Science.gov

Sample records for affect plant establishment

  1. Plant trait expression responds to establishment timing.

    PubMed

    Brandt, Angela J; Leahy, S Conor; Zimmerman, Nicole M; Burns, Jean H

    2015-06-01

    Trait divergence between co-occurring individuals could decrease the strength of competition between these individuals, thus promoting their coexistence. To test this hypothesis, we manipulated establishment timing for four congeneric pairs of perennial plants and assessed trait plasticity. Because soil conditions can affect trait expression and competition, we grew the plants in field-collected soil from each congener. Competition was generally weak across species, but the order of establishment affected divergence in biomass between potmates for three congeneric pairs. The type of plastic response differed among genera, with trait means of early-establishing individuals of Rumex and Solanum spp. differing from late-establishing individuals, and trait divergence between potmates of Plantago and Trifolium spp. depending on which species established first. Consistent with adaptive trait plasticity, higher specific leaf area (SLA) and root-shoot ratio in Rumex spp. established later suggest that these individuals were maximizing their ability to capture light and soil resources. Greater divergence in SLA correlated with increased summed biomass of competitors, which is consistent with trait divergence moderating the strength of competition for some species. Species did not consistently perform better in conspecific or congener soil, but soil type influenced the effect of establishment order. For example, biomass divergence between Rumex potmates was greater in R. obtusifolius soil regardless of which species established first. These results suggest that plant responses to establishment timing act in a species-specific fashion, potentially enhancing coexistence in plant communities. PMID:25616649

  2. Establishing Competence: Qualification of Power Plant Personnel.

    ERIC Educational Resources Information Center

    Chapman, Colin R.

    1992-01-01

    Discusses the International Atomic Energy Agency's definition of competence for nuclear power plant operations personnel, how competence can be identified with intellectual, physical, and psychological attributes, how levels of competence are determined, how education, training, and experience establish competence, objectives and costs of training…

  3. Establishing regulatory compliance in a new plant

    SciTech Connect

    Kinkela, J.F.

    1995-12-01

    Lenox China has built and started up two new plants in the past 10 years. Insightful project leadership assured that environmental concerns were addressed from the outset of each project. Some lessons have been learned from serendipity and, unfortunately, some from project oversights. Elements of these lessons also were applicable to major re-engineering of the 40-year-old Lenox China plant in Pomona, N.J., and to major process changes in all Lenox plants in a program of continuous improvement. It is conceptually easy to design a greenfield plant and its processes to minimize environmental impacts and incorporate waste minimization. The effect of this design process ripples through the design of the facility, equipment specifications, job descriptions and operations. There is an opportunity to set up the entire environmental future of the plant, i.e., to be proactive. Top management should craft an environmental policy for the plant to guide the design team. The design team, including an environmental expert, should determine the environmental concerns early in the process and open a dialog with appropriate regulatory agencies. Where wastes must be generated, an environmentally and economically sound-recycling program should be part of the design, including negotiations with the outside contractors who will transport and recycle the wastes. Many opportunities can be found to optimize all areas of plant design.

  4. 27 CFR 19.66 - Application to establish experimental plants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... operations and equipment, the location of the plant (including the proximity to other premises or operations... plants. Any person desiring to establish an experimental plant shall make written application to the... appropriate TTB officer shall not permit operations until he has found that the plant conforms to...

  5. Starch bioengineering affects cereal grain germination and seedling establishment

    PubMed Central

    Hebelstrup, Kim H.; Blennow, Andreas

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated for both HP and AO lines as compared with the WT. At late seedling establishment stages, specific sugars were rapidly consumed in the AO line. α-Amylase activity was distinctly suppressed in both the HP and the AO lines. Pre-germination β-amylase deposition was low in the AO grains and β-amylase was generally suppressed in both HP and AO lines throughout germination. As further supported by scanning electron microscopy and histochemical analyses on grain and seedlings, it was concluded that inadequate starch granule deposition in combination with the suppressed hydrolase activity leads to temporal and compensating re-direction of starch, sugar, and protein catabolism important to maintain metabolic dynamics during grain germination and seedling establishment. PMID:24642850

  6. 48 CFR 245.7202 - Establishing a plant clearance case.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Establishing a plant clearance case. 245.7202 Section 245.7202 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT GOVERNMENT PROPERTY Special Instructions 245.7202 Establishing a plant clearance case....

  7. Earthworm-Mycorrhiza Interactions Can Affect the Diversity, Structure and Functioning of Establishing Model Grassland Communities

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m−2). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  8. Factors affecting fertilization and pregnancy establishment in beef cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Embryonic mortality represents the single greatest economic loss for cow/calf producers worldwide. In beef cattle, fertilization rates to a single service exceed 90%, but rarely do 65% of matings result in pregnancy establishment and birth of a live calf. The primary difference between a cow’s est...

  9. Factors affecting successful establishment of aerially seeded winter rye

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishing cover crops in the corn-soybean (Zea mays - Glycine max) rotation in northern climates can be difficult due to the short time between harvest and freezing temperatures. Aerial seeding into standing crops is one way to increase time for germination and growth. Field studies were conducte...

  10. Factors affecting spruce establishment and recruitment near western treeline, Alaska

    NASA Astrophysics Data System (ADS)

    Miller, A. E.; Sherriff, R.; Wilson, T. L.

    2015-12-01

    Regional warming and increases in tree growth are contributing to increased productivity near the western forest margin in Alaska. The effects of warming on seedling recruitment has received little attention, in spite of forecasted forest expansion near western treeline. Here, we used stand structure and environmental data from white spruce (Picea glauca) stands (n = 95) sampled across a longitudinal gradient to explore factors influencing white spruce growth, establishment and recruitment in southwest Alaska. Using tree-ring chronologies developed from a subset of the plots (n = 30), we estimated establishment dates and basal area increment (BAI) for trees of all age classes across a range of site conditions. We used GLMs (generalized linear models) to explore the relationship between tree growth and temperature in undisturbed, low elevation sites along the gradient, using BAI averaged over the years 1975-2000. In addition, we examined the relationship between growing degree days (GDD) and seedling establishment over the previous three decades. We used total counts of live seedlings, saplings and live and dead trees, representing four cohorts, to evaluate whether geospatial, climate, and measured plot covariates predicted abundance of the different size classes. We hypothesized that the relationship between abundance and longitude would vary by size class, and that this relationship would be mediated by growing season temperature. We found that mean BAI for trees in undisturbed, low elevation sites increased with July maximum temperature, and that the slope of the relationship with temperature changed with longitude (interaction significant with 90% confidence). White spruce establishment was positively associated with longer summers and/or greater heat accumulation, as inferred from GDD. Seedling, sapling and tree abundance were also positively correlated with temperature across the study area. The response to longitude was mixed, with smaller size classes

  11. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment.

    PubMed

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly; Kostenko, Olga; Van der Putten, Wim H; Macel, Mirka

    2016-02-01

    Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during this early stage of plant community development. Effects of herbivores on plant biomass depended on plant species or genus but not on plant status (i.e., exotic vs native). Thus, aboveground herbivory did not promote the dominance of exotic plant species during early establishment of the phylogenetically balanced plant communities. PMID:26481795

  12. Between-Population Outbreeding Affects Plant Defence

    PubMed Central

    Leimu, Roosa; Fischer, Markus

    2010-01-01

    Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies. PMID:20838662

  13. Herbicide drift affects plant and arthropod communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field edges, old fields, and other semi-natural habitats in agricultural landscapes support diverse plant communities that help sustain pollinators, predators, and other beneficial arthropods. These plant and arthropod communities may be at persistent ecotoxicological risk from herbicides applied to...

  14. Plant Hormones: How They Affect Root Formation.

    ERIC Educational Resources Information Center

    Reinhard, Diana Hereda

    This science study aid, produced by the U.S. Department of Agriculture, includes a series of plant rooting activities for secondary science classes. The material in the pamphlet is written for students and includes background information on plant hormones, a vocabulary list, and five learning activities. Objectives, needed materials, and…

  15. Osmolyte cooperation affects turgor dynamics in plants.

    PubMed

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-01-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes. PMID:27445173

  16. Osmolyte cooperation affects turgor dynamics in plants

    PubMed Central

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-01-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes. PMID:27445173

  17. Osmolyte cooperation affects turgor dynamics in plants

    NASA Astrophysics Data System (ADS)

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-07-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes.

  18. 29 CFR 779.267 - Fluctuations in annual gross volume affecting enterprise coverage and establishment exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Fluctuations in annual gross volume affecting enterprise... Employment to Which the Act May Apply; Enterprise Coverage Computing the Annual Volume § 779.267 Fluctuations in annual gross volume affecting enterprise coverage and establishment exemptions. It is...

  19. 29 CFR 779.267 - Fluctuations in annual gross volume affecting enterprise coverage and establishment exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Fluctuations in annual gross volume affecting enterprise... Employment to Which the Act May Apply; Enterprise Coverage Computing the Annual Volume § 779.267 Fluctuations in annual gross volume affecting enterprise coverage and establishment exemptions. It is...

  20. 29 CFR 779.267 - Fluctuations in annual gross volume affecting enterprise coverage and establishment exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Fluctuations in annual gross volume affecting enterprise... Employment to Which the Act May Apply; Enterprise Coverage Computing the Annual Volume § 779.267 Fluctuations in annual gross volume affecting enterprise coverage and establishment exemptions. It is...

  1. Application of soil physical models to predict soil deposition effects on plant establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion and deposition often result in significant soil profile modifications, including soil surface texture and structure changes. These properties affect water infiltration and available water holding capacity, both of which affect plant water availability. Because plants are especially sens...

  2. 27 CFR 19.33 - Application to establish experimental plants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... equipment; (3) Describe the location of the plant (including the proximity to other premises or operations... experimental plant for the purposes specified in § 19.32 must submit a written application to the appropriate TTB officer and obtain approval of the proposed experimental plant. The application must: (1)...

  3. 27 CFR 19.33 - Application to establish experimental plants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... equipment; (3) Describe the location of the plant (including the proximity to other premises or operations... experimental plant for the purposes specified in § 19.32 must submit a written application to the appropriate TTB officer and obtain approval of the proposed experimental plant. The application must: (1)...

  4. 27 CFR 19.33 - Application to establish experimental plants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... equipment; (3) Describe the location of the plant (including the proximity to other premises or operations... experimental plant for the purposes specified in § 19.32 must submit a written application to the appropriate TTB officer and obtain approval of the proposed experimental plant. The application must: (1)...

  5. 27 CFR 19.33 - Application to establish experimental plants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... equipment; (3) Describe the location of the plant (including the proximity to other premises or operations... experimental plant for the purposes specified in § 19.32 must submit a written application to the appropriate TTB officer and obtain approval of the proposed experimental plant. The application must: (1)...

  6. Agroforestry planting design affects loblolly pine growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of plantation design on resource utilization has not been adequately investigated in agroforestry plantations. An experiment was conducted near Booneville, AR on a silt loam soil with a fragipan. Loblolly pine trees were planted in 1994 in an east-west row orientation in three designs: ...

  7. On-plant selection and genetic analysis of European corn borer (Lepidoptera: Crambidae) behavioral traits: plant abandonment versus plant establishment.

    PubMed

    Rausch, Michael A; Kroemer, Jeremy A; Gassmann, Aaron J; Hellmich, Richard L

    2014-10-01

    Although some studies have investigated how insect behavior could influence resistance evolution to transgenic plants, none have determined if behavioral traits respond to selection pressure and how they may be inherited. We investigated plant establishment and abandonment traits for the European corn borer, Ostrinia nubilalisi (Hübner) (Lepidoptera: Crambidae), by conducting a laboratory selection experiment and quantifying patterns of gene expression. Egg masses with emerging larvae were placed on maize plants and silking individuals were collected every 15 min during a 4-h period to generate a plant abandonment (PA) colony. Plants were dissected 24-72 h later, and larvae were collected for a plant establishment colony. Selection of the PA colony showed an increased propensity to abandon the host plant by the third generation. The propensity for larvae to establish on the plants, however, did not show a significant response until the sixth generation. Quantitative real-time-polymerase chain reaction (qRT-PCR) was used to determine expression profiles for behavior associated genes (foraging and Onslmo). Egg samples from the two selected colonies and nonselected laboratory colony were collected at 0, 24, 48, 72, and 96 h after egg deposition, and first instars were sampled after exposure to maize tissue. Compared with the plant establishment and nonselected laboratory colonies at the 0-h time period, foraging and Onslmo showed higher expression in the PA colony. This is the first study that has specifically selected for these traits over several generations and analyzed behavior-associated genes to elucidate genetic changes. PMID:25203864

  8. Do transgenic plants affect rhizobacteria populations?

    PubMed Central

    Filion, Martin

    2008-01-01

    Summary Plant genetic manipulation has led to the development of genetically modified plants (GMPs) expressing various traits. Since their first commercial use in 1996, GMPs have been increasingly used, reaching a global cultivating production area of 114.3 million hectares in 2007. The rapid development of agricultural biotechnology and release of GMPs have provided many agronomic and economic benefits, but has also raised concerns over the potential impact these plants might have on the environment. Among these environmental concerns, the unintentional impact that GMPs might have on soil‐associated microbes, especially rhizosphere‐inhabiting bacteria or rhizobacteria, represents one of the least studied and understood areas. As rhizobacteria are responsible for numerous key functions including nutrient cycling and decomposition, they have been defined as good indicator organisms to assess the general impact that GMPs might have on the soil environment. This minireview summarizes the results of various experiments that have been conducted to date on the impact of GMPs on rhizobacteria. Both biological and technical parameters are discussed and an attempt is made to determine if specific rhizobacterial responses exist for the different categories of GMPs developed to date. PMID:21261867

  9. Effects of vegetative propagule pressure on the establishment of an introduced clonal plant, Hydrocotyle vulgaris.

    PubMed

    Liu, Ruihua; Chen, Qiuwen; Dong, Bicheng; Yu, Feihai

    2014-01-01

    Some introduced clonal plants spread mainly by vegetative (clonal) propagules due to the absence of sexual reproduction in the introduced range. Propagule pressure (i.e. total number of propagules) may affect the establishment and thus invasion success of introduced clonal plants, and such effects may also depend on habitat conditions. A greenhouse experiment with an introduced plant, Hydrocotyle vulgaris was conducted to investigate the role of propagule pressure on its invasion process. High (five ramets) or low (one ramet) propagule pressure was established either in bare soil or in an experimental plant community consisting of four grassland species. H. vulgaris produced more total biomass under high than under low propagule pressure in both habitat conditions. Interestingly, the size of the H. vulgaris individuals was smaller under high than under low propagule pressure in bare soil, whereas it did not differ between the two propagule pressure treatments in the grassland community. The results indicated that high propagule pressure can ensure the successful invasion in either the grass community or bare soil, and the shift in the intraspecific interaction of H. vulgaris from competition in the bare soil to facilitation in the grassland community may be a potential mechanism. PMID:24981102

  10. Maize Phenology Affects Establishment, Damage, and Development of the Western Corn Rootworm (Coleoptera:Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of maize (Zea mays L.) phenology on establishment and adult emergence of the western corn rootworm (Diabrotica virgifera virgifera LeConte) as well as plant damage to maize was evaluated in the greenhouse and in field trials in 2001 and 2002. Although neonate western corn rootworm larva...

