Science.gov

Sample records for affect plant community

  1. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities

    PubMed Central

    2013-01-01

    Background Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms’ specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Results Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms

  2. Fuel breaks affect nonnative species abundance in Californian plant communities

    USGS Publications Warehouse

    Merriam, K.E.; Keeley, J.E.; Beyers, J.L.

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment programs throughout the United States to reduce the threat of wildland fire. Our study included 24 fuel breaks located across the State of California. We found that nonnative plant abundance was over 200% higher on fuel breaks than in adjacent wildland areas. Relative nonnative cover was greater on fuel breaks constructed by bulldozers (28%) than on fuel breaks constructed by other methods (7%). Canopy cover, litter cover, and duff depth also were significantly lower on fuel breaks constructed by bulldozers, and these fuel breaks had significantly more exposed bare ground than other types of fuel breaks. There was a significant decline in relative nonnative cover with increasing distance from the fuel break, particularly in areas that had experienced more numerous fires during the past 50 years, and in areas that had been grazed. These data suggest that fuel breaks could provide establishment sites for nonnative plants, and that nonnatives may invade surrounding areas, especially after disturbances such as fire or grazing. Fuel break construction and maintenance methods that leave some overstory canopy and minimize exposure of bare ground may be less likely to promote nonnative plants. ?? 2006 by the Ecological Society of America.

  3. Does a decade of elevated [CO2] affect a desert perennial plant community?

    PubMed

    Newingham, Beth A; Vanier, Cheryl H; Kelly, Lauren J; Charlet, Therese N; Smith, Stanley D

    2014-01-01

    Understanding the effects of elevated [CO2 ] on plant community structure is crucial to predicting ecosystem responses to global change. Early predictions suggested that productivity in deserts would increase via enhanced water-use efficiency under elevated [CO2], but the response of intact arid plant communities to elevated [CO2 ] is largely unknown. We measured changes in perennial plant community characteristics (cover, species richness and diversity) after 10 yr of elevated [CO2] exposure in an intact Mojave Desert community at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Contrary to expectations, total cover, species richness, and diversity were not affected by elevated [CO2]. Over the course of the experiment, elevated [CO2] had no effect on changes in cover of the evergreen C3 shrub, Larrea tridentata; alleviated decreases in cover of the C4 bunchgrass, Pleuraphis rigida; and slightly reduced the cover of C3 drought-deciduous shrubs. Thus, we generally found no effect of elevated [CO2] on plant communities in this arid ecosystem. Extended drought, slow plant growth rates, and highly episodic germination and recruitment of new individuals explain the lack of strong perennial plant community shifts after a decade of elevated [CO2]. PMID:24117700

  4. Different Degrees of Plant Invasion Significantly Affect the Richness of the Soil Fungal Community

    PubMed Central

    Si, Chuncan; Liu, Xueyan; Wang, Congyan; Wang, Lei; Dai, Zhicong; Qi, Shanshan; Du, Daolin

    2013-01-01

    Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process. PMID:24392015

  5. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance.

  6. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578

  7. Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure

    SciTech Connect

    Whitham, T.G.; Martinsen, G.D.; Keim, P.; Floate, K.D.; Dungey, H.S. |; Potts, B.M.

    1999-03-01

    Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

  8. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants.

    PubMed

    Marques, Joana M; da Silva, Thais F; Vollu, Renata E; Blank, Arie F; Ding, Guo-Chun; Seldin, Lucy; Smalla, Kornelia

    2014-05-01

    The hypothesis that sweet potato genotypes containing different starch yields in their tuberous roots can affect the bacterial communities present in the rhizosphere (soil adhering to tubers) was tested in this study. Tuberous roots of field-grown sweet potato of genotypes IPB-149 (commercial genotype), IPB-052, and IPB-137 were sampled three and six months after planting and analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing analysis of 16S rRNA genes PCR-amplified from total community DNA. The statistical analysis of the DGGE fingerprints showed that both plant age and genotypes influenced the bacterial community structure in the tuber rhizosphere. Pyrosequencing analysis showed that the IPB-149 and IPB-052 (both with high starch content) displayed similar bacterial composition in the tuber rhizosphere, while IPB-137 with the lowest starch content was distinct. In comparison with bulk soil, higher 16S rRNA gene copy numbers (qPCR) and numerous genera with significantly increased abundance in the tuber rhizosphere of IPB-137 (Sphingobium, Pseudomonas, Acinetobacter, Stenotrophomonas, Chryseobacterium) indicated a stronger rhizosphere effect. The genus Bacillus was strongly enriched in the tuber rhizosphere samples of all sweet potato genotypes studied, while other genera showed a plant genotype-dependent abundance. This is the first report on the molecular identification of bacteria being associated with the tuber rhizosphere of different sweet potato genotypes.

  9. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    PubMed

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear

  10. Drought induced changes of plant belowground carbon allocation affect soil microbial community function in a subalpine meadow

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Bahn, M.; Fritz, K.; Hasibeder, R.; Richter, A.

    2012-12-01

    There is growing evidence that climate extremes may affect ecosystem carbon dynamics more strongly than gradual changes in temperatures or precipitation. Climate projections suggest more frequent heat waves accompanied by extreme drought periods in many parts of Europe, including the Alps. Drought is considered to decrease plant C uptake and turnover, which may in turn decrease belowground C allocation and potentially has significant consequences for microbial community composition and functioning. However, information on effects of drought on C dynamics at the plant-soil interface in real ecosystems is still scarce. Our study aimed at understanding how summer drought affects soil microbial community composition and the uptake of recently assimilated plant C by different microbial groups in grassland. We hypothesized that under drought 1) the microbial community shifts, fungi being less affected than bacteria, 2) plants decrease belowground C allocation, which further reduces C transfer to soil microbes and 3) the combined effects of belowground C allocation, reduced soil C transport due to reduced soil moisture and shift in microbial communities cause an accumulation of extractable organic C in the soil. Our study was conducted as part of a rain-exclusion experiment in a subalpine meadow in the Austrian Central Alps. After eight weeks of rain exclusion we pulse labelled drought and control plots with 13CO2 and traced C in plant biomass, extractable organic C (EOC) and soil microbial communities using phospholipid fatty acids (PLFA). Drought induced a shift of the microbial community composition: gram-positive bacteria became more dominant, whereas gram-negative bacteria were not affected by drought. Also the relative abundance of fungal biomass was not affected by drought. While total microbial biomass (as estimated by total microbial PLFA content) increased during drought, less 13C was taken up. This reduction was pronounced for bacterial biomarkers. It reflects

  11. Agave salmiana Plant Communities in Central Mexico as Affected by Commercial Use

    NASA Astrophysics Data System (ADS)

    Martínez Salvador, Martin; Mata-González, Ricardo; Morales Nieto, Carlos; Valdez-Cepeda, Ricardo

    2012-01-01

    Agave salmiana is a native plant species harvested for the commercial production of mezcal ( Agave spirits) in the highlands of central Mexico. The objective of this study was to identify vegetation changes in natural communities where A. salmiana has been differentially harvested for commercial purposes. Three plant community categories were identified in the state of Zacatecas based on their history of A. salmiana utilization: short (less than 10 years of use), moderate (about 25 years), and long (60 or more years). Species cover, composition, and density were evaluated in field surveys by use category. A gradient of vegetation structure of the communities parallels the duration of A. salmiana use. A. salmiana density was greatest (3,125 plants ha-1) in the short-use areas and less (892 plants ha-1) in the moderate-use areas, associated with markedly greater density of shrubs (200%) and Opuntia spp. (50%) in moderate-use areas. The main shrubs were Larrea tridentata, Mimosa biuncifera, Jatropha dioica and Buddleia scordioides while the main Opuntia species were Opuntia leucotricha and Opuntia robusta. A. salmiana density was least (652 plants ha-1) in the long-use areas where shrubs were less abundant but Opuntia spp. density was 25% higher than in moderate-use areas. We suggest that shrubs may increase with moderate use creating an intermediate successional stage that facilitates the establishment of Opuntia spp. Long-term Agave use is generating new plant communities dominated by Opuntia spp. (nopaleras) as a replacement of the original communities dominated by A. salmiana (magueyeras).

  12. Agave salmiana plant communities in central Mexico as affected by commercial use.

    PubMed

    Martínez Salvador, Martin; Mata-González, Ricardo; Morales Nieto, Carlos; Valdez-Cepeda, Ricardo

    2012-01-01

    Agave salmiana is a native plant species harvested for the commercial production of mezcal (Agave spirits) in the highlands of central Mexico. The objective of this study was to identify vegetation changes in natural communities where A. salmiana has been differentially harvested for commercial purposes. Three plant community categories were identified in the state of Zacatecas based on their history of A. salmiana utilization: short (less than 10 years of use), moderate (about 25 years), and long (60 or more years). Species cover, composition, and density were evaluated in field surveys by use category. A gradient of vegetation structure of the communities parallels the duration of A. salmiana use. A. salmiana density was greatest (3,125 plants ha(-1)) in the short-use areas and less (892 plants ha(-1)) in the moderate-use areas, associated with markedly greater density of shrubs (200%) and Opuntia spp. (50%) in moderate-use areas. The main shrubs were Larrea tridentata, Mimosa biuncifera, Jatropha dioica and Buddleia scordioides while the main Opuntia species were Opuntia leucotricha and Opuntia robusta. A. salmiana density was least (652 plants ha(-1)) in the long-use areas where shrubs were less abundant but Opuntia spp. density was 25% higher than in moderate-use areas. We suggest that shrubs may increase with moderate use creating an intermediate successional stage that facilitates the establishment of Opuntia spp. Long-term Agave use is generating new plant communities dominated by Opuntia spp. (nopaleras) as a replacement of the original communities dominated by A. salmiana (magueyeras).

  13. Do postfire mulching treatments affect plant community recovery in California coastal sage scrub lands?

    PubMed

    McCullough, Sarah A; Endress, Bryan A

    2012-01-01

    In recent years, the use of postfire mulch treatments to stabilize slopes and reduce soil erosion in shrubland ecosystems has increased; however, the potential effects on plant recovery have not been examined. To evaluate the effects of mulching treatments on postfire plant recovery in southern California coastal sage scrub, we conducted a field experiment with three experimental treatments, consisting of two hydromulch products and an erosion control blanket, plus a control treatment. The area burned in 2007, and treatments were applied to six plot blocks before the 2008 growing season. Treatment effects on plant community recovery were analyzed with a mixed effects ANOVA analysis using a univariate repeated measures approach. Absolute plant cover increased from 13 to 90% by the end of the second growing season, and the mean relative cover of exotic species was 32%. The two hydromulch treatments had no effect on any plant community recovery response variable measured. For the erosion control blanket treatment, the amount of bare ground cover at the end of the second growing season was significantly lower (P = 0.01), and greater shrub height was observed (P < 0.01). We conclude that postfire mulch treatments did not provide either a major benefit or negative impact to coastal sage scrub recovery on the study area.

  14. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  15. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem.

    PubMed

    David, Aaron S; Seabloom, Eric W; May, Georgiana

    2016-05-01

    Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes--fungi living asymptomatically within plants--to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities. PMID:26626912

  16. Climate Shifts and Plant-Community Transformations Affect Nitrogen Cycling in Semi-Arid Rangelands

    NASA Astrophysics Data System (ADS)

    Huber, D. P.; Hardenbrook, S.; Lohse, K. A.; Germino, M. J.; Reinhardt, K.

    2011-12-01

    Semi-arid rangelands are being impacted by climate shifts and plant-community transformations. However, little is known about how these ecosystems will respond to long-term changes in amount and seasonality of precipitation, or how shifts in vegetation modulate the response of plant-soil processes. Semi-arid rangelands are typically characterized by resource islands (perennial shrubs) and contrasting "interplant" (IP) spaces or patch types which may increase the complexity of ecosystem response to climate change. We used an established long-term ecohydrologic experiment (Est. 1993) located in southeastern Idaho to evaluate ecosystem response to changing precipitation seasonality and magnitude. The experiment consists of 3 replicated blocks of 2 vegetation types (a diverse sagebrush steppe assemblage or monoculture of exotic crested wheatgrass, CWG) and 3 irrigation treatments. We hypothesized that increased precipitation will enhance storage of soil organic matter (SOM) due to greater detrital inputs. Rates of nitrogen (N) mineralization and decomposition were also expected to increase relative to ambient treatments. Additionally, we expected that change from native sagebrush to CWG would reduce N availability due to differences in detrital C:N ratios and biomass partitioning. Preliminary results show increased precipitation enhanced carbon pools in native vegetation plots, with SOM in ambient, fall/spring, and summer precipitation treatments of 2.27, 2.73, and 2.71% respectively, and average plot cover of 29, 48, and 40% respectively. Under shrubs, available N increased with increased precipitation (3.5, 4.6, and 5.6 μg-N g-1 soil) although N-cycling rates remained constant. Conversely, IP patches experienced a steady increase in both net N mineralization and nitrification between ambient, fall/spring, and summer precipitation treatments. The IP patches experienced lower absolute values but similar trends in SOM and available N. Crested wheatgrass plots showed

  17. Denitrification potential and organic matter as affected by vegetation community, wetland age, and plant introduction in created wetlands.

    PubMed

    Hernandez, Maria E; Mitsch, William J

    2007-01-01

    Denitrification potential (DP) and organic matter (OM) in soils were compared in three different vegetation communities-emergent macrophyte, open water, and forested edge-in two 10-yr-old created riverine wetlands. Organic matter, cold water-extractable organic matter (CWEOM), anaerobic mineralizable carbon (AnMC), and DP varied significantly (P<0.05) among vegetation communities. The surface (0 to 9 cm) soils in the emergent macrophyte community (EMC) showed highest DP (0.07+/-0.01 mg N h-1 kg-1), OM (84.90+/-5.60 g kg-1), CWEOM (1.12+/-0.20 g kg-1), and AnMC (1.50+/-0.10 mg C h-1 kg-1). In the deeper layer (9 to 18 cm), DP and CWEOM (0.04+/-0.01 mg N h-1 kg-1 and 1.13+/-0.20 g kg-1, respectively) were significantly higher in the open water community (OWC) than in the emergent macrophyte and forested edge communities. Plant introduction did not affect DP or OM content and characteristics. After 10 yr of wetland development, mean DP increased 25-fold in the surface layer (from 0.002 to 0.053 mg N h-1 kg-1); OM content more than doubled to 90.80+/-19.22 g kg-1, and CWEOM and HWEOM increased 2.5 and 2.7 times respectively from 1993 (prewetland conditions) to 2004. Humic acids were the most abundant form of OM in 2004 and 1993 samples. Significant (P<0.05) positive relationships between DP and OM, CWEOM, and AnMC were found in the surface layer; in the 9- to 18-cm layer, significant positive relationships were found between DP and CWEOM and AnMC.

  18. WHEAT LEAF RUST SEVERITY AS AFFECTED BY PLANT DENSITY AND SPECIES PROPORTION IN SIMPLE COMMUNITIES OF WHEAT AND WILD OATS

    EPA Science Inventory

    While it is generally accepted that dense stands of plants exacerbate epidemics caused by foliar pathogens, there is little experimental evidence to support this view. We grew model plant communities consisting of wheat and wild oats at different densities and proportions and exp...

  19. WHEAT LEAF RUST SEVERITY AS AFFECTED BY PLANT DENSITY AND SPECIES PROPORTION IN SIMPLE COMMUNITIES OF WHEAT AND WILD OATS

    EPA Science Inventory

    While it is generally accepted that dense stands of plants exacerbate epidermics caused by foliar pathogens, there is little experimental evidence to support this view. We grew model plant communities consisting of wheat and wild oats at different densities and proportions and ex...

  20. How do soil texture, plant community composition and earthworms affected the infiltration rate in a grassland plant diversity experiment depending on season?

    NASA Astrophysics Data System (ADS)

    Fischer, Christine; Britta, Merkel; Nico, Eisenhauer; Christiane, Roscher; Sabine, Attinger; Stefan, Scheu; Anke, Hildebrandt

    2013-04-01

    Background and aims: In this study we analyzed the influences of plant community characteristics, soil texture and earthworm presence on infiltration rates on a managed grassland plant diversity experiment assessing the role of biotic and abiotic factors on soil hydrology. Methods: We measured infiltration using a hood infiltrometer in subplots with ambient and reduced earthworm density (earthworm extraction) nested in plots of different plant species richness (1, 4, and 16), plant functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) in early summer (June) and autumn (September, October) 2011. Results: The presence of certain plant functional groups such as grasses and legumes influenced infiltration rates and this effect enhanced during the growing season. Infiltration was significantly higher in plots containing legumes than in plots without, and it was significantly lower in the presence of grasses than in their absence. In early summer, earthworm presence and biomass increased the infiltration rates, independently of plant species richness. In October, plant species richness only affected infiltration rates in reduced earthworm plots. At the end of the growing season earthworm populations were negatively influenced by grasses and positively by legumes. In September, infiltration rates were positive related to the proportion of finer grains. The correlation disappears when removing all plots containing legumes from the sample. For all measurements the infiltration rates decreases from early summer to autumn at the matric potentials at pressure zero and -0.02 m, but not for smaller macropores at matric potentials -0.04 and -0.06m. Conclusions: Considering infiltration rates as ecosystem function, this function will largely depend on the ecosystem composition and season, not on biodiversity per se. Our results indicate that biotic factors are of overriding influence for shaping infiltration rates mainly for larger macropores

  1. How does altered precipitation and annual grass invasion affect plant N uptake in a native semi-arid shrub community?

    NASA Astrophysics Data System (ADS)

    Mauritz, M.; Lipson, D.; Cleland, E. E.

    2012-12-01

    Climate change is expected to alter precipitation patterns, which will change the timing and amount of plant resources. Precipitation patterns determine water and nitrogen (N) availability, because water stimulates microbial N turnover and N transport. In order for plants to utilize water and N, they must coincide with the phenology and meet physiological requirements of the plant. As resource supply shifts, differences in species' ability to acquire resources will affect plant community composition. Semiarid ecosystems, such as shrublands in Southern California, are particularly sensitive to shifts in precipitation because they are severely water limited. This study takes advantage of the altered phenology and resource demands presented by invasive annual grasses in a native semiarid shrubland. The goal is to understand how altered precipitation patterns affect plant N uptake. Rainfall levels were manipulated to 50% and 150% of ambient levels. It is expected that higher rainfall levels promote annual grass invasion because grasses have higher water and N requirements and begin to grow earlier in the season than shrubs. A 15N tracer was added with the first rain event and plant samples were collected regularly to track the movement of N into the plants. Net soil N accumulation was determined using resin bags. Invasive grasses altered the timing and amount of N uptake but amount of rainfall had less effect on N distribution. 15N was detected sooner and at higher level in grasses than shrubs. 24hours after the first rain event 15N was detectable in grasses, 15N accumulated rapidly and peaked 2 months earlier than shrubs. Shrub 15N levels remained at pre-rain event levels for the first 2 months and began to increase at the beginning of spring, peak mid-spring and decline as the shrubs entered summer dormancy. One year later 15N levels in annual grass litter remained high, while 15N levels in shrubs returned to initial background levels as a result of resorption. 15N

  2. Community structure affects behavior.

    PubMed

    Jaenson, C

    1991-06-01

    AID's prevention efforts can benefit from taking into account 5 main aspects (KEPRA) of community structure identified by anthropologists: 1) kinship patterns, 2) economics, 3) politics, 4) religion, and 5) associations. For example, in Uganda among the Basoga and paternal aunt or senga is responsible for female sex education. Such culturally determined patterns need to be targeted in order to enhance education and effectiveness. Economics can reflect differing systems of family support through sexual means. The example given involves a poor family with a teenager in Thailand who exchanges a water buffalo or basic necessity for this daughter's prostitution. Politics must be considered because every society identifies people who have the power to persuade, influence, exchange resources, coerce, or in some way get people to do what is wanted. Utilizing these resources whether its ministers of health, factory owners, or peers is exemplified in the Monterey, Mexico factor floor supervisor and canteen worker introducing to workers the hows and whys of a new AID's education program. His peer status will command more respect than the director with direct authority. Religious beliefs have explanations for causes of sickness or disease, or provide instruction in sex practices. The example given is of a health workers in Uganda discussing AIDS with rural women by saying that we all know that disease and deaths are caused by spells. "But not AIDS - slim. AIDS is different." Associations can help provide educational, economic, and emotional assistance to the AID's effort or families affected.

  3. Wheat leaf rust severity as affected by plant density and species proportion in simple communities of wheat and wild oats.

    PubMed

    Pfleeger, T G; Mundt, C C

    1998-07-01

    ABSTRACT While it is generally accepted that dense stands of plants exacerbate epidemics caused by foliar pathogens, there is little experimental evidence to support this view. We grew model plant communities consisting of wheat and wild oats at different densities and proportions and exposed these communities to Puccinia recondita to induce wheat leaf rust. Wild oats was included because it is a common competitor of wheat and may act as a barrier to the dispersal of P. recondita spores among wheat plants. Disease severity was estimated as percentage of wheat flag leaves covered by rust lesions. Seeding density rarely had a significant influence on rust severity, probably because of compensation due to increased tillering at low seeding densities. In contrast, increasing the proportion of wheat in mixtures with wild oats consistently increased wheat leaf rust severity. Regression parameters describing wheat leaf rust severity as a function of wheat seeding density did not differ significantly between pure wheat stands and wheat-wild oat mixtures and, thus, failed to support an effect of wild oats on wheat leaf rust other than through its competitive impact on wheat tiller density.

  4. Plant assemblage composition and soil P concentration differentially affect communities of AM and total fungi in a semi-arid grassland.

    PubMed

    Klabi, Rim; Bell, Terrence H; Hamel, Chantal; Iwaasa, Alan; Schellenberg, Mike; Raies, Aly; St-Arnaud, Marc

    2015-01-01

    Adding inorganic P- and N-fixing legumes to semi-arid grasslands can increase forage yield, but soil nutrient concentrations and plant cover may also interact to modify soil fungal populations, impacting short- and long-term forage production. We tested the effect of plant assemblage (seven native grasses, seven native grasses + the domesticated N-fixing legume Medicago sativa, seven native grasses + the native N-fixing legume Dalea purpurea or the introduced grass Bromus biebersteinii + M. sativa) and soil P concentration (addition of 0 or 200 P2O5 kg ha(-1) at sowing) on the diversity and community structure of arbuscular mycorrhizal (AM) fungi and total fungi over two consecutive years, using 454-pyrosequencing of 18S rDNA and ITS amplicons. Treatment effects were stronger in the wet year (2008) than the dry year (2009). The presence of an N-fixing legume with native grasses generally increased AM fungal diversity, while the interaction between soil P concentration and plant assemblage modified total fungal community structure in 2008. Excluding interannual variations, which are likely driven by moisture and plant productivity, AM fungal communities in semi-arid grasslands appear to be primarily affected by plant assemblage composition, while the composition of other fungi is more closely linked to soil P.

  5. Plant assemblage composition and soil P concentration differentially affect communities of AM and total fungi in a semi-arid grassland.

    PubMed

    Klabi, Rim; Bell, Terrence H; Hamel, Chantal; Iwaasa, Alan; Schellenberg, Mike; Raies, Aly; St-Arnaud, Marc

    2015-01-01

    Adding inorganic P- and N-fixing legumes to semi-arid grasslands can increase forage yield, but soil nutrient concentrations and plant cover may also interact to modify soil fungal populations, impacting short- and long-term forage production. We tested the effect of plant assemblage (seven native grasses, seven native grasses + the domesticated N-fixing legume Medicago sativa, seven native grasses + the native N-fixing legume Dalea purpurea or the introduced grass Bromus biebersteinii + M. sativa) and soil P concentration (addition of 0 or 200 P2O5 kg ha(-1) at sowing) on the diversity and community structure of arbuscular mycorrhizal (AM) fungi and total fungi over two consecutive years, using 454-pyrosequencing of 18S rDNA and ITS amplicons. Treatment effects were stronger in the wet year (2008) than the dry year (2009). The presence of an N-fixing legume with native grasses generally increased AM fungal diversity, while the interaction between soil P concentration and plant assemblage modified total fungal community structure in 2008. Excluding interannual variations, which are likely driven by moisture and plant productivity, AM fungal communities in semi-arid grasslands appear to be primarily affected by plant assemblage composition, while the composition of other fungi is more closely linked to soil P. PMID:25764537

  6. Plant Communities of Rough Rock.

    ERIC Educational Resources Information Center

    Jacobs, Linda

    A unit of study on plants grown in the Navajo community of Rough Rock, Arizona, is presented in sketches providing the common Navajo name for the plant, a literal English translation, the English name of the plant, and the Latin name. A brief description of each plant includes where the plant grows, how the Navajos use the plant, and the color and…

  7. Air Pollution Affects Community Health

    ERIC Educational Resources Information Center

    Shy, Carl M.; Finklea, John F.

    1973-01-01

    Community Health and Environmental Surveillance System (CHESS), a nationwide program relating community health to environmental quality, is designed to evaluate existing environmental standards, obtain health intelligence for new standards, and document health benefits of air pollution control. (BL)

  8. Pyrodiversity begets plant-pollinator community diversity.

    PubMed

    Ponisio, Lauren C; Wilkin, Kate; M'Gonigle, Leithen K; Kulhanek, Kelly; Cook, Lindsay; Thorp, Robbin; Griswold, Terry; Kremen, Claire

    2016-05-01

    negatively affect the richness of plant-pollinator communities across large spatial scales. PMID:26929389

  9. Pyrodiversity begets plant-pollinator community diversity.

    PubMed

    Ponisio, Lauren C; Wilkin, Kate; M'Gonigle, Leithen K; Kulhanek, Kelly; Cook, Lindsay; Thorp, Robbin; Griswold, Terry; Kremen, Claire

    2016-05-01

    negatively affect the richness of plant-pollinator communities across large spatial scales.

  10. Industrial contaminants and risks to plant communities

    SciTech Connect

    Vedagiri, U.

    1994-12-31

    Much of the ecological risk assessment work being done today is focused on invertebrates, herbivores and top carnivores at a site. The ecosystem is treated minimally as a backdrop for site characterization. Effects on vegetation, when considered, are mostly confined to single species toxicity tests. However, plant community-based assessment endpoints are also highly desirable for ERAs. This paper will present examples and case studies of metal, pesticide and organic contamination to illustrate the following: (a) The nature of the plant community is integral to defining the character and biogeochemistry of ecosystems and in governing the heterotrophic species composition and food webs occurring at a site, (b) impacts to the vegetation community affect not only the habitats and food webs, but also contaminant fate, transport and ecotoxicity, and assessment of the plant communities at a site is an essential part of the problem formulation, exposure, effects and risk characterization phases of a risk assessment.

  11. Differentiating between effects of invasion and diversity: impacts of aboveground plant communities on belowground fungal communities.

    PubMed

    Kivlin, Stephanie N; Hawkes, Christine V

    2011-01-01

    Exotic plant species can affect soil microbial communities with the potential for community and ecosystem feedbacks. Yet, separating the effects of exotics from confounded changes in plant community diversity still remains a challenge. We focused on how plant diversity and native or exotic life history affected root fungi because of their significant roles in community and ecosystem processes. Specifically, we examined how fungi colonizing plant roots were affected by plant richness (one, two or four species) replicated across a range of plant community mixtures (natives, exotics, native-exotic mixtures). Fungal biomass inside roots was affected independently by plant richness and mixture, while root fungal community composition was affected only by plant richness. Extraradical networks also increased in size with plant richness. By contrast, plant biomass was a function of plant mixture, with natives consistently smaller than exotics and native-exotic mixtures intermediate. Plant invasions may have an impact on the belowground community primarily through their effects on diversity, at least in the short-term. Disentangling the effects of diversity and invasion on belowground microbial communities can help us to understand both the controllers of belowground resilience and mechanisms of successful colonization and spread of exotic plants.

  12. Herbivore preference drives plant community composition.

    PubMed

    Kempel, Anne; Razanajatovo, Mialy; Stein, Claudia; Unsicker, Sybille B; Auge, Harald; Weisser, Wolfgang W; Fischer, Markus; Prati, Daniel

    2015-11-01

    Herbivores are important drivers of plant species coexistence and community assembly. However, detailed mechanistic information on how herbivores affect dominance hierarchies between plant species is scarce. Here, we used data of a multi-site herbivore exclusion experiment in grasslands to assess changes in the cover of 28 plant species in response to aboveground pesticide. application. Moreover, we assessed species-specific values of plant defense of these 28 species measured as the performance of a generalist caterpillar, and the preference of the caterpillar and a slug species in no-choice and choice feeding experiments, respectively. We show that more preferred species in the feeding experiments were those that increased in cover after herbivore exclusion in the field, whereas less preferred ones decreased. Herbivore performance and several measured leaf traits were not related to the change in plant cover in the field in response to herbivore removal. Additionally, the generalist slug and the generalist caterpillar preferred and disliked the same plant species, indicating that they perceive the balance between defense and nutritional value similarly. We conclude that the growth-defense trade-off in grassland species acts via the preference of herbivores and that among-species variation in plant growth and preference to herbivores drives plant community composition. PMID:27070012

  13. ASSESSING OFF-TARGET IMPACTS OF HERBICIDE DRIFT ON NATIVE PLANTS - IMPLICATIONS FOR PLANT COMMUNITIES AND WILDLIFE

    EPA Science Inventory

    The off target movement of herbicidess onto nontarget vegetation can affect native plants, plant communities and ecosystems. Within the agroecosystem, plants provide the basis for food and shelter for wildlife. The risk assessment process to determine potential pesticide impacts...

  14. Diverse pollinator communities enhance plant reproductive success

    PubMed Central

    Albrecht, Matthias; Schmid, Bernhard; Hautier, Yann; Müller, Christine B.

    2012-01-01

    Understanding the functional consequences of biodiversity loss is a major goal of ecology. Animal-mediated pollination is an essential ecosystem function and service provided to mankind. However, little is known how pollinator diversity could affect pollination services. Using a substitutive design, we experimentally manipulated functional group (FG) and species richness of pollinator communities to investigate their consequences on the reproductive success of an obligate out-crossing model plant species, Raphanus sativus. Both fruit and seed set increased with pollinator FG richness. Furthermore, seed set increased with species richness in pollinator communities composed of a single FG. However, in multiple-FG communities, highest species richness resulted in slightly reduced pollination services compared with intermediate species richness. Our analysis indicates that the presence of social bees, which showed roughly four times higher visitation rates than solitary bees or hoverflies, was an important factor contributing to the positive pollinator diversity–pollination service relationship, in particular, for fruit set. Visitation rate at different daytimes, and less so among flower heights, varied among social bees, solitary bees and hoverflies, indicating a niche complementarity among these pollinator groups. Our study demonstrates enhanced pollination services of diverse pollinator communities at the plant population level and suggests that both the niche complementarity and the presence of specific taxa in a pollinator community drive this positive relationship. PMID:23034701

  15. Trichoderma secondary metabolites that affect plant metabolism.

    PubMed

    Vinale, Francesco; Sivasithamparam, Krishnapillai; Ghisalberti, Emilio L; Ruocco, Michelina; Wood, Sheridan; Lorito, Matteo

    2012-11-01

    Recently, there have been many exciting new developments relating to the use of Trichoderma spp. as agents for biocontrol of pathogens and as plant growth promoters. Several mechanisms have been proposed to explain the positive effects of these microorganisms on the plant host. One factor that contributes to their beneficial biological activities is related to the wide variety of metabolites that they produce. These metabolites have been found not only to directly inhibit the growth and pathogenic activities of the parasites, but also to increase disease resistance by triggering the system of defence in the plant host. In addition, these metabolites are also capable of enhancing plant growth, which enables the plant to counteract the disease with compensatory vegetative growth by the augmented production of root and shoot systems. This review takes into account the Trichoderma secondary metabolites that affect plant metabolism and that may play an important role in the complex interactions of this biocontrol agent with the plant and pathogens.

  16. Soil microbes and plant invasions—how soil-borne pathogens regulate plant populations and affect plant invasions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic plant invaders are a major global threat to biodiversity and ecosystem function. Here I present multiple lines of evidence suggesting that soil microbial communities affect the population growth rates of Prunus serotina in its native range and affect its invasiveness abroad. Research often ...

  17. The organization of plant communities: negative plant-soil feedbacks and semiarid grasslands.

    PubMed

    Reinhart, Kurt O

    2012-11-01

    Understanding how plant communities are organized requires uncovering the mechanism(s) regulating plant species coexistence and relative abundance. Negative soil feedbacks may affect plant communities by suppressing dominant species, causing rarity of most plants, or reducing the competitive abilities of all species. Here, three soil feedback experiments were used to differentiate the effects of soil feedbacks on mid- to late-successional and semiarid grasslands. Then I tested whether the direction and degree of soil feedback accounts for variation in relative abundance among species that coexist within each plant community. Negative soil feedbacks predominated across all species and sites and were individually discernible for 40% of plant species. Negative soil feedbacks affected rare to dominant plant species. Negative soil feedbacks, capable of having negative frequency-dependent effects, have the potential to act as a fundamental driver of species coexistence.

  18. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth.

    PubMed

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K; Singh, Rakshapal; Verma, Rajesh K; Kalra, Alok

    2015-10-27

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants.

  19. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth

    PubMed Central

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K.; Singh, Rakshapal; Verma, Rajesh K.; Kalra, Alok

    2015-01-01

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants. PMID:26503744

  20. Factors Affecting Ice Nucleation in Plant Tissues

    PubMed Central

    Ashworth, Edward N.; Davis, Glen A.; Anderson, Jeffrey A.

    1985-01-01

    Factors affecting the ice nucleation temperature of plants and plant tissues were examined. The mass of a sample had a marked effect on ice nucleation temperature. Small tissue samples supercooled to −10°C and were not accurate predictors of the nucleation temperature of intact plants in either laboratory or field experiments. This effect was not unique to plant tissues and was observed in autoclaved and control soil samples. Ice nucleation temperatures of bean, corn, cotton, and soybean seedlings were influenced by the length of subzero exposure, presence of ice nucleation active bacteria, and leaf surface wetness. The number of factors influencing ice nucleation temperature suggested that predicting the freezing behavior of plants in the field will be complex. PMID:16664524

  1. Response of native insect communities to invasive plants.

    PubMed

    Bezemer, T Martijn; Harvey, Jeffrey A; Cronin, James T

    2014-01-01

    Invasive plants can disrupt a range of trophic interactions in native communities. As a novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies. Through the release of volatile compounds, and by changing the chemical complexity of the habitat, invasive plants can also affect the behavior of native insects such as herbivores, parasitoids, and pollinators. Studies that compare insects on related native and invasive plants in invaded habitats show that the abundance of insect herbivores is often lower on invasive plants, but that damage levels are similar. The impact of invasive plants on the population dynamics of resident insect species has been rarely examined, but invasive plants can influence the spatial and temporal dynamics of native insect (meta)populations and communities, ultimately leading to changes at the landscape level.

  2. Vertebrate herbivores influence soil nematodes by modifying plant communities.

    PubMed

    Veen, G F; Olff, Han; Duyts, Henk; van der Putten, Wim H

    2010-03-01

    Abiotic soil properties, plant community composition, and herbivory all have been reported as important factors influencing the composition of soil communities. However, most studies thus far have considered these factors in isolation, whereas they strongly interact in the field. Here, we study how grazing by vertebrate herbivores influences the soil nematode community composition of a floodplain grassland while we account for effects of grazing on plant community composition and abiotic soil properties. Nematodes are the most ubiquitous invertebrates in the soil. They include a variety of feeding types, ranging from microbial feeders to herbivores and carnivores, and they perform key functions in soil food webs. Our hypothesis was that grazing affects nematode community structure and composition through altering plant community structure and composition. Alternatively, we tested whether the effects of grazing may, directly or indirectly, run via changes in soil abiotic properties. We used a long-term field experiment containing plots with and without vertebrate grazers (cattle and rabbits). We compared plant and nematode community structure and composition, as well as a number of key soil abiotic properties, and we applied structural equation modeling to investigate four possible pathways by which grazing may change nematode community composition. Aboveground grazing increased plant species richness and reduced both plant and nematode community heterogeneity. There was a positive relationship between plant and nematode diversity indices. Grazing decreased the number of bacterial-feeding nematodes, indicating that in these grasslands, top-down control of plant production by grazing leads to bottom-up control in the basal part of the bacterial channel of the soil food web. According to the structural equation model, grazing had a strong effect on soil abiotic properties and plant community composition, whereas plant community composition was the main determinant of

  3. Multispectral scanner imagery for plant community classification.

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.; Spencer, M. M.

    1973-01-01

    Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information for computerized classification of 11 plant communities and two nonvegetation classes. Intensive preprocessing of the spectral data was required to eliminate bidirectional reflectance effects of the spectral imagery caused by scanner view angle and varying geometry of the plant canopy. Generalized plant community types - forest, grassland, and hydrophytic systems - were acceptably classified based on ecological analysis. Serious, but soluble, errors occurred with attempts to classify specific community types within the grassland system. However, special clustering analyses provided for improved classification of specific grassland communities.

  4. A 2-Year Field Study Shows Little Evidence That the Long-Term Planting of Transgenic Insect-Resistant Cotton Affects the Community Structure of Soil Nematodes

    PubMed Central

    Li, Xiaogang; Liu, Biao

    2013-01-01

    Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera) and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial release. Our 2-year study included 1 cotton field where non-transgenic cotton had been planted continuously and 2 other cotton fields where transgenic insect-resistant cotton had been planted for different lengths of time since 1997 and since 2002. In 2 consecutive years (2009 and 2010), we took soil samples from 3 cotton fields at 4 different growth stages (seedling, budding, boll-forming and boll-opening stages), collected soil nematodes from soil with the sugar flotation and centrifugation method and identified the soil nematodes to the genus level. The generic composition, individual densities and diversity indices of the soil nematodes did not differ significantly between the 2 transgenic cotton fields and the non-transgenic cotton field, but significant seasonal variation was found in the individual densities of the principal trophic groups and in the diversity indices of the nematodes in all 3 cotton fields. The study used a comparative perspective to monitor the impact of transgenic insect-resistant cotton grown in typical ‘real world’ conditions. The results of the study suggested that more than 10 years of cultivation of transgenic insect-resistant cotton had no significant effects–adverse or otherwise–on soil nematodes. This study provides a theoretical basis for ongoing environmental impact monitoring of transgenic plants. PMID:23613899

  5. Do alterations in mesofauna community affect earthworms?

    PubMed

    Uvarov, Alexei V; Karaban, Kamil

    2015-11-01

    Interactions between the saprotrophic animal groups that strongly control soil microbial activities and the functioning of detrital food webs, such as earthworms and mesofauna, are not well understood. Earthworm trophic and engineering activities strongly affect mesofauna abundance and diversity through various direct and indirect pathways. In contrast, mesofauna effects on earthworm populations are less evident; however, their importance may be high, considering the keystone significance of earthworms for the functioning of the soil system. We studied effects of a diverse mesofauna community of a deciduous forest on two earthworm species representing epigeic (Lumbricus rubellus) and endogeic (Aporrectodea caliginosa) ecological groups. In microcosms, the density of total mesofauna or its separate groups (enchytraeids, collembolans, gamasid mites) was manipulated (increased) and responses of earthworms and soil systems were recorded. A rise in mesofauna density resulted in a decrease of biomass and an increased mortality in L. rubellus, presumably due to competition with mesofauna for litter resources. In contrast, similar mesofauna manipulations promoted reproduction of A. caliginosa, suggesting a facilitated exploitation of litter resources due to increased mesofauna activities. Changes of microcosm respiration rates, litter organic matter content and microbial activities across the manipulation treatments indicate that mesofauna modify responses of soil systems in the presence of earthworms. However, similar mesofauna manipulations could induce different responses in soil systems with either epigeic or endogeic lumbricids, which suggests that earthworm/mesofauna interactions are species-specific. Thus, mesofauna impacts should be treated as a factor affecting the engineering activities of epigeic and endogeic earthworms in the soil.

  6. Do alterations in mesofauna community affect earthworms?

    PubMed

    Uvarov, Alexei V; Karaban, Kamil

    2015-11-01

    Interactions between the saprotrophic animal groups that strongly control soil microbial activities and the functioning of detrital food webs, such as earthworms and mesofauna, are not well understood. Earthworm trophic and engineering activities strongly affect mesofauna abundance and diversity through various direct and indirect pathways. In contrast, mesofauna effects on earthworm populations are less evident; however, their importance may be high, considering the keystone significance of earthworms for the functioning of the soil system. We studied effects of a diverse mesofauna community of a deciduous forest on two earthworm species representing epigeic (Lumbricus rubellus) and endogeic (Aporrectodea caliginosa) ecological groups. In microcosms, the density of total mesofauna or its separate groups (enchytraeids, collembolans, gamasid mites) was manipulated (increased) and responses of earthworms and soil systems were recorded. A rise in mesofauna density resulted in a decrease of biomass and an increased mortality in L. rubellus, presumably due to competition with mesofauna for litter resources. In contrast, similar mesofauna manipulations promoted reproduction of A. caliginosa, suggesting a facilitated exploitation of litter resources due to increased mesofauna activities. Changes of microcosm respiration rates, litter organic matter content and microbial activities across the manipulation treatments indicate that mesofauna modify responses of soil systems in the presence of earthworms. However, similar mesofauna manipulations could induce different responses in soil systems with either epigeic or endogeic lumbricids, which suggests that earthworm/mesofauna interactions are species-specific. Thus, mesofauna impacts should be treated as a factor affecting the engineering activities of epigeic and endogeic earthworms in the soil. PMID:26188519

  7. The soil microbial community composition and soil microbial carbon uptake are more affected by soil type than by different vegetation types (C3 and C4 plants) and seasonal changes

    NASA Astrophysics Data System (ADS)

    Griselle Mellado Vazquez, Perla; Lange, Markus; Gleixner, Gerd

    2016-04-01

    This study investigates the influence of different vegetation types (C3 and C4 plants), soil type and seasonal changes on the soil microbial biomass, soil microbial community composition and soil microbial carbon (C) uptake. We collected soil samples in winter (non-growing season) and summer (growing season) in 2012 from an experimental site cropping C3 and C4 plants for 6 years on two different soil types (sandy and clayey). The amount of phospholipid fatty acids (PLFAs) and their compound-specific δ13C values were used to determined microbial biomass and the flow of C from plants to soil microorganisms, respectively. Higher microbial biomass was found in the growing season. The microbial community composition was mainly explained by soil type. Higher amounts of SOC were driving the predominance of G+ bacteria, actinobacteria and cyclic G- bacteria in sandy soils, whereas root biomass was significantly related to the increased proportions of G- bacteria in clayey soils. Plant-derived C in G- bacteria increased significantly in clayey soils in the growing season. This increase was positively and significantly driven by root biomass. Moreover, changes in plant-derived C among microbial groups pointed to specific capabilities of different microbial groups to decompose distinct sources of C. We concluded that soil texture and favorable growth conditions driven by rhizosphere interactions are the most important factors controlling the soil microbial community. Our results demonstrate that a change of C3 plants vs. C4 plants has only a minor effect on the soil microbial community. Thus, such experiments are well suited to investigate soil organic matter dynamics as they allow to trace the C flow from plants into the soil microbial community without changing the community abundance and composition.

  8. Corridors affect plants, animals, and their interactions in fragmented landscapes.

    SciTech Connect

    Tewksbury, Joshua, J.; Levey, Douglas, J.; Haddad, Nick, M.; Sargent, Sarah; Orrock, John, L.; Weldon, Aimee; Danielson, Brent, J.; Brinkerhoff, Jory; Damschen, Ellen, I.; Townsend, Patricia

    2002-10-01

    Tewksbury, J.J., D.J. Levey, N.M. Haddad, S. Sargent, J.L. Orrock, A. Weldon, B.J. Danielson, J. Brinkerhoff, E.I. Damschen, and P. Townsend. 2002. Corridors affect plants, animals, and their interactions in fragmented landscapes. PNAS 99(20):12923-12926. Among the most popular strategies for maintaining populations of both plants and animals in fragmented landscapes is to connect isolated patches with thin strips of habitat, called corridors. Corridors are thought to increase the exchange of individuals between habitat patches, promoting genetic exchange and reducing population fluctuations. Empirical studies addressing the effects of corridors have either been small in scale or have ignored confounding effects of increased habitat area created by the presence of a corridor. These methodological difficulties, coupled with a paucity of studies examining the effects of corridors on plants and plant-animal interactions, have sparked debate over the purported value of corridors in conservation planning. We report results of a large-scale experiment that directly address this debate. We demonstrate that corridors not only increase the exchange of animals between patches, but also facilitate two key plant-animal interactions: pollination and seed dispersal. Our results show that the beneficial effects of corridors extend beyond the area they add, and suggest that increased plant and animal movement through corridors will have positive impacts on plant populations and community interactions in fragmented landscapes.

  9. Contrasting effects of different mammalian herbivores on sagebrush plant communities.

    PubMed

    Veblen, Kari E; Nehring, Kyle C; McGlone, Christopher M; Ritchie, Mark E

    2015-01-01

    Herbivory by both grazing and browsing ungulates shapes the structure and functioning of terrestrial ecosystems worldwide, and both types of herbivory have been implicated in major ecosystem state changes. Despite the ecological consequences of differences in diets and feeding habits among herbivores, studies that experimentally distinguish effects of grazing from spatially co-occurring, but temporally segregated browsing are extremely rare. Here we use a set of long-term exclosures in northern Utah, USA, to determine how domestic grazers vs. wild ungulate herbivores (including browsers and mixed feeders) affect sagebrush-dominated plant communities that historically covered ~62 million ha in North America. We sampled plant community properties and found that after 22 years grazing and browsing elicited perceptible changes in overall plant community composition and distinct responses by individual plant species. In the woody layer of the plant community, release from winter and spring wild ungulate herbivory increased densities of larger Wyoming big sagebrush (Artemisia tridentata, ssp. wyomingensis) at the expense of small sagebrush, while disturbance associated with either cattle or wild ungulate activity alone was sufficient to increase bare ground and reduce cover of biological soil crusts. The perennial bunchgrass, bottlebrush squirretail (Elymus elymoides), responded positively to release from summer cattle grazing, and in turn appeared to competitively suppress another more grazing tolerant perennial grass, Sandberg's blue grass (Poa secunda). Grazing by domestic cattle also was associated with increased non-native species biomass. Together, these results illustrate that ungulate herbivory has not caused sagebrush plant communities to undergo dramatic state shifts; however clear, herbivore-driven shifts are evident. In a dry, perennial-dominated system where plant community changes can occur very slowly, our results provide insights into potential long

  10. Contrasting Effects of Different Mammalian Herbivores on Sagebrush Plant Communities

    PubMed Central

    Veblen, Kari E.; Nehring, Kyle C.; McGlone, Christopher M.; Ritchie, Mark E.

    2015-01-01

    Herbivory by both grazing and browsing ungulates shapes the structure and functioning of terrestrial ecosystems worldwide, and both types of herbivory have been implicated in major ecosystem state changes. Despite the ecological consequences of differences in diets and feeding habits among herbivores, studies that experimentally distinguish effects of grazing from spatially co-occurring, but temporally segregated browsing are extremely rare. Here we use a set of long-term exclosures in northern Utah, USA, to determine how domestic grazers vs. wild ungulate herbivores (including browsers and mixed feeders) affect sagebrush-dominated plant communities that historically covered ~62 million ha in North America. We sampled plant community properties and found that after 22 years grazing and browsing elicited perceptible changes in overall plant community composition and distinct responses by individual plant species. In the woody layer of the plant community, release from winter and spring wild ungulate herbivory increased densities of larger Wyoming big sagebrush (Artemisia tridentata, ssp. wyomingensis) at the expense of small sagebrush, while disturbance associated with either cattle or wild ungulate activity alone was sufficient to increase bare ground and reduce cover of biological soil crusts. The perennial bunchgrass, bottlebrush squirretail (Elymus elymoides), responded positively to release from summer cattle grazing, and in turn appeared to competitively suppress another more grazing tolerant perennial grass, Sandberg’s blue grass (Poa secunda). Grazing by domestic cattle also was associated with increased non-native species biomass. Together, these results illustrate that ungulate herbivory has not caused sagebrush plant communities to undergo dramatic state shifts; however clear, herbivore-driven shifts are evident. In a dry, perennial-dominated system where plant community changes can occur very slowly, our results provide insights into potential long

  11. Functional identity versus species richness: herbivory resistance in plant communities

    PubMed Central

    Heimann, Juliane; Köhler, Günter; Mitschunas, Nadine; Weisser, Wolfgang W.

    2010-01-01

    The resistance of a plant community against herbivore attack may depend on plant species richness, with monocultures often much more severely affected than mixtures of plant species. Here, we used a plant–herbivore system to study the effects of selective herbivory on consumption resistance and recovery after herbivory in 81 experimental grassland plots. Communities were established from seed in 2002 and contained 1, 2, 4, 8, 16 or 60 plant species of 1, 2, 3 or 4 functional groups. In 2004, pairs of enclosure cages (1 m tall, 0.5 m diameter) were set up on all 81 plots. One randomly selected cage of each pair was stocked with 10 male and 10 female nymphs of the meadow grasshopper, Chorthippus parallelus. The grasshoppers fed for 2 months, and the vegetation was monitored over 1 year. Consumption resistance and recovery of vegetation were calculated as proportional changes in vegetation biomass. Overall, grasshopper herbivory averaged 6.8%. Herbivory resistance and recovery were influenced by plant functional group identity, but independent of plant species richness and number of functional groups. However, herbivory induced shifts in vegetation composition that depended on plant species richness. Grasshopper herbivory led to increases in herb cover at the expense of grasses. Herb cover increased more strongly in species-rich mixtures. We conclude that selective herbivory changes the functional composition of plant communities and that compositional changes due to selective herbivory depend on plant species richness. PMID:20429014

  12. Microbial Population and Community Dynamics on Plant Roots and Their Feedbacks on Plant Communities

    PubMed Central

    Bever, James D.; Platt, Thomas G.; Morton, Elise R.

    2012-01-01

    The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology. PMID:22726216

  13. Microbial Community Structure in the Rhizosphere of Rice Plants.

    PubMed

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G

    2015-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  14. Microbial Community Structure in the Rhizosphere of Rice Plants

    PubMed Central

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G.

    2016-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  15. Effect of plant species loss on aphid-parasitoid communities.

