)

    Beach, Duane E. (Technical Monitor); Devarakonda, Angirasa; Anderson, William G.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic, and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development is necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500 to 550 K. Life test data for thermo-chemical compatibility are almost non-existent.

  15. Physical properties and compression loading behaviour of corn seed

    NASA Astrophysics Data System (ADS)

    Babić, Lj.; Radojèin, M.; Pavkov, I.; Babić, M.; Turan, J.; Zoranović, M.; Stanišić, S.

    2013-03-01

    The aim of this study was to acquire data on the physical properties and compression loading behaviour of seed of six corn hybrid varieties. The mean values of length, width, thickness, geometric diameter, surface area, porosity, single kernel mass, sphericity, bulk and true density, 1 000 kernelmass and coefficient of friction were studied at single level of corn seed moisture content. The calculated secant modulus of elasticity during compressive loading for dent corn was 0.995 times that of the semi-flint type; there were no significant differences in the value of this mechanical property between semi-flint and dent corn varieties. The linear model showed a decreasing tendency of secant modulus of elasticity for all hybrids as the moisture content of seeds increased.

  16. Randomized Controlled Trial of Positive Affect Induction to Promote Physical Activity After Percutaneous Coronary Intervention

    PubMed Central

    Peterson, Janey C.; Charlson, Mary E.; Hoffman, Zachary; Wells, Martin T.; Wong, Shing-Chiu; Hollenberg, James P.; Jobe, Jared B.; Boschert, Kathryn A.; Isen, Alice M.; Allegrante, John P.

    2013-01-01

    Background Within 1 year after percutaneous coronary intervention, more than 20% of patients experience new adverse events. Physical activity confers a 25% reduction in mortality; however, physical activity is widely underused. Thus, there is a need for more powerful behavioral interventions to promote physical activity. Our objective was to motivate patients to achieve an increase in expenditure of 336 kcal/wk or more at 12 months as assessed by the Paffenbarger Physical Activity and Exercise Index. Methods Two hundred forty-two patients were recruited immediately after percutaneous coronary intervention between October 2004 and October 2006. Patients were randomized to 1 of 2 groups. The patient education (PE) control group (n=118) (1) received an educational workbook, (2) received a pedometer, and (3) set a behavioral contract for a physical activity goal. The positive affect/self-affirmation (PA) intervention group (n=124) received the 3 PE control components plus (1) a PA workbook chapter, (2) bimonthly induction of PA by telephone, and (3) small mailed gifts. All patients were contacted with standardized bimonthly telephone follow-up for 12 months. Results Attrition was 4.5%, and 2.1% of patients died. Significantly more patients in the PA intervention group increased expenditure by 336 kcal/wk or more at 12 months, our main outcome, compared with the PE control group (54.9% vs 37.4%, P=.007). The PA intervention patients were 1.7 times more likely to reach the goal of a 336-kcal/wk or more increase by 12 months, controlling for demographic and psychosocial measures. In multivariate analysis, the PA intervention patients had nearly double the improvement in kilocalories per week at 12 months compared with the PE control patients (602 vs 328, P=.03). Conclusion Patients who receive PA intervention after percutaneous coronary intervention are able to achieve a sustained and clinically significant increase in physical activity by 12 months. Trial Registration

  17. Phytoplankton behavior affects ocean mixed layer dynamics through biological-physical feedback mechanisms

    NASA Astrophysics Data System (ADS)

    Sonntag, S.; Hense, I.

    2011-08-01

    Biologically induced changes in physical oceanic properties through phytoplankton provide potential positive and negative feedback loops. In particular, surface floating cyanobacteria, which are expected to be favored from future environmental conditions and can form large surface mats, can increase light absorption and the surface albedo and decrease momentum input from the atmosphere by wind. In this work we study the effect of a changing phytoplankton community composition to one dominated by buoyant cyanobacteria on the physical oceanic properties. We use the water column model General Ocean Turbulence Model and set up an idealized biological model taking into account the phytoplankton species' characteristics as well as the effects of biology on physics. The model results show that an increase of buoyant cyanobacteria leads to substantial changes in the seasonal cycle of the mixed layer. The results furthermore indicate that the effects due to altered absorption and biologically induced reduction of the wind drag are larger than contrary effects due to changes in the surface albedo. Overall, our model results suggest that the development of cyanobacterial surface blooms and their feedbacks on light absorption and wind drag need to be taken into account in ocean models used for climate scenarios in order to capture changes in the dynamics of the upper ocean.

  18. A brief intervention affects parents' attitudes toward using less physical punishment.

    PubMed

    Chavis, Antwon; Hudnut-Beumler, Julia; Webb, Margaret W; Neely, Jill A; Bickman, Len; Dietrich, Mary S; Scholer, Seth J

    2013-12-01

    Consecutive English and Spanish speaking caregivers of 6-24 month old children were randomly assigned to either a control or intervention group. Parents in the intervention group were instructed to view at least 4 options to discipline a child in an interactive multimedia program. The control group participants received routine primary care with their resident physician. After the clinic visit, all parents were invited to participate in a research study; the participation rate was 98% (258/263). The key measure was the Attitudes Toward Spanking (ATS) scale. The ATS is correlated with parents' actual use of physical punishment. Parents with higher scores are more likely to use physical punishment to discipline their children. Parents in the intervention group had an ATS score that was significantly lower than the ATS score of parents in the control group (median=24.0, vs. median=30; p=0.043). Parents in the control group were 2 times more likely to report that they would spank a child who was misbehaving compared with parents in the intervention group (16.9% vs. 7.0%, p=0.015). In the short-term, a brief intervention, integrated into the primary care visit, can affect parents' attitudes toward using less physical punishment. It may be feasible to teach parents to not use physical punishment using a population-based approach. The findings have implications for how to improve primary care services and the prevention of violence. PMID:23859768

  19. Interacting Physical and Biological Processes Affecting Nutrient Transport Through Human Dominated Landscapes

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.

    2015-12-01

    Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.

  20. N-Methylmelamines: Synthesis, Characterization, and Physical Properties.

    PubMed

    List, Manuela; Puchinger, Helmut; Gabriel, Herbert; Monkowius, Uwe; Schwarzinger, Clemens

    2016-05-20

    N-Methylmelamines have recently gained importance as valuable compounds for manufacturing modified melamine formaldehyde resins and other polymer building blocks. A great advantage of these polymers is the reduction of the carcinogenic formaldehyde. Selecting the polymerization processes (e.g., substance polymerization, polymerization in solution) and controlling the polymerization reaction and properties of these novel materials requires knowledge of the properties of the individual melamine derivatives used as new building blocks. All possible permutations of N-methylmelamines were prepared, and reaction progress was monitored by GC/MS. 2,4,6-Tris(dimethylamino)-1,3,5-triazine was prepared to complete the series; this is, however, also a possible byproduct in various synthesis routes. The reaction conditions were optimized to obtain high yields of each derivative with the highest possible purity. The substances were characterized by NMR and IR spectroscopy, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. In addition, physical properties, such as solubility, melting points, and pKb values, were determined. The number of amino-, methylamino-, and dimethylamino groups has a significant effect on these properties. In summary, we found that by increasing the number of amino- and methylamino groups, solubility and pKb increase. With increasing number of amino groups, the compounds tend to form hydrogen bonds, and thus, the melting point shifts to higher temperature ranges where they start to decompose. PMID:27100712

  1. Nuclear Envelopes Properties and Physical Interactions with Nucleoplasm

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Dahl, Kris; Wilson, Kathy

    2004-03-01

    Given the stresses imposed on a cell and its organelles and the nuclear envelope's important role as a barrier between cytoplasm and nucleoplasm, we sought to measure and model mechanical properties of isolated nuclear envelopes. Xenopus laevis oocyte (XO) nuclei are primarily used since they have been widely studied in many fields as model systems for nuclear structure and function. We manipulate the nuclear envelope by both osmotic swelling and micromanipulation to determine an effective elastic modulus. We show the envelope properties are independent of the effects of the nucleoplasm. Micropipette aspiration of XO nuclei gives an effective elastic modulus of the nuclear envelope of 250 mN/m with similar results obtained from isotropic swelling of XO nuclear envelopes. The results suggest that these nuclear envelopes have relatively homogeneous properties and are highly elastic, sustaining strains of 50-100Square-net simulations and comparisons to polymer network models suggests that XO nuclear envelope physical properties are dominated by the lamin network. If applicable to nuclei in other cells, a "pre-compressed" state envisioned here would allow for significant shear flexibility, especially important for motile cells whose nuclei need to rapidly deform.

  2. Physical Activity, Menopause, and Quality of Life: The Role of Affect and Self-Worth across Time

    PubMed Central

    Elavsky, Steriani

    2009-01-01

    Objective Physical activity has been shown to enhance quality of life, however, few investigations of these effects exist in women undergoing the menopausal transition. The present study examined the long-term effects of physical activity on menopause-related quality of life (QOL) and tested the mediating effects of physical self-worth and positive affect in this relationship. Design Middle-aged women previously enrolled in a 4-month randomized controlled trial involving walking, yoga, and a control group completed a follow-up mail-in survey two years following the end of the trial. The survey included a battery of psychological and physical activity measures, including measures of menopausal symptoms and menopause-related quality of life. Longitudinal linear panel analysis was conducted within a covariance modeling framework to test whether physical self-worth and positive affect mediated the physical activity - quality of life relationship over time. Results At the end of the trial, physical activity and menopausal symptoms were related to physical self-worth and positive affect, and in turn, greater levels of physical self-worth and positive affect were associated with higher levels of menopause-related QOL. Analyses indicated that increases in physical activity and decreases in menopausal symptoms over the 2-year period were related to increases in physical self-worth (βs = .23 and −.52) and for symptoms also to decreased positive affect (β = −.47), and both physical self-worth (β = .34) and affect (β = .43) directly influenced enhancements in QOL (R2 = .775). Conclusions The findings support the position that physical activity effects on QOL are in part mediated by intermediate psychological outcomes and that physical activity can have long-term benefits for women undergoing the menopausal transition. PMID:19169167

  3. Photo-physical properties of 2-(1-ethynylpyrene)-adenosine: influence of hydrogen bonding on excited state properties.

    PubMed

    Trojanowski, P; Plötner, J; Grünewald, C; Graupner, F F; Slavov, C; Reuss, A J; Braun, M; Engels, J W; Wachtveitl, J

    2014-07-21

    The photo-physical properties of 2-(1-ethynylpyrene)-adenosine (PyA), a fluorescent probe for RNA dynamics, were examined by solvation studies. The excited-state dynamics display the influence of the vicinity on the spectral features. Combining improved transient absorption and streak camera measurements along with a new analysis method provide a detailed molecular picture of the photophysics. After intramolecular vibrational energy redistribution (IVR), two distinct states are observed. Solvent class (protic/aprotic) and permittivity strongly affect the properties of these states and their population ratio. As a result their emission spectrum is altered, while the fluorescence quantum yield and the overall lifetime remain nearly unchanged. Consequently, the hitherto existing model of the photophysics is herein refined and extended. The findings can serve as basis for improving the information content of measurements with PyA as a label in RNA. PMID:24894337

  4. Study of the physical properties of crystalline rocks in the southeast Voronezh anteclise

    NASA Technical Reports Server (NTRS)

    Dmitriyevskiy, V. S.; Afanasyev, N. S.; Frolov, S. M.

    1985-01-01

    The physical properties of rocks, in the crystalline mass of the Voronezh anteclise, were studied. The study of the physical properties of rocks is important for the improvement of geophysical methods for mapping crystalline rocks in the foundation and exploration of different geological objects which are associated with the crystalline foundation, covered by the sedimentary mantle. It is found that: (1) rocks in the crystalline foundation are very different in physical properties; (2) the physical properties are closely related to their substance composition and genesis; (3) petrographic properties give clues of rock afficiation to certain complexes; and (4) physical and magnetic properties should be examined by petrography, chemical and X-ray analysis.

  5. Affective Properties of Mothers' Speech to Infants with Hearing Impairment and Cochlear Implants

    ERIC Educational Resources Information Center

    Kondaurova, Maria V.; Bergeson, Tonya R.; Xu, Huiping; Kitamura, Christine

    2015-01-01

    Purpose: The affective properties of infant-directed speech influence the attention of infants with normal hearing to speech sounds. This study explored the affective quality of maternal speech to infants with hearing impairment (HI) during the 1st year after cochlear implantation as compared to speech to infants with normal hearing. Method:…

  6. Psychometric Properties of the Affect Intensity and Reactivity Measure Adapted for Youth (AIR-Y)

    ERIC Educational Resources Information Center

    Jones, Rachel E.; Leen-Feldner, Ellen W.; Olatunji, Bunmi O.; Reardon, Laura E.; Hawks, Erin

    2009-01-01

    A valid and reliable instrument for measuring affect intensity does not exist for adolescents; such a measure may help to refine understanding of emotion among youths. The purpose of the current study was to evaluate the psychometric properties and clinical relevance of a measure of affect intensity adapted for youths. Two hundred five community…

  7. Soil physical properties influence "black truffle" fructification in plantations.

    PubMed

    Alonso Ponce, Rafael; Ágreda, Teresa; Águeda, Beatriz; Aldea, Jorge; Martínez-Peña, Fernando; Modrego, María Pilar

    2014-04-01

    Although the important effects of pH and carbonate content of soils on "black truffle" (Tuber melanosporum) production are well known, we poorly understand the influence of soil physical properties. This study focuses on physical soil characteristics that drive successful production of black truffles in plantations. Seventy-eight Quercus ilex ssp. ballota plantations older than 10 years were studied in the province of Teruel (eastern Spain). Soil samples were analyzed for various edaphic characteristics and to locate T. melanosporum ectomycorrhizae. The influence of cultivation practices, climatic features, and soil properties on sporocarp production was assessed using multivariate analyses. Low contents of fine earth and silt and high levels of bulk density, clay content, and water-holding capacity appear to promote fructification. Watering is also highly positive for truffle fructification. We develop and discuss a logistic model to predict the probability of truffle fructification in field sites under consideration for truffle plantation establishment. The balance between water availability and aeration plays a crucial role in achieving success in black truffle plantations. PMID:24487451

  8. Hanford Waste Physical and Rheological Properties: Data and Gaps - 12078

    SciTech Connect

    Kurath, D.E.; Wells, B.E.; Huckaby, J.L.; Mahoney, L.A.; Daniel, R.C.; Burns, C.A.; Tingey, J.M.; Cooley, S.K.

    2012-07-01

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant (WTP). These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed. (authors)

  9. Hanford Waste Physical and Rheological Properties: Data and Gaps

    SciTech Connect

    Kurath, Dean E.; Wells, Beric E.; Huckaby, James L.; Mahoney, Lenna A.; Daniel, Richard C.; Burns, Carolyn A.; Tingey, Joel M.; Cooley, Scott K.

    2012-03-01

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant. These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed.

  10. Cesium Eluate Evaporation Solubility and Physical Property Behavior

    SciTech Connect

    Pierce, R.A.

    2003-06-12

    The baseline flowsheet for low activity waste (LAW) in the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) includes pretreatment of supernatant by removing cesium using ion exchange. When the ion exchange column is loaded, the cesium will be eluted with a 0.5M nitric acid (HNO3) solution to allow the column to be conditioned for re-use. The cesium eluate solution will then be concentrated in a vacuum evaporator to minimize storage volume and recycle HNO3. To prevent the formation of solids during storage of the evaporator bottoms, criteria have been set for limiting the concentration of the evaporator product to 80 percent of saturation at 25 degrees C. Prior work has collected fundamental data for predicting solubility and other physical property measurements. Other ongoing efforts have involved the development of a computer model to predict solubility and physical properties during evaporation. Evaporation experiments were conducted with cesium eluate simulant generated from a pilot scale experiment in the Thermal Fluids Lab (TFL) at the Savannah River Technology Center (SRTC). The data from the experiments will be used to validate the modeling data.

  11. Physical properties of polymorphic yeast prion amyloid fibers.

    PubMed

    Castro, Carlos E; Dong, Jijun; Boyce, Mary C; Lindquist, Susan; Lang, Matthew J

    2011-07-20

    Amyloid fibers play important roles in many human diseases and natural biological processes and have immense potential as novel nanomaterials. We explore the physical properties of polymorphic amyloid fibers formed by yeast prion protein Sup35. Amyloid fibers that conferred distinct prion phenotypes ([PSI(+)]), strong (S) versus weak (W) nonsense suppression, displayed different physical properties. Both S[PSI(+)] and W[PSI(+)] fibers contained structural inhomogeneities, specifically local regions of static curvature in S[PSI(+)] fibers and kinks and self-cross-linking in W[PSI(+)] fibers. Force-extension experiments with optical tweezers revealed persistence lengths of 1.5 μm and 3.3 μm and axial stiffness of 5600 pN and 9100 pN for S[PSI(+)] and W[PSI(+)] fibers, respectively. Thermal fluctuation analysis confirmed the twofold difference in persistence length between S[PSI(+)] and W[PSI(+)] fibers and revealed a torsional stiffness of kinks and cross-links of ~100-200 pN·nm/rad. PMID:21767497

  12. Physical-chemical property based sequence motifs and methods regarding same

    DOEpatents

    Braun, Werner; Mathura, Venkatarajan S.; Schein, Catherine H.

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  13. Effects of Chemical Composition, Water and Temperature on Physical Properties of Continental Crust

    NASA Astrophysics Data System (ADS)

    Cammarano, F.; Guerri, M.

    2015-12-01

    We explore the influence of major elements chemistry and H2O-content on the density and seismic velocity of crustal rocks by computing stable and metastable crustal mineralogy and elastic properties as a function of pressure and temperature (P-T). Proposed average compositions of continental crust result in significantly different properties, for example a difference in computed density of $ 4 % is obtained at a given P-T. Phase transformations affect crustal properties at the point that crustal seismic discontinuities can be explained with mineral reactions rather than chemical stratification. H2O, even if introduced in small amount in the chemical system, has an effect on physical properties comparable to that attributed to variations in major elements composition. Thermodynamical relationships between physical properties differ significantly from commonly used empirical relationships. Density models obtained by inverting CRUST 1.0 compressional wave velocity are different from CRUST 1.0 density and translate into variations in isostatic topography and gravitational field that ranges 6600 m and 6150 mGal respectively. Inferred temperatures are higher than reference geotherms in the upper crust and in the deeper portions of thick orogenic crust, consistently with presence of metastable rocks. Our results highlight interconnections/dependencies among chemistry, pressure, temperature, seismic velocities and density that need to be addressed to better understand the crustal thermo-chemical state.

  14. Linking hydraulic properties of fire-affected soils to infiltration and water repellency

    USGS Publications Warehouse

    Moody, J.A.; Kinner, D.A.; Ubeda, X.

    2009-01-01

    Heat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, Kf and (2) sorptivity, S(??i), as a function of initial soil moisture content, ??i, ranging from extremely dry conditions (??i < 0.02 cm3 cm-3) to near saturation. In the field and in the laboratory replicate measurements were made of ash, reference soils, soils unaffected by fire, and fire-affected soils. Each has a different degrees of water repellency that influences Kf and S(??i). Values of Kf ranged from 4.5 ?? 10-3 to 53 ?? 10-3 cm s-1 for ash; from 0.93 ?? 10-3 to 130 ?? 10-3 cm s-1 for reference soils; and from 0.86 ?? 10-3 to 3.0 ?? 10-3 cm s-1, for soil unaffected by fire, which had the lowest values of Kf. Measurements indicated that S(??i) could be represented by an empirical non-linear function of ??i with a sorptivity maximum of 0.18-0.20 cm s-0.5, between 0.03 and 0.08 cm3 cm-3. This functional form differs from the monotonically decreasing non-linear functions often used to represent S(??i) for rainfall-runoff modeling. The sorptivity maximum may represent the combined effects of gravity, capillarity, and adsorption in a transitional domain corresponding to extremely dry soil, and moreover, it may explain the observed non-linear behavior, and the critical soil-moisture threshold of water repellent soils. Laboratory measurements of Kf and S(??i) are the first for ash and fire-affected soil, but additional measurements are needed of these hydraulic properties for in situ fire-affected soils. They provide insight into water repellency behavior and infiltration under extremely dry conditions. Most importantly, they indicate how existing rainfall-runoff models can be modified to

  15. Quasar Spectral Energy Distributions As A Function Of Physical Property

    NASA Astrophysics Data System (ADS)

    Townsend, Shonda; Ganguly, R.; Stark, M. A.; Derseweh, J. A.; Richmond, J. M.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). In turn, models of outflows have shown particular sensitivity to the shape of the spectral energy distribution (SED), depending on the UV luminosity to transfer momentum to the gas, the X-ray luminosity to regulate how efficiently that transfer can be, etc. To investigate how SED changes with physical properties, we follow up on Richards et al. (2006), who constructed SEDs with varying luminosity. Here, we construct SEDs as a function of redshift, and physical property (black hole mass, bolometric luminosity, Eddington ratio) for volume limited samples drawn from the Sloan Digital Sky Survey, with photometry supplemented from 2MASS, WISE, GALEX, ROSAT, and Chandra. To estimate black hole masses, we adopt the scaling relations from Greene & Ho (2005) based on the H-alpha emission line FWHM. This requires redshifts less than 0.4. To construct volume-limited subsamples, we begin by adopting g=19.8 as a nominal limiting magnitude over which we are guaranteed to detect z<0.4 quasars. At redshift 0.4, we are complete down to Mg=-21.8, which yields 3300 objects from Data Release 7. At z=0.1, we are complete down to Mg=-18.5. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.

  16. Physical and functional properties of arrowroot starch extrudates.

    PubMed

    Jyothi, A N; Sheriff, J T; Sajeev, M S

    2009-03-01

    Arrowroot starch, a commercially underexploited tuber starch but having potential digestive and medicinal properties, has been subjected to extrusion cooking using a single screw food extruder. Different levels of feed moisture (12%, 14%, and 16%) and extrusion temperatures (140, 150, 160, 170, 180, and 190 degrees C) were used for extrusion. The physical properties--bulk density, true density, porosity, and expansion ratio; functional properties such as water absorption index, water solubility index, oil absorption index, pasting, rheological, and textural properties; and in vitro enzyme digestibility of the extrudates were determined. The expansion ratio of the extrudates ranged from 3.22 to 6.09. The water absorption index (6.52 to 8.85 g gel/g dry sample), water solubility index (15.92% to 41.31%), and oil absorption index (0.50 to 1.70 g/g) were higher for the extrudates in comparison to native starch (1.81 g gel/g dry sample, 1.16% and 0.60 g/g, respectively). The rheological properties, storage modulus, and loss modulus of the gelatinized powdered extrudates were significantly lower (P < 0.05) and these behaved like solutions rather than a paste or a gel. Hardness and toughness were more for the samples extruded at higher feed moisture and lower extrusion temperature, whereas snap force and energy were higher at lower feed moisture and temperature. There was a significant decrease in the percentage digestibility of arrowroot starch (30.07% after 30 min of incubation with the enzyme) after extrusion (25.27% to 30.56%). Extrusion cooking of arrowroot starch resulted in products with very good expansion, color, and lower digestibility, which can be exploited for its potential use as a snack food. PMID:19323747

  17. Aerosols physical properties at Hada Al Sham, western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.-P.; Hussein, T.; Aaltonen, V.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Almazroui, M.; Almehmadi, F. M.; Al Zawad, F. M.; Hakala, J.; Khoder, M.; Neitola, K.; Petäjä, T.; Shabbaj, I. I.; Hämeri, K.

    2016-06-01

    This is the first time to clearly derive the comprehensive physical properties of aerosols at a rural background area in Saudi Arabia. Aerosol measurements station was established at a rural background area in the Western Saudi Arabia to study the aerosol properties. This study gives overview of the aerosol physical properties (PM10, PM2.5, black carbon and total number concentration) over the measurement period from November 2012 to February 2015. The average PM10 and PM2.5 concentrations were 95 ± 78 μg m-3 (mean ± STD, at ambient conditions) and 33 ± 68 μg m-3 (at ambient conditions), respectively. As expected PM10 concentration was dominated by coarse mode particles (PM10-PM2.5), most probably desert dust. Especially from February to June the coarse mode concentrations were high because of dust storm season. Aerosol mass concentrations had clear diurnal cycle. Lower values were observed around noon. This behavior is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). During the day time the boundary layer is evolving, causing enhanced mixing and dilution leading to lower concentration. PM10 and PM2.5 concentrations were comparable to values measured at close by city of Jeddah. Black carbon concentration was about 2% and 6% of PM10 and PM2.5 mass, respectively. Total number concentration was dominated by frequent new particle formation and particle growth events. The typical diurnal cycle in particle total number concentration was clearly different from PM10 and PM2.5.

  18. Planetary Defense and the High Temperture Physical Properties of Meteorites.

    NASA Astrophysics Data System (ADS)

    Ostrowski, D. R.; Sears, D. W. G.; Bryson, K.

    2015-12-01

    The Ames Meteorite Characterization Laboratory is examining the physical proprerties of a diverse selection of meteorites. Each meteorite will be processed by the full suite of observations and measurements: petrographic/microscopic studies, density, porosity, albedo, shock effects, thermal conductivity, heat capacity, emissivity, and acoustic velocity. Of these measurments, density and porosity are the most studied to date (Macke, 2010; Britt and Consolmagno, 2003). The thermal properties of meteorites are less well understood. Thermal conductivity, heat capacity, and thermal emissivity are important data for a number of applications but especially to understanding the behavior of a meteor as it passes through the atmosphere. Opeil et al. (2010) have shown that meteorites have a thermal conductivities lower than the pure minerals they are composed of by a factor of 3 to 10, with the values coming to a roughly constant number from 150 to 300 K. Calculated conductivity numbers from Yomogida and Matsui (1983) show the H chondrites have the higest conductivity in the range of 3.8 W/m*K at 200 K and then slowly decreases to 3.2 W/m*K at 400 K. Whereas they show the LL chondrites do not reach 1 W/m*K over the temperature range 100 to 400 K. While there have been several high temperature spectroscopic studies of meteorites, to date all experimental data for the physical properties of meteorites were obtained at temperatures below 400 K, since previous studies were made in attempts to understand the formation and evolution of asteroids. Our laboratory will focus on understanding the thermal properties of materials at temperatures above 300 K and, where possible, up to atmospheric entry temperatures. Work on pure minerals has shown that thermal conductivity decreases as temperatures exceed 300 K but it is unknown whether this holds true for meteorites. We will describe our laboratory and procedures, and present some preliminary data, at the meeting.

  19. Computational Studies of Physical Properties of Boron Carbide

    SciTech Connect

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  20. Relationships between physical properties and sequence in silkworm silks

    PubMed Central

    Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji

    2016-01-01

    Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase. PMID:27279149

  1. Gamma irradiation influence on physical properties of milk proteins

    NASA Astrophysics Data System (ADS)

    Cieśla, K.; Salmieri, S.; Lacroix, M.; Tien, C. Le

    2004-09-01

    Gamma irradiation was found to be an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on calcium and sodium caseinates alone or combined with some globular proteins. Our current studies concern gamma irradiation influence on the physical properties of calcium caseinate-whey protein isolate-glycerol (1:1:1) solutions and gels, used for films preparation. Irradiation of solutions was carried out with Co-60 gamma rays applying 0 and 32 kGy dose. The increase in viscosity of solutions was found after irradiation connected to induced crosslinking. Lower viscosity values were detected, however, after heating of the solutions irradiated with a 32 kGy dose than after heating of the non-irradiated ones regarding differences in the structure of gels and resulting in different temperature-viscosity curves that were recorded for the irradiated and the non-irradiated samples during heating and cooling. Creation of less stiff but better ordered gels after irradiation arises probably from reorganisation of aperiodic helical phase and β-sheets, in particular from increase of β-strands, detected by FTIR. Films obtained from these gels are characterised by improved barrier properties and mechanical resistance and are more rigid than those prepared from the non-irradiated gels. The route of gel creation was investigated for the control and the irradiated samples during heating and the subsequent cooling.

  2. Relationships between physical properties and sequence in silkworm silks.

    PubMed

    Malay, Ali D; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B; Damrongsakkul, Siriporn; Numata, Keiji

    2016-01-01

    Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase. PMID:27279149

  3. Relationships between physical properties and sequence in silkworm silks

    NASA Astrophysics Data System (ADS)

    Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji

    2016-06-01

    Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase.