  11. Polarity establishment, morphogenesis, and cultured plant cells in space

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1989-01-01

    Plant development entails an orderly progression of cellular events both in terms of time and geometry. There is only circumstantial evidence that, in the controlled environment of the higher plant embryo sac, gravity may play a role in embryo development. It is still not known whether or not normal embryo development and differentiation in higher plants can be expected to take place reliably and efficiently in the micro g space environment. It seems essential that more attention be given to studying aspects of reproductive biology in order to be confident that plants will survive seed to seed to seed in a space environment. Until the time arrives when successive generations of plants can be grown, the best that can be done is utilize the most appropriate systems and begin, piece meal, to accumulate information on important aspects of plant reproduction. Cultured plant cells can play an important role in these activities since they can be grown so as to be morphogenetically competent, and thus can simulate those embryogenic events more usually identified with fertilized eggs in the embryo sac of the ovule in the ovary. Also, they can be manipulated with relative ease. The extreme plasticity of such demonstrably totipotent cell systems provides a means to test environmental effects such as micro g on a potentially free-running entity. The successful manipulation and management of plant cells and propagules in space also has significance for exploitation of biotechnologies in space since such systems, perforce, are an important vehicle whereby many genetic engineering manipulations are achieved.

  12. Ordovician ash geochemistry and the establishment of land plants

    PubMed Central

    2012-01-01

    The colonization of the terrestrial environment by land plants transformed the planetary surface and its biota, and shifted the balance of Earth’s biomass from the subsurface towards the surface. However there was a long delay between the formation of palaeosols (soils) on the land surface and the key stage of plant colonization. The record of palaeosols, and their colonization by fungi and lichens extends well back into the Precambrian. While these early soils provided a potential substrate, they were generally leached of nutrients as part of the weathering process. In contrast, volcanic ash falls provide a geochemically favourable substrate that is both nutrient-rich and has high water retention, making them good hosts to land plants. An anomalously extensive system of volcanic arcs generated unprecedented volumes of lava and volcanic ash (tuff) during the Ordovician. The earliest, mid-Ordovician, records of plant spores coincide with these widespread volcanic deposits, suggesting the possibility of a genetic relationship. The ash constituted a global environment of nutrient-laden, water-saturated soil that could be exploited to maximum advantage by the evolving anchoring systems of land plants. The rapid and pervasive inoculation of modern volcanic ash by plant spores, and symbiotic nitrogen-fixing fungi, suggests that the Ordovician ash must have received a substantial load of the earliest spores and their chemistry favoured plant development. In particular, high phosphorus levels in ash were favourable to plant growth. This may have allowed photosynthesizers to diversify and enlarge, and transform the surface of the planet. PMID:22925460

  13. 78 FR 68020 - Evaluation of Established Plant Pests for Action at Ports of Entry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... Animal and Plant Health Inspection Service Evaluation of Established Plant Pests for Action at Ports of Entry AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are advising... the Administrator of the Animal and Plant Health Inspection Service (APHIS). Pursuant to the PPA,...

  14. Habitats as Complex Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation?

    PubMed Central

    Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2014-01-01

    Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. PMID:24416354

  15. Salinity and Alkaline pH in Irrigation Water Affect Marigold Plants: II. Mineral Ion Relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scarcity of water of good quality for landscape irrigation is of outmost importance in arid and semiarid regions due to the competition with urban population. This is forcing the use of degraded waters with high levels of salinity and high pH, which may affect plant establishment and growth. The o...

  16. Establishing the Architecture of Plant Gene Regulatory Networks.

    PubMed

    Yang, F; Ouma, W Z; Li, W; Doseff, A I; Grotewold, E

    2016-01-01

    Gene regulatory grids (GRGs) encompass the space of all the possible transcription factor (TF)-target gene interactions that regulate gene expression, with gene regulatory networks (GRNs) representing a temporal and spatial manifestation of a portion of the GRG, essential for the specification of gene expression. Thus, understanding GRG architecture provides a valuable tool to explain how genes are expressed in an organism, an important aspect of synthetic biology and essential toward the development of the "in silico" cell. Progress has been made in some unicellular model systems (eg, yeast), but significant challenges remain in more complex multicellular organisms such as plants. Key to understanding the organization of GRGs is therefore identifying the genes that TFs bind to, and control. The application of sensitive and high-throughput methods to investigate genome-wide TF-target gene interactions is providing a wealth of information that can be linked to important agronomic traits. We describe here the methods and resources that have been developed to investigate the architecture of plant GRGs and GRNs. We also provide information regarding where to obtain clones or other resources necessary for synthetic biology or metabolic engineering. PMID:27480690

  17. 27 CFR 19.913 - Action on applications to establish small plants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Action on applications to establish small plants. 19.913 Section 19.913 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... Fuel Use Permits § 19.913 Action on applications to establish small plants. (a) Receipt by...

  18. Factors affecting establishment success of the endangered Caribbean cactus Harrisia portoricensis (Cactaceae).

    PubMed

    Rojas-Sandoval, Julissa; Meléndez-Ackerman, Elvia

    2012-06-01

    Early plant stages may be the most vulnerable within the life cycle of plants especially in arid ecosystems. Interference from exotic species may exacerbate this condition. We evaluated germination, seedling survival and growth in the endangered Caribbean cactus Harrisia portoricensis, as a function of sunlight exposure (i.e., growing under open and shaded areas), different shade providers (i.e., growing under two native shrubs and one exotic grass species), two levels of predation (i.e., exclusion and non-exclusion) and variable microenvironmental conditions (i.e., temperature, PAR, humidity). Field experiments demonstrated that suitable conditions for germination and establishment of H. portoricensis seedling are optimal in shaded areas beneath the canopy of established species, but experiments also demonstrated that the identity of the shade provider can have a significant influence on the outcome of these processes. Harrisia portoricensis seedlings had higher probabilities of survival and grew better (i.e., larger diameters) when they were transplanted beneath the canopy of native shrubs, than beneath the exotic grass species, where temperature and solar radiation values were on average much higher than those obtained under the canopies of native shrubs. We also detected that exclusion from potential predators did not increase seedling survival. Our combined results for H. portoricensis suggested that the modification of microenvironmental conditions by the exotic grass may lower the probability of recruitment and establishment of this endangered cactus species. PMID:23894952

  19. The role of plant-microbiome interactions in weed establishment and control.

    PubMed

    Trognitz, Friederike; Hackl, Evelyn; Widhalm, Siegrid; Sessitsch, Angela

    2016-10-01

    The soil microbiome plays an important role in the establishment of weeds and invasive plants. They associate with microorganisms supporting their growth and health. Weed management strategies, like tillage and herbicide treatments, to control weeds generally alter soil structure going alongside with changes in the microbial community. Once a weed population establishes in the field, the plants build up a close relationship with the available microorganisms. Seeds or vegetative organs overwinter in soil and select early in the season their own microbiome before crop plants start to vegetate. Weed and crop plants compete for light, nutrition and water, but may differently interact with soil microorganisms. The development of new sequencing technologies for analyzing soil microbiomes has opened up the possibility for in depth analysis of the interaction between 'undesired' plants and crop plants under different management systems. These findings will help us to understand the functions of microorganisms involved in crop productivity and plant health, weed establishment and weed prevention. Exploitation of the knowledge offers the possibility to search for new biocontrol methods against weeds based on soil and plant-associated microorganisms. This review discusses the recent advances in understanding the functions of microbial communities for weed/invasive plant establishment and shows new ways to use plant-associated microorganisms to control weeds and invasive plants in different land management systems. PMID:27387910

  20. Remediation and restoration of contaminated soils for plant growth and establishment

    NASA Astrophysics Data System (ADS)

    Wong, Vanessa

    2014-05-01

    Degradation and contamination of soils is a serious issue, affecting soil and water quality, human health, and plant health and productivity. Degradation of soils can result in the mobilisation of high concentrations of trace metals as a function of both anthropogenic activities which can also be exacerbated by natural processes. Sulfidic sediments frequently underlie coastal floodplains globally. Oxidation of sulfidic sediments can result in the formation of acid sulfate soils and acidification and mobilisation of associated trace metals in soils, sediments and water. The geochemical processes which occur in these environments can be similar to those in acid mine drainage environments. For example, oxidation of sulfides following surface mining for coal can also result in low pH and high concentrations of trace metals in waste material. Remediation and restoration of such sites for plant growth and establishment can be challenging due to the geochemical characteristics of the soils and sediments. Remediation of oxidised sulfidic sediments on coastal floodplains and mine sites both require an increase in soil pH via incorporation of alkaline materials, and addition of nutrients via organic amendments. This paper presents the findings from two case studies on the remediation of contaminated acidic environments on i) a coastal floodplain, and ii) a coal mine site. We found that addition of lime and organic material increased pH and decreased trace metal concentrations in the coastal floodplain sediments. Organic carbon increased due to the incorporation of additional organic material and increased plant growth. Similarly, pH decreased and trace metal concentrations in leachate also decreased following additions of alkaline wood chip waste and compost in the mine site rehabilitation trials. Plant growth increased with increasing volumes of compost addition. These results, and those presented in SSS8.3 highlight the importance of appropriate ameliorants in the

  1. Propagule Pressure, Habitat Conditions and Clonal Integration Influence the Establishment and Growth of an Invasive Clonal Plant, Alternanthera philoxeroides

    PubMed Central

    You, Wen-Hua; Han, Cui-Min; Fang, Long-Xiang; Du, Dao-Lin

    2016-01-01

    Many notorious invasive plants are clonal, spreading mainly by vegetative propagules. Propagule pressure (the number of propagules) may affect the establishment, growth, and thus invasion success of these clonal plants, and such effects may also depend on habitat conditions. To understand how propagule pressure, habitat conditions and clonal integration affect the establishment and growth of the invasive clonal plants, an 8-week greenhouse with an invasive clonal plant, Alternanthera philoxeroides was conducted. High (five fragments) or low (one fragment) propagule pressure was established either in bare soil (open habitat) or dense native vegetation of Jussiaea repens (vegetative habitat), with the stolon connections either severed from or connected to the relatively older ramets. High propagule pressure greatly increased the establishment and growth of A. philoxeroides, especially when it grew in vegetative habitats. Surprisingly, high propagule pressure significantly reduced the growth of individual plants of A. philoxeroides in open habitats, whereas it did not affect the individual growth in vegetative habitats. A shift in the intraspecific interaction on A. philoxeroides from competition in open habitats to facilitation in vegetative habitats may be the main reason. Moreover, clonal integration significantly improved the growth of A. philoxeroides only in open habitats, especially with low propagule pressure, whereas it had no effects on the growth and competitive ability of A. philoxeroides in vegetative habitats, suggesting that clonal integration may be of most important for A. philoxeroides to explore new open space and spread. These findings suggest that propagule pressure may be crucial for the invasion success of A. philoxeroides, and such an effect also depends on habitat conditions. PMID:27200041

  2. Propagule Pressure, Habitat Conditions and Clonal Integration Influence the Establishment and Growth of an Invasive Clonal Plant, Alternanthera philoxeroides.

    PubMed

    You, Wen-Hua; Han, Cui-Min; Fang, Long-Xiang; Du, Dao-Lin

    2016-01-01

    Many notorious invasive plants are clonal, spreading mainly by vegetative propagules. Propagule pressure (the number of propagules) may affect the establishment, growth, and thus invasion success of these clonal plants, and such effects may also depend on habitat conditions. To understand how propagule pressure, habitat conditions and clonal integration affect the establishment and growth of the invasive clonal plants, an 8-week greenhouse with an invasive clonal plant, Alternanthera philoxeroides was conducted. High (five fragments) or low (one fragment) propagule pressure was established either in bare soil (open habitat) or dense native vegetation of Jussiaea repens (vegetative habitat), with the stolon connections either severed from or connected to the relatively older ramets. High propagule pressure greatly increased the establishment and growth of A. philoxeroides, especially when it grew in vegetative habitats. Surprisingly, high propagule pressure significantly reduced the growth of individual plants of A. philoxeroides in open habitats, whereas it did not affect the individual growth in vegetative habitats. A shift in the intraspecific interaction on A. philoxeroides from competition in open habitats to facilitation in vegetative habitats may be the main reason. Moreover, clonal integration significantly improved the growth of A. philoxeroides only in open habitats, especially with low propagule pressure, whereas it had no effects on the growth and competitive ability of A. philoxeroides in vegetative habitats, suggesting that clonal integration may be of most important for A. philoxeroides to explore new open space and spread. These findings suggest that propagule pressure may be crucial for the invasion success of A. philoxeroides, and such an effect also depends on habitat conditions. PMID:27200041

  3. Corridors affect plants, animals, and their interactions in fragmented landscapes.

    SciTech Connect

    Tewksbury, Joshua, J.; Levey, Douglas, J.; Haddad, Nick, M.; Sargent, Sarah; Orrock, John, L.; Weldon, Aimee; Danielson, Brent, J.; Brinkerhoff, Jory; Damschen, Ellen, I.; Townsend, Patricia

    2002-10-01

    Tewksbury, J.J., D.J. Levey, N.M. Haddad, S. Sargent, J.L. Orrock, A. Weldon, B.J. Danielson, J. Brinkerhoff, E.I. Damschen, and P. Townsend. 2002. Corridors affect plants, animals, and their interactions in fragmented landscapes. PNAS 99(20):12923-12926. Among the most popular strategies for maintaining populations of both plants and animals in fragmented landscapes is to connect isolated patches with thin strips of habitat, called corridors. Corridors are thought to increase the exchange of individuals between habitat patches, promoting genetic exchange and reducing population fluctuations. Empirical studies addressing the effects of corridors have either been small in scale or have ignored confounding effects of increased habitat area created by the presence of a corridor. These methodological difficulties, coupled with a paucity of studies examining the effects of corridors on plants and plant-animal interactions, have sparked debate over the purported value of corridors in conservation planning. We report results of a large-scale experiment that directly address this debate. We demonstrate that corridors not only increase the exchange of animals between patches, but also facilitate two key plant-animal interactions: pollination and seed dispersal. Our results show that the beneficial effects of corridors extend beyond the area they add, and suggest that increased plant and animal movement through corridors will have positive impacts on plant populations and community interactions in fragmented landscapes.