    PubMed

    Petermann, Jana S; Müller, Christine B; Weigelt, Alexandra; Weisser, Wolfgang W; Schmid, Bernhard

    2010-05-01

    1. The consequences of species loss on ecosystem functioning within a single trophic level have been extensively studied. However, the loss of basal species is likely to have profound impacts on the abundance, richness and ecosystem functioning of species at higher trophic levels. 2. Here, we used experimentally established plant communities with a species richness gradient to study the effects of plant species loss on a multi-trophic insect community in the field. We measured densities and species richness of aphids and parasitic wasps (primary, secondary and facultative tertiary parasitoids of aphids) that naturally colonized the grassland plots. 3. Furthermore, we calculated two ecosystem functions: aphid load (the number of aphid individuals per host plant biomass used as a proxy for herbivory) and parasitism rate. We used structural equation models to explore pathways of direct and indirect effects of plant species richness on higher trophic levels. 4. We found that the densities and richness of species at all trophic levels were influenced by changes in plant species richness. The effects were rarely direct, but instead mediated by the abundance and species richness of aphid host plants and subsequent trophic levels. 5. The herbivore and primary parasitoid levels were most directly affected by changes in plant species richness, with highest insect densities and species richness occurring at intermediate plant species richness. The densities and species richness of secondary parasitoids declined linearly with plant species richness owing to sparser resources, resulting in shorter food chains in communities with the highest plant species richness. 6. Aphid load was highest at intermediate plant species richness and negatively affected by both host plant biomass and host plant species richness. Parasitism rate was mostly affected indirectly via aphid density and overall only weakly negatively related to plant species richness. 7. Our results demonstrate that

  16. Plant community succession in modern Yellow River Delta, China*

    PubMed Central

    Zhang, Gao-sheng; Wang, Ren-qing; Song, Bai-min

    2007-01-01

    Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The succession series of plant community in the study area was as follows: saline bare land→community Suaeda salsa→community Tamarix chinensis→grassland. Succession degree and succession process of 12 succession communities were calculated. Most of these communities were in the lower succession stage, however, community Phragmites communis+Glycine soja and community Imperata cylindrica+G. soja were close to the succession stage of grassland climax. Five species diversity indices were used to study the changes in species richness, species evenness and diversity during succession of community. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development. The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of the modern Yellow River Delta. It affected community structure, species composition and succession process. PMID:17657854

  17. Plant genetics predicts intra-annual variation in phytochemistry and arthropod community structure.

    PubMed

    Wimp, G M; Wooley, S; Bangert, R K; Young, W P; Martinsen, G D; Keim, P; Rehill, B; Lindroth, R L; Whitham, T G

    2007-12-01

    With the emerging field of community genetics, it is important to quantify the key mechanisms that link genetics and community structure. We studied cottonwoods in common gardens and in natural stands and examined the potential for plant chemistry to be a primary mechanism linking plant genetics and arthropod communities. If plant chemistry drives the relationship between plant genetics and arthropod community structure, then several predictions followed. We would find (i) the strongest correlation between plant genetic composition and chemical composition; (ii) an intermediate correlation between plant chemical composition and arthropod community composition; and (iii) the weakest relationship between plant genetic composition and arthropod community composition. Our results supported our first prediction: plant genetics and chemistry had the strongest correlation in the common garden and the wild. Our results largely supported our second prediction, but varied across space, seasonally, and according to arthropod feeding group. Plant chemistry played a larger role in structuring common garden arthropod communities relative to wild communities, free-living arthropods relative to leaf and stem modifiers, and early-season relative to late-season arthropods. Our results did not support our last prediction, as host plant genetics was at least as tightly linked to arthropod community structure as plant chemistry, if not more so. Our results demonstrate the consistency of the relationship between plant genetics and biodiversity. Additionally, plant chemistry can be an important mechanism by which plant genetics affects arthropod community composition, but other genetic-based factors are likely involved that remain to be measured.

  18. Global change and terrestrial plant community dynamics.

    PubMed

    Franklin, Janet; Serra-Diaz, Josep M; Syphard, Alexandra D; Regan, Helen M

    2016-04-01

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338

  19. Global change and terrestrial plant community dynamics.

    PubMed

    Franklin, Janet; Serra-Diaz, Josep M; Syphard, Alexandra D; Regan, Helen M

    2016-04-01

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.

  20. Global change and terrestrial plant community dynamics

    PubMed Central

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.

    2016-01-01

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338

  1. Diversity protects plant communities against generalist molluscan herbivores.

    PubMed

    Fabian, Yvonne; Sandau, Nadine; Bruggisser, Odile T; Kehrli, Patrik; Aebi, Alexandre; Rohr, Rudolf P; Naisbit, Russell E; Bersier, Louis-Félix

    2012-10-01

    Wildflower strips are used to increase natural enemies of crop pests and to conserve insect diversity on farmland. Mollusks, especially slugs, can affect the vegetation development in these strips considerably. Although recent theoretical work suggests that more diverse plant communities will exhibit greater resistance against herbivore pressure, empirical studies are scarce. We conducted a semi-natural experiment in wildflower strips, manipulating trophic structure (reduction in herbivorous mollusks and reduction in major predators) and plant diversity (2, 6, 12, 20 and 24 sown species). This design allowed us to assess the effect of plant diversity, biomass and composition on mollusks, and vice versa, the effect of mollusc abundance on vegetation. Seven species of mollusks were found in the strips, with the slugs Arion lusitanicus, Deroceras reticulatum and Deroceras panormitanum being most frequent. We found a negative relationship between plant diversity and mollusk abundance, which was due predominantly to a decrease in the agricultural pest species A. lusitanicus. These results are consistent with the hypothesis that plant diversity can reduce the impact of herbivores. However, plant identity also had an effect on mollusks, and accounted for a much larger fraction of the variation in mollusk communities than biodiversity effects. While overall plant diversity decreased during the 3 years of the study, in the final year the highest plant diversity was found in the plots where mollusk populations were experimentally reduced. We conclude that selective feeding by generalist herbivores leads to changes in plant community composition and hence reduced plant diversity. Our results highlight the importance of plant biodiversity as protection against generalist herbivores, which if abundant can in the long term negatively impact plant diversity, driving the system along a "low plant diversity - high mollusk abundance" trajectory.

  2. Diversity protects plant communities against generalist molluscan herbivores

    PubMed Central

    Fabian, Yvonne; Sandau, Nadine; Bruggisser, Odile T; Kehrli, Patrik; Aebi, Alexandre; Rohr, Rudolf P; Naisbit, Russell E; Bersier, Louis-Félix

    2012-01-01

    Wildflower strips are used to increase natural enemies of crop pests and to conserve insect diversity on farmland. Mollusks, especially slugs, can affect the vegetation development in these strips considerably. Although recent theoretical work suggests that more diverse plant communities will exhibit greater resistance against herbivore pressure, empirical studies are scarce. We conducted a semi-natural experiment in wildflower strips, manipulating trophic structure (reduction in herbivorous mollusks and reduction in major predators) and plant diversity (2, 6, 12, 20 and 24 sown species). This design allowed us to assess the effect of plant diversity, biomass and composition on mollusks, and vice versa, the effect of mollusc abundance on vegetation. Seven species of mollusks were found in the strips, with the slugs Arion lusitanicus, Deroceras reticulatum and Deroceras panormitanum being most frequent. We found a negative relationship between plant diversity and mollusk abundance, which was due predominantly to a decrease in the agricultural pest species A. lusitanicus. These results are consistent with the hypothesis that plant diversity can reduce the impact of herbivores. However, plant identity also had an effect on mollusks, and accounted for a much larger fraction of the variation in mollusk communities than biodiversity effects. While overall plant diversity decreased during the 3 years of the study, in the final year the highest plant diversity was found in the plots where mollusk populations were experimentally reduced. We conclude that selective feeding by generalist herbivores leads to changes in plant community composition and hence reduced plant diversity. Our results highlight the importance of plant biodiversity as protection against generalist herbivores, which if abundant can in the long term negatively impact plant diversity, driving the system along a “low plant diversity – high mollusk abundance” trajectory. PMID:23145332

  3. Can transgenic maize affect soil microbial communities?

    PubMed

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-09-29

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical guilds) and/or a change in numerical abundance of their cells. Litter placement is known for its strong influence on the soil decomposer communities. The effects of the addition of crop residues on respiration and catabolic activities of the bacterial community were examined in microcosm experiments. Four cultivars of Zea mays L. of two different isolines (each one including the conventional crop and its Bacillus thuringiensis cultivar) and one control of bulk soil were included in the experimental design. The growth models suggest a dichotomy between soils amended with either conventional or transgenic maize residues. The Cry1Ab protein appeared to influence the composition of the microbial community. The highly enhanced soil respiration observed during the first 72 h after the addition of Bt-maize residues can be interpreted as being related to the presence of the transgenic crop residues. This result was confirmed by agar plate counting, as the averages of the colony-forming units of soils in conventional treatments were about one-third of those treated with transgenic straw. Furthermore, the addition of Bt-maize appeared to induce increased microbial consumption of carbohydrates in BIOLOG EcoPlates. Three weeks after the addition of maize residues to the soils, no differences between the consumption rate of specific chemical guilds by bacteria in soils amended with transgenic maize and bacteria in soils amended with conventional maize were detectable. Reaped crop residues, comparable to post-harvest maize straw (a common practice in current agriculture), rapidly influence the soil bacterial cells at a functional level. Overall, these data support the existence of short

  4. Microbial Community Composition Affects Soil Fungistasis†

    PubMed Central

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J. A.; Kowalchuk, George A.; van Veen, Johannes A.

    2003-01-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis. PMID:12571002

  5. Plant Host and Geographic Location Drive Endophyte Community Composition in the Face of Perturbation.

    PubMed

    Christian, Natalie; Sullivan, Courtney; Visser, Noelle D; Clay, Keith

    2016-10-01

    All plants form symbioses with endophytic fungi, which affect host plant health and function. Most endophytic fungi are horizontally transmitted, and consequently, local environment and geographic location greatly influence endophyte community composition. Growing evidence also suggests that identity of the plant host (e.g., species, genotype) can be important in shaping endophyte communities. However, little is known about how disturbances to plants affect their fungal symbiont communities. The goal of this study was to test if disturbances, from both natural and anthropogenic sources, can alter endophyte communities independent of geographic location or plant host identity. Using the plant species white snakeroot (Ageratina altissima; Asteraceae), we conducted two experiments that tested the effect of perturbation on endophyte communities. First, we examined endophyte response to leaf mining insect activity, a natural perturbation, in three replicate populations. Second, for one population, we applied fungicide to plant leaves to test endophyte community response to an anthropogenic perturbation. Using culture-based methods and Sanger sequencing of fungal isolates, we then examined abundance, diversity, and community structure of endophytic fungi in leaves subjected to perturbations by leaf mining and fungicide application. Our results show that plant host individual and geographic location are the major determinants of endophyte community composition even in the face of perturbations. Unexpectedly, we found that leaf mining did not impact endophyte communities in white snakeroot, but fungicide treatment resulted in small but significant changes in endophyte community structure. Together, our results suggest that endophyte communities are highly resistant to biotic and anthropogenic disturbances. PMID:27341838

  6. Plant Host and Geographic Location Drive Endophyte Community Composition in the Face of Perturbation.

    PubMed

    Christian, Natalie; Sullivan, Courtney; Visser, Noelle D; Clay, Keith

    2016-10-01

    All plants form symbioses with endophytic fungi, which affect host plant health and function. Most endophytic fungi are horizontally transmitted, and consequently, local environment and geographic location greatly influence endophyte community composition. Growing evidence also suggests that identity of the plant host (e.g., species, genotype) can be important in shaping endophyte communities. However, little is known about how disturbances to plants affect their fungal symbiont communities. The goal of this study was to test if disturbances, from both natural and anthropogenic sources, can alter endophyte communities independent of geographic location or plant host identity. Using the plant species white snakeroot (Ageratina altissima; Asteraceae), we conducted two experiments that tested the effect of perturbation on endophyte communities. First, we examined endophyte response to leaf mining insect activity, a natural perturbation, in three replicate populations. Second, for one population, we applied fungicide to plant leaves to test endophyte community response to an anthropogenic perturbation. Using culture-based methods and Sanger sequencing of fungal isolates, we then examined abundance, diversity, and community structure of endophytic fungi in leaves subjected to perturbations by leaf mining and fungicide application. Our results show that plant host individual and geographic location are the major determinants of endophyte community composition even in the face of perturbations. Unexpectedly, we found that leaf mining did not impact endophyte communities in white snakeroot, but fungicide treatment resulted in small but significant changes in endophyte community structure. Together, our results suggest that endophyte communities are highly resistant to biotic and anthropogenic disturbances.

  7. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland.

    PubMed

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

  8. Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland

    PubMed Central

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860

  9. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    PubMed

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-01-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities.

  10. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    PubMed Central

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-01-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities. PMID:24811826

  11. Plant-plant interactions, environmental gradients and plant diversity: a global synthesis of community-level studies

    PubMed Central

    Soliveres, Santiago; Maestre, Fernando T.

    2015-01-01

    Previous syntheses on the effects of environmental conditions on the outcome of plant-plant interactions summarize results from pairwise studies. However, the upscaling to the community-level of such studies is problematic because of the existence of multiple species assemblages and species-specific responses to both the environmental conditions and the presence of neighbors. We conducted the first global synthesis of community-level studies from harsh environments, which included data from 71 alpine and 137 dryland communities. Here we: i) test how important are facilitative interactions as a driver of community structure, ii) evaluate whether the frequency of positive plant-plant interactions across differing environmental conditions and habitats is predictable, and iii) assess whether thresholds in the response of plant-plant interactions to environmental gradients exists between “moderate” and “extreme” stress levels. We also used those community-level studies performed across gradients of at least three points to evaluate how the average environmental conditions, the length of the gradient studied, and the number of points sampled across such gradient affect the form and strength of the facilitation-environment relationship. Over 25% of the species present were more spatially associated to nurse plants than expected by chance in both alpine and dryland areas, illustrating the high importance of positive plant-plant interactions for the maintenance of plant diversity. Facilitative interactions were more frequent, and more related to environmental conditions, in alpine than in dryland areas, perhaps because drylands are generally characterized by a larger variety of environmental stress factors and plant functional traits. The frequency of facilitative interactions in alpine communities peaked at 1000 mm of annual rainfall, and globally decreased with elevation. The frequency of positive interactions in dryland communities decreased globally with water

  12. Multiple climate drivers accelerate Arctic plant community senescence

    NASA Astrophysics Data System (ADS)

    Livensperger, C.; Steltzer, H.; Wallenstein, M. D.; Weintraub, M. N.

    2015-12-01

    Alteration of seasonal phenology cues due to climate change has led to changes in the onset and duration of the growing season. While photoperiod often acts as an ultimate control on phenological events, recent studies have shown that environmental cues such as temperature and soil water content can modify the direction and rate of senescence processes. Warmer temperatures have resulted in an observed trend towards delayed senescence across temperate latitudes. However, Arctic regions are characterized by extreme seasonality and rapidly decreasing photoperiod, and consequently senescence may not shift as climate warms. We monitored the timing of Arctic plant community senescence for three years under the framework of an experimental manipulation that altered seasonal phenological cues through warming and earlier snowmelt. Alternative models of senescence were tested to determine if microclimate (air temperature, soil temperature, and soil moisture) or start of season phenology affect the timing and rate of community senescence. We found that all three microclimate predictors contributed to explaining variation in timing of senescence, suggesting that photoperiod is not the sole control on timing of senescence in Arctic plant communities. Rather, increased air and soil temperatures along with drier soil conditions, led to acceleration in the onset of senescence at a community level. Our data suggest that (1) multiple climate drivers predict timing of plant community senescence, and (2) climate change could result in a shorter peak season due to earlier onset of senescence, which would decrease the potential carbon uptake in moist acidic tundra.

  13. [Effects of different years of planting Pennisetum sp. on the plant- and insect diversity in Pennisetum sp. communities].

    PubMed

    Lin, Xing-Sheng; Lin, Zhan-Xi; Lin, Dong-Mei; Lin, Hui; Luo, Hai-Ling; Hu, Ying-Ping; Lin, Chun-Mei; Zhu, Chao-Zhi

    2012-10-01

    This paper studied the effects of 1-, 2- and 3 years of planting Pennisetum sp. on the plant- and insect diversity in the Pennisetum sp. communities, taking the barren mountain land without planting Pennisetum sp. as the control (CK). Compared with CK, the plant species richness in Pennisetum sp. communities with different years of planting was lower, but the coverage was higher. The coverage in the Pennisetum sp. community having been planted for 3 years was the highest, up to 91.6%, and 75.8% higher than the CK. The insect species richness in the Pennisetum sp. communities having been planted for 1, 2 and 3 years was 3.6, 5.3 and 5.6 times of the CK, respectively. The plant- and insect diversity indices, including Simpson index, Shannon index, evenness, Brillouin index, and McIntosh index for the Pennisetum sp. communities with different years of planting were significantly higher than the CK, which indicated that the growth of Pennisetum sp. could affect the plant- and insect diversity. With the increasing year of planting, the plant- and insect diversity in Pennisetum sp. communities tended to be stable.

  14. Between-Population Outbreeding Affects Plant Defence

    PubMed Central

    Leimu, Roosa; Fischer, Markus

    2010-01-01

    Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies. PMID:20838662

  15. Designing Invasion Resistant Plant Communities: The Role of Plant Functional Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishing and maintaining weed-resistant plant communities is a central goal of sustainable invasive plant management programs. Plant community characteristics that improve invasion resistance, however, are poorly understood. Here we synthesize data from multiple studies and show traits related ...

  16. Kin recognition affects plant communication and defence.

    PubMed

    Karban, Richard; Shiojiri, Kaori; Ishizaki, Satomi; Wetzel, William C; Evans, Richard Y

    2013-04-01

    The ability of many animals to recognize kin has allowed them to evolve diverse cooperative behaviours; such ability is less well studied for plants. Many plants, including Artemisia tridentata, have been found to respond to volatile cues emitted by experimentally wounded neighbours to increase levels of resistance to herbivory. We report that this communication was more effective among A. tridentata plants that were more closely related based on microsatellite markers. Plants in the field that received cues from experimentally clipped close relatives experienced less leaf herbivory over the growing season than those that received cues from clipped neighbours that were more distantly related. These results indicate that plants can respond differently to cues from kin, making it less likely that emitters will aid strangers and making it more likely that receivers will respond to cues from relatives. More effective defence adds to a growing list of favourable consequences of kin recognition for plants.

  17. Methods of affecting nitrogen assimilation in plants

    DOEpatents

    Coruzzi, Gloria; Gutierrez, Rodrigo A.; Nero, Damion C.

    2016-10-11

    Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.

  18. Curvilinear effects of invasive plants on plant diversity: plant community invaded by Sphagneticola trilobata.

    PubMed

    Qi, Shan-Shan; Dai, Zhi-Cong; Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

    2014-01-01

    The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants.

  19. Curvilinear Effects of Invasive Plants on Plant Diversity: Plant Community Invaded by Sphagneticola trilobata

    PubMed Central

    Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

    2014-01-01

    The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants. PMID:25426856

  20. Curvilinear effects of invasive plants on plant diversity: plant community invaded by Sphagneticola trilobata.

    PubMed

    Qi, Shan-Shan; Dai, Zhi-Cong; Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

    2014-01-01

    The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants. PMID:25426856

  1. Plant Hormones: How They Affect Root Formation.

    ERIC Educational Resources Information Center

    Reinhard, Diana Hereda

    This science study aid, produced by the U.S. Department of Agriculture, includes a series of plant rooting activities for secondary science classes. The material in the pamphlet is written for students and includes background information on plant hormones, a vocabulary list, and five learning activities. Objectives, needed materials, and…

  2. How have fisheries affected parasite communities?

    USGS Publications Warehouse

    Wood, Chelsea L.; Lafferty, Kevin D.

    2015-01-01

    To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.

  3. Osmolyte cooperation affects turgor dynamics in plants.

    PubMed

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-01-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes. PMID:27445173

  4. Osmolyte cooperation affects turgor dynamics in plants

    PubMed Central

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-01-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes. PMID:27445173

  5. Osmolyte cooperation affects turgor dynamics in plants

    NASA Astrophysics Data System (ADS)

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-07-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes.

  6. Salinity and disturbance mediate direct and indirect plant-plant interactions in an assembled marsh community.

    PubMed

    Wang, Cheng-Huan; Li, Bo

    2016-09-01

    Direct and indirect plant-plant interactions play important roles in structuring plant communities, but the relative importance of physical stress and biological disturbance in mediating competitive outcomes remains debated. We conducted two common garden experiments to examine the influence of salinity and disturbance (sediment accretion and clipping) on competitive interactions among three native sedges (Scirpus mariqueter, Scirpus triqueter, and Carex scabrifolia) in the Yangtze estuary. In both experiments, the relative competitive abilities of these plants shifted among different treatments. Competition importance rather than intensity significantly decreased with increasing stress. At the community level, competition importance showed reduced variation along the stress gradient in the disturbance experiment. Notably, the performance of these sedges in three-species mixtures could not be predicted by their competitive relationships in two-species mixtures, which was an indication of indirect interactions. Salinity, disturbance and indirect interactions all affected the competitive dynamics of these sedges, which could explain their different performances and natural distributions in the Yangtze estuary. Our findings of the complex effects of physical factors and multi-species interactions, as well as the different patterns of competition importance along stress gradients at the species level and the community level can improve our understanding of plant community organization in salt marshes and other ecosystems with sharp environmental gradients. PMID:27164913

  7. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health.

    PubMed

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-01-01

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity-invasion resistance relationships in bacterial rhizosphere communities. PMID:26400552

  8. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health

    PubMed Central

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-01-01

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity–invasion resistance relationships in bacterial rhizosphere communities. PMID:26400552

  9. Divergent composition but similar function of soil food webs of individual plants: plant species and community effects.

    PubMed

    Bezemer, T M; Fountain, M T; Barea, J M; Christensen, S; Dekker, S C; Duyts, H; van Hal, R; Harvey, J A; Hedlund, K; Maraun, M; Mikola, J; Mladenov, A G; Robin, C; de Ruiter, P C; Scheu, S; Setälä, H; Smilauer, P; van der Putten, W H

    2010-10-01

    Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon

  10. Divergent composition but similar function of soil food webs of individual plants: plant species and community effects.

    PubMed

    Bezemer, T M; Fountain, M T; Barea, J M; Christensen, S; Dekker, S C; Duyts, H; van Hal, R; Harvey, J A; Hedlund, K; Maraun, M; Mikola, J; Mladenov, A G; Robin, C; de Ruiter, P C; Scheu, S; Setälä, H; Smilauer, P; van der Putten, W H

    2010-10-01

    Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon

  11. Plant communities: ecosystem stability in Inner Mongolia.

    PubMed

    Wang, Shiping; Niu, Haishan; Cui, Xiaoyong; Jiang, Shu; Li, Yonghong; Xiao, Xiangming; Wang, Jinzhi; Wang, Guojie; Huang, Dehua; Qi, Qiuhui; Yang, Zonggui

    2005-06-23

    Bai et al. suggest that in China's Inner Mongolia steppe, community-level stability arises from compensatory effects among the principal components at both the species and plant functional group (PFG) levels. By analysing a consistent 19-year data set (1980-98), we show here that their analysis of a 24-year field data set (1980-2003) is called into question by inconsistencies in sampling location and numbers after 1998; the authors' findings are further undermined because they do not distinguish temporal variation from spatial heterogeneity in analysing compensatory effects among species or PFGs. We believe that rigorous reanalysis is needed for a better understanding of grassland stability. PMID:15973359

  12. Community 15N isoscapes to resolve plant-plant-interactions at the spatial scale

    NASA Astrophysics Data System (ADS)

    Hellmann, Christine; Rascher, Katherine G.; Máguas, Cristina; Werner, Christiane

    2014-05-01

    Isoscapes have greatly improved our ability to understand biogeochemical processes on continental to global scales. However, the isoscapes framework may also have significant potential to resolve the spatial component of within-community interactions. For example, exotic plant invaders often exert strong impacts on ecosystem functioning, particularly regarding water-, carbon- and nutrient-cycles, but the spatial extent of such alterations is largely unknown. Here we show that massive N input by the N2-fixing exotic invasive Acacia longifolia to a Portuguese dune system can be traced using spatially resolved information on native plants' leaf δ15N. We found isotopic signatures of N to differ strongly between the native system (δ15N c. -10 o) and the atmospherically derived N in A. longifolia phyllodes (δ15N c. 0 o). Thus, sources of N for native plants could be readily distinguished. Leaf δ15N of a native, non-fixing species was increasingly enriched the closer the plant grew to the invader, indicating uptake of fixed N provided by A. longifolia. The enrichment was evident far beyond the stands of the invader, demonstrating that A. longifolia affected N budgets of native species up to a distance of 8 m exceeding the margin of the canopy. Furthermore, using the isoscapes approach, we were able to quantify the total area of N enrichment and could thus show that the area affected by invasion was at least 3.5 times larger than the area actually occupied by the invader. However, a native N2-fixing species had no such effects. Thus, downscaling isoscapes to the community level opens new frontiers in quantifying the spatial dimension of functional changes associated with plant invasions. Moreover, considering the feasibility and applicability of this approach, it may provide a promising tool to identify, quantify and monitor different types of functional plant-plant interactions within communities at a spatially explicit scale.

  13. Conceptual hierarchical modeling to describe wetland plant community organization

    USGS Publications Warehouse

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  14. Offspring size in a resident species affects community assembly.

    PubMed

    Davis, Kurt; Marshall, Dustin J

    2014-03-01

    Offspring size is a trait of fundamental importance that affects the ecology and evolution of a range of organisms. Despite the pervasive impact of offspring size for those offspring, the influence of offspring size on other species in the broader community remains unexplored. Such community-wide effects of offspring size are likely, but they have not been anticipated by theory or explored empirically. For a marine invertebrate community, we manipulated the size and density of offspring of a resident species (Watersipora subtorquata) in the field and examined subsequent community assembly around that resident species. Communities that assembled around larger offspring were denser and less diverse than communities that assembled around smaller offspring. Differences in niche usage by colonies from smaller and larger offspring may be driving these community-level effects. Our results suggest that offspring size is an important but unexplored source of ecological variation and that life-history theory must accommodate the effects of offspring size on community assembly. Life-history theory often assumes that environmental variation drives intraspecific variation in offspring size, and our results show that the converse can also occur.

  15. Offspring size in a resident species affects community assembly.

    PubMed

    Davis, Kurt; Marshall, Dustin J

    2014-03-01

    Offspring size is a trait of fundamental importance that affects the ecology and evolution of a range of organisms. Despite the pervasive impact of offspring size for those offspring, the influence of offspring size on other species in the broader community remains unexplored. Such community-wide effects of offspring size are likely, but they have not been anticipated by theory or explored empirically. For a marine invertebrate community, we manipulated the size and density of offspring of a resident species (Watersipora subtorquata) in the field and examined subsequent community assembly around that resident species. Communities that assembled around larger offspring were denser and less diverse than communities that assembled around smaller offspring. Differences in niche usage by colonies from smaller and larger offspring may be driving these community-level effects. Our results suggest that offspring size is an important but unexplored source of ecological variation and that life-history theory must accommodate the effects of offspring size on community assembly. Life-history theory often assumes that environmental variation drives intraspecific variation in offspring size, and our results show that the converse can also occur. PMID:26046291

  16. Affective State and Community Integration after Traumatic Brain Injury

    PubMed Central

    Juengst, Shannon B.; Arenth, Patricia M.; Raina, Ketki D.; McCue, Michael; Skidmore, Elizabeth R.

    2014-01-01

    Previous studies investigating the relationship between affective state and community integration have focused primarily on the influence of depression and anxiety. Additionally, they have focused on frequency of participation in various activities, failing to address an individual's subjective satisfaction with participation. The purpose of this study was to examine how affective state, contributes to frequency of participation and satisfaction with participation after TBI among participants with and without a current major depressive episode. Sixty-four community-dwelling participants with a history of complicated mild to severe TBI participated in this cross-sectional cohort study. High positive affect contributed significantly to frequency of participation (β=.401, p=.001), and both high positive affect and low negative affect significantly contributed to better satisfaction with participation (F2,61=13.63, p<.001). Further investigation to assess the direction of these relationships may better inform effective targets for intervention. These findings highlight the importance of assessing affective state after TBI and incorporating a subjective measure of participation when considering community integration outcomes. PMID:25133618

  17. Affective state and community integration after traumatic brain injury.

    PubMed

    Juengst, Shannon B; Arenth, Patricia M; Raina, Ketki D; McCue, Michael; Skidmore, Elizabeth R

    2014-12-01

    Previous studies investigating the relationship between affective state and community integration have focused primarily on the influence of depression and anxiety. In addition, they have focused on frequency of participation in various activities, failing to address an individual's subjective satisfaction with participation. The purpose of this study was to examine how affective state contributes to frequency of participation and satisfaction with participation after traumatic brain injury among participants with and without a current major depressive episode. Sixty-four community-dwelling participants with a history of complicated mild-to-severe traumatic brain injury participated in this cross-sectional cohort study. High positive affect contributed significantly to frequency of participation (β = 0.401, P = 0.001), and both high positive affect and low negative affect significantly contributed to better satisfaction with participation (F2,61 = 13.63, P < 0.001). Further investigation to assess the direction of these relationships may better inform effective targets for intervention. These findings highlight the importance of assessing affective state after traumatic brain injury and incorporating a subjective measure of participation when considering community integration outcomes.

  18. Earthworm-Mycorrhiza Interactions Can Affect the Diversity, Structure and Functioning of Establishing Model Grassland Communities

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m−2). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  19. Investigating Effects of Invasive Species on Plant Community Structure

    ERIC Educational Resources Information Center

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  20. Community Support of Ethanol Plants: Does Local Ownership Matter?

    ERIC Educational Resources Information Center

    Bain, Carmen; Prokos, Anastasia; Liu, Hexuan

    2012-01-01

    Drawing on data from six communities in Kansas and Iowa, we explore the factors that are related to community members' current levels of overall support for local ethanol plants. What are residents' opinions about the benefits and drawbacks of local ownership of ethanol plants? How does that awareness lead to overall support of plants? Our…

  1. Volatile exchange between undamaged plants - a new mechanism affecting insect orientation in intercropping.

    PubMed

    Ninkovic, Velemir; Dahlin, Iris; Vucetic, Andja; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben

    2013-01-01

    Changes in plant volatile emission can be induced by exposure to volatiles from neighbouring insect-attacked plants. However, plants are also exposed to volatiles from unattacked neighbours, and the consequences of this have not been explored. We investigated whether volatile exchange between undamaged plants affects volatile emission and plant-insect interaction. Consistently greater quantities of two terpenoids were found in the headspace of potato previously exposed to volatiles from undamaged onion plants identified by mass spectrometry. Using live plants and synthetic blends mimicking exposed and unexposed potato, we tested the olfactory response of winged aphids, Myzus persicae. The altered potato volatile profile deterred aphids in laboratory experiments. Further, we show that growing potato together with onion in the field reduces the abundance of winged, host-seeking aphids. Our study broadens the ecological significance of the phenomenon; volatiles carry not only information on whether or not neighbouring plants are under attack, but also information on the emitter plants themselves. In this way responding plants could obtain information on whether the neighbouring plant is a competitive threat and can accordingly adjust their growth towards it. We interpret this as a response in the process of adaptation towards neighbouring plants. Furthermore, these physiological changes in the responding plants have significant ecological impact, as behaviour of aphids was affected. Since herbivore host plants are potentially under constant exposure to these volatiles, our study has major implications for the understanding of how mechanisms within plant communities affect insects. This knowledge could be used to improve plant protection and increase scientific understanding of communication between plants and its impact on other organisms.

  2. Volatile Exchange between Undamaged Plants - a New Mechanism Affecting Insect Orientation in Intercropping

    PubMed Central

    Ninkovic, Velemir; Dahlin, Iris; Vucetic, Andja; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben

    2013-01-01

    Changes in plant volatile emission can be induced by exposure to volatiles from neighbouring insect-attacked plants. However, plants are also exposed to volatiles from unattacked neighbours, and the consequences of this have not been explored. We investigated whether volatile exchange between undamaged plants affects volatile emission and plant-insect interaction. Consistently greater quantities of two terpenoids were found in the headspace of potato previously exposed to volatiles from undamaged onion plants identified by mass spectrometry. Using live plants and synthetic blends mimicking exposed and unexposed potato, we tested the olfactory response of winged aphids, Myzus persicae. The altered potato volatile profile deterred aphids in laboratory experiments. Further, we show that growing potato together with onion in the field reduces the abundance of winged, host-seeking aphids. Our study broadens the ecological significance of the phenomenon; volatiles carry not only information on whether or not neighbouring plants are under attack, but also information on the emitter plants themselves. In this way responding plants could obtain information on whether the neighbouring plant is a competitive threat and can accordingly adjust their growth towards it. We interpret this as a response in the process of adaptation towards neighbouring plants. Furthermore, these physiological changes in the responding plants have significant ecological impact, as behaviour of aphids was affected. Since herbivore host plants are potentially under constant exposure to these volatiles, our study has major implications for the understanding of how mechanisms within plant communities affect insects. This knowledge could be used to improve plant protection and increase scientific understanding of communication between plants and its impact on other organisms. PMID:23922710

  3. Rhizosphere microbiome assemblage is affected by plant development

    PubMed Central

    Chaparro, Jacqueline M; Badri, Dayakar V; Vivanco, Jorge M

    2014-01-01

    There is a concerted understanding of the ability of root exudates to influence the structure of rhizosphere microbial communities. However, our knowledge of the connection between plant development, root exudation and microbiome assemblage is limited. Here, we analyzed the structure of the rhizospheric bacterial community associated with Arabidopsis at four time points corresponding to distinct stages of plant development: seedling, vegetative, bolting and flowering. Overall, there were no significant differences in bacterial community structure, but we observed that the microbial community at the seedling stage was distinct from the other developmental time points. At a closer level, phylum such as Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and specific genera within those phyla followed distinct patterns associated with plant development and root exudation. These results suggested that the plant can select a subset of microbes at different stages of development, presumably for specific functions. Accordingly, metatranscriptomics analysis of the rhizosphere microbiome revealed that 81 unique transcripts were significantly (P<0.05) expressed at different stages of plant development. For instance, genes involved in streptomycin synthesis were significantly induced at bolting and flowering stages, presumably for disease suppression. We surmise that plants secrete blends of compounds and specific phytochemicals in the root exudates that are differentially produced at distinct stages of development to help orchestrate rhizosphere microbiome assemblage. PMID:24196324

  4. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    PubMed

    Lembrechts, Jonas J; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  5. Plant community response to landscape connectivity and patch shape.

    SciTech Connect

    Damschen, Ellen I.

    2005-07-01

    Ph.D Dissertation. North Carolina State University. Raleigh, North Carolina. 135 pp. Abstract. Land transformation is the single most important factor promoting the global loss of terrestrial biological diversity. Remaining habitat fragments contain more edges, less interior habitat, and are more isolated from other habitat fragments, all of which decrease rates of colonization following local extinctions, reduce reproductive rates and gene flow between populations, and ultimately lead to species extinctions. The best approach to prevent species loss, therefore, is to preserve greater areas of habitat. In many cases, however, habitat has already been fragmented and strategies are needed to configure and manage the remaining land. Land managers often create reserve networks that incorporate the use of landscape corridors, linear strips of habitat connecting isolated patches, to reduce species loss by increasing colonizations and decreasing extinctions. Most empirical tests of corridors have been limited to individuals and populations, leaving corridor effects on diversity largely unknown, especially at large spatial scales. Additionally, only a handful of studies have examined corridor effects on plants, which may be especially sensitive to the abiotic changes resulting from alterations in patch shape due to dispersal limitation. Using one of the best-replicated, large-scale habitat fragmentation experiments, I tested explicitly for corridor effects on plant community diversity and composition by examining the established plant community and the soil seedbank. My experimental design distinguished among the three possible ways corridors can affect between-patch processes: by acting as a movement conduit between connected patches (“connectivity effects”), by increasing area alone (“area effects”), and by intercepting organisms moving across the landscape and filtering them into connected patches (“drift-fence effects”). Additionally, I tested for the

  6. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T.; Halpern, Malka

    2015-01-01

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness. PMID:26122961

  7. Eco-evolutionary dynamics of plant-herbivore communities: incorporating plant phenotypic plasticity.

    PubMed

    Ohgushi, Takayuki

    2016-04-01

    The interplay between evolution and ecological communities is critical for the integration of different levels of biological organization. Recent work has begun to unveil the importance of plant phenotypic plasticity and plant-herbivore (co)evolution to link plant evolution and associated insect communities. Specifically, herbivore-induced plant traits (i.e., plastic phenotypes) have significant effects on the structure and diversity of herbivore communities, which can in turn promote the evolution of not only the focal plant but also insect community members. Here, I will provide a conceptual framework on the eco-evolutionary dynamics of plant-herbivore communities to understand how biological organizations are integrated in plant-insect interactions. Research on eco-evolutionary dynamics of plant-herbivore communities will undoubtedly enrich understanding of a wide range of plant-insect interactions. PMID:27436645

  8. The impact of plant chemical diversity on plant-herbivore interactions at the community level.

    PubMed

    Salazar, Diego; Jaramillo, Alejandra; Marquis, Robert J

    2016-08-01

    Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants. PMID:27129320

  9. An Exploration of Hypotheses that Explain Herbivore and Pathogen Attack in Restored Plant Communities

    PubMed Central

    Blaisdell, G. Kai; Roy, Bitty A.; Pfeifer-Meister, Laurel; Bridgham, Scott D.

    2015-01-01

    Many hypotheses address the associations of plant community composition with natural enemies, including: (i) plant species diversity may reduce enemy attack, (ii) attack may increase as host abundance increases, (iii) enemy spillover may lead to increased attack on one host species due to transmission from another host species, or enemy dilution may lead to reduced attack on a host that would otherwise have more attack, (iv) physical characteristics of the plant community may influence attack, and (v) plant vigor may affect attack. Restoration experiments with replicated plant communities provide an exceptional opportunity to explore these hypotheses. To explore the relative predictive strengths of these related hypotheses and to investigate the potential effect of several restoration site preparation techniques, we surveyed arthropod herbivore and fungal pathogen attack on the six most common native plant species in a restoration experiment. Multi-model inference revealed a weak but consistent negative correlation with pathogen attack and host diversity across the plant community, and no correlation between herbivory and host diversity. Our analyses also revealed host species-specific relationships between attack and abundance of the target host species, other native plant species, introduced plant species, and physical community characteristics. We found no relationship between enemy attack and plant vigor. We found minimal differences in plant community composition among several diverse site preparation techniques, and limited effects of site preparation techniques on attack. The strongest associations of community characteristics with attack varied among plant species with no community-wide patterns, suggesting that no single hypothesis successfully predicts the dominant community-wide trends in enemy attack. PMID:25699672

  10. Landscape fragmentation affects responses of avian communities to climate change.

    PubMed

    Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O

    2015-08-01

    Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change

  11. Landscape fragmentation affects responses of avian communities to climate change.

    PubMed

    Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O

    2015-08-01

    Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change

  12. Effect of power plant emissions on plant community structure.

    PubMed

    Singh, J; Agrawal, M; Narayan, D

    1994-06-01

    A field study was conducted around two coal-fired thermal power plants (TPP) to analyse the impact of their emission on the structure of herbaceous communities in a dry tropical area. Phytosociological studies reflected that Cassia tora, Cynodon dactylon and Dichanthium annulatum dominate at heavily polluted sites. Alsycarpus monilifer, Convolvulus pluricaulis, and Desmodium triflorum are uniformly distributed, whereas Paspalidium flavidum, Phyllanthus simplex, and Rungia repens are dominant at less polluted sites. On the basis of Importance Value Index, the species were classified as sensitive, intermediate and resistant to TPP emissions. Shannon-Wiener Index of species diversity, species richness and evenness were inversely related, whereas concentration of dominance was directly related to the pollution load in the area. Significant negative correlation between ambient SO2 concentration and species diversity suggested selective elimination of sensitive species from the heavily polluted sites.

  13. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities

    PubMed Central

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities. PMID:26560705

  14. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    PubMed

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities. PMID:26560705

  15. Does distance from the sea affect a soil microarthropod community?

    NASA Astrophysics Data System (ADS)

    Wasserstrom, Haggai; Steinberger, Yosef

    2016-10-01

    Coastal sand dunes are dynamic ecosystems characterized by strong abiotic gradients from the seashore inland. Due to significant differences in the abiotic parameters in such an environment, there is great interest in biotic adaptation in these habitats. The aim of the present study, which was conducted in the northern Sharon sand-dune area of Israel, was to illustrate the spatial changes of a soil microarthropod community along a gradient from the seashore inland. Soil samples were collected from the 0-10 cm depth at five locations at different distances, from the seashore inland. Samples were taken from the bare open spaces during the wet winter and dry summer seasons. The soil microarthropod community exhibited dependence both on seasonality and sampling location across the gradient. The community was more abundant during the wet winter seasons, with an increasing trend from the shore inland, while during the dry summers, such a trend was not observed and community density was lower. The dominant groups within soil Acari were Prostigmata and Endeostigmata, groups known to have many representatives with adaptation to xeric or psammic environments. In addition, mite diversity tended to be higher at the more distant locations from the seashore, and lower at the closer locations, a trend that appeared only during the wet winters. This study demonstrated the heterogeneity of a soil microarthropod community in a coastal dune field in a Mediterranean ecosystem, indicating that the gradient abiotic parameters also affect the abundance and composition of a soil microarthropod community in sand dunes.

  16. Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores.

    PubMed

    Poelman, Erik H; Zheng, Si-Jun; Zhang, Zhao; Heemskerk, Nanda M; Cortesero, Anne-Marie; Dicke, Marcel

    2011-12-01

    Plants are exposed to a suite of herbivorous attackers that often arrive sequentially. Herbivory affects interactions between the host plants and subsequently attacking herbivores. Moreover, plants may respond to herbivory by emitting volatile organic compounds (VOCs) that attract carnivorous natural enemies of the herbivores. However, information borne by VOCs is ubiquitous and may attract carnivores, such as parasitoids, that differ in their effectiveness at releasing the plant from its herbivorous attackers. Furthermore, the development of parasitoids within their herbivorous hosts, attacking a given host plant, may influence the elicitation of defensive reactions in the host plant. This may, in turn, affect the behavior of subsequent herbivores attacking the host plant. Here, we show that the species identity of a parasitoid had a more significant effect on defense responses of Brassica oleracea plants than the species identity of the herbivorous hosts of the parasitoids. Consequently, B. oleracea plants that were damaged by caterpillars (Pieris spp.) parasitized by different parasitoid species varied in the degree to which diamondback moths (Plutella xylostella) selected the plants for oviposition. Attracting parasitoids in general benefitted the plants by reducing diamondback moth colonization. However, the species of parasitoid that parasitized the herbivore significantly affected the magnitude of this benefit by its species-specific effect on herbivore-plant interactions mediated by caterpillar regurgitant. Our findings show that information-mediated indirect defense may lead to unpredictable consequences for plants when considering trait-mediated effects of parasitized caterpillars on the host plant and their consequences because of community-wide responses to induced plants. PMID:22084113

  17. Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores.

    PubMed

    Poelman, Erik H; Zheng, Si-Jun; Zhang, Zhao; Heemskerk, Nanda M; Cortesero, Anne-Marie; Dicke, Marcel

    2011-12-01

    Plants are exposed to a suite of herbivorous attackers that often arrive sequentially. Herbivory affects interactions between the host plants and subsequently attacking herbivores. Moreover, plants may respond to herbivory by emitting volatile organic compounds (VOCs) that attract carnivorous natural enemies of the herbivores. However, information borne by VOCs is ubiquitous and may attract carnivores, such as parasitoids, that differ in their effectiveness at releasing the plant from its herbivorous attackers. Furthermore, the development of parasitoids within their herbivorous hosts, attacking a given host plant, may influence the elicitation of defensive reactions in the host plant. This may, in turn, affect the behavior of subsequent herbivores attacking the host plant. Here, we show that the species identity of a parasitoid had a more significant effect on defense responses of Brassica oleracea plants than the species identity of the herbivorous hosts of the parasitoids. Consequently, B. oleracea plants that were damaged by caterpillars (Pieris spp.) parasitized by different parasitoid species varied in the degree to which diamondback moths (Plutella xylostella) selected the plants for oviposition. Attracting parasitoids in general benefitted the plants by reducing diamondback moth colonization. However, the species of parasitoid that parasitized the herbivore significantly affected the magnitude of this benefit by its species-specific effect on herbivore-plant interactions mediated by caterpillar regurgitant. Our findings show that information-mediated indirect defense may lead to unpredictable consequences for plants when considering trait-mediated effects of parasitized caterpillars on the host plant and their consequences because of community-wide responses to induced plants.

  18. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    PubMed

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  19. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes

    PubMed Central

    Petermann, Jana S.; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W.; Gossner, Martin M.

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and

  20. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.

    PubMed

    Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and

  1. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.

    PubMed

    Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and

  2. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands.

    PubMed

    Viketoft, Maria; Bengtsson, Janne; Sohlenius, Björn; Berg, Matty P; Petchey, Owen; Palmborg, Cecilia; Huss-Danell, Kerstin

    2009-01-01

    An important component of plant-soil feedbacks is how plant species identity anddiversity influence soil organism communities. We examine the effects of grassland plant species growing alone and together up to a richness of 12 species on nematode diversity and feeding group composition, eight years after the establishment of experimental grassland plots at the BIODEPTH site in northern Sweden. This is a substantially longer time than most other experimental studies of plant effects on soil fauna. We address the hypotheses that (la) higher species or functional diversity of plants increases nematode diversity, as well as influences nematode community composition. Alternatively, (1b) individual plant species traits are most important for nematode diversity and community composition. (2) Plant effects on soil organisms will decrease with increasing number of trophic links between plants and soil fauna. Plant species identity was often more important than plant diversity for nematode community composition, supporting hypothesis 1b. There was a weak positive relation between plant and nematode richness;which could be attributed to the presence of the legume Trifolium pratense, but also to some other plant species, suggesting a selection or sampling effect. Several plant species in different functional groups affected nematode community composition. For example, we found that legumes increased bacterial-feeding nematodes, most notably r-selected Rhabditida, while fungal-feeding nematodes were enhanced by forbs. Other bacterial feeders and obligate root feeders were positively related to grasses. Plant effects were usually stronger on plant-, bacterial- and fungal-feeding nematodes than on omnivores/predators, which supports hypothesis 2. Our study suggests that plant identity has stronger effects than plant diversity on nematode community composition, but when comparing our results with similar previous studies the effects of particular plant species appear to vary. We

  3. Increasing land-use intensity decreases floral colour diversity of plant communities in temperate grasslands.

    PubMed

    Binkenstein, Julia; Renoult, Julien P; Schaefer, H Martin

    2013-10-01

    To preserve biodiversity and ecosystem functions in a globally changing world it is crucial to understand the effect of land use on ecosystem processes such as pollination. Floral colouration is known to be central in plant-pollinator interactions. To date, it is still unknown whether land use affects the colouration of flowering plant communities. To assess the effect of land use on the diversity and composition of flower colours in temperate grasslands, we collected data on the number of flowering plant species, blossom cover and flower reflectance spectra from 69 plant communities in two German regions, Schwäbische Alb (SA) and Hainich-Dün (HD). We analysed reflectance data of flower colours as they are perceived by honeybees and studied floral colour diversity based upon spectral loci of each flowering plant species in the Maxwell triangle. Before the first mowing, flower colour diversity decreased with increasing land-use intensity in SA, accompanied by a shift of mean flower colours of communities towards an increasing proportion of white blossom cover in both regions. By changing colour characteristics of grasslands, we suggest that increasing land-use intensity can affect the flower visitor fauna in terms of visitor behaviour and diversity. These changes may in turn influence plant reproduction in grassland plant communities. Our results indicate that land use is likely to affect communication processes between plants and flower visitors by altering flower colour traits.

  4. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.

    PubMed

    Fatouros, Nina E; Lucas-Barbosa, Dani; Weldegergis, Berhane T; Pashalidou, Foteini G; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Gols, Rieta; Huigens, Martinus E

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  5. Cascading effects of belowground predators on plant communities are density-dependent.

    PubMed

    Thakur, Madhav Prakash; Herrmann, Martina; Steinauer, Katja; Rennoch, Saskia; Cesarz, Simone; Eisenhauer, Nico

    2015-10-01

    Soil food webs comprise a multitude of trophic interactions that can affect the composition and productivity of plant communities. Belowground predators feeding on microbial grazers like Collembola could decelerate nutrient mineralization by reducing microbial turnover in the soil, which in turn could negatively influence plant growth. However, empirical evidences for the ecological significance of belowground predators on nutrient cycling and plant communities are scarce. Here, we manipulated predator density (Hypoaspis aculeifer: predatory mite) with equal densities of three Collembola species as a prey in four functionally dissimilar plant communities in experimental microcosms: grass monoculture (Poa pratensis), herb monoculture (Rumex acetosa), legume monoculture (Trifolium pratense), and all three species as a mixed plant community. Density manipulation of predators allowed us to test for density-mediated effects of belowground predators on Collembola and lower trophic groups. We hypothesized that predator density will reduce Collembola population causing a decrease in nutrient mineralization and hence detrimentally affect plant growth. First, we found a density-dependent population change in predators, that is, an increase in low-density treatments, but a decrease in high-density treatments. Second, prey suppression was lower at high predator density, which caused a shift in the soil microbial community by increasing the fungal: bacterial biomass ratio, and an increase of nitrification rates, particularly in legume monocultures. Despite the increase in nutrient mineralization, legume monocultures performed worse at high predator density. Further, individual grass shoot biomass decreased in monocultures, while it increased in mixed plant communities with increasing predator density, which coincided with elevated soil N uptake by grasses. As a consequence, high predator density significantly increased plant complementarity effects indicating a decrease in

  6. Rapid plant evolution in the presence of an introduced species alters community composition.

    PubMed

    Smith, David Solance; Lau, Matthew K; Jacobs, Ryan; Monroy, Jenna A; Shuster, Stephen M; Whitham, Thomas G

    2015-10-01

    Because introduced species may strongly interact with native species and thus affect their fitness, it is important to examine how these interactions can cascade to have ecological and evolutionary consequences for whole communities. Here, we examine the interactions among introduced Rocky Mountain elk, Cervus canadensis nelsoni, a common native plant, Solidago velutina, and the diverse plant-associated community of arthropods. While introduced species are recognized as one of the biggest threats to native ecosystems, relatively few studies have investigated an evolutionary mechanism by which introduced species alter native communities. Here, we use a common garden design that addresses and supports two hypotheses. First, native S. velutina has rapidly evolved in the presence of introduced elk. We found that plants originating from sites with introduced elk flowered nearly 3 weeks before plants originating from sites without elk. Second, evolution of S. velutina results in a change to the plant-associated arthropod community. We found that plants originating from sites with introduced elk supported an arthropod community that had ~35 % fewer total individuals and a different species composition. Our results show that the impacts of introduced species can have both ecological and evolutionary consequences for strongly interacting species that subsequently cascade to affect a much larger community. Such evolutionary consequences are likely to be long-term and difficult to remediate.

  7. Rapid plant evolution in the presence of an introduced species alters community composition.

    PubMed

    Smith, David Solance; Lau, Matthew K; Jacobs, Ryan; Monroy, Jenna A; Shuster, Stephen M; Whitham, Thomas G

    2015-10-01

    Because introduced species may strongly interact with native species and thus affect their fitness, it is important to examine how these interactions can cascade to have ecological and evolutionary consequences for whole communities. Here, we examine the interactions among introduced Rocky Mountain elk, Cervus canadensis nelsoni, a common native plant, Solidago velutina, and the diverse plant-associated community of arthropods. While introduced species are recognized as one of the biggest threats to native ecosystems, relatively few studies have investigated an evolutionary mechanism by which introduced species alter native communities. Here, we use a common garden design that addresses and supports two hypotheses. First, native S. velutina has rapidly evolved in the presence of introduced elk. We found that plants originating from sites with introduced elk flowered nearly 3 weeks before plants originating from sites without elk. Second, evolution of S. velutina results in a change to the plant-associated arthropod community. We found that plants originating from sites with introduced elk supported an arthropod community that had ~35 % fewer total individuals and a different species composition. Our results show that the impacts of introduced species can have both ecological and evolutionary consequences for strongly interacting species that subsequently cascade to affect a much larger community. Such evolutionary consequences are likely to be long-term and difficult to remediate. PMID:26062439

  8. Role of community health nurse in earthquake affected areas.

    PubMed

    Gulzar, Saleema Aziz; Faheem, Zahid Ali; Somani, Rozina Karim

    2012-10-01

    The role of Community Health Nurses (CHNs) outside the traditional hospital setting is meant to provide and promote the health care needs of the community. Such nurses can play a substantial role in the community setting including emergencies like disasters. This became evident after the earthquake of October 8, 2005 in Pakistan. The objective was to address the issues, faced by primary healthcare providers working in earthquake-affected areas focusing on participatory approach. The experience of the interventions done by CHN by a guided frame work (assessment, planning, implementation and evaluation components) is described. Issues identified by CHN included: lack of training of health care providers, lack of collaboration, communication between the medical and management staff due to poor infrastructure of the healthcare facilities. The interventions were carried out, utilizing existing resources. Efforts were directed to build capacity of health care providers at grass root level to fill in gaps of health care delivery system for sustainable change. Overall, working in the earthquake affected areas is challenging. Health leadership should foresee role of CHN in emergencies where quality healthcare interventions are essential.