  4. Mark Correlations: Relating Physical Properties to Spatial Distributions

    NASA Astrophysics Data System (ADS)

    Beisbart, Claus; Kerscher, Martin; Mecke, Klaus

    Mark correlations provide a systematic approach to look at objects both distributed in space and bearing intrinsic information, for instance on physical properties. The interplay of the objects' properties (marks) with the spatial clustering is of vivid interest for many applications; are, e.g., galaxies with high luminosities more strongly clustered than dim ones? Do neighbored pores in a sandstone have similar sizes? How does the shape of impact craters on a planet dependon the geological surface properties? In this article, we give an introduction into the appropriate mathematical framework to deal with such questions, i.e. the theory of marked point processes. After having clarified the notion of segregation effects, we define universal test quantities applicable to realizations of a marked point processes. We show their power using concrete data sets in analyzing the luminosity-dependence of the galaxy clustering, the alignment of dark matter halos in gravitational N-body simulations, the morphology- and diameter-dependence of the Martian crater distribution and the size correlations of pores in sandstone. In order to understand our data in more detail, we discuss the Boolean depletion model, the random field model and the Cox random field model. The first model describes depletion effects in the distribution of Martian craters and pores in sandstone, whereas the last one accounts at least qualitatively for the observed luminosity-dependence of the galaxy clustering.

  5. Some physical and mechanical properties of roasted Zerun wheat.

    PubMed

    Işıklı, Nursel Develi; Senol, Belma; Coksöyler, Nafi

    2014-09-01

    Some physical and mechanical properties of roasted Zerun wheat were investigated in the moisture range from 8.80 % to 23.40 % wet basis. Mechanical properties were evaluated by examining the effect of moisture content upon the grain rupture force, energy and Weibull parameters. Length, width, thickness, porosity and angle of repose increased nonlinearly from 6.09 to 6.36 mm; 4.17 to 4.18 mm; 2.66 to 2.78 mm; 37.71 % to 39.09 % and 33.02° to 37.90°, respectively when moisture content increased. The Weibull distribution fits the data for rupture force and energy. The Weibull modulus and scale parameter for rupture force varied between 3.88 and 6.20; 26.61 and 44.24N, respectively. The Weibull modulus for energy increased from 2.15 to 3.24 with increased in moisture content. Measured mechanical properties of grains showed that the brittleness and fragile structure of the roasted grain gradually lost its characteristic crispiness and become soft and ductile above 13.78 % moisture content. PMID:25190855

  6. Structure and physical properties of Hydrogrossular mineral series

    NASA Astrophysics Data System (ADS)

    Adhikari, Puja

    The mineral hydrogrossular series (Ca3Al2(SiO 4)3-x(OH)4x; 0 ≤ x ≤ 3) are important water bearing minerals found in the upper and lower part of the Earth's mantle. They are vital to the planet's hydrosphere under different hydrothermal conditions. The composition and structure of this mineral series are important in geoscience and share many commonalities with cement and clay materials. Other than the end members of the series x = 0 (grossular) and x = 3 (katoite) which have a cubic garnet structure, the structure of the series is totally unknown. We used large-scale ab initio modeling to investigate the structures and properties for hydrogrossular series for x = 0, 0.5, 1, 1.5, 2, 2.5, 3. Results indicate that for x > 0 and x < 3, the structures are tetragonal. This shows that there is structural change related to the lowering of overall symmetry associated with the composition of SiO4 tetrahedra and AlO6 octahedra. Total Bond order also explains the reason behind the change in the compressibility of the series. The electronic structure, mechanical and optical properties of the hydrogrossular series are calculated and the results for grossular and katoite are in good agreement with the available experimental data. The x--dependence of these physical properties for the series supports the notion of the aforementioned structural transition from cubic to tetragonal.

  7. Education majors' expectations and reported experiences with inquiry-based physics: Implications for student affect

    NASA Astrophysics Data System (ADS)

    Gaffney, Jon D. H.

    2013-06-01

    To address a perennial need to provide K-8 teachers with a solid foundation in science, there are many physics content courses throughout the United States. One such course is Physics and Astronomy for Teachers (PAT), which relies heavily on active-learning strategies. Although PAT is successful in teaching physics content, students sometimes report dissatisfaction with the course. Such instances of poor affect are worrisome because they may influence how teachers present science in their own classrooms. Therefore, this study investigates students’ affect in terms of their pedagogical expectations and potential personal learning outcomes with respect to PAT. Two sections of PAT, each containing approximately 40 students, were observed. Students in those sections were surveyed, and a sample were interviewed (N=10). An analysis of the data in terms of an expectancy violation framework shows that while students’ expectations regarding the hands-on and interactive components of PAT were met, they received substantially fewer lectures, class discussions, and opportunities to make class presentations than they had expected, even after they had been presented with the course syllabus and informed about the specific nature of the course. Additionally, students expected PAT to be more directly linked with their future teaching careers and therefore expected more opportunities to practice teaching science than they reported receiving. This investigation serves as a case study to provide insight into why students are sometimes frustrated and confused when first encountering active-learning classes, and it implies that instructors should be cognizant of those feelings and devote resources toward explicit orientation that emphasizes the purpose of the course and reasons behind their pedagogical choices.

  8. The Fox and the Grapes-How Physical Constraints Affect Value Based Decision Making.

    PubMed

    Gross, Jörg; Woelbert, Eva; Strobel, Martin

    2015-01-01

    One fundamental question in decision making research is how humans compute the values that guide their decisions. Recent studies showed that people assign higher value to goods that are closer to them, even when physical proximity should be irrelevant for the decision from a normative perspective. This phenomenon, however, seems reasonable from an evolutionary perspective. Most foraging decisions of animals involve the trade-off between the value that can be obtained and the associated effort of obtaining. Anticipated effort for physically obtaining a good could therefore affect the subjective value of this good. In this experiment, we test this hypothesis by letting participants state their subjective value for snack food while the effort that would be incurred when reaching for it was manipulated. Even though reaching was not required in the experiment, we find that willingness to pay was significantly lower when subjects wore heavy wristbands on their arms. Thus, when reaching was more difficult, items were perceived as less valuable. Importantly, this was only the case when items were physically in front of the participants but not when items were presented as text on a computer screen. Our results suggest automatic interactions of motor and valuation processes which are unexplored to this date and may account for irrational decisions that occur when reward is particularly easy to reach. PMID:26061087

  9. When music tempo affects the temporal congruence between physical practice and motor imagery.

    PubMed

    Debarnot, Ursula; Guillot, Aymeric

    2014-06-01

    When people listen to music, they hear beat and a metrical structure in the rhythm; these perceived patterns enable coordination with the music. A clear correspondence between the tempo of actual movement (e.g., walking) and that of music has been demonstrated, but whether similar coordination occurs during motor imagery is unknown. Twenty participants walked naturally for 8m, either physically or mentally, while listening to slow and fast music, or not listening to anything at all (control condition). Executed and imagined walking times were recorded to assess the temporal congruence between physical practice (PP) and motor imagery (MI). Results showed a difference when comparing slow and fast time conditions, but each of these durations did not differ from soundless condition times, hence showing that body movement may not necessarily change in order to synchronize with music. However, the main finding revealed that the ability to achieve temporal congruence between PP and MI times was altered when listening to either slow or fast music. These data suggest that when physical movement is modulated with respect to the musical tempo, the MI efficacy of the corresponding movement may be affected by the rhythm of the music. Practical applications in sport are discussed as athletes frequently listen to music before competing while they mentally practice their movements to be performed. PMID:24681309

  10. The Fox and the Grapes—How Physical Constraints Affect Value Based Decision Making

    PubMed Central

    Strobel, Martin

    2015-01-01

    One fundamental question in decision making research is how humans compute the values that guide their decisions. Recent studies showed that people assign higher value to goods that are closer to them, even when physical proximity should be irrelevant for the decision from a normative perspective. This phenomenon, however, seems reasonable from an evolutionary perspective. Most foraging decisions of animals involve the trade-off between the value that can be obtained and the associated effort of obtaining. Anticipated effort for physically obtaining a good could therefore affect the subjective value of this good. In this experiment, we test this hypothesis by letting participants state their subjective value for snack food while the effort that would be incurred when reaching for it was manipulated. Even though reaching was not required in the experiment, we find that willingness to pay was significantly lower when subjects wore heavy wristbands on their arms. Thus, when reaching was more difficult, items were perceived as less valuable. Importantly, this was only the case when items were physically in front of the participants but not when items were presented as text on a computer screen. Our results suggest automatic interactions of motor and valuation processes which are unexplored to this date and may account for irrational decisions that occur when reward is particularly easy to reach. PMID:26061087

  11. Effect of calcination conditions on the physical properties of sorbents used for sulfur dioxide removal

    SciTech Connect

    Ersoy-Mericboyu, A.; Kuecuekbayrak, S.

    1995-11-01

    The effect of calcination conditions on the physical properties of calcines produced from natural Turkish limestones and dolomites was investigated. Calcination experiments were conducted in a tube furnace at temperatures of 1,073, 1,123, 1,173, 1,273, and 1,373 K. Two different gaseous atmospheres were employed, namely, dry air (100 vol%) and a mixture consisting of CO{sub 2} (15 vol%) and dry air (85 vol%). The physical properties, which involve bulk density (g/cm{sup 3}), total pore volume (cm{sup 3}/g), and the pore size distribution of the calcines prepared under different conditions, were determined using a mercury porosimeter. It was found that the physical properties of calcines were dramatically affected by the calcination conditions. At high calcination temperatures, because of sintering and shrinking effects, a decrease in porosity, an increase in bulk density and average pore radius were observed. In addition, the calcines prepared in a mixed atmosphere of dry air and carbon dioxide had larger pore sizes than those of calcines prepared in an atmosphere of dry air.

  12. PHYSICAL PROPERTIES AND CHEMICAL COMPOSITION OF BETA-GLUCANS FROM FLESHY FUNGI.

    PubMed

    WALLEN, L L; RHODES, R A; SHULKE, H R

    1965-03-01

    Physical properties and chemical structure of two related polysaccharides produced fermentatively by Plectania occidentalis NRRL 3137 and by Helotium sp. NRRL 3129 were studied. Both polymers were readily recovered as amorphous gels by precipitation from culture liquors with two parts of ethyl alcohol or methanol. Dried polymeric material was redissolved in water with agitation to give uniform aqueous solutions up to about 1.5% by weight. The polymers were similar in physical properties but possessed different chemical structures. The viscosity of aqueous solutions of each polymer varied from about 50 centipoises at 0.1% to approximately 2,200 centipoises at 1.4% concentrations by weight. Highly viscous solutions at concentrations of 1% or greater behaved like thixotropic gels. Mono-, di-, and trivalent salts, except borate, did not affect viscosity of either polymer. The viscosities were slightly increased by the addition of borate. Autoclaving did not alter the physical properties of neutral polymer solutions. The polymers were stable in acid or alkaline solutions at moderate temperatures but degraded under extremes of pH at 70 C or above. Each polymer had a specific rotation of +20 degrees in aqueous dimethylformamide (1:1). The results of acid hydrolysis and periodate oxidation, in conjunction with paper and gas chromatography, indicate that both polymers are branched glucans containing appreciable amounts of beta-1,3 linkages. PMID:14325893

  13. Role of olive oil phenolics in physical properties and stability of mayonnaise-like emulsions.

    PubMed

    Giacintucci, Veronica; Di Mattia, Carla; Sacchetti, Giampiero; Neri, Lilia; Pittia, Paola

    2016-12-15

    The effect of olive oil phenolic content and pattern on the physical properties and stability of olive oil mayonnaise-like emulsions has been investigated. Mayonnaises were formulated with either naturally phenolic-rich extra virgin olive oils or purified olive oil artificially enriched with a phenolic-rich olive extract and pure oleuropein. Mayonnaises were characterized by droplet size distribution, microstructure, textural properties and flow behaviour. The addition of phenolic extracts significantly affected the dispersion degree of the corresponding mayonnaise-like emulsions, their microstructure and physical stability especially in the systems prepared with purified olive oil treated with pure oleuropein and the highest olive phenolic extract concentration. The viscosity and back-extrusion analyses evidenced that the systems characterized by a relatively high content of phenolics, either natural or by addition, presented lower yield stress and viscosity indices and were easier to deform and to break. This study confirms the main role of olive phenolic compounds, and in particular that of oleuropein, in the dispersion state, and physical properties of emulsions with main effects on their quality and stability. PMID:27451193

  14. Determination of elastoplastic mechanical properties of the weld and heat affected zone metals in tailor-welded blanks by nanoindentation test

    NASA Astrophysics Data System (ADS)

    Ma, Xiangdong; Guan, Yingping; Yang, Liu

    2015-09-01

    The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy.

  15. Modeling of surface roughness: application to physical properties of paper

    NASA Astrophysics Data System (ADS)

    Bloch, Jean-Francis; Butel, Marc

    2000-09-01

    Papermaking process consists in a succession of unit operations having for main objective the expression of water out of the wet paper pad. The three main stages are successively, the forming section, the press section and finally the drying section. Furthermore, another operation (calendering) may be used to improve the surface smoothness. Forming, pressing and drying are not on the scope of this paper, but the influence of formation and calendering on surface roughness is analyzed. The main objective is to characterize the materials and specially its superficial structure. The proposed model is described in order to analyze this topographical aspect. Some experimental results are presented in order to illustrate the interest of this method to better understand physical properties. This work is therefore dedicated to the description of the proposed model: the studied surface is measured at a microscopic scale using for example, a classical stylus profilometry method. Then the obtained surface is transformed using a conformal mapping that retains the surface orientations. Due to the anisotropy of the fiber distribution in the plane of the sheet, the resulting surface is often not isotropic. Hence, the micro facets that identify the interfaces between pores and solid (fibers in the studied case) at the micro level are transformed into a macroscopic equivalent structure. Furthermore, an ellipsoid may be fit to the experimental data in order to obtain a simple model. The ellipticities are proved to be linked for paper to both fiber orientation (through other optical methods) and roughness. These parameters (ellipticities) are shown to be very significant for different end-use properties. Indeed, they shown to be correlated to printing or optical properties, such as gloss for example. We present in a first part the method to obtain a macroscopic description from physical microscopic measurements. Then measurements carried on different paper samples, using a classical

  16. Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review

    PubMed Central

    2011-01-01

    Background Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults. Methods A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these. Results 28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures. Conclusions The current evidence on the effectiveness of cognitive or

  17. Physical and optical properties of lead doped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Riyatun; Rahmasari, Lita; Marzuki, Ahmad

    2016-02-01

    Physical and optical properties of lead telluride (Pb:TZBN) glasses with composition 55TeO2-(41-x)ZnO-2Bi2O3-2Na2O-xPbO where x = 1.0, 1.5, 2.0, 2.5% mol are presented. UV-VIS-NIR spectra of the glasses in the range of 300 - 800 nm along with their densities and refractive indices at 746 nm were recorded at room temperature. The optical bandgap energy (Eg) has been calculated from the fitting of Tauc plot. On the basis of these results we found that with the increase of Pb2+ content, their refractive indices are increased while their optical bandgaps are decreased. From this experiment, no distinct relationship between the Pb2+ content variation and the electronic polarizability (αO2-) as well as their optical basicity values (A) were observed.

  18. Some physical properties of ginkgo nuts and kernels

    NASA Astrophysics Data System (ADS)

    Ch'ng, P. E.; Abdullah, M. H. R. O.; Mathai, E. J.; Yunus, N. A.

    2013-12-01

    Some data of the physical properties of ginkgo nuts at a moisture content of 45.53% (±2.07) (wet basis) and of their kernels at 60.13% (± 2.00) (wet basis) are presented in this paper. It consists of the estimation of the mean length, width, thickness, the geometric mean diameter, sphericity, aspect ratio, unit mass, surface area, volume, true density, bulk density, and porosity measures. The coefficient of static friction for nuts and kernels was determined by using plywood, glass, rubber, and galvanized steel sheet. The data are essential in the field of food engineering especially dealing with design and development of machines, and equipment for processing and handling agriculture products.

  19. Physical properties of wild mango fruit and nut

    NASA Astrophysics Data System (ADS)

    Ehiem, J. C.; Simonyan, K. J.

    2012-02-01

    Physical properties of two wild mango varieties were studied at 81.9 and 24.5% moisture (w.b.) for the fruits and nuts, respectively. The shape and size of the fruit are the same while that of nuts differs at P = 0.05. The mass, density and bulk density of the fruits are statistically different at P = 0.05 but the volume is the same. The shape and size, volume and bulk density of the nuts are statistically the same at P = 0.05. The nuts of both varieties are also the same at P = 0.05 in terms of mass and density. The packing factor for both fruits and nut of the two varieties are the same at 0.95. The relevant data obtained for the two varieties would be useful for design and development of machines and equipment for processing and handling operations.

  20. Struvite-based fertilizer and its physical and chemical properties.

    PubMed

    Latifian, Maryam; Liu, Jing; Mattiasson, Bo

    2012-12-01

    This study describes a method to formulate struvite fine powder into pellets that are easy to spread on agricultural land. To evaluate the quality of produced pellets, some chemical and physical properties commonly measured for fertilizers were tested. The findings indicated that the salt index and heavy metal content ofstruvite pellets were significantly lower than those of commercial NPK fertilizers. In addition, the percentage of nutrient released from struvite pellets after 105 days was in the range of 9.6-23.2, 8.4-26.7 and 11.3-32.6% for nitrogen, phosphorous and magnesium, respectively, which is considerably lower than that of commercial NPK fertilizer. Among different formulations between struvite crystals and binders, starch and bentonite were the most efficient in agglomerating struvite powder, leading to an increase in the crush strength to over the recommended limit of >2.5 kgf for fertilizer hardness. PMID:23437670

  1. Correlation between network mechanical properties and physical properties in polyester-urethane coatings

    SciTech Connect

    Scanlan, J.C.; Webster, D.C.; Crain, A.L.

    1995-12-31

    An experimental design to study the effect of polyester formulation on properties of polyurethane coatings was conducted. The five design variables studied were number average molecular weight, average hydroxyl functionality, and the composition of the acid functional monomers (adipic acid, isophthalic acid, and 1,4-cyclohexanedicarboxylic acid). The polyesters were crosslinked with a multifunctional isocyanate to form polyurethane coating films. Coatings were analyzed by traditional physical methods as well as by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC). By comparing the crosslink density (XLD) of the coatings and the glass transition temperature (Tg) of the coatings with the coatings physical properties and the design variables, we can resolve the effect of Tg and XLD on the hardness and flexibility of the coatings.

  2. Tuning the physical properties in strontium iridate heterostructures

    NASA Astrophysics Data System (ADS)

    Nichols, John; Meyer, Tricia; Lee, Ho Nyung

    2015-03-01

    Strontium iridate (Srn+1IrnO3n+1) has received lots of attention recently for its potential to reveal novel physical phenomena due to strong spin-orbital coupling with an interaction energy comparable to that of the on-site Coulomb interaction and crystal field splitting. The coexistence of fundamental interactions has created an exotic Jeff = 1/2 antiferromagnetic insulating ground state in Sr2IrO4. In particular, it is known that this system can be driven into a metallic state with the simultaneous increase in dimensionality (n) and strain. We have investigated the effects of electron confinement by interfacing strontium iridates with other perovskite oxides. We have synthesized thin film heterostructures, SrIrO3/AMO3 (A = Sr, La; B = Ti, Mn, Rh), layer-by-layer with pulsed laser deposition equipped with reflection high-energy electron diffraction. Based on investigations with x-ray diffraction, dc transport, SQUID magnetometry, and various spectroscopic measurements, we will present that the physical properties of the heterostructures are strongly dependent on spatial confinement and epitaxial strain. *This work was supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.

  3. Measurement of the physical properties of the snowpack

    NASA Astrophysics Data System (ADS)

    Kinar, N. J.; Pomeroy, J. W.

    2015-06-01

    This paper reviews measurement techniques and corresponding devices used to determine the physical properties of the seasonal snowpack from distances close to the ground surface. The review is placed in the context of the need for scientific observations of snowpack variables that provide inputs for predictive hydrological models that help to advance scientific understanding of geophysical processes related to snow in the near-surface cryosphere. Many of these devices used to measure snow are invasive and require the snowpack to be disrupted, thereby precluding the possibility for multiple measurements to be made at the same sampling location. Moreover, many devices rely on the use of empirical calibration equations that may not be valid at all geographic locations. The spatial density of observations with most snow measurement devices is often inadequate. There is a need for improved automation of snowpack measurement instrumentation with an emphasis on field-based feedback of measurement validity in lieu of postprocessing of samples or data at a lab or office location. The scientific future of snow measurement instrumentation thereby requires a synthesis between science and engineering principles that takes into consideration geophysics and the physics of device operation.

  4. The physical properties of the interstellar cloud around the heliosphere

    NASA Astrophysics Data System (ADS)

    Gry, C.

    2015-12-01

    A new interpretation of interstellar absorption lines in the spectra of nearby stars indicates that the medium surrounding the Sun can be regarded as a single, coherent cloud if we relax the assumption that a cloud behaves like a rigid body. This outlook permits us to construct a comprehensive picture of the local interstellar cloud and reveals that it departs from homogeneity in a number of aspects and physical properties: - This local cloud undergoes a deformation related to a compression in the direction of motion and an expansion in perpendicular directions, much like a squashed balloon. - The metal abundances decrease steadily from the rear to the head of the cloud, and this phenomenon does not appear to be related to ionization effects. - The cloud average HI density, estimated toward a number of nearby stars around which an astrophere is detected in Lyman alpha, varies from 0.03 to 0.1 cm-3. The cloud outer boundary inferred from the average density and column densities is very irregular with an average distance to the Sun of 9 +/- 7 pc. - The electron density and the cloud temperature can be derived from the combination of the ionization equilibrium of MgI and the excitation of CII in a restricted number of sightlines where column density is such that MgI and CII* features are strong enough to be detectable without saturating MgII. We present a few additional targets from which we examine the physical conditions inside the cloud.

  5. MICROSTRUCTURAL FEATURES AFFECTING PROPERTIES AND AGING OF TRITIUM-EXPOSED AUSTENTIC STAINLESS STEEL

    SciTech Connect

    Subramanian, K; Michael Morgan, M

    2004-01-10

    banding and nitrogen concentration were also included as features of interest. The microstructural features of interest included (1) grain size, shape, and orientation; (2) dislocation structure and distribution, or recovered vs. un-recovered. The grain size and orientation affect the grain boundary fracture stress and the hydrogen solubility and diffusion paths. The dislocation structure and distribution play a role in hydrogen trapping as well as potentially affecting the hydrogen assisted fracture path. The initial mechanical and physical properties that are to be included in the investigation are yield stress, fracture toughness, work-hardening capacity, threshold hydrogen cracking stress intensity and stacking-fault energy.

  6. Near-surface physics during convection affecting air-water gas transfer

    NASA Astrophysics Data System (ADS)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-05-01

    The gas flux at the water surface is affected by physical processes including turbulence from wind shear, microscale wave breaking, large-scale breaking, and convection due to heat loss at the surface. The main route in the parameterizations of the gas flux has been to use the wind speed as a proxy for the gas flux velocity, indirectly taking into account the dependency of the wind shear and the wave processes. The interest in the contributions from convection processes has increased as the gas flux from inland waters (with typically lower wind and sheltered conditions) now is believed to play a substantial role in the air-water gas flux budget. The gas flux is enhanced by convection through the mixing of the mixed layer as well as by decreasing the diffusive boundary layer thickness. The direct numerical simulations performed in this study are shown to be a valuable tool to enhance the understanding of this flow configuration often present in nature.

  7. Impact of Plying on the Physical Properties of Vortex and Other Spun Yarns

    NASA Astrophysics Data System (ADS)

    Dhamija, Sudershan; Chowdhury, Amal; Chattopadhyay, Rabisankar

    2016-04-01

    The physical properties of two ply yarns made from vortex, ring, compact, and rotor singles have been investigated by changing ply twist factor. The physical parameters like yarn diameter, plied yarn length, twist liveliness have been found to be significantly affected by the ply twist factor. Though plying increases the yarn diameter for all, the percentage increase in diameter with respect to single yarn is the minimum for vortex yarns. The ply twist factor at which the real contraction starts is also the lowest for vortex yarns. Amongst the plied yarns, those made from rotor yarns show minimum twist liveliness. A minimum ply twist threshold exists below which hockles (a hole like structure) in ply yarns are observed.

  8. Physical Properties of Volcanic Deposits on Venus from Radar Polarimetry

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Campbell, Donald B.; Campbell, Bruce A.

    2005-01-01

    Studies of the morphology and radar properties of volcanic deposits can aid in understanding their differences and formation. On Venus, volcanoes range in size from large highland edifices, such as Theia Mons, to small shields and domes which are often found in groups of tens to hundreds. In plains regions, windstreaks are sometimes found near shield fields, suggesting that there may be fine grained deposits associated with the volcanoes. Previous studies of Bell Regio suggest the presence of fine-grained material in a low dielectric constant triangular shaped region on the flank of Tepev Mons, which may be crater ejecta or a pyroclastic deposit spread westward by wind. The eastern caldera on Tepev Mons shows a steep trend in backscattered power with incidence angle and has high RMS-slopes, implying a finegrained covering such as ash. Radar waves can easily penetrate smooth mantling layers such as ash and aeolian deposits. If a radar system can measure two orthogonal polarizations, it is possible to detect subsurface scattering and infer the presence of surficial deposits. The Magellan spacecraft could only measure one polarization and was therefore not able to fully characterize the polarization state of the radar echoes. We compare Arecibo dual-polarization data for Venus to Magellan images and emissivity data to investigate the physical properties of volcanic deposits.

  9. Physical properties of intermetallic iron(2) vanadium aluminide

    NASA Astrophysics Data System (ADS)

    Feng, Ye

    2001-11-01

    Fe2VAl has recently been discovered to have a negative temperature coefficient of resistivity, moderately enhanced specific heat coefficient, and a large DOS at the Fermi level by photoemission. This triggered a round of heated research to understand the ground state of this material, both theoretically and experimentally. Here we report a comprehensive characterization of Fe2VAl. X-ray diffraction exhibited appreciable antisite disorder in all of our samples. FTIR spectroscopy measurements showed that the carrier density and scattering time had little sample-to-sample variation or temperature dependence for near-stoichiometric samples. FTIR and DC resistivity suggest that the transport properties of Fe2VAl are influenced by both localized and delocalized carriers, with the former primarily responsible for the negative temperature coefficient of resistivity. Magnetization measurements reveal that near-stoichiometric samples have superparamagnetic clusters with at least two sizes of moments. X-ray photoemission from Fe core level shows localized magnetic moments on site-exchanged Fe. We conclude that in Fe 2VAl, antisite disorder causes significant modification to the semi-metallic band structure proposed by LDA calculations. With antisite disorder considered, we are now able to explain most of the physical properties of Fe2VAl.

  10. Physical Properties of Intermetallic FE2VA1

    SciTech Connect

    Ye Feng

    2002-05-30

    Fe{sub 2}VAl has recently been discovered to have a negative temperature coefficient of resistivity, moderately enhanced specific heat coefficient, and a large DOS at the Fermi level by photoemission. This triggered a round of heated research to understand the ground state of this material, both theoretically and experimentally. here they report a comprehensive characterization of Fe{sub 2}VAl. X-ray diffraction exhibited appreciable antisite disorder in all of our samples. FTIR spectroscopy measurements showed that the carrier density and scattering time had little sample-to-sample variation or temperature dependence for near-stoichiometric samples. FTIR and DC resistivity suggest that the transport properties of Fe{sub 2}VAl are influenced by both localized and delocalized carriers, with the former primarily responsible for the negative temperature coefficient of resistivity. Magnetization measurements reveal that near-stoichiometric samples have superparamagnetic clusters with at least two sizes of moments. X-ray photoemission from Fe core level showed localized magnetic moments on site-exchanged Fe. They conclude that in Fe{sub 2}VAl, antisite disorder causes significant modification to the semi-metallic band structure proposed by LDA calculations. With antisite disorder considered, they are now able to explain most of the physical properties of Fe{sub 2}VAl.