  4. The establishment of the infant intestinal microbiome is not affected by rotavirus vaccination

    PubMed Central

    Ang, Li; Arboleya, Silvia; Lihua, Guo; Chuihui, Yuan; Nan, Qin; Suarez, Marta; Solís, Gonzalo; de los Reyes-Gavilán, Clara G.; Gueimonde, Miguel

    2014-01-01

    The microbial colonization of the intestine during the first months of life constitutes the most important process for the microbiota-induced host-homeostasis. Alterations in this process may entail a high-risk for disease in later life. However, the potential factors affecting this process in the infant are not well known. Moreover, the potential impact of orally administered vaccines upon the establishing microbiome remains unknown. Here we assessed the intestinal microbiome establishment process and evaluated the impact of rotavirus vaccination upon this process. Metagenomic, PCR-DGGE and faecal short chain fatty acids analyses were performed on faecal samples obtained from three infants before and after the administration of each dose of vaccine. We found a high inter-individual variability in the early life gut microbiota at microbial composition level, but a large similarity between the infants' microbiomes at functional level. Rotavirus vaccination did not show any major effects upon the infant gut microbiota. Thus, the individual microbiome establishment and development process seems to occur in a defined manner during the first stages of life and rotavirus vaccination appears to be inconsequential for this process. PMID:25491920

  5. The establishment of the infant intestinal microbiome is not affected by rotavirus vaccination.

    PubMed

    Ang, Li; Arboleya, Silvia; Lihua, Guo; Chuihui, Yuan; Nan, Qin; Suarez, Marta; Solís, Gonzalo; de los Reyes-Gavilán, Clara G; Gueimonde, Miguel

    2014-01-01

    The microbial colonization of the intestine during the first months of life constitutes the most important process for the microbiota-induced host-homeostasis. Alterations in this process may entail a high-risk for disease in later life. However, the potential factors affecting this process in the infant are not well known. Moreover, the potential impact of orally administered vaccines upon the establishing microbiome remains unknown. Here we assessed the intestinal microbiome establishment process and evaluated the impact of rotavirus vaccination upon this process. Metagenomic, PCR-DGGE and faecal short chain fatty acids analyses were performed on faecal samples obtained from three infants before and after the administration of each dose of vaccine. We found a high inter-individual variability in the early life gut microbiota at microbial composition level, but a large similarity between the infants' microbiomes at functional level. Rotavirus vaccination did not show any major effects upon the infant gut microbiota. Thus, the individual microbiome establishment and development process seems to occur in a defined manner during the first stages of life and rotavirus vaccination appears to be inconsequential for this process. PMID:25491920

  6. Role of egg density on establishment and plant-to-plant movement by western corn rootworm larvae (Coleoptera: Chrysomelidae).

    PubMed

    Hibbard, B E; Higdon, M L; Duran, D P; Schweikert, Y M; Ellersieck, M R

    2004-06-01

    The effect of egg density on establishment and dispersal of larvae of the western corn rootworm, Diabrotica virgifera virgifera LeConte, was evaluated in a 3-yr field study. Implications of these data for resistance management plans for Bt crops are discussed. Viable egg levels of 100, 200, 400, 800, and 1600 eggs per infested plant were evaluated in 2000, 2001, and 2002. A 3200 viable egg level was also tested in 2001 and 2002. All eggs were infested on one plant per subplot in a field that was planted to soybean, Glycine max (L.), in the previous year. For each subplot, the infested plant, three plants down the row, the closest plant in the adjacent row of the plot, and a control plant at least 1.5 m from any infested plant (six plants total) were sampled. In 2000, there were five sample dates between egg hatch and pupation, and in 2001 and 2002, there were six sample dates. On each sample date, four replications of each egg density were sampled for both larval recovery and plant damage. Initial establishment on a corn plant seemed to not be density-dependent because a similar percentage of larvae was recovered from all infestation rates. Plant damage and, secondarily, subsequent postestablishment larval movement were density-dependent. Very little damage and postestablishment movement occurred at lower infestation levels, but significant damage and movement occurred at higher infestation rates. Movement generally occurred at a similar time as significant plant damage and not at initial establishment, so timing of movement seemed to be motivated by available food resources rather than crowding. At the highest infestation level in 2001, significant movement three plants down the row and across the 0.76 m row was detected, perhaps impacting refuge strategies for transgenic corn. PMID:15279266

  7. Fuel breaks affect nonnative species abundance in Californian plant communities

    USGS Publications Warehouse

    Merriam, K.E.; Keeley, J.E.; Beyers, J.L.

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment programs throughout the United States to reduce the threat of wildland fire. Our study included 24 fuel breaks located across the State of California. We found that nonnative plant abundance was over 200% higher on fuel breaks than in adjacent wildland areas. Relative nonnative cover was greater on fuel breaks constructed by bulldozers (28%) than on fuel breaks constructed by other methods (7%). Canopy cover, litter cover, and duff depth also were significantly lower on fuel breaks constructed by bulldozers, and these fuel breaks had significantly more exposed bare ground than other types of fuel breaks. There was a significant decline in relative nonnative cover with increasing distance from the fuel break, particularly in areas that had experienced more numerous fires during the past 50 years, and in areas that had been grazed. These data suggest that fuel breaks could provide establishment sites for nonnative plants, and that nonnatives may invade surrounding areas, especially after disturbances such as fire or grazing. Fuel break construction and maintenance methods that leave some overstory canopy and minimize exposure of bare ground may be less likely to promote nonnative plants. ?? 2006 by the Ecological Society of America.

  8. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability. PMID:25883357

  9. Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill.

    PubMed

    Murillo, J M; Marañón, T; Cabrera, F; López, R

    1999-12-01

    The collapse of a pyrite-mining, tailing dam on 25 April 1998 contaminated approximately 2000 ha of croplands along the Agrio and Guadiamar river valleys in southern Spain. This paper reports the accumulation of chemical elements in soil and in two crops--sunflower and sorghum--affected by the spill. Total concentrations of As, Bi, Cd, Cu, Mn, Pb, Sb, Tl and Zn in spill-affected soils were greater than in adjacent, unaffected soils. Leaves of spill-affected crop plants had higher nutrient (K, Ca and Mg for sunflower and N and K for sorghum) concentrations than controls, indicating a 'fertilising' effect caused by the sludge. Seeds of spill-affected sunflower plants did accumulate more As, Cd, Cu and Zn than controls, but values were below toxic levels. Leaves of sorghum plants accumulated more As, Bi, Cd, Mn, Pb, Tl and Zn than controls, but these values were also below toxic levels for livestock consumption. In general, none of the heavy metals studied in both crops reached either phytotoxic or toxic levels for humans or livestock. Nevertheless, a continuous monitoring of heavy metal accumulation in soil and plants must be established in the spill-affected area. PMID:10635586

  10. Cotyledon damage affects seed number through final plant size in the annual grassland species Medicago lupulina

    PubMed Central

    Zhang, Shiting; Zhao, Chuan; Lamb, Eric G.

    2011-01-01

    Background and Aims The effects of cotyledon damage on seedling growth and survival are relatively well established, but little is known about the effects on aspects of plant fitness such as seed number and size. Here the direct and indirect mechanisms linking cotyledon damage and plant fitness in the annual species Medicago lupulina are examined. Methods Growth and reproductive traits, including mature plant size, time to first flowering, flower number, seed number and individual seed mass were monitored in M. lupulina plants when zero, one or two cotyledons were removed at 7 d old. Structural equation modelling (SEM) was used to examine the mechanisms linking cotyledon damage to seed number and seed mass. Key Results Cotyledon damage reduced seed number but not individual seed mass. The primary mechanism was a reduction in plant biomass with cotyledon damage that in turn reduced seed number primarily through a reduction in flower numbers. Although cotyledon damage delayed flower initiation, it had little effect on seed number. Individual seed mass was not affected by cotyledon removal, but there was a trade-off between seed number and seed mass. Conclusions It is shown how a network of indirect mechanisms link damage to cotyledons and fitness in M. lupulina. Cotyledon damage had strong direct effects on both plant size and flowering phenology, but an analysis of the causal relationships among plant traits and fitness components showed that a reduction in plant size associated with cotyledon damage was an important mechanism influencing fitness. PMID:21196450

  11. Soil microbes and plant invasions—how soil-borne pathogens regulate plant populations and affect plant invasions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic plant invaders are a major global threat to biodiversity and ecosystem function. Here I present multiple lines of evidence suggesting that soil microbial communities affect the population growth rates of Prunus serotina in its native range and affect its invasiveness abroad. Research often ...

  12. 25 CFR 542.4 - How do these regulations affect minimum internal control standards established in a Tribal-State...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false How do these regulations affect minimum internal control... COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS § 542.4 How do these regulations affect minimum internal control standards established in a Tribal-State compact? (a) If there is...

  13. Plant community, primary productivity, and environmental conditions following wetland re-establishment in the Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Miller, R.L.; Fujii, R.

    2010-01-01

    Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in two re-established wetlands in the Sacramento San-Joaquin River Delta, California for 9 years after flooding to determine how relatively small differences in water depth affect carbon storage rates over time. To estimate annual carbon inputs, plant species cover, standing above- and below-ground plant biomass, and annual biomass turnover rates were measured, and allometric biomass models for Schoenoplectus (Scirpus) acutus and Typha spp., the emergent marsh dominants, were developed. As the wetlands developed, environmental factors, including water temperature, depth, and pH were measured. Emergent marsh vegetation colonized the shallow wetland more rapidly than the deeper wetland. This is important to potential carbon storage because emergent marsh vegetation is more productive, and less labile, than submerged and floating vegetation. Primary production of emergent marsh vegetation ranged from 1.3 to 3.2 kg of carbon per square meter annually; and, mid-season standing live biomass represented about half of the annual primary production. Changes in species composition occurred in both submerged and emergent plant communities as the wetlands matured. Water depth, temperature, and pH were lower in areas with emergent marsh vegetation compared to submerged vegetation, all of which, in turn, can affect carbon cycling and storage rates. ?? Springer Science+Business Media B.V. 2009.

  14. Woody plant establishment in grassed reclamation areas of the Athabasca oil sands

    SciTech Connect

    Fedkenheuer, A.W.

    1980-12-01

    The primary end land use for areas disturbed by the Syncrude Canada Ltd. oil sands surface mining venture is forest cover. Short term erosion control is of concern, however, and this results in the early establishment of a grass and legume cover. Problems have subsequently been encountered in attempts to establish woody plants in the grass and legume cover. Vegetation competition for soil moisture and nutrients and rodent damage to woody seedlings have been the major problem areas. A study was initiated in 1978 to evaluate methods of manipulating the grass and legume cover sufficiently to improve success rates in establishing a variety of shrubs and trees. Five replicated treatments using the chemical herbicide glyphosate, soil scarification and fire alone plus soil scarification were established on an area seeded to grass and legumes in spring 1976. Woody plant survival and rodent damage, populations and distribution are being assessed annually in spring and fall. Rodent damage to woody seedlings was heavy in fall 1978 with 80 percent of the deciduous seedlings on non-scarified plots being damaged. In June 1979, 98 percent of the deciduous plants on the control and herbicide treatment areas were damaged. Damage to conifers was approximately 30 percent less during this time. Prescribed burning and mechanical scarification substantially reduced rodent damage. Seedling survival was variable with Amelanchier alnifolia, Pinus contorta and Populus tremuloides consistently exhibiting the highest survival rates.

  15. Bouncing Back: Plant-Associated Soil Microbes Respond Rapidly to Prairie Establishment

    PubMed Central

    Herzberger, Anna J.; Duncan, David S.; Jackson, Randall D.

    2014-01-01

    It is well established that soil microbial communities change in response to altered land use and land cover, but less is known about the timing of these changes. Understanding temporal patterns in recovering microbial communities is an important part of improving how we assess and manage reconstructed ecosystems. We assessed patterns of community-level microbial diversity and abundance in corn and prairie plots 2 to 4 years after establishment in agricultural fields, using phospholipid fatty acid biomarkers. Principal components analysis of the lipid biomarkers revealed differing composition between corn and prairie soil microbial communities. Despite no changes to the biomass of Gram-positive bacteria and actinomycetes, total biomass, arbuscular mycorrhizal fungi biomass, and Gram-negative bacteria biomass were significantly higher in restored prairie plots, approaching levels found in long-established prairies. These results indicate that plant-associated soil microbes in agricultural soils can shift in less than 2 years after establishment of perennial grasslands. PMID:25551613

  16. Application of plant growth regulators, a simple technique for improving the establishment success of plant cuttings in coastal dune restoration

    NASA Astrophysics Data System (ADS)

    Balestri, Elena; Vallerini, Flavia; Castelli, Alberto; Lardicci, Claudio

    2012-03-01

    Exogenous application of plant growth regulators (PGRs) may be an effective technique for increasing the rooting ability and the growth of vegetative fragments (cuttings) of plants used in dune restoration programs. Various concentrations (0, 50 and 100 mg l-1) of two auxins, alpha-naphtaleneacetic acid (NAA) and indole-3-butyric acid (IBA), and two cytokinins, 6-furfurylaminopurine (Kinetin) and 6-benzylaminopurine (BAP), were applied separately to cuttings of two widely used species for restoration, Ammophila arenaria and Sporobuls virginicus. Root development and production of new buds in cuttings were examined under laboratory conditions one month after application. Cuttings were also examined one year after transplanting into a sandy substratum under natural conditions, to test for possible long term effects of PGRs on plant establishment success and growth. The response of the two study species to PGRs differed substantially. In A. arenaria the auxin NAA at 100 mg l-1 reduced the time for root initiation and increased the rooting capacity of cuttings, while the cytokinin Kinetin at 50 mg l-1 facilitated root growth. No auxin had effect on rooting or growth of S. virginicus cuttings, but treatment with 100 mg l-1 Kinetin resulted in higher rooting success than the control. One year after planting, the cuttings of A. arenaria treated with 100 mg l-1 NAA showed a higher establishment success (90% vs. 55%) and produced more culms and longer roots than the control; those treated with cytokinins did not differ in the establishment success from the control, but had longer roots, more culms and rhizomes. On the other hand, the cuttings of S. virginicus treated with 100 mg l-1 Kinetin showed a higher establishment success (75% vs. 35%) and had more culms than the control. Therefore, in restoration activities that involved A. arenaria, a pre-treatment of cuttings with NAA would be beneficial, as it allows the production of a higher number of well-developed plants with

  17. Factors Affecting the Distribution Pattern of Wild Plants with Extremely Small Populations in Hainan Island, China

    PubMed Central

    Chen, Yukai; Yang, Xiaobo; Yang, Qi; Li, Donghai; Long, Wenxing; Luo, Wenqi

    2014-01-01

    Understanding which factors affect the distribution pattern of extremely small populations is essential to the protection and propagation of rare and endangered plant species. In this study, we established 108 plots covering the entire Hainan Island, and measured the appearance frequency and species richness of plant species with extremely small populations, as well as the ecological environments and human disturbances during 2012–2013. We explored how the ecological environments and human activities affected the distribution pattern of these extremely small populations. Results showed that the extremely small populations underwent human disturbances and threats, and they were often found in fragmental habitats. The leading factors changing the appearance frequency of extremely small populations differed among plant species, and the direct factors making them susceptible to extinction were human disturbances. The peak richness of extremely small populations always occurred at the medium level across environmental gradients, and their species richness always decreased with increasing human disturbances. However, the appearance frequencies of three orchid species increased with the increasing human disturbances. Our study thus indicate that knowledge on how the external factors, such as the ecological environment, land use type, roads, human activity, etc., affect the distribution of the extremely small populations should be taken for the better protecting them in the future. PMID:24830683

  18. Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China.