  9. Soil nutrients trump intraspecific effects on understory plant communities.

    PubMed

    Crutsinger, Gregory M; Carter, Benjamin E; Rudgers, Jennifer A

    2013-12-01

    Understanding the links between intraspecific genetic variation and patterns of diversity in associated communities has been the primary focus of community genetics or 'genes-to-ecosystem' research in ecology. While other ecological factors, such as the abiotic environment, have well-documented influences on communities, the relative contributions of genetic variation versus the environment to species interactions remains poorly explored. In this study, we use a common garden experiment to study a coastal dune plant community dominated by the shrub, Baccharis pilularis, which displays a morphological dimorphism in plant architecture. We found the differences in the understory plant community between erect and prostrate morphs of Baccharis to be statistically significant, but small relative to the impacts of nutrient additions (NPK and C additions), for the richness, cover, and biomass of the understory plant community. There were no significant interactions between Baccharis morphology and nutrient-addition treatments, suggesting the influence of nutrient addition was consistent between erect and prostrate morphs. Moreover, we found no difference in overall plant community composition between Baccharis morphs, while NPK additions led to shifts in understory community composition compared to unfertilized shrubs. In sum, our results indicate that nutrients are the more important factor governing understory plant community structure in a coastal dunes ecosystem followed by intraspecific variation in dominant shrub architecture. Our results address a growing call to understand the extended consequences of intraspecific variation across heterogeneous environments in terrestrial ecosystems.

  10. Sexual selection affects local extinction and turnover in bird communities

    USGS Publications Warehouse

    Doherty, P.F.; Sorci, G.; Royle, J. Andrew; Hines, J.E.; Nichols, J.D.; Boulinier, T.

    2003-01-01

    Predicting extinction risks has become a central goal for conservation and evolutionary biologists interested in population and community dynamics. Several factors have been put forward to explain risks of extinction, including ecological and life history characteristics of individuals. For instance, factors that affect the balance between natality and mortality can have profound effects on population persistence. Sexual selection has been identified as one such factor. Populations under strong sexual selection experience a number of costs ranging from increased predation and parasitism to enhanced sensitivity to environmental and demographic stochasticity. These findings have led to the prediction that local extinction rates should be higher for species/populations with intense sexual selection. We tested this prediction by analyzing the dynamics of natural bird communities at a continental scale over a period of 21 years (1975-1996), using relevant statistical tools. In agreement with the theoretical prediction, we found that sexual selection increased risks of local extinction (dichromatic birds had on average a 23% higher local extinction rate than monochromatic species). However, despite higher local extinction probabilities, the number of dichromatic species did not decrease over the period considered in this study. This pattern was caused by higher local turnover rates of dichromatic species, resulting in relatively stable communities for both groups of species. Our results suggest that these communities function as metacommunities, with frequent local extinctions followed by colonization. Anthropogenic factors impeding dispersal might therefore have a significant impact on the global persistence of sexually selected species.

  11. Diversity and structure of AMF communities as affected by tillage in a temperate soil.

    PubMed

    Jansa, J; Mozafar, A; Anken, T; Ruh, R; Sanders, I R; Frossard, E

    2002-10-01

    Arbuscular mycorrhizal fungi (AMF) were studied in differently tilled soils from a long-term field experiment in Switzerland. Diversity and structure of AMF communities were surveyed either directly on spores isolated from the field soil or on spores isolated from trap cultures, planted with different host plants. Single-spore cultures were established from the AMF spores obtained from trap cultures. Identification of the AMF was made by observation of spore morphology and confirmed by sequencing of ITS rDNA. At least 17 recognised AMF species were identified in samples from field and/or trap cultures, belonging to five genera of AMF--Glomus, Gigaspora, Scutellospora, Acaulospora, and Entrophospora. Tillage had a significant influence on the sporulation of some species and non- Glomus AMF tended to be more abundant in the no-tilled soil. The community structure of AMF in the field soil was significantly affected by tillage treatment. However, no significant differences in AMF diversity were detected among different soil tillage treatments. AMF community composition in trap cultures was affected much more by the species of the trap plant than by the original tillage treatment of the field soil. The use of trap cultures for fungal diversity estimation in comparison with direct observation of field samples is discussed.

  12. Diversity and structure of AMF communities as affected by tillage in a temperate soil.

    PubMed

    Jansa, J; Mozafar, A; Anken, T; Ruh, R; Sanders, I R; Frossard, E

    2002-10-01

    Arbuscular mycorrhizal fungi (AMF) were studied in differently tilled soils from a long-term field experiment in Switzerland. Diversity and structure of AMF communities were surveyed either directly on spores isolated from the field soil or on spores isolated from trap cultures, planted with different host plants. Single-spore cultures were established from the AMF spores obtained from trap cultures. Identification of the AMF was made by observation of spore morphology and confirmed by sequencing of ITS rDNA. At least 17 recognised AMF species were identified in samples from field and/or trap cultures, belonging to five genera of AMF--Glomus, Gigaspora, Scutellospora, Acaulospora, and Entrophospora. Tillage had a significant influence on the sporulation of some species and non- Glomus AMF tended to be more abundant in the no-tilled soil. The community structure of AMF in the field soil was significantly affected by tillage treatment. However, no significant differences in AMF diversity were detected among different soil tillage treatments. AMF community composition in trap cultures was affected much more by the species of the trap plant than by the original tillage treatment of the field soil. The use of trap cultures for fungal diversity estimation in comparison with direct observation of field samples is discussed. PMID:12375133

  13. Species area relationships in mediterranean-climate plant communities

    USGS Publications Warehouse

    Keeley, Jon E.; Fotheringham, C.J.

    2003-01-01

    Aim To determine the best-fit model of species–area relationships for Mediterranean-type plant communities and evaluate how community structure affects these species–area models.Location Data were collected from California shrublands and woodlands and compared with literature reports for other Mediterranean-climate regions.Methods The number of species was recorded from 1, 100 and 1000 m2 nested plots. Best fit to the power model or exponential model was determined by comparing adjusted r2 values from the least squares regression, pattern of residuals, homoscedasticity across scales, and semi-log slopes at 1–100 m2 and 100–1000 m2. Dominance–diversity curves were tested for fit to the lognormal model, MacArthur's broken stick model, and the geometric and harmonic series.Results Early successional Western Australia and California shrublands represented the extremes and provide an interesting contrast as the exponential model was the best fit for the former, and the power model for the latter, despite similar total species richness. We hypothesize that structural differences in these communities account for the different species–area curves and are tied to patterns of dominance, equitability and life form distribution. Dominance–diversity relationships for Western Australian heathlands exhibited a close fit to MacArthur's broken stick model, indicating more equitable distribution of species. In contrast, Californian shrublands, both postfire and mature stands, were best fit by the geometric model indicating strong dominance and many minor subordinate species. These regions differ in life form distribution, with annuals being a major component of diversity in early successional Californian shrublands although they are largely lacking in mature stands. Both young and old Australian heathlands are dominated by perennials, and annuals are largely absent. Inherent in all of these ecosystems is cyclical disequilibrium caused by periodic fires. The

  14. Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels

    PubMed Central

    Fatouros, Nina E.; Lucas-Barbosa, Dani; Weldegergis, Berhane T.; Pashalidou, Foteini G.; van Loon, Joop J. A.; Dicke, Marcel; Harvey, Jeffrey A.; Gols, Rieta; Huigens, Martinus E.

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  15. Soil fungal communities respond to grassland plant community richness and soil edaphics.

    PubMed

    LeBlanc, Nicholas; Kinkel, Linda L; Kistler, H Corby

    2015-07-01

    Fungal communities in soil have significant influences on terrestrial ecosystem dynamics, yet our understanding of the drivers of fungal diversity and community structure in soil is limited. Fungal communities associated with the rhizosphere of four native perennial grassland plant species, two legumes and two grasses, grown in monoculture and polyculture in a long-term field experiment were characterized. Reference databases were developed for, and amplicon libraries sequenced from, multiple-copy rRNA and single-copy protein-coding loci. Clustering and alignment-based pipelines were utilized to evaluate differences in fungal community structure and diversity in response to plant host, plant community richness, and soil edaphics. Fungal diversity increased in the rhizosphere of plants growing in polyculture plant communities as compared to monoculture plant communities. Fungal community structure was differentiated between legumes and grasses growing in monoculture but not in polyculture. To specifically monitor fungi in the genus Fusarium in the soil, the protein-coding locus was used to increase phylogenetic resolution and enrich for this taxon. These data show that fungal community richness and structure are strongly linked with plant community dynamics and associated soil edaphic characteristics in these grassland soils.

  16. Opposing plant community responses to warming with and without herbivores.

    PubMed

    Post, Eric; Pedersen, Christian

    2008-08-26

    If controls over primary productivity and plant community composition are mainly environmental, as opposed to biological, then global change may result in large-scale alterations in ecosystem structure and function. This view appears to be favored among investigations of plant biomass and community responses to experimental and observed warming. In far northern and arctic ecosystems, such studies predict increasing dominance of woody shrubs with future warming and emphasize the carbon (C)-sequestration potential and consequent atmospheric feedback potential of such responses. In contrast to previous studies, we incorporated natural herbivory by muskoxen and caribou into a 5-year experimental investigation of arctic plant community response to warming. In accordance with other studies, warming increased total community biomass by promoting growth of deciduous shrubs (dwarf birch and gray willow). However, muskoxen and caribou reduced total community biomass response, and responses of birch and willow, to warming by 19%, 46%, and 11%, respectively. Furthermore, under warming alone, the plant community shifted after 5 years away from graminoid-dominated toward dwarf birch-dominated. In contrast, where herbivores grazed, plant community composition on warmed plots did not differ from that on ambient plots after 5 years. These results highlight the potentially important and overlooked influences of vertebrate herbivores on plant community response to warming and emphasize that conservation and management of large herbivores may be an important component of mitigating ecosystem response to climate change.

  17. Opposing plant community responses to warming with and without herbivores

    PubMed Central

    Post, Eric; Pedersen, Christian

    2008-01-01

    If controls over primary productivity and plant community composition are mainly environmental, as opposed to biological, then global change may result in large-scale alterations in ecosystem structure and function. This view appears to be favored among investigations of plant biomass and community responses to experimental and observed warming. In far northern and arctic ecosystems, such studies predict increasing dominance of woody shrubs with future warming and emphasize the carbon (C)-sequestration potential and consequent atmospheric feedback potential of such responses. In contrast to previous studies, we incorporated natural herbivory by muskoxen and caribou into a 5-year experimental investigation of arctic plant community response to warming. In accordance with other studies, warming increased total community biomass by promoting growth of deciduous shrubs (dwarf birch and gray willow). However, muskoxen and caribou reduced total community biomass response, and responses of birch and willow, to warming by 19%, 46%, and 11%, respectively. Furthermore, under warming alone, the plant community shifted after 5 years away from graminoid-dominated toward dwarf birch-dominated. In contrast, where herbivores grazed, plant community composition on warmed plots did not differ from that on ambient plots after 5 years. These results highlight the potentially important and overlooked influences of vertebrate herbivores on plant community response to warming and emphasize that conservation and management of large herbivores may be an important component of mitigating ecosystem response to climate change. PMID:18719116

  18. Arbuscular Mycorrhizal Fungal Mediation of Plant-Plant Interactions in a Marshland Plant Community

    PubMed Central

    Koide, Roger T.; Peng, Zhenhua; Zhou, Jinxing; Gu, Xungang; Gao, Weidong; Yu, Meng

    2014-01-01

    Obligate aerobic AMF taxa have high species richness under waterlogged conditions, but their ecological role remains unclear. Here we focused on AM fungal mediation of plant interactions in a marshland plant community. Five cooccurring plant species were chosen for a neighbor removal experiment in which benomyl was used to suppress AMF colonization. A Phragmites australis removal experiment was also performed to study its role in promoting AMF colonization by increasing rhizosphere oxygen concentration. Mycorrhizal fungal effects on plant interactions were different for dominant and subdominant plant species. AMF colonization has driven positive neighbor effects for three subdominant plant species including Kummerowia striata, Leonurus artemisia, and Ixeris polycephala. In contrast, AMF colonization enhanced the negative effects of neighbors on the dominant Conyza canadensis and had no significant impact on the neighbor interaction to the dominant Polygonum pubescens. AM colonization was positively related to oxygen concentration. P. australis increased oxygen concentration, enhanced AMF colonization, and was thus indirectly capable of influencing plant interactions. Aerobic AM fungi appear to be ecologically relevant in this wetland ecosystem. They drive positive neighbor interactions for subdominant plant species, effectively increasing plant diversity. We suggest, therefore, that AM fungi may be ecologically important even under waterlogged conditions. PMID:24693254

  19. Arbuscular mycorrhizal fungal mediation of plant-plant interactions in a marshland plant community.

    PubMed

    Zhang, Qian; Sun, Qixiang; Koide, Roger T; Peng, Zhenhua; Zhou, Jinxing; Gu, Xungang; Gao, Weidong; Yu, Meng

    2014-01-01

    Obligate aerobic AMF taxa have high species richness under waterlogged conditions, but their ecological role remains unclear. Here we focused on AM fungal mediation of plant interactions in a marshland plant community. Five cooccurring plant species were chosen for a neighbor removal experiment in which benomyl was used to suppress AMF colonization. A Phragmites australis removal experiment was also performed to study its role in promoting AMF colonization by increasing rhizosphere oxygen concentration. Mycorrhizal fungal effects on plant interactions were different for dominant and subdominant plant species. AMF colonization has driven positive neighbor effects for three subdominant plant species including Kummerowia striata, Leonurus artemisia, and Ixeris polycephala. In contrast, AMF colonization enhanced the negative effects of neighbors on the dominant Conyza canadensis and had no significant impact on the neighbor interaction to the dominant Polygonum pubescens. AM colonization was positively related to oxygen concentration. P. australis increased oxygen concentration, enhanced AMF colonization, and was thus indirectly capable of influencing plant interactions. Aerobic AM fungi appear to be ecologically relevant in this wetland ecosystem. They drive positive neighbor interactions for subdominant plant species, effectively increasing plant diversity. We suggest, therefore, that AM fungi may be ecologically important even under waterlogged conditions.

  20. Plant community composition, not diversity, regulates soil respiration in grasslands.

    PubMed

    Johnson, David; Phoenix, Gareth K; Grime, J Philip

    2008-08-23

    Soil respiration is responsible for recycling considerable quantities of carbon from terrestrial ecosystems to the atmosphere. There is a growing body of evidence that suggests that the richness of plants in a community can have significant impacts on ecosystem functioning, but the specific influences of plant species richness (SR), plant functional-type richness and plant community composition on soil respiration rates are unknown. Here we use 10-year-old model plant communities, comprising mature plants transplanted into natural non-sterile soil, to determine how the diversity and composition of plant communities influence soil respiration rates. Our analysis revealed that soil respiration was driven by plant community composition and that there was no significant effect of biodiversity at the three levels tested (SR, functional group and species per functional group). Above-ground plant biomass and root density were included in the analysis as covariates and found to have no effect on soil respiration. This finding is important, because it suggests that loss of particular species will have the greatest impact on soil respiration, rather than changes in biodiversity per se.

  1. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland

    PubMed Central

    Qu, Tong-bao; Du, Wei-chao; Yuan, Xia; Yang, Zhi-ming; Liu, Dong-bo; Wang, De-li; Yu, Li-jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha−1; and heavy grazing, 6 sheep·ha−1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe. PMID:27467221

  2. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland.

    PubMed

    Qu, Tong-Bao; Du, Wei-Chao; Yuan, Xia; Yang, Zhi-Ming; Liu, Dong-Bo; Wang, De-Li; Yu, Li-Jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha-1; and heavy grazing, 6 sheep·ha-1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe.

  3. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland.

    PubMed

    Qu, Tong-Bao; Du, Wei-Chao; Yuan, Xia; Yang, Zhi-Ming; Liu, Dong-Bo; Wang, De-Li; Yu, Li-Jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha-1; and heavy grazing, 6 sheep·ha-1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe. PMID:27467221

  4. Rooting Theories of Plant Community Ecology in Microbial Interactions

    PubMed Central

    Bever, James D.; Dickie, Ian A.; Facelli, Evelina; Facelli, Jose M.; Klironomos, John; Moora, Mari; Rillig, Matthias C.; Stock, William D.; Tibbett, Mark; Zobel, Martin

    2010-01-01

    Predominant frameworks for understanding plant ecology have an aboveground bias that neglects soil micro-organisms. This is inconsistent with recent work illustrating the importance of soil microbes in terrestrial ecology. Microbial effects have been incorporated into plant community dynamics using ideas of niche modification and plant-soil community feedbacks. Here, we expand and integrate qualitative conceptual models of plant niche and feedback to explore implications of microbial interactions for understanding plant community ecology. At the same time we review the empirical evidence for these processes. We also consider common mycorrhizal networks, and suggest these are best interpreted within the feedback framework. Finally, we apply our integrated model of niche and feedback to understanding plant coexistence, monodominance, and invasion ecology. PMID:20557974

  5. Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests.

    PubMed

    Kreyling, Juergen; Haei, Mahsa; Laudon, Hjalmar

    2012-02-01

    Snow regimes affect biogeochemistry of boreal ecosystems and are altered by climate change. The effects on plant communities, however, are largely unexplored despite their influence on relevant processes. Here, the impact of snow cover on understory community composition and below-ground production in a boreal Picea abies forest was investigated using a long-term (8-year) snow cover manipulation experiment consisting of the treatments: snow removal, increased insulation (styrofoam pellets), and control. The snow removal treatment caused longer (118 vs. 57 days) and deeper soil frost (mean minimum temperature -5.5 vs. -2.2°C) at 10 cm soil depth in comparison to control. Understory species composition was strongly altered by the snow cover manipulations; vegetation cover declined by more than 50% in the snow removal treatment. In particular, the dominant dwarf shrub Vaccinium myrtillus (-82%) and the most abundant mosses Pleurozium schreberi (-74%) and Dicranum scoparium (-60%) declined strongly. The C:N ratio in V. myrtillus leaves and plant available N in the soil indicated no altered nitrogen nutrition. Fine-root biomass in summer, however, was negatively affected by the reduced snow cover (-50%). Observed effects are attributed to direct frost damage of roots and/ or shoots. Besides the obvious relevance of winter processes on plant ecology and distribution, we propose that shifts in the vegetation caused by frost damage may be an important driver of the reported alterations in biogeochemistry in response to altered snow cover. Understory plant performance clearly needs to be considered in the biogeochemistry of boreal systems in the face of climate change.

  6. Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests.

    PubMed

    Kreyling, Juergen; Haei, Mahsa; Laudon, Hjalmar

    2012-02-01

    Snow regimes affect biogeochemistry of boreal ecosystems and are altered by climate change. The effects on plant communities, however, are largely unexplored despite their influence on relevant processes. Here, the impact of snow cover on understory community composition and below-ground production in a boreal Picea abies forest was investigated using a long-term (8-year) snow cover manipulation experiment consisting of the treatments: snow removal, increased insulation (styrofoam pellets), and control. The snow removal treatment caused longer (118 vs. 57 days) and deeper soil frost (mean minimum temperature -5.5 vs. -2.2°C) at 10 cm soil depth in comparison to control. Understory species composition was strongly altered by the snow cover manipulations; vegetation cover declined by more than 50% in the snow removal treatment. In particular, the dominant dwarf shrub Vaccinium myrtillus (-82%) and the most abundant mosses Pleurozium schreberi (-74%) and Dicranum scoparium (-60%) declined strongly. The C:N ratio in V. myrtillus leaves and plant available N in the soil indicated no altered nitrogen nutrition. Fine-root biomass in summer, however, was negatively affected by the reduced snow cover (-50%). Observed effects are attributed to direct frost damage of roots and/ or shoots. Besides the obvious relevance of winter processes on plant ecology and distribution, we propose that shifts in the vegetation caused by frost damage may be an important driver of the reported alterations in biogeochemistry in response to altered snow cover. Understory plant performance clearly needs to be considered in the biogeochemistry of boreal systems in the face of climate change. PMID:21850524

  7. Community-based therapeutic care in HIV-affected populations.

    PubMed

    Sadler, Kate; Bahwere, Paluku; Guerrero, Saul; Collins, Steve

    2006-01-01

    Community-based therapeutic care (CTC) is a community-based model for delivering care to malnourished people. CTC aims to treat the majority of severely malnourished people at home, rather than in therapeutic feeding centres. This paper describes the potential of the CTC approach to provide effective care and support for people living with HIV and AIDS (PLWHA). CTC includes many of the components of a home-based care model for PLWHA. It provides outpatient treatment for common complications of HIV and AIDS, such as acute malnutrition and simple infections, and an energy-dense ready-to-use food that could be made with the appropriate balance of micronutrients for the HIV-infected patient. Through the de-centralisation of outpatient treatment sites, CTC improves accessibility by moving treatment closer to people's homes and helps to promote the sustainability of care by building on the capacity of existing health infrastructure and staff. The CTC model contains many features that are appropriate for the care and support of HIV-affected people and, in its present form, can provide effective physical care for many HIV-affected individuals. We are currently working to adapt the CTC model to make it more suitable for the support of PLWHA in the longer term. PMID:16216293

  8. Plant community controls on short-term ecosystem nitrogen retention.

    PubMed

    de Vries, Franciska T; Bardgett, Richard D

    2016-05-01

    Retention of nitrogen (N) is a critical ecosystem function, especially in the face of widespread anthropogenic N enrichment; however, our understanding of the mechanisms involved is limited. Here, we tested under glasshouse conditions how plant community attributes, including variations in the dominance, diversity and range of plant functional traits, influence N uptake and retention in temperate grassland. We added a pulse of (15) N to grassland plant communities assembled to represent a range of community-weighted mean plant traits, trait functional diversity and divergence, and species richness, and measured plant and microbial uptake of (15) N, and leaching losses of (15) N, as a short-term test of N retention in the plant-soil system. Root biomass, herb abundance and dominant plant traits were the main determinants of N retention in the plant-soil system: greater root biomass and herb abundance, and lower root tissue density, increased plant (15) N uptake, while higher specific leaf area and root tissue density increased microbial (15) N uptake. Our results provide novel, mechanistic insight into the short-term fate of N in the plant-soil system, and show that dominant plant traits, rather than trait functional diversity, control the fate of added N in the plant-soil system.

  9. Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, on the moth diversity of wetland communities.

    PubMed

    Schooler, S S; McEvoy, P B; Hammond, P; Coombs, E M

    2009-06-01

    Invasive plants have been shown to negatively affect the diversity of plant communities. However, little is known about the effect of invasive plants on the diversity at other trophic levels. In this study, we examine the per capita effects of two invasive plants, purple loosestrife (Lythrum salicaria) and reed canary grass (Phalaris arundinacea), on moth diversity in wetland communities at 20 sites in the Pacific Northwest, USA. Prior studies document that increasing abundance of these two plant species decreases the diversity of plant communities. We predicted that this reduction in plant diversity would result in reduced herbivore diversity. Four measurements were used to quantify diversity: species richness (S), community evenness (J), Brillouin's index (H) and Simpson's index (D). We identified 162 plant species and 156 moth species across the 20 wetland sites. The number of moth species was positively correlated with the number of plant species. In addition, invasive plant abundance was negatively correlated with species richness of the moth community (linear relationship), and the effect was similar for both invasive plant species. However, no relationship was found between invasive plant abundance and the three other measures of moth diversity (J, H, D) which included moth abundance in their calculation. We conclude that species richness within, and among, trophic levels is adversely affected by these two invasive wetland plant species.

  10. Direct and indirect effects of CO2, nitrogen, and community diversity on plant-enemy interactions.

    PubMed

    Lau, Jennifer A; Strengbom, Joachim; Stone, Laurie R; Reich, Peter B; Tiffin, Peter

    2008-01-01

    Resource abundance and plant diversity are two predominant factors hypothesized to influence the amount of damage plants receive from natural enemies. Many impacts of these environmental variables on plant damage are likely indirect and result because both resource availability and diversity can influence plant traits associated with attractiveness to herbivores or susceptibility to pathogens. We used a long-term, manipulative field experiment to investigate how carbon dioxide (CO2) enrichment, nitrogen (N) fertilization, and plant community diversity affect plant traits and the amount of herbivore and pathogen damage experienced by the common prairie legume Lespedeza capitata. We detected little evidence that CO2 or N affected plant traits; however, plants growing in high-diversity treatments (polycultures) were taller, were less pubescent, and produced thinner leaves (higher specific leaf area). Interestingly, we also detected little evidence that CO2 or N affect damage. Plants growing in polycultures compared to monocultures, however, experienced a fivefold increase in damage from generalist herbivores, 64% less damage from specialist herbivores, and 91% less damage from pathogens. Moreover, within diversity treatments, damage by generalist herbivores was negatively correlated with pubescence and often was positively correlated with plant height, while damage by specialist herbivores typically was positively correlated with pubescence and negatively associated with height. These patterns are consistent with changes in plant traits driving differences in herbivory between diversity treatments. In contrast, changes in measured plant traits did not explain the difference in disease incidence between monocultures and polycultures. In summary, our data provide little evidence that CO2 or N supply alter damage from natural enemies. By contrast, plants grown in monocultures experienced greater specialist herbivore and pathogen damage but less generalist herbivore

  11. Secondary bacterial symbiont community in aphids responds to plant diversity.

    PubMed

    Zytynska, Sharon E; Meyer, Sebastian T; Sturm, Sarah; Ullmann, Wiebke; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2016-03-01

    Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes.

  12. Postfire seeding and plant community recovery in the Great Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As wildland fire frequency increases around the globe, increased understanding of plant community recovery in burned landscapes is needed to improve effectiveness of rehabilitation efforts. We measured establishment of seeded species, colonization of Bromus tectorum L. (cheatgrass), and recovery of ...

  13. How much biomass do plant communities pack per unit volume?

    PubMed Central

    Rheault, Guillaume; Bonin, Laurianne; Roca, Irene Torrecilla; Martin, Charles A.; Desrochers, Louis; Seiferling, Ian

    2015-01-01

    Aboveground production in terrestrial plant communities is commonly expressed in amount of carbon, or biomass, per unit surface. Alternatively, expressing production per unit volume allows the comparison of communities by their fundamental capacities in packing carbon. In this work we reanalyzed published data from more than 900 plant communities across nine ecosystems to show that standing dry biomass per unit volume (biomass packing) consistently averages around 1 kg/m3 and rarely exceeds 5 kg/m3 across ecosystem types. Furthermore, we examined how empirical relationships between aboveground production and plant species richness are modified when standing biomass is expressed per unit volume rather than surface. We propose that biomass packing emphasizes species coexistence mechanisms and may be an indicator of resource use efficiency in plant communities. PMID:25802814

  14. Effects of migratory geese on plant communities of an Alaskan salt marsh

    USGS Publications Warehouse

    Zacheis, A.; Hupp, J.W.; Ruess, R.W.

    2001-01-01

    pressure can alter plant communities and affect forage availability.

  15. Experimental parasite community ecology: intraspecific variation in a large tapeworm affects community assembly.

    PubMed

    Benesh, Daniel P; Kalbe, Martin

    2016-07-01

    Non-random species associations occur in naturally sampled parasite communities. The processes resulting in predictable community structure (e.g. particular host behaviours, cross-immunity, interspecific competition) could be affected by traits that vary within a parasite species, like growth or antigenicity. We experimentally infected three-spined sticklebacks with a large tapeworm (Schistocephalus solidus) that impacts the energy needs, foraging behaviour and immune reactions of its host. The tapeworms came from two populations, characterized by high or low growth in sticklebacks. Our goal was to evaluate how this parasite, and variation in its growth, affects the acquisition of other parasites. Fish infected with S. solidus were placed into cages in a lake to expose them to the natural parasite community. We also performed a laboratory experiment in which infected fish were exposed to a fixed dose of a common trematode parasite. In the field experiment, infection with S. solidus affected the abundance of four parasite species, relative to controls. For two of the four species, changes occurred only in fish harbouring the high-growth S. solidus; one species increased in abundance and the other decreased. These changes did not appear to be directly linked to S. solidus growth though. The parasite exhibiting elevated abundance was the same trematode used in the laboratory infection. In that experiment, we found a similar infection pattern, suggesting that S. solidus affects the physiological susceptibility of fish to this trematode. Associations between S. solidus and other parasites occur and vary in direction. However, some of these associations were contingent on the S. solidus population, suggesting that intraspecific variability can affect the assembly of parasite communities. PMID:27061288

  16. Plant toxicity, adaptive herbivory, and plant community dynamics

    USGS Publications Warehouse

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  17. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    USGS Publications Warehouse

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species

  18. Species-Specific Responses to Community Density in an Unproductive Perennial Plant Community

    PubMed Central

    Treberg, Michael A.; Turkington, Roy

    2014-01-01

    Most studies of density dependent regulation in plants consider a single target species, but regulation may also occur at the level of the entire community. Knowing whether a community is at carrying capacity is essential for understanding its behaviour because low density plant communities may behave quite differently than their high density counterparts. Also, because the intensity of density dependence may differ considerably between species and physical environments, generalizations about its effects on community structure requires comparisons under a range of conditions. We tested if: (1) density dependent regulation occurs at the level of an entire plant community as well as within individual species; (2) the intensity (effect of increasing community density on mean plant mass) and importance (the effect of increasing density, relative to other factors, on mean plant mass) of competition increases, decreases or remains unchanged with increasing fertilization; (3) there are species-specific responses to changes in community density and productivity. In 63 1 m2 plots, we manipulated the abundance of the nine most common species by transplanting or removing them to create a series of Initial Community Densities above and below the average natural field density, such that the relative proportion of species was consistent for all densities. Plots were randomly assigned to one of three fertilizer levels. At the community level, negative density dependence of mean plant size was observed for each of the 4 years of the study and both the intensity and importance of competition increased each year. At the species level, most species' mean plant mass were negatively density dependent. Fertilizer had a significant effect only in the final year when it had a negative effect on mean plant mass. Our data demonstrate a yield-density response at the entire community-level using perennial plant species in a multi-year experiment. PMID:25050710

  19. Positive interactions, discontinuous transitions and species coexistence in plant communities.

    PubMed

    Díaz-Sierra, R; Zavala, M A; Rietkerk, M

    2010-03-01

    The population and community level consequences of positive interactions between plants remain poorly explored. In this study we incorporate positive resource-mediated interactions in classic resource competition theory and investigate the main consequences for plant population dynamics and species coexistence. We focus on plant communities for which water infiltration rates exhibit positive dependency on plant biomass and where plant responses can be improved by shading, particularly under water limiting conditions. We show that the effects of these two resource-mediated positive interactions are similar and additive. We predict that positive interactions shift the transition points between different species compositions along environmental gradients and that realized niche widths will expand or shrink. Furthermore, continuous transitions between different community compositions can become discontinuous and bistability or tristability can occur. Moreover, increased infiltration rates may give rise to a new potential coexistence mechanism that we call controlled facilitation. PMID:20005884

  20. Positive interactions, discontinuous transitions and species coexistence in plant communities.

    PubMed

    Díaz-Sierra, R; Zavala, M A; Rietkerk, M

    2010-03-01

    The population and community level consequences of positive interactions between plants remain poorly explored. In this study we incorporate positive resource-mediated interactions in classic resource competition theory and investigate the main consequences for plant population dynamics and species coexistence. We focus on plant communities for which water infiltration rates exhibit positive dependency on plant biomass and where plant responses can be improved by shading, particularly under water limiting conditions. We show that the effects of these two resource-mediated positive interactions are similar and additive. We predict that positive interactions shift the transition points between different species compositions along environmental gradients and that realized niche widths will expand or shrink. Furthermore, continuous transitions between different community compositions can become discontinuous and bistability or tristability can occur. Moreover, increased infiltration rates may give rise to a new potential coexistence mechanism that we call controlled facilitation.

  1. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem

    SciTech Connect

    Kardol, Paul; Campany, Courtney E; Souza, Lara; Norby, Richard J; Weltzin, Jake; Classen, Aimee T

    2010-01-01

    Atmospheric and climatic change can alter plant biomass production and plant community composition. However, we know little about how climate change-induced alterations in biomass production affect plant community composition. To better understand how climate change will alter both individual plant species and community biomass we manipulated atmospheric [CO2], air temperature and precipitation in a constructed old-field ecosystem. Specifically, we compared the responses of dominant and subdominant species to our treatments, and explored how changes in plant dominance patterns alter community evenness over two years. Our study resulted in four major findings: 1) All treatments, elevated [CO2], warming and increased precipitation, increased plant biomass and the effects were additive rather than interactive, 2) Plant species differed in their response to the treatments, resulting in shifts in the proportional biomass of individual species, which altered the plant community composition; however, the plant community response was largely driven by the responses of the dominant species, 3) Precipitation explained most of the variation in plant community composition among treatments, and 4) Changes in precipitation caused a shift in the dominant species proportional biomass that resulted in higher community evenness in the dry relative to wet treatments. Interestingly, compositional and evenness responses of the subdominant community to the treatments did not always follow the responses of the whole plant community. Our data suggest that changes in plant dominance patterns and community evenness are an important part of community responses to climate change, and generally, that compositional shifts can have important consequences for the functioning of terrestrial ecosystems.

  2. ADP1 affects plant architecture by regulating local auxin biosynthesis.

    PubMed

    Li, Ruixi; Li, Jieru; Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. PMID:24391508

  3. Influence of Plant Community Composition on Biomass Production in Planted Grasslands

    PubMed Central

    Henschell, Max A.; Webster, Christopher R.; Flaspohler, David J.; Fortin, Chad R.

    2015-01-01

    United States energy policy mandates increased use of renewable fuels. Restoring grasslands could contribute to a portion of this requirement through biomass harvest for bioenergy use. We investigated which plant community characteristics are associated with differences in biomass yield from a range of realistic native prairie plantings (n = 11; i.e., conservation planting, restoration, and wildlife cover). Our primary goal was to understand whether patterns in plant community composition and the Floristic Quality Index (FQI) were related to productivity as evidenced by dormant season biomass yield. FQI is an objective measure of how closely a plant community represents that of a pre-European settlement community. Our research was conducted in planted fields of native tallgrass prairie species, and provided a gradient in floristic quality index, species richness, species diversity, and species evenness in south-central Wisconsin during 2008 and 2009. We used a network of 15 randomly located 1 m2 plots within each field to characterize the plant community and estimate biomass yield by clipping the plots at the end of each growing season. While plant community composition and diversity varied significantly by planting type, biomass yield did not vary significantly among planting types (ANOVA; P >0.05). Biomass yield was positively correlated with plant community evenness, richness, C4 grass cover, and floristic quality index, but negatively correlated with plant species diversity in our multi-season multiple linear mixed effects models. Concordantly, plots with biomass yield in the lowest quartile (biomass yield < 3500 kh/ha) had 8% lower plant community evenness and 9% lower FQI scores than those in the upper quartile (biomass yield > 5800 kh/ha). Our results suggest that promoting the establishment of fields with high species evenness and floristic quality may increase biomass yield, while simultaneously supporting biodiversity. PMID:26018412

  4. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.

  5. Do unpaved, low-traffic roads affect bird communities?

    NASA Astrophysics Data System (ADS)

    Mammides, Christos; Kounnamas, Constantinos; Goodale, Eben; Kadis, Costas

    2016-02-01

    Unpaved, low traffic roads are often assumed to have minimal effects on biodiversity. To explore this assertion, we sampled the bird communities in fifteen randomly selected sites in Pafos Forest, Cyprus and used multiple regression to quantify the effects of such roads on the total species richness. Moreover, we classified birds according to their migratory status and their global population trends, and tested each category separately. Besides the total length of unpaved roads, we also tested: a. the site's habitat diversity, b. the coefficient of variation in habitat (patch) size, c. the distance to the nearest agricultural field, and d. the human population size of the nearest village. We measured our variables at six different distances from the bird point-count locations. We found a strong negative relationship between the total bird richness and the total length of unpaved roads. The human population size of the nearest village also had a negative effect. Habitat diversity was positively related to species richness. When the categories were tested, we found that the passage migrants were influenced more by the road network while resident breeders were influenced by habitat diversity. Species with increasing and stable populations were only marginally affected by the variables tested, but the effect of road networks on species with decreasing populations was large. We conclude that unpaved and sporadically used roads can have detrimental effects on the bird communities, especially on vulnerable species. We propose that actions are taken to limit the extent of road networks within protected areas, especially in sites designated for their rich avifauna, such as Pafos Forest, where several of the affected species are species of European and global importance.

  6. Purple Pitcher Plant (Sarracenia rosea) Dieback and Partial Community Disassembly following Experimental Storm Surge in a Coastal Pitcher Plant Bog

    PubMed Central

    Abbott, Matthew J.; Battaglia, Loretta L.

    2015-01-01

    Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea) are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea) were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment). There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change. PMID:25874369

  7. Purple pitcher plant (Sarracenia rosea) Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    PubMed

    Abbott, Matthew J; Battaglia, Loretta L

    2015-01-01

    Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea) are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea) were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment). There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change. PMID:25874369

  8. Purple pitcher plant (Sarracenia rosea) Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    PubMed

    Abbott, Matthew J; Battaglia, Loretta L

    2015-01-01

    Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea) are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea) were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment). There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change.

  9. A proposed aquatic plant community biotic index for Wisconsin lakes

    USGS Publications Warehouse

    Nichols, S.; Weber, S.; Shaw, B.

    2000-01-01

    The Aquatic Macrophyte Community Index (AMCI) is a multipurpose tool developed to assess the biological quality of aquatic plant communities in lakes. It can be used to specifically analyze aquatic plant communities or as part of a multimetric system to assess overall lake quality for regulatory, planning, management, educational, or research purposes. The components of the index are maximum depth of plant growth; percentage of the littoral zone vegetated; Simpson's diversity index; the relative frequencies of submersed, sensitive, and exotic species; and taxa number. Each parameter was scaled based on data distributions from a statewide database, and scaled values were totaled for the AMCI value. AMCI values were grouped and tested by ecoregion and lake type (natural lakes and impoundments) to define quality on a regional basis. This analysis suggested that aquatic plant communities are divided into four groups: (1) Northern Lakes and Forests lakes and impoundments, (2) North-Central Hardwood Forests lakes and impoundments, (3) Southeastern Wisconsin Till Plains lakes, and (4) Southeastern Wisconsin Till Plains impoundments, Driftless Area Lakes, and Mississippi River Backwater lakes. AMCI values decline from group 1 to group 4 and reflect general water quality and human use trends in Wisconsin. The upper quartile of AMCI values in any region are the highest quality or benchmark plant communities. The interquartile range consists of normally impacted communities for the region and the lower quartile contains severely impacted or degraded plant communities. When AMCI values were applied to case studies, the values reflected known impacts to the lakes. However, quality criteria cannot be used uncritically, especially in lakes that initially have low nutrient levels.The Aquatic Macrophyte Community Index (AMCI) is a multipurpose tool developed to assess the biological quality of aquatic plant communities in lakes. It can be used to specifically analyze aquatic plant

  10. Plant communities of Santa Rosa Island, Channel Islands National Park

    USGS Publications Warehouse

    Clark, Ronilee A.; Halvorson, William L.; Sawdo, Andell A.; Danielsen, Karen C.

    1990-01-01

    A survey of the plant communities on Santa Rosa Island, Channel Islands National Park, was conducted from January through July 1988.  Vegetation data were collected at 296 sites using a releve technique.  The plant communities described include: grassland, coastal marsh, caliche scrub, coastal sage scrub, lupine scrub, baccharis scrub, coastal bluff scrub, coastal dune scrub, mixed chaparral, mixed woodland, torrey pine woodland, closed-cone pine woodland, island oak woodland, riparian woodland, and riparian herbaceous vegetation. The areal extent of each community was mapper on USGS 7.5' topographic maps, and digitized for GIS manipulation.

  11. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment.

    PubMed

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly; Kostenko, Olga; Van der Putten, Wim H; Macel, Mirka

    2016-02-01

    Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during this early stage of plant community development. Effects of herbivores on plant biomass depended on plant species or genus but not on plant status (i.e., exotic vs native). Thus, aboveground herbivory did not promote the dominance of exotic plant species during early establishment of the phylogenetically balanced plant communities. PMID:26481795

  12. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment.

    PubMed

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly; Kostenko, Olga; Van der Putten, Wim H; Macel, Mirka

    2016-02-01

    Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during this early stage of plant community development. Effects of herbivores on plant biomass depended on plant species or genus but not on plant status (i.e., exotic vs native). Thus, aboveground herbivory did not promote the dominance of exotic plant species during early establishment of the phylogenetically balanced plant communities.

  13. Relative abundance of an invasive alien plant affects insect-flower interaction networks in Ireland

    NASA Astrophysics Data System (ADS)

    Stout, Jane C.; Casey, Leanne M.

    2014-02-01

    Invasive alien flowering plants may affect native plant pollinator interactions and have knock on impacts on populations of native plants and animals. The magnitude of these impacts, however, may be modified by the relative abundance of the invasive plant and the number of flowers it presents.We tested this by examining the structure of insect-flower interaction networks in six sites with increasing levels of invasion by Rhododendron ponticum in Ireland.Neither flower-visiting insect abundance, species richness nor diversity were related to R. ponticum flower abundance, but the composition of insect communities was. The total number of flowers in a site increased with the relative abundance of R. ponticum flowers but the number of co-flowering native plant species in these sites was low (<6), making interaction networks relatively small.As a result, changes in interaction network properties (connectance, interaction evenness and network level specialisation), which correlated with R. ponticum flower abundance, were a result of the small network size rather than due to changes in the resilience of networks.Overall, we conclude that the impacts of invasive alien plants on native plant-pollinator interactions are not only species specific, but site specific, according to the abundance of flowers produced by both the invasive and the native plants.

  14. Belowground induction by Delia radicum or phytohormones affect aboveground herbivore communities on field-grown broccoli

    PubMed Central

    Pierre, S. P.; Dugravot, S.; Hervé, M. R.; Hassan, H. M.; van Dam, N. M.; Cortesero, A. M.

    2013-01-01

    Induced plant defence in response to phytophagous insects is a well described phenomenon. However, so far little is known about the effect of induced plant responses on subsequently colonizing herbivores in the field. Broccoli plants were induced in the belowground compartment using (i) infestation by the root-herbivore Delia radicum, (ii) root application of jasmonic acid (JA) or (iii) root application of salicylic acid (SA). The abundance of D. radicum and six aboveground herbivores displaying contrasting levels of host specialization were surveyed for 5 weeks. Our study showed that the response of herbivores was found to differ from one another, depending on the herbivore species, its degree of specialization and the root treatment. The abundance of the root herbivore D. radicum and particularly the number of emerging adults was decreased by both phytohormone treatments, while the number of D. radicum eggs was increased on conspecific infested plants. The root infestation exhibited moderate effects on the aboveground community. The abundance of the aphid Brevicoryne brassicae was strongly increased on D. radicum infested plants, but the other species were not impacted. Root hormone applications exhibited a strong effect on the abundance of specialist foliar herbivores. A higher number of B. brassicae and Pieris brassicae and a lower number of Plutella xylostella were found on JA treated plants. On SA treated plants we observed a decrease of the abundance of B. brassicae, Pi. rapae, and P. xylostella. Surprisingly, generalist species, Mamestra brassicae and Myzus persicae were not affected by root induction treatments. Finally, root treatments had no significant effect on either glucosinolate (GLS) profiles of the heads or on plant quality parameters. These results are discussed from the perspective of below- aboveground interactions and adaptations of phytophagous insects to induced plant responses according to their trophic specialization level. PMID:23970888

  15. Plant traits mediate consumer and nutrient control on plant community productivity and diversity.

    PubMed

    Eskelinen, Anu; Harrison, Susan; Tuomi, Maria

    2012-12-01

    The interactive effects of consumers and nutrients on terrestrial plant communities, and the role of plant functional traits in mediating these responses, are poorly known. We carried out a six-year full-factorial field experiment using mammalian herbivore exclusion and fertilization in two habitat types (fertile and infertile alpine tundra heaths) that differed in plant functional traits related to resource acquisition and palatability. Infertile habitats were dominated by species with traits indicative of a slow-growing strategy: high C:N ratio, low specific leaf area, and high condensed tannins. We found that herbivory counteracted the effect of fertilization on biomass, and that this response differed between the two habitats and was correlated with plant functional traits. Live biomass dominated the treatment responses in infertile habitats, whereas litter accumulation dominated the treatment responses in fertile habitats and was strongly negatively associated with resident community tannin concentration. Species richness declined under herbivore exclusion and fertilization in fertile habitats, where litter accumulation was greatest. Community means of plant C:N ratio predicted treatment effects on diversity: fertilization decreased and herbivory increased dominance in communities originally dominated by plants with high C:N, while fertilization increased and herbivory diminished dominance in communities where low C:N species were abundant. Our results highlight the close interdependence between consumer effects, soil nutrients, and plant functional traits and suggest that plant traits may provide an improved understanding of how consumers and nutrients influence plant community productivity and diversity.

  16. Pattern recognition of native plant communities: Manitou Colorado test site

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.

    1972-01-01

    Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information about 11 vegetation classes and two nonvegetation classes at the Manitou Experimental Forest. Intensive preprocessing of the scanner signals was required to eliminate a serious scan angle effect. Final processing of the normalized data provided acceptable recognition results of generalized plant community types. Serious errors occurred with attempts to classify specific community types within upland grassland areas. The consideration of the convex mixtures concept (effects of amounts of live plant cover, exposed soil, and plant litter cover on apparent scene radiances) significantly improved the classification of some of the grassland classes.

  17. Woody stem galls interact with foliage to affect community associations.

    PubMed

    Cooper, W R; Rieske, L K

    2009-04-01

    Gall wasps (Hymenoptera: Cynipidae) hijack the physiology of their host plant to produce galls that house wasps throughout their immature stages. The gall-maker-host plant interaction is highly evolved, and galls represent an extended phenotype of the gall wasp. We evaluated two-way interactions between stem galls produced by Dryocosmus kuriphilus Yasumatsu on Castanea spp. (Fagales: Fagaceae) and foliage directly attached to galls (gall leaves) using gall leaf excision experiments and herbivore bioassays. Early season gall leaf excision decreased the dry weight per chamber (nutritive index) and thickness of the protective schlerenchyma layer and increased the number of empty chambers and the occurrence and size of exterior fungal lesions. Leaf excision also caused a modestly significant (alpha = 0.1) increase in the incidence of feeding chamber fungi and herbivory by Curculio sayi Gyllenhal (Coleoptera: Curculionidae), and a modest decrease in parasitoids. This study shows that gall leaves are important for stem gall development, quality, and defenses, adding support for the nutrient and enemy hypotheses. We also evaluated the effects of stem galls on the suitability of gall leaves to Lymantria dispar L. (Lepidoptera: Lymantriidae) herbivory to assess the extent of gall defenses in important source leaves. Relative growth rate of L. dispar larvae was greater on gall leaves compared with normal leaves, indicating that, despite their importance, gall leaves may be more suitable to generalist insect herbivores, suggesting limitations to the extended phenotype of the gall wasp. Our results improve our knowledge of host-cynipid interactions, gall source-sink relations, and D. kuriphilus community interactions.

  18. Montane Meadow Plant Community Response to Livestock Grazing

    NASA Astrophysics Data System (ADS)

    Freitas, Matthew R.; Roche, Leslie M.; Weixelman, Dave; Tate, Kenneth W.

    2014-08-01

    We examined long-term (10 years) meadow plant community responses to (1) livestock grazing under riparian grazing utilization limits; (2) suspension of livestock grazing; and (3) meadow site wetness and precipitation on the Inyo National Forest, California. Observed trends in meadow plant species richness, diversity, and frequency of soil stabilizing species were not significantly different between grazed ( N = 16) and non-grazed ( N = 9) study sites ( P > 0.12 in all cases). Modest increases in richness and diversity were observed over the study period, but frequency of soil stabilizing species was constant. These results suggest that riparian conservation grazing strategies implemented during the study period neither degraded nor hampered recovery of meadow plant community conditions relative to non-grazed conditions. Meadow site wetness was negatively correlated to richness ( P < 0.01) and diversity ( P < 0.01), but was positively correlated to soil stabilization ( P = 0.02). Precipitation was not a significant predictor for plant community responses.

  19. Conservation and restoration of indigenous plants to improve community livelihoods: the Useful Plants Project

    NASA Astrophysics Data System (ADS)

    Ulian, Tiziana; Sacandé, Moctar; Mattana, Efisio

    2014-05-01

    Kew's Millennium Seed Bank partnership (MSBP) is one of the largest ex situ plant conservation initiatives, which is focused on saving plants in and from regions most at risk, particularly in drylands. Seeds are collected and stored in seed banks in the country of origin and duplicated in the Millennium Seed Bank in the UK. The MSBP also strengthens the capacity of local communities to successfully conserve and sustainably use indigenous plants, which are important for their wellbeing. Since 2007, high quality seed collections and research information have been gathered on ca. 700 useful indigenous plant species that were selected by communities in Botswana, Kenya, Mali, Mexico and South Africa through Project MGU - The Useful Plants Project. These communities range from various farmer's groups and organisations to traditional healers, organic cotton/crop producers and primary schools. The information on seed conservation and plant propagation was used to train communities and to propagate ca. 200 species that were then planted in local gardens, and as species reintroduced for reforestation programmes and enriching village forests. Experimental plots have also been established to further investigate the field performance (plant survival and growth rate) of indigenous species, using low cost procedures. In addition, the activities support revenue generation for local communities directly through the sustainable use of plant products or indirectly through wider environmental and cultural services. This project has confirmed the potential of biodiversity conservation to improve food security and human health, enhance community livelihoods and strengthen the resilience of land and people to the changing climate. This approach of using indigenous species and having local communities play a central role from the selection of species to their planting and establishment, supported by complementary research, may represent a model for other regions of the world, where

  20. Unravelling Linkages between Plant Community Composition and the Pathogen-Suppressive Potential of Soils

    PubMed Central

    Latz, Ellen; Eisenhauer, Nico; Rall, Björn Christian; Scheu, Stefan; Jousset, Alexandre

    2016-01-01

    Plant diseases cause dramatic yield losses worldwide. Current disease control practices can be deleterious for the environment and human health, calling for alternative and sustainable management regimes. Soils harbour microorganisms that can efficiently suppress pathogens. Uncovering mediators driving their functioning in the field still remains challenging, but represents an essential step in order to develop strategies for increased soil health. We set up plant communities of varying richness to experimentally test the potential of soils differing in plant community history to suppress the pathogen Rhizoctonia solani. The results indicate that plant communities shape soil-disease suppression via changes in abiotic soil properties and the abundance of bacterial groups including species of the genera Actinomyces, Bacillus and Pseudomonas. Further, the results suggest that pairwise interactions between specific plant species strongly affect soil suppressiveness. Using structural equation modelling, we provide a pathway orientated framework showing how the complex interactions between plants, soil and microorganisms jointly shape soil suppressiveness. Our results stress the importance of plant community composition as a determinant of soil functioning, such as the disease suppressive potential of soils. PMID:27021053

  1. Plant rhizosphere species-specific stoichiometry and regulation of extracellular enzyme and microbial community structure

    NASA Astrophysics Data System (ADS)

    Bell, C. W.; Calderon, F.; Pendall, E.; Wallenstein, M. D.