  11. Orbits and Physical Properties of Four Binary Transneptunian Objects

    NASA Astrophysics Data System (ADS)

    Grundy, William

    2014-10-01

    Intriguing patterns are evident in both the orbits of transneptunian objects and in their observable external characteristics (colors, spectral features, etc.). Bulk physical properties are needed to make sense of the observations and to exploit them to constrain conditions in the protoplanetary disk where these objects formed. The key to obtaining bulk properties of transneptunian objects is that a sizeable proportion of them are binaries. Binary mutual orbits provide dynamical masses that can in turn be used to compute bulk densities. A statistical sample of binary orbits offers powerful constraints on formation mechanisms as well as subsequent evolution. This proposal seeks to continue a multi-year campaign to obtain orbits for as large of a sample of binary transneptunian objects as possible. We seek to make efficient use of HST by targeting four systems where we can obtain a dramatic improvement in orbital knowledge from relatively few, strategically timed visits, and where the secondary is too faint for reliable detection with ground-based near-IR adaptive optics techniques.

  12. Electrodeposition of zinc oxide nanowires: Growth, doping, and physical properties

    NASA Astrophysics Data System (ADS)

    Thomas, Matthew Allan

    As a transparent, wide bandgap semiconductor, ZnO offers an expansive range of potential uses in various technological arenas such as electronics, optoelectronics, photonics, sensors, and energy conversion. However, a current obstacle to the realization of ZnO based electronics and optoelectronics is the lack of a reliable and reproducible method for fabricating high quality p-type ZnO. In addition, there remains a difficulty in tuning the various properties of ZnO materials, especially nanostructures, via low cost and low temperature deposition techniques. In this work, some of these deficiencies have been addressed. Undoped and Ag-doped ZnO nanowires, as well as highly uniform and dense ZnO films, were obtained by an inexpensive, low temperature, electrochemical technique in aqueous solution. The effects of electrochemical growth conditions and Ag-doping on the structural, optical, and electrical properties of the ZnO nanowires were investigated in detail. Ag-doping was found to induce significant changes in the various physical properties of the ZnO nanowires. Importantly, a range of experimental and theoretical results indicate Ag is doped into the ZnO nanowire structure and leads to p-type properties of the nanowires. The room temperature photoluminescence (PL) of the nanowires illustrates bandgap reduction, while intense emissions from a free electron to neutral acceptor were induced in the low temperature PL upon Ag-doping. The electrical properties of the Ag-doped nanowires were probed with photoelectrochemical cell measurements, providing further evidence for their p-type nature. The mechanism of Ag-doping in the nanowires was explored with cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. Interestingly, the presence of Ag+ in the growth process catalyzes and enhances the electrochemistry, shifting the ZnO growth conditions to an O-rich environment. These conditions enable a more efficient Ag

  13. Statistics of physical properties of dark matter clusters

    SciTech Connect

    Shaw, Laurie; Weller, Jochen; Ostriker, Jeremiah P.; Bode, Paul; /Princeton U. Observ.

    2005-09-01

    We have identified over 2000 well resolved cluster halos, and also their associated bound subhalos, from the output of 1024{sup 3} particle cosmological N-body simulation (of box size 320h{sup -1}Mpc and softening length 3.2h{sup -1}kpc). We present an algorithm to identify those halos still in the process of relaxing into dynamical equilibrium, and a detailed analysis of the integral and internal physical properties for all the halos in our sample. The majority are prolate, and tend to rotate around their minor principle axis. We find there to be no correlation between the spin and virial mass of the clusters halos and that the higher mass halos are less dynamically relaxed and have a lower concentration. Additionally, the orbital angular momentum of the substructure is typically well aligned with the rotational angular momentum of the ''host'' halo. There is also evidence of the transfer of angular momentum from subhalos to their host. Overall, we find that measured halo properties are often significantly influenced by the fraction of mass contained within substructure. Dimensionless properties do depend weakly on the ratio of halo mass (M{sub h}) to our characteristic mass scale (M{sub *} = 8 x 10{sup 14}h{sup -1}M{sub {circle_dot}}). This lack of self-similarity is in the expected sense in that, for example, ''old halos'' with M{sub h}/M{sub *} << 1 have less substructure than ''young halos'' with M{sub h}/M{sub *} >> 1.

  14. Recovering physical properties from narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Schoenell, W.; Cid Fernandes, R.; Benítez, N.; Vale Asari, N.

    2013-05-01

    Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity distributions? Can we separate star-forming galaxies from AGN? Can we measure emission lines, nebular abundances and extinction? With what precision? To accomplish this, we selected a sample of about 300k galaxies with good S/N from the SDSS and divided them in two groups: 200k objects and a template library of 100k. We corrected the spectra to z = 0 and converted them to filter fluxes. Using a statistical approach, we calculated a Probability Distribution Function (PDF) for each property of each object and the library. Since we have the properties of all the data from the STARLIGHT-SDSS database, we could compare them with the results obtained from summaries of the PDF (mean, median, etc). Our results shows that we retrieve the weighted average of the log of the galaxy age with a good error margin (σ ≈ 0.1 - 0.2 dex), and similarly for the physical properties such as mass-to-light ratio, mean stellar metallicity, etc. Furthermore, our main result is that we can derive emission line intensities and ratios with similar precision. This makes this method unique in comparison to the other methods on the market to analyze photometry data and shows that, from the point of view of galaxy studies, future photometric surveys will be much more useful than anticipated.

  15. Physical and optical properties of persistent contrails: Climatology and interpretation

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Hironobu; Yang, Ping; Liou, K. N.; Minnis, Patrick

    2012-03-01

    The physical and optical properties of persistent contrails were studied with the measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar. MODIS data were used to determine the contrail locations on the basis of their artificial shapes easily distinguished from natural cirrus, and the so-identified contrails were analyzed with collocated CALIPSO lidar data. Statistics of the geography, geometry, meteorology, and optical properties are reported for approximately 3400 persistent contrails observed over North America, the North Atlantic Ocean, and Europe. The majority of the detected contrails appear in ice-supersaturated air with temperatures lower than -40°C. On average, contrails have significantly larger backscattering coefficients and slightly higher linear depolarization ratios (LDRs) than neighboring cirrus clouds. Depolarization tends to be strong when ice crystals are small, and LDR is approximately 0.4-0.45 for young contrails and contrail cores. The mean LDR for the detected contrails increases with decreasing temperature and is not strongly dependent on the lidar pointing angle. The backscattering properties suggest that contrails are primarily composed of small, randomly oriented ice crystals but may also contain a few horizontally oriented plates. Most contrails are optically thin with a mean (median) optical thickness of approximately 0.19 (0.14); however, optically thicker contrails do exist and tend to occur in warmer and more humid ambient air. The mean value and range of the observed LDR data are consistent with theoretical predictions based on a mixture of nonspherical ice crystals randomly oriented in the atmosphere.

  16. Hardrock Elastic Physical Properties: Birch's Seismic Parameter Revisited

    NASA Astrophysics Data System (ADS)

    Wu, M.; Milkereit, B.

    2014-12-01

    Identifying rock composition and properties is imperative in a variety of fields including geotechnical engineering, mining, and petroleum exploration, in order to accurately make any petrophysical calculations. Density is, in particular, an important parameter that allows us to differentiate between lithologies and estimate or calculate other petrophysical properties. It is well established that compressional and shear wave velocities of common crystalline rocks increase with increasing densities (i.e. the Birch and Nafe-Drake relationships). Conventional empirical relations do not take into account S-wave velocity. Physical properties of Fe-oxides and massive sulfides, however, differ significantly from the empirical velocity-density relationships. Currently, acquiring in-situ density data is challenging and problematic, and therefore, developing an approximation for density based on seismic wave velocity and elastic moduli would be beneficial. With the goal of finding other possible or better relationships between density and the elastic moduli, a database of density, P-wave velocity, S-wave velocity, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio was compiled based on a multitude of lab samples. The database is comprised of isotropic, non-porous metamorphic rock. Multi-parameter cross plots of the various elastic parameters have been analyzed in order to find a suitable parameter combination that reduces high density outliers. As expected, the P-wave velocity to S-wave velocity ratios show no correlation with density. However, Birch's seismic parameter, along with the bulk modulus, shows promise in providing a link between observed compressional and shear wave velocities and rock densities, including massive sulfides and Fe-oxides.

  17. Changes in some physical properties induced by vacuum heat treatment

    NASA Technical Reports Server (NTRS)

    Hultquist, A. E.

    1972-01-01

    A method is proposed for reducing or eliminating outgassing of materials by heat treating them in vacuum prior to use. This may be performed on the raw material prior to manufacturing and installation or after fabrication of parts. Processing of a fabricated part can be performed only on relatively small parts and on assemblies containing no components which are affected by the required temperatures and pressures. Processing conditions of temperature and time are dependent on the particular application and the materials involved. Silicone-coated fiber glass cloth was vacuum-heat treated for 100 hrs at 400 + or - 25 F at pressures of 0.001 torr or less. The materials were tested in terms of tensile strength and tear properties in both the smooth and several creased configurations. Data obtained on one side silicone coated fiber glass showed large reductions in these properties as a result of the vacuum-heat treatment. The problem was alleviated by coating both sides of the fiber glass.

  18. Qualitative case study of physical therapist students' attitudes, motivations, and affective behaviors.

    PubMed

    Hayward, L M; Noonan, A C; Shain, D

    1999-01-01

    The purposes of this study were 1) to describe and document the attitudes, motivations, and affective behaviors of senior physical therapist students at a single university, and 2) to determine how data gathered from this work might assist with curriculum changes designed to promote professional behavior and self-directed learning. Student attitudes, behaviors, and motivations were identified using a qualitative case-study method. Phase one of the study examined clinical experiences using four focus groups, one conducted with six clinical instructors and three with 21 senior physical therapist students. Five follow-up interviews were conducted with students. During phase two, the same 21 students were queried about their classroom experiences using three focus groups and five follow-up interviews. Five major themes were identified: 1) mismatch of expectations between students and instructors, 2) preferred learning environment, 3) student-instructor relationship, 4) vocational expectations, and 5) stress. These themes parallel Chickering's theory of social development in college students. The authors encourage curriculum changes that directly address issues of professionalism, create an active learning environment, promote collaboration, and provide students with strategies for stress management. PMID:10507499

  19. Pre-Instruction, Play-Teach-Play, Processing the Experience. The Three Little P's: Teaching Affective Skills in Physical Education

    ERIC Educational Resources Information Center

    Kuhrasch, Cindy

    2007-01-01

    Physical education has long been recognized as a forum through which affective skills can be successfully introduced and practiced. Solomon found that current research supports the contention that physical education experiences provide a prime setting for promoting character development. This article describes a three-phase program for teaching…

  20. Effect of Antiadherents on the Physical and Drug Release Properties of Acrylic Polymeric Films.

    PubMed

    Ammar, Hussein O; Ghorab, Mamdouh M; Felton, Linda A; Gad, Shadeed; Fouly, Aya A

    2016-06-01

    Antiadherents are used to decrease tackiness of a polymer coating during both processing and subsequent storage. Despite being a common excipient in coating formulae, antiadherents may affect mechanical properties of the coating film as well as drug release from film-coated tablets, but how could addition of antiadherents affect these properties and to what extent and is there a relation between the physical characteristics of the tablet coat and the drug release mechanisms? The aim of this study was to evaluate physical characteristics of films containing different amounts of the antiadherents talc, glyceryl monostearate, and PlasACRYL(TM) T20. Eudragit RL30D and Eudragit RS30D as sustained release polymers and Eudragit FS30D as a delayed release material were used. Polymer films were characterized by tensile testing, differential scanning calorimetry (DSC), microscopic examination, and water content as calculated from loss on drying. The effect of antiadherents on in vitro drug release for the model acetylsalicylic acid tablets coated with Eudragit FS30D was also determined. Increasing talc concentration was found to decrease the ability of the polymer films to resist mechanical stress. In contrast, glyceryl monostearate (GMS) and PlasACRYL produced more elastic films. Talc at concentrations higher than 25% caused negative effects, which make 25% concentration recommended to be used with acrylic polymers. All antiadherents delayed the drug release at all coating levels; hence, different tailoring of drug release may be achieved by adjusting antiadherent concentration with coating level. PMID:26314244

  1. Wavelength dependence of scattering properties in the VIS-NIR and links with grain-scale physical and compositional properties

    NASA Astrophysics Data System (ADS)

    Pilorget, C.; Fernando, J.; Ehlmann, B. L.; Schmidt, F.; Hiroi, T.

    2016-03-01

    Surface scattered sunlight carries important information about the composition and microtexture of surface materials, thus enabling tracing back the geological and climatic processes that occurred on the planetary body. Here we perform laboratory spectro-goniometric measurements of granular samples (45-75 μ m fraction) with different composition and physical properties over the VIS-NIR spectral range (0.4-2.5 μ m). To quantify the evolution of the scattering properties over the VIS-NIR, we use an inversion procedure based on a Bayesian approach to estimate photometric parameters from the Hapke radiative transfer model. The granular samples are also carefully characterized by optical and SEM techniques in order to link these scattering variations with the grains' physical properties. Results show that the scattering properties are wavelength-dependent and can vary significantly over the VIS-NIR spectral range. In particular, the phase function of a granular material is affected by both the absorptivity and the external and internal structure of the grains, from the millimeter scale down to the wavelength scale. Our results also confirm that the macroscopic roughness parameter, as defined by Hapke, is to first order correlated with the absorptivity of the particles, through multiple scattering effects, and thus mostly corresponds to a measurement of the particles shadowing. Photometric datasets, typically obtained at a given wavelength that can vary from one study to another, should therefore be compared and interpreted with caution when extrapolating across wavelengths. Our results also suggest that multi-wavelength photometry could potentially provide a much richer signature than with single-wavelength photometry, opening new perspectives into the characterization of surface materials.

  2. Effect of the moisture content on the physical properties of bitter gourd seed

    NASA Astrophysics Data System (ADS)

    Ünal, H.; Alpsoy, H. C.; Ayhan, A.

    2013-12-01

    Some physical and germination properties of bitter gourd seed were determined in a moisture content range of 9.3-32.1% d.b. For this moisture, the average length, width, and thickness of seed increased by 3.68, 4.07, and 4.56%, respectively. The geometric properties increased with increasing moisture content. The bulk density and rupture force decreased while thousand seed mass, true density, porosity, terminal velocity and static coefficient of friction increased with increasing moisture content. At all moisture contents, the maximum friction was offered by rubber, followed by plywood, aluminum, and galvanized iron surface. The seed germination duration, seedling emergence percentage, and germination index values gave the best results at the 19.9% moisture content, whereas fresh seedling mass was not affected by different moisture contents.

  3. Physical, chemical, and biological properties of soils in the city of Mariupol, Ukraine

    NASA Astrophysics Data System (ADS)

    Shekhovtseva, O. G.; Mal'tseva, I. A.

    2015-12-01

    Physicochemical and biological properties of urbanized soils in the city of Mariupol have been considered in comparison with the background soils. The parametrical characteristics (abundance and biomass) of soil algal groups, the content of humus, the reaction of soil solution, the content of heavy metals, and the particle size distributions of soils under different anthropogenic impacts have been assessed. The physicochemical properties of soils developing under urboecosystem conditions affect the number of structure-forming species, biomass, and proportions of soil algae. According to the particle size distribution, urban soils are classified among the medium and heavy loamy soils with the predominance of the clay and coarse silt fractions. The fractions of physical clay and clay are of highest importance for the existence of algae. The accumulation of heavy metals in the surface horizons of soils can stimulate or inhibit the development of algae depending on the metal concentration.

  4. Rheological and physical properties of gelatin suspensions containing cellulose nanofibers for potential coatings.

    PubMed

    Andrade, Ricardo D; Skurtys, Olivier; Osorio, Fernando; Zuluaga, Robin; Gañán, Piedad; Castro, Cristina

    2015-07-01

    Rheological and physical properties of edible coating formulations containing gelatin, cellulose nanofibers (CNFs), and glycerol are characterized. Measured properties are analyzed in order to optimize edible coating thickness. Results show that coating formulations density increases linearly with gelatin concentration in presence of CNFs. Surface tension decreases with either gelatin or CNF concentration increases. Power law model well described the rheological behavior of edible coating formulations since determination coefficient was high (R(2 )> 0.98) and standard error was low (SE < 0.0052). Formulations showed pseudoplastic (shear-thinning) flow behavior and no time-dependent features were observed. The flow behavior index was not significantly affected by any factor. Consistency coefficient increases with gelatin concentrations but it decreases with glycerol concentrations. PMID:24831643

  5. Physical properties of organic and biomaterials: Fundamentals and applications

    NASA Astrophysics Data System (ADS)

    Steven, Eden

    Silk materials are natural protein-based materials with an exceptional toughness. In addition to their toughness, silk materials also possess complex physical properties and functions resulting from a particular set of amino-acid arrangement that produces structures with crystalline beta-sheets connected by amorphous chains. Extensive studies have been performed to study their structure-function relationship leading to recent advancements in bio-integrated devices. Applications to fields other than textiles and biomedicine, however, have been scarce. In this dissertation, an investigation of the electronic properties, functionalization, and role of silk materials (spider silk and Bombyx mori cocoon silk) in the field of organic materials research is presented. The investigation is conducted from an experimental physics point of view where correlations with charge transport mechanisms in disordered, semiconducting, and insulating materials are made when appropriate. First, I present the electronic properties of spider silk fibers under ambient, humidified, iodized, polar solvent exposure, and pyrolized conditions. The conductivity is exponentially dependent on relative humidity changes and the solvent polarity. Iodine doping increases the conductivity only slightly but has pronounced effects on the pyrolization process, increasing the yield and flexibility of the pyrolized silk fibers. The iodized samples were further studied using magic angle spinning nuclear magnetic resonance (MAS-NMR) and Fourier transform infrared spectroscopy (FTIR) revealing non-homogenous iodine doping and I2 induced hydrogenation that are responsible for the minimal conductivity improvement and the pyrolization effects, respectively. Next, I present the investigation of silk fiber functionalization with gold and its role in electrical measurements. The gold functionalized silk fiber (Au-SS) is metallic down to cryogenic temperatures, has a certain amount of flexibility, and possesses

  6. Physical properties of organic and biomaterials: Fundamentals and applications

    NASA Astrophysics Data System (ADS)

    Steven, Eden

    Silk materials are natural protein-based materials with an exceptional toughness. In addition to their toughness, silk materials also possess complex physical properties and functions resulting from a particular set of amino-acid arrangement that produces structures with crystalline beta-sheets connected by amorphous chains. Extensive studies have been performed to study their structure-function relationship leading to recent advancements in bio-integrated devices. Applications to fields other than textiles and biomedicine, however, have been scarce. In this dissertation, an investigation of the electronic properties, functionalization, and role of silk materials (spider silk and Bombyx mori cocoon silk) in the field of organic materials research is presented. The investigation is conducted from an experimental physics point of view where correlations with charge transport mechanisms in disordered, semiconducting, and insulating materials are made when appropriate. First, I present the electronic properties of spider silk fibers under ambient, humidified, iodized, polar solvent exposure, and pyrolized conditions. The conductivity is exponentially dependent on relative humidity changes and the solvent polarity. Iodine doping increases the conductivity only slightly but has pronounced effects on the pyrolization process, increasing the yield and flexibility of the pyrolized silk fibers. The iodized samples were further studied using magic angle spinning nuclear magnetic resonance (MAS-NMR) and Fourier transform infrared spectroscopy (FTIR) revealing non-homogenous iodine doping and I2 induced hydrogenation that are responsible for the minimal conductivity improvement and the pyrolization effects, respectively. Next, I present the investigation of silk fiber functionalization with gold and its role in electrical measurements. The gold functionalized silk fiber (Au-SS) is metallic down to cryogenic temperatures, has a certain amount of flexibility, and possesses

  7. 41 CFR 109-1.5107 - Physical protection of personal property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS GENERAL...

  8. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical inventories of personal property. 109-1.5110 Section 109-1.5110 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS GENERAL...

  9. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical inventories of personal property. 109-1.5110 Section 109-1.5110 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS GENERAL...

  10. 41 CFR 109-1.5107 - Physical protection of personal property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS GENERAL...

  11. Soil cultivation in vineyards alters interactions between soil biota and soil physical and hydrological properties

    NASA Astrophysics Data System (ADS)

    Zaller, Johann G.; Buchholz, Jacob; Querner, Pascal; Winter, Silvia; Kratschmer, Sophie; Pachinger, Bärbel; Strauss, Peter; Bauer, Thomas; Stiper, Katrin; Potthoff, Martin; Guernion, Muriel; Scimia, Jennifer; Cluzeau, Daniel

    2016-04-01

    Several ecosystem services provided by viticultural landscapes result from interactions between soil organisms and soil parameters. However, to what extent different soil cultivation intensities in vineyards compromise soil organisms and their interactions between soil physical and hydrological properties is not well understood. In this study we examined (i) to what extent different soil management intensities affect the activity and diversity of soil biota (earthworms, Collembola, litter decomposition), and (ii) how soil physical and hydrological properties influence these interactions, or vice versa. Investigating 16 vineyards in Austria, earthworms were assessed by hand sorting, Collembola via pitfall trapping and soil coring, litter decomposition by using the tea bag method. Additionally, soil physical (water infiltration, aggregate stability, porosity, bulk density, soil texture) and chemical (pH, soil carbon content, cation exchange capacity, potassium, phosphorus) parameters were assessed. Results showed complex ecological interactions between soil biota and various soil characteristics altered by management intensity. These investigations are part of the transdisciplinary BiodivERsA project VineDivers and will ultimately lead into management recommendations for various stakeholders.

  12. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties

    NASA Astrophysics Data System (ADS)

    Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla

    2015-10-01

    For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.

  13. Crop response to localized organic amendment in soils with limiting physical properties

    NASA Astrophysics Data System (ADS)

    Lordan, Joan; Pascual, Miquel; Fonseca, Francisco; Villar, Josep Maria; Montilla, Victor; Papió, Josep; Rufat, Josep

    2013-04-01

    This 2-year study evaluated the use of rice husk as a localized organic amendment in a soil with limiting physical properties. The research was conducted in a commercial peach orchard planted in 2011 using a ridge planting system. Six soil and water management treatments were evaluated in 18 experimental units, which were set up in the field using a randomized complete block design. The treatments were compared both in terms of soil physical properties and crop response. Soil amendment with rice husk was the most effective technique. It improved soil conditions (soil infiltration and soil porosity), providing a better soil environment for root activity and thereby resulted in better crop performance. Concerning growth parameters, the amended treatment presented the highest overall values without negatively affecting crop water status. These techniques were suitable for mitigating the effects of soils with limiting physical conditions. Localized applications of amendments, as proposed in this work, imply an important reduction in application rates. It is important to consider an efficient use of by-products since there is a growing interest in industrial and agronomical exploitations.

  14. Does management intensity in inter rows effect soil physical properties in Austrian and Romanian vineyards?

    NASA Astrophysics Data System (ADS)

    Bauer, Thomas; Strauss, Peter; Stiper, Katrin; Klipa, Vladimir; Popescu, Daniela; Winter, Silvia; Zaller, Johann G.

    2016-04-01

    Successful viticulture is mainly influenced by soil and climate. The availability of water during the growing season highly influences wine quality and quantity. To protect soil from being eroded most of the winegrowers keep the inter row zones of the vineyards green. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, these greening strategies concerning the intensity of inter row management differ from farm to farm and are mainly based on personal experience of the winegrowers. However to what extent different inter row management practices affect soil physical properties are not clearly understood yet. To measure possible effects of inter row management in vineyards on soil physical parameters we selected paired vineyards with different inter row management in Austria and Romania. In total more than 7000 soil analysis were conducted for saturated and unsaturated hydraulic conductivity, soil water retention, water stable aggregates, total organic carbon, cation exchange capacity, potassium, phosphorous, soil texture, bulk density and water infiltration. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with one soil disturbance every second inter row per year and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not improve for the upper soil layer (3-8cm). This is in contrast to general perceptions of improved soil physical properties due to low intensity of inter row management, i.e. permanent vegetated inter rows. This may be attributed to long term and high frequency mechanical stress by agricultural machinery in inter rows.

  15. Physical Properties of Niobium and Specifications for Fabrication of Superconducting Cavities

    SciTech Connect

    Antoine, C.; Foley, M.; Dhanaraj, N.; /Fermilab

    2011-07-01

    It is important to distinguish among the properties of niobium, the ones that are related to the cavity's SRF performances, the formability of the material, and the mechanical behavior of the formed cavity. In general, the properties that dictate each of the above mentioned characteristics have a detrimental effect on one another and in order to preserve the superconducting properties without subduing the mechanical behavior, a balance has to be established. Depending on the applications, some parameters become less important and an understanding of the physical origin of the requirements might help in this optimization. SRF applications require high purity niobium (high RRR), but pure niobium is very soft from fabrication viewpoint. Moreover conventional fabrication techniques tend to override the effects of any metallurgical process meant to strengthen it. As those treatments dramatically affect the forming of the material they should be avoided. These unfavorable mechanical properties have to be accounted for in the design of the cavities rather than in the material specification. The aim of this paper is to review the significance of the important mechanical properties used to characterize niobium and to present the optimal range of values. Most of the following information deals with the specification of sheets for cell forming unless otherwise noted.

  16. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... items indicates that this action is necessary for effective property accounting, utilization, or control... property records, and with applicable financial control accounts. (j) The results of physical inventories...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories...

  17. Physical and Mechanical Properties of Composites and Light Alloys Reinforced with Detonation Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Sakovich, G. V.; Vorozhtsov, S. A.; Vorozhtsov, A. B.; Potekaev, A. I.; Kulkov, S. N.

    2016-07-01

    The influence of introduction of particles of detonation-synthesized nanodiamonds into composites and aluminum-base light alloys on their physical and mechanical properties is analyzed. The data on microstructure and physical and mechanical properties of composites and cast aluminum alloys reinforced with diamond nanoparticles are presented. The introduction of nanoparticles is shown to result in a significant improvement of the material properties.

  18. 41 CFR 109-1.5107 - Physical protection of personal property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical protection of... Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS GENERAL 1-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection...

  19. 41 CFR 109-1.5107 - Physical protection of personal property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical protection of... Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS GENERAL 1-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection...

  20. 41 CFR 109-1.5107 - Physical protection of personal property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical protection of... Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS GENERAL 1-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection...

  1. PREDOMINANT PROPERTIES AFFECTING PROFILE SOIL ELECTRICAL CONDUCTIVITY IN THE US MIDWEST

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercially available sensors for measuring apparent profile soil electrical conductivity (ECa) can provide an indirect indication of a number of soil physical and chemical properties helpful in characterizing within-field variability for precision agriculture. The objective of this research was to...

  2. Coarse fragments affects soil properties in a mantled-karst landscape of the Ozark Highlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper investigates the effect of rock fragments on soil physical hydraulic properties within the mantled karst landscapes of the Savoy Experimental Watershed (SEW), a setting typical of much of the Ozark Plateaus. Water resources in these settings are highly susceptible to contamination. As a r...

  3. Physical and Orbital Properties of Some of Saturn's Small Satellites

    NASA Astrophysics Data System (ADS)

    Porco, C. C.; Thomas, P.; Spitale, J.; Jacobson, R. A.; Denk, T.; Charnoz, S.; Richardson, D. C.; Dones, L.; Baker, E.; Weiss, J. W.