    PubMed

    Chen, Yukai; Yang, Xiaobo; Yang, Qi; Li, Donghai; Long, Wenxing; Luo, Wenqi

    2014-01-01

    Understanding which factors affect the distribution pattern of extremely small populations is essential to the protection and propagation of rare and endangered plant species. In this study, we established 108 plots covering the entire Hainan Island, and measured the appearance frequency and species richness of plant species with extremely small populations, as well as the ecological environments and human disturbances during 2012-2013. We explored how the ecological environments and human activities affected the distribution pattern of these extremely small populations. Results showed that the extremely small populations underwent human disturbances and threats, and they were often found in fragmental habitats. The leading factors changing the appearance frequency of extremely small populations differed among plant species, and the direct factors making them susceptible to extinction were human disturbances. The peak richness of extremely small populations always occurred at the medium level across environmental gradients, and their species richness always decreased with increasing human disturbances. However, the appearance frequencies of three orchid species increased with the increasing human disturbances. Our study thus indicate that knowledge on how the external factors, such as the ecological environment, land use type, roads, human activity, etc., affect the distribution of the extremely small populations should be taken for the better protecting them in the future. PMID:24830683

  19. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    PubMed

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  20. Potential assessment of establishing a renewable energy plant in a rural agricultural area.

    PubMed

    Su, Ming-Chien; Kao, Nien-Hsin; Huang, Wen-Jar

    2012-06-01

    An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy. PMID:22788104

  1. Gasified Grass and Wood Biochars Facilitate Plant Establishment in Acid Mine Soils.

    PubMed

    Phillips, Claire L; Trippe, Kristin M; Whittaker, Gerald; Griffith, Stephen M; Johnson, Mark G; Banowetz, Gary M

    2016-05-01

    Heavy metals in exposed mine tailings threaten ecosystems that surround thousands of abandoned mines in the United States. Biochars derived from the pyrolysis or gasification of biomass may serve as a valuable soil amendment to revegetate mine sites. We evaluated the ability of two biochars, produced by gasification of either Kentucky bluegrass seed screenings (KB) or mixed conifer wood (CW), to support the growth of plants in mine spoils from the abandoned Formosa and Almeda Mines in Oregon. To evaluate the potential for plant establishment in mine tailings, wheat was grown in tailings amended with biochar at rates ranging from 0 to 9% (w/w). Both KB and CW biochars promoted plant establishment by increasing soil pH, increasing concentrations of macro- and micronutrients, and decreasing the solubility and plant uptake of heavy metals. Formosa tailings required at least 4% biochar and Almeda soil required at least 2% biochar to promote healthy wheat growth. A complimentary experiment in which mine spoils were leached with simulated precipitation indicated that biochar amendment rates ≥4% were sufficient to neutralize the elution pH and reduce concentrations of potentially toxic elements (Zn, Cu, Ni, Al) to levels near or below concern. These findings support the use of gasified biochar amendments to revegetate acid mine soils. PMID:27136169

  2. Management factors affecting establishment and yield of bioenergy miscanthus on claypan soil landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy crop Miscanthus x giganteus has been well studied for its establishment and yield in Europe and certain parts of the US Midwest but little has been done to investigate these properties when grown on degraded soils, which are typified as being less productive, and consequently, economically...

  3. Health Care Management Courses in Greek Universities: A First Attempt to Establish Factors Affecting Satisfaction

    ERIC Educational Resources Information Center

    Kotsifos, Vangelis; Alegakis, Athanasios; Philalithis, Anastas

    2012-01-01

    Purpose: The object of this study is to formulate, establish and apply a suitable and reliable tool for measuring the course experience satisfaction of Master graduates. A questionnaire was formulated, based on similar tools, and adjusted to the reality of Hellenic Higher Education, in order to measure the satisfaction of graduates in three Master…

  4. School Factors Explaining Achievement on Cognitive and Affective Outcomes: Establishing a Dynamic Model of Educational Effectiveness

    ERIC Educational Resources Information Center

    Creemers, Bert; Kyriakides, Leonidas

    2010-01-01

    The dynamic model of educational effectiveness defines school level factors associated with student outcomes. Emphasis is given to the two main aspects of policy, evaluation, and improvement in schools which affect quality of teaching and learning at both the level of teachers and students: a) teaching and b) school learning environment. Five…

  5. Preventing Establishment: An Inventory of Introduced Plants in Puerto Villamil, Isabela Island, Galapagos

    PubMed Central

    Guézou, Anne; Pozo, Paola; Buddenhagen, Christopher

    2007-01-01

    As part of an island-wide project to identify and eradicate potentially invasive plant species before they become established, a program of inventories is being carried out in the urban and agricultural zones of the four inhabited islands in Galapagos. This study reports the results of the inventory from Puerto Villamil, a coastal village representing the urban zone of Isabela Island. We visited all 1193 village properties to record the presence of the introduced plants. In addition, information was collected from half of the properties to determine evidence for potential invasiveness of the plant species. We recorded 261 vascular taxa, 13 of which were new records for Galapagos. Most of the species were intentionally grown (cultivated) (73.3%) and used principally as ornamentals. The most frequent taxa we encountered were Cocos nucifera (coconut tree) (22.1%) as a cultivated plant and Paspalum vaginatum (salt water couch) (13.2%) as a non cultivated plant. In addition 39 taxa were naturalized. On the basis of the invasiveness study, we recommend five species for eradication (Abutilon dianthum, Datura inoxia, Datura metel, Senna alata and Solanum capsicoides), one species for hybridization studies (Opuntia ficus-indica) and three species for control (Furcraea hexapetala, Leucaena leucocephala and Paspalum vaginatum). PMID:17940606

  6. Propagule size and predispersal damage by insects affect establishment and early growth of mangrove seedlings.

    PubMed

    Sousa, Wayne P; Kennedy, Peter G; Mitchell, Betsy J

    2003-05-01

    Variation in rates of seedling recruitment, growth, and survival can strongly influence the rate and course of forest regeneration following disturbance. Using a combination of field sampling and shadehouse experiments, we investigated the influence of propagule size and predispersal insect damage on the establishment and early growth of the three common mangrove species on the Caribbean coast of Panama: Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle. In our field samples, all three species exhibited considerable intraspecific variation in mature propagule size, and suffered moderate to high levels of predispersal attack by larval insects. Rates of insect attack were largely independent of propagule size both within and among trees. Our experimental studies using undamaged mature propagules showed that, for all three species, seedlings established at high rates regardless of propagule size. However, propagule size did have a marked effect on early seedling growth: seedlings that developed from larger propagules grew more rapidly. Predispersal insect infestations that had destroyed or removed a substantial amount of tissue, particularly if that tissue was meristematic or conductive, reduced the establishment of propagules of all three species. The effect of sublethal tissue damage or loss on the subsequent growth of established seedlings varied among the three mangrove species. For Avicennia, the growth response was graded: for a propagule of a given size, the more tissue lost, the slower the growth of the seedling. For Laguncularia, the response to insect attack appeared to be all-or-none. If the boring insect penetrated the outer spongy seed coat and reached the developing embryo, it usually caused sufficient damage to prevent a seedling from developing. On the other hand, if the insect damaged but did not penetrate the seed coat, a completely healthy seedling developed and its growth rate was indistinguishable from a seedling developing from an

  7. STRESS ETHYLENE EVOLUTION: A MEASURE OF OZONE AFFECTS ON PLANTS

    EPA Science Inventory

    To determine if ethylene evolution by plants is correlated with the ozone stress, a range of plants species and cultivars was exposed to varying ozone concentrations. Following exposure, the plants were encapsulated in plastic bags and incubated for up to 22h. The stress-induced ...

  8. Dispersal polymorphism in an invasive forest pest affects its ability to establish.

    PubMed

    Robinet, Christelle; Liebhold, Andrew M

    2009-10-01

    Given the increasing number of biological invasions, there is a crucial need to identify life history traits that promote invasion. Invasiveness reflects capabilities for both establishment after introduction and spread following establishment. In this paper, we explore, via simulation, the interacting effects of dispersal and Allee effects on both invasion processes. Dispersal capability is a trait that has been widely recognized to facilitate invasions. However, dispersal dilutes local population densities in isolated populations and this could strengthen Allee effects, ultimately promoting extinction of invading populations. A spatially explicit, stochastic individual-based model was used to simulate dispersal, mating, and growth in isolated, newly arrived invading populations. We used the invasion of North America by the gypsy moth, Lymantria dispar, as a case study because: (1) a great amount of biological data on the species is available; (2) Allee effects caused by mate location failure are known to play an important role in its establishment and spread; and (3) a dispersal polymorphism has previously been identified (i.e., in some populations adult females are fully capable of flight, but in other populations females are not able to fly). We considered the introduction of a hypothetical number of eggs at a single location, originating from populations with varying female dispersal capabilities, and we then used simulation models to evaluate the population growth rate over two generations as well as spread distance. Nondispersing populations had the highest growth rates and inclusion of even limited dispersal capabilities caused population growth rates to be greatly diminished. The Allee threshold was 700 eggs for nondispersing populations and 1400 eggs for the long-distance dispersing populations. Thus, for an intermediate number of eggs initially introduced, nondispersing populations would most likely establish, whereas dispersing populations would likely

  9. Affective imagery and acceptance of replacing nuclear power plants.

    PubMed

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed. PMID:21977961

  10. A Nostoc punctiforme sugar transporter necessary to establish a Cyanobacterium-plant symbiosis.

    PubMed

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L; Meeks, John C; Flores, Enrique

    2013-04-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using (14)C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work. PMID:23463784

  11. Does the Establishment of Sustainable Use Reserves Affect Fire Management in the Humid Tropics?

    PubMed Central

    Carmenta, Rachel; Blackburn, George Alan; Davies, Gemma; de Sassi, Claudio; Lima, André; Parry, Luke; Tych, Wlodek; Barlow, Jos

    2016-01-01

    Tropical forests are experiencing a growing fire problem driven by climatic change, agricultural expansion and forest degradation. Protected areas are an important feature of forest protection strategies, and sustainable use reserves (SURs) may be reducing fire prevalence since they promote sustainable livelihoods and resource management. However, the use of fire in swidden agriculture, and other forms of land management, may be undermining the effectiveness of SURs in meeting their conservation and sustainable development goals. We analyse MODIS derived hot pixels, TRMM rainfall data, Terra-Class land cover data, socio-ecological data from the Brazilian agro-census and the spatial extent of rivers and roads to evaluate whether the designation of SURs reduces fire occurrence in the Brazilian Amazon. Specifically, we ask (1) a. Is SUR location (i.e., de facto) or (1) b. designation (i.e. de jure) the driving factor affecting performance in terms of the spatial density of fires?, and (2), Does SUR creation affect fire management (i.e., the timing of fires in relation to previous rainfall)? We demonstrate that pre-protection baselines are crucial for understanding reserve performance. We show that reserve creation had no discernible impact on fire density, and that fires were less prevalent in SURs due to their characteristics of sparser human settlement and remoteness, rather than their status de jure. In addition, the timing of fires in relation to rainfall, indicative of local fire management and adherence to environmental law, did not improve following SUR creation. These results challenge the notion that SURs promote environmentally sensitive fire-management, and suggest that SURs in Amazonia will require special attention if they are to curtail future accidental wildfires, particularly as plans to expand the road infrastructure throughout the region are realised. Greater investment to support improved fire management by farmers living in reserves, in addition to

  12. Nutrient enrichment affects the mechanical resistance of aquatic plants.

    PubMed

    Lamberti-Raverot, Barbara; Puijalon, Sara

    2012-10-01

    For many plant species, nutrient availability induces important anatomical responses, particularly the production of low-density tissues to the detriment of supporting tissues. Due to the contrasting biomechanical properties of plant tissues, these anatomical responses may induce important modifications in the biomechanical properties of plant organs. The aim of this study was to determine the effects of nutrient enrichment on the anatomical traits of two freshwater plant species and its consequences on plant biomechanical performance. Two plant species were grown under controlled conditions in low versus high nutrient levels. The anatomical and biomechanical traits of the plant stems were measured. Both species produced tissues with lower densities under nutrient-rich conditions, accompanied by modifications in the structure of the aerenchyma for one species. As expected, nutrient enrichment also led to important modifications in the biomechanical properties of the stem for both species. In particular, mechanical resistance (breaking force and strength) and stiffness of stems were significantly reduced under nutrient rich conditions. The production of weaker stem tissues as a result of nutrient enrichment may increase the risk of plants to mechanical failure, thus challenging plant maintenance in mechanically stressful or disturbed habitats. PMID:23028018

  13. Water use in four model tropical plant associations established in the lowlands of Costa Rica.

    PubMed

    Gutiérrez-Soto, Marco V; Ewel, John J

    2008-12-01

    We examined soil water use patterns of four model plant associations established in the North Caribbean lowlands of Costa Rica by comparing the stable hydrogen isotope composition, deltaD, in xylem sap and in soil water at different depths, under rainy and dry conditions. Four 5-year-old model plant associations composed of 2 tree species (Hyeronima alchorneoides and Cedrela odorata) having different architecture and phenology were studied. Average tree height was 8.9 and 7.6 m, respectively. Each tree species was grown in monoculture and in polyculture with 2 perennial monocotyledons (Euterpe oleracea and Heliconia imbricata). Maximum rooting depth at the time of 6D determination was approximately 2 m for almost all species. Most roots of all species were concentrated in the upper soil layers. Stomatal conductance to water vapor (gS) was higher in the deciduous C. odorata than in the evergreen H. alchorneoides; within each species, g, did not differ when the trees were grown in mono or in polyculture. During the rainy season, gradients in soil water 6D were not observed. Average rainy season xylem sap deltaD did not differ among members of the plant combinations tested (-30% per thousand), and was more similar to deltaD values of shallow soil water. Under dry conditions, volumetric soil water content declined from 50 to approximately 35%, and modest gradients in soil water deltaD were observed. Xylem sap deltaD obtained during dry conditions was significantly lower than rainy season values. Xylem sap deltaD of plants growing in the four associations varied between -9 and -22% per hundred, indicating that shallow water was predominantly absorbed during the dry period too. Differences in xylem sap deltaD of trees and monocots were also detected, but no significant patterns emerged. The results suggest that: (a) the plant associations examined extracted water predominantly from shallow soil layers (<1 m), (b) the natural isotopic variation in soil and plant water at

  14. Contrasts in Student Affect by Institution and Instructor: Establishing a National Baseline for Geoscience Courses

    NASA Astrophysics Data System (ADS)

    Mcconnell, D. A.; Perkins, D.; Stempien, J.; Husman, J.