    2012-12-01

    Plant communities affect the activity and composition of soil microbial communities through alteration of the soil environment during root growth; substrate availability through root exudation; nutrient availability through plant uptake; and moisture regimes through transpiration. As a result, positive feedbacks in soil properties can result from alterations in microbial community composition and function in the rhizosphere zone. At the ecosystem-scale, many properties of soil microbial communities can vary between forest stands dominated by different species, including community composition and stoichiometry. However, the influence of smaller individual plants on grassland soils and microbial communities is less well documented. There is evidence to suggest that some plants can modify their soil environment in a manner that favors their persistence. For example, when Bromus tectorum plants invade, soil microbial communities tend to have higher N mineralization rates (in the rhizosphere zone) relative to native plants. If tight linkages between individual plant species and microbial communities inhabiting the rhizosphere exist, we hypothesized that any differences among plant species specific rhizosphere zones could be observed by shifts in: 1) soil -rhizosphere microbial community structure, 2) enzymatic C:N:P acquisition activities, 3) alterations in the soil C chemistry composition in the rhizosphere, and 4) plant - soil - microbial C:N:P elemental stoichiometry. We selected and grew 4 different C3 grasses species including three species native to the Shortgrass Steppe region (Pascopyrum smithii, Koeleria macrantha, and Vulpia octoflora) and one exotic invasive plant species (B. tectorum) in root-boxes that are designed to allow for easy access to the rhizosphere. The field soil was homogenized using a 4mm sieve and mixed 1:1 with sterile sand and seeded as monocultures (24 replicate root - boxes for each species). Plant and soil samples (along with no - plant

  2. The Content and Bioavailability of Mineral Nutrients of Selected Wild and Traditional Edible Plants as Affected by Household Preparation Methods Practiced by Local Community in Benishangul Gumuz Regional State, Ethiopia

    PubMed Central

    Hailu, Andinet Abera; Addis, Getachew

    2016-01-01

    Edible parts of some wild and traditional vegetables used by the Gumuz community, namely, Portulaca quadrifida, Dioscorea abyssinica, Abelmoschus esculentus, and Oxytenanthera abyssinica, were evaluated for their minerals composition and bioavailability. Mineral elements, namely, Ca, Fe, Zn, and Cu, were analyzed using Shimadzu atomic absorption spectrophotometer. Effects of household processing practices on the levels of mineral elements were evaluated and the bioavailability was predicted using antinutrient-mineral molar ratios. Fe, Zn, Ca, Cu, P, Na, and K level in raw edible portions ranged in (0.64 ± 0.02–27.0 ± 6.24), (0.46 ± 0.02–0.85 ± 0.02), (24.49 ± 1.2–131.7 ± 8.3), (0.11 ± 0.01–0.46 ± 0.04), (39.13 ± 0.34–57.27 ± 0.94), (7.34 ± 0.42–20.42 ± 1.31), and (184.4 ± 1.31–816.3 ± 11.731) mg/100 g FW, respectively. Although statistically significant losses in minerals as a result of household preparation practices were observed, the amount of nutrients retained could be valuable especially in communities that have limited alternative sources of these micronutrients. The predicted minerals' bioavailability shows adequacy in terms of calcium and zinc but not iron. PMID:26981523

  3. The Content and Bioavailability of Mineral Nutrients of Selected Wild and Traditional Edible Plants as Affected by Household Preparation Methods Practiced by Local Community in Benishangul Gumuz Regional State, Ethiopia.

    PubMed

    Hailu, Andinet Abera; Addis, Getachew

    2016-01-01

    Edible parts of some wild and traditional vegetables used by the Gumuz community, namely, Portulaca quadrifida, Dioscorea abyssinica, Abelmoschus esculentus, and Oxytenanthera abyssinica, were evaluated for their minerals composition and bioavailability. Mineral elements, namely, Ca, Fe, Zn, and Cu, were analyzed using Shimadzu atomic absorption spectrophotometer. Effects of household processing practices on the levels of mineral elements were evaluated and the bioavailability was predicted using antinutrient-mineral molar ratios. Fe, Zn, Ca, Cu, P, Na, and K level in raw edible portions ranged in (0.64 ± 0.02-27.0 ± 6.24), (0.46 ± 0.02-0.85 ± 0.02), (24.49 ± 1.2-131.7 ± 8.3), (0.11 ± 0.01-0.46 ± 0.04), (39.13 ± 0.34-57.27 ± 0.94), (7.34 ± 0.42-20.42 ± 1.31), and (184.4 ± 1.31-816.3 ± 11.731) mg/100 g FW, respectively. Although statistically significant losses in minerals as a result of household preparation practices were observed, the amount of nutrients retained could be valuable especially in communities that have limited alternative sources of these micronutrients. The predicted minerals' bioavailability shows adequacy in terms of calcium and zinc but not iron. PMID:26981523

  4. Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion.

    PubMed

    Connolly, B M; Pearson, D E; Mack, R N

    2014-07-01

    mammals predicts plant establishment for our test species within these communities but not between them. Accumulating evidence suggests that seed predation can be an important biotic filter affecting plant establishment via differences in consumer preferences and abundance with important ramifications for plant invasions and in situ community assembly.

  5. Models of plant populations and communities

    SciTech Connect

    Huston, M.

    1990-01-01

    This document is the overview of the plant section in the book, {und Individual-Based Models and Approaches in Ecology}. A brief description of each of the chapters is provided, as well as a comparison of the models presented in each chapter. Four of the six chapters deal with single species interactions, one dealt with a two species system (plants and pollinators) and one deals with multispecies interactions. Both i-state distribution models and i-state configuration models are discussed. (MHB)

  6. CO2, nitrogen, and diversity differentially affect seed production of prairie plants.

    PubMed

    HilleRisLambers, J; Harpole, W S; Schnitzer, S; Tilman, D; Reich, P B

    2009-07-01

    Plant species composition and diversity is often influenced by early life history stages; thus, global change could dramatically affect plant community structure by altering seed production. Unfortunately, plant reproductive responses to global change are rarely studied in field settings, making it difficult to assess this possibility. To address this issue, we quantified the effects of elevated CO2, nitrogen deposition, and declining diversity on inflorescence production and inflorescence mass of 11 perennial grassland species in central Minnesota, U.S.A. We analyzed these data to ask whether (1) global change differentially affects seed production of co-occurring species; (2) seed production responses to global change are similar for species within the same functional group (defined by ecophysiology and growth form); and (3) seed production responses to global change match productivity responses: We found that, on average, allocation to seed production decreased under elevated CO2, although individual species responses were rarely significant due to low power (CO2 treatment df = 2). The effects of nitrogen deposition on seed production were similar within functional groups: C4 grasses tended to increase while C3 grasses tended to decrease allocation to seed production. Responses to nitrogen deposition were negatively correlated to productivity responses, suggesting a trade-off. Allocation to seed production of some species responded to a diversity gradient, but responses were uncorrelated to productivity responses and not similar within functional groups. Presumably, species richness has complex effects on the biotic and abiotic variables that influence seed production. In total, our results suggest that seed production of co-occurring species will be altered by global change, which may affect plant communities in unpredictable ways. Although functional groups could be used to generalize seed production responses to nitrogen deposition in Minnesota prairies, we

  7. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community.

    PubMed

    Khodakovskaya, Mariya V; Kim, Bong-Soo; Kim, Jong Nam; Alimohammadi, Mohammad; Dervishi, Enkeleda; Mustafa, Thikra; Cernigla, Carl E

    2013-01-14

    Multi-walled carbon nanotubes (CNTs) can affect plant phenotype and the composition of soil microbiota. Tomato plants grown in soil supplemented with CNTs produce two times more flowers and fruit compared to plants grown in control soil. The effect of carbon nanotubes on microbial community of CNT-treated soil is determined by denaturing gradient gel electrophoresis and pyrosequencing analysis. Phylogenetic analysis indicates that Proteobacteria and Bacteroidetes are the most dominant groups in the microbial community of soil. The relative abundances of Bacteroidetes and Firmicutes are found to increase, whereas Proteobacteria and Verrucomicorbia decrease with increasing concentration of CNTs. The results of comparing diversity indices and species level phylotypes (OTUs) between samples showed that there is not a significant affect on bacterial diversity.

  8. Evolution in plant populations as a driver of ecological changes in arthropod communities.

    PubMed

    Johnson, Marc T J; Vellend, Mark; Stinchcombe, John R

    2009-06-12

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  9. Diversity of fungi associated with hair roots of ericaceous plants is affected by land use.

    PubMed

    Hazard, Christina; Gosling, Paul; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D

    2014-03-01

    Culture-independent molecular studies have provided new insights into the diversity of fungi associating with ericaceous plant roots. However, there is little understanding of the distribution of these fungi across landscapes, or the effects of environmental heterogeneity on ericoid mycorrhizal (ERM) fungal diversity and distribution. Terminal-restriction fragment length polymorphism and selective sequence analyses of the internal transcribed spacer regions of rDNA were used to infer fungal diversity of bait Vaccinium macrocarpon grown in soils from nine peatland sites in Ireland, representing three different land uses (bog, rough grazing and forest plantation) and the fungal communities of field-collected Calluna vulgaris for five of these nine sites. A diverse range of potential ERM fungi were found, and the sampling approach significantly affected the diversity of the fungal community. Despite significant site groupings of the fungal communities associated with V. macrocarpon and C. vulgaris, fungal communities were significantly dissimilar between sites with different land uses. Soil nitrogen content significantly explained 52% of the variation in the V. macrocarpon fungal communities. Evidence suggests that environmental heterogeneity has a role in shaping ERM fungal community composition at the landscape scale.

  10. Effects of Mycorrhizal and Endophytic Fungi on Plant Community: a Microcosm Study

    PubMed Central

    Park, Sang-Hyun

    2007-01-01

    This study was conducted to investigate the effects of foliar endophytic fungi and arbuscular mycorrhizal fungi (AMF) on plant community structure in experimental microcosms containing an assemblage of five species of plants (Oenothera odorata, Plantago asiatica, Trifolium repens, Isodon japonicas and Aster yomena). Leaves of Sasa borealis, Potentilla fragarioides, and Viola mandshurica were collected in Chungbuk, Korea. Endophytic fungi were isolated from the surface sterilized leaves and identified to species level using molecular and morphological techniques. Four isolates of the endophytic fungi were inoculated to the leaves of host plants in the microcosms. Also, three species of AMF spores were extracted from pure cultures and the mixture of the three species inoculated to the roots of the plants. After four months of growth in a green house, effects of both symbiotic fungi on plant species diversity, community composition and productivity were examined. The plant species diversity showed significant differences with inoculation of the symbiotic fungi. Results indicate that AMF significantly affect plant productivity and plant community structure. PMID:24015095

  11. Effects of mycorrhizal and endophytic fungi on plant community: a microcosm study.

    PubMed

    Park, Sang-Hyun; Eom, Ahn-Heum

    2007-12-01

    This study was conducted to investigate the effects of foliar endophytic fungi and arbuscular mycorrhizal fungi (AMF) on plant community structure in experimental microcosms containing an assemblage of five species of plants (Oenothera odorata, Plantago asiatica, Trifolium repens, Isodon japonicas and Aster yomena). Leaves of Sasa borealis, Potentilla fragarioides, and Viola mandshurica were collected in Chungbuk, Korea. Endophytic fungi were isolated from the surface sterilized leaves and identified to species level using molecular and morphological techniques. Four isolates of the endophytic fungi were inoculated to the leaves of host plants in the microcosms. Also, three species of AMF spores were extracted from pure cultures and the mixture of the three species inoculated to the roots of the plants. After four months of growth in a green house, effects of both symbiotic fungi on plant species diversity, community composition and productivity were examined. The plant species diversity showed significant differences with inoculation of the symbiotic fungi. Results indicate that AMF significantly affect plant productivity and plant community structure. PMID:24015095

  12. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.

  13. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals. PMID:26079739

  14. Relationships among plants, soils and microbial communities along a hydrological gradient in the New Jersey Pinelands, USA

    PubMed Central

    Yu, Shen; Ehrenfeld, Joan G.

    2010-01-01

    Background and Aims Understanding the role of different components of hydrology in structuring wetland communities is not well developed. A sequence of adjacent wetlands located on a catenary sequence of soils and receiving the same sources and qualities of water is used to examine specifically the role of water-table median position and variability in affecting plant and microbial community composition and soil properties. Methods Two replicates of three types of wetland found adjacent to each other along a hydrological gradient in the New Jersey Pinelands (USA) were studied. Plant-community and water-table data were obtained within a 100-m2 plot in each community (pine swamp, maple swamp and Atlantic-white-cedar swamp). Monthly soil samples from each plot were analysed for soil moisture, organic matter, extractable nitrogen fractions, N mineralization rate and microbial community composition. Multivariate ordination methods were used to compare patterns among sites within and between data sets. Key Results The maple and pine wetlands were more similar to each other in plant community composition, soil properties and microbial community composition than either was to the cedar swamps. However, maple and pine wetlands differed from each other in water-table descriptors as much as they differed from the cedar swamps. All microbial communities were dominated by Gram-positive bacteria despite hydrologic differences among the sites. Water-table variability was as important as water-table level in affecting microbial communities. Conclusions Water tables affect wetland communities through both median level and variability. Differentiation of both plant and microbial communities are not simple transforms of differences in water-table position, even when other hydrologic factors are kept constant. Rather, soil genesis, a result of both water-table position and geologic history, appears to be the main factor affecting plant and microbial community similarities. PMID

  15. Coal mining activities change plant community structure due to air pollution and soil degradation.

    PubMed

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  16. Effects of Host Plant Factors on the Bacterial Communities Associated with Two Whitefly Sibling Species

    PubMed Central

    Su, Ming-Ming; Guo, Lei; Tao, Yun-Li; Zhang, You-Jun; Wan, Fang-Hao; Chu, Dong

    2016-01-01

    Background Although discrepancy in the specific traits and ecological characteristics of Bemisia tabaci between species are partially attributed to the B. tabaci-associated bacteria, the factors that affect the diversity of B. tabaci-associated bacteria are not well-understood. We used the metagenomic approach to characterize the B. tabaci-associated bacterial community because the approach is an effective tool to identify the bacteria. Methodology and Results To investigate the effects of the host plant and a virus, tomato yellow leaf curl virus (TYLCV), on the bacterial communities of B. tabaci sibling species B and Q, we analyzed the bacterial communities associated with whitefly B and Q collected from healthy cotton, healthy tomato, and TYLCV-infected tomato. The analysis used miseq-based sequencing of a variable region of the bacterial 16S rDNA gene. For the bacteria associated with B. tabaci, we found that the influence of the host plant species was greater than that of the whitefly cryptic species. With further analysis of host plants infected with the TYLCV, the virus had no significant effects on the B. tabaci-associated bacterial community. Conclusions The effects of different plant hosts and TYLCV-infection on the diversity of B. tabaci-associated bacterial communities were successfully analyzed in this study. To explain why B. tabaci sibling species with different host ranges differ in performance, the analysis of the bacterial community may be essential to the explanation. PMID:27008327

  17. Nitrogen-limitation and invasive sweetclover impacts vary between two Great Plains plant communities

    USGS Publications Warehouse

    Van Riper, Laura C.; Larson, Diane L.; Larson, Jennifer L.

    2010-01-01

    Yellow sweetclover is an exotic herbaceous legume common in the Great Plains of the US. Although woody legumes have been shown to affect ecosystem processes through nitrogen (N) fixation (i.e., they can be considered "transformers" sensu Richardson et al. (2000)), the same has not been shown for short-lived herbaceous species. The objectives of this study were to (1) quantify the effects of yellow sweetclover on N mineralization and nitrification and (2) assess the effects of N fertilization on two plant communities, badlands sparse vegetation and western wheatgrass prairie. We used in situ (in wheatgrass prairie) and laboratory incubations (for both plant communities) to assess N dynamics at sites with high and low sweetclover cover in the two plant communities. We found that both N mineralization and nitrification were higher in the high sweetclover plots in the sparse plant community, but not in the wheatgrass prairie. To assess fertilization effects and determine if nutrients or water were limiting at our sites, we conducted a field experiment with five resource addition treatments, (1) N, (2) N + water, (3) water, (4) phosphorus, and (5) no addition. Water was limiting in the wheatgrass prairie but contrary to expectation, N was not. In contrast, N was limiting in the sparse community, where a fertilization effect was seen in exotic forbs, especially the toxic invader Halogeton glomeratus. Our results emphasize the contingent nature of plant invasion in which effects are largely dependent on attributes of the recipient vegetation.

  18. Plant community associations of two invasive thistles

    PubMed Central

    Rauschert, Emily S.J.; Shea, Katriona; Goslee, Sarah

    2015-01-01

    In order to combat the growing problems associated with biological invasions, many researchers have focused on identifying which communities are most vulnerable to invasion by exotic species. However, once established, invasive species can significantly change the composition of the communities that they invade. The first step to disentangling the direction of causality is to discern whether a relationship with other vegetation exists at all. Carduus nutans and C. acanthoides are similar invasive thistles, which have caused substantial economic damage worldwide. We assessed the associations between the thistles and the standing flora in four sites in central Pennsylvania in which they co-occur. After sampling nearly 2000 plots of 1 m2, we used partial Mantel tests to assess the differences in vegetation between thistle and non-thistle plots after accounting for location, and non-metric multidimensional scaling to visualize differences among plots and sites. We found significant differences in community composition in plots with and without Carduus thistles. The non-native species Sisymbrium officinale and Coronilla varia were consistently associated with the presence of Carduus thistles. Several species were associated with areas that were free of Carduus thistles, including an important non-native pasture species (Trifolium repens). We found no evidence for differences in composition between plots with C. nutans versus C. acanthoides, suggesting that they have similar associations with the vegetation community. We conclude that even at the within-field scale, areas invaded by Carduus thistles have different vegetation associations than uninvaded areas, allowing us to target future research about the role of vegetation structure in resisting and responding to invasion. PMID:26038126

  19. Plant community associations of two invasive thistles.

    PubMed

    Rauschert, Emily S J; Shea, Katriona; Goslee, Sarah

    2015-01-01

    In order to combat the growing problems associated with biological invasions, many researchers have focused on identifying which communities are most vulnerable to invasion by exotic species. However, once established, invasive species can significantly change the composition of the communities that they invade. The first step to disentangling the direction of causality is to discern whether a relationship with other vegetation exists at all. Carduus nutans and C. acanthoides are similar invasive thistles, which have caused substantial economic damage worldwide. We assessed the associations between the thistles and the standing flora in four sites in central Pennsylvania in which they co-occur. After sampling nearly 2000 plots of 1 m(2), we used partial Mantel tests to assess the differences in vegetation between thistle and non-thistle plots after accounting for location, and non-metric multidimensional scaling to visualize differences among plots and sites. We found significant differences in community composition in plots with and without Carduus thistles. The non-native species Sisymbrium officinale and Coronilla varia were consistently associated with the presence of Carduus thistles. Several species were associated with areas that were free of Carduus thistles, including an important non-native pasture species (Trifolium repens). We found no evidence for differences in composition between plots with C. nutans versus C. acanthoides, suggesting that they have similar associations with the vegetation community. We conclude that even at the within-field scale, areas invaded by Carduus thistles have different vegetation associations than uninvaded areas, allowing us to target future research about the role of vegetation structure in resisting and responding to invasion.

  20. Community history affects the predictability of microbial ecosystem development

    PubMed Central

    Pagaling, Eulyn; Strathdee, Fiona; Spears, Bryan M; Cates, Michael E; Allen, Rosalind J; Free, Andrew

    2014-01-01

    Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community's previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications. PMID:23985743

  1. Deteriorating Farm Finances Affect Rural Banks and Communities.

    ERIC Educational Resources Information Center

    Milkove, Daniel L.; And Others

    1986-01-01

    Problem farm debts may translate into slow growth for rural communities, with local banks unable to offer credit even to credit worthy borrowers. Communities served by branches of large banking organizations are probably better off than communities served only by small independent banks. (Author)

  2. Timing of cotyledon damage affects growth and flowering in mature plants.

    PubMed

    Hanley, M E; Fegan, E L

    2007-07-01

    Although the effects of herbivory on plant fitness are strongly linked to age, we understand little about how the timing of herbivory at the seedling stage affects growth and reproduction for plants that survive attack. In this study, we subjected six north-western European, dicotyledonous grassland species (Leontodon autumnalis, Leontodon hispidus, Plantago lanceolata, Plantago major, Trifolium pratense and Trifolium repens) to cotyledon removal at 7, 14 and 21 d old. We monitored subsequent growth and flowering (number of inflorescences recorded, and time taken for first flowers to open) over a 107 d period. Cotyledon removal reduced growth during establishment (35 d) for all species, and a further three exhibited reduced growth at maturity. Four species developed fewer inflorescences, or had delayed flowering after cotyledon removal. Although early damage (7 d old) had the greatest long-term effect on plant performance, responses varied according to the age at which the damage occurred and the species involved. Our results illustrate how growth and flowering into the mature phase is affected by cotyledon damage during different stages of seedling ontogeny, and we highlight the ways in which ontogenetic variation in seedling tolerance of tissue loss might impact upon plant fitness in mature plant communities. PMID:17547653

  3. Tracking Fungal Community Responses to Maize Plants by DNA- and RNA-Based Pyrosequencing

    PubMed Central

    Kuramae, Eiko E.; Verbruggen, Erik; Hillekens, Remy; de Hollander, Mattias; Röling, Wilfred F. M.; van der Heijden, Marcel G. A.; Kowalchuk, George A.

    2013-01-01

    We assessed soil fungal diversity and community structure at two sampling times (t1 = 47 days and t2 = 104 days of plant age) in pots associated with four maize cultivars, including two genetically modified (GM) cultivars by high-throughput pyrosequencing of the 18S rRNA gene using DNA and RNA templates. We detected no significant differences in soil fungal diversity and community structure associated with different plant cultivars. However, DNA-based analyses yielded lower fungal OTU richness as compared to RNA-based analyses. Clear differences in fungal community structure were also observed in relation to sampling time and the nucleic acid pool targeted (DNA versus RNA). The most abundant soil fungi, as recovered by DNA-based methods, did not necessary represent the most “active” fungi (as recovered via RNA). Interestingly, RNA-derived community compositions at t1 were highly similar to DNA-derived communities at t2, based on presence/absence measures of OTUs. We recovered large proportions of fungal sequences belonging to arbuscular mycorrhizal fungi and Basidiomycota, especially at the RNA level, suggesting that these important and potentially beneficial fungi are not affected by the plant cultivars nor by GM traits (Bt toxin production). Our results suggest that even though DNA- and RNA-derived soil fungal communities can be very different at a given time, RNA composition may have a predictive power of fungal community development through time. PMID:23875012

  4. Functionally and phylogenetically diverse plant communities key to soil biota.

    PubMed

    Milcu, Alexandru; Allan, Eric; Roscher, Christiane; Jenkins, Tania; Meyer, Sebastian T; Flynn, Dan; Bessler, Holger; Buscot, François; Engels, Christof; Gubsch, Marlén; König, Stephan; Lipowsky, Annett; Loranger, Jessy; Renker, Carsten; Scherber, Christoph; Schmid, Bernhard; Thébault, Elisa; Wubet, Tesfaye; Weisser, Wolfgang W; Scheu, Stefan; Eisenhauer, Nico

    2013-08-01

    Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity--ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset of a grassland biodiversity experiment. Plant functional and phylogenetic diversity were generally better predictors of soil biota than the traditionally used species or functional group richness. Functional diversity was a reliable predictor for most biota, with the exception of soil microorganisms, which were better predicted by phylogenetic diversity. These results provide empirical support for the idea that the diversity of plant functional traits and the diversity of evolutionary lineages in a community are important for maintaining higher abundances and diversity of soil communities.

  5. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    PubMed

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  6. Land-use history alters contemporary insect herbivore community composition and decouples plant-herbivore relationships.

    SciTech Connect

    Hahn, Philip G.; Orrock, John L.

    2015-04-01

    1. Past land use can create altered soil conditions and plant communities that persist for decades, although the effects of these altered conditions on consumers are rarely investigated. 2. Using a large-scale field study at 36 sites in longleaf pine (Pinus palustris) woodlands, we examined whether historic agricultural land use leads to differences in the abundance and community composition of insect herbivores (grasshoppers, families Acrididae and Tettigoniidae). 3. We measured the cover of six plant functional groups and several environmental variables to determine whether historic agricultural land use affects the relationships between plant cover or environmental conditions and grasshopper assemblages. 4. Land-use history had taxa-specific effects and interacted with herbaceous plant cover to alter grasshopper abundances, leading to significant changes in community composition. Abundance of most grasshopper taxa increased with herbaceous cover in woodlands with no history of agriculture, but there was no relationship in post-agricultural woodlands. We also found that grasshopper abundance was negatively correlated with leaf litter cover. Soil hardness was greater in post-agricultural sites (i.e. more compacted) and was associated with grasshopper community composition. Both herbaceous cover and leaf litter cover are influenced by fire frequency, suggesting a potential indirect role of fire on grasshopper assemblages. 5. Our results demonstrate that historic land use may create persistent differences in the composition of grasshopper assemblages, while contemporary disturbances (e.g. prescribed fire) may be important for determining the abundance of grasshoppers, largely through the effect of fire on plants and leaf litter. Therefore, our results suggest that changes in the contemporary management regimes (e.g. increasing prescribed fire) may not be sufficient to shift the structure of grasshopper communities in post-agricultural sites towards communities in

  7. Interaction of historical and nonhistorical disturbances maintains native plant communities.

    PubMed

    Davies, K W; Svejcar, T J; Bates, J D

    2009-09-01

    Historical disturbance regimes are often considered a critical element in maintaining native plant communities. However, the response of plant communities to disturbance may be fundamentally altered as a consequence of invasive plants, climate change, or prior disturbances. The appropriateness of historical disturbance patterns under modern conditions and the interactions among disturbances are issues that ecologists must address to protect and restore native plant communities. We evaluated the response of Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh plant communities to their historical disturbance regime compared to other disturbance regimes. The historical disturbance regime of these plant communities was periodic fires with minimal grazing by large herbivores. We also investigated the influence of prior disturbance (grazing) on the response of these communities to subsequent disturbance (burning). Treatments were: (1) ungrazed (livestock grazing excluded since 1936) and unburned, (2) grazed and unburned, (3) ungrazed and burned (burned in 1993), and (4) grazed and burned. The ungrazed-burned treatment emulated the historical disturbance regime. Vegetation cover, density, and biomass production were measured the 12th, 13th, and 14th year post-burning. Prior to burning the presence of Bromus tectorum L., an exotic annual grass, was minimal (<0.5% cover), and vegetation characteristics were similar between grazed and ungrazed treatments. However, litter accumulation was almost twofold greater in ungrazed than in grazed treatments. Long-term grazing exclusion followed by burning resulted in a substantial B. tectorum invasion, but burning the grazed areas did not produce an invasion. The ungrazed-burned treatment also had less perennial vegetation than other treatments. The accumulation of litter (fuel) in ungrazed treatments may have resulted in greater fire-induced mortality of perennial vegetation in ungrazed compared to grazed treatments

  8. Planting Healthy Roots: Using Documentary Film to Evaluate and Disseminate Community-Based Participatory Research.

    PubMed

    Brandt, Heather M; Freedman, Darcy A; Friedman, Daniela B; Choi, Seul Ki; Seel, Jessica S; Guest, M Aaron; Khang, Leepao

    2016-01-01

    Documentary filmmaking approaches incorporating community engagement and awareness raising strategies may be a promising approach to evaluate community-based participatory research. The study purpose was 2-fold: (1) to evaluate a documentary film featuring the formation and implementation of a farmers' market and (2) to assess whether the film affected awareness regarding food access issues in a food-desert community with high rates of obesity. The coalition model of filmmaking, a model consistent with a community-based participatory research (CBPR) approach, and personal stories, community profiles, and expert interviews were used to develop a documentary film (Planting Healthy Roots). The evaluation demonstrated high levels of approval and satisfaction with the film and CBPR essence of the film. The documentary film aligned with a CBPR approach to document, evaluate, and disseminate research processes and outcomes. PMID:27536929

  9. Planting Healthy Roots: Using Documentary Film to Evaluate and Disseminate Community-Based Participatory Research.

    PubMed

    Brandt, Heather M; Freedman, Darcy A; Friedman, Daniela B; Choi, Seul Ki; Seel, Jessica S; Guest, M Aaron; Khang, Leepao

    2016-01-01

    Documentary filmmaking approaches incorporating community engagement and awareness raising strategies may be a promising approach to evaluate community-based participatory research. The study purpose was 2-fold: (1) to evaluate a documentary film featuring the formation and implementation of a farmers' market and (2) to assess whether the film affected awareness regarding food access issues in a food-desert community with high rates of obesity. The coalition model of filmmaking, a model consistent with a community-based participatory research (CBPR) approach, and personal stories, community profiles, and expert interviews were used to develop a documentary film (Planting Healthy Roots). The evaluation demonstrated high levels of approval and satisfaction with the film and CBPR essence of the film. The documentary film aligned with a CBPR approach to document, evaluate, and disseminate research processes and outcomes.

  10. Plant and Invertebrate Community Changes Caused by Flood-Pulsing in a Constructed Riparian Wetland

    NASA Astrophysics Data System (ADS)

    Caiazza, M. K.; Nieset, J. E.; Romito, A.; de Szalay, F. A.

    2005-05-01

    In 2002, Kent State University constructed a research facility that includes ten independently flooded wetland basins (10 m X 20 m) along a second order creek. We tested the effects of flood-pulsing on the wetland biota by allowing 5 basins (flood-pulse wetlands) to fluctuate with creek water levels to simulate floodplain marshes, and maintaining 5 basins (static wetlands) at constant water levels. We sampled emergent plants and aquatic invertebrates in 2003 and 2004. Abiotic conditions were different between treatments. We collected 83 plant species, and flood pulsing had strong effects on plant communities. Mean species richness and plant cover were higher in static wetlands, and Sorensen's similarity indices between habitat types decreased over time. Plant biomass increased in all wetlands from 2003 to 2004, but mean biomass was not different between treatments. Many dominant plant species were affected by the flood pulsing treatment. Wetland invertebrate communities were diverse (47 taxa), but we detected few responses. Total abundance, species richness, and numbers of most dominant species were not different between treatments. These results indicate that flood-pulsing acted as a stressor on emergent plant communities, but did not strongly impact aquatic macroinvertebrates.

  11. Does sustained participation in an online health community affect sentiment?

    PubMed

    Zhang, Shaodian; Bantum, Erin; Owen, Jason; Elhadad, Noémie

    2014-01-01

    A large number of patients rely on online health communities to exchange information and psychosocial support with their peers. Examining participation in a community and its impact on members' behaviors and attitudes is one of the key open research questions in the field of study of online health communities. In this paper, we focus on a large public breast cancer community and conduct sentiment analysis on all its posts. We investigate the impact of different factors on post sentiment, such as time since joining the community, posting activity, age of members, and cancer stage of members. We find that there is a significant increase in sentiment of posts through time, with different patterns of sentiment trends for initial posts in threads and reply posts. Factors each play a role; for instance stage-IV members form a particular sub-community with patterns of sentiment and usage distinct from others members.

  12. Does sustained participation in an online health community affect sentiment?

    PubMed

    Zhang, Shaodian; Bantum, Erin; Owen, Jason; Elhadad, Noémie

    2014-01-01

    A large number of patients rely on online health communities to exchange information and psychosocial support with their peers. Examining participation in a community and its impact on members' behaviors and attitudes is one of the key open research questions in the field of study of online health communities. In this paper, we focus on a large public breast cancer community and conduct sentiment analysis on all its posts. We investigate the impact of different factors on post sentiment, such as time since joining the community, posting activity, age of members, and cancer stage of members. We find that there is a significant increase in sentiment of posts through time, with different patterns of sentiment trends for initial posts in threads and reply posts. Factors each play a role; for instance stage-IV members form a particular sub-community with patterns of sentiment and usage distinct from others members. PMID:25954470

  13. Does Sustained Participation in an Online Health Community Affect Sentiment?

    PubMed Central

    Zhang, Shaodian; Bantum, Erin; Owen, Jason; Elhadad, Noémie

    2014-01-01

    A large number of patients rely on online health communities to exchange information and psychosocial support with their peers. Examining participation in a community and its impact on members’ behaviors and attitudes is one of the key open research questions in the field of study of online health communities. In this paper, we focus on a large public breast cancer community and conduct sentiment analysis on all its posts. We investigate the impact of different factors on post sentiment, such as time since joining the community, posting activity, age of members, and cancer stage of members. We find that there is a significant increase in sentiment of posts through time, with different patterns of sentiment trends for initial posts in threads and reply posts. Factors each play a role; for instance stage-IV members form a particular sub-community with patterns of sentiment and usage distinct from others members. PMID:25954470

  14. Bacterial Communities Associated with Different Anthurium andraeanum L. Plant Tissues

    PubMed Central

    Sarria-Guzmán, Yohanna; Chávez-Romero, Yosef; Gómez-Acata, Selene; Montes-Molina, Joaquín Adolfo; Morales-Salazar, Eleacin; Dendooven, Luc; Navarro-Noya, Yendi E.

    2016-01-01

    Plant-associated microbes have specific beneficial functions and are considered key drivers for plant health. The bacterial community structure of healthy Anthurium andraeanum L. plants was studied by 16S rRNA gene pyrosequencing associated with different plant parts and the rhizosphere. A limited number of bacterial taxa, i.e., Sinorhizobium, Fimbriimonadales, and Gammaproteobacteria HTCC2089 were enriched in the A. andraeanum rhizosphere. Endophytes were more diverse in the roots than in the shoots, whereas all shoot endophytes were found in the roots. Streptomyces, Flavobacterium succinicans, and Asteroleplasma were only found in the roots, Variovorax paradoxus only in the stem, and Fimbriimonas 97%-OTUs only in the spathe, i.e., considered specialists, while Brevibacillus, Lachnospiraceae, Pseudomonas, and Pseudomonas pseudoalcaligenes were generalist and colonized all plant parts. The anaerobic diazotrophic bacteria Lachnospiraceae, Clostridium sp., and Clostridium bifermentans colonized the shoot system. Phylotypes belonging to Pseudomonas were detected in the rhizosphere and in the substrate (an equiproportional mixture of soil, cow manure, and peat), and dominated the endosphere. Pseudomonas included nine 97%-OTUs with different patterns of distribution and phylogenetic affiliations with different species. P. pseudoalcaligenes and P. putida dominated the shoots, but were also found in the roots and rhizosphere. P. fluorescens was present in all plant parts, while P. resinovorans, P. denitrificans, P. aeruginosa, and P. stutzeri were only detected in the substrate and rhizosphere. The composition of plant-associated bacterial communities is generally considered to be suitable as an indicator of plant health. PMID:27524305

  15. Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When plant species establish in novel environments, they often modify microbial communities and soil properties in ways that enhance their own success. Upon invasion, the C3 annual grass Bromus tectorum appears to support soil microbial communities that have higher soil nitrogen (N) mineralization r...

  16. Prey community structure affects how predators select for Mullerian mimicry.

    PubMed

    Ihalainen, Eira; Rowland, Hannah M; Speed, Michael P; Ruxton, Graeme D; Mappes, Johanna

    2012-06-01

    Müllerian mimicry describes the close resemblance between aposematic prey species; it is thought to be beneficial because sharing a warning signal decreases the mortality caused by sampling by inexperienced predators learning to avoid the signal. It has been hypothesized that selection for mimicry is strongest in multi-species prey communities where predators are more prone to misidentify the prey than in simple communities. In this study, wild great tits (Parus major) foraged from either simple (few prey appearances) or complex (several prey appearances) artificial prey communities where a specific model prey was always present. Owing to slower learning, the model did suffer higher mortality in complex communities when the birds were inexperienced. However, in a subsequent generalization test to potential mimics of the model prey (a continuum of signal accuracy), only birds that had foraged from simple communities selected against inaccurate mimics. Therefore, accurate mimicry is more likely to evolve in simple communities even though predator avoidance learning is slower in complex communities. For mimicry to evolve, prey species must have a common predator; the effective community consists of the predator's diet. In diverse environments, the limited diets of specialist predators could create 'simple community pockets' where accurate mimicry is selected for.

  17. Endozoochorous dispersal of aquatic plants: does seed gut passage affect plant performance?

    PubMed

    Figuerola, Jordi; Santamaría, Luis; Green, Andy J; Luque, Isabel; Alvarez, Raquel; Charalambidou, Iris

    2005-04-01

    The ingestion of seeds by vertebrates can affect the germinability and/or germination rate of seeds. It is, however, unclear if an earlier germination as a result of ingestion affects later plant performance. For sago pondweed, Potamogeton pectinatus, the effects of seed ingestion by ducks on both germinability and germination rate have been previously reported from laboratory experiments. We performed an experiment to determine the effects of seed ingestion by ducks on germination, seedling survival, plant growth and asexual multiplication. Both at the start and end of the winter, seeds were fed to three captive shovelers (Anas clypeata) and planted outdoors in water-filled containers. Plant biomass and its allocation to vegetative parts (shoot and roots), tubers, and seeds were determined in autumn. More duck-ingested seeds than control (uningested) seeds germinated in early winter, but this difference disappeared for seeds planted in late winter, when the treatments were first stratified for 3 mo. None of the variables for measuring seedling survival and plant performance varied between treatments. Under our experimental conditions (no herbivory or competition), ingestion by ducks in early winter resulted in increased performance for seeds surviving gut passage due to enhanced seed germinability, without other costs or benefits for the seedlings.

  18. Darwin's naturalization hypothesis: scale matters in coastal plant communities.

    PubMed

    Carboni, Marta; Münkemüller, Tamara; Gallien, Laure; Lavergne, Sébastien; Acosta, Alicia; Thuiller, Wilfried

    2013-04-01

    Darwin proposed two seemingly contradictory hypotheses for a better understanding of biological invasions. Strong relatedness of invaders to native communities as an indication of niche overlap could promote naturalization because of appropriate niche adaptation, but could also hamper naturalization because of negative interactions with native species ('Darwin's naturalization hypothesis'). Although these hypotheses provide clear and opposing predictions for expected patterns of species relatedness in invaded communities, so far no study has been able to clearly disentangle the underlying mechanisms. We hypothesize that conflicting past results are mainly due to the neglected role of spatial resolution of the community sampling. In this study, we corroborate both of Darwin's expectations by using phylogenetic relatedness as a measure of niche overlap and by testing the effects of sampling resolution in highly invaded coastal plant communities. At spatial resolutions fine enough to detect signatures of biotic interactions, we find that most invaders are less related to their nearest relative in invaded plant communities than expected by chance (phylogenetic overdispersion). Yet at coarser spatial resolutions, native assemblages become more invasible for closely-related species as a consequence of habitat filtering (phylogenetic clustering). Recognition of the importance of the spatial resolution at which communities are studied allows apparently contrasting theoretical and empirical results to be reconciled. Our study opens new perspectives on how to better detect, differentiate and understand the impact of negative biotic interactions and habitat filtering on the ability of invaders to establish in native communities.

  19. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2016-09-01

    The root-associated microbiome is a key determinant of pollutant degradation, soil nutrient availability and plant biomass productivity, but could not be examined in depth prior to recent advances in high-throughput sequencing. Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of vascular plants. They are known to enhance mineral uptake and promote plant growth and are postulated to influence the processes involved in phytoremediation. Amplicon sequencing approaches have previously shown that petroleum hydrocarbon pollutant (PHP) concentration strongly influences AMF community structure in in situ phytoremediation experiments. We examined how AMF communities and their spore-associated microbiomes were structured within the rhizosphere of three plant species growing spontaneously in three distinct waste decantation basins of a former petrochemical plant. Our results show that the AMF community was only affected by PHP concentrations, while the AMF-associated fungal and bacterial communities were significantly affected by both PHP concentrations and plant species identity. We also found that some AMF taxa were either positively or negatively correlated with some fungal and bacterial groups. Our results suggest that in addition to PHP concentrations and plant species identity, AMF community composition may also shape the community structure of bacteria and fungi associated with AMF spores. PMID:27376781

  20. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2016-09-01

    The root-associated microbiome is a key determinant of pollutant degradation, soil nutrient availability and plant biomass productivity, but could not be examined in depth prior to recent advances in high-throughput sequencing. Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of vascular plants. They are known to enhance mineral uptake and promote plant growth and are postulated to influence the processes involved in phytoremediation. Amplicon sequencing approaches have previously shown that petroleum hydrocarbon pollutant (PHP) concentration strongly influences AMF community structure in in situ phytoremediation experiments. We examined how AMF communities and their spore-associated microbiomes were structured within the rhizosphere of three plant species growing spontaneously in three distinct waste decantation basins of a former petrochemical plant. Our results show that the AMF community was only affected by PHP concentrations, while the AMF-associated fungal and bacterial communities were significantly affected by both PHP concentrations and plant species identity. We also found that some AMF taxa were either positively or negatively correlated with some fungal and bacterial groups. Our results suggest that in addition to PHP concentrations and plant species identity, AMF community composition may also shape the community structure of bacteria and fungi associated with AMF spores.

  1. Nighttime warming enhances drought resistance of plant communities in a temperate steppe

    PubMed Central

    Yang, Zhongling; Jiang, Lin; Su, Fanglong; Zhang, Qian; Xia, Jianyang; Wan, Shiqiang

    2016-01-01

    Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature. PMID:26987482

  2. Nighttime warming enhances drought resistance of plant communities in a temperate steppe

    NASA Astrophysics Data System (ADS)

    Yang, Zhongling; Jiang, Lin; Su, Fanglong; Zhang, Qian; Xia, Jianyang; Wan, Shiqiang

    2016-03-01

    Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature.

  3. Nighttime warming enhances drought resistance of plant communities in a temperate steppe.

    PubMed

    Yang, Zhongling; Jiang, Lin; Su, Fanglong; Zhang, Qian; Xia, Jianyang; Wan, Shiqiang

    2016-01-01

    Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature. PMID:26987482

  4. Factors Affecting Drug Abuse in Adolescent Females in Rural Communities

    ERIC Educational Resources Information Center

    Renes, Susan L.; Strange, Anthony T.

    2009-01-01

    This article explores factors influencing adolescent female substance use in rural communities. Self-reported data gathered from females 12 to 15 years of age in two northwestern communities in the United States showed an association among gender identity, peer and parental relationships, and substance use. Aggressive masculinity had the strongest…

  5. Pollution-induced community tolerance to non-steroidal anti-inflammatory drugs (NSAIDs) in fluvial biofilm communities affected by WWTP effluents.

    PubMed

    Corcoll, Natàlia; Acuña, Vicenç; Barceló, Damià; Casellas, Maria; Guasch, Helena; Huerta, Belinda; Petrovic, Mira; Ponsatí, Lidia; Rodríguez-Mozaz, Sara; Sabater, Sergi

    2014-10-01

    We assessed the tolerance acquired by stream biofilms to two non-steroidal anti-inflammatory-drugs (NSAIDs), ibuprofen and diclofenac. Biofilms came from a stream system receiving the effluent of a wastewater treatment plant (WWTP). The response of biofilms from a non-polluted site (upstream the WWTP) was compared to that of others downstream with relevant and decreasing levels of NSAIDs. Experiments performed in the laboratory following the pollution-induced community tolerance (PICT) approach determined that both algae and microbial communities from biofilms of the sites exposed at the highest concentrations of ibuprofen and diclofenac acquired tolerance to the mixture of these NSAIDs occurring at the sites. It was also observed that the chronic pollution by the WWTP effluent affected the microbial metabolic profile, as well as the structure of the algal community. The low (at ng L(-1) level) but chronic inputs of pharmaceuticals to the river ecosystem result in tolerant communities of lower diversity and altered microbial metabolism.

  6. Temporal variation in the nitrogen uptake competition between plant community and soil microbial community

    NASA Astrophysics Data System (ADS)

    Legay, N.; Lavorel, S.; Personeni, E.; Bataillé, M. P.; Robson, T. M.; Clément, J. C.

    2012-04-01

    1. Subalpine grasslands are characterized by important seasonal variations and like in others cold environments, the existence of seasonal variations of nitrogen (N) dynamics is strongly plausible. It has been shown that plants and microbes were in competition for nitrogen acquisition mainly during the growing season and particularly at plant biomass peak. During snowmelt, plants could benefit from a decrease in competition potential by microbes given a greater N uptake and freeze-thaw cycles restricting microbial growth. In managed grasslands, these probable interactions are furthermore influenced by recent changes in management, and associated modifications in plant and microbial communities. A previous isotope tracing experiment during the biomass peak suggested that in more intensely managed grasslands, plants exerted a greater control over N cycling than microorganisms, and that soil N availability was stimulated by a greater nitrogen uptake by plants and microbes allowing nutrients to be more readily returned to the soil. 2. A pulse of 15N was added to estimate if the dynamics of N uptake between plants and microbes observed at the biomass peak was applicable at snowmelt. We also asked if the modifications of N dynamics observed depend on management activities across four different grassland types representing decreasing management intensities, from formerly cultivated terraces, either mown or only lightly grazed to unterraced permanent grasslands, either mown or only very lightly grazed. 3. In all grasslands, N pools of aboveground plants were smaller in May than in July while root N pools were greater, and the intrinsic plant uptake was 2 at 5 times weaker in May. N microbial pools were higher in May that in July, while microbial N uptake was 10 to 100 times smaller during snowmelt than at the biomass peak. In spite of the fact that microbial N pools were still larger than the plant N pool, in terms of plants vs microbes competition for N, a microbe N

  7. [Influence of Submerged Plants on Microbial Community Structure in Sediment of Hongze Lake].

    PubMed

    Zhang, Ding-yu; Zhang, Ting-xi; Dong, Dan-ping; Li, De-fang; Wang, Guo-xiang

    2016-05-15

    Phospholipid fatty acids (PLFAs) method was applied to analyze the influence of submerged plants on sediment microbial community structure, in order to investigate the changes of sediment microbial community structure for different kinds of the submerged plants in different growth periods. Particularly, Potamogeton crispus L., Potamogeton pectinatus L and the mixed group were chosen as the typical submerged plants in Hongze Lake for investigation in this paper. The results indicated that the change of total PLFAs in different periods was significant, on the contrary, the PLFA change for different groups in the same period was insignificant. The values of G⁺ PLFA/G⁻ PLFA in the submerged plant group were also highly related to the different growth periods, which demonstrated that the root function of the submerged plant had a severe impact on the microbial community in sediment. Furthermore, some environmental factors, such as Temperature, pH, TOC and DO, were correlated to characteristic phospholipid of PLFAs in sediment, which means the environmental factors could also affect the microbial community structure.

  8. [Influence of Submerged Plants on Microbial Community Structure in Sediment of Hongze Lake].

    PubMed

    Zhang, Ding-yu; Zhang, Ting-xi; Dong, Dan-ping; Li, De-fang; Wang, Guo-xiang

    2016-05-15

    Phospholipid fatty acids (PLFAs) method was applied to analyze the influence of submerged plants on sediment microbial community structure, in order to investigate the changes of sediment microbial community structure for different kinds of the submerged plants in different growth periods. Particularly, Potamogeton crispus L., Potamogeton pectinatus L and the mixed group were chosen as the typical submerged plants in Hongze Lake for investigation in this paper. The results indicated that the change of total PLFAs in different periods was significant, on the contrary, the PLFA change for different groups in the same period was insignificant. The values of G⁺ PLFA/G⁻ PLFA in the submerged plant group were also highly related to the different growth periods, which demonstrated that the root function of the submerged plant had a severe impact on the microbial community in sediment. Furthermore, some environmental factors, such as Temperature, pH, TOC and DO, were correlated to characteristic phospholipid of PLFAs in sediment, which means the environmental factors could also affect the microbial community structure. PMID:27506026

  9. Designing the School Plant as a Community Center.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Div. of School Buildings and Grounds.

    In the planning of school plants to serve the educational, social, civic, recreational, and cultural needs of the entire community, factors which receive special consideration are location of facilities, heat distribution, zoning, storage space, and special appointments and service features. (RH)

  10. Bacterial community changes during plant establishment at the San Pedro River mine tailings site.

    PubMed

    Rosario, Karyna; Iverson, Sadie L; Henderson, David A; Chartrand, Shawna; McKeon, Casey; Glenn, Edward P; Maier, Raina M

    2007-01-01

    Mine tailings are moderately to severely impacted sites that lack normal plant cover, soil structure and development, and the associated microbial community. In arid and semiarid environments, tailings and their associated contaminants are prone to eolian dispersion and water erosion, thus becoming sources of metal contamination. One approach to minimize or eliminate these processes is to establish a permanent vegetation cover on tailings piles. Here we report a revegetation trial conducted at a moderately impacted mine tailings site in southern Arizona. A salt and drought-tolerant plant, four-wing saltbush [Atriplex canescens (Pursh) Nutt.], was chosen for the trial. A series of 3 by 3 m plots were established in quadruplicate on the test site to evaluate growth of four-wing saltbush transplants alone or with compost addition. Results show that >80% of the transplanted saltbush survived after 1.5 yr in both treatments. Enumeration of heterotrophs and community structure analysis were conducted to monitor bacterial community changes during plant establishment as an indicator of plant and soil health. The bacterial community was evaluated using denaturing gradient gel electrophoresis (DGGE) analysis of 16S rDNA PCR gene products from tailings samples taken beneath transplant canopies. Significant differences in heterotrophic counts and community composition were observed between the two treatments and unplanted controls throughout the trial, but treatment effects were not observed. The results suggest that compost is not necessary for plant establishment at this site and that plants, rather than added compost, is the primary factor enhancing bacterial heterotrophic counts and affecting community composition.

  11. Earthworms drive succession of both plant and Collembola communities in post-mining sites

    NASA Astrophysics Data System (ADS)

    Mudrák, Obdřej; Frouz, Jan

    2015-04-01

    Previous field observations indicated that earthworms promote late-successional plant species and reduce collembolan numbers at post-mining sites in the Sokolov coal mining district (Czech Republic). Here, we established a laboratory pot experiment to test the effect of earthworms (Aporrectodea caliginosa Savigny and Lumbricus rubellus Hoffm.) and litter of low, medium, and high quality (the grass Calamagrostis epigejos, the willow Salix caprea, and the alder Alnus glutinosa, respectively) on late successional plants (grasses Arrhenatherum elatius and Agrostis capillaris, legumes Lotus corniculatus and Trifolium medium, and non-leguminous dicots Centaurea jacea and Plantago lanceolata) in spoil substrate originating from Sokolov post-mining sites and naturally inhabited by abundant numbers of Collembola. The earthworms increased plant biomass, especially that of the large-seeded A. elatius, but reduced the number of plant individuals, mainly that of the small-seeded A. capillaris and both legumes. Litter quality affected plant biomass, which was highest with S. caprea litter, but did not change the number of plant individuals. Litter quality did not modify the effect of earthworms on plants; the effect of litter quality and earthworms was only additive. Species composition of Collembola community was altered by litter quality, but earthworms reduced the number of individuals, increased the number of species, and increased species evenness consistently across the litter qualities. Because the results of this experiment were consistent with the field observations, we conclude that earthworms help drive succession of both plant and Collembola communities on post-mining sites.