    2005-08-01

    We present Cassini imaging results on the orbits and physical properties for the small ring-region moons Pan, Atlas, and the Cassini-discovered Keeler gap moon, S/2005 S1 (1), as well as the newly discovered/recovered moons orbiting among the major satellites, Methone (S/2004 S1), Pallene (S/2004 S2), and the Dione co-orbital S/2004 S5 Polydeuces (2,3,4). We find that Atlas is undergoing a 700-km amplitude longitudinal perturbation by Prometheus, Methone is undergoing a 30,000-km amplitude longitudinal perturbation by Mimas, and Pallene is undergoing a long-term 75-km amplitude longitudinal perturbation by Enceladus. Orbital integrations involving Atlas return a mass of GMAtlas = (0.43 ± 0.18) X 10-3 km3/sec2, three times larger than previously reported (4). Reasonably high resolution images have also allowed refinement of physical dimensions and spectral properties of these small moons. Results will be presented. At the time of writing, we find that Atlas has polar and equatorial diameters of 19 km, 38 km and 46 km, respectively. Its volume is (1.5 ± 0.4) X 104 km3, yielding a density of 0.43 ± 0.20 gm/cm3. Pan's polar diameter is 23 km, and differences in its equatorial axes are not well constrained; they both appear to be ˜ 35 km. Pan's volume is (1.4 ± 0.7) X 104 km3. Using the most currently reliable mass, GMPan = (0.33 ± 0.05) × 10-3 km3/sec2 (4), Pan's density is roughly 0.4 ± 0.2 gm/cm3. Both Pan and Atlas appear to be synchronous rotators, but libration cannot be ruled out yet. Given its shape, it is possible that Atlas is in a secondary spin-orbit resonance that could force a libration. Preliminary idealized rubble pile simulations have been performed which show that, at the orbits of Atlas and Pan, a simple self-gravitating ice-particle aggregate, with equal equatorial dimensions, would be stable against tides; a body with sufficiently unequal equatorial dimensions would not. [1] IAUC 8524. [2] IAUC 8389. [Correction: Pallene (S/2004 S2) is the

  4. Evaluation of Physical Properties of Generic and Branded Travoprost Formulations

    PubMed Central

    Wadhwani, Meenakshi; Mishra, Sanjay K; Velpandian, Thirumurthy; Sihota, Ramanjit; Kotnala, Ankita; Bhartiya, Shibal; Dada, Tanuj

    2016-01-01

    ABSTRACT Purpose: Comparative evaluation of pharmaceutical characteristics of three marketed generic vs branded travoprost formulations. Materials and methods: Three generic travoprost formulations and one branded (Travatan without benzalkonium chloride) formulation (10 vials each), obtained from authorized agents from the respective companies and having the same batch number, were used. These formulations were coded and labels were removed. At a standardized room temperature of 25°C, the drop size, pH, relative viscosity, and total drops per vial were determined for Travatan (Alcon, Fort Worth, TX, USA) and all the generic formulations. Travoprost concentration in all four brands was estimated by using liquid chromatography-coupled tandem mass spectrometry LCMS. Results: Out of the four formulations, two drugs (TP 1 and TP 4) were found to follow the United States Pharmacopoeia (USP) limits for ophthalmic formulation regarding drug concentration, while the remaining two drugs failed due to the limits being either above 110% (TP 2) or below 90% (TP 3). Two of them (TP 1 and TP 2) had osmolality of 313 and 262 mOsm respectively, which did not comply with the osmolality limits within 300 mOsm (+ 10%). The pH of all the formulations ranged between 4.7 and 5.9, and the mean drop size was 30.23 ± 6.03 uL. The total amount of drug volume in the bottles varied from 2.58 ± 0.15 to 3.38 ± 0.06 mL/bottle. Conclusion: There are wide variations in the physical properties of generic formulations available in India. Although some generic drugs are compliant with the pharmacopeia standards, this study underscores the need for a better quality control in the production of generic travoprost formulations. How to cite this article: Wadhwani M, Mishra SK, Angmo D, Velpandian T, Sihota R, Kotnala A, Bhartiya S, Dada T. Evaluation of Physical Properties of Generic and Branded Travoprost Formulations. J Curr Glaucoma Pract. 2016;10(2):49-55. PMID:27536047

  5. Effects of pure and dyed PCE on physical and interfacial properties of remedial solutions.

    PubMed

    Jeong, Seung-Woo; Wood, A Lynn; Lee, Tony R

    2002-11-11

    Hydrophobic dyes have been used to visually distinguish dense non-aqueous phase liquid (DNAPL) contaminants from background aqueous phases and soils. The objective of this study was to evaluate the effects of a dyed DNAPL, 0.5 g Oil-Red-O/l of PCE, on the physical properties of remedial solutions: water, co-solvents (50, 70, and 90% (v/v) ethanol), and surfactants (4% (w) sodium dihexyl sulfosuccinate). This study compared the densities, viscosities, and interfacial tensions (IFTs) of the remedial solutions in contact with both dyed and undyed PCE. The presence of the dye in PCE substantially alters the IFTs of water and ethanol solutions, while there is no apparent difference in IFTs of surfactant solutions. The remedial solutions saturated with PCE showed higher viscosities and densities than pure remedial solutions. Solutions with high ethanol content exhibited the largest increases in liquid density. Because physical properties affect the flow of the remedial solutions in porous media, experiments using dyed DNAPLs should assess the influence of dyes on fluid and interfacial properties prior to remediation process analysis. PMID:12409243

  6. Temporal Variability of Physical Properties on an Aquic Argiudoll under no Tillage

    NASA Astrophysics Data System (ADS)

    Castiglione, M. G.; Sasal, M. C.; Wilson, M. G.; Paz González, A.; Oszust, J. D.

    2012-04-01

    Practices for the implementation and development of crops affect soil properties and processes in space and time with consequences for the accumulation and movement of water, nutrients and pollutants, which affects plant growth. The aim of this study was to determine the temporal variability of soil physical properties and its link with the infiltration process, on an Aquic Argiudoll of the Argentine Pampas under no-till cultivation. Sampling was performed during six dates in the INTA EEA Paraná (Entre Ríos, Argentina), in the course of the succession of wheat/ soybean-corn. In each of those dates, rain simulations were performed under covered and uncovered soil. From these results it was determined the saturated hydraulic conductivity (Ks), the runoff coefficient (EC), the accumulated rainfall up to ponding (Tp), the accumulated rainfall to reach the steady state infiltration rate (TI) and the decline slope of the infiltration rate (Pd). Also we determine: the initial soil water content (HI), bulk density (Dap), volume occupied by pores larger than 50 µm (> 50), volume occupied by pores between 10 and 50 µm (10-50), soil physical quality index (S) and structural stability (CDMP). On three dates HI was approximately 11%, two were between 22 and 27% and in the remaining time HI was 36%. Despite these variations we don't observed significant changes in most soil physical properties associated with the structure and pore size. However, we could prove significant differences between dates in Ks and EC, both on bare and cover soil. At the same time, differences in these parameters between coverage degrees were significant only in two dates. The HI affected the variability of Ks results. Also Ks ratio between covered and uncovered soil improved with HI increment, except for HI equal to 36%. We found highly significant linkage between Ks, CE and Pd with HI. This study reveals the importance of the temporal dynamics of water movement in this Aquic Argiudoll, although

  7. Physical properties of low-dimensional sp 2 -based carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Meunier, V.; Souza Filho, A. G.; Barros, E. B.; Dresselhaus, M. S.

    2016-04-01

    The last two decades have witnessed a tremendous growth in the development and understanding of sp 2 carbon-based nanostructures. The impact of this research has led to a number of fundamental discoveries that have played a central role in the understanding of many aspects of materials physics and their applications. Much of this progress has been enabled by the development of new techniques to prepare, modify, and assemble low-dimensional materials into devices. The field has also benefited greatly from much progress in theoretical and computational modeling, as well as from advances in characterization techniques developed to probe and manipulate single atomic layers, nanoribbons, and nanotubes. Some of the most fundamental physical properties of sp2 carbon-based nanostructures are reviewed and their role as model systems for solid-state physics in one and two dimensions is highlighted. The objective of this review is to provide a thorough account on current understanding of how the details of the atomic structure affect phonons, electrons, and transport in these nanomaterials. The review starts with a description of the behavior of single-layer and few-layer graphene and then expands into the analysis of nanoribbons and nanotubes in terms of their reduced dimensionality and curvature. How the properties can be modified and tailored for specific applications is then discussed. The review concludes with a historical perspective and considers some open questions concerning future directions in the physics of low-dimensional systems and their impact on continued advances in solid-state physics, and also looks beyond carbon nanosystems.

  8. Are Physical Properties Able to Differentiate Glacial and Interglacial Coral Identity?

    NASA Astrophysics Data System (ADS)

    Lado-Insua, T.; Moran, K.; Anderson, L.; Webster, J. M.; Morgan, S.; Fehr, A.; Lofi, J.; Lukies, V.; Loggia, D.; Iodp Expedition 325 Scientists

    2010-12-01

    The Integrated Ocean Drilling Program Expedition 325 to the Great Barrier Reef provides new information on past sea-level changes and better understanding of mechanisms driving glacial-interglacial cycles. Coral samples recovered during this expedition provide a deeper understanding of coral reef responses to environmental stresses. Inter- and intra-specific differences, growth rates, coral health, symbiotic algae and environmental conditions are all potential causes of differences in the density of coral skeletons and their distribution. Past changes in sea level and temperature can be related not only to isotope ratios but also to the presence of different communities of corals. Density changes in the coral composition can be detected using physical properties such as an increase in the calcium carbonate of a sample. De’ath et al. (2009) reported severe and sudden recent declines in calcification in Porites spp. corals in the Great Barrier Reef in the present that have not been observed over at least the last 400 years, and they attributed the decrease in calcification to changes in sea level, sea surface temperature (SST) and saturation of aragonite in the water column, all of which can limit the capacity of the corals to precipitate calcium carbonate. Variation in Sr/Ca can be related to SST, but different strains of symbiotic algae in the corals’ tissues can also be an important factor affecting skeletal Sr/Ca ratios. Such changes have never been tracked during previous glaciations, but the samples from Expedition 325 give the opportunity to explore their values during and since the last glacial maximum. Physical properties such as gamma ray density, electrical resistivity, and acoustic p-wave velocity can be related to characteristics of the marine sediments that, in turn, are indicative of the depositional environments. We performed a multivariate analysis that relates physical characteristics measured with a multi-sensor core logger (MSCL) and downhole

  9. Physical and geoacoustic properties of surface sediments in the southwestern Ulleung Basin, East Sea of Korea

    NASA Astrophysics Data System (ADS)

    Kim, S.; Kim, D. C.; Lee, G.; Kim, S. P.; Bae, S.

    2012-12-01

    To investigate the physical and geoacoustic properties of surface sediments in the southwestern Ulleung Basin, East Sea of Korea, eighty-two piston cores and sixty-six box cores were analyzed for sediment texture (grain size, sand, silt and clay contents), physical properties (porosity, water content, bulk density, grain density and shear strength), and acoustic properties (compressional wave velocity and attenuation). We conducted mapping the distribution of sediment texture, each physical properties, and compressional wave velocity. According to the distribution map of sediment texture, the inner shelf area is consists of fine-grained sediments that are interpreted as recent sediments deposited under the present environment condition. Ulleung Basin also dominated fine-grained sediments consist of hemi-pelagic mud. On the mid-shelf, fine materials are mixed with fine-grained sediments and relict coarse sediments. Some part of the relict sediments on the mid-shelf were continuously reworked under the present environmental conditions forming the palimpsest sediments. The outer shelf area is composed of very coarse-grained sediments that are considered relict sediments deposited during the last glacial periods when the sea level was lower than the present. Based on geoacoustic property analyzed from this study, the study area is divided into five different geoacoustic provinces: (1) Province I is composed of muddy sediments that are directly affected by the Nakdong River discharge (1486 m/s, 8.1Φ, 1.32 g/cm3, and 80 %), (2) Province II is generally characterized by hemi-pelagic muds and partially mixed with intermittent sandy sediments originated from the outer shelf and upper slope (1495 m/s, 8.4Φ, 1.27 g/cm3, and 82 %), (3) Province III is comprised of muddy sand sediments that are corresponding to the boundary between recent sediments and relict sediments (1539 m/s, 5.8Φ, 1.52 g/cm3, and 69 %), (4) Province IV is dominated by coarse-grained relict sediments

  10. SELECTION AND MEASUREMENT OF PHYSICAL PROPERTIES FOR CHARACTERIZATION OF CHEMICAL PROTECTIVE CLOTHING MATERIALS

    EPA Science Inventory

    Chemical protective clothing (CPC) must possess certain physical properties if it is to function as an effective barrier to chemicals. he physical characteristics of CPC materials has gone largely unstudied; most attention has been focussecd on chemical resistance. hysical proper...

  11. Physical and mechanical properties of modified bacterial cellulose composite films

    NASA Astrophysics Data System (ADS)

    Indrarti, Lucia; Indriyati, Syampurwadi, Anung; Pujiastuti, Sri

    2016-02-01

    To open wide range application opportunities of Bacterial Cellulose (BC) such as for agricultural purposes and edible film, BC slurries were blended with Glycerol (Gly), Sorbitol (Sor) and Carboxymethyl Cellulose (CMC). The physical and mechanical properties of BC composites were investigated to gain a better understanding of the relationship between BC and the additive types. Addition of glycerol, sorbitol and CMC influenced the water solubility of BC composite films. FTIR analysis showed the characteristic bands of cellulose. Addition of CMC, glycerol, and sorbitol slightly changed the FTIR spectrum of the composites. Tensile test showed that CMC not only acted as cross-linking agent where the tensile strength doubled up to 180 MPa, but also acted as plasticizer with the elongation at break increased more than 100% compared to that of BC film. On the other hand, glycerol and sorbitol acted as plasticizers that decreased the tensile strength and increased the elongation. Addition of CMC can improve film transparency, which is quite important in consumer acceptance of edible films in food industry.

  12. Influence of moisture content on physical properties of minor millets.

    PubMed

    Balasubramanian, S; Viswanathan, R

    2010-06-01

    Physical properties including 1000 kernel weight, bulk density, true density, porosity, angle of repose, coefficient of static friction, coefficient of internal friction and grain hardness were determined for foxtail millet, little millet, kodo millet, common millet, barnyard millet and finger millet in the moisture content range of 11.1 to 25% db. Thousand kernel weight increased from 2.3 to 6.1 g and angle of repose increased from 25.0 to 38.2°. Bulk density decreased from 868.1 to 477.1 kg/m(3) and true density from 1988.7 to 884.4 kg/m(3) for all minor millets when observed in the moisture range of 11.1 to 25%. Porosity decreased from 63.7 to 32.5%. Coefficient of static friction of minor millets against mild steel surface increased from 0.253 to 0.728 and coefficient of internal friction was in the range of 1.217 and 1.964 in the moisture range studied. Grain hardness decreased from 30.7 to 12.4 for all minor millets when moisture content was increased from 11.1 to 25% db. PMID:23572637

  13. Theoretical study of photo-physical properties of indolylmaleimide derivatives.

    PubMed

    Zheng, ZiLong; Zhao, Yi; Nakazono, Manabu; Nanbu, Shinkoh

    2012-03-01

    Photo-physical properties of bromo-indolylmaleimide (IM-Br), indole-succinimide (IS), and their anions were theoretically investigated compared with the previous theoretical result for indolylmaleimide (IM) [Phys. Chem. Chem. Phys., 2010, 12, 9783]. The energies for the electronic excited states as well as the ground states were computed for these molecules using the multi-reference perturbation calculations based on the second order Rayleigh-Schrödinger perturbation theory (CASPT2) at the cc-pVDZ basis set level. The electron-accepting or electron-donating effect caused by bromine-substitution was discussed in the intra-molecular charge transfer (ICT) mechanism. The order of natural orbitals of the bromine-substituted monovalent anion with a deprotonated indole NH group (I((-))M-Br) was found to be rearranged by the effect of electron-donation, which leads to pseudo-crossing of the potential energy cures of the S(1) and S(2) states. The large stokes shift observed for I((-))M-Br was due to pseudo-crossing. Meanwhile, IM and IM-Br show abnormal deprotonation, which is explained by the charge distribution on the indole and maleimide moieties. Finally, the monovalent anions I((-))M-Br and I((-))M by a deprotonation of the indole NH end and the neutral IS were proposed to be the most feasible candidates corresponding to the experimental spectra in solution. PMID:22293896

  14. Comparative study of the physical properties of core materials.

    PubMed

    Saygili, Gülbin; Mahmali, Sevil M

    2002-08-01

    This study was undertaken to measure physical properties of materials used for direct core buildups, including high-copper amalgam, visible light-cured resin composite, autocured titanium-containing composite, polyacid-modified composite, resin-modified glass-ionomer, and silver cermet cement. Compressive strength, diametral tensile strength, and flexural strength of six core materials of various material classes were measured for each material as a function of time up to 3 months at different storage conditions, using a standard specification test designed for the materials. Three different storage conditions (dry, humid, wet) at 37 degrees C were chosen. Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive, diametral tensile, and flexural strengths with associated standard deviations were calculated for each material. Multiple comparison and Newman-Keuls tests discerned many differences among materials. All materials were found to meet the minimum specification requirements, except in terms of flexural strength for amalgam after 1 hour and the silver cermet at all time intervals. PMID:12212682

  15. Physical Properties of Near-Earth Asteroid 2011 MD

    NASA Astrophysics Data System (ADS)

    Mommert, M.; Farnocchia, D.; Hora, J. L.; Chesley, S. R.; Trilling, D. E.; Chodas, P. W.; Mueller, M.; Harris, A. W.; Smith, H. A.; Fazio, G. G.

    2014-07-01

    We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 hr of observing time with channel 2 (4.5 μm) of the Infrared Array Camera and detected the target within the 2σ positional uncertainty ellipse. Using an asteroid thermophysical model and a model of nongravitational forces acting upon the object, we constrain the physical properties of 2011 MD, based on the measured flux density and available astrometry data. We estimate 2011 MD to be (6+4-2) m in diameter with a geometric albedo of 0.3+0.4-0.2 (uncertainties are 1σ). We find the asteroid's most probable bulk density to be (1.1+0.7-0.5) g cm-3, which implies a total mass of (50-350) t and a macroporosity of >=65%, assuming a material bulk density typical of non-primitive meteorite materials. A high degree of macroporosity suggests that 2011 MD is a rubble-pile asteroid, the rotation of which is more likely to be retrograde than prograde.

  16. Physical properties of cage-like compound UB12

    NASA Astrophysics Data System (ADS)

    Troć, R.; Wawryk, R.; Pikul, A.; Shitsevalova, N.

    2015-07-01

    Boron and uranium form three metallic borides having the chemical formulae UB2, UB4 and UB12. In this study, we present the temperature variations of magnetic susceptibility, specific heat, electrical resistivity (performed in magnetic fields of 0 and up to 9 T), thermoelectric power and thermal conductivity measured on the bulk sample of UB12. This dodecaboride behaves as a typical metal, being a Pauli paramagnet and exhibiting a large variety of physical properties due to its specific close-packed structure containing B12 groups. We describe also an uncommon phenomenon observed in UB12, that is, a fairly large scattering of the experimental resistivity data under application of a magnetic field at low temperatures and its systematic vanishing during heating of the sample. This effect is probably caused by inharmonious movement (rattling) of the uranium atoms inside the oversized coordination cage, B24, reflected by applying the magnetic field. The specific heat, resistivity, thermoelectric power and heat transport data have been analysed in the framework of the low-frequency Einstein modes, which are mainly responsible for the phonon spectra behaviour in the system studied here.

  17. Flow-specific physical properties of coconut flours

    NASA Astrophysics Data System (ADS)

    Manikantan, Musuvadi R.; Kingsly Ambrose, Rose P.; Alavi, Sajid

    2015-10-01

    Coconut milk residue and virgin coconut oil cake are important co-products of virgin coconut oil that are used in the animal feed industry. Flour from these products has a number of potential human health benefits and can be used in different food formulations. The objective of this study was to find out the flow-specific physical properties of coconut flours at three moisture levels. Coconut milk residue flour with 4.53 to 8.18% moisture content (w.b.) had bulk density and tapped density of 317.37 to 312.65 and 371.44 to 377.23 kg m-3, respectively; the corresponding values for virgin coconut oil cake flour with 3.85 to 7.98% moisture content (wet basis) were 611.22 to 608.68 and 663.55 to 672.93 kg m-3, respectively. The compressibility index and Hausner ratio increased with moisture. The angle of repose increased with moisture and ranged from 34.12 to 36.20 and 21.07 to 23.82° for coconut milk residue flour and virgin coconut oil cake flour, respectively. The coefficient of static and rolling friction increased with moisture for all test surfaces, with the plywood offering more resistance to flow than other test surfaces. The results of this study will be helpful in designing handling, flow, and processing systems for coconut milk residue and virgin coconut oil cake flours.

  18. Physical properties of molecular clouds in the southern outer Galaxy.

    NASA Astrophysics Data System (ADS)

    May, J.; Alvarez, H.; Bronfman, L.

    1997-11-01

    We have used a deep CO survey of the third galactic quadrant (May et al., 1993A&AS...99..105M) to derive the physical properties of molecular clouds in the outer Galaxy. Within the range of this survey, from 194° to 270° in galactic longitude, 177 molecular clouds have been identified beyond 2kpc from the Sun. Distances have been determined kinematically using the rotation curve of Brand (1986, Ph.D. Thesis, University of Leiden) with Rsun_=8.5kpc and {THETA}sun_=220km/s. Power-law relations between line widths and sizes of the clouds, and between their densities and sizes have been found, although they do not fulfill exactly the requirements to be in virial equilibrium. Adopting a CO luminosity-to-H_2_ conversion factor X=3.8x10^20^molecules/cm^2^/(K.km/s), the derived M_CO_ masses statistically agree with the virial masses. The derived size and mass distributions show that the clouds are smaller, less massive and with narrower lines than those in the inner Galaxy. However, the mass spectrum for the clouds in our sample with masses >=2.5x10^4^Msun_ has a slope -1.45 which is similar to that found for inner Galaxy clouds. The warping and flaring of the outer molecular disk is clearly delineated.

  19. Do Physical Therapy Interventions Affect Urinary Incontinence and Quality of Life in People with Multiple Sclerosis?

    PubMed Central

    Rivera, Monica; Melnick, Marsha; Allen, Diane D.

    2015-01-01

    Background: Multiple sclerosis (MS) presents with many debilitating symptoms, including urinary incontinence (UI), that physical therapy (PT) may address; UI is widely prevalent, but PT management of symptoms lacks consensus. A meta-analysis of long-term nonsurgical and nonpharmaceutical treatment options may supply this deficiency. We analyzed the current evidence for effectiveness of PT to decrease UI and improve quality of life (QOL) in people with MS. Methods: An electronic search conducted through November 26, 2013, included the following search terms: incontinence, bladder dysfunction, urinary incontinence, multiple sclerosis, MS, physical therapy, physiotherapy, therapy, and rehabilitation. Criteria for inclusion were as follows: MS diagnosis, intervention involved PT for UI or bladder dysfunction, outcomes assessed QOL or UI, and at least a 4 of 10 on the Physiotherapy Evidence Database scale or a 2b level of evidence. Outcomes were combined across studies, and effect sizes are depicted in forest plots. Results: Six studies met the inclusion criteria. Between-group analysis revealed statistically significant differences in incontinence episodes and QOL, but did not reach significance for functional control mechanisms (eg, electromyography data on strength of contraction, relaxation, and endurance). Incontinence leakage episodes and QOL participation improved within groups. Conclusions: Meta-analysis indicates support for PT for minimizing incontinence compared with pretreatment and affecting incontinence and QOL more than control in people with MS. Protocols were heterogeneous regarding duration and type of PT intervention and were applied in different types of MS. Further research may reveal the most effective combination and variety of PT interventions for people with MS. PMID:26300703

  20. Properties and hydration products of lightweight and expansive cements. Part I: Physical and mechanical properties

    SciTech Connect

    Lilkov, V.; Djabarov, N.; Bechev, G.; Kolev, K.

    1999-10-01

    Results from studies on the physical and mechanical properties of lightweight and expansive cements cured at 20 and 75 C are presented. Lightweight additive (cenospheres from thermoelectric power station Bobov Dol, Bulgaria) and expansive additive (Bulexa with hydroxide type of expansion) were used. The compressive and flexural strength, the gas and water impermeability, and the pore structure of the cement stone of lightweight and expansive cements were investigated. The results are compared with corresponding parameters of cement stone without additives. It was found that the cenospheres are appropriate lightweight additives. The use of expansive additive helps overcome the dry shrinkage of cement stone and strengthens the bond with the bounding surfaces.

  1. Dry heat treatment affects wheat bran surface properties and hydration kinetics.

    PubMed

    Jacobs, Pieter J; Hemdane, Sami; Delcour, Jan A; Courtin, Christophe M

    2016-07-15

    Heat stabilization of wheat bran aims at inactivation of enzymes which may cause rancidity and processability issues. Such treatments may however cause additional unanticipated phenomena which may affect wheat bran technological properties. In this work, the impact of toasting on wheat bran hydration capacity and hydration kinetics was studied. Hydration properties were assessed using the Enslin-Neff and drainage centrifugation water retention capacity methods, thermogravimetric analysis and contact angle goniometry, next to more traditional methods. While equilibrium hydration properties of bran were not affected by the heat treatment, the rate at which the heat treated bran hydrated was, however, very significantly reduced compared to the untreated bran. This phenomenon was found to originate from the formation of a lipid coating during the treatment rendering the bran surface hydrophobic. These insights help to understand and partially account for the modified processability of heat treated bran in food applications. PMID:26948645

  2. Socioeconomic Factors Affecting Minority Physics Taking in U.S. High Schools

    ERIC Educational Resources Information Center

    Physics Teacher, 2011

    2011-01-01

    In the September issue, we saw that a lower proportion of Hispanics and blacks take physics in U.S. high schools than do whites and Asians. Last month, we examined physics offerings and students by socioeconomic profile of the high school as reported by the principal. We saw that there were more physics classes and more physics students at…

  3. Physical property characterization of a damage zone in granitic rock - Implications for geothermal reservoir properties

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn; Madonna, Claudio; Amann, Florian; Gischig, Valentin; Burg, Jean-Pierre

    2016-04-01

    Geothermal energy offers a viable alternative to mitigate greenhouse gas emitting energy production. A tradeoff between less expensive drilling costs and increased permeability at shallow depths versus increased heat production at deeper depths stipulates the economic energy potential of a given reservoir. From a geological perspective, successful retrieval of geothermal energy from the subsurface requires sufficient knowledge of the structural and stratigraphic relationship of the target formations, which govern the thermal conditions, physical properties, and fluid flow properties of reservoir rocks. In Switzerland, deep basement rocks (~5 km) with fluid conducting damage zones and enhanced fractured systems stimulated by hydraulic shearing are seen as a potential geothermal reservoir system. Damage zones, both natural and induced, provide permeability enhancement that is especially important for creating fluid conductivity where the matrix permeability is low. This study concentrates on characterizing the elastic and transport properties entering into a natural damage zone penetrated by a borehole at the Grimsel underground research laboratory. The borehole drilled from a cavern at 480 m below ground surface penetrates approximately 20 m of mostly intact Grimsel granodiorite before entering the first phyllosilicate-rich shear zone (~0.2 m thick). The borehole intersects a second shear zone at approximately 23.8m. Between the two shear zones the Grimsel granodiorite is heavily fractured. The minimum principle stress magnitude from in-situ measurements decreases along the borehole into the first shear zone. Two mutually perpendicular core samples of Grimsel granodiorite were taken every 0.1 m from 19.5 to 20.1 m to characterize the physical properties and anisotropy changes as a gradient away from the damage zone. Measurements of ultrasonic compressional (Vp) and shear (Vs) velocities at 1 MHz frequency are conducted at room temperature and hydrostatic pressures

  4. Retrospective reports of parental physical affection and parenting style: a study of Finnish twins.

    PubMed

    Harlaar, Nicole; Santtila, Pekka; Björklund, Johanna; Alanko, Katarina; Jern, Patrick; Varjonen, Markus; von der Pahlen, Bettina; Sandnabba, Kenneth

    2008-08-01

    Individual differences in parenting behaviors are due, in part, to genetic factors. In the present study, the authors sought to determine whether the degree of genetic influence varied according to the type of parental behavior under consideration. A population-based sample of 2,334 pairs of Finnish twins provided ratings on the physical affection, control, abusiveness, and indifference shown by their father and mother during childhood. Genetic influences, shared environmental influences, and nonshared environmental influences accounted for a small-to-medium proportion (17%-30%), a small-to-large proportion (22%-44%), and a medium-to-large proportion (37%-55%) of the variance in each parenting measure, respectively. There were no significant differences in effect sizes for mothers and fathers or across the 4 types of parental behavior. The genetic results may reflect characteristic styles with which parents respond to genetically influenced behaviors of individuals (gene-environment correlations) or individual perceptions of this relationship (gene-person correlation processes). The findings have implications for intervention and prevention work with families and for interpretation of evidence for interactions between genes and parenting behaviors. PMID:18729674

  5. PHYSICAL PROPERTIES OF FLUORINATED PROPANE AND BUTANE DERIVATIVES AS ALTERNATIVE REFRIGERANTS

    EPA Science Inventory

    Physical property measurements are presented for 24 fluorinated propane and butane derivatives and one fluorinated ether. These measurements include melting point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling point, critical propertie...