    2011-12-01

    The GARNET (Geoscience Affective Research Network) project examines the connection between student learning and the affective domain, which includes student motivations, values, attitudes and learning strategies - factors that can both promote and limit learning. This is the first study to compare and contrast the relationship between student motivation and learning strategies, the nature of classroom instruction, and learning outcomes across a common course taught by multiple instructors at different types of academic institutions. In 2009-2011 we administered pre- and post-course Motivated Strategies for Learning Questionnaires (MSLQ; Pintrich et al, 1993) to 1990 students in more than 40 introductory geology classes taught by 25 instructors at nine colleges and universities. Students primarily register for the introductory courses to fulfill a general education requirement with a relatively modest proportion (25%) declaring a prior interest in the course topic. This institutional requirement produces a situation where students' motivational orientation is not likely to adjust to their newfound academic environment. The students do not have an interest in the topic, they have little prior knowledge about the content, they do not see connections between the content and their future goals, and they have limited autonomy in their choice of a course (the course is required). In general, we find that across different institutions and instructors, students' motivation and self-regulation degrades. Through classroom observations, and student surveys we have evidence that specific faculty are able to help students maintain some of the positive motivational orientations students bring to the class. The MSLQ contains 15 subscales, six measure motivation (e.g., task value, self-efficacy), and nine focus on different learning strategies (e.g., elaboration, effort regulation). Regardless of institution or instructor, MSLQ scores on many subscales declined from beginning to

  15. Colostrum quality affects immune system establishment and intestinal development of neonatal calves.

    PubMed

    Yang, M; Zou, Y; Wu, Z H; Li, S L; Cao, Z J

    2015-10-01

    The first meal of a neonatal calf after birth is crucial for survival and health. The present experiment was performed to assess the effects of colostrum quality on IgG passive transfer, immune and antioxidant status, and intestinal morphology and histology in neonatal calves. Twenty-eight Holstein neonatal male calves were used in the current study, 24 of which were assigned to 1 of 3 treatment groups: those that received colostrum (GrC), transitional milk (GrT, which was obtained after the first milking on 2-3 d after calving), and bulk tank milk (GrB) only at birth. The 4 extra neonatal calves who were not fed any milk were assigned to the control group and were killed immediately after birth to be a negative control to small intestinal morphology and histology detection. Calves in GrC gained more body weight than in GrT, whereas GrB calves lost 0.4 kg compared with the birth weight. Serum total protein, IgG, and superoxide dismutase concentrations were highest in GrC, GrT was intermediate, whereas GrB was the lowest on d 2, 3, and 7. Apparent efficiency of absorption at 48 h, serum complement 3 (C3), and complement 4 (C4) on d 2, 3, and 7 in GrB was low compared with GrC and GrT. On the contrary, malondialdehyde on d 7 increased in GrB. Calves in GrC had better villus length and width, crypt depth, villus height/crypt depth (V/C) value, and mucosal thickness in the duodenum, jejunum, and ileum, whereas GrT calves had lower villus length and width, crypt depth, and mucosal thickness than those fed colostrum. Villi of calves in GrB were nonuniform, sparse, severely atrophied, and apically abscised, and Peyer's patches and hydroncus were detected. Overall, colostrum is the best source for calves in IgG absorption, antioxidant activities, and serum growth metabolites, and promoting intestinal development. The higher quality of colostrum calves ingested, the faster immune defense mechanism and the more healthy intestinal circumstances they established. PMID:26233454

  16. Factors Affecting Location Decisions of Food Processing Plants

    NASA Astrophysics Data System (ADS)

    Turhan, Sule; Canan Ozbag, Basak; Cetin, Bahattin

    The main aim of this study is to examine the determinants of location choices for food processing plants using the results of 59 personal surveys. The 61.3% of the food processing plants that were interviewed are small scale plants, 9.1% are large scale plants and 29.6% are medium scale plants. Sixteen of the firms process vegetables, 12 process poultry, 12 process dairy and 9 process seafood products. Business climate factors are divided into six categories (market, infrastructure, raw material, labor, personal and environmental) and 17 specific location factors are considered. The survey responses are analyzed by types of raw materials processed and by plant size. 43.7, 55.3 and 42.2% of the respondents cited categories of Market, Raw Material and Infrastructure respectively as important, while 44.3, 50.7 and 74.4% of the respondents cited, labor, personal and environmental regulation categories of as not important. Thus survey findings indicate that plant location choices are mainly driven by market, raw material and infra structural factors. Environmental factors such as environmental regulations and permissions are relatively insignificant.

  17. Factors affecting plant growth in membrane nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.

    1990-01-01

    The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.

  18. Plant toxins that affect nicotinic acetylcholine receptors: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants produce wide variety of chemical compounds termed secondary metabolites that are not involved in basic metabolism, photosynthesis or reproduction. These compounds are used as flavors, fragrances, insecticides, dyes, hallucinogens, nutritional supplements, poisons, and pharmaceutical agents. ...

  19. A novel family of small proteins that affect plant development

    SciTech Connect

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  20. Rhizosphere microbiome assemblage is affected by plant development

    PubMed Central

    Chaparro, Jacqueline M; Badri, Dayakar V; Vivanco, Jorge M

    2014-01-01

    There is a concerted understanding of the ability of root exudates to influence the structure of rhizosphere microbial communities. However, our knowledge of the connection between plant development, root exudation and microbiome assemblage is limited. Here, we analyzed the structure of the rhizospheric bacterial community associated with Arabidopsis at four time points corresponding to distinct stages of plant development: seedling, vegetative, bolting and flowering. Overall, there were no significant differences in bacterial community structure, but we observed that the microbial community at the seedling stage was distinct from the other developmental time points. At a closer level, phylum such as Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and specific genera within those phyla followed distinct patterns associated with plant development and root exudation. These results suggested that the plant can select a subset of microbes at different stages of development, presumably for specific functions. Accordingly, metatranscriptomics analysis of the rhizosphere microbiome revealed that 81 unique transcripts were significantly (P<0.05) expressed at different stages of plant development. For instance, genes involved in streptomycin synthesis were significantly induced at bolting and flowering stages, presumably for disease suppression. We surmise that plants secrete blends of compounds and specific phytochemicals in the root exudates that are differentially produced at distinct stages of development to help orchestrate rhizosphere microbiome assemblage. PMID:24196324

  1. Plant surface wax affects parasitoid's response to host footprints

    NASA Astrophysics Data System (ADS)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  2. Plant vigour at establishment and following defoliation are both associated with responses to drought in perennial ryegrass (Lolium perenne L.)

    PubMed Central

    Hatier, Jean-Hugues B.; Faville, Marty J.; Hickey, Michael J.; Koolaard, John P.; Schmidt, Jana; Carey, Brandi-Lee; Jones, Chris S.

    2014-01-01

    Periodic drought events present a significant and, with climate change, increasing constraint on temperate forage plants’ production. Consequently, improving plants’ adaptive response to abiotic stress is a key goal to ensure agricultural productivity in these regions. In this study we developed a new methodology, using both area-based comparison and soil water content measurements of individual non-irrigated and irrigated clones, to assess performance of perennial ryegrass (Lolium perenne L.) genotypes subjected to moisture stress in a simulated competitive environment. We applied this method to the evaluation of a full-sibling population from a pair cross between genotypes from a New Zealand cultivar and a Moroccan ecotype. Our hypothesis was that: (i) both leaf lamina regrowth after defoliation (LR) and plant vigour affect plant performance during drought and rehydration; and (ii) quantitative trait loci (QTLs) associated with plant performance under moisture stress could be identified. Differences amongst genotypes in dry matter (DM) production, early vigour at establishment, leaf elongation rate and LR were measured. LR explained most of the variation in DM production during exposure to moisture deficit and rehydration followed by plant vigour, indicated by initial DM production in both treatments and subsequent measures of DM production of irrigated clones. We identified two main QTL regions associated with DM production and LR, both during drought exposure and rehydration. Further research focused on these regions should improve our understanding of the genetic control of drought response in this forage crop and potentially other grass species with significant synteny, and support improvement in performance through molecular breeding approaches. PMID:25104762

  3. Burkholderia cenocepacia Lipopolysaccharide Modification and Flagellin Glycosylation Affect Virulence but Not Innate Immune Recognition in Plants

    PubMed Central

    Khodai-Kalaki, Maryam; Andrade, Angel; Fathy Mohamed, Yasmine

    2015-01-01

    ABSTRACT Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that “virulence” depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipopolysaccharide (LPS) with 4-amino-4-deoxy-l-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabidopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection. PMID:26045541

  4. Regression analysis of technical parameters affecting nuclear power plant performances

    SciTech Connect

    Ghazy, R.; Ricotti, M. E.; Trueco, P.

    2012-07-01

    Since the 80's many studies have been conducted in order to explicate good and bad performances of commercial nuclear power plants (NPPs), but yet no defined correlation has been found out to be totally representative of plant operational experience. In early works, data availability and the number of operating power stations were both limited; therefore, results showed that specific technical characteristics of NPPs were supposed to be the main causal factors for successful plant operation. Although these aspects keep on assuming a significant role, later studies and observations showed that other factors concerning management and organization of the plant could instead be predominant comparing utilities operational and economic results. Utility quality, in a word, can be used to summarize all the managerial and operational aspects that seem to be effective in determining plant performance. In this paper operational data of a consistent sample of commercial nuclear power stations, out of the total 433 operating NPPs, are analyzed, mainly focusing on the last decade operational experience. The sample consists of PWR and BWR technology, operated by utilities located in different countries, including U.S. (Japan)) (France)) (Germany)) and Finland. Multivariate regression is performed using Unit Capability Factor (UCF) as the dependent variable; this factor reflects indeed the effectiveness of plant programs and practices in maximizing the available electrical generation and consequently provides an overall indication of how well plants are operated and maintained. Aspects that may not be real causal factors but which can have a consistent impact on the UCF, as technology design, supplier, size and age, are included in the analysis as independent variables. (authors)

  5. Cadmium content of plants as affected by soil cadmium concentration

    SciTech Connect

    Lehoczky, E.; Szabados, I.; Marth, P.

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With the same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.

  6. How neighbor canopy architecture affects target plant performance

    SciTech Connect

    Tremmel, D.C.; Bazzaz, F.A. )

    1993-10-01

    Plant competition occurs through the negative effects that individual plants have on resource availability to neighboring individuals. Therefore competition experiments need to examine how different species change resource availability to their neighbors, and how different species respond to these changes-allocationally, architecturally, and physiologically-through time. In a greenhouse study we used a model system of annuals to examine how canopies of species having differing morphologies differed in their architectures and light-interception abilities, and how different species performed when grown in these canopies. Abutilon theophrasti, Datura stramonium, and Polygonum pensylvanicum were grown as [open quotes]targets[close quotes]. Plants were grown in pots, with one target plant and four neighbor plants. Detailed measurements of neighbor canopy structure and target plant canopy architecture were made at five harvests. Species with different morphologies showed large differences in canopy structure, particularly when grass and forb species were compared. Setaria, a grass, had a more open canopy than the other species (all forbs), and was a consistently weak competitor. Overall, however, the relative effects of different neighbors on target biomass varied with target species. Target biomass was poorly correlated with neighbor biomass and leaf area, but was highly correlated with a measure of target light-interception ability that took into account both target leaf deployment and neighbor light interception. Despite clear differences among neighbor species in canopy structure and effect on light penetration, the results suggest no broad generalizations about the effects of different species as neighbors. Knowledge of morphological, physiological, and life history characteristics of both the target and neighbor species may be necessary to explain the results of their competition. 53 refs., 4 figs., 4 tabs.

  7. Plant extracts affect in vitro rumen microbial fermentation.

    PubMed

    Busquet, M; Calsamiglia, S; Ferret, A; Kamel, C

    2006-02-01

    Different doses of 12 plant extracts and 6 secondary plant metabolites were incubated for 24 h in diluted ruminal fluid with a 50:50 forage:concentrate diet. Treatments were: control (no additive), plant extracts (anise oil, cade oil, capsicum oil, cinnamon oil, clove bud oil, dill oil, fenugreek, garlic oil, ginger oil, oregano oil, tea tree oil, and yucca), and secondary plant metabolites (anethol, benzyl salicylate, carvacrol, carvone, cinnamaldehyde, and eugenol). Each treatment was supplied at 3, 30, 300, and 3,000 mg/L of culture fluid. At 3,000 mg/L, most treatments decreased total volatile fatty acid concentration, but cade oil, capsicum oil, dill oil, fenugreek, ginger oil, and yucca had no effect. Different doses of anethol, anise oil, carvone, and tea tree oil decreased the proportion of acetate and propionate, which suggests that these compounds may not be nutritionally beneficial to dairy cattle. Garlic oil (300 and 3,000 mg/L) and benzyl salicylate (300 and 3,000 mg/L) reduced acetate and increased propionate and butyrate proportions, suggesting that methane production was inhibited. At 3,000 mg/L, capsicum oil, carvacrol, carvone, cinnamaldehyde, cinnamon oil, clove bud oil, eugenol, fenugreek, and oregano oil resulted in a 30 to 50% reduction in ammonia N concentration. Careful selection and combination of these extracts may allow the manipulation of rumen microbial fermentation. PMID:16428643

  8. Maximizing plant density affects broccoli yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased demand for fresh market bunch broccoli (Brassica oleracea L. var. italica) has led to increased production along the United States east coast. Maximizing broccoli yields is a primary concern for quickly expanding southeastern commercial markets. This broccoli plant density study was carr...

  9. Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions.

    PubMed

    Mengual, Carmen; Schoebitz, Mauricio; Azcón, Rosario; Roldán, Antonio

    2014-02-15

    The re-establishment of autochthonous shrub species is an essential strategy for recovering degraded soils under semiarid Mediterranean conditions. A field assay was carried out to determine the combined effects of the inoculation with native rhizobacteria (Bacillus megaterium, Enterobacter sp, Bacillus thuringiensis and Bacillus sp) and the addition of composted sugar beet (SB) residue on physicochemical soil properties and Lavandula dentata L. establishment. One year after planting, Bacillus sp. and B. megaterium + SB were the most effective treatments for increasing shoot dry biomass (by 5-fold with respect to control) and Enterobacter sp + SB was the most effective treatments for increasing dry root biomass. All the treatments evaluated significantly increased the foliar nutrient content (NPK) compared to control values (except B. thuringiensis + SB). The organic amendment had significantly increased available phosphorus content in rhizosphere soil by 29% respect to the control. Enterobacter sp combined with sugar beet residue improved total N content in soil (by 46% respect to the control) as well as microbiological and biochemical properties. The selection of the most efficient rhizobacteria strains and their combined effect with organic residue seems to be a critical point that drives the effectiveness of using these biotechnological tools for the revegetation and rehabilitation of degraded soils under semiarid conditions. PMID:24463051

  10. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities

    PubMed Central

    2013-01-01

    Background Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms’ specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Results Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms

  11. Volatile Exchange between Undamaged Plants - a New Mechanism Affecting Insect Orientation in Intercropping

    PubMed Central

    Ninkovic, Velemir; Dahlin, Iris; Vucetic, Andja; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben

    2013-01-01

    Changes in plant volatile emission can be induced by exposure to volatiles from neighbouring insect-attacked plants. However, plants are also exposed to volatiles from unattacked neighbours, and the consequences of this have not been explored. We investigated whether volatile exchange between undamaged plants affects volatile emission and plant-insect interaction. Consistently greater quantities of two terpenoids were found in the headspace of potato previously exposed to volatiles from undamaged onion plants identified by mass spectrometry. Using live plants and synthetic blends mimicking exposed and unexposed potato, we tested the olfactory response of winged aphids, Myzus persicae. The altered potato volatile profile deterred aphids in laboratory experiments. Further, we show that growing potato together with onion in the field reduces the abundance of winged, host-seeking aphids. Our study broadens the ecological significance of the phenomenon; volatiles carry not only information on whether or not neighbouring plants are under attack, but also information on the emitter plants themselves. In this way responding plants could obtain information on whether the neighbouring plant is a competitive threat and can accordingly adjust their growth towards it. We interpret this as a response in the process of adaptation towards neighbouring plants. Furthermore, these physiological changes in the responding plants have significant ecological impact, as behaviour of aphids was affected. Since herbivore host plants are potentially under constant exposure to these volatiles, our study has major implications for the understanding of how mechanisms within plant communities affect insects. This knowledge could be used to improve plant protection and increase scientific understanding of communication between plants and its impact on other organisms. PMID:23922710

  12. Multilevel dynamic systems affecting introduction of HIV/STI prevention innovations among Chinese women in sex work establishments.