  12. Earthworms drive succession of both plant and Collembola communities in post-mining sites

    NASA Astrophysics Data System (ADS)

    Mudrák, Ondřej; Uteseny, Karoline; Frouz, Jan

    2016-04-01

    Previous field observations indicated that earthworms promote late-successional plant species and reduce collembolan numbers at post-mining sites in the Sokolov coal mining district (Czech Republic). Here, we established a laboratory pot experiment to test the effect of earthworms (Aporrectodea caliginosa Savigny and Lumbricus rubellus Hoffm.) and litter of low, medium, and high quality (the grass Calamagrostis epigejos, the willow Salix caprea, and the alder Alnus glutinosa, respectively) on late successional plants (grasses Arrhenatherum elatius and Agrostis capillaris, legumes Lotus corniculatus and Trifolium medium, and non-leguminous dicots Centaurea jacea and Plantago lanceolata) in spoil substrate originating from Sokolov post-mining sites and naturally inhabited by abundant numbers of Collembola. The earthworms increased plant biomass, especially that of the large-seeded A. elatius, but reduced the number of plant individuals, mainly that of the small-seeded A. capillaris and both legumes. Litter quality affected plant biomass, which was highest with S. caprea litter, but did not change the number of plant individuals. Litter quality did not modify the effect of earthworms on plants; the effect of litter quality and earthworms was only additive. Species composition of Collembola community was altered by litter quality, but earthworms reduced the number of individuals, increased the number of species, and increased species evenness consistently across the litter qualities. Because the results of this experiment were consistent with the field observations, we conclude that earthworms help drive succession of both plant and Collembola communities on post-mining sites.

  13. Hierarchical organization of a Sardinian sand dune plant community

    PubMed Central

    Ceccherelli, Giulia; Bertness, Mark

    2016-01-01

    Coastal sand dunes have attracted the attention of plant ecologists for over a century, but they have largely relied on correlations to explain dune plant community organization. We examined long-standing hypotheses experimentally that sand binding, inter-specific interactions, abiotic factors and seedling recruitment are drivers of sand dune plant community structure in Sardinia, Italy. Removing foundation species from the fore-, middle- and back-dune habitats over three years led to erosion and habitat loss on the fore-dune and limited plant recovery that increased with dune elevation. Reciprocal species removals in all zones suggested that inter-specific competition is common, but that dominance is transient, particularly due to sand burial disturbance in the middle-dune. A fully factorial 2-year manipulation of water, nutrient availability and substrate stability revealed no significant proximate response to these physical factors in any dune zone. In the fore- and middle-dune, plant seeds are trapped under adult plants during seed germination, and seedling survivorship and growth generally increase with dune height in spite of increased herbivory in the back-dune. Sand and seed erosion leads to limited seed recruitment on the fore-dune while high summer temperatures and preemption of space lead to competitive dominance of woody plants in the back-dune. Our results suggest that Sardinian sand dune plant communities are organized hierarchically, structured by sand binding foundation species on the fore-dune, sand burial in the middle-dune and increasingly successful seedling recruitment, growth and competitive dominance in the back-dune. PMID:27478701

  14. Hierarchical organization of a Sardinian sand dune plant community.

    PubMed

    Cusseddu, Valentina; Ceccherelli, Giulia; Bertness, Mark

    2016-01-01

    Coastal sand dunes have attracted the attention of plant ecologists for over a century, but they have largely relied on correlations to explain dune plant community organization. We examined long-standing hypotheses experimentally that sand binding, inter-specific interactions, abiotic factors and seedling recruitment are drivers of sand dune plant community structure in Sardinia, Italy. Removing foundation species from the fore-, middle- and back-dune habitats over three years led to erosion and habitat loss on the fore-dune and limited plant recovery that increased with dune elevation. Reciprocal species removals in all zones suggested that inter-specific competition is common, but that dominance is transient, particularly due to sand burial disturbance in the middle-dune. A fully factorial 2-year manipulation of water, nutrient availability and substrate stability revealed no significant proximate response to these physical factors in any dune zone. In the fore- and middle-dune, plant seeds are trapped under adult plants during seed germination, and seedling survivorship and growth generally increase with dune height in spite of increased herbivory in the back-dune. Sand and seed erosion leads to limited seed recruitment on the fore-dune while high summer temperatures and preemption of space lead to competitive dominance of woody plants in the back-dune. Our results suggest that Sardinian sand dune plant communities are organized hierarchically, structured by sand binding foundation species on the fore-dune, sand burial in the middle-dune and increasingly successful seedling recruitment, growth and competitive dominance in the back-dune. PMID:27478701

  15. Habitat Fragmentation Drives Plant Community Assembly Processes across Life Stages

    PubMed Central

    Hu, Guang; Feeley, Kenneth J.; Yu, Mingjian

    2016-01-01

    Habitat fragmentation is one of the principal causes of biodiversity loss and hence understanding its impacts on community assembly and disassembly is an important topic in ecology. We studied the relationships between fragmentation and community assembly processes in the land-bridge island system of Thousand Island Lake in East China. We focused on the changes in species diversity and phylogenetic diversity that occurred between life stages of woody plants growing on these islands. The observed diversities were compared with the expected diversities from random null models to characterize assembly processes. Regression tree analysis was used to illustrate the relationships between island attributes and community assembly processes. We found that different assembly processes predominate in the seedlings-to-saplings life-stage transition (SS) vs. the saplings-to-trees transition (ST). Island area was the main attribute driving the assembly process in SS. In ST, island isolation was more important. Within a fragmented landscape, the factors driving community assembly processes were found to differ between life stage transitions. Environmental filtering had a strong effect on the seedlings-to-saplings life-stage transition. Habitat isolation and dispersal limitation influenced all plant life stages, but had a weaker effect on communities than area. These findings add to our understanding of the processes driving community assembly and species coexistence in the context of pervasive and widespread habitat loss and fragmentation. PMID:27427960

  16. Habitat Fragmentation Drives Plant Community Assembly Processes across Life Stages.

    PubMed

    Hu, Guang; Feeley, Kenneth J; Yu, Mingjian

    2016-01-01

    Habitat fragmentation is one of the principal causes of biodiversity loss and hence understanding its impacts on community assembly and disassembly is an important topic in ecology. We studied the relationships between fragmentation and community assembly processes in the land-bridge island system of Thousand Island Lake in East China. We focused on the changes in species diversity and phylogenetic diversity that occurred between life stages of woody plants growing on these islands. The observed diversities were compared with the expected diversities from random null models to characterize assembly processes. Regression tree analysis was used to illustrate the relationships between island attributes and community assembly processes. We found that different assembly processes predominate in the seedlings-to-saplings life-stage transition (SS) vs. the saplings-to-trees transition (ST). Island area was the main attribute driving the assembly process in SS. In ST, island isolation was more important. Within a fragmented landscape, the factors driving community assembly processes were found to differ between life stage transitions. Environmental filtering had a strong effect on the seedlings-to-saplings life-stage transition. Habitat isolation and dispersal limitation influenced all plant life stages, but had a weaker effect on communities than area. These findings add to our understanding of the processes driving community assembly and species coexistence in the context of pervasive and widespread habitat loss and fragmentation. PMID:27427960

  17. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    PubMed

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  18. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    PubMed

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  19. The effect of drought on four plant communities in the northern Mojave Desert

    SciTech Connect

    Schultz, B.W.; Ostler, W.K.

    1993-12-31

    Desert plant communities contain many perennial plant species that are well adapted to arid environments; therefore, one would intuitively believe that perennial desert species readily survive drought conditions. Abundant research on plant-soil-water relationships in North American deserts has shown that many species can maintain water uptake and growth when the soil-water potential is low. Little research, however, has focused on how prolonged drought conditions affect plant species in vegetation associations in desert ecosystems. A prolonged and widespread drought occurred in much of the western United States, including the Northern Mojave Desert, from 1987 through 1991. During this drought period vegetation characterization studies, initiated in 1990, by the US Department of Energy (DOE) at Yucca Mountain, Nevada, allowed EG and G Energy Measurements to collect data that could be used to infer how both desert vegetation associations and desert plant species reacted to a prolonged drought. This paper presents the preliminary results.

  20. Assessing the diversity of bacterial communities associated with plants

    PubMed Central

    Andreote, Fernando Dini; Azevedo, João Lúcio; Araújo, Welington Luiz

    2009-01-01

    Plant–bacteria interactions result from reciprocal recognition between both species. These interactions are responsible for essential biological processes in plant development and health status. Here, we present a review of the methodologies applied to investigate shifts in bacterial communities associated with plants. A description of techniques is made from initial isolations to culture-independent approaches focusing on quantitative Polymerase Chain Reaction in real time (qPCR), Denaturing Gradient Gel Electrophoresis (DGGE), clone library construction and analysis, the application of multivariate analyses to microbial ecology data and the upcoming high throughput methodologies such as microarrays and pyrosequencing. This review supplies information about the development of traditional methods and a general overview about the new insights into bacterial communities associated with plants. PMID:24031382

  1. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level

    PubMed Central

    Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2015-01-01

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188

  2. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level.

    PubMed

    Einzmann, Helena J R; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2014-11-11

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ(13)C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests.

  3. How plants connect pollination and herbivory networks and their contribution to community stability.

    PubMed

    Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin

    2016-04-01

    Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks. PMID:27220207

  4. How plants connect pollination and herbivory networks and their contribution to community stability.

    PubMed

    Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin

    2016-04-01

    Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.

  5. Plant community resistance to invasion by Bromus species – the roles of community attributes, Bromus Interactions with plant communities, and Bromus traits

    USGS Publications Warehouse

    Chambers, Jeanne; Germino, Matthew; Belnap, Jayne; Brown, Cynthia; Schupp, Eugene W.; St. Clair, Samuel B

    2016-01-01

    The factors that determine plant community resistance to exotic annual Bromus species (Bromushereafter) are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in particular ambient and soil temperatures, have significant effects on the ability of Bromus to establish and spread. Seasonality of precipitation relative to temperature influences plant community resistance toBromus through effects on soil water storage, timing of water and nutrient availability, and dominant plant life forms. Differences among plant communities in how well soil resource use by the plant community matches resource supply rates can influence the magnitude of resource fluctuations due to either climate or disturbance and thus the opportunities for invasion. The spatial and temporal patterns of resource availability and acquisition of growth resources by Bromus versus native species strongly influence resistance to invasion. Traits of Bromus that confer a “priority advantage” for resource use in many communities include early-season germination and high growth and reproductive rates. Resistance to Bromus can be overwhelmed by high propagule supply, low innate seed dormancy, and large, if short-lived, seed banks. Biological crusts can inhibit germination and establishment of invasive annual plants, including several annual Bromus species, but are effective only in the absence of disturbance. Herbivores can have negative direct effects on Bromus, but positive indirect effects through decreases in competitors. Management strategies can be improved through increased understanding of community resistance to exotic annual Bromus species.

  6. [A phylogenetic analysis of plant communities of Teberda Biosphere Reserve].

    PubMed

    Shulakov, A A; Egorov, A V; Onipchenko, V G

    2016-01-01

    Phylogenetic analysis of communities is based on the comparison of distances on the phylogenetic tree between species of a community under study and those distances in random samples taken out of local flora. It makes it possible to determine to what extent a community composition is formed by more closely related species (i.e., "clustered") or, on the opposite, it is more even and includes species that are less related with each other. The first case is usually interpreted as a result of strong influence caused by abiotic factors, due to which species with similar ecology, a priori more closely related, would remain: In the second case, biotic factors, such as competition, may come to the fore and lead to forming a community out of distant clades due to divergence of their ecological niches: The aim of this' study Was Ad explore the phylogenetic structure in communities of the northwestern Caucasus at two spatial scales - the scale of area from 4 to 100 m2 and the smaller scale within a community. The list of local flora of the alpine belt has been composed using the database of geobotanic descriptions carried out in Teberda Biosphere Reserve at true altitudes exceeding.1800 m. It includes 585 species of flowering plants belonging to 57 families. Basal groups of flowering plants are.not represented in the list. At the scale of communities of three classes, namely Thlaspietea rotundifolii - commumties formed on screes and pebbles, Calluno-Ulicetea - alpine meadow, and Mulgedio-Aconitetea subalpine meadows, have not demonstrated significant distinction of phylogenetic structure. At intra level, for alpine meadows the larger share of closely related species. (clustered community) is detected. Significantly clustered happen to be those communities developing on rocks (class Asplenietea trichomanis) and alpine (class Juncetea trifidi). At the same time, alpine lichen proved to have even phylogenetic structure at the small scale. Alpine (class Salicetea herbaceae) that

  7. [A phylogenetic analysis of plant communities of Teberda Biosphere Reserve].

    PubMed

    Shulakov, A A; Egorov, A V; Onipchenko, V G

    2016-01-01

    Phylogenetic analysis of communities is based on the comparison of distances on the phylogenetic tree between species of a community under study and those distances in random samples taken out of local flora. It makes it possible to determine to what extent a community composition is formed by more closely related species (i.e., "clustered") or, on the opposite, it is more even and includes species that are less related with each other. The first case is usually interpreted as a result of strong influence caused by abiotic factors, due to which species with similar ecology, a priori more closely related, would remain: In the second case, biotic factors, such as competition, may come to the fore and lead to forming a community out of distant clades due to divergence of their ecological niches: The aim of this' study Was Ad explore the phylogenetic structure in communities of the northwestern Caucasus at two spatial scales - the scale of area from 4 to 100 m2 and the smaller scale within a community. The list of local flora of the alpine belt has been composed using the database of geobotanic descriptions carried out in Teberda Biosphere Reserve at true altitudes exceeding.1800 m. It includes 585 species of flowering plants belonging to 57 families. Basal groups of flowering plants are.not represented in the list. At the scale of communities of three classes, namely Thlaspietea rotundifolii - commumties formed on screes and pebbles, Calluno-Ulicetea - alpine meadow, and Mulgedio-Aconitetea subalpine meadows, have not demonstrated significant distinction of phylogenetic structure. At intra level, for alpine meadows the larger share of closely related species. (clustered community) is detected. Significantly clustered happen to be those communities developing on rocks (class Asplenietea trichomanis) and alpine (class Juncetea trifidi). At the same time, alpine lichen proved to have even phylogenetic structure at the small scale. Alpine (class Salicetea herbaceae) that

  8. Ethnobotany of dye plants in Dong communities of China

    PubMed Central

    2014-01-01

    Background Dyes derived from plants have an extensive history of use for coloring food and clothing in Dong communities and other indigenous areas in the uplands of China. In addition to use as coloring agents, Dong communities have historically utilized dye plants for their value for enhancing the nutritive, medicinal and preservative properties of foods. However, the persistence of plant-derived dyes and associated cultural practices and traditional knowledge is threatened with rapid socio-economic change in China. Research is needed to document the ethnobotany of dye plants in indigenous communities towards their conservation and potential commercialization as a sustainable means of supporting local development initiatives. Methods Semi-structured surveys on plants used for coloring agents and associated traditional knowledge were conducted in fifteen Dong villages of Tongdao County in Hunan Province of South Central China during 2011–2012. Transect walks were carried out with key informants identified from semi-structured surveys to collect samples and voucher specimens for each documented plant species for taxonomic identification. Results Dong households at the study sites utilize the flowers, bark, stems, tubers and roots of 13 plant species from 9 families as dyes to color their customary clothing and food. Out of the documented plants, a total of 7 are used for coloring food, 3 for coloring clothing and 3 for both food and clothing. Documented plants consist of 3 species that yield black pigments, 3 for brownish red/russet pigments, 3 for red pigments, 2 for dark blue pigments and 2 for yellow pigments. In addition to dyes, the plants have multiple uses including medicinal, ornamental, sacrificial, edible, and for timber. Conclusions The use of dyes derived from plants persists at the study sites for their important role in expressing Dong cultural identity through customary clothing and food. Further research is needed to evaluate the safety of dye

  9. Facilitation can increase the phylogenetic diversity of plant communities.

    PubMed

    Valiente-Banuet, Alfonso; Verdú, Miguel

    2007-11-01

    With the advent of molecular phylogenies the assessment of community assembly processes has become a central topic in community ecology. These processes have focused almost exclusively on habitat filtering and competitive exclusion. Recent evidence, however, indicates that facilitation has been important in preserving biodiversity over evolutionary time, with recent lineages conserving the regeneration niches of older, distant lineages. Here we test whether, if facilitation among distant-related species has preserved the regeneration niche of plant lineages, this has increased the phylogenetic diversity of communities. By analyzing a large worldwide database of species, we showed that the regeneration niches were strongly conserved across evolutionary history. Likewise, a phylogenetic supertree of all species of three communities driven by facilitation showed that nurse species facilitated distantly related species and increased phylogenetic diversity. PMID:17714492

  10. Feeding guild of non-host community members affects host-foraging efficiency of a parasitic wasp.

    PubMed

    De Rijk, Marjolein; Yang, Daowei; Engel, Bas; Dicke, Marcel; Poelman, Erik H

    2016-06-01

    Interactions between predator and prey, or parasitoid and host, are shaped by trait- and density-mediated processes involving other community members. Parasitoids that lay their eggs in herbivorous insects locate their hosts through infochemicals such as herbivore-induced plant volatiles (HIPVs) and host-produced kairomones. Hosts are frequently accompanied by non-host herbivores that are unsuitable for the parasitoid. These non-hosts may interfere with host location primarily through trait-mediated processes, by their own infochemicals, and their induction of the emission of plant volatiles. Although it is known that single non-hosts can interfere with parasitoid host location, it is still unknown whether the observed effects are due to species specific characteristics or to the feeding habits of the non-host herbivores. Here we addressed whether the feeding guild of non-host herbivores differentially affects foraging of the parasitoid Cotesia glomerata for its common host, caterpillars of Pieris brassicae feeding on Brassica oleracea plants. We used different phloem-feeding and leaf-chewing non-hosts to study their effects on host location by the parasitoid when searching for host-infested plants based on HIPVs and when searching for hosts on the plant using infochemicals. To evaluate the ultimate effect of these two phases in host location, we studied parasitism efficiency of parasitoids in small plant communities under field-tent conditions. We show that leaf-chewing non-hosts primarily affected host location through trait-mediated effects via plant volatiles, whereas phloem-feeding non-hosts exerted trait-mediated effects by affecting foraging efficiency of the parasitoid on the plant. These trait-mediated effects resulted in associational susceptibility of hosts in environments with phloem feeders and associational resistance in environments with non-host leaf chewers. PMID:27459770

  11. The Role of Community in Meeting the Needs of African-American HIV Affected Families.

    ERIC Educational Resources Information Center

    Mason, Sally

    2002-01-01

    Assessed the service needs of HIV-affected families in an inner city African American community with a high HIV/AIDS seroprevalence. Data from focus group interviews indicated a lack of family-sensitive HIV/AIDS community services. Participants noted the problem with stigma and identified community awareness and education as critical to serving…

  12. Microbial abundance and community in subsurface flow constructed wetland microcosms: role of plant presence.

    PubMed

    Wang, Qian; Xie, Huijun; Ngo, Huu Hao; Guo, Wenshan; Zhang, Jian; Liu, Cui; Liang, Shuang; Hu, Zhen; Yang, Zhongchen; Zhao, Congcong

    2016-03-01

    In this research, the role of plants in improving microorganism growth conditions in subsurface flow constructed wetland (CW) microcosms was determined. In particular, microbial abundance and community were investigated during summer and winter in Phragmites australis-planted CW microcosms (PA) and unplanted CW microcosms (control, CT). Results revealed that the removal efficiencies of pollutants and microbial community structure varied in winter with variable microbial abundance. During summer, PA comprised more dominant phyla (e.g., Proteobacteria, Actinobacteria, and Bacteroidetes), whereas CT contained more Cyanobacteria and photosynthetic bacteria. During winter, the abundance of Proteobacteria was >40 % in PA but dramatically decreased in CT. Moreover, Cyanobacteria and photosynthetic bacterial dominance in CT decreased. In both seasons, bacteria were more abundant in root surfaces than in sand. Plant presence positively affected microbial abundance and community. The potential removal ability of CT, in which Cyanobacteria and photosynthetic bacteria were abundant during summer, was more significantly affected by temperature reduction than that of PA with plant presence. PMID:25772872

  13. Phylogenetic plant community structure along elevation is lineage specific.

    PubMed

    Ndiribe, Charlotte; Pellissier, Loïc; Antonelli, Silvia; Dubuis, Anne; Pottier, Julien; Vittoz, Pascal; Guisan, Antoine; Salamin, Nicolas

    2013-12-01

    The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage-specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co-occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages.

  14. Phylogenetic plant community structure along elevation is lineage specific

    PubMed Central

    Ndiribe, Charlotte; Pellissier, Loïc; Antonelli, Silvia; Dubuis, Anne; Pottier, Julien; Vittoz, Pascal; Guisan, Antoine; Salamin, Nicolas

    2013-01-01

    The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage-specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co-occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages. PMID:24455126

  15. Diversity of Riparian Plants among and within Species Shapes River Communities

    PubMed Central

    Jackrel, Sara L.; Wootton, J. Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  16. Diversity of Riparian Plants among and within Species Shapes River Communities.

    PubMed

    Jackrel, Sara L; Wootton, J Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  17. Diversity of Riparian Plants among and within Species Shapes River Communities.

    PubMed

    Jackrel, Sara L; Wootton, J Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  18. Homestead tree planting in two rural Swazi communities

    USGS Publications Warehouse

    Allen, James A.

    1990-01-01

    Tree planting practices were investigated on a total of 95 homesteads in two communities in rural Swaziland. Information was also collected on socioeconomic characteristics of the homesteads. In both the study areas, Sigombeni and Bhekinkosi, there was considerable variation amongst individual homesteads in size, relative wealth (as indicated by cattle and motor vehicle ownership), and amount and types of trees planted. Eighty-five percent of all homesteads in Sigombeni and 73% in Bhekinkosi had planted at least one tree. Common forms of planting included small woodlots, fruit trees, and ornamentals. Virtually all the woodlots consisted of two introduced wattle species (Acacia mearnsii and A. decurrens). The most commonly planted fruit trees were avocados, bananas, and peaches. No complex or labor-intensive agroforestry practices (such as maize/leucaena intercropping) were observed. There was some evidence that the poorest and newest homesteads were the least likely to have planted any trees and that the richest homesteads were the most likely to have planted woodlots. The results indicate that forestry research and extension efforts should take into account homestead characteristics, and strive to offer a range of tree planting options that vary in input requirements, labor needs, and complexity.

  19. Plant Community Responses to Simultaneous Changes in Temperature, Nitrogen Availability, and Invasion

    PubMed Central

    Gornish, Elise S.; Miller, Thomas E.

    2015-01-01

    Background Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking. Methods and Results In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community. Conclusions and Significance This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment. PMID:25879440

  20. Phosphate addition and plant species alters microbial community structure in acidic upland grassland soil.

    PubMed

    Rooney, Deirdre C; Clipson, Nicholas J W

    2009-01-01

    Agricultural improvement (addition of fertilizers, liming) of seminatural acidic grasslands across Ireland and the UK has resulted in significant shifts in floristic composition, soil chemistry, and microbial community structure. Although several factors have been proposed as responsible for driving shifts in microbial communities, the exact causes of such changes are not well defined. Phosphate was added to grassland microcosms to investigate the effect on fungal and bacterial communities. Plant species typical of unimproved grasslands (Agrostis capillaris, Festuca ovina) and agriculturally improved grasslands (Lolium perenne) were grown, and phosphate was added 25 days after seed germination, with harvesting after a further 50 days. Phosphate addition significantly increased root biomass (p < 0.001) and shoot biomass (p < 0.05), soil pH (by 0.1 U), and microbial activity (by 5.33 mg triphenylformazan [TPF] g(-1) soil; p < 0.001). A slight decrease (by 0.257 mg biomass-C g(-1) soil; p < 0.05) in microbial biomass after phosphate addition was found. The presence of plant species significantly decreased soil pH (p < 0.05; by up to 0.2 U) and increased microbial activity (by up to 6.02 mg TPF g(-1) soil) but had no significant effect on microbial biomass. Microbial communities were profiled using automated ribosomal intergenic spacer analysis. Multidimensional scaling plots and canonical correspondence analysis revealed that phosphate addition and its interactions with upland grassland plant species resulted in considerable changes in the fungal and bacterial communities of upland soil. The fungal community structure was significantly affected by both phosphate (R = 0.948) and plant species (R = 0.857), and the bacterial community structure was also significantly affected by phosphate (R = 0.758) and plant species (R = 0.753). Differences in microbial community structure following P addition were also revealed by similarity percentage analysis. These data suggest

  1. Complexity of semiarid gypsophilous shrub communities mediates the AMF biodiversity at the plant species level.

    PubMed

    Alguacil, M M; Roldán, A; Torres, M P

    2009-05-01

    The community composition of arbuscular mycorrhizal fungi (AMF) was analyzed in roots of Gypsophila struthium growing in gypsum soils under semiarid conditions. In order to investigate the effect of plant community degradation on the AMF biodiversity at the single species level, on the basis of the plant community complexity level, we selected four areas affected by degradation and shrub species spatial heterogeneity. The AM fungal community colonizing G. struthium was investigated from the morphological and molecular points of view. All plants were well colonized and showed a high level of infective AM propagules. Roots were analyzed by polymerase chain reaction, restriction fragment length polymorphism screening, and sequence analyses of the ribosomal DNA small subunit region. Four AM fungal types were identified and clustered into the AM fungal family: Glomeraceae, Glomus being the only taxon present. One fungal type was present in all the selected areas. Two fungal types are distinct from any previously published sequences and could be specific to gypsum soils. The chemical-physical properties of the soil were not correlated with the AMF diversity in roots. Our data show vegetation cover complexity-dependent differences in the AM fungal community composition.

  2. Cascading effects of fire retardant on plant-microbe interactions, community composition, and invasion.

    PubMed

    Marshall, Abigail; Waller, Lauren; Lekberg, Ylva

    2016-06-01

    Climate change, historical fire suppression, and a rise in human movements in urban-forest boundaries have resulted in an increased use of long-term fire retardant (LTFR). While LTFR is an effective fire-fighting tool, it contains high concentrations of nitrogen and phosphorus, and little is known about how this nutrient pulse affects terrestrial ecosystems. We used field surveys and greenhouse experiments to quantify effects of LTFR on plant productivity, community composition, and plant interactions with the ubiquitous root symbiont arbuscular mycorrhizal fungi (AMF). In the field, LTFR applications were associated with persistent shifts in plant communities toward exotic annuals with little or no dependency of AMF. Plants exposed to LTFR were less colonized by AMF, both in field surveys and in the greenhouse, and this was most likely due to the substantial and persistent increase in soil available phosphorus. All plants grew bigger with LTFR in the greenhouse, but the invasive annual cheatgrass (Bromus tectorum) benefitted most. While LTFR can control fires, it may cause long-term changes in soil nutrient availabilities, disrupt plant interactions with beneficial soil microbes, and exasperate invasion by some exotic plants.

  3. Cascading effects of fire retardant on plant-microbe interactions, community composition, and invasion.

    PubMed

    Marshall, Abigail; Waller, Lauren; Lekberg, Ylva

    2016-06-01

    Climate change, historical fire suppression, and a rise in human movements in urban-forest boundaries have resulted in an increased use of long-term fire retardant (LTFR). While LTFR is an effective fire-fighting tool, it contains high concentrations of nitrogen and phosphorus, and little is known about how this nutrient pulse affects terrestrial ecosystems. We used field surveys and greenhouse experiments to quantify effects of LTFR on plant productivity, community composition, and plant interactions with the ubiquitous root symbiont arbuscular mycorrhizal fungi (AMF). In the field, LTFR applications were associated with persistent shifts in plant communities toward exotic annuals with little or no dependency of AMF. Plants exposed to LTFR were less colonized by AMF, both in field surveys and in the greenhouse, and this was most likely due to the substantial and persistent increase in soil available phosphorus. All plants grew bigger with LTFR in the greenhouse, but the invasive annual cheatgrass (Bromus tectorum) benefitted most. While LTFR can control fires, it may cause long-term changes in soil nutrient availabilities, disrupt plant interactions with beneficial soil microbes, and exasperate invasion by some exotic plants. PMID:27509743

  4. Characterizing photosynthesis and transpiration of plant communities in controlled environments.

    PubMed

    Monje, O; Bugbee, B

    1996-12-01

    CO2 and water vapor fluxes of hydroponically grown wheat and soybean canopies were measured continuously in several environments with an open gas exchange system. Canopy CO2 fluxes reflect the photosynthetic efficiency of a plant community, and provide a record of plant growth and health. There were significant diurnal fluctuations in root and shoot CO2 fluxes, and in shoot water vapor fluxes. Canopy stomatal conductance (Gc) to water vapor was calculated from simultaneous measurements of canopy temperature (Tcan) and transpiration rates (Tr). Tr in the dark was substantial, and there were large diurnal fluctuations in both Gc and Tr. Canopy net Photosynthesis (Pnet), Tr, and Gc increased with increasing net radiation. Gc increased with Tr, suggesting that the stomata of plants in controlled environments (CEs) behave differently from field-grown plants. A transpiration model based on measurements of Gc was developed for CEs. The model accurately predicted Tr from a soybean canopy.

  5. Characterizing photosynthesis and transpiration of plant communities in controlled environments

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1996-01-01

    CO2 and water vapor fluxes of hydroponically grown wheat and soybean canopies were measured continuously in several environments with an open gas exchange system. Canopy CO2 fluxes reflect the photosynthetic efficiency of a plant community, and provide a record of plant growth and health. There were significant diurnal fluctuations in root and shoot CO2 fluxes, and in shoot water vapor fluxes. Canopy stomatal conductance (Gc) to water vapor was calculated from simultaneous measurements of canopy temperature (Tcan) and transpiration rates (Tr). Tr in the dark was substantial, and there were large diurnal fluctuations in both Gc and Tr. Canopy net Photosynthesis (Pnet), Tr, and Gc increased with increasing net radiation. Gc increased with Tr, suggesting that the stomata of plants in controlled environments (CEs) behave differently from field-grown plants. A transpiration model based on measurements of Gc was developed for CEs. The model accurately predicted Tr from a soybean canopy.

  6. The Plant Communities and Environmental Gradients of Pitcairn Island: The Significance of Invasive Species and the Need for Conservation Management

    PubMed Central

    KINGSTON, N.; WALDREN, S.

    2003-01-01

    Quantitative surveys of the vegetation of south‐east Polynesian Islands are rarely undertaken owing to time and logistical restrictions; however they are fundamental in determining the conservation status of fragile island ecosystems. The aim of the research was to document quantitatively the vegetation of Pitcairn Island by investigating whether clearly definable plant communities existed on the island, and the underlying environmental gradients influencing these communities. Initially, 10 × 10 m quadrats were taken from all areas of the island, with environmental parameters recorded for each quadrat. The vegetation was then mapped from high altitude vantage points. Two‐way indicator species analysis was used to identify distinct plant communities, and canonical correspondence analysis was used to determine the underlying environmental gradients. The vegetation consists of 14 plant communities: four coastal, six forest, two fernland and two scrub communities. Large areas are covered by non‐native scrub vegetation, and by monospecific Syzygium jambos (rose‐apple) plantations. Less than 30 % of the island is covered by native forest, and these areas are limited to remote valleys. Fernlands also cover large areas, including both eroding areas and ridge tops. Coastal vegetation comprises rock and cliff communities with limited strand vegetation. The major environmental gradient affecting the composition of the plant communities is altitude, but anthropogenic influences also have a large effect, owing to forest clearance and introduced species. The light environment is affected by the canopy species, and determines what ground flora can develop. Identification of distinct plant communities has allowed for a system of nature reserves to be suggested, which conserve all of these plant communities and a significant proportion of the threatened plant species. PMID:12824069

  7. Use and management of traditional medicinal plants by Maale and Ari ethnic communities in southern Ethiopia

    PubMed Central

    2014-01-01

    Background Around 80% of the people of Ethiopia are estimated to be relying on medicinal plants for the treatment of different types of human health problems. The purpose of this study was to describe and analyse the use and management of medicinal plants used for the treatment of human health problems by the Maale and Ari communities in southern Ethiopia. Methods Quantitative and qualitative ethnobotanical field inquiries and analytical methods including individual and focus group discussions (18), observations, individual interviews (n = 74), preference ranking and paired comparison were used. Data were collected in three study sites and from two markets; the latter surveyed every 15 days from February 2011 to February 2012. Results A total of 128 medicinal plant species, belonging to 111 genera and 49 families, used as herbal medicine by Maale and Ari communities were documented. Predominantly harvested plant parts were leaves, which are known to have relatively low impact on medicinal plant resources. Species with high familiarity indices included Solanum dasyphyllum, Indigofera spicata, Ruta chalepensis, Plumbago zeylanica and Meyna tetraphylla. Low Jaccards similarity indices (≤ 0.33) indicated little correspondence in medicinal plant use among sites and between ethnic communities. The dominant ways of medicinal plant knowledge acquisition and transfer is vertical: from parents to children through oral means. Gender and site significantly influenced the number of human medicinal plants known currently in the study sites. Age was only a factor of significance in Maale. Marketing of medicinal plants harvested from wild and semi-wild stands is not common. Expansion of agricultural land and lack of cultivation efforts by local communities are mentioned by locals to affect the availability of medicinal plant resources. Conclusion S. dasyphyllum, I. spicata, P. zeylanica, M. tetraphylla, and Oxalis radicosa need to be considered for phytochemical and

  8. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    DOE Data Explorer

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    2014-04-25

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  9. Ethical Issues Affecting Human Participants in Community College Research

    ERIC Educational Resources Information Center

    Wurtz, Keith

    2011-01-01

    The increasing demand of constituents to conduct analyses in order to help inform the decision-making process has led to the need for Institutional Research (IR) guidelines for community college educators. One method of maintaining the quality of research conducted by IR staff is to include professional development about ethics. This article…

  10. How Military Service Affects Student Veteran Success at Community Colleges

    ERIC Educational Resources Information Center

    O'Rourke, Patrick C., Jr.

    2013-01-01

    Increasingly more service members are separating from the military as the United States draws down the force and moves towards a post-war era. Tens of thousands of these veterans will leverage their GI Bill tuition and housing benefits in an attempt to access Southern California community colleges and bolster their transition into mainstream…

  11. Predation and landscape characteristics independently affect reef fish community organization.

    PubMed

    Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J

    2014-05-01

    Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly. PMID:25000761

  12. SAMPLING EFFORT AFFECTS MULTIVARIATE COMPARISONS OF STREAM COMMUNITIES

    EPA Science Inventory

    The estimation of ecological trends and patterns is often dependent on the size of individual samples from each site (sample size) or spatial scale in general. Multivariate analysis is widely used for determining patterns of community structure, inferring species-environment rela...

  13. Deodorants and antiperspirants affect the axillary bacterial community.

    PubMed

    Callewaert, Chris; Hutapea, Prawira; Van de Wiele, Tom; Boon, Nico

    2014-10-01

    The use of underarm cosmetics is common practice in the Western society to obtain better body odor and/or to prevent excessive sweating. A survey indicated that 95 % of the young adult Belgians generally use an underarm deodorant or antiperspirant. The effect of deodorants and antiperspirants on the axillary bacterial community was examined on nine healthy subjects, who were restrained from using deodorant/antiperspirant for 1 month. Denaturing gradient gel electrophoresis was used to investigate the individual microbial dynamics. The microbial profiles were unique for every person. A stable bacterial community was seen when underarm cosmetics were applied on a daily basis and when no underarm cosmetics were applied. A distinct community difference was seen when the habits were changed from daily use to no use of deodorant/antiperspirant and vice versa. The richness was higher when deodorants and antiperspirants were applied. Especially when antiperspirants were applied, the microbiome showed an increase in diversity. Antiperspirant usage led toward an increase of Actinobacteria, which is an unfavorable situation with respect to body odor development. These initial results show that axillary cosmetics modify the microbial community and can stimulate odor-producing bacteria. PMID:25077920

  14. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    PubMed

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities.

  15. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    PubMed

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities. PMID:26481794

  16. The factors controlling species density in herbaceous plant communities: An assessment

    USGS Publications Warehouse

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  17. Extrafloral nectaries alter arthropod community structure and mediate peach (Prunus persica) plant defense.

    PubMed

    Mathews, Clarissa R; Bottrell, Dale G; Brown, Mark W

    2009-04-01

    We investigated the role of extrafloral nectaries (EFNs) in mediating plant defense for newly established peach (Prunus persica) trees. We used peaches of a single cultivar ("Lovell") that varied with respect to EFN leaf phenotype (with or without EFNs) to determine if the EFNs affected the structure of the arthropod community colonizing newly planted seedlings. We also tested if the plants producing EFNs benefited from reduced herbivory or enhanced productivity. In the first year following planting, the young peach trees with EFNs were dominated by ants, and arthropod community diversity was lower than for trees without EFNs. The young trees with EFNs harbored fewer herbivores and experienced a twofold reduction in folivory compared to trees without EFNs. Productivity was also enhanced for the trees with EFNs, which attained significantly higher rates of trunk growth, greater terminal carbon composition, and a threefold increase in buds produced in subsequent years. In the second year of the field study, ants remained numerically dominant on trees with EFNs, but arthropod community diversity was higher than for trees without EFNs. An additional study revealed that folivory rates in May increased dramatically for trees with EFNs if ants were excluded from their canopies, indicating that ants have a protective function when the perennial trees produce new leaves. However, in later months, regardless of ants' presence, the trees with EFNs suffered less folivory than trees lacking EFNs. The diversity and richness of the predator trophic group increased when ants were excluded from trees with EFNs, but overall community diversity (i.e., herbivores and predators combined) was not affected by the ants' presence. Our research indicates that the EFNs play an important role in attracting predators that protect the trees from herbivores, and the EFN host-plant characteristic should be retained in future peach cultivar selections. Furthermore, peach production programs aimed

  18. Plant community and white-tailed deer nutritional carrying capacity response to intercropping switchgrass in loblolly pine plantations

    NASA Astrophysics Data System (ADS)

    Greene, Ethan Jacob

    Switchgrass (Panicum virgatum L.) is a cellulosic feedstock for alternative energy production that could grow well between planted pines (Pinus spp.). Southeastern planted pine occupies 15.8 million hectares and thus, switchgrass intercropping could affect biodiversity if broadly implemented. Therefore, I evaluated effects of intercropping switchgrass in loblolly pine (P. taeda L.) plantations on plant community diversity, plant biomass production, and white-tailed deer (Odocoileus virginianus Zimmerman) nutritional carrying capacity. In a randomized complete block design, I assigned three treatments (switchgrass intercropped, switchgrass monoculture, and a "control" of traditional pine management) to 4 replicates of 10-ha experimental units in Kemper County, Mississippi during 2014-2015. I detected 246 different plant species. Switchgrass intercropping reduced plant species richness and diversity but maintained evenness. I observed reduced forb and high-use deer forage biomass but only in intercropped alleys (interbeds). Soil micronutrient interactions affected forage protein of deer plants. White-tailed deer nutritional carrying capacity remained unaffected.

  19. Wetland plant communities, Galveston Bay system. Final report

    SciTech Connect

    White, W.A.; Paine, J.G.

    1992-03-01

    The report is the culmination of a field investigation of wetland plant communities, and is one phase of the project, Trends and Status of Wetland and Aquatic Habitats of the Galveston Bay System, Texas, sponsored by the Galveston Bay National Estuary Program. For purpose of the topical report, wetlands are defined and classified in terms of more classical definitions, for example, salt, brackish, and fresh marshes, in accordance with project requirements. More than 150 sites were examined in the Galveston Bay system.

  20. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    NASA Astrophysics Data System (ADS)

    Metcalfe, D. B.; Fisher, R. A.; Wardle, D. A.

    2011-03-01

    Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R) is a key prerequisite for accurate prediction of the future carbon balance of terrestrial ecosystems under climate change. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Plant species consistently exhibit cohesive suites of traits, linked to contrasting life history strategies, which exert a variety of impacts on R. As such, we propose that plant community shifts towards dominance by fast growing plants with nutrient rich litter could provide a major, though often neglected, positive feedback to climate change. Within vegetation types, belowground carbon flux will mainly be controlled by photosynthesis, while amongst vegetation types this flux will be more dependent upon the specific characteristics of the plant life form. We also make the case that community composition, rather than diversity, is usually the dominant control on ecosystem processes in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community, or modulates the occurrence of major natural disturbances. We show that climate-vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. This situation could, however, be relatively easily improved with targeted experimental and field studies. Finally, we identify key gaps in knowledge and recommend them as priorities for future work. These include the patterns of photosynthate partitioning amongst belowground components, ecosystem level effects of individual plant traits

  1. Resource colimitation governs plant community responses to altered precipitation.

    PubMed

    Eskelinen, Anu; Harrison, Susan P

    2015-10-20

    Ecological theory and evidence suggest that plant community biomass and composition may often be jointly controlled by climatic water availability and soil nutrient supply. To the extent that such colimitation operates, alterations in water availability caused by climatic change may have relatively little effect on plant communities on nutrient-poor soils. We tested this prediction with a 5-y rainfall and nutrient manipulation in a semiarid annual grassland system with highly heterogeneous soil nutrient supplies. On nutrient-poor soils, rainfall addition alone had little impact, but rainfall and nutrient addition synergized to cause large increases in biomass, declines in diversity, and near-complete species turnover. Plant species with resource-conservative functional traits (low specific leaf area, short stature) were replaced by species with resource-acquisitive functional traits (high specific leaf area, tall stature). On nutrient-rich soils, in contrast, rainfall addition alone caused substantial increases in biomass, whereas fertilization had little effect. Our results highlight that multiple resource limitation is a critical aspect when predicting the relative vulnerability of natural communities to climatically induced compositional change and diversity loss. PMID:26438856

  2. Resource colimitation governs plant community responses to altered precipitation

    PubMed Central

    Eskelinen, Anu; Harrison, Susan P.

    2015-01-01

    Ecological theory and evidence suggest that plant community biomass and composition may often be jointly controlled by climatic water availability and soil nutrient supply. To the extent that such colimitation operates, alterations in water availability caused by climatic change may have relatively little effect on plant communities on nutrient-poor soils. We tested this prediction with a 5-y rainfall and nutrient manipulation in a semiarid annual grassland system with highly heterogeneous soil nutrient supplies. On nutrient-poor soils, rainfall addition alone had little impact, but rainfall and nutrient addition synergized to cause large increases in biomass, declines in diversity, and near-complete species turnover. Plant species with resource-conservative functional traits (low specific leaf area, short stature) were replaced by species with resource-acquisitive functional traits (high specific leaf area, tall stature). On nutrient-rich soils, in contrast, rainfall addition alone caused substantial increases in biomass, whereas fertilization had little effect. Our results highlight that multiple resource limitation is a critical aspect when predicting the relative vulnerability of natural communities to climatically induced compositional change and diversity loss. PMID:26438856

  3. How Identification Processes and Inter-Community Relationships Affect Sense of Community

    ERIC Educational Resources Information Center

    Mannarini, Terri; Rochira, Alessia; Talo, Cosimo

    2012-01-01

    Based on the Social Identity and Social Categorization Theory framework, this study investigated how identification with the physical component of a community (i.e., the place identity), the perception of a community (i.e., the ingroup) in terms of cohesion and entitativity, and the perception of one or more territorial communities as laying…

  4. Effects of Alliaria petiolata (garlic mustard; Brassicaceae) on mycorrhizal colonization and community structure in three herbaceous plants in a mixed deciduous forest.

    PubMed

    Burke, David J

    2008-11-01

    Herbaceous plant species are important components of forest ecosystems, and their persistence in forests may be affected by invasive plant species that reduce mycorrhizal colonization of plant roots. I examined the effect of the invasive plant Alliaria petiolata on arbuscular mycorrhizal fungi (AMF) colonizing the roots of three forest plant species. AMF root colonization and community structure was examined from plants that were growing either in the absence or presence of Alliaria under natural forest conditions. AMF root colonization varied among the plant species but was not significantly affected by Alliaria. With molecular methods, ∼12 different taxa of AMF could be distinguished among the root samples, and these taxa belonged to the genera Acaulospora and Glomus, with Glomus dominating AMF communities. There were significant differences between the community of AMF colonizing roots of Maianthemum racemosum and Trillium grandiflorum, but only AMF communities of Maianthemum roots were significantly affected by Alliaria. Indicator species analysis found that an Acaulospora species type was a significant indicator of Maianthemum plants grown in the absence of Alliaria. These results suggest invasive plants like Alliaria may selectively suppress AMF fungi, and this suppression can affect AMF communities colonizing the roots of some native plant species.

  5. Incorporating the soil environment and microbial community into plant competition theory

    PubMed Central

    Ke, Po-Ju; Miki, Takeshi

    2015-01-01

    Plants affect microbial communities and abiotic properties of nearby soils, which in turn influence plant growth and interspecific interaction, forming a plant-soil feedback (PSF). PSF is a key determinant influencing plant population dynamics, community structure, and ecosystem functions. Despite accumulating evidence for the importance of PSF and development of specific PSF models, different models are not yet fully integrated. Here, we review the theoretical progress in understanding PSF. When first proposed, PSF was integrated with various mathematical frameworks to discuss its influence on plant competition. Recent theoretical models have advanced PSF research at different levels of ecological organizations by considering multiple species, applying spatially explicit simulations to examine how local-scale predictions apply to larger scales, and assessing the effect of PSF on plant temporal dynamics over the course of succession. We then review two foundational models for microbial- and litter-mediated PSF. We present a theoretical framework to illustrate that although the two models are typically presented separately, their behavior can be understood together by invasibility analysis. We conclude with suggestions for future directions in PSF theoretical studies, which include specifically addressing microbial diversity to integrate litter- and microbial-mediated PSF, and apply PSF to general coexistence theory through a trait-based approach. PMID:26500621

  6. Incorporating the soil environment and microbial community into plant competition theory.

    PubMed

    Ke, Po-Ju; Miki, Takeshi

    2015-01-01

    Plants affect microbial communities and abiotic properties of nearby soils, which in turn influence plant growth and interspecific interaction, forming a plant-soil feedback (PSF). PSF is a key determinant influencing plant population dynamics, community structure, and ecosystem functions. Despite accumulating evidence for the importance of PSF and development of specific PSF models, different models are not yet fully integrated. Here, we review the theoretical progress in understanding PSF. When first proposed, PSF was integrated with various mathematical frameworks to discuss its influence on plant competition. Recent theoretical models have advanced PSF research at different levels of ecological organizations by considering multiple species, applying spatially explicit simulations to examine how local-scale predictions apply to larger scales, and assessing the effect of PSF on plant temporal dynamics over the course of succession. We then review two foundational models for microbial- and litter-mediated PSF. We present a theoretical framework to illustrate that although the two models are typically presented separately, their behavior can be understood together by invasibility analysis. We conclude with suggestions for future directions in PSF theoretical studies, which include specifically addressing microbial diversity to integrate litter- and microbial-mediated PSF, and apply PSF to general coexistence theory through a trait-based approach. PMID:26500621

  7. Selection for niche differentiation in plant communities increases biodiversity effects.

    PubMed

    Zuppinger-Dingley, Debra; Schmid, Bernhard; Petermann, Jana S; Yadav, Varuna; De Deyn, Gerlinde B; Flynn, Dan F B

    2014-11-01

    In experimental plant communities, relationships between biodiversity and ecosystem functioning have been found to strengthen over time, a fact often attributed to increased resource complementarity between species in mixtures and negative plant-soil feedbacks in monocultures. Here we show that selection for niche differentiation between species can drive this increasing biodiversity effect. Growing 12 grassland species in test monocultures and mixtures, we found character displacement between species and increased biodiversity effects when plants had been selected over 8 years in species mixtures rather than in monocultures. When grown in mixtures, relative differences in height and specific leaf area between plant species selected in mixtures (mixture types) were greater than between species selected in monocultures (monoculture types). Furthermore, net biodiversity and complementarity effects were greater in mixtures of mixture types than in mixtures of monoculture types. Our study demonstrates a novel mechanism for the increase in biodiversity effects: selection for increased niche differentiation through character displacement. Selection in diverse mixtures may therefore increase species coexistence and ecosystem functioning in natural communities and may also allow increased mixture yields in agriculture or forestry. However, loss of biodiversity and prolonged selection of crops in monoculture may compromise this potential for selection in the longer term.

  8. Plant community responses to experimental warming across the tundra biome.

    PubMed

    Walker, Marilyn D; Wahren, C Henrik; Hollister, Robert D; Henry, Greg H R; Ahlquist, Lorraine E; Alatalo, Juha M; Bret-Harte, M Syndonia; Calef, Monika P; Callaghan, Terry V; Carroll, Amy B; Epstein, Howard E; Jónsdóttir, Ingibjörg S; Klein, Julia A; Magnússon, Borgthór; Molau, Ulf; Oberbauer, Steven F; Rewa, Steven P; Robinson, Clare H; Shaver, Gaius R; Suding, Katharine N; Thompson, Catharine C; Tolvanen, Anne; Totland, Ørjan; Turner, P Lee; Tweedie, Craig E; Webber, Patrick J; Wookey, Philip A

    2006-01-31

    Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3 degrees C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere.

  9. Community violence as it affects child development: issues of definition.

    PubMed

    Trickett, Penelope K; Durán, Lorena; Horn, John L

    2003-12-01

    The state of the art of definition of community violence as it relates to child development was examined in terms of the definitions used in 23 empirical studies. In all cases community violence was defined in terms of what were assumed to be measurements obtained as linear combinations of a priori numerical weighting of responses to questions--asked either of a child or of the parent of a child--about experiencing and/or witnessing and/or hearing about instances of violence. Thus, the definitions can be seen to represent the perspectives of 2 kinds of observers--the child or the child's parent--and 3 levels of closeness to violence--experiencing, witnessing, or hearing about violence. Combining these perspectives and levels, the following 8 different definitions could be seen to be used in the practice of 1 or more of the 23 empirical studies: Child Self-Report (perception) of either (1) experiencing, or (2) witnessing, or (3) experiencing and witnessing, and hearing about violence; or Parent Report (perception) of the Child (4) experiencing, or (5) witnessing, or (6) experiencing and witnessing and hearing about violence, or (7) = (1) + (4), or (8) = (3) + (6). In almost all the examples of research definitions it was assumed implicitly and without test of the assumption that different violent events were interchangeable, and usually it was assumed (again without test) that the magnitudes of different violence events were equal. Usually, an unstated theory of stress appeared to guide the measurement definition, but in one study definitions were developed and tested in terms of a clearly-stated theory of learning. It was concluded that definition of community violence is a measurement problem; that very likely it is multidimensional; that it could be more nearly solved if better attention were given to specifying it in terms of theory that can be put to test and by attending to basic assumptions and principles of measurement.