  6. Physical and Mechanical Properties of Niobium for SRF Science and Technology

    SciTech Connect

    Ganapati Rao Myneni

    2006-10-31

    Optimized mechanical and physical properties of high purity niobium are crucial for obtaining high performance SRF particle beam accelerator structures consistently. This paper summarizes these important material properties for both high purity polycrystalline and single crystal niobium.

  7. Summary of tank waste physical properties at the Hanford Site

    SciTech Connect

    Nguyen, Q.H.

    1994-04-01

    This report summarizes the physical parameters measured from Hanford Site tank wastes. Physical parameters were measured to determine the physical nature of the tank wastes to develop simulants and design in-tank equipment. The physical parameters were measured mostly from core samples obtained directly below tank risers. Tank waste physical parameters were collected through a database search, interviewing and selecting references from documents. This report shows the data measured from tank waste but does not describe how the analyses wee done. This report will be updated as additional data are measured or more documents are reviewed.

  8. Affective Properties of Mothers' Speech to Infants With Hearing Impairment and Cochlear Implants

    PubMed Central

    Bergeson, Tonya R.; Xu, Huiping; Kitamura, Christine

    2015-01-01

    Purpose The affective properties of infant-directed speech influence the attention of infants with normal hearing to speech sounds. This study explored the affective quality of maternal speech to infants with hearing impairment (HI) during the 1st year after cochlear implantation as compared to speech to infants with normal hearing. Method Mothers of infants with HI and mothers of infants with normal hearing matched by age (NH-AM) or hearing experience (NH-EM) were recorded playing with their infants during 3 sessions over a 12-month period. Speech samples of 25 s were low-pass filtered, leaving intonation but not speech information intact. Sixty adults rated the stimuli along 5 scales: positive/negative affect and intention to express affection, to encourage attention, to comfort/soothe, and to direct behavior. Results Low-pass filtered speech to HI and NH-EM groups was rated as more positive, affective, and comforting compared with the such speech to the NH-AM group. Speech to infants with HI and with NH-AM was rated as more directive than speech to the NH-EM group. Mothers decreased affective qualities in speech to all infants but increased directive qualities in speech to infants with NH-EM over time. Conclusions Mothers fine-tune communicative intent in speech to their infant's developmental stage. They adjust affective qualities to infants' hearing experience rather than to chronological age but adjust directive qualities of speech to the chronological age of their infants. PMID:25679195

  9. Physical properties of graphene (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 28 March 2012)

    NASA Astrophysics Data System (ADS)

    2012-11-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) devoted to the "Physical properties of graphene" was held on 28 March 2012 in the conference hall of the Lebedev Physical Institute. The agenda of the session announced on the RAS Physical Sciences Division website http://www.gpad.ac.ru included the following reports: (1) Falkovsky L A (Landau Institute of Theoretical Physics, RAS, Moscow; Vereshchagin Institute of High-Pressure Physics, RAS, Moscow) "Magnetooptics of graphene"; (2) Varlamov A A (The University of Rome Tor Vergata, Italy) "Thermoelectric properties of graphene." The papers written on the basis of these reports are given below. • Magnetooptics of graphene layers, L A Falkovsky Physics-Uspekhi, 2012, Volume 55, Number 11, Pages 1140-1145 • Anomalous thermoelectric and thermomagnetic properties of graphene, A A Varlamov, A V Kavokin, I A Luk'yanchuk, S G Sharapov Physics-Uspekhi, 2012, Volume 55, Number 11, Pages 1146-1151

  10. Characterization of sheep lung lymph lipoproteins: chemical and physical properties

    SciTech Connect

    Forte, T.M.; Cross, C.E.; Gunther, R.A.; Kramer, G.C.

    1983-01-01

    The authors have determined the composition and distribution of plasma and lung lymph lipoproteins from unanesthetized ewes. Cholesterol, triglyceride, and phospholipid levels in lung lymph were 45%, 50%, and 50%, respectively, of those in plasma. Lipoproteins from both lymph and plasma were separated into two major fractions: d < 1.063 g/ml or LDL, and d 1.063-1.21 g/ml or HDL. HDL was the major lipoprotein species in the plasma and lymph. Gradients gel electrophoresis of HDL on 4-30% gels showed that, in lymph, HDL particles were shifted to larger sizes; in addition to a peak at 8.5 nm, which was similar to plasma HDL, there were two additional components of larger size, one at 9.2 nm and the other at 12 nm. Electron microscopy revealed that lymph HDL contained two new particles not seen in plasma: large, round particles, 13.6 nm diameter, and discoidal particles, 18.7 by 4.9 nm, long and short axis, respectively. Compositional analysis of lymph HDL revealed a relative enrichment in free cholesterol as well as an enrichment in apolipoprotein E. Lymph LDL on gradient gel electrophoresis was extremely heterogeneous. Several peaks were evident in the 23-30 nm size range (similar to plasma LDL), but a supplementary component at approximately 15-16 nm was also present. Whereas plasma LDL on electron microscopy contained only round particles 26 nm in diameter, lymph contained an additional, unusual particle which was close-packed, with square geometry, and was 15 nm in diameter. Changes in the physical and chemical properties of lung lymph lipoproteins suggest that these particles are metabolically modified.

  11. Physical and chemical properties of San Francisco Bay, California, 1980

    USGS Publications Warehouse

    Ota, Allan Y.; Schemel, L.E.; Hager, S.W.

    1989-01-01

    The U.S. Geological Survey conducted hydrologic investigations in both the deep water channels and the shallow-water regions of the San Francisco Bay estuarine system during 1980. Cruises were conducted regularly, usually at two-week intervals. Physical and chemical properties presented in this report include temperature , salinity, suspended particulate matter, turbidity, extinction coefficient, partial pressure of CO2, partial pressure of oxygen , dissolved organic carbon, particulate organic carbon, discrete chlorophyll a, fluorescence of photosynthetic pigments, dissolved silica, dissolved phosphate, nitrate plus nitrite, nitrite, ammonium, dissolved inorganic nitrogen, dissolved nitrogen, dissolved phosphorus, total nitrogen, and total phosphorus. Analytical methods are described. The body of data contained in this report characterizes hydrologic conditions in San Francisco Bay during a year with an average rate of freshwater inflow to the estuary. Concentrations of dissolved silica (discrete-sample) ranged from 3.8 to 310 micro-M in the northern reach of the bay, whereas the range in the southern reach was limited to 63 to 150 micro-M. Concentrations of phosphate (discrete-sample) ranged from 1.3 to 4.4 micro-M in the northern reach, which was narrow in comparison with that of 2.2 to 19.0 micro-M in the southern reach. Concentrations of nitrate plus nitrite (discrete-sample) ranged from near zero to 53 micro-M in the northern reach, and from 2.3 to 64 micro-M in the southern reach. Concentrations of nitrite (discrete-sample) were low in both reaches, exhibiting a range from nearly zero to approximately 2.3 micro-M. Concentrations of ammonium (discrete-sample) ranged from near zero to 14.2 micro-M in the northern reach, and from near zero to 8.3 micro-M in the southern reach. (USGS)

  12. Physical properties of UDF12 galaxies in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Shimizu, Ikkoh; Inoue, Akio K.; Okamoto, Takashi; Yoshida, Naoki

    2014-05-01

    We have performed a large cosmological hydrodynamics simulation tailored to the deep survey with the Hubble Space Telescope made in 2012, the so-called UDF12 campaign. After making a light-cone output, we have applied the same colour-selection criteria as the UDF12 campaign to select galaxies from our simulation, and then, have examined the physical properties of them as a proxy of the real observed UDF12 galaxies at z > 7. As a result, we find that the halo mass is almost linearly proportional to the observed ultraviolet (UV) luminosity (4 × 1011M⊙ at MUV = -21). The dust attenuation and UV slope β well correlates with the observed UV luminosity, which is consistent with observations quantitatively. The star formation rate (SFR) is also linearly proportional to the stellar mass and the specific SFR shows only a weak dependence on the mass. We also find an increasing star formation history with a time-scale of ˜100 Myr in the high-z galaxies. An average metallicity weighted by the Lyman continuum luminosity reaches up to >0.1 Solar even at z ˜ 10, suggesting a rapid metal enrichment. We also expect ≥0.1 mJy at 350 GHz of the dust thermal emission from the galaxies with H160 ≤ 27, which can be detectable with the Atacama Large Millimetre-sub-millimetre Array. The galaxies selected by the UDF12 survey contribute to only 52-12 per cent of the cosmic SFR density from z ˜ 7 to z ˜ 10, respectively. The James Webb Space Telescope will push the detection fraction up to 77-72 per cent.

  13. Physical properties of luminous dust-poor quasars

    SciTech Connect

    Jun, Hyunsung David; Im, Myungshin E-mail: mim@astro.snu.ac.kr

    2013-12-20

    We identify and characterize a population of luminous, dust-poor quasars at 0 < z < 5 that is photometrically similar to objects previously found at z > 6. This class of active galactic nuclei is known to show little IR emission from dusty structure, but it is poorly understood in terms of number evolution and dependence on physical quantities. To better understand the properties of these quasars, we compile a rest-frame UV to IR library of 41,000 optically selected type 1 quasars with L {sub bol} > 10{sup 45.7} erg s{sup –1}. After fitting the broadband spectral energy distributions (SEDs) with accretion disk and dust components, we find 0.6% of our sample to be hot dust-poor, with rest-frame 2.3 μm to 0.51 μm flux density ratios of –0.5 dex or less. The dust-poor SEDs are blue in the UV-optical and weak in the mid-IR, such that their accretion disks are less obscured and the hot dust emission traces that of warm dust down to the dust-poor regime. At a given bolometric luminosity, dust-poor quasars are lower in black hole mass and higher in Eddington ratio than general luminous quasars, suggesting that they are in a rapidly growing evolutionary state in which the dust-poor phase appears as a short or rare phenomenon. The dust-poor fraction increases with redshift, and possible implications for their evolution are discussed.

  14. Determination of the Geotechnical Characteristics of Hornfelsic Rocks with a Particular Emphasis on the Correlation Between Physical and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Fereidooni, Davood

    2016-07-01

    Geotechnical characteristics and relationships between various physical and mechanical properties were assessed for eight types of hornfelsic rock collected from southern and southwestern parts of the city of Hamedan in western Iran. Rock samples were subjected to mineralogical, physical, index, and mechanical laboratory tests and found to contain quartz, feldspar, biotite, muscovite, garnet, sillimanite, kyanite, staurolite, graphite, and other fine-grained cryptocrystalline matrix materials. Samples had a porphyroblastic texture, and the mineral contents and physical properties influenced various rock characteristics. Some rock characteristics were affected by mineral content, while others were affected by porosity. Dry unit weight, primary and secondary wave velocities, and slake-durability index were noteworthy characteristics affected by mineral content, while porosity had the greatest influence on water absorption, Schmidt hardness, point load index, Brazilian tensile strength, and uniaxial compressive strength. Empirical equations describing the relationships between different rock parameters are proposed for determining the essential characteristics of rock, such as secondary wave velocity, slake-durability index, point load index, Brazilian tensile strength, and uniaxial compressive strength. On the basis of these properties, the studied rocks were classified as being strong or very strong.

  15. Effect of chain microstructure on physical properties of olefin copolymers

    NASA Astrophysics Data System (ADS)

    Poon, Benjamin Chunman

    The effect of chain microstructure on various physical properties was studied in polyethylene and polypropylene copolymers. Adhesion of Ziegler-Natta (ZNPE) and metallocene (mPE) catalyzed ethylene-octene copolymers to polypropylene (PP) were studied by measuring the delamination toughness G of coextruded microlayers using the T-peel test. It was found that the heterogeneous ZNPE exhibited poor adhesion to polypropylene. It was proposed that the low molecular weight, highly branched ZNPE fractions migrate to the interface to form an amorphous layer. The homogeneous mPE with the same short chain branch content showed very high G. Blending ZNPE with an mPE increased G. Atomic force microscopy revealed that blending mPE into ZNPE reduced or eliminated the amorphous interfacial layer. It was hypothesized that mPE increased miscibility of low molecular weight, highly branched fractions of ZNPE and prevented their segregation at the interface. The solid state structure and properties of homogeneous propylene-octene copolymers were examined. Based on the combined observations from melting behavior, dynamic mechanical response, morphology with primarily atomic force microscopy, X-ray diffraction, and tensile deformation, a classification scheme with 4 distinct categories is proposed. The homopolymer with 60 wt% crystallinity constitutes Type IV. It is characterized by large alpha-positive spherulite. Copolymers with up to 5 mol% octene, with at least 35 wt% crystallinity, are classified as Type III. They crystallize as alpha-positive spherulites that are smaller than the homopolymer. Both Type IV and Type III materials exhibit thermoplastic behavior. Copolymers classified as Type II have between 5 and 10 mol% octene with crystallinity in the range of 20--35%. Type II materials have smaller impinging spherulites than Type III copolymers and they are negative. The materials in this category have plastomeric behavior. Type I copolymers have more than 10 mol% octene and less

  16. Effects of storage media on physical properties of selected tooth coloured restorative materials.

    PubMed

    Sadaghiani, Leili; Adusei, Gabriel; Rees, Jeremy

    2009-09-01

    It is known that storage media can affect the physical properties of some restorative dental materials. The purpose of this laboratory study was to investigate the possible effects of storage media on physical properties of a conventional glass-ionomer, a resin modified glass ionomer and a compomer. Specimens of the restorative materials in the study (FujiII LC, FujiIX and Dyract EXTRA) were prepared. The specimens were stored in either water or artificial saliva with or without exposure to Listerine. The compressive and diametral tensile strength and Vickers hardness of these materials were tested at 24 hours, 1 week, 4 weeks and 12 weeks. Compressive and diametral tensile strength for FujiII LC and Fuji IX had increased at 12 weeks. A decrease was observed for Dyract EXTRA in the same period. No significant differences were observed between the storage media (P > 0.01). Vickers hardness values fluctuated during the testing period, with a pattern being consistent for each material. Storage of materials investigated for the period in this study resulted in superior compressive and diametral tensile strength for Fuji II LC and FujiIX. The opposite was true for Dyract EXTRA. Effects of time were found to be more pronounced than the media (P < 0.01). PMID:19839187

  17. Physical property comparison of 11 soft denture lining materials as a function of accelerated aging.

    PubMed

    Dootz, E R; Koran, A; Craig, R G

    1993-01-01

    Soft denture-lining materials are an important treatment option for patients who have chronic soreness associated with dental prostheses. Three distinctly different types of materials are generally used. These are plasticized polymers or copolymers, silicones, or polyphosphazene fluoroelastomer. The acceptance of these materials by patients and dentists is variable. The objective of this study is to compare the tensile strength, percent elongation, hardness, tear strength, and tear energy of eight plasticized polymers or copolymers, two silicones, and one polyphosphazene fluoroelastomer. Tests were run at 24 hours after specimen preparation and repeated after 900 hours of accelerated aging in a Weather-Ometer device. The data indicated a wide range of physical properties for soft denture-lining materials and showed that accelerated aging dramatically affected the physical and mechanical properties of many of the elastomers. No soft denture liner proved to be superior to all others. The data obtained should provide clinicians with useful information for selecting soft denture lining materials for patients. PMID:8455156

  18. Physical properties of the human head: mass, center of gravity and moment of inertia.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Zhang, Jiangyue; Baisden, Jamie L

    2009-06-19

    This paper presents a synthesis of biomedical investigations of the human head with specific reference to certain aspects of physical properties and development of anthropometry data, leading to the advancement of dummies used in crashworthiness research. As a significant majority of the studies have been summarized as reports, an effort has been made to chronologically review the literature with the above objectives. The first part is devoted to early studies wherein the mass, center of gravity (CG), and moment of inertia (MOI) properties are obtained from human cadaver experiments. Unembalmed and preserved whole-body and isolated head and head-neck experiments are discussed. Acknowledging that the current version of the Hybrid III dummy is the most widely used anthropomorphic test device in motor vehicle crashworthiness research for frontal impact applications for over 30 years, bases for the mass and MOI-related data used in the dummy are discussed. Since the development and federalization of the dummy in the United States, description of methods used to arrive at these properties form a part of the manuscript. Studies subsequent to the development of this dummy including those from the US Military are also discussed. As the head and neck are coupled in any impact, and increasing improvements in technology such as advanced airbags, and pre-tensioners and load limiters in manual seatbelts affect the kinetics of the head-neck complex, the manuscript underscores the need to pursue studies to precisely determine all the physical properties of the head. Because the most critical parameters (locations of CG and occipital condyles (OC), mass, and MOI) have not been determined on a specimen-by-specimen basis in any single study, it is important to gather these data in future experiments. These critical data will be of value for improving occupant safety, designing advanced restraint systems, developing second generation dummies, and assessing the injury mitigating

  19. Effects of biogenic silica on acoustic and physical properties of clay-rich marine sediments

    SciTech Connect

    Tribble, J.S.; Mackenzie, F.T.; Urmos, J.; O'Brien, D.K.; Manghnani, M.H. )

    1992-06-01

    The physical properties of marine sediments are influenced by compaction and diagenesis during burial. Changes in mineralogy, chemistry, density, porosity, and microfabric all affect a sediment's acoustic and electrical properties. Sediments from the Japan Trench illustrate the dependence of physical properties on biogenic silica content. Increased opal-A content is correlated with increased porosity and decreased grain density and compressional velocity. Variations with depth in opal-A concentration are therefore reflected in highly variable and, at times, inverse velocity-depth gradients. The diagenetic conversion of opal-A to opal-CT and finally to quartz was investigated at a site in the San Miguel Gap, California. Distinct changes in microfabric, particularly in the porosity distribution, accompany the diagenetic reactions and contribute to a sharp velocity discontinuity at the depth of the opal-A to opal-CT conversion. Evaluation of this reaction at several sites indicates a systematic dependence on temperature and age in clay-rich and moderately siliceous sediments. In ocean margin regions, sediments are buried rapidly, and opal-A may be converted to opal-CT in less than 10 m.y. Temperatures of conversion range from 30{degree} to 50{degree}C. Much longer times (>40 m.y.) are required to complete the conversion in open ocean deposits which are exposed to temperatures less than 15{degree}C. In the absence of silica diagenesis, velocity-depth gradients of most clay-rich and moderately siliceous sediments fall in the narrow range of 0.15 to 0.25 km/s/km which brackets the gradient (0.18 km/s/km) determined for a type pelagic clay section. Relationships such as these can be useful in unraveling the history of a sediment sequence, including the evolution with time of reservoir properties and seismic signatures.

  20. Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles.

    PubMed

    Espitia, Paula Judith Perez; Soares, Nilda de Fátima Ferreira; Teófilo, Reinaldo F; Coimbra, Jane Sélia dos Reis; Vitor, Débora M; Batista, Rejane Andrade; Ferreira, Sukarno Olavo; de Andrade, Nélio José; Medeiros, Eber Antonio Alves

    2013-04-15

    This work aimed to develop nanocomposite films of methyl cellulose (MC) incorporated with pediocin and zinc oxide nanoparticles (nanoZnO) using the central composite design and response surface methodology. This study evaluated film physical-mechanical properties, including crystallography by X-ray diffraction, mechanical resistance, swelling and color properties, microscopy characterization, thermal stability, as well as antimicrobial activity against Staphylococcus aureus and Listeria monocytogenes. NanoZnO and pediocin affected the crystallinity of MC. Load at break and tensile strength at break did not differ among films. NanoZnO and pediocin significantly affected the elongation at break. Pediocin produced yellowish films, but nano ZnO balanced this effect, resulting in a whitish coloration. Nano ZnO exhibited good intercalation in MC and the addition of pediocin in high concentrations resulted crater-like pits in the film surfaces. Swelling of films diminished significantly compared to control. Higher concentrations of Nano ZnO resulted in enhanced thermal stability. Nanocomposite films presented antimicrobial activity against tested microorganisms. PMID:23544529

  1. Education Majors' Expectations and Reported Experiences with Inquiry-Based Physics: Implications for Student Affect

    ERIC Educational Resources Information Center

    Gaffney, Jon D. H.

    2013-01-01

    To address a perennial need to provide K-8 teachers with a solid foundation in science, there are many physics content courses throughout the United States. One such course is Physics and Astronomy for Teachers (PAT), which relies heavily on active-learning strategies. Although PAT is successful in teaching physics content, students sometimes…

  2. Gender Differences in the High School and Affective Experiences of Introductory College Physics Students

    ERIC Educational Resources Information Center

    Hazari, Zahra; Sadler, Philip M.; Tai, Robert H.

    2008-01-01

    The disparity in persistence between males and females studying physics has been a topic of concern to physics educators for decades. Overall, while female students perform as well as or better than male students, they continue to lag considerably in terms of persistence. The most significant drop in females studying physics occurs between high…

  3. Education Affects Attitudes of Physical Therapy Providers toward People with Dementia

    ERIC Educational Resources Information Center

    Staples, William H.; Killian, Clyde B.

    2012-01-01

    A survey was sent to every skilled nursing home (N = 495) in Indiana regarding the demographics, education, and whether the severity of dementia impacts the attitudes of people in physical therapy practice. Physical therapists (PTs) and physical therapist assistants (PTAs) practicing in nursing homes spend considerable time (44.0%) working with…

  4. Physical processes affecting availability of dissolved silicate for diatom production in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Young, David K.; Kindle, John C.

    1994-01-01

    A passive tracer to represent dissolved silicate concentrations, with biologically realistic uptake kinetics, is successfully incorporated into a three-dimensional, eddy-resolving, ocean circulation model of the Indian Ocean. Hypotheses are tested to evaluate physical processes which potentially affect the availability of silicate for diatom production in the Arabian Sea. An alternative mechanism is offered to the idea that open ocean upwelling is primarily responsible for the high, vertical nutrient flux and consequent large-scale phytoplankton bloom in the northwestern Arabian Sea during the southwest monsoon. Model results show that dissolved silicate in surface waters available for uptake by diatoms is primarily influenced by the intensity of nearshore upwelling from soutwest monsoonal wind forcing and by the offshore advective transport of surface waters. The upwelling, which in the model occurs within 200 +/- 50 km of the coast, appears to be a result of a combination of coastal upwelling, Elkman pumping, and divergence of the coastal flow as it turns offshore. Localized intensifications of silicate concentrations appear to be hydrodynamically driven and geographically correlated to coastal topographic features. The absence of diatoms in sediments of the eastern Arabian Basin is consistent with modeled distributional patterns of dissolved silicate resulting from limited westward advection of upwelled coastal waters from the western continental margin of India and rapid uptake of available silicate by diatoms. Concentrations of modeled silicate become sufficiently low to become unavailable for diatom production in the eastern Arabian Sea, a region between 61 deg E and 70 deg E at 8 deg N on the south, with the east and west boundaries converging on the north at approximately 67 deg E, 20 deg N.

  5. Positive and negative affect schedule: psychometric properties for the Brazilian Portuguese version.

    PubMed

    Pires, Pedro; Filgueiras, Alberto; Ribas, Rodolfo; Santana, Cristina

    2013-01-01

    This study is about the validity and item analysis for the Positive and Negative Affect Schedule (PANAS), respectively through the Exploratory Factor Analysis (principal components method) and the Partial Credit Model (PCM). The scale has been largely used in areas ranging from clinical to social psychology since its release in 1988 by Watson, Clark, and Tellegen. In order to assess validity and item properties (Item Response Theory paradigm), this is study administered PANAS to 354 respondents, 115 male and 239 female subjects, with an average age of 29.5 (SD = 10,18). The results show PANAS's excellent psychometric properties, with consistent dimensions and reliable item functioning, considering the Rasch measurement paradigm expressed in the PCM as an Item Response Theory model for polytomous data. The study considers important cultural issues and the results support more cautious translations for scales as well as further studies concerned with cross-cultural differences on the perception of affect states. PMID:24230921

  6. Physical, proximate, functional and pasting properties of flour produced from gamma irradiated cowpea (Vigna unguiculata, L. Walp)

    NASA Astrophysics Data System (ADS)

    Darfour, B.; Wilson, D. D.; Ofosu, D. O.; Ocloo, F. C. K.

    2012-04-01

    Cowpeas are leguminous seeds widely produced and consumed in most developing countries of sub Saharan Africa. The aim of this study was to determine the physical, proximate, functional and pasting properties of flour obtained from gamma irradiated cowpea. Four cowpea cultivars were irradiated with gamma radiation at dose levels of 0.25, 0.5, 0.75, 1.0 and 1.5 kGy with the unirradiated cultivars serving as controls. The samples were hammer milled, sieved and stored at 4 °C for analysis. Physical, proximate, functional, pasting properties were determined using appropriate methods. In general, the irradiation dose applied to cowpea for insect control did not significantly affect the physical and proximate properties of the flour. However, significant increase (p<0.05) was achieved in paste bulk density, water and oil absorption capacities, foam capacities and least gelation concentrations of flour in general, which may be attributed to the irradiation. The radiation reduced the swelling power and water solubility index significantly. The peak temperature, peak viscosity and setback viscosity of the pastes were significantly (p<0.05) reduced while breakdown viscosity was significantly (p<0.05) increased by the radiation. It was established that the doses used on cowpea affected both the functional and pasting properties of the flour.

  7. Physical chemistry and membrane properties of two phosphatidylinositol bisphosphate isomers†

    PubMed Central

    Wang, Yu-Hsiu; Radhakrishnan, Ravi; Janmey, Paul A.