    PubMed

    Weeks, Margaret R; Li, Jianghong; Liao, Susu; Zhang, Qingning; Dunn, Jennifer; Wang, Yanhong; Jiang, Jingmei

    2013-10-01

    Social and public health scientists are increasingly interested in applying system dynamics theory to improve understanding and to harness the forces of change within complex, multilevel systems that affect community intervention implementation, effects, and sustainability. Building a system dynamics model based on ethnographic case study has the advantage of using empirically documented contextual factors and processes of change in a real-world and real-time setting that can then be tested in the same and other settings. System dynamics modeling offers great promise for addressing persistent problems like HIV and other sexually transmitted epidemics, particularly in complex rapidly developing countries such as China. We generated a system dynamics model of a multilevel intervention we conducted to promote female condoms for HIV/sexually transmitted infection (STI) prevention among Chinese women in sex work establishments. The model reflects factors and forces affecting the study's intervention, implementation, and effects. To build this conceptual model, we drew on our experiences and findings from this intensive, longitudinal mixed-ethnographic and quantitative four-town comparative case study (2007-2012) of the sex work establishments, the intervention conducted in them, and factors likely to explain variation in process and outcomes in the four towns. Multiple feedback loops in the sex work establishments, women's social networks, and the health organization responsible for implementing HIV/STI interventions in each town and at the town level directly or indirectly influenced the female condom intervention. We present the conceptual system dynamics model and discuss how further testing in this and other settings can inform future community interventions to reduce HIV and STIs. PMID:24084394

  13. Multilevel Dynamic Systems Affecting Introduction of HIV/STI Prevention Innovations among Chinese Women in Sex-work Establishments

    PubMed Central

    Weeks, Margaret R.; Li, Jianghong; Liao, Susu; Zhang, Qingning; Dunn, Jennifer; Wang, Yanhong; Jiang, Jingmei

    2015-01-01

    Social and public health scientists are increasingly interested in applying system dynamics theory to improve understanding and to harness the forces of change within complex, multilevel systems that affect community intervention implementation, effects, and sustainability. Building a system dynamics model based on ethnographic case study has the advantage of using empirically documented contextual factors and processes of change in a real world and real time setting that can then be tested in the same and other settings. System dynamics modeling offers great promise for addressing persistent problems like HIV and other sexually transmitted epidemics, particularly in complex rapidly developing countries like China. We generated a system dynamics model of a multilevel intervention we conducted to promote female condoms (FC) for HIV/STI prevention among Chinese women in sex-work establishments. The model reflects factors and forces affecting the study’s intervention implementation and effects. To build this conceptual model, we drew on our experiences and findings from this intensive, longitudinal mixed ethnographic and quantitative four-town comparative case study (2007–2012) of the sex-work establishments, the intervention conducted in them, and factors likely to explain variation in process and outcomes in the four towns. Multiple feedback loops in the sex-work establishments, women’s social networks, and the health organization responsible for implementing HIV/STI interventions in each town and at the town level directly or indirectly influenced the FC intervention. We present the conceptual system dynamics model and discuss how further testing in this and other settings can inform future community interventions to reduce HIV and STIs. PMID:24084394

  14. Establishment of clonal myogenic cell lines from severely affected dystrophic muscles - CDK4 maintains the myogenic population

    PubMed Central

    2011-01-01

    Background A hallmark of muscular dystrophies is the replacement of muscle by connective tissue. Muscle biopsies from patients severely affected with facioscapulohumeral muscular dystrophy (FSHD) may contain few myogenic cells. Because the chromosomal contraction at 4q35 linked to FSHD is thought to cause a defect within myogenic cells, it is important to study this particular cell type, rather than the fibroblasts and adipocytes of the endomysial fibrosis, to understand the mechanism leading to myopathy. Results We present a protocol to establish clonal myogenic cell lines from even severely dystrophic muscle that has been replaced mostly by fat, using overexpression of CDK4 and the catalytic component of telomerase (human telomerase reverse transcriptase; hTERT), and a subsequent cloning step. hTERT is necessary to compensate for telomere loss during in vitro cultivation, while CDK4 prevents a telomere-independent growth arrest affecting CD56+ myogenic cells, but not their CD56- counterpart, in vitro. Conclusions These immortal cell lines are valuable tools to reproducibly study the effect of the FSHD mutation within myoblasts isolated from muscles that have been severely affected by the disease, without the confounding influence of variable amounts of contaminating connective-tissue cells. PMID:21798090

  15. Solanum malacoxylon: a toxic plant which affects animal calcium metabolism.

    PubMed

    Boland, R L

    1988-12-01

    The "enteque seco" is a disease of calcinosis, i.e., pathological deposition of calcium phosphate in soft tissues, which occurs in grazing cattle in Argentina and is of considerable economic importance. The ingestion of leaves of Solanum malacoxylon has been identified as the cause of the disease. Hypercalcemia and/or hyperphosphatemia and mineralization of the cardiovascular and pulmonary systems are usually seen in bovines or experimental animals exposed to this plant. The symptoms of the disease resemble those of vitamin D intoxication. In agreement with these observations, a glycoside derivative of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D in animals, has been identified as the toxic principle of S. malacoxylon. Glycoside conjugates of its precursors, 25-hydroxyvitamin D3 and vitamin D3, may also be present. Recent studies indicate that the plant factor is modified in the rumen of bovines through cleavage of the glycosidic linkage and further conversion of the released 1,25(OH)2D3 to a more polar metabolite, possibly 1,24,25-trihydroxyvitamin D3. Excess free 1,25(OH)2D3 may alter extracellular and intracellular Ca homeostasis in intoxicated animals through a receptor-mediated mechanism and activation of membrane Ca channels. In addition, 1,24,25(OH)3D3 may potentiate the effects of 1,25(OH)2D3 on intestinal Ca transport. PMID:3077267

  16. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. PMID:25871977

  17. Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines.

    PubMed

    Mapelli, Francesca; Marasco, Ramona; Rizzi, Agostino; Baldi, Franco; Ventura, Stefano; Daffonchio, Daniele; Borin, Sara

    2011-02-01

    In arctic glacier moraines, bioweathering primed by microbial iron oxidizers creates fertility gradients that accelerate soil development and plant establishment. With the aim of investigating the change of bacterial diversity in a pyrite-weathered gradient, we analyzed the composition of the bacterial communities involved in the process by sequencing 16S rRNA gene libraries from different biological soil crusts (BSC). Bacterial communities in three BSC of different morphology, located within 1 m distance downstream a pyritic conglomerate rock, were significantly diverse. The glacier moraine surrounding the weathered site showed wide phylogenetic diversity and high evenness with 15 represented bacterial classes, dominated by Alphaproteobacteria and pioneer Cyanobacteria colonizers. The bioweathered area showed the lowest diversity indexes and only nine bacterial families, largely dominated by Acidobacteriaceae and Acetobacteraceae typical of acidic environments, in accordance with the low pH of the BSC. In the weathered BSC, iron-oxidizing bacteria were cultivated, with counts decreasing along with the increase of distance from the rock, and nutrient release from the rock was revealed by environmental scanning electron microscopy-energy dispersive X-ray analyses. The vegetated area showed the presence of Actinomycetales, Verrucomicrobiales, Gemmatimonadales, Burkholderiales, and Rhizobiales, denoting a bacterial community typical of developed soils and indicating that the lithoid substrate of the bare moraine was here subjected to an accelerated colonization, driven by iron-oxidizing activity. PMID:20953598

  18. A Fungal Endosymbiont Affects Host Plant Recruitment Through Seed- and Litter-mediated Mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. Many grass species are associated with maternally transmitted fungal endophytes. Increasing evidence shows that endophytes enhance host plant success under varied conditions, yet studies have rarely considered alternative mechanisms whereby these mutualistic symbionts may affect regeneration from...

  19. Reassessment of selected factors affecting siting of Nuclear Power Plants

    SciTech Connect

    Davis, R.E.; Hanson, A.L.; Mubayi, V.; Nourbakhsh, H.P.

    1997-02-01

    Brookhaven National Laboratory has performed a series of probabilistic consequence assessment calculations for nuclear reactor siting. This study takes into account recent insights into severe accident source terms and examines consequences in a risk based format consistent with the quantitative health objectives (QHOs) of the NRC`s Safety Goal Policy. Simplified severe accident source terms developed in this study are based on the risk insights of NUREG-1150. The results of the study indicate that both the quantity of radioactivity released in a severe accident as well as the likelihood of a release are lower than those predicted in earlier studies. The accident risks using the simplified source terms are examined at a series of generic plant sites, that vary in population distribution, meteorological conditions, and exclusion area boundary distances. Sensitivity calculations are performed to evaluate the effects of emergency protective action assumptions on the risk of prompt fatality and latent cancers fatality, and population relocation. The study finds that based on the new source terms the prompt and latent fatality risks at all generic sites meet the QHOs of the NRC`s Safety Goal Policy by margins ranging from one to more than three orders of magnitude. 4 refs., 17 figs., 24 tabs.

  20. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    PubMed

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. PMID:26147312

  1. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  2. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  3. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  4. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  5. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  6. Nitrogen and water affect direct and indirect plant systemic induced defense in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the affects of nitrogen levels and water availability on the ability of cotton plants to deter feeding by Spodoptera exigua larvae through induction of anti-feedant chemicals by the cotton plant, and to attract the biological control agent, Micropitis crociepes through induction of chemica...

  7. Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids.

    PubMed

    Weldegergis, Berhane T; Zhu, Feng; Poelman, Erik H; Dicke, Marcel

    2015-03-01

    One of the main abiotic stresses that strongly affects plant survival and the primary cause of crop loss around the world is drought. Drought stress leads to sequential morphological, physiological, biochemical and molecular changes that can have severe effects on plant growth, development and productivity. As a consequence of these changes, the interaction between plants and insects can be altered. Using cultivated Brassica oleracea plants, the parasitoid Microplitis mediator and its herbivorous host Mamestra brassicae, we studied the effect of drought stress on (1) the emission of plant volatile organic compounds (VOCs), (2) plant hormone titres, (3) preference and performance of the herbivore, and (4) preference of the parasitoid. Higher levels of jasmonic acid (JA) and abscisic acid (ABA) were recorded in response to herbivory, but no significant differences were observed for salicylic acid (SA) and indole-3-acetic acid (IAA). Drought significantly impacted SA level and showed a significant interactive effect with herbivory for IAA levels. A total of 55 VOCs were recorded and the difference among the treatments was influenced largely by herbivory, where the emission rate of fatty acid-derived volatiles, nitriles and (E)-4,8-dimethylnona-1,3,7-triene [(E)-DMNT] was enhanced. Mamestra brassicae moths preferred to lay eggs on drought-stressed over control plants; their offspring performed similarly on plants of both treatments. VOCs due to drought did not affect the choice of M. mediator parasitoids. Overall, our study reveals an influence of drought on plant chemistry and insect-plant interactions. PMID:25370387

  8. Widespread seed limitation affects plant density but not population trajectory in the invasive plant Centaurea solstitialis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In some plant populations, the availability of seeds strongly regulates recruitment. However, a scarcity of germination microsites, granivory or density dependent mortality can reduce the number of plants that germinate or survive to flowering. The relative strength of these controls is unknown for ...

  9. Interactions between plant traits and sediment characteristics influencing species establishment and scale-dependent feedbacks in salt marsh ecosystems

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Bouma, T. J.; Zhang, L. Q.; Temmerman, S.; Ysebaert, T.; Herman, P. M. J.

    2015-12-01

    The importance of ecosystem engineering and biogeomorphic processes in shaping many aquatic and semi-aquatic landscapes is increasingly acknowledged. Ecosystem engineering and biogeomorphic landscape formation involves two critical processes: (1) species establishment, and (2) scale-dependent feedbacks, meaning that organisms improve their living conditions on a local scale but at the same time worsen them at larger scales. However, the influence of organism traits in combination with physical factors (e.g. hydrodynamics, sediments) on early establishment and successive development due to scale-dependent feedbacks is still unclear. As a model system, this was tested for salt marsh pioneer plants by conducting flume experiments: i) on the influence of species-specific traits (such as stiffness) of two contrasting dominant pioneer species (Spartina alterniflora and Scirpus mariqueter) to withstand current-induced stress during establishment; and ii) to study the impact of species-specific traits (stiffness) and physical forcing (water level, current stress) on the large-scale negative feedback at established tussocks (induced scour at tussock edges) of the two model species. The results indicate that, not only do species-specific plant traits, such as stiffness, exert a major control on species establishment thresholds, but also potentially physiologically triggered plant properties, such as adapted root morphology due to sediment properties. Moreover, the results show a clear relation between species-specific plant traits, abiotics (i.e. sediment, currents) and the magnitude of the large-scale negative scale-dependent feedback. These findings suggest that the ecosystem engineering ability, resulting from physical plant properties can be disadvantageous for plant survival through promoted dislodgement (stem stiffness increases the amount of drag experienced at the root system), underlying the importance of scale-dependent feedbacks on landscape development.

  10. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission.

    PubMed

    Vucetic, Andja; Dahlin, Iris; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben; Ninkovic, Velemir

    2014-01-01

    Volatile interactions between unattacked plants can lead to changes in their volatile emissions. Exposure of potato plants to onion plant volatiles results in increased emission of 2 terpenoids, (E)-nerolidol and TMTT. We investigated whether this is detectable by the ladybird Coccinella septempunctata. The odor of onion-exposed potato was significantly more attractive to ladybirds than that of unexposed potato. Further, a synthetic blend mimicking the volatile profile of onion-exposed potato was more attractive than a blend mimicking that of unexposed potato. When presented individually, TMTT was attractive to ladybirds whereas (E)-nerolidol was repellent. Volatile exchange between unattacked plants and consequent increased attractiveness for ladybirds may be a mechanism that contributes to the increased abundance of natural enemies in complex plant habitats. PMID:25763628

  11. Climate warming affects biological invasions by shifting interactions of plants and herbivores.

    PubMed

    Lu, Xinmin; Siemann, Evan; Shao, Xu; Wei, Hui; Ding, Jianqing

    2013-08-01

    Plants and herbivorous insects can each be dramatically affected by temperature. Climate warming may impact plant invasion success directly but also indirectly through changes in their natural enemies. To date, however, there are no tests of how climate warming shifts the interactions among invasive plants and their natural enemies to affect invasion success. Field surveys covering the full latitudinal range of invasive Alternanthera philoxeroides in China showed that a beetle introduced for biocontrol was rare or absent at higher latitudes. In contrast, plant cover and mass increased with latitude. In a 2-year field experiment near the northern limit of beetle distribution, we found the beetle sustained populations across years under elevated temperature, dramatically decreasing A. philoxeroides growth, but it failed to overwinter in ambient temperature. Together, these results suggest that warming will allow the natural enemy to expand its range, potentially benefiting biocontrol in regions that are currently too cold for the natural enemy. However, the invader may also expand its range further north in response to warming. In such cases where plants tolerate cold better than their natural enemies, the geographical gap between plant and herbivorous insect ranges may not disappear but will shift to higher latitudes, leading to a new zone of enemy release. Therefore, warming will not only affect plant invasions directly but also drive either enemy release or increase that will result in contrasting effects on invasive plants. The findings are also critical for future management of invasive species under climate change. PMID:23640751

  12. 29 CFR 570.51 - Occupations in or about plants or establishments manufacturing or storing explosives or articles...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Occupations in or about plants or establishments manufacturing or storing explosives or articles containing explosive components (Order 1). 570.51 Section 570.51 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS CHILD LABOR REGULATIONS, ORDERS...