  10. Arctic Late Cretaceous and Paleocene Plant Community Succession

    NASA Astrophysics Data System (ADS)

    Herman, Alexei; Spicer, Robert; Daly, Robert; Jolley, David; Ahlberg, Anders; Moiseeva, Maria

    2010-05-01

    The Arctic abounds with Late Cretaceous and Paleocene plant fossils attesting to a thriving, diverse, but now extinct polar ecosystem that sequestered vast amounts of carbon. Through detailed examination of plant remains and their distributions in time and space with respect to their entombing sedimentary facies, it has been possible to reconstruct changes in Arctic vegetation composition and dynamics through the Late Cretaceous and into the Paleocene. Based on over 10,000 leaf remains, fossil wood and palynomorph assemblages from northeastern Russia and northern Alaska and palynological data from elsewhere in the Arctic we identify a number of successional plant communities (SPCs) representing seral development from early (pioneer), through middle to late SPCs and climax vegetation. We recognise that (1) Equisetites and some ferns (typically Birisia, but after the beginning of the Maastrichtian, Onoclea) were obligatory components of the early SPCs; (2) first rare angiosperms (e.g. the dicot Vitiphyllum multifidum) appeared in the middle SPCs of the Arctic in the Early - Middle Albian; (3) from late Albian times onwards angiosperms became abundant in the middle SPCs of the Arctic, but were still rare in the earlier and later SPCs; (4) monocots appeared in the Maastrichtian early SPCs; (5) all Arctic Cretaceous late SPCs (and climax vegetation) were dominated by conifers; (6) Arctic SPCs were more numerous and diverse under warm climates than cold; (7) during the Albian and late Cretaceous, advanced (Cenophytic, angiosperm-dominated) plant communities coexisted with those of a more relictual (Mesophytic, dominated by ferns and gymnosperms) aspect, and plants composing these communities did not mix; (8) coal-forming environments (mires) remained conifer, fern and bryophyte dominated throughout the late Cretaceous and Paleocene with little penetration of woody angiosperm components and thus are conservative and predominantly Mesophytic in character; (9) bryophytes

  11. Comparing arbuscular mycorrhizal communities of individual plants in a grassland biodiversity experiment.

    PubMed

    van de Voorde, Tess F J; van der Putten, Wim H; Gamper, Hannes A; Hol, W H Gera; Bezemer, T Martijn

    2010-05-01

    Plants differ greatly in the soil organisms colonizing their roots. However, how soil organism assemblages of individual plant roots can be influenced by plant community properties remains poorly understood. We determined the composition of arbuscular mycorrhizal fungi (AMF) in Jacobaea vulgaris plants, using terminal restriction fragment length polymorphism (T-RFLP). The plants were collected from an experimental field site with sown and unsown plant communities. Natural colonization was allowed for 10 yr in sown and unsown plots. Unsown plant communities were more diverse and spatially heterogeneous than sown ones. Arbuscular mycorrhizal fungi diversity did not differ between sown and unsown plant communities, but there was higher AMF assemblage dissimilarity between individual plants in the unsown plant communities. When we grew J. vulgaris in field soil that was homogenized after collection in order to rule out spatial variation, no differences in AMF dissimilarity between sown and unsown plots were found. Our study shows that experimental manipulation of plant communities in the field, and hence plant community assembly history, can influence the AMF communities of individual plants growing in those plant communities. This awareness is important when interpreting results from field surveys and experimental ecological studies in relation to plant-symbiont interactions.

  12. Changes in backwater plant communities from 1975 to 1995 in navigation pool 8, upper Mississippi River

    USGS Publications Warehouse

    Tyser, R.W.; Rogers, S.J.; Owens, T.W.; Robinson, L.R.

    2001-01-01

    Water elevation in the Upper Mississippi River (UMR) is highly regulated by an extensive system of locks and dams. Completion of this system in the 1930s created productive, biologically diverse backwater habitats. The status of plant communities in these backwater areas may now be threatened by several factors, including sediment accumulation, recreational use, and navigation traffic. Aerial photography, taken in 1975 and from 1991 to 1995, was used to describe vegetation changes occurring in four UMR backwater areas of Navigation Pool 8. The objectives were to determine (1) if changes occurring in these areas are consistent with hydrarch succession, (2) if the diversity of their plant communities has declined since 1975, and (3) how a large flood event that occurred in 1993 affected the composition and diversity of plant communities in these areas. Three general cover classes were recognized, representing an aquatic to terrestrial gradient. Coverages of specific vegetation types were estimated and evaluated using two indices of community diversity (vegetation richness and the Shannon diversity index). Though some vegetation changes were consistent with expected successional patterns (e.g. increased terrestrialization), other changes were not (e.g. loss of marsh vegetation). Diversity indices and coverages of most aquatic macrophytes declined from 1975 to 1991/1992 but then increased following the 1993 flood. The results suggest that disturbance-diversity concepts, including the flood pulse model, are applicable to the vegetation dynamics of these systems. Published in 2001 by John Wiley & Sons, Ltd.

  13. Affective imagery and acceptance of replacing nuclear power plants.

    PubMed

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed.

  14. Water Source Utilization of Hammock and Pine Rockland Plant Communities in the Everglades, USA.

    NASA Astrophysics Data System (ADS)

    Saha, A. K.; Sternberg, L.; Miralles-Wilhelm, F.

    2007-12-01

    South Florida has a mosaic of plant communities resulting from topographical differences, spatially varying hydroperiods and fire. The only plant communities not flooded in the wet season are hardwood hammocks and often pine rocklands. Natural fires burn off litter accumulated in pine rocklands, with the exception of organic matter in sinkholes in the limestone bedrock. This relative lack of soil is thought to constrain pineland plants in the Everglades to depend upon groundwater that is typically low in nutrients. In contrast, adjoining hardwood hammocks have accumulated an organic soil layer that traps rainwater and nutrients. Plants in hammocks may be able to utilize this water and thereby access nutrients present in the litter. Hammocks are thus viewed as localized areas of high nutrients and instances of vegetation feedback upon the oligotrophic everglades landscape enabling establishment and survival of flood-intolerant tropical hardwood species. This study examines water source use and couples it to foliar nutrient concentrations of plants found in hammocks and pinelands. We examined the δ2H and δ18O of stem waters in plants in Everglades National Park and compared those with the δ2H and δ18O of potential water sources. In the wet season hammock plants accessed both groundwater and water in the surface organic soil layer while in the dry season they relied more on groundwater. A similar seasonal shift was observed in pineland plants; however groundwater constituted a much higher proportion of total water uptake throughout the year under observation. Concomitant with differential water utilization by hammock and pineland plant communities, we observed hammock plants having a significantly higher annual mean foliar N and P concentration than pineland plants. Most hammock species are intolerant of flooded soils and are thus constrained by the high water table in the wet season, yet access the lowered groundwater table in the dry season due to drying up of

  15. Hemiparasitic plant impacts animal and plant communities across four trophic levels.

    PubMed

    Hartley, S E; Green, P; Massey, F P; Press, M C P; Stewart, J A; John, E A

    2015-09-01

    Understanding the impact of species on community structure is a fundamental question in ecology. There is a growing body of evidence that suggests that both subdominant species and parasites can have disproportionately large effects on other organisms. Here we report those impacts for a species that is both subdominant and parasitic, the hemiparasite Rhinanthus minor. While the impact of parasitic angiosperms on their hosts and, to a lesser degree, coexisting plant species, has been well characterized, much less is known about their effects on higher trophic levels: We experimentally manipulated field densities of the hemiparasite Rhinanthus minor in a species-rich grassland, comparing the plant and invertebrate communities in plots where it was removed, present at natural densities, or present at enhanced densities. Plots with natural and enhanced densities of R. minor had lower plant biomass than plots without the hemiparasite, but enhanced densities almost doubled the abundance of invertebrates within the plots across all trophic levels, with effects evident in herbivores, predators, and detritivores. The hemiparasite R. minor, despite being a subdominant and transient component within plant communities that it inhabits, has profound effects on four different trophic levels. These effects persist beyond the life of the hemiparasite, emphasizing its role as a keystone species in grassland communities.

  16. Characterizing the Seasonal Dynamics of Plant Community Photosynthesis Across a Range of Vegetation Types

    SciTech Connect

    Gu, Lianhong; Post, Wilfred M; Baldocchi, Dennis; Black, Andy; Suyker, A.E.,; Verma, Shashi; Vesala, Timo; Wofsy, Steve

    2009-01-01

    found that while the growing season length affected how much carbon dioxide could be potentially assimilated by a plant community over the course of a growing season, other factors that affect canopy photosynthetic capacity (e.g. nutrients, water) could be more important at this time scale. These results and insights demonstrate that the proposed method of analysis and system of terminology can serve as a foundation for studying the dynamics of plant community photosynthesis and such studies can be fruitful.

  17. Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus

    PubMed Central

    Burns, Jean H.; Anacker, Brian L.; Strauss, Sharon Y.; Burke, David J.

    2015-01-01

    Soil ecologists have debated the relative importance of dispersal limitation and ecological factors in determining the structure of soil microbial communities. Recent evidence suggests that ‘everything is not everywhere’, and that microbial communities are influenced by both dispersal limitation and ecological factors. However, we still do not understand the relative explanatory power of spatial and ecological factors, including plant species identity and even plant relatedness, for different fractions of the soil microbial community (i.e. bacterial and fungal communities). To ask whether factors such as plant species, soil chemistry, spatial location and plant relatedness influence rhizosphere community composition, we examined field-collected rhizosphere soil of seven congener pairs that occur at Bodega Bay Marine Reserve, CA, USA. We characterized differences in bacterial and fungal communities using terminal-restriction fragment length polymorphism. Plant species identity was the single best statistical predictor of both bacterial and fungal community composition in the root zone. Soil microbial community structure was also correlated with soil chemistry. The third best predictor of bacterial and fungal communities was spatial location, confirming that everything is not everywhere. Variation in microbial community composition was also related to combinations of spatial location, soil chemistry and plant relatedness, suggesting that these factors do not act independently. Plant relatedness explained less of the variation than plant species, soil chemistry, or spatial location. Despite some congeners occupying different habitats and being spatially distant, rhizosphere fungal communities of plant congeners were more similar than expected by chance. Bacterial communities from the same samples were only weakly similar between plant congeners. Thus, plant relatedness might influence soil fungal, more than soil bacterial, community composition. PMID:25818073

  18. [Edge effect of the plant community structure on land-bridge islands in the Thousand Island Lake].

    PubMed

    Su, Xiao-Fei; Yuan, Jin-Feng; Hu, Guang; Xu, Gao-Fu; Yu, Ming-Jian

    2014-01-01

    The research was conducted on 29 land-bridge islands in the Thousand Island Lake (TIL), where long-term monitoring plots were set up during 2009-2010. The community attributes including species richness, Shannon index, plant mean height, plant mean diameter at breast height (DBH) and plant density along the edge-interior gradient from edge to interior forest were calculated to investigate the edge effect. The results showed that the species richness and Shannon index were affected through the whole gradient (larger than 50 m), while the range of edge effect was 20-30 m on mean plant height, and 10 m on plant density and mean DBH. Community attributes differed significantly among the edge gradients. The species richness and Shannon index peaked at the intermediate edge gradient. Plant density decreased and plant mean height increased along the edge to interior gradient. All five community attributes were significantly associated with the edge gradient, also different functional groups, evergreen or deciduous species, trees or shrubs, shade tolerant or shade intolerant species, were differentially influenced by the edge effect. It was demonstrated the influence of edge effect on the fragmented forest community varied with community attributes and functional groups.

  19. [Edge effect of the plant community structure on land-bridge islands in the Thousand Island Lake].

    PubMed

    Su, Xiao-Fei; Yuan, Jin-Feng; Hu, Guang; Xu, Gao-Fu; Yu, Ming-Jian

    2014-01-01

    The research was conducted on 29 land-bridge islands in the Thousand Island Lake (TIL), where long-term monitoring plots were set up during 2009-2010. The community attributes including species richness, Shannon index, plant mean height, plant mean diameter at breast height (DBH) and plant density along the edge-interior gradient from edge to interior forest were calculated to investigate the edge effect. The results showed that the species richness and Shannon index were affected through the whole gradient (larger than 50 m), while the range of edge effect was 20-30 m on mean plant height, and 10 m on plant density and mean DBH. Community attributes differed significantly among the edge gradients. The species richness and Shannon index peaked at the intermediate edge gradient. Plant density decreased and plant mean height increased along the edge to interior gradient. All five community attributes were significantly associated with the edge gradient, also different functional groups, evergreen or deciduous species, trees or shrubs, shade tolerant or shade intolerant species, were differentially influenced by the edge effect. It was demonstrated the influence of edge effect on the fragmented forest community varied with community attributes and functional groups. PMID:24765845

  20. Moderation is best: effects of grazing intensity on plant--flower visitor networks in Mediterranean communities.

    PubMed

    Lazaro, Amparo; Tscheulin, Thomas; Devalez, Jelle; Nakas, Georgios; Stefanaki, Anastasia; Hanlidou, Effie; Petanidou, Theodora

    2016-04-01

    The structure of pollination networks is an important indicator of ecosystem stability and functioning. Livestock grazing is a frequent land use practice that directly affects the abundance and diversity of flowers and pollinators and, therefore, may indirectly affect the structure of pollination networks. We studied how grazing intensity affected the structure of plant-flower visitor networks along a wide range of grazing intensities by sheep and goats, using data from 11 Mediterranean plant-flower visitor communities from Lesvos Island, Greece. We hypothesized that intermediate grazing might result in higher diversity as predicted by the Intermediate Disturbance Hypothesis, which could in turn confer more stability to the networks. Indeed, we found that networks at intermediate grazing intensities were larger, more generalized, more modular, and contained more diverse and even interactions. Despite general responses at the network level, the number of interactions and selectiveness of particular flower visitor and plant taxa in the networks responded differently to grazing intensity, presumably as a consequence of variation in the abundance of different taxa with grazing. Our results highlight the benefit of maintaining moderate levels of livestock grazing by sheep and goats to preserve the complexity and biodiversity of the rich Mediterranean communities, which have a long history of grazing by these domestic animals.

  1. Moderation is best: effects of grazing intensity on plant--flower visitor networks in Mediterranean communities.

    PubMed

    Lazaro, Amparo; Tscheulin, Thomas; Devalez, Jelle; Nakas, Georgios; Stefanaki, Anastasia; Hanlidou, Effie; Petanidou, Theodora

    2016-04-01

    The structure of pollination networks is an important indicator of ecosystem stability and functioning. Livestock grazing is a frequent land use practice that directly affects the abundance and diversity of flowers and pollinators and, therefore, may indirectly affect the structure of pollination networks. We studied how grazing intensity affected the structure of plant-flower visitor networks along a wide range of grazing intensities by sheep and goats, using data from 11 Mediterranean plant-flower visitor communities from Lesvos Island, Greece. We hypothesized that intermediate grazing might result in higher diversity as predicted by the Intermediate Disturbance Hypothesis, which could in turn confer more stability to the networks. Indeed, we found that networks at intermediate grazing intensities were larger, more generalized, more modular, and contained more diverse and even interactions. Despite general responses at the network level, the number of interactions and selectiveness of particular flower visitor and plant taxa in the networks responded differently to grazing intensity, presumably as a consequence of variation in the abundance of different taxa with grazing. Our results highlight the benefit of maintaining moderate levels of livestock grazing by sheep and goats to preserve the complexity and biodiversity of the rich Mediterranean communities, which have a long history of grazing by these domestic animals. PMID:27411251

  2. Effects of contaminated dredge spoils on wetland plant communities: A literature review

    USGS Publications Warehouse

    Stewart, Paul M.; Garza, Eric L.; Butcher, Jason T.; Simon, Thomas P.

    2003-01-01

    Contaminated dredge spoil is a national concern due to its scope and effects on biota, water quality, and the physical environment. This literature review discusses the effects of contaminated dredge spoils on wetland plant communities. Plant communities naturally shift over time with changing environmental conditions. Addition of toxins and nutrients and changes in hydrology may influence plant community structure. The storage and disposal of nutrient and metal contaminated dredge spoils may cause shifts in nearby plant communities. Shifts in species composition and diversity may not be observed for decades after nutrient enrichment, causing any disturbance to remain undetected. Plant community shifts often have great amounts of inertia and are difficult to reverse.

  3. Soil biochar amendment in a nature restoration area: effects on plant productivity and community composition.

    PubMed

    van de Voorde, Tess F J; Bezemer, T Martijn; Van Groenigen, Jan Willem; Jeffery, Simon; Mommer, Liesje

    2014-07-01

    Biochar (pyrolyzed biomass) amendment to soils has been shown to have a multitude of positive effects, e.g., on crop yield, soil quality, nutrient cycling, and carbon sequestration. So far the majority of studies have focused on agricultural systems, typically with relatively low species diversity and annual cropping schemes. How biochar amendment affects plant communities in more complex and diverse ecosystems that can evolve over time is largely unknown. We investigated such effects in a field experiment at a Dutch nature restoration area. In April 2011, we set up an experiment using biochar produced from cuttings collected from a local natural grassland. The material was pyrolyzed at 400 degrees C or at 600 degrees C. After biochar or residue (non-pyrolyzed cuttings) application (10 Mg/ha), all plots, including control (0 Mg/ ha) plots, were sown with an 18-species grassland mixture. In August 2011, we determined characteristics of the developed plant community, as well as soil nutrient status. Biochar amendment did not alter total plant productivity, but it had a strong and significant effect on plant community composition. Legumes were three times as abundant and individual legume plants increased four times in biomass in plots that received biochar as compared to the control treatment. Biomass of the most abundant forb (Plantago lanceolata) was not affected by biochar addition. Available phosphorous, potassium, and pH were significantly higher in soils that received biochar than in Control soils. The rate of biological nitrogen fixation and seed germination were not altered by biochar amendment, but the total amount of biological N fixed per Trifolium pratense (red clover) plant was more than four times greater in biochar-amended soil. This study demonstrates that biochar amendment has a strong and rapid effect on plant communities and soil nutrients. Over time these changes may cascade up to other trophic groups, including above- and belowground organisms

  4. Nutrient enrichment affects the mechanical resistance of aquatic plants

    PubMed Central

    Puijalon, Sara

    2012-01-01

    For many plant species, nutrient availability induces important anatomical responses, particularly the production of low-density tissues to the detriment of supporting tissues. Due to the contrasting biomechanical properties of plant tissues, these anatomical responses may induce important modifications in the biomechanical properties of plant organs. The aim of this study was to determine the effects of nutrient enrichment on the anatomical traits of two freshwater plant species and its consequences on plant biomechanical performance. Two plant species were grown under controlled conditions in low versus high nutrient levels. The anatomical and biomechanical traits of the plant stems were measured. Both species produced tissues with lower densities under nutrient-rich conditions, accompanied by modifications in the structure of the aerenchyma for one species. As expected, nutrient enrichment also led to important modifications in the biomechanical properties of the stem for both species. In particular, mechanical resistance (breaking force and strength) and stiffness of stems were significantly reduced under nutrient rich conditions. The production of weaker stem tissues as a result of nutrient enrichment may increase the risk of plants to mechanical failure, thus challenging plant maintenance in mechanically stressful or disturbed habitats. PMID:23028018

  5. Nutrient enrichment affects the mechanical resistance of aquatic plants.

    PubMed

    Lamberti-Raverot, Barbara; Puijalon, Sara

    2012-10-01

    For many plant species, nutrient availability induces important anatomical responses, particularly the production of low-density tissues to the detriment of supporting tissues. Due to the contrasting biomechanical properties of plant tissues, these anatomical responses may induce important modifications in the biomechanical properties of plant organs. The aim of this study was to determine the effects of nutrient enrichment on the anatomical traits of two freshwater plant species and its consequences on plant biomechanical performance. Two plant species were grown under controlled conditions in low versus high nutrient levels. The anatomical and biomechanical traits of the plant stems were measured. Both species produced tissues with lower densities under nutrient-rich conditions, accompanied by modifications in the structure of the aerenchyma for one species. As expected, nutrient enrichment also led to important modifications in the biomechanical properties of the stem for both species. In particular, mechanical resistance (breaking force and strength) and stiffness of stems were significantly reduced under nutrient rich conditions. The production of weaker stem tissues as a result of nutrient enrichment may increase the risk of plants to mechanical failure, thus challenging plant maintenance in mechanically stressful or disturbed habitats. PMID:23028018

  6. Feeding type affects microplastic ingestion in a coastal invertebrate community.

    PubMed

    Setälä, Outi; Norkko, Joanna; Lehtiniemi, Maiju

    2016-01-15

    Marine litter is one of the problems marine ecosystems face at present, coastal habitats and food webs being the most vulnerable as they are closest to the sources of litter. A range of animals (bivalves, free swimming crustaceans and benthic, deposit-feeding animals), of a coastal community of the northern Baltic Sea were exposed to relatively low concentrations of 10 μm microbeads. The experiment was carried out as a small scale mesocosm study to mimic natural habitat. The beads were ingested by all animals in all experimental concentrations (5, 50 and 250 beads mL(-1)). Bivalves (Mytilus trossulus, Macoma balthica) contained significantly higher amounts of beads compared with the other groups. Free-swimming crustaceans ingested more beads compared with the benthic animals that were feeding only on the sediment surface. Ingestion of the beads was concluded to be the result of particle concentration, feeding mode and the encounter rate in a patchy environment.

  7. The Effect of Nitrogen Deposition on Plant Performance and Community Structure: Is It Life Stage Specific?

    PubMed Central

    2016-01-01

    Nitrogen (N) deposition is a key global change factor that is increasing and affecting the structure and function of many ecosystems. To determine the influence of N deposition on specific systems, however, it is crucial to understand the temporal and spatial patterns of deposition as well as the response to that deposition. Response of the receiving plant communities may depend on the life stage-specific performance of individual species. We focus on the California oak savanna because N deposition to this system is complex—characterized by hotspots on the landscape and seasonal pulses. In a greenhouse experiment, we investigated the relative influence of N deposition on plant performance during early growth, peak biomass, and senescent life stages across different soil types, light, and community compositions. To represent the community we used three grass species—a native, naturalized exotic, and invasive exotic. At early growth and peak biomass stages performance was measured as height, and shoot and root biomass, and at the senescent stage as seed production. Simulated N deposition 1) increased shoot biomass and height of the native and, even more so, the naturalized exotic during early growth, 2) positively affected root biomass in all species during peak biomass, and 3) had no influence on seed production at the senescent stage. Alone, N deposition was not a strong driver of plant performance; however, small differences in performance among species in response to N deposition could affect community composition in future years. In particular, if there is a pulse of N deposition during the early growth stage, the naturalized exotic may have a competitive advantage that could result in its spread. Including spatial and temporal heterogeneity in a complex, manipulative experiment provides a clearer picture of not only where N management efforts should be targeted on the landscape, but also when. PMID:27253718

  8. The Effect of Nitrogen Deposition on Plant Performance and Community Structure: Is It Life Stage Specific?

    PubMed

    Tulloss, Elise M; Cadenasso, Mary L

    2016-01-01

    Nitrogen (N) deposition is a key global change factor that is increasing and affecting the structure and function of many ecosystems. To determine the influence of N deposition on specific systems, however, it is crucial to understand the temporal and spatial patterns of deposition as well as the response to that deposition. Response of the receiving plant communities may depend on the life stage-specific performance of individual species. We focus on the California oak savanna because N deposition to this system is complex-characterized by hotspots on the landscape and seasonal pulses. In a greenhouse experiment, we investigated the relative influence of N deposition on plant performance during early growth, peak biomass, and senescent life stages across different soil types, light, and community compositions. To represent the community we used three grass species-a native, naturalized exotic, and invasive exotic. At early growth and peak biomass stages performance was measured as height, and shoot and root biomass, and at the senescent stage as seed production. Simulated N deposition 1) increased shoot biomass and height of the native and, even more so, the naturalized exotic during early growth, 2) positively affected root biomass in all species during peak biomass, and 3) had no influence on seed production at the senescent stage. Alone, N deposition was not a strong driver of plant performance; however, small differences in performance among species in response to N deposition could affect community composition in future years. In particular, if there is a pulse of N deposition during the early growth stage, the naturalized exotic may have a competitive advantage that could result in its spread. Including spatial and temporal heterogeneity in a complex, manipulative experiment provides a clearer picture of not only where N management efforts should be targeted on the landscape, but also when. PMID:27253718

  9. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function.

    PubMed

    Koide, Roger T; Fernandez, Christopher; Malcolm, Glenna

    2014-01-01

    There is a growing interest amongst community ecologists in functional traits. Response traits determine membership in communities. Effect traits influence ecosystem function. One goal of community ecology is to predict the effect of environmental change on ecosystem function. Environmental change can directly and indirectly affect ecosystem function. Indirect effects are mediated through shifts in community structure. It is difficult to predict how environmental change will affect ecosystem function via the indirect route when the change in effect trait distribution is not predictable from the change in response trait distribution. When response traits function as effect traits, however, it becomes possible to predict the indirect effect of environmental change on ecosystem function. Here we illustrate four examples in which key attributes of ectomycorrhizal fungi function as both response and effect traits. While plant ecologists have discussed response and effect traits in the context of community structuring and ecosystem function, this approach has not been applied to ectomycorrhizal fungi. This is unfortunate because of the large effects of ectomycorrhizal fungi on ecosystem function. We hope to stimulate further research in this area in the hope of better predicting the ecosystem- and landscape-level effects of the fungi as influenced by changing environmental conditions.

  10. Receding water line and interspecific competition determines plant community composition and diversity in wetlands in Beijing.

    PubMed

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity

  11. Receding water line and interspecific competition determines plant community composition and diversity in wetlands in Beijing.

    PubMed

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity

  12. Receding Water Line and Interspecific Competition Determines Plant Community Composition and Diversity in Wetlands in Beijing

    PubMed Central

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity

  13. Composition of fungal soil communities varies with plant abundance and geographic origin.

    PubMed

    Reininger, Vanessa; Martinez-Garcia, Laura B; Sanderson, Laura; Antunes, Pedro M

    2015-01-01

    Interactions of belowground fungal communities with exotic and native plant species may be important drivers of plant community structure in invaded grasslands. However, field surveys linking plant community structure with belowground fungal communities are missing. We investigated whether a selected number of abundant and relatively rare plants, either native or exotic, from an old-field site associate with different fungal communities. We also assessed whether these plants showed different symbiotic relationships with soil biota through their roots. We characterized the plant community and collected roots to investigate fungal communities using 454 pyrosequencing and assessed arbuscular mycorrhizal colonization and enemy-induced lesions. Differences in fungal communities were considered based on the assessment of α- and β diversity depending on plant 'abundance' and 'origin'. Plant abundance and origin determined the fungal community. Fungal richness was higher for native abundant as opposed to relatively rare native plant species. However, this was not observed for exotics of contrasting abundance. Regardless of their origin, β diversity was higher for rare than for abundant species. Abundant exotics in the community, which happen to be grasses, were the least mycorrhizal whereas rare natives were most susceptible to enemy attack. Our results suggest that compared with exotics, the relative abundance of remnant native plant species in our old-field site is still linked to the structure of belowground fungal communities. In contrast, exotic species may act as a disturbing agent contributing towards the homogenization of soil fungal communities, potentially changing feedback interactions. PMID:26371291

  14. Composition of fungal soil communities varies with plant abundance and geographic origin

    PubMed Central

    Reininger, Vanessa; Martinez-Garcia, Laura B.; Sanderson, Laura; Antunes, Pedro M.

    2015-01-01

    Interactions of belowground fungal communities with exotic and native plant species may be important drivers of plant community structure in invaded grasslands. However, field surveys linking plant community structure with belowground fungal communities are missing. We investigated whether a selected number of abundant and relatively rare plants, either native or exotic, from an old-field site associate with different fungal communities. We also assessed whether these plants showed different symbiotic relationships with soil biota through their roots. We characterized the plant community and collected roots to investigate fungal communities using 454 pyrosequencing and assessed arbuscular mycorrhizal colonization and enemy-induced lesions. Differences in fungal communities were considered based on the assessment of α- and β diversity depending on plant ‘abundance’ and ‘origin’. Plant abundance and origin determined the fungal community. Fungal richness was higher for native abundant as opposed to relatively rare native plant species. However, this was not observed for exotics of contrasting abundance. Regardless of their origin, β diversity was higher for rare than for abundant species. Abundant exotics in the community, which happen to be grasses, were the least mycorrhizal whereas rare natives were most susceptible to enemy attack. Our results suggest that compared with exotics, the relative abundance of remnant native plant species in our old-field site is still linked to the structure of belowground fungal communities. In contrast, exotic species may act as a disturbing agent contributing towards the homogenization of soil fungal communities, potentially changing feedback interactions. PMID:26371291

  15. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns

    USGS Publications Warehouse

    Haack, S.K.; Garchow, H.; Klug, M.J.; Forney, L.J.

    1995-01-01

    We determined factors that affect responses of bacterial isolates and model bacterial communities to the 95 carbon substrates in Biolog microliter plates. For isolates and communities of three to six bacterial strains, substrate oxidation rates were typically nonlinear and were delayed by dilution of the inoculum. When inoculum density was controlled, patterns of positive and negative responses exhibited by microbial communities to each of the carbon sources were reproducible. Rates and extents of substrate oxidation by the communities were also reproducible but were not simply the sum of those exhibited by community members when tested separately. Replicates of the same model community clustered when analyzed by principal- components analysis (PCA), and model communities with different compositions were clearly separated un the first PCA axis, which accounted for >60% of the dataset variation. PCA discrimination among different model communities depended on the extent to which specific substrates were oxidized. However, the substrates interpreted by PCA to be most significant in distinguishing the communities changed with reading time, reflecting the nonlinearity of substrate oxidation rates. Although whole-community substrate utilization profiles were reproducible signatures for a given community, the extent of oxidation of specific substrates and the numbers or activities of microorganisms using those substrates in a given community were not correlated. Replicate soil samples varied significantly in the rate and extent of oxidation of seven tested substrates, suggesting microscale heterogeneity in composition of the soil microbial community.

  16. A solar thermal electric power plant for small communities

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    A solar power plant has been designed with a rating of 1000-kW electric and a 0.4 annual capacity factor. It was configured as a prototype for plants in the 1000 to 10,000-kWe size range for application to small communities or industrial users either grid-connected or isolated from a utility grid. A small central receiver was selected for solar energy collection after being compared with alternative distributed collectors. Further trade studies resulted in the selection of Hitec (heat transfer salt composed of 53 percent KNO3, 40 percent NaNO2, 7 percent NaNO3) as both the receiver coolant and the sensible heat thermal stroage medium and the steam Rankine cycle for power conversion. The plant is configured with road-transportable units to accommodate remote sites and minimize site assembly requirements. Results of the analyses indicate that busbar energy costs are competitive with diesel-electric plants in certain situations, e.g., off-grid, remote regions with high insolation. Sensitivity of energy costs to plant power rating and system capacity factor are given.

  17. 7-Rhamnosylated Flavonols Modulate Homeostasis of the Plant Hormone Auxin and Affect Plant Development.

    PubMed

    Kuhn, Benjamin M; Errafi, Sanae; Bucher, Rahel; Dobrev, Petre; Geisler, Markus; Bigler, Laurent; Zažímalová, Eva; Ringli, Christoph

    2016-03-01

    Flavonols are a group of secondary metabolites that affect diverse cellular processes. They are considered putative negative regulators of the transport of the phytohormone auxin, by which they influence auxin distribution and concomitantly take part in the control of plant organ development. Flavonols are accumulating in a large number of glycosidic forms. Whether these have distinct functions and diverse cellular targets is not well understood. The rol1-2 mutant of Arabidopsis thaliana is characterized by a modified flavonol glycosylation profile that is inducing changes in auxin transport and growth defects in shoot tissues. To determine whether specific flavonol glycosides are responsible for these phenotypes, a suppressor screen was performed on the rol1-2 mutant, resulting in the identification of an allelic series of UGT89C1, a gene encoding a flavonol 7-O-rhamnosyltransferase. A detailed analysis revealed that interfering with flavonol rhamnosylation increases the concentration of auxin precursors and auxin metabolites, whereas auxin transport is not affected. This finding provides an additional level of complexity to the possible ways by which flavonols influence auxin distribution and suggests that flavonol glycosides play an important role in regulating plant development.

  18. Abandoned floodplain plant communities along a regulated dryland river

    USGS Publications Warehouse

    Reynolds, L. V.; Shafroth, Patrick B.; House, P. K.

    2014-01-01

    Rivers and their floodplains worldwide have changed dramatically over the last century because of regulation by dams, flow diversions and channel stabilization. Floodplains no longer inundated by river flows following dam-induced flood reduction comprise large areas of bottomland habitat, but the effects of abandonment on plant communities are not well understood. Using a hydraulic flow model, geomorphic mapping and field surveys, we addressed the following questions along the Bill Williams River, Arizona: (i) What per cent of the bottomland do abandoned floodplains comprise? and (ii) Are abandoned floodplains quantitatively different from adjacent xeric and riparian surfaces in terms of vegetation composition and surface sediment? We found that nearly 70% of active channel and floodplain area was abandoned following dam installation. Abandoned floodplains along the Bill Williams River tend to be similar to each other yet distinct from neighbouring habitats: they have been altered physically from their historic state, leading to distinct combinations of surface sediments, hydrology and plant communities. Abandoned floodplains may transition to xeric communities over time but are likely to retain some riparian qualities as long as there is access to relatively shallow ground water. With expected increases in water demand and drying climatic conditions in many regions, these surfaces and associated vegetation will continue to be extensive in riparian landscapes worldwide

  19. PERCEIVED RACISM AND NEGATIVE AFFECT: ANALYSES OF TRAIT AND STATE MEASURES OF AFFECT IN A COMMUNITY SAMPLE.

    PubMed

    Brondolo, Elizabeth; Brady, Nisha; Thompson, Shola; Tobin, Jonathan N; Cassells, Andrea; Sweeney, Monica; McFarlane, Delano; Contrada, Richard J

    2008-02-01

    Racism is a significant psychosocial stressor that is hypothesized to have negative psychological and physical health consequences. The Reserve Capacity Model (Gallo & Matthews, 2003) suggests that low socioeconomic status may influence health through its effects on negative affect. We extend this model to study the effects of racism, examining the association of lifetime perceived racism to trait and daily negative affect. A multiethnic sample of 362 American-born Black and Latino adults completed the Perceived Ethnic Discrimination Questionnaire-Community Version (PEDQ-CV). Trait negative affect was assessed with the Positive and Negative Affect Schedule (PANAS), and state negative affect was measured using ecological momentary assessments (EMA), in the form of an electronic diary. Analyses revealed a significant relationship of lifetime perceived racism to both daily negative affect and trait negative affect, even when controlling for trait hostility and socioeconomic status. The relationship of perceived racism to negative affect was moderated by education, such that the relationships were strongest for those with less than a high school education. The findings support aspects of the Reserve Capacity Model and identify pathways through which perceived racism may affect health status.

  20. The Affects of Internet-Mediated Social Networking on Christian Community

    ERIC Educational Resources Information Center

    Lighari, Joyce Ann Johannesen

    2013-01-01

    This study examined the relationship of Internet-Mediated Social Network, the formation of adult Christian community, and its affect on adult Christian growth. The researcher compared and analyzed three types of adult Christian learning communities: traditional, hybrid, and virtual. Each week over the course of six weeks, the three types of…

  1. Institutional Practices Affecting First-Year Hispanic Students at Two Texas Community Colleges

    ERIC Educational Resources Information Center

    Samuel, Karissa Robinson

    2013-01-01

    The purpose of this study was to identify current institutional practices at two Hispanic-serving community colleges that may have caused attrition and affected retention among first-year Hispanic students. The objective was to determine which programs and services have been most effective at the respective community college campuses in assisting…

  2. Beyond the Patch: Disturbance Affects Species Abundances in the surrounding Community

    PubMed Central

    Dudgeon, Steve R.

    2009-01-01

    The role of disturbance in community ecology has been studied extensively and is thought to free resources and reset successional sequences at the local scale and create heterogeneity at the regional scale. Most studies have investigated effects on either the disturbed patch or on the entire community, but have generally ignored any effect of or on the community surrounding disturbed patches. We used marine fouling communities to examine the effect of a surrounding community on species abundance within a disturbed patch and the effect of a disturbance on species abudance in the surrounding community. We varied both the magnitude and pattern of disturbance on experimental settlement plates. Settlement plates were dominated by a non-native bryozoan, which may have established because of the large amount of initial space available on plates. Percent cover of each species within the patch were affected by the surrounding community, confirming previous studies’ predictions about edge effects from the surrounding community on dynamics within a patch. Disturbance resulted in lower percent cover in the surrounding community, but there were no differences between magnitudes or spatial patterns of disturbance. Disturbance lowered population growth rates in the surrounding community, potentially by altering the abiotic environment or species interactions. Following disturbance, the recovery of species within a patch may be affected by species in the surrounding community, but the effects of a disturbance can extend beyond the patch and alter abundances in the surrounding community. The dependence of patch dynamics on the surrounding community and the extended effects of disturbance on the surrounding community, suggest an important feedback of disturbance on patch dynamics indirectly via the surrounding community. PMID:20161249

  3. Influence of Weather Variables and Plant Communities on Grasshopper Density in the Southern Pampas, Argentina

    PubMed Central

    de Wysiecki, María Laura; Arturi, Marcelo; Torrusio, Sandra; Cigliano, María Marta

    2011-01-01

    A study was conducted to evaluate the influence of weather (precipitation and temperature) and plant communities on grasshopper density over a 14-year period (1996–2009) in Benito Juárez County, Southern Pampas, Argentina. Total density strongly varied among plant communities. Highest values were registered in 2001 and 2003 in highly disturbed pastures and in 2002 and 2009 in halophilous grasslands. Native grasslands had the lowest density values. Seasonal precipitation and temperature had no significant effect on total grasshopper density. Dichroplus elongatus (Giglio-Tos) (Orthoptera: Acridoidea), Covasacris pallidinota (Bruner), Dichroplus pratensis Bruner, Scotussa lemniscata Stål, Borellia bruneri (Rehn) and Dichroplus maculipennis (Blanchard) comprised, on average, 64% of the grasshopper assemblages during low density years and 79% during high density years. Dichroplus elongatus, S. lemniscata and C. pallidinota were the most abundant species in 2001, 2002 and 2003, while D. elongatus, B. brunneri and C. pallidinota in 2009. Dichroplus elongatus and D. pratensis, mixed feeders species, were positively affected by summer rainfall. This suggests that the increase in summer precipitation had a positive effect on the quantity and quality forage production, affecting these grasshopper populations. Scotussa lemniscata and C. pallidinota were negatively affected by winter and fall temperature, possibly affecting the embryonic development before diapause and hatching. Dichroplus elongatus and D. pratensis were associated with highly disturbed pastures, S. lemniscata with pastures and B. bruneri and D. maculipennis with halophilous grasslands. Covasacris pallidinota was closely associated with halophilous grasslands and moderately disturbed pastures. Weather conditions changed over the years, with 2001, 2002 and 2003 having excessive rainfall while 2008 and 2009 were the driest years since the study started. We suggest that although seasonal precipitation and

  4. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants

    PubMed Central

    Gehring, Catherine A.; Mueller, Rebecca C.; Haskins, Kristin E.; Rubow, Tine K.; Whitham, Thomas G.

    2014-01-01

    Plants and mycorrhizal fungi influence each other’s abundance, diversity, and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of plant parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis), and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors, and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future. PMID:25009537

  5. Disturbance Alters the Phylogenetic Composition and Structure of Plant Communities in an Old Field System

    PubMed Central

    Dinnage, Russell

    2009-01-01

    The changes in phylogenetic composition and structure of communities during succession following disturbance can give us insights into the forces that are shaping communities over time. In abandoned agricultural fields, community composition changes rapidly when a field is plowed, and is thought to reflect a relaxation of competition due to the elimination of dominant species which take time to re-establish. Competition can drive phylogenetic overdispersion, due to phylogenetic conservation of ‘niche’ traits that allow species to partition resources. Therefore, undisturbed old field communities should exhibit higher phylogenetic dispersion than recently disturbed systems, which should be relatively ‘clustered’ with respect to phylogenetic relationships. Several measures of phylogenetic structure between plant communities were measured in recently plowed areas and nearby ‘undisturbed’ sites. There was no difference in the absolute values of these measures between disturbed and ‘undisturbed’ sites. However, there was a difference in the ‘expected’ phylogenetic structure between habitats, leading to significantly lower than expected phylogenetic diversity in disturbed plots, and no difference from random expectation in ‘undisturbed’ plots. This suggests that plant species characteristic of each habitat are fairly evenly distributed on the shared species pool phylogeny, but that once the initial sorting of species into the two habitat types has occurred, the processes operating on them affect each habitat differently. These results were consistent with an analysis of correlation between phylogenetic distance and co-occurrence indices of species pairs in the two habitat types. This study supports the notion that disturbed plots are more clustered than expected, rather than ‘undisturbed’ plots being more overdispersed, suggesting that disturbed plant communities are being more strongly influenced by environmental filtering of conserved niche

  6. Key players of methane dynamics in alpine fens: interaction of vascular plants and microbial communities

    NASA Astrophysics Data System (ADS)

    Cheema, S.; Zeyer, J. A.; Henneberger, R.

    2014-12-01

    Natural wetlands are important emitters of the potent greenhouse gas methane (CH4), contributing an estimated 26 - 42% to the global emissions. In these habitats CH4 is generated by methanogenic archaea mediating the terminal steps of organic matter degradation under anoxic conditions. The produced CH4 is partly oxidized by methanotrophic bacteria in oxic zones, thereby mitigating CH4 release. Various factors can influence CH4 emissions from wetlands, including the presence of vascular plants, as their aerenchyma can serve as conduits for CH4 release to the atmosphere. In the present study, we investigated the CH4 dynamics in two Swiss alpine fens (1900 - 2300 m a.s.l), and sampling locations within these fens were characterized by distinct dominant vascular plants, namely Carex spp. and Eriophorum spp.. Analyses of the microbial communities present in the fen soils were complemented by in situ measurements of CH4 emissions and analyses of physico-chemical pore water properties. Methane emissions and pore water concentrations varied depending on fen and dominating plant species, with generally higher CH4 emissions observed from the Carex dominated locations. Active methanotrophic and methanogenic microorganisms (transcripts of specific marker genes) were detected at different depths, independent of O2 and CH4 pore water concentrations. The expected separation of oxic methanotrophic and anoxic methanogenic zones was not observed. Yet, composition analyses of the different communities showed a clear clustering according to fen and dominating plant species. Within each location, variation of composition with depth was only observed for the methanogenic communities. Detailed profiling of CH4 emissions with respect to changes in light and temperature is currently being carried out. Our results represent a comprehensive in situ study on factors affecting CH4 emissions from alpine fens, highlighting the influence of vascular plants on the microbial communities involved.

  7. Plant community and soil chemistry responses to long-term nitrogen inputs drive changes in alpine bacterial communities.

    PubMed

    Yuan, Xia; Knelman, Joseph E; Gasarch, Eve; Wang, Deli; Nemergut, Diana R; Seastedt, Timothy R

    2016-06-01

    Bacterial community composition and diversity was studied in alpine tundra soils across a plant species and moisture gradient in 20 y-old experimental plots with four nutrient addition regimes (control, nitrogen (N), phosphorus (P) or both nutrients). Different bacterial communities inhabited different alpine meadows, reflecting differences in moisture, nutrients and plant species. Bacterial community alpha-diversity metrics were strongly correlated with plant richness and the production of forbs. After meadow type, N addition proved the strongest determinant of bacterial community structure. Structural Equation Modeling demonstrated that tundra bacterial community responses to N addition occur via changes in plant community composition and soil pH resulting from N inputs, thus disentangling the influence of direct (resource availability) vs. indirect (changes in plant community structure and soil pH) N effects that have remained unexplored in past work examining bacterial responses to long-term N inputs in these vulnerable environments. Across meadow types, the relative influence of these indirect N effects on bacterial community structure varied. In explicitly evaluating the relative importance of direct and indirect effects of long-term N addition on bacterial communities, this study provides new mechanistic understandings of the interaction between plant and microbial community responses to N inputs amidst environmental change. PMID:27459784

  8. Plant community and soil chemistry responses to long-term nitrogen inputs drive changes in alpine bacterial communities.

    PubMed

    Yuan, Xia; Knelman, Joseph E; Gasarch, Eve; Wang, Deli; Nemergut, Diana R; Seastedt, Timothy R

    2016-06-01

    Bacterial community composition and diversity was studied in alpine tundra soils across a plant species and moisture gradient in 20 y-old experimental plots with four nutrient addition regimes (control, nitrogen (N), phosphorus (P) or both nutrients). Different bacterial communities inhabited different alpine meadows, reflecting differences in moisture, nutrients and plant species. Bacterial community alpha-diversity metrics were strongly correlated with plant richness and the production of forbs. After meadow type, N addition proved the strongest determinant of bacterial community structure. Structural Equation Modeling demonstrated that tundra bacterial community responses to N addition occur via changes in plant community composition and soil pH resulting from N inputs, thus disentangling the influence of direct (resource availability) vs. indirect (changes in plant community structure and soil pH) N effects that have remained unexplored in past work examining bacterial responses to long-term N inputs in these vulnerable environments. Across meadow types, the relative influence of these indirect N effects on bacterial community structure varied. In explicitly evaluating the relative importance of direct and indirect effects of long-term N addition on bacterial communities, this study provides new mechanistic understandings of the interaction between plant and microbial community responses to N inputs amidst environmental change.

  9. Diversity in plants and other Collembola ameliorate impacts of Sminthurus viridis on plant community structure

    NASA Astrophysics Data System (ADS)

    Barker, Gary M.

    2006-05-01

    Five experiments investigated the importance of herbivory by Sminthurus viridis in structuring botanical composition in developing grasslands, and how these effects may be modified by diversity in collembolan and plant species. Differential susceptibility to S. viridis feeding was demonstrated in 23 dicotyledonous and three monocotyledonous plants assayed as seedlings at the first true leaf stage. The composition of seedling communities developing from natural and artificially constructed soil seed banks varied with the level of S. viridis infestation, with plant species least susceptible to herbivory making the greatest contribution to plant biomass. The combined effect of herbivory by S. viridis and Bourletiella hortensis on Trifolium repens biomass was shown to be less than the effect of S. viridis alone, indicating competitive interference. The adverse effects of herbivory by S. viridis on T. repens biomass was reduced by increased diversity of plants growing in association with the legume, and the presence of four non-herbivorous arthropleonan Collembola. S. viridis was shown to reduce seedling numbers, species diversity and biomass in communities developing from the soil seed bank, but the presence of non-herbivorous arthropleonan species reduced the effect of S. viridis. The experiments demonstrate the potential for herbivory by S. viridis to significantly alter species composition in developing grassland communities. However, interactions with collembolan and plant species profoundly modified S. viridis herbivory impacts, either by reducing feeding intensity or enhancing plant growth. These results highlight the fact that data from simple, synthetic systems may be poor predictors of herbivory impacts under field conditions where more complex species interactions occur.

  10. Factors Affecting Location Decisions of Food Processing Plants

    NASA Astrophysics Data System (ADS)

    Turhan, Sule; Canan Ozbag, Basak; Cetin, Bahattin

    The main aim of this study is to examine the determinants of location choices for food processing plants using the results of 59 personal surveys. The 61.3% of the food processing plants that were interviewed are small scale plants, 9.1% are large scale plants and 29.6% are medium scale plants. Sixteen of the firms process vegetables, 12 process poultry, 12 process dairy and 9 process seafood products. Business climate factors are divided into six categories (market, infrastructure, raw material, labor, personal and environmental) and 17 specific location factors are considered. The survey responses are analyzed by types of raw materials processed and by plant size. 43.7, 55.3 and 42.2% of the respondents cited categories of Market, Raw Material and Infrastructure respectively as important, while 44.3, 50.7 and 74.4% of the respondents cited, labor, personal and environmental regulation categories of as not important. Thus survey findings indicate that plant location choices are mainly driven by market, raw material and infra structural factors. Environmental factors such as environmental regulations and permissions are relatively insignificant.

  11. Factors affecting plant growth in membrane nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.

    1990-01-01

    The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.

  12. Engineering a plant community to deliver multiple ecosystem services.

    PubMed

    Storkey, Jonathan; Döring, Thomas; Baddeley, John; Collins, Rosemary; Roderick, Stephen; Jones, Hannah; Watson, Christine

    2015-06-01

    The sustainable delivery of multiple ecosystem services requires the management of functionally diverse biological communities. In an agricultural context, an emphasis on food production has often led to a loss of biodiversity to the detriment of other ecosystem services such as the maintenance of soil health and pest regulation. In scenarios where multiple species can be grown together, it may be possible to better balance environmental and agronomic services through the targeted selection of companion species. We used the case study of legume-based cover crops to engineer a plant community that delivered the optimal balance of six ecosystem services: early productivity, regrowth following mowing, weed suppression, support of invertebrates, soil fertility building (measured as yield of following crop), and conservation of nutrients in the soil. An experimental species pool of 12 cultivated legume species was screened for a range of functional traits and ecosystem services at five sites across a geographical gradient in the United Kingdom. All possible species combinations were then analyzed, using a process-based model of plant competition, to identify the community that delivered the best balance of services at each site. In our system, low to intermediate levels of species richness (one to four species) that exploited functional contrasts in growth habit and phenology were identified as being optimal. The optimal solution was determined largely by the number of species and functional diversity represented by the starting species pool, emphasizing the importance of the initial selection of species for the screening experiments. The approach of using relationships between functional traits and ecosystem services to design multifunctional biological communities has the potential to inform the design of agricultural systems that better balance agronomic and environmental services and meet the current objective of European agricultural policy to maintain viable food

  13. Engineering a plant community to deliver multiple ecosystem services.

    PubMed

    Storkey, Jonathan; Döring, Thomas; Baddeley, John; Collins, Rosemary; Roderick, Stephen; Jones, Hannah; Watson, Christine

    2015-06-01

    The sustainable delivery of multiple ecosystem services requires the management of functionally diverse biological communities. In an agricultural context, an emphasis on food production has often led to a loss of biodiversity to the detriment of other ecosystem services such as the maintenance of soil health and pest regulation. In scenarios where multiple species can be grown together, it may be possible to better balance environmental and agronomic services through the targeted selection of companion species. We used the case study of legume-based cover crops to engineer a plant community that delivered the optimal balance of six ecosystem services: early productivity, regrowth following mowing, weed suppression, support of invertebrates, soil fertility building (measured as yield of following crop), and conservation of nutrients in the soil. An experimental species pool of 12 cultivated legume species was screened for a range of functional traits and ecosystem services at five sites across a geographical gradient in the United Kingdom. All possible species combinations were then analyzed, using a process-based model of plant competition, to identify the community that delivered the best balance of services at each site. In our system, low to intermediate levels of species richness (one to four species) that exploited functional contrasts in growth habit and phenology were identified as being optimal. The optimal solution was determined largely by the number of species and functional diversity represented by the starting species pool, emphasizing the importance of the initial selection of species for the screening experiments. The approach of using relationships between functional traits and ecosystem services to design multifunctional biological communities has the potential to inform the design of agricultural systems that better balance agronomic and environmental services and meet the current objective of European agricultural policy to maintain viable food

  14. The Brazilian research contribution to knowledge of the plant communities from Antarctic ice free areas.

    PubMed

    Pereira, Antonio B; Putzke, Jair

    2013-09-01

    This work aims to summarize the results of research carried out by Brazilian researchers on the plant communities of Antarctic ice free areas during the last twenty five years. Since 1988 field work has been carried out in Elephant Island, King George Island, Nelson Island and Deception Island. During this period six papers were published on the chemistry of lichens, seven papers on plant taxonomy, five papers on plant biology, two studies on UVB photoprotection, three studies about the relationships between plant communities and bird colonies and eleven papers on plant communities from ice free areas. At the present, Brazilian botanists are researching the plant communities of Antarctic ice free areas in order to understand their relationships to soil microbial communities, the biodiversity, the distribution of the plants populations and their relationship with birds colonies. In addition to these activities, a group of Brazilian researchers are undertaking studies related to Antarctic plant genetic diversity, plant chemistry and their biotechnological applications.

  15. Above-Belowground Herbivore Interactions in Mixed Plant Communities Are Influenced by Altered Precipitation Patterns.