    2015-01-01

    The most highly charged phospholipids, polyphosphoinositides, are often involved in signaling pathways that originate at cell-cell and cell-matrix contacts, and different isomers of polyphosphoinositides have distinct biological functions that cannot be explained by separate highly specific protein ligand binding sites [Lemmon, Nature Reviews Molecular and Cell Biology, 2008, 9 99–111]. PtdIns(3,5)P2 is a low abundance phosphoinositide localized to cytoplasmic-facing membrane surfaces, with relatively few known ligands, yet PtdIns(3,5)P2 plays a key role in controlling membrane trafficking events and cellular stress responses that cannot be duplicated by other phosphoinositides [Dove et al., Nature, 1997, 390, 187–192; Michell, FEBS Journal, 2013, 280, 6281–6294]. Here we show that PtdIns(3,5)P2 is structurally distinct from PtdIns(4,5)P2 and other more common phospholipids, with unique physical chemistry. Using multiscale molecular dynamics techniques on the quantum level, single molecule, and in bilayer settings, we found that the negative charge of PtdIns(3,5)P2 is spread over a larger area, compared to PtdIns(4,5)P2, leading to a decreased ability to bind divalent ions. Additionally, our results match well with experimental data characterizing the cluster forming potential of these isomers in the presence of Ca2+ [Wang et al., Journal of the American Chemical Society, 2012, 134, 3387–3395; van den Bogaart et al., Nature, 2011, 479, 552–555]. Our results demonstrate that the different cellular roles of PtdIns(4,5)P2 and PtdIns(3,5)P2 in vivo are not simply determined by their localization by enzymes that produce or degrade them, but also by their molecular size, ability to chelate ions, and the partial dehydration of those ions, which might affect the ability of PtdIns(3,5)P2 and PtdIns(4,5)P2 to form phosphoinositide-rich clusters in vitro and in vivo. PMID:25901568

  8. Physical chemistry and membrane properties of two phosphatidylinositol bisphosphate isomers.

    PubMed

    Slochower, David R; Wang, Yu-Hsiu; Radhakrishnan, Ravi; Janmey, Paul A

    2015-05-21

    The most highly charged phospholipids, polyphosphoinositides, are often involved in signaling pathways that originate at cell-cell and cell-matrix contacts, and different isomers of polyphosphoinositides have distinct biological functions that cannot be explained by separate highly specific protein ligand binding sites [Lemmon, Nat. Rev. Mol. Cell Biol., 2008, 9, 99-111]. PtdIns(3,5)P2 is a low abundance phosphoinositide localized to cytoplasmic-facing membrane surfaces, with relatively few known ligands, yet PtdIns(3,5)P2 plays a key role in controlling membrane trafficking events and cellular stress responses that cannot be duplicated by other phosphoinositides [Dove et al., Nature, 1997, 390, 187-192; Michell, FEBS J., 2013, 280, 6281-6294]. Here we show that PtdIns(3,5)P2 is structurally distinct from PtdIns(4,5)P2 and other more common phospholipids, with unique physical chemistry. Using multiscale molecular dynamics techniques on the quantum level, single molecule, and in bilayer settings, we found that the negative charge of PtdIns(3,5)P2 is spread over a larger area, compared to PtdIns(4,5)P2, leading to a decreased ability to bind divalent ions. Additionally, our results match well with experimental data characterizing the cluster forming potential of these isomers in the presence of Ca(2+) [Wang et al., J. Am. Chem. Soc., 2012, 134, 3387-3395; van den Bogaart et al., Nature, 2011, 479, 552-555]. Our results demonstrate that the different cellular roles of PtdIns(4,5)P2 and PtdIns(3,5)P2in vivo are not simply determined by their localization by enzymes that produce or degrade them, but also by their molecular size, ability to chelate ions, and the partial dehydration of those ions, which might affect the ability of PtdIns(3,5)P2 and PtdIns(4,5)P2 to form phosphoinositide-rich clusters in vitro and in vivo. PMID:25901568

  9. Physical properties of rocks and aqueous fluids at conditions simulating near- and supercritical reservoirs

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried

    2016-04-01

    The growing interest in exploiting supercritical geothermal reservoirs calls for a thorough identification and understanding of physico-chemical processes occuring in geological settings with a high heat flow. In reservoir engineering, electrical sounding methods are common geophysical exploration and monitoring tools. However, a realistic interpretation of field measurements is based on the knowledge of both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. Thus, laboratory studies at simulated in-situ conditions provide a link between the field data and the material properties in the depth. The physico-chemical properties of fluids change dramatically above the critical point, which is for pure water 374.21 °C and 221.2 bar. In supercritical fluids mass transfer and diffusion-controlled chemical reactions are enhanced and cause mineral alterations. Also, ion mobility and ion concentration are affected by the change of physical state. All this cause changes in the electrical resistivity of supercritical fluids and may have considerable effects on the porosity and hydraulic properties of the rocks they are in contact with. While there are some datasets available for physical and chemical properties of water and single component salt solutions above their critical points, there exist nearly no data for electrical properties of mixed brines, representing the composition of natural geothermal fluids. Also, the impact of fluid-rock interactions on the electrical properties of multicomponent fluids in a supercritical region is scarcely investigated. For a better understanding of fluid-driven processes in a near- and supercritical geological environment, in the framework of the EU-funded FP7 program IMAGE we have measured (1) the electrical resistivity of geothermal fluids and (2) physical properties of fluid saturated rock samples at simulated in-situ conditions. The permeability and electrical

  10. Thermo-physical property models and effect on heat pipe modeling

    NASA Astrophysics Data System (ADS)

    Dhingra, Devakar

    Heat transfer devices find applications in various aspects of life. Be it residential, commercial or industrial application, efficient heat transfer is a challenge to all. Other than geometric design considerations and wick selection, the optimization of heat transfer in the heat pipe also depends on fluid selection. Heat pipe technology has proven to work efficiently with properly selected thermal fluid, from cryogenic temperatures to very high temperatures. Higher heat transfer ability through small temperature differences makes the heat pipe an efficient technology. Hence, it can be stated that selecting a proper working fluid enhances the heat transfer performance of a heat pipe. For selecting the working fluid, important thermo-physical properties to be considered are density, viscosity, surface tension, latent heat of vaporization and vapor saturation pressure at every working temperature. The operating range of the working fluid starts from the triple point and till the critical point. The performance of the working fluid is not optimum at both ends of the operating range of temperature. At critical temperature, it is impacted by low surface tension and latent heat of vaporization, whereas near the triple point low vapor density and high viscosity affects the performance. One of the first indices for evaluating the performance of the working fluid is called "Merit Number" This merit number considers a single pressure gradient, i.e. the liquid pressure drop. Later, substantial works have been done to implement the same idea in a system utilizing multiple pressure gradients (losses). In all the methods comparing the merit number of the fluids, the higher the merit number, better is the heat transfer capacity of the pipe. For theoretical calculations and geometrical design considerations, thermo-physical property data of the working fluid at every operating temperature is not available and if available, the reliability of this data is a reason of concern. The

  11. Effect of sucrose on physical properties of spray-dried whole milk powder.

    PubMed

    Ma, U V Lay; Ziegler, G R; Floros, J D

    2008-11-01

    Spray-dried whole milk powders were prepared from whole condensed milk with various sucrose concentrations (0%, 2.5%, 5%, 7.5%, and 10% w/w), and their glass transition temperature and some physical properties of importance in chocolate manufacture were evaluated. In milk powder samples, the glass transition temperature and free-fat content decreased in a nonlinear manner with sucrose addition. Moreover, increasing sucrose concentration reduced the formation of dents on the particle surface. Addition of sucrose in whole condensed milk increased linearly the apparent particle density and in a nonlinear manner the particle size of spray-dried milk powders. The particle size volume distribution of milk powders with the highest sucrose concentration differed from the log-normal distribution of the other samples due to the formation of large agglomerates. Neither vacuole volume, nor the amorphous state of milk powders was affected by sucrose addition. PMID:19021798

  12. Influence of physical properties of carrier on the performance of dry powder inhalers.

    PubMed

    Peng, Tingting; Lin, Shiqi; Niu, Boyi; Wang, Xinyi; Huang, Ying; Zhang, Xuejuan; Li, Ge; Pan, Xin; Wu, Chuanbin

    2016-07-01

    Dry powder inhalers (DPIs) offer distinct advantages as a means of pulmonary drug delivery and have attracted much attention in the field of pharmaceutical science. DPIs commonly contain micronized drug particles which, because of their cohesiveness and strong propensity to aggregate, have poor aerosolization performance. Thus carriers with a larger particle size are added to address this problem. However, the performance of DPIs is profoundly influenced by the physical properties of the carrier, particularly their particle size, morphology/shape and surface roughness. Because these factors are interdependent, it is difficult to completely understand how they individually influence DPI performance. The purpose of this review is to summarize and illuminate how these factors affect drug-carrier interaction and influence the performance of DPIs. PMID:27471671

  13. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    PubMed

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS. PMID:26593546

  14. Change in physical properties of pine bark and switchgrass substrates over time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternatives to pine bark for nursery crop substrates have been proposed, including the use of straw materials such as switchgrass. While straw substrates can be developed with suitable physical properties measured immediately after mixing, little is known about how the physical properties of straw...

  15. Mental Rolodexing: Senior Chemistry Majors' Understanding of Chemical and Physical Properties

    ERIC Educational Resources Information Center

    DeFever, Ryan S.; Bruce, Heather; Bhattacharyya, Gautam

    2015-01-01

    Using a constructivist framework, eight senior chemistry majors were interviewed twice to determine: (i) structural inferences they are able to make from chemical and physical properties; and (ii) their ability to apply their inferences and understandings of these chemical and physical properties to solve tasks on the reactivity of organic…

  16. Gender Differences in the High School and Affective Experiences of Introductory College Physics Students

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra; Sadler, Philip M.; Tai, Robert H.

    2008-10-01

    The disparity in persistence between males and females studying physics has been a topic of concern to physics educators for decades. Overall, while female students perform as well as or better than male students, they continue to lag considerably in terms of persistence. The most significant drop in females studying physics occurs between high school and college.2 Since most female physicists report that they became attracted to physics and decided to study it further while in high school, according to the International Study of Women in Physics,3 it is problematic that high school is also the stage at which females begin to opt out at much higher rates than males. Although half of the students taking one year of physics in high school are female, females are less likely than males to take a second or Advanced Placement (AP) physics course.4 In addition, the percentage of females taking the first physics course in college usually falls between 30% and 40%. In other words, although you may see gender parity in a first high school physics course, this parity does not usually persist to the next level of physics course. In addition, even if there is parity in a high school physics course, it does not mean that males and females experience the course in the same way. It is this difference in experience that may help to explain the drop in persistence of females.

  17. Outdoor temperature, precipitation, and wind speed affect physical activity levels in children: a longitudinal cohort study

    PubMed Central

    Edwards, Nicholas M.; Myer, Gregory D.; Kalkwarf, Heidi J.; Woo, Jessica G.; Khoury, Philip R.; Hewett, Timothy E.; Daniels, Stephen R.

    2015-01-01

    Objective Evaluate effects of local weather conditions on physical activity in early childhood. Methods Longitudinal prospective cohort study of 372 children, 3 years old at enrollment, drawn from a major US metropolitan community. Accelerometer-measured (RT3) physical activity was collected every 4 months over 5 years and matched with daily weather measures: day length, heating/cooling degrees (degrees mean temperature < 65°F or ≥ 65°F, respectively), wind, and precipitation. Mixed regression analyses, adjusted for repeated measures, were used to test the relationship between weather and physical activity. Results Precipitation and wind speed were negatively associated with total physical activity and moderate-vigorous physical activity (P<0.0001). Heating and cooling degrees were negatively associated with total physical activity and moderate-vigorous physical activity and positively associated with inactivity (all P<0.0001), independent of age, sex, race, BMI, day length, wind, and precipitation. For every 10 additional heating degrees there was a five-minute daily reduction in moderate-vigorous physical activity. For every additional 10 cooling degrees there was a 17-minute reduction in moderate-vigorous physical activity. Conclusions Inclement weather (higher/lower temperature, greater wind speed, more rain/snow) is associated with less physical activity in young children. These deleterious effects should be considered when planning physical activity research, interventions, and policies. PMID:25423667

  18. Soil physical properties: Key factors for successful reclamation of disturbed landscapes

    NASA Astrophysics Data System (ADS)

    Krümmelbein, Julia; Raab, Thomas

    2013-04-01

    The practice of open cast mining, e.g. for lignite, results in major landscape disturbances and especially affects soils because relocation and subsequent mixing of naturally developed soil horizons leads to areas with extremely altered soil properties compared to the undisturbed conditions. Various reclamation measures are applied to recover the reconstructed landscape for different land use options. Major parts of the post mining landscapes are used for agriculture, agroforestry or silviculture, the remaining voids of the coal mines fill successively with groundwater after mine closure and are or will be used mainly for touristic and leisure purposes. Small proportions of the post mining areas are left for natural succession, or habitats for endangered flora and fauna are initiated. In reclamation research, many studies have focused on soil chemical and biological constraints of post mining substrates and investigated factors such as unsuitable pH, in many cases very low pH, (poor) nutrient contents and (poor) biological activity. But the initial and developing soil physical parameters and functions are also key factors for the success of reclamation practices. The soil water and gas balance influence strongly the suitability of a site for the intended future land use. The mechanical stability of the soil determines the rigidity of the pore system against deforming forces and thereby the persistence of soil functions, such as water and air permeability over time. The amendment of unfavourable (initial) soil physical properties is in most cases more complex and time-consuming than e.g. optimization of pH or fertilization with nutrients. Moreover, regarding the suitability of a site e.g. as a habitat for plants or microorganisms, poor physical pre-conditions can turn substrates with perfect nutrient contents and composition and pH into infertile locations of very low productivity. We show results of an on-going field study where the effects of different

  19. Clustering of downhole physical property measurements at the Victoria property, Sudbury for the purpose of extracting lithological information

    NASA Astrophysics Data System (ADS)

    Mahmoodi, Omid; Smith, Richard

    2015-07-01

    Downhole density, gamma radioactivity, and magnetic susceptibility measurements in five drillholes at the Victoria property (located in the south range of the Sudbury basin) were analyzed to identify homogenous physical units. The fuzzy k-means clustering algorithm was used for unsupervised classification of the data. Four main physical units were identified in boreholes with distinct physical characteristics. Three of them were differentiated mainly based on different gamma ray and density values, and the fourth one was characterized by high magnetic susceptibility. Physical units were compared with rock types logged by geologists to determine which rock types corresponded to physical units. We found that there was a meaningful spatial and statistical correlation between physical units (characterized based on their physical property measurements) and lithological units as indicated by rock types at the Victoria property. However, not all rock types could be uniquely identified by the statistical classification, but a set of similar groups could be identified. Hence, identifying a group of rock types described by each physical unit can be used to translate physical data to/from lithological data. Alternatively, the physical log units could be used as a quality control procedure to check the geological logs, or to highlight areas where more careful logging or other investigation would be warranted.

  20. Modifications of histamine receptor signaling affect bone mechanical properties in rats.

    PubMed

    Folwarczna, Joanna; Janas, Aleksandra; Pytlik, Maria; Śliwiński, Leszek; Wiercigroch, Marek; Brzęczek, Anna

    2014-02-01

    Histamine receptors are expressed on bone cells and histamine may be involved in regulation of bone metabolism. The aim of the present study was to investigate the effects of loratadine (an H(1) receptor antagonist), ranitidine (an H(2) receptor antagonist) and betahistine (an H(3) receptor antagonist and H(1) receptor agonist) on bone mechanical properties in rats. Loratadine (5 mg/kg/day, po), ranitidine (50 mg/kg/day, po), or betahistine dihydrochloride (5 mg/kg/day, po), were administered for 4 weeks to non-ovariectomized and bilaterally ovariectomized (estrogen-deficient) 3-month-old rats, and their effects were compared with appropriate controls. Serum levels of bone turnover markers, bone mineralization and mechanical properties of the proximal tibial metaphysis, femoral diaphysis and femoral neck were studied. In rats with normal estrogen level, administration of loratadine slightly favorably affected mechanical properties of compact bone, significantly increasing the strength of the femoral neck (p < 0.05), and tending to increase the strength of the femoral diaphysis. Ranitidine did not significantly affect the investigated parameters, and betahistine decreased the strength of the tibial metaphysis (cancellous bone, p < 0.01). There were no significant effects of the drugs on serum bone turnover markers. In estrogen-deficient rats, the drugs did not significantly affect the investigated skeletal parameters. In conclusion, the effects of histamine H(1), H(2) and H(3) receptor antagonists on the skeletal system in rats were differential and dependent on estrogen status. PMID:24905313

  1. Physical, chemical, and mineral properties of the Polonnaruwa stones

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.; Samaranayake, Anil; Wickramarathne, Keerthi; Oldroyd, Anthony

    2013-09-01

    We report on the physical, chemical and mineral properties of a series of stone fragments recovered from the North Central Province of Sri Lanka following a witnessed fireball event on 29 December 2012. The stones exhibit highly porous poikilitic textures comprising of isotropic silica-rich/plagioclase-like hosts. Inclusions range in size and shape from mm-sized to smaller subangular grains frequently more fractured than the surrounding host and include ilmenite, olivine (fayalitic), quartz and accessory zircon. Bulk mineral compositions include accessory cristobalite, hercynite, anorthite, wuestite, albite, anorthoclase and the high pressure olivine polymorph wadsleyite, suggesting previous endurance of a shock pressure of ~20 GPa. Further evidence of shock is confirmed by the conversion of all plagioclase to maskelynite. Here the infrared absorption spectra in the region 580 cm-1 to 380 cm-1 due to the Si-O-Si or Si-O-Al absorption band shows a partial shift in the peak at 380 cm-1 towards 480 cm-1 indicating an intermediate position between crystalline and amorphous phase. Host matrix chemical compositions vary between samples, but all are rich in SiO2. Silica-rich melts display a heterogeneous K-enrichment comparable to that reported in a range of non-terrestrial material from rare iron meteorites to LL chondritic breccias and Lunar granites. Bulk chemical compositions of plagioclase-like samples are comparable to reported data e.g. Miller Ranger 05035 (Lunar), while Si-rich samples accord well with mafic and felsic glasses reported in NWA 1664 (Howardite) as well as data for fusion crust present in a variety of meteoritic samples. Triple oxygen isotope results show Δ17O = -0.335 with δ18O (‰ rel. SMOW) values of 17.816 +/- 0.100 and compare well with those of known CI chondrites and are within the range of CI-like (Meta-C) chondrites. Rare earth elemental abundances show a profound Europium anomaly of between 0.7 and 0.9 ppm while CI normalized REE

  2. Physical and orbital properties of β Pictoris b

    NASA Astrophysics Data System (ADS)

    Bonnefoy, M.; Marleau, G.-D.; Galicher, R.; Beust, H.; Lagrange, A.-M.; Baudino, J.-L.; Chauvin, G.; Borgniet, S.; Meunier, N.; Rameau, J.; Boccaletti, A.; Cumming, A.; Helling, C.; Homeier, D.; Allard, F.; Delorme, P.

    2014-07-01

    The intermediate-mass star β Pictoris is known to be surrounded by a structured edge-on debris disk within which a gas giant planet was discovered orbiting at 8-10 AU. The physical properties of β Pic b were previously inferred from broad- and narrow-band 0.9-4.8 μm photometry. We used commissioning data of the Gemini Planet Imager (GPI) to obtain new astrometry and a low-resolution (R ~ 35-39) J-band (1.12-1.35 μm) spectrum of the planet. We find that the planet has passed the quadrature. We constrain its semi-major axis to ≤10 AU (90% prob.) with a peak at 8.9+0.4-0.6 AU. The joint fit of the planet astrometry and the most recent radial velocity measurements of the star yields a planet dynamical mass lower than 20 MJup (≥96% prob.). The extracted spectrum of β Pic b is similar to those of young L1-1.5+1 dwarfs. We used the spectral type estimate to revise the planet luminosity to log (L/L⊙) = -3.90 ± 0.07. The 0.9-4.8 μm photometry and spectrum are reproduced for Teff = 1650 ± 150 K and a log g ≤ 4.7 dex by 12 grids of PHOENIX-based and LESIA atmospheric models. For the most recent system age estimate (21 ± 4 Myr), the bolometric luminosity and the constraints on the dynamical mass of β Pic b are only reproduced by warm- and hot-start tracks with initial entropies Si> 10.5 kB/baryon. These initial conditions may result from an inefficient accretion shock and/or a planetesimal density at formation higher than in the classical core-accretion model. Considering a younger age for the system or a conservative formation time for β Pic b does not change these conclusions. Appendices are available in electronic form at http://www.aanda.org

  3. Physical properties of the Saturn's rings with the opposition effect.

    NASA Astrophysics Data System (ADS)

    Deau, E.

    2012-04-01

    We use the Cassini/ISS images from the early prime mission to build lit phase curves data from 0.01 degrees to 155 degrees at a solar elevation of 23-20 degrees. All the main rings exhibit on their phase curves a prominent surge at small phase angles. We use various opposition effect models to explain the opposition surge of the rings, including the coherent backscattering, the shadow hiding and a combination of the two (Kawata & Irvine 1974 In: Exploration of the planetary system Book p441; Shkuratov et al. 1999, Icarus, 141, p132; Poulet et al. 2002 Icarus, 158, p224 ; Hapke et al. 2002 Icarus, 157, p523). Our results show that either the coherent backscattering alone or a combination of the shadow hiding and the coherent backscattering can explain the observations providing physical properties (albedo, filling factor, grain size) consistent with previous other studies. However, they disagree with the most recent work of Degiorgio et al. 2011 (EPSC-DPS Abstract #732). We think that their attempt to use the shadow hiding alone lead to unrealistic values of the filling factor of the ring particles layer. For example they found 10^-3 in one of the thickest regions of the C ring (a plateau at R=88439km with an optical depth tau=0.22). We totally disagree with their conclusions stating that these values are consistent for the C ring plateaux and did not found any references that are consistent with theirs, as they claimed. We believe that their unrealistic values originated from the assumptions of the models they used (Kawata & Irvine and Hapke), which are basically an uniform size distribution. Any model using an uniform size distribution force the medium to be very diluted to reproduce the opposition surge. Our modeling that uses a power law size distribution provides realistic values. All these results have been already published previously (http://adsabs.harvard.edu/abs/2007PhDT........25D) and are summarized in a forthcoming manuscript submitted to publication so

  4. Geochemical and physical properties of wetland soils at the Savannah River site

    SciTech Connect

    Dixon, K.L; Rogers, V.A.; Conner, S.P.; Cummings, C.L.; Gladden, J.B.; Weber, J.M.

    1996-05-01

    The Savannah River Site (SRS), located in Aiken, Allendale, and Barnwell Counties, South Carolina, is a nuclear production facility operated for the U.S. Department of Energy (DOE) by Westinghouse Savannah River Company (WSRC). To facilitate future human health and ecological risk assessments, treatability studies, remedial investigations, and feasibility studies for its wetland areas, SRS needs a database of background geochemical and physical properties of wetland soils. These data are needed for comparison to data collected from wetland soils that may have been affected by SRS operations. SRS contains 36,000 acres of wetlands and an additional 5,000 acres of bottom land soils subject to flooding. Recent studies of wetland soils near various waste units at SRS show that some wetlands have been impacted by releases of contaminants resulting from SRS operations (WSRC, 1992). Waste waters originating from the operations facilities typically have been discharged into seepage basins located in upland soils, direct discharge of waste water to wetland areas has been minimal. This suggests that impacted wetland areas have been affected indirectly as a result of transport mechanisms such as surface runoff, groundwater seeps, fluvial or sediment transport, and leaching. Looney et al. (1990) conducted a study to characterize the geochemical and physical properties of upland soils and shallow sediments on the SRS. A primary objective of the upland study was to collect the data needed to assess the qualitative and quantitative impacts of SRS operations on the environment. By comparing the upland soils data to data collected from waste units located in similar soils, SRS impacts could be assessed. The data were also intended to aid in selection of remediation alternatives. Because waste units at SRS have historically been located in upland areas, wetland soils were not sampled. (Abstract Truncated)

  5. Manipulation of the Self-Determined Learning Environment on Student Motivation and Affect within Secondary Physical Education

    ERIC Educational Resources Information Center

    Perlman, Dana

    2013-01-01

    Secondary physical education (PE) has become a popular area of inquiry because students are not meeting overarching goals of PE programs, are less motivated, and demonstrate negative affect while in class. As such, teachers and researchers are starting to examine pedagogical approaches that support student motivation as a means to alleviate some…

  6. Physical and Cognitive-Affective Factors Associated with Fatigue in Individuals with Fibromyalgia: A Multiple Regression Analysis

    ERIC Educational Resources Information Center

    Muller, Veronica; Brooks, Jessica; Tu, Wei-Mo; Moser, Erin; Lo, Chu-Ling; Chan, Fong

    2015-01-01

    Purpose: The main objective of this study was to determine the extent to which physical and cognitive-affective factors are associated with fibromyalgia (FM) fatigue. Method: A quantitative descriptive design using correlation techniques and multiple regression analysis. The participants consisted of 302 members of the National Fibromyalgia &…

  7. PHYSICAL PROPERTIES OF THE CIRCUMNUCLEAR STARBURST RING IN THE BARRED GALAXY NGC 1097

    SciTech Connect

    Hsieh, Pei-Ying; Matsushita, Satoki; Ho, Paul T. P.; Wu, Ya-Lin; Liu, Guilin; Oi, Nagisa

    2011-08-01

    We report high-resolution {sup 12}CO(J = 2-1), {sup 13}CO(J = 2-1), and {sup 12}CO(J = 3-2) imaging of the Seyfert 1/starburst ring galaxy NGC 1097 with the Submillimeter Array for the purpose of studying the physical and kinematic properties of the 1 kpc circumnuclear starburst ring. Individual star clusters as detected in the Hubble Space Telescope map of Pa{alpha} line emission have been used to determine the star formation rate (SFR), and are compared with the properties of the molecular gas. The molecular ring has been resolved into individual clumps at the giant molecular cloud association (GMA) scale of 200-300 pc in all three CO lines. The intersection between the dust lanes and the starburst ring, which is associated with the orbit-crowding region, is resolved into two physically/kinematically distinct features in the 1.''5 x 1.''0 (105 x 70 pc) {sup 12}CO(J = 2-1) map. The clumps associated with the dust lanes have broader line widths, higher surface gas densities, and lower SFRs, while the narrow line clumps associated with the starburst ring have opposite characteristics. A Toomre-Q value lower than unity at the radius of the ring suggests that the molecular ring is gravitationally unstable to fragmentation at GMA scale. The line widths and surface density of the gas mass of the clumps show an azimuthal variation related to the large-scale dynamics. The SFR, on the other hand, is not significantly affected by the dynamics, but has a correlation with the intensity ratio of {sup 12}CO (J = 3-2) and {sup 12}CO(J = 2-1), which traces the denser gas associated with star formation. Our resolved CO map, especially in the orbit-crowding region, observationally demonstrates for the first time that the physical/kinematic properties of GMAs are affected by the large-scale bar-potential dynamics in NGC 1097.

  8. Factors that affect the physical science career interest of female students: Testing five common hypotheses

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sonnert, Gerhard; Sadler, Philip M.

    2013-12-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using multivariate matching methods on national data drawn from the Persistence Research in Science and Engineering (PRiSE) project (n=7505), we test the following five commonly held beliefs regarding what factors might impact females’ physical science career interest: (i) having a single-sex physics class, (ii) having a female physics teacher, (iii) having female scientist guest speakers in physics class, (iv) discussing the work of female scientists in physics class, and (v) discussing the underrepresentation of women in physics class. The effect of these experiences on physical science career interest is compared for female students who are matched on several factors, including prior science interests, prior mathematics interests, grades in science, grades in mathematics, and years of enrollment in high school physics. No significant effects are found for single-sex classes, female teachers, female scientist guest speakers, and discussing the work of female scientists. However, discussions about women’s underrepresentation have a significant positive effect.

  9. Physical-Chemical Factors Affecting the Low Quality of Natural Water in the Khibiny Massif

    NASA Astrophysics Data System (ADS)

    Mazukhina, Svetlana; Masloboev, Vladimir; Chudnenko, Konstantin; Maksimova, Viktoriia; Belkina, Natalia

    2014-05-01

    One peculiarity of the Khibiny Massif is its spatial location. Rising over 1000 m above the surrounding hilly land and thus obstructing the passage of air masses, it promotes condensation and accumulation of surface and underground water. Annual precipitation here amounts to 600-700 mm in the valleys and up to 1600 mm on mountainous plateaus. Using this water for drinking and household purposes is problematic due to excess Al and F concentrations and high pH values. Now it is known that in its profile, the Massif is represented by three hydrogeological subzones: the upper (aerated), medium and lower ones. The upper subzone spreads throughout the Massif and is affected by the local drainage network and climatic conditions. The medium subzone is permanently saturated with underground water flowing horizontally to sites of discharge at the level of local river valleys and lakes. The fissure-vein water in the lower subzone is confined to tectonic fractures and faults in the so far underexplored, deeper parts of the Massif. Being abundant, this water ascends under high pressure. At places, water has been observed spurting from as deep as 700 m, and even 960 m. In the latter case, the temperature of ascending water was higher than 18 centigrade (Hydrogeology of the USSR, V. 27, 1971). This work was undertaken to reveal the nature of the low quality of water in the Khibiny by using physical-chemical modeling (software package Selector, Chudnenko, 2010). Processes of surface and underground water formation in the Khibiny were examined within a physical-chemical model (PCM) of the "water-rock-atmosphere-hydrogen" system. In a multi-vessel model used, each vessel represented a geochemical level of the process interpreted as spatiotemporal data - ξ (Karpov, 1981). The flow reactor consisted of 4 tanks. In the first tank, water of the Kuniok River (1000 L) interacted with atmosphere and an organic substance. The resulting solution proceeded to tanks 2-4 containing with

  10. Physical mechanisms affecting hot carrier-induced degradation in gallium nitride HEMTs

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shubhajit

    Gallium Nitride or GaN-based high electron mobility transistors (HEMTs) is currently the most promising device technology in several key military and civilian applications due to excellent high-power as well as high-frequency performance. Even though the performance figures are outstanding, GaN-based HEMTs are not as mature as some competing technologies, which means that establishing the reliability of the technology is important to enable use in critical applications. The objective of this research is to understand the physical mechanisms affecting the reliability of GaN HEMTs at moderate drain biases (typically VDS < 30 V in the devices considered here). The degradation in device performance is believed to be due to the formation or modification of charged defects near the interface by hydrogen depassivation processes (due to electron-activated hydrogen removal) from energetic carriers. A rate-equation describing the defect generation process is formulated based on this assumption. A combination of ensemble Monte-Carlo (EMC) simulation statistics, ab-initio density functional theory (DFT) calculations, and accelerated stress experiments is used to relate the candidate defects to the overall degradation behavior (VT and gm). The focus of this work is on the 'semi-ON' mode of transistor operation in which the degradation is usually observed to be at its highest. This semi-ON state is reasonably close to the biasing region of class-AB high power amplifiers, which are popular because of the combination of high efficiency and low distortion that is associated with this configuration. The carrier-energy distributions are obtained using an EMC simulator that was developed specifically for III-V HFETs. The rate equation is used to model the degradation at different operating conditions as well as longer stress times from the result of one short duration stress test, by utilizing the carrier-energy distribution obtained from EMC simulations for one baseline condition

  11. Experimental and numerical study of infiltration into arid soils with contrasting physical and textural properties

    NASA Astrophysics Data System (ADS)

    Gerke, Kirill; Edde, Ambre; Mallants, Dirk

    2013-04-01

    Dye infiltration tests were performed in the arid environments of the Ti Tree catchment, Central Australia. This area has a mean annual precipitation of 300 mm and is further known to have infrequent intensive rainfall events linked to short-term flooding. The mechanisms of groundwater recharge in these arid environments are generally unknown. The upper 1-2 m of soil play an important role in water redistribution with preferential flow often contributing to inhomogeneous moisture storage, soil water flow and groundwater recharge. Reducing uncertainty in recharge estimation thus requires a detailed study of water flow especially near the soil surface where heterogeneity may be enhanced by biological activity and geomorphological processes. Each of three infiltration tests involved application of 100 L of a mixed dye solution applied by using a standard 60-cm diameter ring infiltrometer under constant-head ponded conditions. After complete water infiltration several vertical soil sections were prepared in a soil block of approximately 1.5-2 m3. Staining patterns were photographed to provide evidence of preferential flow while numerous disturbed and undisturbed samples were collected and analysed in the laboratory to determine soil physical and hydraulic properties including saturated hydraulic conductivity, water retention curve, initial moisture content prior to dye application and bulk densities. Staining patterns in the top 30-40 cm were relatively homogeneous with some fingering. However, presence of a textural break (fine over coarse sand) hypothesized to represent a paleo-riverbed significantly affected redistribution of water, possibly acting as a capillary barrier. Measurements of soil physical properties and soil profile digital photos were used to build a 3D heterogeneous soil hydraulic property model in HYDRUS-3D. Model results for the infiltration tests were quantitatively and qualitatively compared to staining patterns obtained during field experiments

  12. Optical Properties of Materials in an Undergraduate Physics Curriculum

    NASA Astrophysics Data System (ADS)

    Blanco, Julio R.