  13. 29 CFR 570.51 - Occupations in or about plants or establishments manufacturing or storing explosives or articles...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Occupations in or about plants or establishments manufacturing or storing explosives or articles containing explosive components (Order 1). 570.51 Section 570.51 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS CHILD LABOR REGULATIONS, ORDERS...

  14. Costs of establishing northern highbush blueberry in organic systems: impacts of planting method, fertilization, and mulch type

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A systems trial was established to evaluate factorial management practices for organic production of northern highbush blueberry. The practices include: flat and raised planting beds; feather meal and fish emulsion fertilizer applied at 29 and 57 kg/ha N; sawdust mulch, compost topped with sawdust m...

  15. Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill) Fluoranthene mists negatively affected tomato plants.

    PubMed

    Oguntimehin, Ilemobayo; Eissa, Fawzy; Sakugawa, Hiroshi

    2010-02-01

    Cherry tomato plants (Lycopersicon esculentum Mill) were sprayed with fluoranthene and mixture of fluoranthene and mannitol solutions for 30d. The exposure was carried out in growth chambers in field conditions, and the air was filtered through charcoal filters to remove atmospheric contaminants. Plants were sprayed with 10microM fluoranthene as mist until they reached the fruiting stage, and the eco-physiological parameters were measured to determine the effects of the treatments. We measured CO(2) uptake and water vapour exchange, chlorophyll fluorescence, leaf pigment contents, visual symptoms and biomass allocation. Fluoranthene which was deposited as mist onto leaves negatively affected both growth and the quality of tomato plants, while other treatments did not. The photosynthetic rate measured at saturated irradiance was approximately 37% lower in fluoranthene-treated plants compared with the control group. Other variables, such as stomata conductance, the photochemical efficiency of PSII in the dark, Chl a, Chl b, and the total chlorophyll contents of the tomato leaves were significantly reduced in the fluoranthene-treated plants. Tomato plants treated with fluoranthene showed severe visible injury symptoms on the foliage during the exposure period. Mannitol (a reactive oxygen scavenger) mitigated effects of fluoranthene; thus, reactive oxygen species generated through fluoranthene may be responsible for the damaged tomato plants. It is possible for fluoranthene to decrease the aesthetic and hence the economic value of this valuable crop plant. PMID:20006894

  16. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth.

    PubMed

    Besseau, Sébastien; Hoffmann, Laurent; Geoffroy, Pierrette; Lapierre, Catherine; Pollet, Brigitte; Legrand, Michel

    2007-01-01

    In Arabidopsis thaliana, silencing of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT), a lignin biosynthetic gene, results in a strong reduction of plant growth. We show that, in HCT-silenced plants, lignin synthesis repression leads to the redirection of the metabolic flux into flavonoids through chalcone synthase activity. Several flavonol glycosides and acylated anthocyanin were shown to accumulate in higher amounts in silenced plants. By contrast, sinapoylmalate levels were barely affected, suggesting that the synthesis of that phenylpropanoid compound might be HCT-independent. The growth phenotype of HCT-silenced plants was shown to be controlled by light and to depend on chalcone synthase expression. Histochemical analysis of silenced stem tissues demonstrated altered tracheary elements. The level of plant growth reduction of HCT-deficient plants was correlated with the inhibition of auxin transport. Suppression of flavonoid accumulation by chalcone synthase repression in HCT-deficient plants restored normal auxin transport and wild-type plant growth. By contrast, the lignin structure of the plants simultaneously repressed for HCT and chalcone synthase remained as severely altered as in HCT-silenced plants, with a large predominance of nonmethoxylated H units. These data demonstrate that the reduced size phenotype of HCT-silenced plants is not due to the alteration of lignin synthesis but to flavonoid accumulation. PMID:17237352

  17. Predicting the establishment and spread of plant disease from regulatory sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive plant diseases can have devastating consequences on the local plant populations, in both agricultural and natural landscapes. Knowledge of the spatial patterns of pathogen spread can be used to guide more time- and cost-effective disease management strategies. Based on disease dispersal pri...

  18. Limitations to postfire seedling establishment: the role of seeding technology, water availability, and invasive plant abundance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeding rangeland following wildfire is a central tool managers use to stabilize soils and inhibit the spread of invasive plants. Rates of successful seeding on arid rangeland, however, are low. The objective of this study was to determine the degree to which water availability, invasive plant abund...

  19. Selective Pressure along a Latitudinal Gradient Affects Subindividual Variation in Plants

    PubMed Central

    Sobral, Mar; Guitián, José; Guitián, Pablo; Larrinaga, Asier R.

    2013-01-01

    Individual plants produce repeated structures such as leaves, flowers or fruits, which, although belonging to the same genotype, are not phenotypically identical. Such subindividual variation reflects the potential of individual genotypes to vary with micro-environmental conditions. Furthermore, variation in organ traits imposes costs to foraging animals such as time, energy and increased predation risk. Therefore, animals that interact with plants may respond to this variation and affect plant fitness. Thus, phenotypic variation within an individual plant could be, in part, an adaptive trait. Here we investigated this idea and we found that subindividual variation of fruit size of Crataegus monogyna, in different populations throughout the latitudinal gradient in Europe, was explained at some extent by the selective pressures exerted by seed-dispersing birds. These findings support the hypothesis that within-individual variation in plants is an adaptive trait selected by interacting animals which may have important implications for plant evolution. PMID:24069297

  20. Corn Response as Affected by Planting Distance from the Center of Strip-Till Fertilized Rows

    PubMed Central

    Adee, Eric; Hansel, Fernando D.; Ruiz Diaz, Dorivar A.; Janssen, Keith

    2016-01-01

    Strip-till has been used at a large scale in east central Kansas as an alternative to earlier planting dates under a no-till system. To determine the effects of planting corn (Zea mays) under previously established strip-tilled fertilized rows, experiments were conducted on an Osage silty clay loam soil in 2006 and 2008 and on a Woodson silt loam soil in 2009, 2010, and 2011 using three different planting distances from the strip-tilled fertilized rows (0, 10, 20, and 38 cm) with a strip-till operation performed between 1 and 73 days before planting. The depth of the strip-till fertilizer application was 13–15 cm below the soil surface. Corn that was planted 10 cm from the fertilized row showed greater early season growth, higher plant population, and grain yield. Planting 20 and 38 cm from the center of the fertilized rows showed none of the benefits that are typically associated with strip-tillage system. Enough time should be allowed between the strip-till operation and planting to reach satisfactory soil conditions (e.g., moist and firm seedbed). Our results suggest that the best location for planting strip-tilled fertilized corn vary depending on soil and climatic conditions as well as the time between fertilizer application with the strip-till operation and planting. With fewer number of days, planting directly on the center of fertilized strip-till resulted in decreased plant population and lower grain yield. However, the greatest yield benefit across different planting conditions was attained when planting within 10 cm of the strip. PMID:27588024

  1. Corn Response as Affected by Planting Distance from the Center of Strip-Till Fertilized Rows.

    PubMed

    Adee, Eric; Hansel, Fernando D; Ruiz Diaz, Dorivar A; Janssen, Keith

    2016-01-01

    Strip-till has been used at a large scale in east central Kansas as an alternative to earlier planting dates under a no-till system. To determine the effects of planting corn (Zea mays) under previously established strip-tilled fertilized rows, experiments were conducted on an Osage silty clay loam soil in 2006 and 2008 and on a Woodson silt loam soil in 2009, 2010, and 2011 using three different planting distances from the strip-tilled fertilized rows (0, 10, 20, and 38 cm) with a strip-till operation performed between 1 and 73 days before planting. The depth of the strip-till fertilizer application was 13-15 cm below the soil surface. Corn that was planted 10 cm from the fertilized row showed greater early season growth, higher plant population, and grain yield. Planting 20 and 38 cm from the center of the fertilized rows showed none of the benefits that are typically associated with strip-tillage system. Enough time should be allowed between the strip-till operation and planting to reach satisfactory soil conditions (e.g., moist and firm seedbed). Our results suggest that the best location for planting strip-tilled fertilized corn vary depending on soil and climatic conditions as well as the time between fertilizer application with the strip-till operation and planting. With fewer number of days, planting directly on the center of fertilized strip-till resulted in decreased plant population and lower grain yield. However, the greatest yield benefit across different planting conditions was attained when planting within 10 cm of the strip. PMID:27588024

  2. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands. PMID:27164912

  3. 40 CFR Table 2 to Subpart Zzzzz of... - Procedures for Establishing Operating Limits for New Affected Sources Classified as Large Foundries

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Procedures for Establishing Operating Limits for New Affected Sources Classified as Large Foundries 2 Table 2 to Subpart ZZZZZ of Part 63... Sources Classified as Large Foundries As required in § 63.10898(k), you must establish operating...

  4. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    PubMed Central

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  5. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci.

    PubMed

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles-especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  6. Deviation from niche optima affects the nature of plant-plant interactions along a soil acidity gradient.

    PubMed

    He, Lei; Cheng, Lulu; Hu, Liangliang; Tang, Jianjun; Chen, Xin

    2016-01-01

    There is increasing recognition of the importance of niche optima in the shift of plant-plant interactions along environmental stress gradients. Here, we investigate whether deviation from niche optima would affect the outcome of plant-plant interactions along a soil acidity gradient (pH = 3.1, 4.1, 5.5 and 6.1) in a pot experiment. We used the acid-tolerant species Lespedeza formosa Koehne as the neighbouring plant and the acid-tolerant species Indigofera pseudotinctoria Mats. or acid-sensitive species Medicago sativa L. as the target plants. Biomass was used to determine the optimal pH and to calculate the relative interaction index (RII). We found that the relationships between RII and the deviation of soil pH from the target's optimal pH were linear for both target species. Both targets were increasingly promoted by the neighbour as pH values deviated from their optima; neighbours benefitted target plants by promoting soil symbiotic arbuscular mycorrhizal fungi, increasing soil organic matter or reducing soil exchangeable aluminium. Our results suggest that the shape of the curve describing the relationship between soil pH and facilitation/competition depends on the soil pH optima of the particular species. PMID:26740568

  7. 78 FR 1825 - Notice of Establishment of an Animal and Plant Health Inspection Service Stakeholder Registry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Inspection Service Stakeholder Registry AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... Service stakeholder registry. FOR FURTHER INFORMATION CONTACT: Ms. Hallie Zimmers, Advisor for State and Stakeholder Relations, Legislative and Public Affairs, APHIS, room 1147, 1400 Independence Avenue...

  8. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    PubMed Central

    2008-01-01

    Background The Wuschel related homeobox (WOX) family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG) using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most likely by preventing premature

  9. openSputnik--a database to ESTablish comparative plant genomics using unsaturated sequence collections.

    PubMed

    Rudd, Stephen

    2005-01-01

    The public expressed sequence tag collections are continually being enriched with high-quality sequences that represent an ever-expanding range of taxonomically diverse plant species. While these sequence collections provide biased insight into the populations of expressed genes available within individual species and their associated tissues, the information is conceivably of wider relevance in a comparative context. When we consider the available expressed sequence tag (EST) collections of summer 2004, most of the major plant taxonomic clades are at least superficially represented. Investigation of the five million available plant ESTs provides a wealth of information that has applications in modelling the routes of plant genome evolution and the identification of lineage-specific genes and gene families. Over four million ESTs from over 50 distinct plant species have been collated within an EST analysis pipeline called openSputnik. The ESTs were resolved down into approximately one million unigene sequences. These have been annotated using orthology-based annotation transfer from reference plant genomes and using a variety of contemporary bioinformatics methods to assign peptide, structural and functional attributes. The openSputnik database is available at http://sputnik.btk.fi. PMID:15608275

  10. Planting geometry and plant population affect dryland maize grain yield and harvest index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water for dryland grain production in the Texas panhandle is limited. Agronomic practices such as reduction in plant population or change in sowing time may help increase maize (Zea mays L.) yield potential. Tiller formation under dryland conditions leads to more vegetative growth and reduced yield....

  11. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings

    PubMed Central

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2014-01-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings. PMID:25009362

  12. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra.

    PubMed

    Khaling, Eliezer; Papazian, Stefano; Poelman, Erik H; Holopainen, Jarmo K; Albrectsen, Benedicte R; Blande, James D

    2015-04-01

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools. PMID:25645061

  13. Ontogenetic shifts in plant interactions vary with environmental severity and affect population structure.

    PubMed

    le Roux, Peter C; Shaw, Justine D; Chown, Steven L

    2013-10-01

    Environmental conditions and plant size may both alter the outcome of inter-specific plant-plant interactions, with seedlings generally facilitated more strongly than larger individuals in stressful habitats. However, the combined impact of plant size and environmental severity on interactions is poorly understood. Here, we tested explicitly for the first time the hypothesis that ontogenetic shifts in interactions are delayed under increasingly severe conditions by examining the interaction between a grass, Agrostis magellanica, and a cushion plant, Azorella selago, along two severity gradients. The impact of A. selago on A. magellanica abundance, but not reproductive effort, was related to A. magellanica size, with a trend for delayed shifts towards more negative interactions under greater environmental severity. Intermediate-sized individuals were most strongly facilitated, leading to differences in the size-class distribution of A. magellanica on the soil and on A. selago. The A. magellanica size-class distribution was more strongly affected by A. selago than by environmental severity, demonstrating that the plant-plant interaction impacts A. magellanica population structure more strongly than habitat conditions. As ontogenetic shifts in plant-plant interactions cannot be assumed to be constant across severity gradients and may impact species population structure, studies examining the outcome of interactions need to consider the potential for size- or age-related variation in competition and facilitation. PMID:23738758

  14. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling

    PubMed Central

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M.; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  15. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.