    PubMed

    Ryalls, James M W; Moore, Ben D; Riegler, Markus; Johnson, Scott N

    2016-01-01

    Root- and shoot-feeding herbivores have the capacity to influence one another by modifying the chemistry of the shared host plant. This can alter rates of nutrient mineralization and uptake by neighboring plants and influence plant-plant competition, particularly in mixtures combining grasses and legumes. Root herbivory-induced exudation of nitrogen (N) from legume roots, for example, may increase N acquisition by co-occurring grasses, with knock-on effects on grassland community composition. Little is known about how climate change may affect these interactions, but an important and timely question is how will grass-legume mixtures respond in a future with an increasing reliance on legume N mineralization in terrestrial ecosystems. Using a model grass-legume mixture, this study investigated how simultaneous attack on lucerne (Medicago sativa) by belowground weevils (Sitona discoideus) and aboveground aphids (Acyrthosiphon pisum) affected a neighboring grass (Phalaris aquatica) when subjected to drought, ambient, and elevated precipitation. Feeding on rhizobial nodules by weevil larvae enhanced soil water retention under ambient and elevated precipitation, but only when aphids were absent. While drought decreased nodulation and root N content in lucerne, grass root and shoot chemistry were unaffected by changes in precipitation. However, plant communities containing weevils but not aphids showed increased grass height and N concentrations, most likely associated with the transfer of N from weevil-attacked lucerne plants containing more nodules and higher root N concentrations compared with insect-free plants. Drought decreased aphid abundance by 54% but increased total and some specific amino acid concentrations (glycine, lysine, methionine, tyrosine, cysteine, histidine, arginine, aspartate, and glutamate), suggesting that aphid declines were being driven by other facets of drought (e.g., reduced phloem hydraulics). The presence of weevil larvae belowground

  16. The soil microbial community predicts the importance of plant traits in plant-soil feedback.

    PubMed

    Ke, Po-Ju; Miki, Takeshi; Ding, Tzung-Su

    2015-04-01

    Reciprocal interaction between plant and soil (plant-soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant-mediated nutrient cycling (litter-mediated PSF) or plant-microbe interaction (microbial-mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits. However, this separation neglects the complex indirect interactions between the two mechanisms. We developed a model coupling litter- and microbial-mediated PSFs to identify the relative importance of traits in controlling PSF strength, and its dependency on the composition of root-associated microbes (i.e. pathogens and/or mycorrhizal fungi). Results showed that although plant carbon: nitrogen (C : N) ratio and microbial nutrient acquisition traits were consistently important, the importance of litter decomposability varied. Litter decomposability was not a major PSF determinant when pathogens are present. However, its importance increased with the relative abundance of mycorrhizal fungi as nutrient released from the mycorrhizal-enhanced litter production to the nutrient-depleted soils result in synergistic increase of soil nutrient and mycorrhizal abundance. Data compiled from empirical studies also supported our predictions. We propose that the importance of litter decomposability depends on the composition of root-associated microbes. Our results provide new perspectives in plant invasion and trait-based ecology.

  17. Population and community ecology of the rare plant amsinckia grandiflora

    SciTech Connect

    Carlsen, T.M.

    1996-11-01

    Research was conducted between the fall of 1992 and the spring on the population and community ecology of the rare annual plant, Amsinckia glandiflora (Gray) Kleeb. ex Greene (Boraginaceae). The research goal was to investigate the causes of the species rarity, data useful to restorative efforts. The work focused on the examination of competitive suppression by exotic annual grasses; comparisons with common, weedy congener; and the role of litter cover and seed germination and seedling establishment. Annual exotic grasses reduced A. grandiflora reproductive output to a greater extent than did the native perennial bunch grass.

  18. Everglades Plant Community Response to 20th Century Hydrologic Changes

    NASA Astrophysics Data System (ADS)

    Willard, D. A.; Bernhardt, C. E.; Holmes, C. W.; Weimer, L. M.

    2002-05-01

    Pollen records in sediment cores from sites in the historic Everglades allowed us to document the natural variability of the ecosystem over the past 2,000 years and contrast it to 20th century changes in wetland plant communities. The natural system included extensive water-lily sloughs, sawgrass ridges, and scattered tree islands extending from Lake Okeechobee southward through Shark River Slough. Between ~1000 AD and 1200 AD, weedy species such as Amaranthus (water hemp) became more abundant, indicating decreased annual rainfall, shorter hydroperiods, and shallower water depths during this time. After ~1200 AD, vegetation returned to its pre-1000 AD composition. During the 20th century, two phases of hydrologic alteration occurred. Completed by 1930, the first phase included construction of the Hoover Dike, canals linking Lake Okeechobee to the Atlantic Ocean, and the Tamiami Trail. Reconstructions of plant communities indicate that these changes shortened hydroperiods and lowered water depths throughout the Everglades. The extent of water-lily slough communities decreased, and tree islands became larger in Shark River Slough. The second phase resulted from construction of canals and levees in the 1950s, creating three Water Conservation Areas. The response of plant communities to these changes varied widely depending on location in the Everglades. In Loxahatchee NWR, weedy and short-hydroperiod plant species became more abundant in marshes, and species composition of tree islands changed. In Water Conservation Area 2A, cattail replaced sawgrass in marshes with high nutrient influx; the ridge and slough structure of the marshes was replaced by more homogeneous sawgrass marshes; sustained high water levels for more than a decade resulted in loss of tree islands that had existed for more than 1,000 years. In Everglades National Park, the extent of slough vegetation decreased further. Near Florida Bay, the rate of mangrove intrusion into fresh-water marshes

  19. Exogenously treated mammalian sex hormones affect inorganic constituents of plants.

    PubMed

    Erdal, Serkan; Dumlupinar, Rahmi

    2011-10-01

    The present study was undertaken to reveal the changes in inorganic constituents of plants exposed to mammalian sex hormones (MSH). Chickpea leaves were sprayed with 10(-4), 10(-6), 10(-9), 10(-12), and 10(-15) M concentrations of progesterone, β-estradiol, and androsterone at 7th day after sowing. The plants were harvested at the end of 18 days after treatment of MSH solutions and the inorganic components determined using a wavelength-dispersive X-ray fluorescence spectroscopy technique. At all of the concentrations tested, MSH significantly increased the contents of K, S, Na, Ca, Mg, Zn, Fe, P, Cu, and Ni. Interestingly, only Mn and Cl contents decreased. The maximum changes in the inorganic composition were recorded at 10(-6) M for plants treated with progesterone and 10(-9) M for plants treated with β-estradiol and androsterone.

  20. Self-recognition affects plant communication and defense.

    PubMed

    Karban, Richard; Shiojiri, Kaori

    2009-06-01

    Animals have the ability to distinguish self from non-self, which has allowed them to evolve immune systems and, in some instances, to act preferentially towards individuals that are genetically identical or related. Self-recognition is less well known for plants, although recent work indicates that physically connected roots recognize self and reduce competitive interactions. Sagebrush uses volatile cues emitted by clipped branches of self or different neighbours to increase resistance to herbivory. Here, we show that plants that received volatile cues from genetically identical cuttings accumulated less natural damage than plants that received cues from non-self cuttings. Volatile communication is required to coordinate systemic processes such as induced resistance and plants respond more effectively to self than non-self cues. This self/non-self discrimination did not require physical contact and is a necessary first step towards possible kin recognition and kin selection.

  1. A novel family of small proteins that affect plant development

    SciTech Connect

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  2. Plant toxins that affect nicotinic acetylcholine receptors: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants produce wide variety of chemical compounds termed secondary metabolites that are not involved in basic metabolism, photosynthesis or reproduction. These compounds are used as flavors, fragrances, insecticides, dyes, hallucinogens, nutritional supplements, poisons, and pharmaceutical agents. ...

  3. Plant surface wax affects parasitoid's response to host footprints

    NASA Astrophysics Data System (ADS)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  4. Recovery dynamics and invasibility of herbaceous plant communities after exposure to fifty-year climate extremes in different seasons

    NASA Astrophysics Data System (ADS)

    Dreesen, F. E.; De Boeck, H. J.; Janssens, I. A.; Nijs, I.

    2013-10-01

    Disturbance events such as climatic extremes may enhance the invasibility of plant communities, through the creation of gaps and the associated local increase in available resources. In this study, experimental herbaceous communities consisting of three species were subjected to 50 yr extreme drought and/or heat events, in spring, summer or autumn. In the year of the induced extremes, species mortality and end-of-season biomass were examined. In two subsequent years without further disturbances, establishment of new species was recorded. The drought and drought + heat extremes in summer and autumn induced greater plant mortality compared with the heat extremes in those seasons and compared with all extremes applied in spring, in all three originally planted species. Recovery in terms of biomass towards the end of the growing season, however, was species-specific. The dominant species, the nitrogen fixer Trifolium repens, recovered poorly from the drought and drought + heat extremes which governed the community response. Community biomass, which was heavily affected by the drought and especially by the drought + heat events in summer and autumn, reached control values already one year later. Invasibility was increased in the communities that underwent the drought + heat extremes in the first year following the extreme events, but no longer in the second year. During the two years of invasion, the community composition changed, but independently of the type and impact of the extreme event. In short, the extreme climate events greatly affected the survival and productivity of the species, modified the species composition and dominance patterns, and increased the invasibility of our plant communities. However, none of these community properties seemed to be affected in the long term, as the induced responses faded out after one or two years.

  5. Balancing positive and negative plant interactions: how mosses structure vascular plant communities.

    PubMed

    Gornall, Jemma L; Woodin, Sarah J; Jónsdóttir, Ingibjorg S; van der Wal, René

    2011-07-01

    Our understanding of positive and negative plant interactions is primarily based on vascular plants, as is the prediction that facilitative effects dominate in harsh environments. It remains unclear whether this understanding is also applicable to moss-vascular plant interactions, which are likely to be influential in low-temperature environments with extensive moss ground cover such as boreal forest and arctic tundra. In a field experiment in high-arctic tundra, we investigated positive and negative impacts of the moss layer on vascular plants. Ramets of the shrub Salix polaris, herb Bistorta vivipara, grass Alopecurus borealis and rush Luzula confusa were transplanted into plots manipulated to contain bare soil, shallow moss (3 cm) and deep moss (6 cm) and harvested after three growing seasons. The moss layer had both positive and negative impacts upon vascular plant growth, the relative extent of which varied among vascular plant species. Deep moss cover reduced soil temperature and nitrogen availability, and this was reflected in reduced graminoid productivity. Shrub and herb biomass were greatest in shallow moss, where soil moisture also appeared to be highest. The relative importance of the mechanisms by which moss may influence vascular plants, through effects on soil temperature, moisture and nitrogen availability, was investigated in a phytotron growth experiment. Soil temperature, and not nutrient availability, determined Alopecurus growth, whereas Salix only responded to increased temperature if soil nitrogen was also increased. We propose a conceptual model showing the relative importance of positive and negative influences of the moss mat on vascular plants along a gradient of moss depth and illustrate species-specific outcomes. Our findings suggest that, through their strong influence on the soil environment, mat-forming mosses structure the composition of vascular plant communities. Thus, for plant interaction theory to be widely applicable to

  6. The movement ecology and dynamics of plant communities in fragmented landscapes.

    PubMed

    Damschen, Ellen I; Brudvig, Lars A; Haddad, Nick M; Levey, Douglas J; Orrock, John L; Tewksbury, Joshua J

    2008-12-01

    A conceptual model of movement ecology has recently been advanced to explain all movement by considering the interaction of four elements: internal state, motion capacity, navigation capacities, and external factors. We modified this framework to generate predictions for species richness dynamics of fragmented plant communities and tested them in experimental landscapes across a 7-year time series. We found that two external factors, dispersal vectors and habitat features, affected species colonization and recolonization in habitat fragments and their effects varied and depended on motion capacity. Bird-dispersed species richness showed connectivity effects that reached an asymptote over time, but no edge effects, whereas wind-dispersed species richness showed steadily accumulating edge and connectivity effects, with no indication of an asymptote. Unassisted species also showed increasing differences caused by connectivity over time, whereas edges had no effect. Our limited use of proxies for movement ecology (e.g., dispersal mode as a proxy for motion capacity) resulted in moderate predictive power for communities and, in some cases, highlighted the importance of a more complete understanding of movement ecology for predicting how landscape conservation actions affect plant community dynamics.

  7. Regression analysis of technical parameters affecting nuclear power plant performances

    SciTech Connect

    Ghazy, R.; Ricotti, M. E.; Trueco, P.

    2012-07-01

    Since the 80's many studies have been conducted in order to explicate good and bad performances of commercial nuclear power plants (NPPs), but yet no defined correlation has been found out to be totally representative of plant operational experience. In early works, data availability and the number of operating power stations were both limited; therefore, results showed that specific technical characteristics of NPPs were supposed to be the main causal factors for successful plant operation. Although these aspects keep on assuming a significant role, later studies and observations showed that other factors concerning management and organization of the plant could instead be predominant comparing utilities operational and economic results. Utility quality, in a word, can be used to summarize all the managerial and operational aspects that seem to be effective in determining plant performance. In this paper operational data of a consistent sample of commercial nuclear power stations, out of the total 433 operating NPPs, are analyzed, mainly focusing on the last decade operational experience. The sample consists of PWR and BWR technology, operated by utilities located in different countries, including U.S. (Japan)) (France)) (Germany)) and Finland. Multivariate regression is performed using Unit Capability Factor (UCF) as the dependent variable; this factor reflects indeed the effectiveness of plant programs and practices in maximizing the available electrical generation and consequently provides an overall indication of how well plants are operated and maintained. Aspects that may not be real causal factors but which can have a consistent impact on the UCF, as technology design, supplier, size and age, are included in the analysis as independent variables. (authors)

  8. A comparison of fungal communities from four salt marsh plants using automated ribosomal intergenic spacer analysis (ARISA).

    PubMed

    Torzilli, Albert P; Sikaroodi, Masoumeh; Chalkley, David; Gillevet, Patrick M

    2006-01-01

    Fungal decomposers are important contributors to the detritus-based food webs of salt marsh ecosystems. Knowing the composition of salt marsh fungal communities is essential in understanding how detritus processing is affected by changes in community dynamics. Automated ribosomal intergenic spacer analysis (ARISA) was used to examine the composition of fungal communities associated with four temperate salt marsh plants, Spartina alterniflora (short and tall forms), Juncus roemerianus, Distichlis spicata and Sarcocornia perennis. Plant tissues were homogenized and subjected to a particle-filtration protocol that yielded 106 microm particulate fractions, which were used as a source of fungal isolates and fungal DNA. Genera identified from sporulating cultures demonstrated that the 106 microm particles from each host plant were reliable sources of fungal DNA for ARISA. Analysis of ARISA data by principal component analysis (PCA), principal coordinate analysis (PCO) and species diversity comparisons indicated that the fungal communities from the two grasses, S. alterniflora and D. spicata were more similar to each other than they were to the distinct communities associated with J. roemerianus and S. perennis. Principal component analysis also showed no consistent, seasonal pattern in the composition of these fungal communities. Comparisons of ARISA fingerprints from the different fungal communities and those from pure cultures of selected Spartina ascomycetes supported the host/substrate specificity observed for the fungal communities.

  9. A preliminary classification of wetland plant communities in north-central Minnesota

    USGS Publications Warehouse

    Cowardin, L.M.; Johnson, D.H.

    1973-01-01

    A classification of wetland plant communities was developed for a study area in north-central Minnesota in order to analyze data on waterfowl use of habitat that were gathered by radio telemetry. The classification employs features of several earlier classifications in addition to new classes for bogs and lakeshore communities. Brief descriptions are given for each community, and the important plant species are listed. Discriminant function analysis was used for 40 plant species. Seventy-five percent of the stands studied were classified correctly by this technique. Average probabilities of assignment to communities were calculated and helped to identify distinct and poorly defined communities as well as the relationship among communities.

  10. Composition of hydroponic medium affects thorium uptake by tobacco plants.

    PubMed

    Soudek, Petr; Kufner, Daniel; Petrová, Sárka; Mihaljevič, Martin; Vaněk, Tomáš

    2013-08-01

    The ability of thorium uptake as well as responses to heavy metal stress were tested in tobacco cultivar La Burley 21. Thorium was accumulated preferentially in the root system. The presence of citric, tartaric and oxalic acids in hydroponic medium increased thorium accumulation in all plant organs. On the other hand, the addition of diamines and polyamines, the important antioxidants in plants, resulted in decrease of thorium accumulation, especially in the root system. Negative correlation was found between putrescine concentration and thorium accumulation. Nevertheless, the most important factor influencing the accumulation of thorium was the absence of phosphate ions in a hydroponic medium that caused more than 10-fold increase of thorium uptake in all plant parts. Accumulation and distribution of thorium was followed in six cultivars and 14 selected transformants. Cultivar La Barley 21 represented an average between the tested genotypes, having a very good distribution ratio between roots, stems and leaves.

  11. Cadmium content of plants as affected by soil cadmium concentration

    SciTech Connect

    Lehoczky, E.; Szabados, I.; Marth, P.

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With the same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.

  12. Alaska Melilotus invasions: Distribution, origin, and susceptibility of plant communities

    USGS Publications Warehouse

    Conn, J.S.; Beattie, K.L.; Shephard, M.A.; Carlson, M.L.; Lapina, I.; Hebert, M.; Gronquist, R.; Densmore, R.; Rasy, M.

    2008-01-01

    Melilotus alba and M. officinalis were introduced to Alaska in 1913 as potential forage crops. These species have become naturalized and are now invading large, exotic plant-free regions of Alaska. We determined distributions of M. alba and M. officinalis in Alaska from surveys conducted each summer from 2002 to 2005. Melilotus alba and M. officinalis occurred at 721 and 205 sites, respectively (39,756 total sites surveyed). The northward limit for M. alba and M. officinalis was 67.15??N and 64.87??N, respectively. Both species were strictly associated with soil disturbance. Melilotus alba extended no farther than 15 m from road edges except where M. alba on roadsides met river floodplains and dispersed downriver (Matanuska and Nenana Rivers). Melilotus has now reached the Tanana River, a tributary of the Yukon River. Populations on floodplains were most extensive on braided sections. On the Nenana River, soil characteristics did not differ between where M. alba was growing versus similar areas where it had not yet reached. The pH of river soils (7.9-8.3) was higher than highway soils (7.3). Upland taiga plant communities grow on acid soils which may protect them from invasion by Melilotus, which prefer alkaline soils; however, early succession communities on river floodplains are susceptible because soils are alkaline. ?? 2008 Regents of the University of Colorado.

  13. Above–Belowground Herbivore Interactions in Mixed Plant Communities Are Influenced by Altered Precipitation Patterns

    PubMed Central

    Ryalls, James M. W.; Moore, Ben D.; Riegler, Markus; Johnson, Scott N.

    2016-01-01

    Root- and shoot-feeding herbivores have the capacity to influence one another by modifying the chemistry of the shared host plant. This can alter rates of nutrient mineralization and uptake by neighboring plants and influence plant–plant competition, particularly in mixtures combining grasses and legumes. Root herbivory-induced exudation of nitrogen (N) from legume roots, for example, may increase N acquisition by co-occurring grasses, with knock-on effects on grassland community composition. Little is known about how climate change may affect these interactions, but an important and timely question is how will grass–legume mixtures respond in a future with an increasing reliance on legume N mineralization in terrestrial ecosystems. Using a model grass–legume mixture, this study investigated how simultaneous attack on lucerne (Medicago sativa) by belowground weevils (Sitona discoideus) and aboveground aphids (Acyrthosiphon pisum) affected a neighboring grass (Phalaris aquatica) when subjected to drought, ambient, and elevated precipitation. Feeding on rhizobial nodules by weevil larvae enhanced soil water retention under ambient and elevated precipitation, but only when aphids were absent. While drought decreased nodulation and root N content in lucerne, grass root and shoot chemistry were unaffected by changes in precipitation. However, plant communities containing weevils but not aphids showed increased grass height and N concentrations, most likely associated with the transfer of N from weevil-attacked lucerne plants containing more nodules and higher root N concentrations compared with insect-free plants. Drought decreased aphid abundance by 54% but increased total and some specific amino acid concentrations (glycine, lysine, methionine, tyrosine, cysteine, histidine, arginine, aspartate, and glutamate), suggesting that aphid declines were being driven by other facets of drought (e.g., reduced phloem hydraulics). The presence of weevil larvae belowground

  14. How neighbor canopy architecture affects target plant performance

    SciTech Connect

    Tremmel, D.C.; Bazzaz, F.A. )

    1993-10-01

    Plant competition occurs through the negative effects that individual plants have on resource availability to neighboring individuals. Therefore competition experiments need to examine how different species change resource availability to their neighbors, and how different species respond to these changes-allocationally, architecturally, and physiologically-through time. In a greenhouse study we used a model system of annuals to examine how canopies of species having differing morphologies differed in their architectures and light-interception abilities, and how different species performed when grown in these canopies. Abutilon theophrasti, Datura stramonium, and Polygonum pensylvanicum were grown as [open quotes]targets[close quotes]. Plants were grown in pots, with one target plant and four neighbor plants. Detailed measurements of neighbor canopy structure and target plant canopy architecture were made at five harvests. Species with different morphologies showed large differences in canopy structure, particularly when grass and forb species were compared. Setaria, a grass, had a more open canopy than the other species (all forbs), and was a consistently weak competitor. Overall, however, the relative effects of different neighbors on target biomass varied with target species. Target biomass was poorly correlated with neighbor biomass and leaf area, but was highly correlated with a measure of target light-interception ability that took into account both target leaf deployment and neighbor light interception. Despite clear differences among neighbor species in canopy structure and effect on light penetration, the results suggest no broad generalizations about the effects of different species as neighbors. Knowledge of morphological, physiological, and life history characteristics of both the target and neighbor species may be necessary to explain the results of their competition. 53 refs., 4 figs., 4 tabs.

  15. Soil ecosystem functioning under climate change: plant species and community effects

    SciTech Connect

    Kardol, Paul; Cregger, Melissa; Campany, Courtney E; Classen, Aimee T

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct

  16. Soil ecosystem functioning under climate change: plant species and community effects.

    PubMed

    Kardol, Paul; Cregger, Melissa A; Campany, Courtney E; Classen, Aimee T

    2010-03-01

    Feedbacks of terrestrial ecosystems to atmospheric and climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the soil communities that depend on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and precipitation in Tennessee (USA). Specifically, we collected soils at the plot level (plant community soils) and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: (1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activity, and soil nematodes. Multiple climate-change factors can interact to shape ecosystems, but in our study, those interactions were largely driven by changes in water. (2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning, and this impact was not obvious when looking at plant community soils. Climate-change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. These results indicate that accurate assessments of climate-change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate-change-induced shifts in plant community composition will likely modify or counteract the

  17. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming.

    PubMed

    Xu, Xia; Shi, Zheng; Li, Dejun; Zhou, Xuhui; Sherry, Rebecca A; Luo, Yiqi

    2015-10-01

    Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13-year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000-2006) to 30% in the next 6 years (2007-2012). The two-stage warming stimulation of soil respiration was closely related to warming-induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming-induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming-induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming-induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all P > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems. PMID:25846478

  18. CO2 enrichment accelerates successional development of an understory plant community

    SciTech Connect

    Souza, Lara; Belote, R. Travis Travis; Kardol, Paul; Weltzin, Jake; Norby, Richard J

    2010-01-01

    Rising concentrations of atmospheric carbon dioxide ([CO{sub 2}]) may influence forest successional development and species composition of understory plant communities by altering biomass production of plant species of functional groups. Here, we describe how elevated [CO{sub 2}] (eCO{sub 2}) affects aboveground biomass within the understory community of a temperate deciduous forest at the Oak Ridge National Laboratory sweetgum (Liquidambar styraciflua) free-air carbon dioxide enrichment (FACE) facility in eastern Tennessee, USA. We asked if (i) CO{sub 2} enrichment affected total understory biomass and (ii) whether total biomass responses could be explained by changes in understory species composition or changes in relative abundance of functional groups through time. The FACE experiment started in 1998 with three rings receiving ambient [CO{sub 2}] (aCO{sub 2}) and two rings receiving eCO{sub 2}. From 2001 to 2003, we estimated species-specific, woody versus herbaceous and total aboveground biomass by harvesting four 1 x 0.5-m subplots within the established understory plant community in each FACE plot. In 2008, we estimated herbaceous biomass as previously but used allometric relationships to estimate woody biomass across two 5 x 5-m quadrats in each FACE plot. Across years, aboveground biomass of the understory community was on average 25% greater in eCO{sub 2} than in aCO{sub 2} plots. We could not detect differences in plant species composition between aCO{sub 2} and eCO{sub 2} treatments. However, we did observe shifts in the relative abundance of plant functional groups, which reflect important structural changes in the understory community. In 2001-03, little of the understory biomass was in woody species; herbaceous species made up 94% of the total understory biomass across [CO{sub 2}] treatments. Through time, woody species increased in importance, mostly in eCO{sub 2}, and in 2008, the contribution of herbaceous species to total understory biomass was

  19. Coastal Freshwater Wetland Plant Community Response to Seasonal Drought and Flooding in Northwestern Costa Rica

    EPA Science Inventory

    In tropical wet-dry climates, seasonal hydrologic cycles drive wetland plant community change and produce distinct seasonal plant assemblages. In this study, we examined the plant community response to seasonal flooding and drought in a large coastal freshwater wetland in northwe...

  20. 36 CFR 219.9 - Diversity of plant and animal communities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Diversity of plant and animal... PLANNING National Forest System Land Management Planning § 219.9 Diversity of plant and animal communities... diversity of plant and animal communities and the persistence of native species in the plan area....

  1. 36 CFR 219.9 - Diversity of plant and animal communities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Diversity of plant and animal... PLANNING National Forest System Land Management Planning § 219.9 Diversity of plant and animal communities... diversity of plant and animal communities and the persistence of native species in the plan area....

  2. 36 CFR 219.9 - Diversity of plant and animal communities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Diversity of plant and animal... PLANNING National Forest System Land Management Planning § 219.9 Diversity of plant and animal communities... diversity of plant and animal communities and the persistence of native species in the plan area....

  3. Classification and ordination of main plant communities along an altitudinal gradient in the arid and temperate climates of northeastern Mexico.

    PubMed

    Castillón, Eduardo Estrada; Arévalo, José Ramón; Quintanilla, José Ángel Villarreal; Rodríguez, María Magdalena Salinas; Encina-Domínguez, Juan Antonio; Rodríguez, Humberto González; Ayala, César Martín Cantú

    2015-10-01

    Quantitative data on the ecology of the main plant communities along an altitudinal gradient in northeastern Mexico were obtained with the aim of identifying the most important environmental variables that affect plant distribution and composition. The main threats to these communities were also investigated. Importance value index (IVi) of the 39 most important species and 16 environmental variables were recorded at 35 altitudinal gradients each spaced at intervals of at least 100-m altitude. Classification and ordination of vegetation showed six well-differentiated but overlapping plant communities: alpine meadow, cold conifer forest, mesic mixed forest, xeric scrub, Tamaulipan piedmont scrub, and halophytic grassland. Altitude, minimum and average temperatures, and organic matter content are the main variables affecting the plant distribution in northeastern Mexico. Urban growth, mechanized agriculture, and changes in land use are the main threats in the short and medium term to plant communities in this area. Climate change also seems to be having an impact at present or in the near future as shown by the presence of exotic shrubs from warmer areas in mesic and temperate areas inhabited by oak and oak-pine forest.

  4. Classification and ordination of main plant communities along an altitudinal gradient in the arid and temperate climates of northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Castillón, Eduardo Estrada; Arévalo, José Ramón; Quintanilla, José Ángel Villarreal; Rodríguez, María Magdalena Salinas; Encina-Domínguez, Juan Antonio; Rodríguez, Humberto González; Ayala, César Martín Cantú

    2015-10-01

    Quantitative data on the ecology of the main plant communities along an altitudinal gradient in northeastern Mexico were obtained with the aim of identifying the most important environmental variables that affect plant distribution and composition. The main threats to these communities were also investigated. Importance value index (IVi) of the 39 most important species and 16 environmental variables were recorded at 35 altitudinal gradients each spaced at intervals of at least 100-m altitude. Classification and ordination of vegetation showed six well-differentiated but overlapping plant communities: alpine meadow, cold conifer forest, mesic mixed forest, xeric scrub, Tamaulipan piedmont scrub, and halophytic grassland. Altitude, minimum and average temperatures, and organic matter content are the main variables affecting the plant distribution in northeastern Mexico. Urban growth, mechanized agriculture, and changes in land use are the main threats in the short and medium term to plant communities in this area. Climate change also seems to be having an impact at present or in the near future as shown by the presence of exotic shrubs from warmer areas in mesic and temperate areas inhabited by oak and oak-pine forest.

  5. Metaproteomics of complex microbial communities in biogas plants

    PubMed Central

    Heyer, Robert; Kohrs, Fabian; Reichl, Udo; Benndorf, Dirk

    2015-01-01

    Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed. PMID:25874383

  6. Shifts in flowering phenology reshape a subalpine plant community.

    PubMed

    CaraDonna, Paul J; Iler, Amy M; Inouye, David W

    2014-04-01

    Phenology--the timing of biological events--is highly sensitive to climate change. However, our general understanding of how phenology responds to climate change is based almost solely on incomplete assessments of phenology (such as first date of flowering) rather than on entire phenological distributions. Using a uniquely comprehensive 39-y flowering phenology dataset from the Colorado Rocky Mountains that contains more than 2 million flower counts, we reveal a diversity of species-level phenological shifts that bring into question the accuracy of previous estimates of long-term phenological change. For 60 species, we show that first, peak, and last flowering rarely shift uniformly and instead usually shift independently of one another, resulting in a diversity of phenological changes through time. Shifts in the timing of first flowering on average overestimate the magnitude of shifts in the timing of peak flowering, fail to predict shifts in the timing of last flowering, and underrepresent the number of species changing phenology in this plant community. Ultimately, this diversity of species-level phenological shifts contributes to altered coflowering patterns within the community, a redistribution of floral abundance across the season, and an expansion of the flowering season by more than I mo during the course of our study period. These results demonstrate the substantial reshaping of ecological communities that can be attributed to shifts in phenology.

  7. Shifts in flowering phenology reshape a subalpine plant community

    PubMed Central

    CaraDonna, Paul J.; Iler, Amy M.; Inouye, David W.

    2014-01-01

    Phenology—the timing of biological events—is highly sensitive to climate change. However, our general understanding of how phenology responds to climate change is based almost solely on incomplete assessments of phenology (such as first date of flowering) rather than on entire phenological distributions. Using a uniquely comprehensive 39-y flowering phenology dataset from the Colorado Rocky Mountains that contains more than 2 million flower counts, we reveal a diversity of species-level phenological shifts that bring into question the accuracy of previous estimates of long-term phenological change. For 60 species, we show that first, peak, and last flowering rarely shift uniformly and instead usually shift independently of one another, resulting in a diversity of phenological changes through time. Shifts in the timing of first flowering on average overestimate the magnitude of shifts in the timing of peak flowering, fail to predict shifts in the timing of last flowering, and underrepresent the number of species changing phenology in this plant community. Ultimately, this diversity of species-level phenological shifts contributes to altered coflowering patterns within the community, a redistribution of floral abundance across the season, and an expansion of the flowering season by more than I mo during the course of our study period. These results demonstrate the substantial reshaping of ecological communities that can be attributed to shifts in phenology. PMID:24639544

  8. Shifts in flowering phenology reshape a subalpine plant community.

    PubMed

    CaraDonna, Paul J; Iler, Amy M; Inouye, David W

    2014-04-01

    Phenology--the timing of biological events--is highly sensitive to climate change. However, our general understanding of how phenology responds to climate change is based almost solely on incomplete assessments of phenology (such as first date of flowering) rather than on entire phenological distributions. Using a uniquely comprehensive 39-y flowering phenology dataset from the Colorado Rocky Mountains that contains more than 2 million flower counts, we reveal a diversity of species-level phenological shifts that bring into question the accuracy of previous estimates of long-term phenological change. For 60 species, we show that first, peak, and last flowering rarely shift uniformly and instead usually shift independently of one another, resulting in a diversity of phenological changes through time. Shifts in the timing of first flowering on average overestimate the magnitude of shifts in the timing of peak flowering, fail to predict shifts in the timing of last flowering, and underrepresent the number of species changing phenology in this plant community. Ultimately, this diversity of species-level phenological shifts contributes to altered coflowering patterns within the community, a redistribution of floral abundance across the season, and an expansion of the flowering season by more than I mo during the course of our study period. These results demonstrate the substantial reshaping of ecological communities that can be attributed to shifts in phenology. PMID:24639544

  9. Metaproteomics of complex microbial communities in biogas plants.

    PubMed

    Heyer, Robert; Kohrs, Fabian; Reichl, Udo; Benndorf, Dirk

    2015-09-01

    Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed.

  10. Ecosystem engineers modulate exotic invasions in riparian plant communities

    NASA Astrophysics Data System (ADS)

    Corenblit, D.; Tabacchi, E.; Steiger, J.; Gonzales, E.; Planty-Tabacchi, A. M.

    2012-04-01

    The relationship between biodiversity and invasibility of exotic plant species within different environments and at different spatial scales is still being discussed amongst scientists. In this study, patterns of native and exotic plant species richness and cover were examined in relation with ecosystem engineer effects of pioneer vegetation within the active tract of the Mediterranean gravel bed river Tech, South France. The floristic composition was characterized according to two distinct vegetation types corresponding to two habitats with contrasted conditions: (i) open and exposed alluvial bars dominated by herbaceous communities and (ii) islands and river margins partly stabilized by ecosystem engineer plants, disconnected from annual hydrogeomorphic disturbances, and covered by woody vegetation. A significant positive correlation between exotic and native plant species richness and cover was observed for the herbaceous and the woody types, indicating that both native and exotic richness benefit from the prevailing environmental conditions. However, significant differences in native and exotic specific richness and cover were found between these two vegetation types. Higher values of total species richness and Shannon diversity of native and exotic species were attained within the herbaceous vegetation type compared to the woody type. These differences may be related to changes in local exposure to hydrogeomorphic disturbances driven by engineer plant species, and to vegetation succession. A lower exotic cover within the woody vegetation type compared to the herbaceous type suggested an increase of resistance to invasion by exotic species during the biogeomorphic succession. The engineer effects of woody vegetation resulted in a decrease of alpha (α) diversity at patch scale but, in parallel, caused an increase in gamma (γ) diversity at the scale of the studied river segment. Our study corroborates recent investigations that support the theory of biotic

  11. A Hardy Plant Facilitates Nitrogen Removal via Microbial Communities in Subsurface Flow Constructed Wetlands in Winter.

    PubMed

    Wang, Penghe; Zhang, Hui; Zuo, Jie; Zhao, Dehua; Zou, Xiangxu; Zhu, Zhengjie; Jeelani, Nasreen; Leng, Xin; An, Shuqing

    2016-01-01

    The plants effect in subsurface flow constructed wetlands (SSF-CWs) is controversial, especially at low temperatures. Consequently, several SSF-CWs planted with Iris pseudacorus (CWI) or Typha orientalis Presl. (CWT) and several unplanted ones (CWC) were set up and fed with secondary effluent of sewage treatment plant during the winter in Eastern China. The 16S rDNA Illumina Miseq sequencing analysis indicated the positive effects of I. pseudacorus on the bacterial community richness and diversity in the substrate. Moreover, the community compositions of the bacteria involved with denitrification presented a significant difference in the three systems. Additionally, higher relative abundances of nitrifying bacteria (0.4140%, 0.2402% and 0.4318% for Nitrosomonas, Nitrosospira and Nitrospira, respectively) were recorded in CWI compared with CWT (0.2074%, 0.0648% and 0.0181%, respectively) and CWC (0.3013%, 0.1107% and 0.1185%, respectively). Meanwhile, the average removal rates of NH4(+)-N and TN in CWI showed a prominent advantage compared to CWC, but no distinct advantage was found in CWT. The hardy plant I. pseudacorus, which still had active root oxygen release in cold temperatures, positively affected the abundance of nitrifying bacteria in the substrate, and accordingly was supposed to contribute to a comparatively high nitrogen removal efficiency of the system during the winter. PMID:27646687

  12. A Hardy Plant Facilitates Nitrogen Removal via Microbial Communities in Subsurface Flow Constructed Wetlands in Winter

    PubMed Central

    Wang, Penghe; Zhang, Hui; Zuo, Jie; Zhao, Dehua; Zou, Xiangxu; Zhu, Zhengjie; Jeelani, Nasreen; Leng, Xin; An, Shuqing

    2016-01-01

    The plants effect in subsurface flow constructed wetlands (SSF-CWs) is controversial, especially at low temperatures. Consequently, several SSF-CWs planted with Iris pseudacorus (CWI) or Typha orientalis Presl. (CWT) and several unplanted ones (CWC) were set up and fed with secondary effluent of sewage treatment plant during the winter in Eastern China. The 16S rDNA Illumina Miseq sequencing analysis indicated the positive effects of I. pseudacorus on the bacterial community richness and diversity in the substrate. Moreover, the community compositions of the bacteria involved with denitrification presented a significant difference in the three systems. Additionally, higher relative abundances of nitrifying bacteria (0.4140%, 0.2402% and 0.4318% for Nitrosomonas, Nitrosospira and Nitrospira, respectively) were recorded in CWI compared with CWT (0.2074%, 0.0648% and 0.0181%, respectively) and CWC (0.3013%, 0.1107% and 0.1185%, respectively). Meanwhile, the average removal rates of NH4+-N and TN in CWI showed a prominent advantage compared to CWC, but no distinct advantage was found in CWT. The hardy plant I. pseudacorus, which still had active root oxygen release in cold temperatures, positively affected the abundance of nitrifying bacteria in the substrate, and accordingly was supposed to contribute to a comparatively high nitrogen removal efficiency of the system during the winter. PMID:27646687

  13. A Hardy Plant Facilitates Nitrogen Removal via Microbial Communities in Subsurface Flow Constructed Wetlands in Winter

    NASA Astrophysics Data System (ADS)

    Wang, Penghe; Zhang, Hui; Zuo, Jie; Zhao, Dehua; Zou, Xiangxu; Zhu, Zhengjie; Jeelani, Nasreen; Leng, Xin; An, Shuqing

    2016-09-01

    The plants effect in subsurface flow constructed wetlands (SSF-CWs) is controversial, especially at low temperatures. Consequently, several SSF-CWs planted with Iris pseudacorus (CWI) or Typha orientalis Presl. (CWT) and several unplanted ones (CWC) were set up and fed with secondary effluent of sewage treatment plant during the winter in Eastern China. The 16S rDNA Illumina Miseq sequencing analysis indicated the positive effects of I. pseudacorus on the bacterial community richness and diversity in the substrate. Moreover, the community compositions of the bacteria involved with denitrification presented a significant difference in the three systems. Additionally, higher relative abundances of nitrifying bacteria (0.4140%, 0.2402% and 0.4318% for Nitrosomonas, Nitrosospira and Nitrospira, respectively) were recorded in CWI compared with CWT (0.2074%, 0.0648% and 0.0181%, respectively) and CWC (0.3013%, 0.1107% and 0.1185%, respectively). Meanwhile, the average removal rates of NH4+-N and TN in CWI showed a prominent advantage compared to CWC, but no distinct advantage was found in CWT. The hardy plant I. pseudacorus, which still had active root oxygen release in cold temperatures, positively affected the abundance of nitrifying bacteria in the substrate, and accordingly was supposed to contribute to a comparatively high nitrogen removal efficiency of the system during the winter.

  14. A Hardy Plant Facilitates Nitrogen Removal via Microbial Communities in Subsurface Flow Constructed Wetlands in Winter.

    PubMed

    Wang, Penghe; Zhang, Hui; Zuo, Jie; Zhao, Dehua; Zou, Xiangxu; Zhu, Zhengjie; Jeelani, Nasreen; Leng, Xin; An, Shuqing

    2016-09-20

    The plants effect in subsurface flow constructed wetlands (SSF-CWs) is controversial, especially at low temperatures. Consequently, several SSF-CWs planted with Iris pseudacorus (CWI) or Typha orientalis Presl. (CWT) and several unplanted ones (CWC) were set up and fed with secondary effluent of sewage treatment plant during the winter in Eastern China. The 16S rDNA Illumina Miseq sequencing analysis indicated the positive effects of I. pseudacorus on the bacterial community richness and diversity in the substrate. Moreover, the community compositions of the bacteria involved with denitrification presented a significant difference in the three systems. Additionally, higher relative abundances of nitrifying bacteria (0.4140%, 0.2402% and 0.4318% for Nitrosomonas, Nitrosospira and Nitrospira, respectively) were recorded in CWI compared with CWT (0.2074%, 0.0648% and 0.0181%, respectively) and CWC (0.3013%, 0.1107% and 0.1185%, respectively). Meanwhile, the average removal rates of NH4(+)-N and TN in CWI showed a prominent advantage compared to CWC, but no distinct advantage was found in CWT. The hardy plant I. pseudacorus, which still had active root oxygen release in cold temperatures, positively affected the abundance of nitrifying bacteria in the substrate, and accordingly was supposed to contribute to a comparatively high nitrogen removal efficiency of the system during the winter.

  15. Plant extracts affect in vitro rumen microbial fermentation.

    PubMed

    Busquet, M; Calsamiglia, S; Ferret, A; Kamel, C

    2006-02-01

    Different doses of 12 plant extracts and 6 secondary plant metabolites were incubated for 24 h in diluted ruminal fluid with a 50:50 forage:concentrate diet. Treatments were: control (no additive), plant extracts (anise oil, cade oil, capsicum oil, cinnamon oil, clove bud oil, dill oil, fenugreek, garlic oil, ginger oil, oregano oil, tea tree oil, and yucca), and secondary plant metabolites (anethol, benzyl salicylate, carvacrol, carvone, cinnamaldehyde, and eugenol). Each treatment was supplied at 3, 30, 300, and 3,000 mg/L of culture fluid. At 3,000 mg/L, most treatments decreased total volatile fatty acid concentration, but cade oil, capsicum oil, dill oil, fenugreek, ginger oil, and yucca had no effect. Different doses of anethol, anise oil, carvone, and tea tree oil decreased the proportion of acetate and propionate, which suggests that these compounds may not be nutritionally beneficial to dairy cattle. Garlic oil (300 and 3,000 mg/L) and benzyl salicylate (300 and 3,000 mg/L) reduced acetate and increased propionate and butyrate proportions, suggesting that methane production was inhibited. At 3,000 mg/L, capsicum oil, carvacrol, carvone, cinnamaldehyde, cinnamon oil, clove bud oil, eugenol, fenugreek, and oregano oil resulted in a 30 to 50% reduction in ammonia N concentration. Careful selection and combination of these extracts may allow the manipulation of rumen microbial fermentation.

  16. Maximizing plant density affects broccoli yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased demand for fresh market bunch broccoli (Brassica oleracea L. var. italica) has led to increased production along the United States east coast. Maximizing broccoli yields is a primary concern for quickly expanding southeastern commercial markets. This broccoli plant density study was carr...

  17. Host plant affects morphometric variation of Diaphorina citri (Hemiptera: Liviidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian citrus psyllid (ACP), due to its potential to vector the pathogen causing citrus greening disease or huanglongbing, is one of the most serious citrus pests worldwide. While optimal plant cultivars for ACP oviposition and development have been determined, little is known of the influence of...

  18. Impacts of climate change drivers on C4 grassland productivity: scaling driver effects through the plant community.

    PubMed

    Polley, H Wayne; Derner, Justin D; Jackson, Robert B; Wilsey, Brian J; Fay, Philip A

    2014-07-01

    Climate change drivers affect plant community productivity via three pathways: (i) direct effects of drivers on plants; (ii) the response of species abundances to drivers (community response); and (iii) the feedback effect of community change on productivity (community effect). The contribution of each pathway to driver-productivity relationships depends on functional traits of dominant species. We used data from three experiments in Texas, USA, to assess the role of community dynamics in the aboveground net primary productivity (ANPP) response of C4 grasslands to two climate drivers applied singly: atmospheric CO2 enrichment and augmented summer precipitation. The ANPP-driver response differed among experiments because community responses and effects differed. ANPP increased by 80-120g m(-2) per 100 μl l(-1) rise in CO2 in separate experiments with pasture and tallgrass prairie assemblages. Augmenting ambient precipitation by 128mm during one summer month each year increased ANPP more in native than in exotic communities in a third experiment. The community effect accounted for 21-38% of the ANPP CO2 response in the prairie experiment but little of the response in the pasture experiment. The community response to CO2 was linked to species traits associated with greater soil water from reduced transpiration (e.g. greater height). Community effects on the ANPP CO2 response and the greater ANPP response of native than exotic communities to augmented precipitation depended on species differences in transpiration efficiency. These results indicate that feedbacks from community change influenced ANPP-driver responses. However, the species traits that regulated community effects on ANPP differed from the traits that determined how communities responded to drivers.

  19. Linking Geology and Microbiology: Inactive Pockmarks Affect Sediment Microbial Community Structure

    PubMed Central

    Haverkamp, Thomas H. A.; Hammer, Øyvind; Jakobsen, Kjetill S.

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment. PMID:24475066

  20. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    PubMed

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  1. Environmental heterogeneity affects the location of modelled communities along the niche–neutrality continuum

    PubMed Central

    Bar-Massada, Avi; Kent, Rafi; Carmel, Yohay

    2014-01-01

    The continuum hypothesis has been proposed as a means to reconcile the contradiction between the niche and neutral theories. While past research has shown that species richness affects the location of communities along the niche–neutrality continuum, there may be extrinsic forces at play as well. We used a spatially explicit continuum model to quantify the effects of environmental heterogeneity, comprising abundance distribution and spatial configuration of resources, on the degree of community neutrality. We found that both components of heterogeneity affect the degree of community neutrality and that species' dispersal characteristics affect the neutrality–heterogeneity relationship. Narrower resource abundance distributions decrease neutrality, while spatial configuration, which is manifested by spatial aggregation of resources, decreases neutrality at higher aggregation levels. In general, the degree of community neutrality was affected by complex interactions among spatial configuration of resources, their abundance distributions and the dispersal characteristics of species in the community. Our results highlight the important yet overlooked role of the environment in dictating the location of communities along the hypothesized niche–neutrality continuum. PMID:24671973

  2. Factors affecting screening for diabetic complications in the community: a multilevel analysis

    PubMed Central

    2016-01-01

    OBJECTIVES: The objective of the present study was to identify the factors that affect screening for diabetic complications by sex in the community. METHODS: This study used individual-level data from the 2013 Community Health Survey (CHS) for 20,806 (male, 9,958; female, 10,848) adults aged 30 years or older who were diagnosed with diabetes. Community-level data for 253 communities were derived from either CHS or national statistics. A chi-square test and multilevel logistic regression analysis was performed. RESULTS: There were significant differences in the rate of screening for diabetic complications according to individual-level and community-level variables. In the multilevel analysis, the community-level variance ratio of the null model was 7.4% and 9.2% for males and females, respectively. With regard to community-level variables, males were affected by the city type, number of physicians, and their living environment, while females were affected by number of physicians, natural and living environments, and public transportation. CONCLUSIONS: The factors that influenced individual willingness to undergo screening for diabetic complications differed slightly by sex; however, both males and females were more likely to undergo screening when they recognized their health status as poor or when they actively sought to manage their health conditions. Moreover, in terms of community-level variables, both males and females were affected by the number of physicians. It is essential to provide sufficient and ongoing opportunities for education on diabetes and its management through collaboration with local communities and primary care medical centers. PMID:27156347

  3. Plant-by-plant variations of bacterial communities associated with leaves of the nickel hyperaccumulator Alyssum bertolonii Desv.

    PubMed

    Mengoni, Alessio; Pini, Francesco; Huang, Li-Nan; Shu, Wen-Sheng; Bazzicalupo, Marco

    2009-10-01

    Bacteria associated with tissues of metal-hyperaccumulating plants are of great interest due to the multiple roles they may play with respect to plant growth and resistance to heavy metals. The variability of bacterial communities associated with plant tissues of three populations of Alyssum bertolonii, a Ni hyperaccumulator endemic of serpentine outcrops of Central Italy, was investigated. Terminal-restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA genes was applied to DNA extracted from leaf tissues of 30 individual plants from three geographically separated serpentine outcrops. Moreover, T-RFLP fingerprinting was also performed on DNA extracted from the same soils from which the plants were collected. Fifty-nine unique terminal-restriction fragments (TRFs) were identified, with more than half of the taxonomically interpreted TRFs assigned to Alpha- and Gamma-Proteobacteria and Clostridia. Data were then used to define the extent of variation of bacterial communities due to single plants or to plant populations. Results indicated a very high plant-by-plant variation of leaf-associated community (more than 93% of total variance observed). However, a core (numerically small) of plant-specific TRFs was found. This work demonstrates that plant-associated bacterial communities represent a large reservoir of biodiversity and that the high variability existing between plants, even from the same population, should be taken into account in future studies on association between bacteria and metal-hyperaccumulating plants. PMID:19479304

  4. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.

    PubMed

    Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel

    2013-03-01

    Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands.

  5. Plant and arthropod community sensitivity to rainfall manipulation but not nitrogen enrichment in a successional grassland ecosystem.

    PubMed

    Lee, Mark A; Manning, Pete; Walker, Catherine S; Power, Sally A

    2014-12-01

    Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15% winter rainfall and -30% summer rainfall) or ambient climate, achieving +15% winter rainfall and -39% summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha(-1) year(-1)) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.

  6. Factors driving distribution limits in an annual plant community.

    PubMed

    Emery, Nancy C; Stanton, Maureen L; Rice, Kevin J

    2009-01-01

    Studies examining plant distribution patterns across environmental gradients have generally focused on perennial-dominated systems, and we know relatively little about the processes structuring annual communities. Here, the ecological factors determining local distribution patterns of five dominant annual species distributed across micro-topographic gradients in ephemeral California wetlands are examined. Over two growing seasons in three vernal pools, patterns of inundation and above-ground biomass were characterized across the microtopographic gradient, population boundaries for five dominant species were documented and a reciprocal transplant experiment and neighbor removal treatment were conducted to test the relative effects of within-pool elevation, competition and seed dispersal on plant performance. Despite large differences in inundation time between growing seasons, above-ground biomass and the elevation of population boundaries remained consistent. The predicted 'optimal' depth for each species shifted between years, but competition and recruitment limitation restricted species' abilities to track these conditions. The distributions of the focal taxa are primarily driven by differential responses to environmental conditions associated with different microtopographic positions along pool inundation gradients, and are reinforced by competition and dispersal constraints. The relative importance of competition, other environmental factors and dispersal patterns appear to contrast with results obtained in systems dominated by perennial plants. PMID:19154319

  7. Leaf traits within communities: context may affect the mapping of traits to function.

    PubMed

    Funk, Jennifer L; Cornwell, William K

    2013-09-01

    The leaf economics spectrum (LES) has revolutionized the way many ecologists think about quantifying plant ecological trade-offs. In particular, the LES has connected a clear functional trade-off (long-lived leaves with slow carbon capture vs. short-lived leaves with fast carbon capture) to a handful of easily measured leaf traits. Building on this work, community ecologists are now able to quickly assess species carbon-capture strategies, which may have implications for community-level patterns such as competition or succession. However, there are a number of steps in this logic that require careful examination, and a potential danger arises when interpreting leaf-trait variation among species within communities where trait relationships are weak. Using data from 22 diverse communities, we show that relationships among three common functional traits (photosynthetic rate, leaf nitrogen concentration per mass, leaf mass per area) are weak in communities with low variation in leaf life span (LLS), especially communities dominated by herbaceous or deciduous woody species. However, globally there are few LLS data sets for communities dominated by herbaceous or deciduous species, and more data are needed to confirm this pattern. The context-dependent nature of trait relationships at the community level suggests that leaf-trait variation within communities, especially those dominated by herbaceous and deciduous woody species, should be interpreted with caution. PMID:24279259

  8. Incorporating Peatland Plant Communities into the Enzymic 'Latch' Hypothesis: Can Vegetation Influence Carbon Storage Mechanisms?

    NASA Astrophysics Data System (ADS)

    Romanowicz, K. J.; Daniels, A. L.; Potvin, L. R.; Kane, E. S.; Kolka, R. K.; Chimner, R. A.; Lilleskov, E. A.