    2006-03-01

    The need to introduce physics undergraduates to non-traditional subjects is ever increasing due to the job opportunities in interdisciplinary fields. The traditional upper-level curricula after the standard sequence in introductory calculus-based physics is challenging to many students. Adding more elective requirements is not in vogue with university administrators that must deal with a large influx of students with fewer resources. Experimental physics lends itself well to introduce students to interdisciplinary concepts. At California State University Northridge (CSUN), we have introduced modules in experimental physics to meet this need. All juniors and seniors are required to take two units of experimental physics per semester, a total of eight units. An experimental unit represents three contact hours per week. Each two units consist of two modules, each lasting seven and a half weeks, six hours per week. One of these modules exposes the students to thin film deposition by sputtering, imaging by scanning electron microscopy, and optical characterization using scanning ellipsometry. This early exposure to interdisciplinary applied physics motivates students and identifies difficulties with fundamental concepts.

  13. Role Playing in Physical Education to Teach in the Affective Domain

    ERIC Educational Resources Information Center

    Samalot-Rivera, Amaury

    2014-01-01

    Using role playing during physical education provides limitless opportunities for intervention and for the demonstration of personal and social qualities. The purpose of this article is to provide easy steps for implementing role playing as a strategy to teach social skills to students in the physical education setting.

  14. Barriers Affecting Physical Activity in Rural Communities: Perceptions of Parents and Children

    ERIC Educational Resources Information Center

    McWhinney, Sharon; McDonald, Andrea; Dawkins-Moultin, Lenna; Outley, Corliss; McKyer, E. Lisako; Thomas, Audrene

    2011-01-01

    A comprehensive understanding of the barriers inhibiting physical activity among children is critical in the fight against childhood obesity. This qualitative interview study examined parents' and children's perceptions of the barriers to physical activity in rural communities of low socioeconomic status. Parents and children concurred that the…

  15. Using Conceptual Metaphor and Functional Grammar to Explore How Language Used in Physics Affects Student Learning

    ERIC Educational Resources Information Center

    Brookes, David T.; Etkina, Eugenia

    2007-01-01

    This paper introduces a theory about the role of language in learning physics. The theory is developed in the context of physics students and physicists talking and writing about the subject of quantum mechanics. We found that physicists' language encodes different varieties of analogical models through the use of grammar and conceptual metaphor.…

  16. How Student Characteristics Affect Girls' and Boys' Verbal Engagement in Physics Instruction

    ERIC Educational Resources Information Center

    Jurik, Verena; Groschner, Alexander; Seidel, Tina

    2013-01-01

    This study investigated how student characteristics predict the nature of girls' and boys' verbal interactions with their teachers in physics classes. The sample included (N = 1378) students from 81 randomly selected high-school physics classrooms in Germany and the German-speaking part of Switzerland. At the beginning of the school year, the…

  17. Nature's amazing biopolymer: basic mechanical and hydrological properties of soil affected by plant exudates

    NASA Astrophysics Data System (ADS)

    Naveed, Muhammad; Roose, Tiina; Raffan, Annette; George, Timothy; Bengough, Glyn; Brown, Lawrie; Keyes, Sam; Daly, Keith; Hallett, Paul

    2016-04-01

    Plant exudates are known to have a very large impact on soil physical properties through changes in mechanical and hydrological processes driven by long-chain polysaccharides and surface active compounds. Whilst these impacts are well known, the basic physical properties of these exudates have only been reported in a small number of studies. We present data for exudates obtained from barley roots and chia seeds, incorporating treatments examining biological decomposition of the exudates. When these exudates were added to a sandy loam soil, contact angle and drop penetration time increased exponentially with increasing exudate concentration. These wetting properties were strongly correlated with both exudate density and zero-shear viscosity, but not with exudate surface tension. Water holding capacity and water repellency of exudate mixed soil tremendously increased with exudate concentration, however they were significantly reduced on decomposition when measured after 14 days of incubation at 16C. Mechanical stability greatly increased with increasing exudate amendment to soils, which was assessed using a rheological amplitude sweep test near saturation, at -50 cm matric potential (field capacity) using indentation test, and at air-dry condition using the Brazilian test. This reflects that exudates not only attenuate plant water stress but also impart mechanical stability to the rhizosphere. These data are highly relevant to the understanding and modelling of rhizosphere development, which is the next phase of our research.

  18. 3-D geometry and physical property of the Mega-Splay Fault in Nankai trough

    NASA Astrophysics Data System (ADS)

    Masui, R.; Tsuji, T.; Yamada, Y.; Environmental Resource; System Engineering laboratory

    2011-12-01

    The Nankai trough is a subduction zone, where the Philippine Sea plate is being subducted beneath southwest Japan at a rate of ~4-6.5 cm/y at an azimuth of ~300°-315°. A lot of operations have been done in Nankai, such as three-dimensional seismic reflection surveys and Deep Sea Drilling Project (DSDP), Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (IODP). They revealed that there is a large splay fault, referred to as 'Mega-Splay'. The Mega-Splay Fault has caused a series of catastrophic earthquakes and submarine landslides, which may have led to TSUNAMI. Since fault development history may have affected the geometry of the Mega-Splay Fault and physical property within the fault zone, they need to be examined in detail. In this research, we used 3-D pre-stack depth migration (PSDM), 3-D pre-stack time migration (PSTM) and P-wave velocity in C0004B well (Logging data), in order to interpret 3-D structure of Mega-Splay Fault. The analysis in this research is basically divided into two parts. One is structural interpretation of Splay Fault, based on the high amplitude reflection surface on seismic profiles. The other part is acoustic impedance inversion (AI inversion), in which we inverted seismic waveform into physical property (in this study, acoustic impedance), with the P-wave velocity data at C0004B near Mega-Splay Fault. The 3-D PSDM (or PSTM) clearly images details of Splay Fault, with good continuity of reflections along the fault. It is possible on each seismic profile to trace the high amplitude lines, where rock-properties significantly change. Since Mega-Splay Fault has 45-59m width along the wells, we interpreted the upper limit and the lower limit of the Mega-Splay Fault, based on the high amplitude surfaces along 3-D PSDM. Our interpretation shows that the width of Mega-Splay Fault has variation along the fault, and the plan geometry of the fault toe has a salient at the middle of the 3D box area, suggesting the fault could be

  19. Dynamic Material Properties of the Heat-Affected Zone (haz) in Resistance SPOT Welding

    NASA Astrophysics Data System (ADS)

    Ha, Ji-Woong; Song, Jung-Han; Huh, Hoon; Lim, Ji-Ho; Park, Sung-Ho

    This paper is concerned with a methodology to identify the dynamic material properties of the heat-affected zone (HAZ) near the base metal in a resistance spot weld process at various strain rates. In order to obtain the dynamic material properties of the HAZ in the spot-welded steel sheet, specimens are prepared to have similar material properties, hardness and microstructure to the actual HAZ. Such thermally simulated specimens are fabricated with the material thermal cycle simulator (MTCS) and compared with the real one for the hardness and microstructure. Dynamic tensile tests are then conducted with a high speed material testing machine. Stress-strain curves of the thermally simulated HAZ are obtained at various strain rates ranged from 0.001/sec to 100/sec. Obtained material properties are applied to the finite element analysis of the spot-welded tensile-shear specimen in order to verify validity of the proposed testing methodology and obtained results. Analysis results demonstrate that the material properties obtained are appropriate for the FE analysis of spot-welded specimens.

  20. Stress in Context: Morpho-Syntactic Properties Affect Lexical Stress Assignment in Reading Aloud

    PubMed Central

    Spinelli, Giacomo; Sulpizio, Simone; Primativo, Silvia; Burani, Cristina

    2016-01-01

    Recent findings from English and Russian have shown that grammatical category plays a key role in stress assignment. In these languages, some grammatical categories have a typical stress pattern and this information is used by readers. However, whether readers are sensitive to smaller distributional differences and other morpho-syntactic properties (e.g., gender, number, person) remains unclear. We addressed this issue in word and non-word reading in Italian, a language in which: (1) nouns and verbs differ in the proportion of words with a dominant stress pattern; (2) information specified by words sharing morpho-syntactic properties may contrast with other sources of information, such as stress neighborhood. Both aspects were addressed in two experiments in which context words were used to induce the desired morpho-syntactic properties. Experiment 1 showed that the relatively different proportions of stress patterns between grammatical categories do not affect stress processing in word reading. In contrast, Experiment 2 showed that information specified by words sharing morpho-syntactic properties outweighs stress neighborhood in non-word reading. Thus, while general information specified by grammatical categories may not be used by Italian readers, stress neighbors with morpho-syntactic properties congruent with those of the target stimulus have a primary role in stress assignment. These results underscore the importance of expanding investigations of stress assignment beyond single words, as current models of single-word reading seem unable to account for our results. PMID:27445910

  1. Stress in Context: Morpho-Syntactic Properties Affect Lexical Stress Assignment in Reading Aloud.

    PubMed

    Spinelli, Giacomo; Sulpizio, Simone; Primativo, Silvia; Burani, Cristina

    2016-01-01

    Recent findings from English and Russian have shown that grammatical category plays a key role in stress assignment. In these languages, some grammatical categories have a typical stress pattern and this information is used by readers. However, whether readers are sensitive to smaller distributional differences and other morpho-syntactic properties (e.g., gender, number, person) remains unclear. We addressed this issue in word and non-word reading in Italian, a language in which: (1) nouns and verbs differ in the proportion of words with a dominant stress pattern; (2) information specified by words sharing morpho-syntactic properties may contrast with other sources of information, such as stress neighborhood. Both aspects were addressed in two experiments in which context words were used to induce the desired morpho-syntactic properties. Experiment 1 showed that the relatively different proportions of stress patterns between grammatical categories do not affect stress processing in word reading. In contrast, Experiment 2 showed that information specified by words sharing morpho-syntactic properties outweighs stress neighborhood in non-word reading. Thus, while general information specified by grammatical categories may not be used by Italian readers, stress neighbors with morpho-syntactic properties congruent with those of the target stimulus have a primary role in stress assignment. These results underscore the importance of expanding investigations of stress assignment beyond single words, as current models of single-word reading seem unable to account for our results. PMID:27445910

  2. Physical properties of asteroid dust bands and their sources

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Vokrouhlický, David; Bottke, William F.; Sykes, Mark

    2006-03-01

    Disruptive collisions in the main belt can liberate fragments from parent bodies ranging in size from several micrometers to tens of kilometers in diameter. These debris bodies group at initially similar orbital locations. Most asteroid-sized fragments remain at these locations and are presently observed as asteroid families. Small debris particles are quickly removed by Poynting-Robertson drag or comminution but their populations are replenished in the source locations by collisional cascade. Observations from the Infrared Astronomical Satellite (IRAS) showed that particles from particular families have thermal radiation signatures that appear as band pairs of infrared emission at roughly constant latitudes both above and below the Solar System plane. Here we apply a new physical model capable of linking the IRAS dust bands to families with characteristic inclinations. We use our results to constrain the physical properties of IRAS dust bands and their source families. Our results indicate that two prominent IRAS bands at inclinations ≈2.1° and ≈9.3° are byproducts of recent asteroid disruption events. The former is associated with a disruption of a ≈30-km asteroid occurring 5.8 Myr ago; this event gave birth to the Karin family. The latter came from the breakup of a large >100-km-diameter asteroid 8.3 Myr ago that produced the Veritas family. Using an N-body code, we tracked the dynamical evolution of ≈10 6 particles, 1 μm to 1 cm in diameter, from both families. We then used these results in a Monte Carlo code to determine how small particles from each population undergo collisional evolution. By computing the thermal emission of particles, we were able to compare our results with IRAS observations. Our best-fit model results suggest the Karin and Veritas family particles contribute by 5-9% in 10-60-μm wavelengths to the zodiacal cloud's brightness within 50° latitudes around the ecliptic, and by 9-15% within 10° latitudes. The high brightness of

  3. Lunar physical properties from analysis of magnetometer data

    NASA Technical Reports Server (NTRS)

    Daily, W. D.

    1979-01-01

    The electromagnetic properties of the lunar interior are discussed with emphasis on (1) bulk, crustal, and local anomalous conductivity; (2) bulk magnetic permeability measurements, iron abundance estimates, and core size limits; (3) lunar ionosphere and atmosphere; and (4) crustal magnetic remanence: scale size measurements and constraints on remanence origin. Appendices treat the phase relationship between the energetic particle flux modulation and current disc penetrations in the Jovian magnetosphere (Pioneer 10 inbound) theories for the origin of lunar magnetism; electrical conductivity anomalies associated with circular lunar maria; electromagnetic properties of the Moon; Mare Serenitatis conductivity anomaly detected by Apollo 16 and Lunokhod 2 magnetometers; and lunar properties from magnetometer data: effects of data errors.

  4. Selection and Physical Properties of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Fang, G. W.

    2014-09-01

    Extremely Red Objects (EROs) and BzKs continue to attract considerable interest. It has been suggested that they may be the direct progenitors of present-day massive E/S0 galaxies, and can provide crucial constraints on the current galaxy formation and evolution models. Therefore, the key question is to measure the relative fraction of OGs (old galaxies) and DGs (young, and dusty starburst galaxies) in the sample of EROs. Many groups have been currently investigating the fractions of these two ERO populations using a variety of observational approaches, but the fraction of OGs and DGs from different surveys is different. In the meantime, a number of observations suggest that the epoch of z˜2 also plays an important role in galaxy formation and evolution for various reasons: the cosmic star formation rate density (SFRD) begins to drop at z˜2 from a flat plateau at higher redshifts; the morphological type mix of field galaxies changes remarkably at z˜2; the number density of QSOs has a peak at z˜2; and about 50% to 70% of the stellar mass assembly of galaxies took place in the redshift range 1physical properties of passive and star-forming galaxies at z˜2 in the AEGIS field, and (3) the mid-infrared spectroscopy and multi-wavelength study of ultraluminous infrared galaxies (ULIRGs) at z˜2 in the AEGIS field. Chapter 1 gives a brief review on the research progresses of EROs at z˜1, BzKs at z˜2, and ULIRGs at z˜2, respectively. In Chapter 2 we present a quantitative study of the classification of EROs in the UDF and COSMOS field. Our sample includes 5264 (COSMOS, K_{Vega} ≤19.2) and 24 EROs (UDF, K_{Vega}≤22.0) with (i-K)_{AB}≥2.45. Using the fitting method of spectral energy distribution (SED), [3.6]-[8.0] color, and the nonparametric measures of galaxy morphology, we classify EROs into two classes: DGs and OGs. We find

  5. Multiple Perspectives in a Rock: How Physical Geography Is Affected by Human Perceptions.

    ERIC Educational Resources Information Center

    Obenchain, Kathryn M.

    2000-01-01

    Discusses the importance of teaching geography, focusing on the multiple perspectives associated with a physical place. Provides suggestions for exploring these perspectives at the primary, intermediate, and high school levels in a geography-centered social studies classroom. (CMK)

  6. Mechanical Properties and Microstructural Evolution of Simulated Heat-Affected Zones in Wrought Eglin Steel

    NASA Astrophysics Data System (ADS)

    Leister, Brett M.; DuPont, John N.; Watanabe, Masashi; Abrahams, Rachel A.

    2015-12-01

    A comprehensive study was performed to correlate the mechanical properties and microstructural evolution in the heat-affected zone of Eglin steel. A Gleeble 3500 thermo-mechanical simulator was used to simulate weld thermal cycles with different peak temperatures at a heat input of 1500 J/mm. These samples underwent mechanical testing to determine strength and toughness in the as-welded and post-weld heat-treated conditions. The inter-critical heat-affected zone (HAZ) had the lowest strength following thermal simulation, while the fine-grain and coarse-grain heat-affected zone exhibited increased strength when compared to the inter-critical HAZ. The toughness of the heat-affected zone in the as-simulated condition is lower than that of the base metal in all regions of the HAZ. Post-weld heat treatments (PWHTs) increased the toughness of the HAZ, but at the expense of strength. In addition, certain combinations of PWHTs within specific HAZ regions exhibited low toughness caused by tempered martensite embrittlement or intergranular failure. Synchrotron X-ray diffraction data have shown that Eglin steel has retained austenite in the fine-grain HAZ in the as-simulated condition. In addition, alloy carbides (M23C6, M2C, M7C3) have been observed in the diffraction spectra for the fine-grain and coarse-grain HAZ following a PWHT of 973 K (700 °C)/4 hours.

  7. Effect of irrigation and nutrient on physical properties of safflower seeds

    NASA Astrophysics Data System (ADS)

    Feyzollahzadeh, Maziar; ModaresMotlagh, Asaad; Nikbakht, Ali M.

    2014-03-01

    The effect of irrigation and nutrient treatments on physical properties of safflower seeds was investigated. Physical properties of safflower seeds were determined at a moisture content of 7% w.b. The parameters determined at different treatments were: size, geometric mean diameter, sphericity, surface area, mass, volume, bulk and true densities, porosity, and static and dynamic coefficient of friction. The results showed a better effect of the use of organic fertilizers in comparison with chemical ones. The results showed that nutrient and irrigation treatments had a significant effect on most of the physical properties of safflower seeds at p<0.01.

  8. Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract.

    PubMed

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-02-15

    The use of synthetic petroleum based packaging films caused serious environmental problems due to their difficulty in recycling and poor biodegradability. Therefore, present study was aimed to develop natural biopolymer-based antimicrobial packaging films as an alternative for the synthetic packaging films. As a natural antimicrobial agent, grapefruit seed extract (GSE) has been incorporated into agar to prepare antimicrobial packaging film. The films with different concentrations of GSE were prepared by a solvent casting method and the resulting composite films were examined physically and mechanically. In addition, the films were characterized by FE-SEM, XRD, FT-IR and TGA. The incorporation of GSE caused increase in color, UV barrier, moisture content, water solubility and water vapor permeability, while decrease in surface hydrophobicity, tensile strength and elastic modulus of the films. As the concentration of GSE increased from 0.6 to 13.3 μg/mL, the physical and mechanical properties of the films were affected significantly. The addition of GSE changed film microstructure of the film, but did not influence the crystallinity of agar and thermal stability of the agar-based films. The agar/GSE films exhibited distinctive antimicrobial activity against three test food pathogens, such as Listeria monocytogenes, Bacillus cereus and Escherichia coli. These results suggest that agar/GSE films have potential to be used in an active food packaging systems for maintaining food safety and extending the shelf-life of the packaged food. PMID:24507339

  9. Physical Properties of Various Materials Relevant to Granular Flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the ubiquitous nature of granular materials, ranging from natural avalanches to industrial storage and processing operations, interest in quantifying and predicting the dynamics of granular flow continues to increase. The objective of this study was to investigate various physical proper...

  10. How Genetics Might Affect Real Property Rights: Currents in Contemporary Bioethics.

    PubMed

    Rothstein, Mark A; Rothstein, Laura

    2016-03-01

    New developments in genetics could affect a variety of real property rights. Mortgage lenders, mortgage insurers, real estate sellers, senior living centers, retirement communities, or other parties in residential real estate transactions begin requiring predictive genetic information as part of the application process. One likely use would be by retirement communities to learn an individual's genetic risk for Alzheimer's disease. The federal Fair Housing Act prohibits discrimination based on disability, but it is not clear that it would apply to genetic risk assessments. Only California law explicitly applies to this situation and there have been no reported cases. PMID:27256137

  11. On physical properties of planetary surfaces studied by modeling radar scattering

    NASA Astrophysics Data System (ADS)

    Virkki, Anne; Muinonen, Karri

    2015-11-01

    After decades of post-discovery characterization and orbital refinement of near-Earth objects using planetary radars, extensive literature describing the radar scattering properties of various objects of the Solar System has become available. At the same time, there is a shortage of work on what the observed values imply about the physical properties of the planetary surfaces. Our goal is to fill part of this gap.We investigate, which physical properties of a planetary surface or small body affect the radar echo and how. All of the work will be carried out by modeling electromagnetic scattering with the primary focus in the backscattering direction. As all models are only simplifications of the real world, it is necessary to study, which models are the best analogies to observations. Moreover, the number of scattering scenarios is near infinite, but numerical resources are limited. Due to the limitations of specific codes, several different codes are used.The simulations reveal, in the backscattering direction, polarization enhancement at certain bands of sizes and refractive indices. By studying spherical inhomogeneous particles, we found that the electric permittivity defines the phase shift caused by the scatterer, and hence, the depolarizing capability of the scatterer. By using large, irregular particles as the scatterers, a systematic effect of the absorption on the radar observables can be seen, which leads to a semi-analytic, novel form of the radar scattering laws. By using small (wavelength-scale) irregular particles as internal or external diffuse medium inside or on the surface of a very large particle, radar scattering can be simulated very realistically. The results mainly support the current understanding of the effects of the surface geometry, the electric permittivity, and multiple scattering. We also explain how the electric permittivity can affect the radar albedo and circular-polarization ratio by phase shift and absorption. In addition, we show

  12. Physical properties and bioactive constituents of powdered mixtures and drinks prepared with cocoa and various sweeteners.

    PubMed

    Belscak-Cvitanović, Ana; Benković, Maja; Komes, Drazenka; Bauman, Ingrid; Horzić, Dunja; Dujmić, Filip; Matijasec, Matea

    2010-06-23

    In the present study the physical properties of powdered cocoa drink mixtures prepared from two cocoa powders with various fat contents and different sweeteners, as well as the bioactive content and sensory properties of cocoa drinks prepared from them, were investigated. Particle size and bulk density of the used sugars and sweeteners, as well as the formulated mixtures, were determined and their influence on cohesion index was evaluated. To compare the content of polyphenols in the formulated cocoa drink mixtures, UV-vis spectrophotometric methods were applied. Antioxidant capacity of cocoa drinks was evaluated by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), and ferric reducing/antioxidant power (FRAP) assays. The analyzed cocoa drinks prepared from cocoa powder and different sugars or sweeteners delivered a substantial content of cocoa antioxidants, whereas the content and the type of sugar or sweetener did not affect the polyphenolic constituents of the prepared cocoa mixtures. Cocoa powder mixtures prepared with the cocoa powder containing higher fat content (16-18%) generally provided lower total polyphenol, total flavonoid, flavan-3-ol, and proanthocyanidin contents, compared to the mixtures prepared with cocoa containing lower fat content (10-12%). Total phenol content of cocoa drinks prepared from experimental mixtures ranged from 320.45 to 480.45 mg of GAE/L, whereas the ranking of the antioxidant capacities varied depending on the used assay, and the fat content of cocoa powder did not affect the antioxidant capacity of cocoa mixtures. As determined, the addition of sugar to cocoa powder increases the solubility and dispersibility of the mixtures; on the basis of their cohesion index all mixtures can be classified as very cohesive or hardened/extremely cohesive. Results of the sensory evaluation, using the 9-point hedonic scale, showed that there was a preference for the cocoa drinks made

  13. Investigation of Demographic Properties and Motivation Factors of Physics Teachers

    ERIC Educational Resources Information Center

    Guzel, Hatice

    2011-01-01

    Scientific and technological developments resulted in an increase in the requirement of education in the society. In addition to this, the expectations from teachers differed and the need for more qualified teachers also increased. One of the factors affecting the quality of teachers is their motivation. In this research, it was aimed to reveal…

  14. Physical properties of Ce-TZP at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Han, Y. M.; Chen, Z.; Zhou, M.; Huang, R. J.; Huang, C. J.; Li, L. F.

    2014-01-01

    Electrical insulators, which are used to insulate cryogenic supply lines and conductor windings, are critical units in superconducting TOKAMAK magnets. Electrical insulators used in superconducting magnets fall into axial and radial insulators. These insulators can be made from glass ribbon epoxy densification and have been used in the Experiment Advanced Superconducting Tokamak (EAST). The properties of Ce-TZP can satisfy the requirement of electrical insulators. In this paper, thermal conductivity, mechanical properties and coefficient of thermal expansion of Ce-TZP have been investigated at cryogenic temperatures. Results indicate that the Ce-TZP shows better properties than epoxy and it demonstrates that the Ce-TZP can be used as insulation material in superconducting magnets.

  15. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

    PubMed

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. PMID:23768605

  16. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    framework is facilitated by the nanometer-sized dimensions of the materials, which leads to accommodation of strain without amorphization. The topotactic approach demonstrated here indicates not just novel intercalation chemistry accessible at nanoscale dimensions but also suggests a facile synthetic route to ternary vanadium oxide bronzes (MxV2O 5) exhibiting intriguing physical properties that range from electronic phase transitions to charge ordering and superconductivity.

  17. Effective Interaction Potentials and Physical Properties of Complex Plasmas

    SciTech Connect

    Ramazanov, T. S.; Dzhumagulova, K. N.; Gabdullin, M. T.; Omarbakiyeva, Y. A.

    2009-11-10

    Microscopic, thermodynamic and transport properties of complex plasmas are investigated on the basis of effective potentials of interparticle interaction. These potentials take into account correlation effects and quantum-mechanical diffraction. Plasma composition, thermodynamic functions of hydrogen and helium plasmas are obtained for a wide region of coupling parameter. Collision processes in partially ionized plasma are considered; some kinetic characteristics such as phase shift, scattering cross section, bremsstrahlung cross section and absorption coefficient are investigated. Dynamic and transport properties of dusty plasma are studied by computer simulation method of the Langevin dynamics.

  18. Order-of-magnitude physics of neutron stars. Estimating their properties from first principles

    NASA Astrophysics Data System (ADS)

    Reisenegger, Andreas; Zepeda, Felipe S.

    2016-03-01

    We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of "everyday" matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties.