    2012-12-01

    High water table conditions in peatland ecosystems are known to favor plant production over decomposition and carbon is stored. Dominant plant communities change in response to water table but little is know of how these changes affect belowground carbon storage. One hypothesis known as the enzymic 'latch' proposed by Freeman et al. suggests that oxygen limitations due to high water table conditions inhibit microorganisms from synthesizing specific extracellular enzymes essential for carbon and nutrient mineralization, allowing carbon to be stored as decomposition is reduced. Yet, this hypothesis excludes plant community interactions on carbon storage. We hypothesize that the dominant vascular plant communities, sedges and ericaceous shrubs, will have inherently different effects on peatland carbon storage, especially in response to declines in water table. Sedges greatly increase in abundance following water table decline and create extensive carbon oxidation and mineralization hotspots through the production of deep roots with aerenchyma (air channels in roots). Increased oxidation may enhance aerobic microbial activity including increased enzyme activity, leading to peat subsidence and carbon loss. In contrast, ericaceous shrubs utilize enzymatically active ericoid mycorrhizal fungi that suppress free-living heterotrophs, promoting decreased carbon mineralization by mediating changes in rhizosphere microbial communities and enzyme activity regardless of water table declines. Beginning May 2010, bog monoliths were harvested, housed in mesocosm chambers, and manipulated into three vegetation treatments: unmanipulated (+sedge, +Ericaceae), sedge (+sedge, -Ericaceae), and Ericaceae (-sedge, +Ericaceae). Following vegetation manipulations, two distinct water table manipulations targeting water table seasonal profiles were implemented: (low intra-seasonal variability, higher mean water table; high intra-seasonal variability, lower mean water table). In 2012, peat

  9. Land-use intensification effects on functional properties in tropical plant communities.

    PubMed

    Carreño-Rocabado, Geovana; Peña-Claros, Marielos; Bongers, Frans; Díaz, Sandra; Quetier, Fabien; Chuviña, José; Poorter, Lourens

    2016-01-01

    There is consensus that plant diversity and ecosystem processes are negatively affected by land-use intensification (LUI), but, at the same time, there is empirical evidence that a large heterogeneity can be found in the responses. This heterogeneity is especially poorly understood in tropical ecosystems. We evaluated changes in community functional properties across five common land-use types in the wet tropics with different land-use intensity: mature forest, logged forest, secondary forest, agricultural land, and pastureland, located in the lowlands of Bolivia. For the dominant plant species, we measured 12 functional response traits related to their life history, acquisition and conservation of resources, plant domestication, and breeding. We used three single-trait metrics to describe community functional properties: community abundance-weighted mean (CWM) traits values, coefficient of variation, and kurtosis of distribution. The CWM of all 12 traits clearly responded to LUI. Overall, we found that an increase in LUI resulted in communities dominated by plants with acquisitive leaf trait values. However, contrary to our expectations, secondary forests had more conservative trait values (i.e., lower specific leaf area) than mature and logged forest, probably because they were dominated by palm species. Functional variation peaked at intermediate land-use intensity (high coefficient of variation and low kurtosis), which included secondary forest but, unexpectedly, also agricultural land, which is an intensely managed system. The high functional variation of these systems is due to a combination of how response traits (and species) are filtered out by biophysical filters and how management practices introduced a range of exotic species and their trait values into the local species pool. Our results showed that, at local scales and depending on prevailing environmental and management practices, LUI does not necessarily result in communities with more acquisitive

  10. Land-use intensification effects on functional properties in tropical plant communities.

    PubMed

    Carreño-Rocabado, Geovana; Peña-Claros, Marielos; Bongers, Frans; Díaz, Sandra; Quetier, Fabien; Chuviña, José; Poorter, Lourens

    2016-01-01

    There is consensus that plant diversity and ecosystem processes are negatively affected by land-use intensification (LUI), but, at the same time, there is empirical evidence that a large heterogeneity can be found in the responses. This heterogeneity is especially poorly understood in tropical ecosystems. We evaluated changes in community functional properties across five common land-use types in the wet tropics with different land-use intensity: mature forest, logged forest, secondary forest, agricultural land, and pastureland, located in the lowlands of Bolivia. For the dominant plant species, we measured 12 functional response traits related to their life history, acquisition and conservation of resources, plant domestication, and breeding. We used three single-trait metrics to describe community functional properties: community abundance-weighted mean (CWM) traits values, coefficient of variation, and kurtosis of distribution. The CWM of all 12 traits clearly responded to LUI. Overall, we found that an increase in LUI resulted in communities dominated by plants with acquisitive leaf trait values. However, contrary to our expectations, secondary forests had more conservative trait values (i.e., lower specific leaf area) than mature and logged forest, probably because they were dominated by palm species. Functional variation peaked at intermediate land-use intensity (high coefficient of variation and low kurtosis), which included secondary forest but, unexpectedly, also agricultural land, which is an intensely managed system. The high functional variation of these systems is due to a combination of how response traits (and species) are filtered out by biophysical filters and how management practices introduced a range of exotic species and their trait values into the local species pool. Our results showed that, at local scales and depending on prevailing environmental and management practices, LUI does not necessarily result in communities with more acquisitive

  11. Treatment of Diarrhoea in Rural African Communities: An Overview of Measures to Maximise the Medicinal Potentials of Indigenous Plants

    PubMed Central

    Njume, Collise; Goduka, Nomalungelo I.

    2012-01-01

    Diarrhoea is a major cause of morbidity and mortality in rural communities in Africa, particularly in children under the age of five. This calls for the development of cost effective alternative strategies such as the use of herbal drugs in the treatment of diarrhoea in these communities. Expenses associated with the use of orthodox medicines have generated renewed interest and reliance on indigenous medicinal plants in the treatment and management of diarrhoeal infections in rural communities. The properties of many phenolic constituents of medicinal plants such as their ability to inhibit enteropooling and delay gastrointestinal transit are very useful in the control of diarrhoea, but problems such as scarcity of valuable medicinal plants, lack of standardization of methods of preparation, poor storage conditions and incertitude in some traditional health practitioners are issues that affect the efficacy and the practice of traditional medicine in rural African communities. This review appraises the current strategies used in the treatment of diarrhoea according to the Western orthodox and indigenous African health-care systems and points out major areas that could be targeted by health-promotion efforts as a means to improve management and alleviate suffering associated with diarrhoea in rural areas of the developing world. Community education and research with indigenous knowledge holders on ways to maximise the medicinal potentials in indigenous plants could improve diarrhoea management in African rural communities. PMID:23202823

  12. Climate impacts on bird and plant communities from altered animal-plant interactions

    NASA Astrophysics Data System (ADS)

    Martin, Thomas E.; Maron, John L.

    2012-03-01

    The contribution of climate change to declining populations of organisms remains a question of outstanding concern. Much attention to declining populations has focused on how changing climate drives phenological mismatches between animals and their food. Effects of climate on plant communities may provide an alternative, but particularly powerful, influence on animal populations because plants provide their habitats. Here, we show that abundances of deciduous trees and associated songbirds have declined with decreasing snowfall over 22 years of study in montane Arizona, USA. We experimentally tested the hypothesis that declining snowfall indirectly influences plants and associated birds by allowing greater over-winter herbivory by elk (Cervus canadensis). We excluded elk from one of two paired snowmelt drainages (10 ha per drainage), and replicated this paired experiment across three distant canyons. Over six years, we reversed multi-decade declines in plant and bird populations by experimentally inhibiting heavy winter herbivory associated with declining snowfall. Moreover, predation rates on songbird nests decreased in exclosures, despite higher abundances of nest predators, demonstrating the over-riding importance of habitat quality to avian recruitment. Thus, our results suggest that climate impacts on plant-animal interactions can have forceful ramifying effects on plants, birds, and ecological interactions.

  13. Disentangling above- and belowground neighbor effects on the growth, chemistry, and arthropod community on a focal plant.

    PubMed

    Kos, Martine; Bukovinszky, Tibor; Mulder, Patrick P J; Bezemeri, T Martijn

    2015-01-01

    Neighboring plants can influence arthropods on a focal plant, and this can result in associational resistance or associational susceptibility. These effects can be mediated by above- and belowground interactions between the neighbor and focal plant, but determining the relative contribution of the above- and belowground effects remains an open challenge. We performed a common garden experiment with a design that enabled us to disentangle the above- and belowground effects of five different plant species on the growth and chemistry of the focal plant ragwort (Jacobaea vulgaris), and the arthropod community associated with this plant. Aboveground effects of different neighboring plant species were more important for the growth and quality of J. vulgaris and for the arthropod abundance on this plant than belowground effects of neighbors. This remained true when only indirect neighbor effects (via affecting the biomass or quality of the focal plant) were considered. The aboveground neighbor effects on arthropod abundance on the focal plant were strongly negative. However, the magnitude of the effect depended on the identity of the neighboring species, and herbivore abundance on the focal plant was higher when surrounded by conspecific than when surrounded by heterospecific plants. We also observed interactions between above- and belowground neighbor effects, indicating that these effects may be nonadditive. We conclude that above- and belowground associational effects are not equally strong, and that neighbor effects on plant-arthropod interactions occur predominantly aboveground.

  14. Modeling dynamics of tundra plant communities on the Yamal Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Epstein, H. E.; Walker, D. A.

    2010-12-01

    Multiple environmental drivers, including climate, soil conditions and herbivory, affect arctic tundra vegetation dynamics. These factors may have been evaluated individually in the past; however, their interactions contribute to more complicated tundra plant community dynamics and may represent a substantial source of uncertainty in predicting tundra ecosystem properties in the changing Arctic. This study investigates the effects of soils, grazing, and climate change on tundra plant communities at the plant functional type (PFT) level, based on previous integrated modeling research at the ecosystem level. The study area encompasses the Yamal Peninsula, northwestern Siberia, where soil and biomass data were collected along the Yamal Arctic Transect (YAT), to drive a nutrient-based tundra vegetation model (ArcVeg) and to validate the simulation results. We analyzed plant functional type biomass and net primary productivity (NPP), and found that with higher temperatures (+2°C mean growing season temperature), most plant functional types responded positively with increased biomass and NPP, while grazing suppressed such responses in both high and low soil organic nitrogen (SON) sites. The magnitudes of the responses to warming depended on SON and grazing intensity. Relatively, there were greater responses of biomass and NPP in low SON sites compared to high SON sites. Moss biomass (in contrast to other plant types) declined 34% with warming in the low SON site and 28% in the high SON site in subzone E (the most southern tundra subzone). Increases in Low Arctic shrub biomass with warming were 61% in the high SON site in subzone E and 96% in the low SON site. Decrease in moss biomass due to warming was mitigated about 2% by high grazing frequency (maximum of 25% of biomass removal every two years) in the high SON site in subzone E, with an opposite effect in the low SON site. High grazing frequency caused greater relative increases in total shrub biomass for both low

  15. Plant natural variability may affect safety assessment data.

    PubMed

    Batista, Rita; Oliveira, Margarida

    2010-12-01

    Before market introduction, genetic engineered (GE) food products, like any other novel food product, are subjected to extensive assessment of their potential effects on human health. In recent years, a number of profiling technologies have been explored aiming to increase the probability of detecting any unpredictable unintended effect and, consequently improving the efficiency of GE food safety assessment. These techniques still present limitations associated with the interpretation of the observed differences with respect to their biological relevance and toxicological significance. In order to address this issue, in this study, we have performed 2D-gel electrophoresis of five different ears of five different MON810 maize plants and of other five of the non-transgenic near-isogenic line. We have also performed 2D-gel electrophoresis of the pool of the five protein extractions of MON810 and control lines. We have notice that, in this example, the exclusive use of data from 2D-electrophoresed pooled samples, to compare these two lines, would be insufficient for an adequate safety evaluation. We conclude that, when using "omics" technologies, it is extremely important to eliminate all potential differences due to factors not related to the ones under study, and to understand the role of natural plant-to-plant variability in the encountered differences.

  16. Understanding Plant Community Responses to Combinations of Biotic and Abiotic Factors in Different Phases of the Plant Growth Cycle

    PubMed Central

    Wood, Kevin A.; Stillman, Richard A.; Clarke, Ralph T.; Daunt, Francis; O’Hare, Matthew T.

    2012-01-01

    Understanding plant community responses to combinations of biotic and abiotic factors is critical for predicting ecosystem response to environmental change. However, studies of plant community regulation have seldom considered how responses to such factors vary with the different phases of the plant growth cycle. To address this deficit we studied an aquatic plant community in an ecosystem subject to gradients in mute swan (Cygnus olor) herbivory, riparian shading, water temperature and distance downstream of the river source. We quantified abundance, species richness, evenness, flowering and dominance in relation to biotic and abiotic factors during the growth-, peak-, and recession-phases of the plant growth cycle. We show that the relative importance of biotic and abiotic factors varied between plant community properties and between different phases of the plant growth cycle. Herbivory became more important during the later phases of peak abundance and recession due to an influx of swans from adjacent pasture fields. Shading by riparian vegetation also had a greater depressing effect on biomass in later seasons, probably due to increased leaf abundance reducing light intensity reaching the aquatic plants. The effect of temperature on community diversity varied between upstream and downstream sites by altering the relative competitiveness of species at these sites. These results highlight the importance of seasonal patterns in the regulation of plant community structure and function by multiple factors. PMID:23166777

  17. Communities of different plant diversity respond similarly to drought stress: experimental evidence from field non-weeded and greenhouse conditions

    NASA Astrophysics Data System (ADS)

    Lanta, Vojtěch; Doležal, Jiří; Zemková, Lenka; Lepš, Jan

    2012-06-01

    Accelerating rate of species loss has prompted researchers to study the role of species diversity in processes that control ecosystem functioning. Although negative impact of species loss has been documented, the evidence concerning its impact on ecosystem stability is still limited. Here, we studied the effects of declining species and functional diversity on plant community responses to drought in the field (open to weed colonization) and greenhouse conditions. Both species and functional diversity positively affected the average yields of field communities. However, this pattern was similar in both drought-stressed and control plots. No effect of diversity on community resistance, biomass recovery after drought and resilience was found because drought reduced biomass production similarly at each level of diversity by approximately 30 %. The use of dissimilarity (characterized by Euclidean distance) revealed higher variation under changing environments (drought-stressed vs. control) in more diverse communities compared to less species-rich assemblages. In the greenhouse experiment, the effect of species diversity affected community resistance, indicating that more diverse communities suffered more from drought than species-poor ones. We conclude that our study did not support the insurance hypothesis (stability properties of a community should increase with species richness) because species diversity had an equivocal effect on ecosystem resistance and resilience in an environment held under non-weeded practice, regardless of the positive relationship between sown species diversity and community biomass production. More species-rich communities were less resistant against drought-stressed conditions than species-poor ones grown in greenhouse conditions.

  18. Natural and anthropogenic factors affecting the structure of the benthic macroinvertebrate community in an effluent-dominated reach of the Santa Cruz River, AZ

    USGS Publications Warehouse

    Boyle, T.P.; Fraleigh, H.D.

    2003-01-01

    This study provides an assessment of the ecological conditions of a 46-km effluent-dominated stream section of the Santa Cruz River in the vicinity of the International Waste Water Treatment Plant, Nogales, AZ. We associated changes in the structure of the macroinvertebrate community to natural and anthropogenic chemical and physical variables using multivariate analysis. The analysis shows that biological criteria for effluent-dominated streams can be established using macroinvertebrate community attributes only with an understanding of the contribution of three classes of variables on the community structure: (1) low flow hydrological discharge as affected by groundwater withdrawals, treatment plant discharge, and subsurface geomorphology; (2) chemical composition of the treatment plant discharge and natural dilution; and (3) naturally produced floods resulting from seasonality of precipitation. ?? 2003 Elsevier Science Ltd. All rights reserved.

  19. Landfill impacts on aquatic plant communities and tissue metal levels at Indiana Dunes National Lakeshore

    SciTech Connect

    Stewart, P.M.; Scribailo, R.W.

    1995-12-31

    One important environmental issue facing Northwest Indiana and park management at Indiana Dunes National Lakeshore (INOU) is the contamination of water, sediment and biota by persistent toxic substances. Aquatic plant communities were used to evaluate the water/organismal quality of the Grand Calumet Lagoons and two dunal ponds (pannes) at Gary, Indiana, which are partially located in the Miller Woods Unit of INDU. The lagoon is divided into several areas, the USX Lagoon is located between sections of a large industrial landfill (steel slag and other material). The Marquette Lagoon is located further away from the landfill and tends to be upgradient from the landfill. The West Panne (WP) is located next to the landfill, while the East Panne (EP) is separated from the landfill and the WP by a high dune ridge. Plant populations shift toward fewer submergent aquatics, with a higher abundance of tolerant taxa in the western section of the USX Lagoon. These differences are supported by cluster analysis. Heavy metals in root tissue of Scirpus americanus and other plant species from the pannes were significantly higher than those found in shoots. Shoot tissue metal levels in plants collected from the lagoons were higher than root tissue metal levels. The WP site has the most elevated tissue metal levels for most metals assayed, while the EP site shows similar contaminant levels. The plant distributions observed and tissue metal concentrations measured suggest that INDU`s aquatic plant community has been affected by the industrial landfill and that there exists a hydrological connection between the ponds.

  20. Influences of plant type on bacterial and archaeal communities in constructed wetland treating polluted river water.

    PubMed

    Long, Yan; Yi, Hao; Chen, Sili; Zhang, Zhengke; Cui, Kai; Bing, Yongxin; Zhuo, Qiongfang; Li, Bingxin; Xie, Shuguang; Guo, Qingwei

    2016-10-01

    Both bacteria and archaeal communities can play important roles in biogeochemical processes in constructed wetland (CW) system. However, the influence of plant type on microbial community in surface water CW remains unclear. The present study investigated bacterial and archaeal communities in five surface water CW systems with different plant species. The abundance, richness, and diversity of both bacterial and archaeal communities considerably differed in these five CW systems. Compared with the other three CW systems, the CW systems planted with Vetiveria zizanioides or Juncus effusus L. showed much higher bacterial abundance but lower archaeal abundance. Bacteria outnumbered archaea in each CW system. Moreover, the CW systems planted with V. zizanioides or J. effusus L. had relatively lower archaeal but higher bacterial richness and diversity. In each CW system, bacterial community displayed much higher richness and diversity than archaeal community. In addition, a remarkable difference of both bacterial and archaeal community structures was observed in the five studied CW systems. Proteobacteria was the most abundant bacterial group (accounting for 33-60 %). Thaumarchaeota organisms (57 %) predominated in archaeal communities in CW systems planted with V. zizanioides or J. effusus L., while Woesearchaeota (23 or 24 %) and Euryarchaeota (23 or 15 %) were the major archaeal groups in CW systems planted with Cyperus papyrus or Canna indica L. Archaeal community in CW planted with Typha orientalis Presl was mainly composed of unclassified archaea. Therefore, plant type exerted a considerable influence on microbial community in surface water CW system. PMID:27392623

  1. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities.

    PubMed

    de Vries, Franciska T; Manning, Pete; Tallowin, Jerry R B; Mortimer, Simon R; Pilgrim, Emma S; Harrison, Kathryn A; Hobbs, Phil J; Quirk, Helen; Shipley, Bill; Cornelissen, Johannes H C; Kattge, Jens; Bardgett, Richard D

    2012-11-01

    The controls on aboveground community composition and diversity have been extensively studied, but our understanding of the drivers of belowground microbial communities is relatively lacking, despite their importance for ecosystem functioning. In this study, we fitted statistical models to explain landscape-scale variation in soil microbial community composition using data from 180 sites covering a broad range of grassland types, soil and climatic conditions in England. We found that variation in soil microbial communities was explained by abiotic factors like climate, pH and soil properties. Biotic factors, namely community-weighted means (CWM) of plant functional traits, also explained variation in soil microbial communities. In particular, more bacterial-dominated microbial communities were associated with exploitative plant traits versus fungal-dominated communities with resource-conservative traits, showing that plant functional traits and soil microbial communities are closely related at the landscape scale.

  2. Plant Trait Assembly Affects Superiority of Grazer's Foraging Strategies in Species-Rich Grasslands

    PubMed Central

    Mládek, Jan; Mládková, Pavla; Hejcmanová, Pavla; Dvorský, Miroslav; Pavlu, Vilém; De Bello, Francesco; Duchoslav, Martin; Hejcman, Michal; Pakeman, Robin J.

    2013-01-01

    Background Current plant – herbivore interaction models and experiments with mammalian herbivores grazing plant monocultures show the superiority of a maximizing forage quality strategy (MFQ) over a maximizing intake strategy (MI). However, there is a lack of evidence whether grazers comply with the model predictions under field conditions. Methodology/Findings We assessed diet selection of sheep (Ovis aries) using plant functional traits in productive mesic vs. low-productivity dry species-rich grasslands dominated by resource-exploitative vs. resource-conservative species respectively. Each grassland type was studied in two replicates for two years. We investigated the first grazing cycle in a set of 288 plots with a diameter of 30 cm, i.e. the size of sheep feeding station. In mesic grasslands, high plot defoliation was associated with community weighted means of leaf traits referring to high forage quality, i.e. low leaf dry matter content (LDMC) and high specific leaf area (SLA), with a high proportion of legumes and the most with high community weighted mean of forage indicator value. In contrast in dry grasslands, high community weighted mean of canopy height, an estimate of forage quantity, was the best predictor of plot defoliation. Similar differences in selection on forage quality vs. quantity were detected within plots. Sheep selected plants with higher forage indicator values than the plot specific community weighted mean of forage indicator value in mesic grasslands whereas taller plants were selected in dry grasslands. However, at this scale sheep avoided legumes and plants with higher SLA, preferred plants with higher LDMC while grazing plants with higher forage indicator values in mesic grasslands. Conclusions Our findings indicate that MFQ appears superior over MI only in habitats with a predominance of resource-exploitative species. Furthermore, plant functional traits (LDMC, SLA, nitrogen fixer) seem to be helpful correlates of forage quality

  3. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny

    PubMed Central

    Bell, Terrence H; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

    2014-01-01

    Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray–Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg−1 hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities. PMID:23985744

  4. Humans as Long-Distance Dispersers of Rural Plant Communities

    PubMed Central

    Auffret, Alistair G.; Cousins, Sara A. O.

    2013-01-01

    Humans are known for their capacity to disperse organisms long distances. Long-distance dispersal can be important for species threatened by habitat destruction, but research into human-mediated dispersal is often focused upon few and/or invasive species. Here we use citizen science to identify the capacity for humans to disperse seeds on their clothes and footwear from a known species pool in a valuable habitat, allowing for an assessment of the fraction and types of species dispersed by humans in an alternative context. We collected material from volunteers cutting 48 species-rich meadows throughout Sweden. We counted 24 354 seeds of 197 species, representing 34% of the available species pool, including several rare and protected species. However, 71 species (36%) are considered invasive elsewhere in the world. Trait analysis showed that seeds with hooks or other appendages were more likely to be dispersed by humans, as well as those with a persistent seed bank. More activity in a meadow resulted in more dispersal, both in terms of species and representation of the source communities. Average potential dispersal distances were measured at 13 km. We consider humans capable seed dispersers, transporting a significant proportion of the plant communities in which they are active, just like more traditional vectors such as livestock. When rural populations were larger, people might have been regular and effective seed dispersers, and the net rural-urban migration resulting in a reduction in humans in the landscape may have exacerbated the dispersal failure evident in declining plant populations today. With the fragmentation of habitat and changes in land use resulting from agricultural change, and the increased mobility of humans worldwide, the dispersal role of humans may have shifted from providers of regular local and landscape dispersal to providers of much rarer long-distance and regional dispersal, and international invasion. PMID:23658770

  5. Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States

    USGS Publications Warehouse

    Gough, L.; Grace, J.B.

    1998-01-01

    Flooding and salinity stress are predicted to increase in coastal Louisiana as relative sea level rise (RSLR) continues in the Gulf of Mexico region. Although wetland plant species are adapted to these stressors, questions persist as to how marshes may respond to changed abiotic variables caused by RSLR, and how herbivory by native and non-native mammals may affect this response. The effects of altered flooding and salinity on coastal marsh communities were examined in two field experiments that simultaneously manipulated herbivore pressure. Marsh sods subjected to increased or decreased flooding (by lowering or raising sods, respectively), and increased or decreased salinity (by reciprocally transplanting sods between a brackish and fresh marsh), were monitored inside and outside mammalian herbivore exclosures for three growing seasons. Increased flooding stress reduced species numbers and biomass; alleviating flooding stress did not significantly alter species numbers while community biomass increased. Increased salinity reduced species numbers and biomass, more so if herbivores were present. Decreasing salinity had an unexpected effect: herbivores selectively consumed plants transplanted from the higher-salinity site. In plots protected from herbivory, decreased salinity had little effect on species numbers or biomass, but community composition changed. Overall, herbivore pressure further reduced species richness and biomass under conditions of increased flooding and increased salinity, supporting other findings that coastal marsh species can tolerate increasingly stressful conditions unless another factor, e.g., herbivory, is also present. Also, species dropped out of more stressful treatments much faster than they were added when stresses were alleviated, likely due to restrictions on dispersal. The rate at which plant communities will shift as a result of changed abiotic variables will determine if marshes remain viable when subjected to RSLR.

  6. Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation?

    PubMed

    Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2014-01-01

    Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. PMID:24416354

  7. Habitats as Complex Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation?

    PubMed Central

    Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2014-01-01

    Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. PMID:24416354

  8. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. PMID:25871977

  9. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands.

  10. Relationships of human disturbance, bird communities, and plant communities along the land-water interface of a large reservoir.

    PubMed

    Francl, Karen E; Schnell, Gary D

    2002-01-01

    We examined the relationships of human activity, bird communities, and plant communities along the land-water interface of Lake Texoma, a large human-made reservoir on the Texas-Oklahoma border. Measurements of human activity, plant surveys, and bird surveys were performed at 40 paired transects, one with human disturbance, the other undisturbed. Both principal components and correspondence analyses of bird-survey data separated disturbed sites from paired undisturbed sites, and typical disturbance-tolerant species from those less tolerant of human activity. Compared to undisturbed sites, disturbed sites tended to have more individual birds per survey, pavement, and mowed lawns, and less canopy, vegetation volume, and vegetation vertical diversity. A principal components analysis of quantitative disturbance measurements revealed that most bird and plant measures were highly correlated with the first disturbance component. However, the correlation between birds and human activity was much stronger than that between birds and plants, or between plants and disturbance. Our data suggest that bird-species composition is regulated more by human activity than by plant-community composition. Also, in this system, bird communities are a better choice than plant communities to index the effect of human disturbance. To maintain regional diversity of both birds and plants, undisturbed areas should be maintained around reservoirs.

  11. Climate impacts on bird and plant communities from altered animal-plant interactions

    USGS Publications Warehouse

    Martin, Thomas E.; Maron, John L.

    2012-01-01

    The contribution of climate change to declining populations of organisms remains a question of outstanding concern. Much attention to declining populations has focused on how changing climate drives phenological mismatches between animals and their food. Effects of climate on plant communities may provide an alternative, but particularly powerful, influence on animal populations because plants provide their habitats. Here, we show that abundances of deciduous trees and associated songbirds have declined with decreasing snowfall over 22 years of study in montane Arizona, USA. We experimentally tested the hypothesis that declining snowfall indirectly influences plants and associated birds by allowing greater over-winter herbivory by elk (Cervus canadensis). We excluded elk from one of two paired snowmelt drainages (10 ha per drainage), and replicated this paired experiment across three distant canyons. Over six years, we reversed multi-decade declines in plant and bird populations by experimentally inhibiting heavy winter herbivory associated with declining snowfall. Moreover, predation rates on songbird nests decreased in exclosures, despite higher abundances of nest predators, demonstrating the over-riding importance of habitat quality to avian recruitment. Thus, our results suggest that climate impacts on plant–animal interactions can have forceful ramifying effects on plants, birds, and ecological interactions.

  12. Dissipation and effects of tricyclazole on soil microbial communities and rice growth as affected by amendment with alperujo compost.

    PubMed

    García-Jaramillo, M; Redondo-Gómez, S; Barcia-Piedras, J M; Aguilar, M; Jurado, V; Hermosín, M C; Cox, L

    2016-04-15

    The presence of pesticides in surface and groundwater has grown considerably in the last decades as a consequence of the intensive farming activity. Several studies have shown the benefits of using organic amendments to prevent losses of pesticides from runoff or leaching. A particular soil from the Guadalquivir valley was placed in open air ponds and amended at 1 or 2% (w/w) with alperujo compost (AC), a byproduct from the olive oil industry. Tricyclazole dissipation, rice growth and microbial diversity were monitored along an entire rice growing season. An increase in the net photosynthetic rate of Oryza sativa plants grown in the ponds with AC was observed. These plants produced between 1100 and 1300kgha(-1) more rice than plants from the unamended ponds. No significant differences were observed in tricyclazole dissipation, monitored for a month in soil, surface and drainage water, between the amended and unamended ponds. The structure and diversity of bacteria and fungi communities were also studied by the use of the polymerase chain reaction denaturing gel electrophoresis (PCR-DGGE) from DNA extracted directly from soil samples. The banding pattern was similar for all treatments, although the density of bands varied throughout the time. Apparently, tricyclazole did not affect the structure and diversity of bacteria and fungi communities, and this was attributed to its low bioavailability. Rice cultivation under paddy field conditions may be more efficient under the effects of this compost, due to its positive effects on soil properties, rice yield, and soil microbial diversity.

  13. Driving factors of the communities of phytophagous and predatory mites in a physic nut plantation and spontaneous plants associated.

    PubMed

    Cruz, Wilton P; Sarmento, Renato A; Teodoro, Adenir V; Neto, Marçal P; Ignacio, Maíra

    2013-08-01

    Seasonal changes in climate and plant diversity are known to affect the population dynamics of both pests and natural enemies within agroecosystems. In Brazil, spontaneous plants are usually tolerated in small-scale physic nut plantations over the year, which in turn may mediate interactions between pests and natural enemies within this agroecosystem. Here, we aimed to access the influence of seasonal variation of abiotic (temperature, relative humidity and rainfall) and biotic (diversity of spontaneous plants, overall richness and density of mites) factors on the communities of phytophagous and predatory mites found in a physic nut plantation and its associated spontaneous plants. Mite sampling was monthly conducted in dicotyledonous and monocotyledonous leaves of spontaneous plants as well as in physic nut shrubs over an entire year. In the dry season there was a higher abundance of phytophagous mites (Tenuipalpidae, Tarsonemidae and Tetranychidae) on spontaneous plants than on physic nut shrubs, while predatory mites (Phytoseiidae) showed the opposite pattern. The overall density of mites on spontaneous plants increased with relative humidity and diversity of spontaneous plants. Rainfall was the variable that most influenced the density of mites inhabiting physic nut shrubs. Agroecosystems comprising spontaneous plants associated with crops harbour a rich mite community including species of different trophic levels which potentially benefit natural pest control due to increased diversity and abundance of natural enemies.

  14. Driving factors of the communities of phytophagous and predatory mites in a physic nut plantation and spontaneous plants associated.

    PubMed

    Cruz, Wilton P; Sarmento, Renato A; Teodoro, Adenir V; Neto, Marçal P; Ignacio, Maíra

    2013-08-01

    Seasonal changes in climate and plant diversity are known to affect the population dynamics of both pests and natural enemies within agroecosystems. In Brazil, spontaneous plants are usually tolerated in small-scale physic nut plantations over the year, which in turn may mediate interactions between pests and natural enemies within this agroecosystem. Here, we aimed to access the influence of seasonal variation of abiotic (temperature, relative humidity and rainfall) and biotic (diversity of spontaneous plants, overall richness and density of mites) factors on the communities of phytophagous and predatory mites found in a physic nut plantation and its associated spontaneous plants. Mite sampling was monthly conducted in dicotyledonous and monocotyledonous leaves of spontaneous plants as well as in physic nut shrubs over an entire year. In the dry season there was a higher abundance of phytophagous mites (Tenuipalpidae, Tarsonemidae and Tetranychidae) on spontaneous plants than on physic nut shrubs, while predatory mites (Phytoseiidae) showed the opposite pattern. The overall density of mites on spontaneous plants increased with relative humidity and diversity of spontaneous plants. Rainfall was the variable that most influenced the density of mites inhabiting physic nut shrubs. Agroecosystems comprising spontaneous plants associated with crops harbour a rich mite community including species of different trophic levels which potentially benefit natural pest control due to increased diversity and abundance of natural enemies. PMID:23417700

  15. Neighbourhood association of Cortaderia selloana invasion, soil properties and plant community structure in Mediterranean coastal grasslands

    NASA Astrophysics Data System (ADS)

    Domènech, Roser; Vilà, Montserrat; Gesti, Josep; Serrasolses, Isabel

    2006-03-01

    Invasion by alien species is threatening the conservation of native plant communities and the integrity of ecosystems. To gain a better understanding of such impacts, many studies have examined the traits that make alien species successful invaders as well as the factors involved in community invasibility. However, it is necessary to link invader effects on community structure and on ecosystem processes in order to unravel the mechanisms of impact. Cortaderia selloana is a perennial grass native to South America that is invading abandoned agricultural lands close to coastal human settlements in Catalonia (NE Spain). In invaded pastures, we examined the association between C. selloana invasion, soil properties and vegetation structure changes in pastures, comparing the neighbourhood area of influence of C. selloana with areas far from C. selloana. Areas under the influence of C. selloana had lower total soil nitrogen values and higher C/N values than in areas far from C. selloana. Furthermore, the areas affected by C. selloana had lower species, family and life form richness and diversity, and less plant cover. In addition, C. selloana also increased the vertical vegetation structure and changed species composition (only 44% similarity between invaded and non-invaded areas). Our results point out that C. selloana has an effect on its neighbourhood leading to an increase in small-scale variability within invaded fields.

  16. [Microbial community of municipal discharges in a sewage treatment plant].

    PubMed

    Xu, Ai-ling; Ren, Jie; Song, Zhi-wen; Wu, Deng-deng; Xia, Yan

    2014-09-01

    There are numerous microorganisms, especial pathogens, in the discharges. Those microorganisms are discharged into the river and sea through sewage outfalls, which results in possible health risks to coastal populations. And more attention should be paid to municipal discharges in developing countries. This study investigated the microbial community in the discharges by constructing 16S rDNA clones library and using the PCR-RFLP technology. Phylogenetic analysis of bacteria in municipal discharges showed that there were 59 species, which were divided into 11 classes. Proteobacteria accounted for 85% of all the bacteria, of which β-Proteobacteria and γ- Proteobacteria were the dominant classes. Bacteria in the waste water treating process had important influence on microbial community in municipal discharges, therefore, municipal sewage plant should choose the process according to the characteristics and purifying capacity of the receiving water body. Legionella spp. accounted for approximately 10% , the Legionnaires' disease resulted from which might be of top risk for the residents in the surrounding of the municipal discharges outfall and receiving water. Dechloromonas aromatica could make use of chlorite ( CIO - ) , which led to its survival from chlorine disinfection, and it alerted us that several disinfection methods should be used together to ensure the bacterial safety of municipal discharges. Coliform group and other pathogenic bacteria, such as Salmonella spp. , Shigella spp. , Escherichia coli, Vibrio cholerae, Staphylococcus aureus, Arcobacter spp. were not detected in this study, and it indicated that we should do more work and use more methods to investigate the perniciousness of discharges.

  17. [Microbial community of municipal discharges in a sewage treatment plant].

    PubMed

    Xu, Ai-ling; Ren, Jie; Song, Zhi-wen; Wu, Deng-deng; Xia, Yan

    2014-09-01

    There are numerous microorganisms, especial pathogens, in the discharges. Those microorganisms are discharged into the river and sea through sewage outfalls, which results in possible health risks to coastal populations. And more attention should be paid to municipal discharges in developing countries. This study investigated the microbial community in the discharges by constructing 16S rDNA clones library and using the PCR-RFLP technology. Phylogenetic analysis of bacteria in municipal discharges showed that there were 59 species, which were divided into 11 classes. Proteobacteria accounted for 85% of all the bacteria, of which β-Proteobacteria and γ- Proteobacteria were the dominant classes. Bacteria in the waste water treating process had important influence on microbial community in municipal discharges, therefore, municipal sewage plant should choose the process according to the characteristics and purifying capacity of the receiving water body. Legionella spp. accounted for approximately 10% , the Legionnaires' disease resulted from which might be of top risk for the residents in the surrounding of the municipal discharges outfall and receiving water. Dechloromonas aromatica could make use of chlorite ( CIO - ) , which led to its survival from chlorine disinfection, and it alerted us that several disinfection methods should be used together to ensure the bacterial safety of municipal discharges. Coliform group and other pathogenic bacteria, such as Salmonella spp. , Shigella spp. , Escherichia coli, Vibrio cholerae, Staphylococcus aureus, Arcobacter spp. were not detected in this study, and it indicated that we should do more work and use more methods to investigate the perniciousness of discharges. PMID:25518668

  18. Mountain pastures of Qilian Shan: plant communities, grazing impact and degradation status (Gansu province, NW China)

    NASA Astrophysics Data System (ADS)

    Baranova, Alina; Schickhoff, Udo; Shunli, Wang; Ming, Jin

    2015-04-01

    Qilian Mountains are the water source region for the low arid reaches of HeiHe river basin (Gansu province, NW China). Due to overstocking and overgrazing during the last decades adverse ecological ef¬fects, in particular on soil properties and hydrological cycle, are to be expected in growing land areas. Vegetation cover is very important to prevent erosion process and to sustain stable subsurface runoff and ground water flow. The aim of this research is to identify plant communities, detecting grazing-induced and spatially differentiated changes in vegetation patterns, and to evaluate status of pasture land degradation.The study area is located in the spring/autumn pasture area of South Qilian Mountains between 2600-3600 m a.s.l., covering five main vegetation types: spruce forest, alpine shrubland, shrubby grassland, mountain grassland, degraded mountain grassland. In order to analyze gradual changes in vegetation patterns along altitudinal and grazing gradients and to classify related plant communities, quantitative and qualitative relevé data were collected (coverage, species composition, abundance of unpalatable plants, plant functional types, etc.). Vegetation was classified using hierarchical cluster analyses. Indirect Detrended Correspondence Analysis (DCA) was used to analyze variation in relationships between vegetation, environmental factors, and grazing impact. According to DCA results, distribution of the plant communities was strongly affected by altitude and exposition. Grassland floristic gradients showed greater dependence on grazing impact, which correlated contrarily with soil organic content, soil moisture and pH. Highest numbers of species richness and alpha diversity were detected in alpine shrubland vegetation type. Comparing the monitoring data for the recent nine years, a trend of deterioration, species successions and shift in dominant species becomes obvious. Species indicating degrading site environmental conditions were identified

  19. Exploring the Influence of Environmental Factors on Bacterial Communities within the Rhizosphere of the Cu-tolerant plant, Elsholtzia splendens

    PubMed Central

    Jiang, Longfei; Song, Mengke; Yang, Li; Zhang, Dayi; Sun, Yingtao; Shen, Zhenguo; Luo, Chunling; Zhang, Gan

    2016-01-01

    Bacterial communities of rhizospheric soils play an important role in the tolerance and uptake of metal-tolerant/hyperaccumulating plants to metals, e.g. the Cu-tolerant Elsholtzia splendens native to China. In this work, pyrosequencing of the bacterial 16S rRNA gene was firstly applied to investigate the rhizospheric bacterial community of E. splendens grown at Cu contaminated sites. The 47 phyla including 11 dominant phyla (>1%) in E. splendens rhizosphere were presented. The effects of Cu and other environmental factors (total organic carbon, total nitrogen and pH) on the rhizospheric bacterial community were studied comprehensively. The phyla abundances were affected by the environmental factors to different extent, and we found pH, instead of Cu concentration, influenced UniFrac distance significantly and was identified as the most important environmental factor affecting bacterial community. In addition, the influence of environmental factors on gene profiles was explored according to the predicted metagenomes obtained by PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states). Our study illustrates a view about Cu-tolerant E. splendens rhizospheric bacterial communities (composition, diversity and gene profiles) and their influencing factors, giving a hand for the understanding on bacterial community is formed and affected in rhizosphere. PMID:27782202

  20. Phylogenetic diversity of dominant bacterial and archaeal communities in plant-microbial fuel cells using rice plants.

    PubMed

    Ahn, Jae-Hyung; Jeong, Woo-Suk; Choi, Min-Young; Kim, Byung-Yong; Song, Jaekyeong; Weon, Hang-Yeon

    2014-12-28

    In this study, the phylogenetic diversities of bacterial and archaeal communities in a plantmicrobial fuel cell (P-MFC) were investigated together with the environmental parameters, affecting its performance by using rice as a model plant. The beneficial effect of the plant appeared only during a certain period of the rice-growing season, at which point the maximum power density was approximately 3-fold higher with rice plants. The temperature, electrical conductivity (EC), and pH in the cathodic and anodic compartments changed considerably during the rice-growing season, and a higher temperature, reduced difference in pH between the cathodic and anodic compartments, and higher EC were advantageous to the performance of the P-MFC. A 16S rRNA pyrosequencing analysis showed that the 16S rRNAs of Deltaproteobacteria and those of Gammaproteobacteria were enriched on the anodes and the cathodes, respectively, when the electrical circuit was connected. At the species level, the operational taxonomic units (OTUs) related to Rhizobiales, Geobacter, Myxococcus, Deferrisoma, and Desulfobulbus were enriched on the anodes, while an OTU related to Acidiferrobacter thiooxydans occupied the highest proportion on the cathodes and occurred only when the circuit was connected. Furthermore, the connection of the electrical circuit decreased the abundance of 16S rRNAs of acetotrophic methanogens and increased that of hydrogenotrophic methanogens. The control of these physicochemical and microbiological factors is expected to be able to improve the performance of P-MFCs.

  1. Succession Stages of Tundra Plant Communities Following Wildfire Disturbance in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Breen, A. L.; Hollingsworth, T. N.; Mack, M. C.; Jones, B. M.

    2015-12-01

    Rapid climate change is affecting climate-sensitive disturbance regimes throughout the world. In particular, the impacts of climate change on Arctic disturbance regimes are poorly understood because landscape-scale disturbances are infrequent or occur in remote localities. Wildfire in Arctic Alaska is presently limited by ignition source and favorable burn weather. With rapid climate change, a lengthening growing season, and subsequent increase in plant biomass and productivity, wildfire frequency and annual area burned in tundra ecosystems is expected to increase over the next century. Yet, post-fire tundra vegetation succession is inadequately characterized except at a few point locations. We identify succession stages of tussock tundra communities following wildfire using a chronosequence of 65 relevés in 10 tundra fire scars (1971-2011) and nearby unburned tundra from sites on the Seward Peninsula and northern foothills of the Brooks Range. We used the Braun-Blanquét approach to classify plant communities, and applied nonmetric multidimentional scaling (NMDS) to identify ecological gradients underlying community differentiation. The ordination revealed a clear differentiation between unburned and burned tundra communities. Ecological gradients, reflected by ordination axes, correspond to fire history (e.g., time since last fire, number of times burned, burn severity) and a complex productivity gradient. Post-fire species richness is less than unburned tundra; primarily reflected as a decrease in lichen species and turnover of bryophyte species immediately post-fire. Species richness of grasses increases post-fire and is greatest in communities that burned more than once in the past 30 years. Shrub cover and total aboveground biomass are greatest in repeat burn sites. We review and discuss our results focusing on the implications of a changing tundra fire regime, its effect on vegetation succession trajectories, and subsequent rates of carbon sequestration and

  2. Water management history affects GHG kinetics and microbial communities composition of an Italian rice paddy

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Alessandra; Agnelli, Allessandroelio; Pastorelli, Roberta; Pallara, Grazia; Rasse, Daniel; Silvennoinen, Hanna

    2015-04-01

    The water management system of cultivated soils is one of the most important factors affecting the respective magnitudes of CH4 and N2O emissions. We hypothesized an effect of past management on soil microbial communities and greenhouse gas (GHG) production potential The objective of this study were to i) assess the influence of water management history on GHG production potential and microbial community structure, ii) relate GHGs fluxes to the microbial communities involved in CH4 and N2O production inhabiting the different soils. Moreover, the influence of different soil conditioning procedures on GHG potential fluxes was determined. To reach this aim, four soils with different history of water management were compared, using dried and sieved, pre-incubated and fresh soils. Soil conditioning procedures strongly affected GHG emissions potential: drying and sieving determined the highest emission rates and the largest differences among soil types, probably through the release of labile substrates. Conversely, soil pre-incubation tended to homogenize and level out the differences among soils. Microbial communities composition drove GHG emissions potential and was affected by past management. The water management history strongly affected microbial communities structure and the specific microbial pattern of each soil was strictly linked to the gas (CH4 or N2O) emitted. Aerobic soil stimulated N2O peaks, given a possible major contribution of coupled nitrification/denitrification process. As expected, CH4 was lower in aerobic soil, which showed a less abundant archeal community. This work added evidences to support the hypothesis of an adaptation of microbial communities to past land management that reflected in the potential GHG fluxes.

  3. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest.

    PubMed

    Kembel, Steven W; O'Connor, Timothy K; Arnold, Holly K; Hubbell, Stephen P; Wright, S Joseph; Green, Jessica L

    2014-09-23

    The phyllosphere--the aerial surfaces of plants, including leaves--is a ubiquitous global habitat that harbors diverse bacterial communities. Phyllosphere bacterial communities have the potential to influence plant biogeography and ecosystem function through their influence on the fitness and function of their hosts, but the host attributes that drive community assembly in the phyllosphere are poorly understood. In this study we used high-throughput sequencing to quantify bacterial community structure on the leaves of 57 tree species in a neotropical forest in Panama. We tested for relationships between bacterial communities on tree leaves and the functional traits, taxonomy, and phylogeny of their plant hosts. Bacterial communities on tropical tree leaves were diverse; leaves from individual trees were host to more than 400 bacterial taxa. Bacterial communities in the phyllosphere were dominated by a core microbiome of taxa including Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria, and Sphingobacteria. Host attributes including plant taxonomic identity, phylogeny, growth and mortality rates, wood density, leaf mass per area, and leaf nitrogen and phosphorous concentrations were correlated with bacterial community structure on leaves. The relative abundances of several bacterial taxa were correlated with suites of host plant traits related to major axes of plant trait variation, including the leaf economics spectrum and the wood density-growth/mortality tradeoff. These correlations between phyllosphere bacterial diversity and host growth, mortality, and function suggest that incorporating information on plant-microbe associations will improve our ability to understand plant functional biogeography and the drivers of variation in plant and ecosystem function.

  4. Role of invasive Melilotus officinalis in two native plant communities

    USGS Publications Warehouse

    Van Riper, Laura C.; Larson, Diane L.

    2009-01-01

    This study examines the impact of the exotic nitrogen-fixing legume Melilotus officinalis (L.) Lam. on native and exotic species cover in two Great Plains ecosystems in Badlands National Park, South Dakota. Melilotus is still widely planted and its effects on native ecosystems are not well studied. Melilotus could have direct effects on native plants, such as through competition or facilitation. Alternatively, Melilotus may have indirect effects on natives, e.g., by favoring exotic species which in turn have a negative effect on native species. This study examined these interactions across a 4-year period in two contrasting vegetation types: Badlands sparse vegetation and western wheatgrass (Pascopyrum smithii) mixed-grass prairie. Structural equation models were used to analyze the pathways through which Melilotus, native species, and other exotic species interact over a series of 2-year time steps. Melilotus can affect native and exotic species both in the current year and in the years after its death (a lag effect). A lag effect is possible because the death of a Melilotus plant can leave an open, potentially nitrogen-enriched site on the landscape. The results showed that the relationship between Melilotus and native and exotic species varied depending on the habitat and the year. In Badlands sparse vegetation, there was a consistent, strong, and positive relationship between Melilotus cover and native and exotic species cover suggesting that Melilotus is acting as a nurse plant and facilitating the growth of other species. In contrast, in western wheatgrass prairie, Melilotus was acting as a weak competitor and had no consistent effect on other species. In both habitats, there was little evidence for a direct lag effect of Melilotus on other species. Together, these results suggest both facilitative and competitive roles for Melilotus, depending on the vegetation type it invades.

  5. Fusion and metabolism of plant cells as affected by microgravity.

    PubMed

    Hampp, R; Hoffmann, E; Schönherr, K; Johann, P; De Filippis, L

    1997-01-01

    Plant cell protoplasts derived from leaf tissue of two different tobacco species (Nicotiana tabacum., N. rustica L.) were exposed to short-term (sounding rocket experiments) and long-term (spacelab) microgravity environments in order to study both (electro) cell fusion and cell metabolism during early and later stages of tissue regeneration. The period of exposure to microgravity varied from 10 min (sounding rocket) to 10 d (space shuttle). The process of electro fusion of protoplasts was improved under conditions of microgravity: the time needed to establish close membrane contact between protoplasts (alignment time) was reduced (5 as compared to 15 s under 1 g) and numbers of fusion products between protoplasts of different specific density were increased by a factor of about 10. In addition, viability of fusion products, as shown by the ability to form callus, increased from about 60% to more than 90%. Regenerated fusion products obtained from both sounding-rocket and spacelab experiments showed a wide range of intermediate properties between the two parental plants. This was verified by isozyme analysis and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). In order to address potential metabolic responses, more general markers such as the overall energy state (ATP/ADP ratio), the redox charge of the diphosphopyridine nucleotide system (NADH/NAD ratio), and the pool size of fructose-2,6-bisphosphate (Fru 2,6 bisp), a regulator of the balance between glycolysis and gluconeogenesis, were determined. Responses of these parameters were different with regard to short-term and long-term exposure. Shortly after transition to reduced gravitation (sounding rocket) ratios of ATP/ADP exhibited strong fluctuation while the pool size of NAD decreased (indicating an increased NADH/NAD ratio) and that of Fru 2,6 bisp increased. As similar changes can be observed under stress conditions, this response is probably indicative of a metabolic stress

  6. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants.

    PubMed

    Vályi, Kriszta; Rillig, Matthias C; Hempel, Stefan

    2015-03-01

    We studied the effect of host plant identity and land-use intensity (LUI) on arbuscular mycorrhizal fungi (AMF, Glomeromycota) communities in roots of grassland plants. These are relevant factors for intraradical AMF communities in temperate grasslands, which are habitats where AMF are present in high abundance and diversity. In order to focus on fungi that directly interact with the plant at the time, we investigated root-colonizing communities. Our study sites represent an LUI gradient with different combinations of grazing, mowing, and fertilization. We used massively parallel multitag pyrosequencing to investigate AMF communities in a large number of root samples, while being able to track the identity of the host. We showed that host plants significantly differed in AMF community composition, while land use modified this effect in a plant species-specific manner. Communities in medium and low land-use sites were subsets of high land-use communities, suggesting a differential effect of land use on the dispersal of AMF species with different abundances and competitive abilities. We demonstrate that in these grasslands, there is a small group of highly abundant, generalist fungi which represent the dominating species in the AMF community.

  7. Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial.

    PubMed

    Adair, Karen L; Wratten, Steve; Lear, Gavin

    2013-06-01

    Agricultural systems rely on healthy soils and their sustainability requires understanding the long-term impacts of agricultural practices on soils, including microbial communities. We examined the impact of 17 years of land management on soil bacterial communities in a New Zealand randomized-block pasture trial. Significant variation in bacterial community structure related to mowing and plant biomass removal, while nitrogen fertilizer had no effect. Changes in soil chemistry and legume abundance described 52% of the observed variation in the bacterial community structure. Legumes (Trifolium species) were absent in unmanaged plots but increased in abundance with management intensity; 11% of the variation in soil bacterial community structure was attributed to this shift in the plant community. Olsen P explained 10% of the observed heterogeneity, which is likely due to persistent biomass removal resulting in P limitation; Olsen P was significantly lower in plots with biomass removed (14 mg kg(-1) ± 1.3SE) compared with plots that were not mown, or where biomass was left after mowing (32 mg kg(-1) ± 1.6SE). Our results suggest that removal of plant biomass and associated p