  19. Viscoelastic, physical, and bio-degradable properties of dermal scaffolds and related cell behaviour.

    PubMed

    Sharma, Vaibhav; Patel, Nimesha; Kohli, Nupur; Ravindran, Nivedita; Hook, Lilian; Mason, Chris; García-Gareta, Elena

    2016-01-01

    Dermal scaffolds promote healing of debilitating skin injuries caused by burns and chronic skin conditions. Currently available products present disadvantages and therefore, there is still a clinical need for developing new dermal substitutes. This study aimed at comparing the viscoelastic, physical and bio-degradable properties of two dermal scaffolds, the collagen-based and clinically well established Integra(®) and a novel fibrin-based dermal scaffold developed at our laboratory called Smart Matrix(®), to further evaluate our previous published findings that suggested a higher influx of cells, reduced wound contraction and less scarring for Smart Matrix(®) when used in vivo. Rheological results showed that Integra(®) (G'  =  313.74 kPa) is mechanically stronger than Smart Matrix(®) (G'  =  8.26 kPa), due to the presence of the silicone backing layer in Integra(®). Micro-pores were observed on both dermal scaffolds, although nano-pores as well as densely packed nano-fibres were only observed for Smart Matrix(®). Average surface roughness was higher for Smart Matrix(®) (Sa  =  114.776 nm) than for Integra(®) (Sa  =  75.565 nm). Both scaffolds possess a highly porous structure (80-90%) and display a range of pore micro-sizes that represent the actual in vivo scenario. In vitro proteolytic bio-degradation suggested that Smart Matrix(®) would degrade faster upon implantation in vivo than Integra(®). For both scaffolds, the enzymatic digestion occurs via bulk degradation. These observed differences could affect cell behaviour on both scaffolds. Our results suggest that fine-tuning of scaffolds' viscoelastic, physical and bio-degradable properties can maximise cell behaviour in terms of attachment, proliferation and infiltration, which are essential for tissue repair. PMID:27586397

  20. Physical properties of unacetylated chromatin as examined by magnetic tweezers

    NASA Astrophysics Data System (ADS)

    McGill, Kerry; Dunlap, David; Lucchesi, John

    2011-10-01

    As the source of genetic material, DNA is involved in a variety of biological processes like transcription, cell replication, and more. In these processes, DNA is manipulated into different structures and is subjected to different levels of physical force on a molecular scale. When tension is applied to one hierarchical structure called chromatin, it appears to behave like a Hookian spring. The base component of chromatin is a nucleosome, which is constructed when DNA coils around octamers of histone proteins. The histones can become acetylated---a chemical process in which an acetyl functional group attaches to amino acids of the histones, often lysines. Acetylation may loosen chromatin's coils and therefore lower the amount of tension required to stretch the chromatin. Comparing the levels of tension required to stretch acetylated chromatin could reveal, directly, physical differences in the chromatin fiber that bear ion the function of the DNA molecule. Work presented will be the investigation of unacetylated chromatin.

  1. Informal science participation positively affects the communication and pedagogical skills of university physics students

    NASA Astrophysics Data System (ADS)

    Hinko, Kathleen; Finkelstein, Noah

    2013-04-01

    Many undergraduate and graduate physics students choose to participate in an informal science program at the University of Colorado Boulder (Partnerships for Informal Science Education in the Community (PISEC)). They coach elementary and middle school students in inquiry-based physics activities during weekly, afterschool sessions. Observations from the afterschool sessions, field notes from the students, and pre/post surveys are collected. University students are also pre/post- videotaped explaining a textbook passage on a physics concept to an imagined audience for the Communications in Everyday Language assessment (CELA). We present findings from these data that indicate informal experiences improve the communication and pedagogical skills of the university student as well as positively influence their self-efficacy as scientific communicators and teachers.

  2. PHYSICAL PROPERTIES OF EXTRUDED AND INJECTION MOLDED CORN GLUTEN MEAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was performed to investigate the compounding of corn gluten meal (CGM) and decanoic acid and to evaluate their mechanical properties. The mixture of CGM and 30% decanoic acid was compounded in a twin screw extruder, followed by injection molding. Scanning electron microscopy (SEM), tens...

  3. Physical properties of epoxy resin/titanium dioxide nanocomposites

    SciTech Connect

    Polyzos, Georgios; Tuncer, Enis; Sauers, Isidor; More, Karren Leslie

    2011-01-01

    A polymeric nanocomposite system (nanodielectric) was fabricated, and its mechanical properties were determined. The fabricated nanocomposite was composed of low concentrations of monodispersed titanium dioxide (TiO{sub 2}) nanoparticles and an epoxy resin specially designed for cryogenic applications. The monodispersed TiO{sub 2} nanoparticles were synthesized in an aqueous solution of titanium chloride and polyethylene glycol and subsequently dispersed in a commercial-grade epoxy resin (Araldite{reg_sign} 5808). Nanocomposite thin sheets were prepared at several weight fractions of TiO{sub 2}. The morphology of the composites, determined by transmission electron microscopy, showed that the nanoparticles aggregated to form particle clusters. The influence of thermal processing and the effect of filler dispersion on the structure-property relationships were identified by differential scanning calorimetry and dynamic mechanical analysis at a broad range of temperatures. The effect of the aggregates on the electrical insulation properties was determined by dielectric breakdown measurements. The optical properties of the nanocomposites and their potential use as filters in the ultraviolet-visible (UV-vis) range were determined by UV-vis spectroscopy.

  4. PHYSICAL AND ENGINEERING PROPERTIES OF HAZARDOUS INDUSTRIAL WASTES AND SLUDGES

    EPA Science Inventory

    This report presents the results of a laboratory testing program to investigate the properties of raw and chemically fixed hazardous industrial wastes and flue gas desulfurization (FGD) sludges. Specimens of raw and fixed sludges were subjected to a variety of tests commonly used...

  5. Program Gives Data On Physical Properties Of Hydrogen

    NASA Technical Reports Server (NTRS)

    Roder, H. M.; Mccarty, R. D.; Hall, W. J.

    1994-01-01

    TAB II computer program provides values of thermodynamic and transport properties of hydrogen in useful format. Also, provides values for equilibrium hydrogen and para-hydrogen. Program fast, moderately accurate, and operates over wide ranges of input variables. Written in FORTRAN 77.

  6. Synthesis and physical properties of new estolide esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oil-based oils usually fail to meet the rigorous demands of industrial lubricants by not having acceptable low temperature properties, pour point (PP) and/or cloud point (CP). The oleic estolide was esterified with a series of 16 different alcohols that were either branched or straight-cha...

  7. Physical property measurements of doped cesium iodide crystals

    NASA Technical Reports Server (NTRS)

    Synder, R. S.; Clotfelter, W. N.

    1974-01-01

    Mechanical and thermal property values are reported for crystalline cesium iodide doped with sodium and thallium. Young's modulus, bulk modulus, shear modulus, and Poisson's ratio were obtained from ultrasonic measurements. Young's modulus and the samples' elastic and plastic behavior were also measured under tension and compression. Thermal expansion and thermal conductivity were the temperature dependent measurements that were made.

  8. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... they investigated one or more of the following properties: (a) Water solubility. (b) Adsorption/desorption on particulate surfaces, e.g., soil. (c) Vapor pressure. (d) Octanol/water partition coefficient. (e) Density/relative density (specific gravity). (f) Particle size distribution for insoluble...

  9. Synthesis and physical properties of isostearic acids and their esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saturated branched-chain fatty acids (sbc-FAs) are found as minor constituents in several natural fats and oils. Sbc-FAs are of interest since they have lower melting points than their linear counterparts and exhibit good oxidative stability; properties that make them ideally suited in a number of ...

  10. A brief intervention may affect parents' attitudes toward using less physical punishment.

    PubMed

    Scholer, Seth J; Hamilton, Emma C; Johnson, Melissa C; Scott, Theresa A

    2010-01-01

    Ninety-six parents in a preschool and pediatric clinic participated in a randomized study of a brief parenting intervention. The Attitudes Toward Spanking (ATS) scale was measured at baseline, and, on average, 4 months postintervention. Higher ATS scores are correlated with increased use of physical punishment. In the intervention group, there was a 2.7-point decrease in the ATS score at follow-up compared with baseline (P = 0.01). There was no decrease in the ATS in the control group. Brief interventions may shift parental attitudes toward using less physical punishment and have implications for improving anticipatory guidance within primary care and early education. PMID:20216353

  11. Using conceptual metaphor and functional grammar to explore how language used in physics affects student learning

    NASA Astrophysics Data System (ADS)

    Brookes, David T.; Etkina, Eugenia

    2007-06-01

    This paper introduces a theory about the role of language in learning physics. The theory is developed in the context of physics students and physicists talking and writing about the subject of quantum mechanics. We found that physicists’ language encodes different varieties of analogical models through the use of grammar and conceptual metaphor. We hypothesize that students categorize concepts into ontological categories based on the grammatical structure of physicists’ language. We also hypothesize that students overextend and misapply conceptual metaphors in physicists’ speech and writing. Using our theory, we will show how, in some cases, we can explain student difficulties in quantum mechanics as difficulties with language.

  12. PREDICTION OF CHEMICAL REACTIVITY PARAMETERS AND PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FROM MOLECULAR STRUCTURE USING SPARC

    EPA Science Inventory

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  13. PHYSICAL PROPERTIES AND LEACH TESTING OF SOLIDIFIED/STABILIZED INDUSTRIAL WASTES

    EPA Science Inventory

    Physical property and leaching tests were conducted to assess the engineering characteristics and pollution potential of five industrial wastes. Four solidification/stabilization processes which are under development or commercially available and represent different containment p...

  14. ESTIMATION OF PHYSICAL PROPERTIES AND CHEMICAL REACTIVITY PARAMETERS OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The computer program SPARC (Sparc Performs Automated Reasoning in Chemistry)has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms ...

  15. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    PubMed

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples. PMID:26725032

  16. Factors affecting the optical properties of Pd-free Au-Pt-based dental alloys.

    PubMed

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Tanaka, Yasuhiro; Hisatsune, Kunihiro

    2003-12-01

    The optical properties of experimental Au-Pt-based alloys containing a small amount of In, Sn, and Zn were investigated by spectrophotometric colorimetry to extract factors affecting color of Au-Pt-based high-karat dental alloys. It was found that the optical properties of Au-Pt-based alloys are strongly affected by the number of valence electrons per atom in an alloy, namely, the electron:atom ratio, e/a. That is, by increasing the e/a-value, activities of reflection in the long-wavelength range and absorption in the short-wavelength range in the visible spectrum apparently increased. As a result, the maximum slope of the spectral reflectance curve at the absorption edge, which is located near 515 nm (approximately 2.4 eV), apparently increased with e/a-value. Due to this effect, the b*-coordinate (yellow-blue) in the CIELAB color space considerably increased and the a*-coordinate (red-green) slightly increased with e/a-value. The addition of a third element with a higher number of valence electrons to the binary Au-Pt alloy is, therefore, effective in giving a gold tinge to the parent Au-Pt alloy. This information may be useful in controlling the color of Au-Pt-based dental alloys. PMID:15348493

  17. Statistical Learning Is Not Affected by a Prior Bout of Physical Exercise.

    PubMed

    Stevens, David J; Arciuli, Joanne; Anderson, David I

    2016-05-01

    This study examined the effect of a prior bout of exercise on implicit cognition. Specifically, we examined whether a prior bout of moderate intensity exercise affected performance on a statistical learning task in healthy adults. A total of 42 participants were allocated to one of three conditions-a control group, a group that exercised for 15 min prior to the statistical learning task, and a group that exercised for 30 min prior to the statistical learning task. The participants in the exercise groups cycled at 60% of their respective V˙O2 max. Each group demonstrated significant statistical learning, with similar levels of learning among the three groups. Contrary to previous research that has shown that a prior bout of exercise can affect performance on explicit cognitive tasks, the results of the current study suggest that the physiological stress induced by moderate-intensity exercise does not affect implicit cognition as measured by statistical learning. PMID:26084984

  18. Affective dysfunction in a mouse model of Rett syndrome: Therapeutic effects of environmental stimulation and physical activity.

    PubMed

    Kondo, Mari A; Gray, Laura J; Pelka, Gregory J; Leang, Sook-Kwan; Christodoulou, John; Tam, Patrick P L; Hannan, Anthony J

    2016-02-01

    Rett syndrome (RTT) is a neurodevelopmental disorder associated with mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2) and consequent dysregulation of brain maturation. Patients suffer from a range of debilitating physical symptoms, however, behavioral and emotional symptoms also severely affect their quality of life. Here, we present previously unreported and clinically relevant affective dysfunction in the female heterozygous Mecp2(tm1Tam) mouse model of RTT (129sv and C57BL6 mixed background). The affective dysfunction and aberrant anxiety-related behavior of the Mecp2(+/-) mice were found to be reversible with environmental enrichment (EE) from 4 weeks of age. The effect of exercise alone (via wheel running) was also explored, providing the first evidence that increased voluntary physical activity in an animal model of RTT is beneficial for some phenotypes. Mecp2(+/-) mutants displayed elevated corticosterone despite decreased Crh expression, demonstrating hypothalamic-pituitary-adrenal axis dysregulation. EE of Mecp2(+/-) mice normalized basal serum corticosterone and hippocampal BDNF protein levels. The enrichment-induced rescue appears independent of the transcriptional regulation of the MeCP2 targets Bdnf exon 4 and Crh. These findings provide new insight into the neurodevelopmental role of MeCP2 and pathogenesis of RTT, in particular the affective dysfunction. The positive outcomes of environmental stimulation and physical exercise have implications for the development of therapies targeting the affective symptoms, as well as behavioral and cognitive dimensions, of this devastating neurodevelopmental disorder. PMID:26019053

  19. "John Thinks that Mary 'Feels'..." False Belief in Children across Affective and Physical Domains

    ERIC Educational Resources Information Center

    Parker, Jessica R.; MacDonald, Christine A.; Miller, Scott A.

    2007-01-01

    Children aged 5-8 years (N = 64) were given 3 first- and 3 second-order tasks testing their ability to represent false beliefs about physical facts, positive emotions, and negative emotions. The children were also asked to justify their responses to the test questions. Older children were more successful than younger children at both answering the…

  20. The Stigma of Obesity: Does Perceived Weight Discrimination Affect Identity and Physical Health?

    ERIC Educational Resources Information Center

    Schafer, Markus H.; Ferraro, Kenneth F.

    2011-01-01

    Obesity is widely recognized as a health risk, but it also represents a disadvantaged social position. Viewing body weight within the framework of stigma and its effects on life chances, we examine how perceived weight-based discrimination influences identity and physical health. Using national survey data with a 10-year longitudinal follow-up, we…

  1. Does Recent Physical and Sexual Victimization Affect Further Substance Use for Adult Drug-Involved Offenders?

    ERIC Educational Resources Information Center

    Zweig, Janine M.; Yahner, Jennifer; Rossman, Shelli B.

    2012-01-01

    This study examined whether physical and sexual victimization experiences were related to further substance use for a sample of drug-involved adult offenders and whether this increase could be attributed to depression experienced after the victimization occurred. A total of 674 men and 284 women from the longitudinal Multisite Adult Drug Court…

  2. Dance Class Structure Affects Youth Physical Activity and Sedentary Behavior: A Study of Seven Dance Types

    ERIC Educational Resources Information Center

    Lopez Castillo, Maria A.; Carlson, Jordan A.; Cain, Kelli L.; Bonilla, Edith A.; Chuang, Emmeline; Elder, John P.; Sallis, James F.

    2015-01-01

    Purpose: The study aims were to determine: (a) how class structure varies by dance type, (b) how moderate-to-vigorous physical activity (MVPA) and sedentary behavior vary by dance class segments, and (c) how class structure relates to total MVPA in dance classes. Method: Participants were 291 boys and girls ages 5 to 18 years old enrolled in 58…

  3. Factors that Affect the Physical Science Career Interest of Female Students: Testing Five Common Hypotheses

    ERIC Educational Resources Information Center

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sonnert, Gerhard; Sadler, Philip M.

    2013-01-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using multivariate matching methods on national data drawn from the Persistence Research in Science and Engineering (PRiSE) project ("n" = 7505), we test the following five commonly held beliefs regarding what…

  4. Can Contact Affect Greek Children's Understanding of and Attitudes towards Peers with Physical Disabilities?

    ERIC Educational Resources Information Center

    Kalyva, Efrosini; Agaliotis, Ioannis

    2009-01-01

    The present study explored typically developing children's understanding of, and attitudes towards, the inclusion of children with physical disabilities (PD) in mainstream settings. The 60 children who participated in the study attended sixth grade in two mainstream primary schools (30 in contact with a child with PD and 30 without such contact).…

  5. Rate of Physical Growth and Its Affect on Head Start Children's Motor and Cognitive Development.

    ERIC Educational Resources Information Center

    Marcon, Rebecca A.

    In the United States, growth retardation is higher among low-income children, with adverse cognitive effects of undernutrition more prevalent when combined with poverty. This study examined anthropometric indicators of physical development and their relationship to motor and cognitive development in Head Start children. Motor integration and…

  6. Toxicity and physical properties of atrazine and its degradation products: A literature survey

    SciTech Connect

    Pugh, K.C.

    1994-10-01

    The Tennessee Valley Authority`s Environmental Research Center has been developing a means of detoxifying atrazine waste waters using TiO{sub 2} photocatalysis. The toxicity and physical properties of atrazine and its degradation products will probably be required information in obtaining permits from the United States Environmental Protection Agency for the demonstration of any photocatalytic treatment of atrazine waste waters. The following report is a literature survey of the toxicological and physical properties of atrazine and its degradation products.

  7. The level of physical activity affects the health of older adults despite being active.

    PubMed

    Fernandez-Alonso, Lorena; Muñoz-García, Daniel; La Touche, Roy

    2016-06-01

    Health care in the ageing population is becoming a crucial issue, due to the quality of life. Physical activity, is of primary importance for older adults. This report compared the physical activity in two active older adults population with functionality, quality of life, and depression symptoms. A cross-sectional study was developed with 64 older adults. Physical activity was assessed through the Yale Physical Activity Survey for classification into a less activity (LA) group and a more activity (MA) group. Afterwards, the other health variables were measured through specific questionnaires: the quality of life with the EuroQol (EuroQol five dimensions questionnaire, EQ-5D), functionality with the Berg balance scale (BBS) and depression symptoms with the geriatric depression scale (GDS). There is a statistical significant difference between groups for the BBS (t=2.21; P=0.03, d=0.27). The Pearson correlation analysis shows in LA group a moderate correlation between the BBS and age (r=-0.539; P<0.01) and EQ-5D (r=0.480; P<0.01). Moreover, both groups had a moderate negative correlation between GDS and the the EQ-5D time trade-off (r=-0.543; P=0.02). Active older adults with different amounts of physical activity differ in the BBS. This functional score was higher in the MA group. When observing to quality of life, only the LA group was negatively associated with age while in both groups were associated with depression index. PMID:27419115

  8. The level of physical activity affects the health of older adults despite being active

    PubMed Central

    Fernandez-Alonso, Lorena; Muñoz-García, Daniel; La Touche, Roy

    2016-01-01

    Health care in the ageing population is becoming a crucial issue, due to the quality of life. Physical activity, is of primary importance for older adults. This report compared the physical activity in two active older adults population with functionality, quality of life, and depression symptoms. A cross-sectional study was developed with 64 older adults. Physical activity was assessed through the Yale Physical Activity Survey for classification into a less activity (LA) group and a more activity (MA) group. Afterwards, the other health variables were measured through specific questionnaires: the quality of life with the EuroQol (EuroQol five dimensions questionnaire, EQ-5D), functionality with the Berg balance scale (BBS) and depression symptoms with the geriatric depression scale (GDS). There is a statistical significant difference between groups for the BBS (t=2.21; P=0.03, d=0.27). The Pearson correlation analysis shows in LA group a moderate correlation between the BBS and age (r=−0.539; P<0.01) and EQ-5D (r=0.480; P<0.01). Moreover, both groups had a moderate negative correlation between GDS and the the EQ-5D time trade-off (r=−0.543; P=0.02). Active older adults with different amounts of physical activity differ in the BBS. This functional score was higher in the MA group. When observing to quality of life, only the LA group was negatively associated with age while in both groups were associated with depression index. PMID:27419115

  9. Physical-chemical properties of chlorinated dibenzo-p-dioxins

    SciTech Connect

    Shiu, W.Y.; Doucette, W.; Gobas, F.A.P.C.; Andren, A.; Mackay, D.

    1988-06-01

    Reported and newly determined experimental data for aqueous solubility, octanol-water partition coefficient, vapor pressure, and Henry's law constants of the poly-chlorinated dibenzo-p-dioxins are presented and reviewed. Correlation equations are derived for these properties as a function of chlorine number and molar volume, which enable the solubility and octanol-water partition coefficients of most congeners to be estimated with an accuracy within a factor of 2 and vapor pressure and Henry's law constant within a factor of 5. It is suggested that properties of homologous series are best correlated by a two-stage process. In the first stage, treated here, simple correlations are developed to establish approximate values as a function of molar volume and chlorine number. This should be followed by a more rigorous second stage treating isomer differences and using more refined molecular descriptors. The data presented here should be sufficiently accurate for many environmental assessment purposes.

  10. Determination of physical properties of fibrous thermal insulation

    NASA Astrophysics Data System (ADS)

    Tilioua, A.; Libessart, L.; Joulin, A.; Lassue, S.; Monod, B.; Jeandel, G.

    2012-10-01

    The objective of this study is to characterize both experimentally and theoretically, conductive and radiative heat transfer within polyester batting. This material is derived from recycled bottles (PET) with fibres of constant diameters. Two other mineral and plant fibrous insulation materials, (glass wool and hemp wool) are also characterized for comparative purposes. To determine the overall thermophysical properties of the tested materials, heat flux measurement are carried out using a device developed in house. The radiative properties of the material are determined by an inverse method based on measurements of transmittance and reflectance using a FTIR spectrometer and by solving the equation of radiative heat transfer. These measures are compared to results of numerical simulations.

  11. Structural and physical properties of BiVO{sub 3}

    SciTech Connect

    Singh, M. P. Razavi, F. S.

    2014-03-31

    We report the phase stabilization and properties of BiVO{sub 3} (BVO) thin films, grown on (001) SrTiO{sub 3} and LaAlO{sub 3}, using the pulsed laser deposition technique. Bi and V are in 3+ oxidation states as measured by using x-ray photoelectrons spectroscopy. BVO exhibits a Curie-Weiss paramagnetic behaviour and about −26 K Weiss temperature. This demonstrates the presence of a strong correlation effect due to the spin fluctuation. Additionally, these films exhibit a semiconducting behaviour owing to the thermally activated conduction process. A plausible explanation of the observed properties is presented by comparing with the closely related LaVO{sub 3} and other orthovanadates.

  12. Active doublet method for measuring small changes in physical properties

    DOEpatents

    Roberts, Peter M.; Fehler, Michael C.; Johnson, Paul A.; Phillips, W. Scott

    1994-01-01

    Small changes in material properties of a work piece are detected by measuring small changes in elastic wave velocity and attenuation within a work piece. Active, repeatable source generate coda wave responses from a work piece, where the coda wave responses are temporally displaced. By analyzing progressive relative phase and amplitude changes between the coda wave responses as a function of elapsed time, accurate determinations of velocity and attenuation changes are made. Thus, a small change in velocity occurring within a sample region during the time periods between excitation origin times (herein called "doublets") will produce a relative delay that changes with elapsed time over some portion of the scattered waves. This trend of changing delay is easier to detect than an isolated delay based on a single arrival and provides a direct measure of elastic wave velocity changes arising from changed material properties of the work piece.

  13. Physical properties of kraft black liquor. Final report. Phase I

    SciTech Connect

    Fricke, A.L.

    1983-12-01

    Methods were selected, equipment installed, and procedures developed for determining rheological properties; for determining thermal properties (stability, density, thermal expansion, and heat capacity); for purification and characterization of lignin (glass transition, stability, weight average molecular weight, and number average molecular weight); and for performing chemical analyses (negative inorganic ions, positive inorganic ions, acid organic salts, lignin, and total solids). A strategy for pulping to supply test liquors was developed, and a statistically designed pulping experiment was specified for a Southern softwood species. Arrangements were made for performing initial pulping work in an industrial pilot plant, and a preliminary set of pulping experiments were conducted. Liquors from the preliminary pulping experiments were used to test procedures and to determine reproducibility of the experiment. Literature was also surveyed and preliminary selection of designs for a pilot digester, and for equipment to determine surface tension were made.

  14. Regional dust deposits on Mars - Physical properties, age, and history

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.

    1986-01-01

    This paper presents a description of the use of Viking infrared thermal mapper (IRTM), earth-based radar, and visual observations for the study of the existence of regional dust deposits. It is pointed out that these observations provide estimates of particle size, rock abundance, surface texture, thermal emissivity, and albedo. These estimates can be used to characterize surface deposits and to determine the degree of surface mantling. Attention is given to the regolith properties, atmospheric dust properties, and a model for formation of low-inertia regions. It is found that global dust storms deposit currently approximately 25 microns of material per year in the equatorial region. Over geologic time this value may vary from 0 to 250 microns due to variations in atmospheric conditions produced by orbital variations.

  15. Physical properties of preserved core from the Geysers scientific corehole

    SciTech Connect

    Roberts, J.J.; Bonner, B.P.; Duba, A.G.; Schneberk, D.L.

    1996-01-24

    X-ray attenuation, electrical conductivity, and ultrasonic velocity are reported for a segment of preserved core from SB-15D, 918 ft. X-ray tomography and ultrasonic measurements change as the core dries, providing information regarding handling and disturbance of the core. Electrical conductivity measurements at reservoir conditions indicate that pore fluid properties and pore microstructure control bulk conductivity. These data are useful for calibration and interpretation of field geophysical measurements.

  16. Physical modifications of polysaccharide from Inonotus obliquus and the antioxidant properties.

    PubMed

    Zhang, Ning; Chen, Haixia; Ma, Lishuai; Zhang, Yu

    2013-03-01

    Physical modification of polysaccharides exerted better biological properties because of the change of physicochemical properties. Polysaccharides from Inonotus obliquus (IOPS) were modified by acid, alkali hydrolysis, thermal and ultrasonic treatment in this study. The physicochemical and antioxidant properties of IOPS and its physical modified products were comparatively investigated by chemical methods, gas chromatography, size exclusion chromatography, scanning electron micrograph, circular dichroism spectra, and ferric reducing power assay and lipid peroxidation inhibition assay, respectively. Results showed that physicochemical and antioxidant properties of IOPS were changed after the physical modification of acid, alkali hydrolysis, thermal and ultrasonic treatment. Thermal treated polysaccharide (Th-IOPS) and ultrasonic treated polysaccharide (Ul-IOPS) showed the properties of lower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, and higher antioxidant abilities on ferric-reducing power and lipid peroxidation inhibition activity compared with the native polysaccharide IOPS. Th-IOPS and Ul-IOPS might be explored as a novel potential antioxidant for food industry. PMID:23270834

  17. Acid Rain Affecting the Electrical Properties of Outdoor Composite Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Wang, Xinsheng; Kumagai, Seiji; Yoshimura, Noboru

    1998-12-01

    Acid rain is precipitation with acidity, i.e., pH, below 5.6. There is an increasing interest in the degradation of the electrical properties of outdoor composite dielectric materials under severe contaminant conditions such as acid rain. In this study, the degradation effects of acid rain on the outdoor composite dielectrics are investigated by accelerated aging due to artificial acid rain. Based on the investigation of acid rain, the composition of artificial acid rain is chosen to agree with the actual composition of precipitation. The surface potential, breakdown voltage, tracking resistance, and surface discharge current of dielectric materials are studied. Furthermore, the degradation mechanisms of electrical properties of composite dielectrics are discussed by investigating the degradation of the chemical and physical microstructures of material surface using Fourier transform infrared (FTIR), the X-ray diffraction spectrum (XDS), and the metalloscope. Experimental results show that the outdoor polymeric dielectrics suffer severely and degrade due to acid rain so that their surface electrical properties deteriorate after aging. The erosion, by acid rain, of the energized dielectric materials is larger than that of outdoor materials used for other purposes.

  18. Physical properties of the Creutzfeldt-Jakob disease agent

    SciTech Connect

    Sklaviadis, T.K.; Manuelidis, L.; Manuelidis, E.E.

    1989-03-01

    In this report, the authors present the first physical characterization of the Creutzfeld-Jakob disease agent. Preparations with high yields of infectivity (assayed infectious units) were obtained by a novel, gentle procedure in which initially sedimenting Gp34 (prion protein) was disaggregated by a variety of criteria with no subsequent loss of infectivity. Studies with this preparation indicate that most of the Creutzfeldt-Jakob disease agent has both a viruslike size and density. In velocity sedimentation and isopycnic sucrose gradients, infectivity comigrated with nucleic acid-protein complexes of appreciable size.

  19. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine

    PubMed Central

    2012-01-01

    Finally, we have addressed some relevant findings on the importance of having well-defined synthetic strategies developed for the generation of MNPs, with a focus on particle formation mechanism and recent modifications made on the preparation of monodisperse samples of relatively large quantities not only with similar physical features, but also with similar crystallochemical characteristics. Then, different methodologies for the functionalization of the prepared MNPs together with the characterization techniques are explained. Theorical views on the magnetism of nanoparticles are considered. PMID:22348683

  20. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    PubMed

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought. PMID:26520913