    PubMed

    Fatouros, Nina E; Lucas-Barbosa, Dani; Weldegergis, Berhane T; Pashalidou, Foteini G; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Gols, Rieta; Huigens, Martinus E

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  16. Effects of Soil Characteristics, Allelopathy and Frugivory on Establishment of the Invasive Plant Carpobrotus edulis and a Co-Occuring Native, Malcolmia littorea

    PubMed Central

    Novoa, Ana; González, Luís; Moravcová, Lenka; Pyšek, Petr

    2012-01-01

    Background The species Carpobrotus edulis, native to South Africa, is one of the major plant invaders of Mediterranean coastal ecosystems around the world. Invasion by C. edulis exerts a great impact on coastal habitats. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed whether soil factors, endozoochory, competition and allelopathic effects of the invader affect its own early establishment and that of the native species Malcolmia littorea. We used laboratory solutions representing different chemical composition and moisture of the soil, herbivore feeding assays to simulate seed scarification and rainwater solutions to account for the effect of differently aged C. edulis litter. Principal Findings We show that unlike that of the native species, germination and early growth of C. edulis was not constrained by low moisture. The establishment of C. edulis, in terms of germination and early growth, was increased by scarification of seeds following passage through the European rabbit intestines; the rabbits therefore may have potential implications for plant establishment. There was no competition between C. edulis and M. littorea. The litter of the invasive C. edulis, which remains on the soil surface for several years, releases allelopathic substances that suppress the native plant germination process and early root growth. Conclusions The invasive species exhibits features that likely make it a better colonizer of sand dunes than the co-occurring native species. Allelopathic effects, ability to establish in drier microsites and efficient scarification by rabbits are among the mechanisms allowing C. edulis to invade. The results help to explain the failure of removal projects that have been carried out in order to restore dunes invaded by C. edulis, and the long-lasting effects of C. edulis litter need to be taken into account in future restoration projects

  17. Feasibility of establishing a 100-ton per day sunflower seed crushing plant at Clifford, North Dakota

    SciTech Connect

    Not Available

    1981-10-01

    Considerable interest is currently being shown in the concept of local processing of agricultural products. The production of sunflowers in North Dakota has shown tremendous growth over the past years. Cash receipts from sunflowers have made it the second most important cash crop in the state. It is felt that the plant can be justified as an energy producing facility. A sunflower crushing plant has to be feasible when competing as a producer of oil within traditional markets. The use of the oil as a source of energy is to be considered as an intangible benefit to the community, if sunflower oil is found to be an acceptable fuel.

  18. 25 CFR 542.4 - How do these regulations affect minimum internal control standards established in a Tribal-State...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... direct conflict between an internal control standard established in a Tribal-State compact and a standard or requirement set forth in this part, then the internal control standard established in a Tribal-State compact shall prevail. (b) If an internal control standard in a Tribal-State compact provides...

  19. 76 FR 36896 - Notice of Establishment of a New Plant Protection and Quarantine Stakeholder Registry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... email subscription service and advises current subscribers on how to continue receiving emails on topics... to receive information about PPQ activities on a variety of plant health topics. PPQ has redesigned... Stakeholder Registry in order to continue receiving emails on PPQ-related topics. Subscribers will be able...

  20. Establish the biosynthesis of the plant toxin Fusaric Acid using non-radio labeled precursors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum f. sp. vasinfectum (F.o.v.) race 1 is a widespread plant pathogen that attacks cotton, alfalfa and okra in the U.S. The recent discovery of races 3 and 4 not previously found in the U.S. is of particular concern to the cotton industry. In addition, a similar but more virulent bi...

  1. Using carbon-13 to establish the biosynthesis of the plant toxin fusaric acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant pathogen Fusarium oxysporum f. sp. vasinfectum (F.o.v.) attacks cotton, alfalfa and okra. The recent discovery of new pathotypes (race 4) not previously found in the U.S. is of particular concern to the cotton industry, as is the inadvertent introduction of a unique and particularly virul...

  2. Poisonous plants affecting the central nervous system of horses in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poisoning by Indigofera pascuori was recently reported in horses in the state of Roraima. It causes chronic signs of sleepiness, unsteady gait, severe ataxia, and progressive weight loss. Some animals are blind. Young horses are more affected than adults. After the end of plant consumption the anima...

  3. Relative abundance of an invasive alien plant affects insect-flower interaction networks in Ireland

    NASA Astrophysics Data System (ADS)

    Stout, Jane C.; Casey, Leanne M.

    2014-02-01

    Invasive alien flowering plants may affect native plant pollinator interactions and have knock on impacts on populations of native plants and animals. The magnitude of these impacts, however, may be modified by the relative abundance of the invasive plant and the number of flowers it presents.We tested this by examining the structure of insect-flower interaction networks in six sites with increasing levels of invasion by Rhododendron ponticum in Ireland.Neither flower-visiting insect abundance, species richness nor diversity were related to R. ponticum flower abundance, but the composition of insect communities was. The total number of flowers in a site increased with the relative abundance of R. ponticum flowers but the number of co-flowering native plant species in these sites was low (<6), making interaction networks relatively small.As a result, changes in interaction network properties (connectance, interaction evenness and network level specialisation), which correlated with R. ponticum flower abundance, were a result of the small network size rather than due to changes in the resilience of networks.Overall, we conclude that the impacts of invasive alien plants on native plant-pollinator interactions are not only species specific, but site specific, according to the abundance of flowers produced by both the invasive and the native plants.

  4. Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels

    PubMed Central

    Fatouros, Nina E.; Lucas-Barbosa, Dani; Weldegergis, Berhane T.; Pashalidou, Foteini G.; van Loon, Joop J. A.; Dicke, Marcel; Harvey, Jeffrey A.; Gols, Rieta; Huigens, Martinus E.

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  5. Inoculation of Transgenic Resistant Potato by Phytophthora infestans Affects Host Plant Choice of a Generalist Moth.

    PubMed

    Abreha, Kibrom B; Alexandersson, Erik; Vossen, Jack H; Anderson, Peter; Andreasson, Erik

    2015-01-01

    Pathogen attack and the plant's response to this attack affect herbivore oviposition preference and larval performance. Introduction of major resistance genes against Phytophthora infestans (Rpi-genes), the cause of the devastating late blight disease, from wild Solanum species into potato changes the plant-pathogen interaction dynamics completely, but little is known about the effects on non-target organisms. Thus, we examined the effect of P. infestans itself and introduction of an Rpi-gene into the crop on host plant preference of the generalist insect herbivore, Spodoptera littoralis (Lepidoptera: Noctuidae). In two choice bioassays, S. littoralis preferred to oviposit on P. infestans-inoculated plants of both the susceptible potato (cv. Desiree) and an isogenic resistant clone (A01-22: cv. Desiree transformed with Rpi-blb1), when compared to uninoculated plants of the same genotype. Both cv. Desiree and clone A01-22 were equally preferred for oviposition by S. littoralis when uninoculated plants were used, while cv. Desiree received more eggs compared to the resistant clone when both were inoculated with the pathogen. No significant difference in larval and pupal weight was found between S. littoralis larvae reared on leaves of the susceptible potato plants inoculated or uninoculated with P. infestans. Thus, the herbivore's host plant preference in this system was not directly associated with larval performance. The results indicate that the Rpi-blb1 based resistance in itself does not influence insect behavior, but that herbivore oviposition preference is affected by a change in the plant-microbe interaction. PMID:26053171

  6. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria

    PubMed Central

    Abdel-Lateif, Khalid; Bogusz, Didier; Hocher, Valérie

    2012-01-01

    Flavonoids are a group of secondary metabolites derived from the phenylpropanoid pathway. They are ubiquitous in the plant kingdom and have many diverse functions including key roles at different levels of root endosymbioses. While there is a lot of information on the role of particular flavonoids in the Rhizobium-legume symbiosis, yet their exact role during the establishment of arbuscular mycorrhiza and actinorhizal symbioses still remains unclear. Within the context of the latest data suggesting a common symbiotic signaling pathway for both plant-fungal and plant bacterial endosymbioses between legumes and actinorhiza-forming fagales, this mini-review highlights some of the recent studies on the three major types of root endosymbioses. Implication of the molecular knowledge of endosymbioses signaling and genetic manipulation of flavonoid biosynthetic pathway on the development of strategies for the transfer and optimization of nodulation are also discussed. PMID:22580697

  7. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria.

    PubMed

    Abdel-Lateif, Khalid; Bogusz, Didier; Hocher, Valérie

    2012-06-01

    Flavonoids are a group of secondary metabolites derived from the phenylpropanoid pathway. They are ubiquitous in the plant kingdom and have many diverse functions including key roles at different levels of root endosymbioses. While there is a lot of information on the role of particular flavonoids in the Rhizobium-legume symbiosis, yet their exact role during the establishment of arbuscular mycorrhiza and actinorhizal symbioses still remains unclear. Within the context of the latest data suggesting a common symbiotic signaling pathway for both plant-fungal and plant bacterial endosymbioses between legumes and actinorhiza-forming fagales, this mini-review highlights some of the recent studies on the three major types of root endosymbioses. Implication of the molecular knowledge of endosymbioses signaling and genetic manipulation of flavonoid biosynthetic pathway on the development of strategies for the transfer and optimization of nodulation are also discussed. PMID:22580697

  8. EVALUATION OF LITERATURE ESTABLISHING SCREENING LEVELS FOR TERRESTRIAL PLANTS/INVERTEBRATES

    EPA Science Inventory

    Scientific publications often lack key information on experimental design or do not follow appropriate test methods and therefore cannot be used in deriving reliable benchmarks. Risk based soil screening levels (Eco-SSLs) are being established for chemicals of concern to terrestr...

  9. Ultra-high carbon dioxide applications accelerates plant establishment and growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Typically, in a crop breeding scheme, collected seed crosses are germinated and grown in pots in a greenhouse and/or nursery setting for 3 to 12 months prior to transplanting in the field. Perennial crop breeding, being long-term, are particularly subject to long periods for seedling soil establish...

  10. 78 FR 42702 - Endangered and Threatened Wildlife and Plants; Establishment of a Nonessential Experimental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... on December 15, 1998 (63 FR 69008), and critical habitat was designated in Iowa, Minnesota, and Nebraska on July 27, 2004 (69 FR 44736), under the Endangered Species Act of 1973, as amended (16 U.S.C... 2009, pp. 32-33). In our January 23, 2013, proposed rule (78 FR 4813) to establish this...

  11. Role of mycorrhizal colonization in plant establishment on an alkaline gold mine tailing.

    PubMed

    Orłowska, Elzbieta; Orłowski, Dariusz; Mesjasz-Przybyłowicz, Jolanta; Turnau, Katarzyna

    2011-02-01

    The potential role of arbuscular mycorrhizal fungi (AMF) in the revegetation of an alkaline gold mine tailing was studied in Barberton, South Africa. The tailing, characterized by a slow spontaneous plant succession, is colonized by the shrub Dodonaea viscosa and the grasses, Andropogon eucomus and Imperata cylindrica, all colonized by AMF. The effectiveness of mycorrhizal colonization in grasses was tested under laboratory conditions using fungal isolates of various origins. Both grasses were highly mycorrhiza dependent, and the presence of mycorrhizal colonization significantly increased their biomass and survival rates. The fungi originating from the gold tailing were better adapted to the special conditions of the tailing than the control isolate. Although the total colonization rate found for native fungi was lower than for fungi from non-polluted sites, they were more vital and more effective in promoting plant growth. The results obtained might serve as a practical approach to the phytostabilization of alkaline gold tailings. PMID:21598786

  12. The ABC's required for establishing a practical computerized plant engineering management data base system

    NASA Technical Reports Server (NTRS)

    Maiocco, F. R.; Hume, J. P.

    1976-01-01

    A system's approach is outlined in the paper to assist facility and Plant Engineers improve their organization's data management system. The six basic steps identified may appear somewhat simple; however, adequate planning, proper resources, and the involvement of management will determine the success of a computerized facility management data base. Helpful suggestions are noted throughout the paper to insure the development of a practical computerized data management system.

  13. How Do Earthworms, Soil Texture and Plant Composition Affect Infiltration along an Experimental Plant Diversity Gradient in Grassland?

    PubMed Central

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W.; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Background Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. Methodology/Principal Findings We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Conclusions/Significance Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications. PMID:24918943

  14. Failure of Aedes albopictus to overwinter following introduction and seasonal establishment at a tire recycling plant in the northeastern USA.

    PubMed

    Andreadis, Theodore G

    2009-03-01

    In July 2006, an introduction of the Asian tiger mosquito, Aedes albopictus, was documented for the first time at a commercial tire recycling plant in northeastern Connecticut, USA. The introduction likely occurred via transport of infested tires originating from northern New Jersey or metropolitan New York City. Efforts were made to determine seasonal establishment and overwintering success by assessing adult biting and oviposition activity in the surrounding woodlands. The first adult female was collected in a CO2-baited Mosquito Magnet Liberty trap within the confines of the tire plant during the week of July 28. Additional females were collected intermittently thereafter through October 16. Host-seeking female Ae. albopictus attempting to alight on human subjects and larvae hatching from eggs collected in ovitraps placed in the woodlands surrounding the tire plant were detected weekly from August 21 through October 2, denoting seasonal establishment in the adjoining woodlands. However, no larvae of Ae. albopictus were recovered from eggs collected in ovitraps that were placed in the surrounding woodlands or in traps placed 1.0-1.6 km away, nor were any host-seeking females detected by human subjects the following season (July to October 2007), indicating that the species did not survive winter conditions to enable successful colonization. The failure of Ae. albopictus to overwinter and establish itself in the forested woodlands following several weeks of seasonal breeding and oviposition during the summer and early fall were most likely due to winter egg mortality, interspecific competition from Aedes triseriatus and Aedes japonicus, and/or other ecological barriers. Permanent establishment of Ae. albopictus in New England is unlikely despite the recurring importation of infested used tires into recycling facilities. However, continued monitoring of such facilities for potential reinvasion is warranted especially in urban/suburban environs where global warming

  15. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants.

    PubMed

    Ji, Xiang; Zhang, Huawei; Zhang, Yi; Wang, Yanpeng; Gao, Caixia

    2015-01-01

    CRISPR-Cas (clustered, regularly interspaced short palindromic repeats-CRISPR-associated proteins) is an adaptive immune system in many archaea and bacteria that cleaves foreign DNA on the basis of sequence complementarity. Here, using the geminivirus, beet severe curly top virus (BSCTV), transient assays performed in Nicotiana benthamiana demonstrate that the sgRNA-Cas9 constructs inhibit virus accumulation and introduce mutations at the target sequences. Further, transgenic Arabidopsis and N. benthamiana plants overexpressing sgRNA-Cas9 are highly resistant to virus infection. PMID:27251395

  16. Khazar Iodine Production Plant Site Remediation in Turkmenistan. NORM Contaminated Waste Repository Establishment - 12398

    SciTech Connect

    Gelbutovskiy, Alexander B.; Cheremisin, Peter I.; Troshev, Alexander V.; Egorov, Alexander J.; Boriskin, Mikhail M.; Bogod, Mikhail A.

    2012-07-01

    Radiation safety provisions for NORM contaminated areas are in use in a number of the former Soviet republics. Some of these areas were formed by absorbed radionuclides at the iodine and bromine extraction sites. As a rule, there are not any plant radiation monitoring systems nor appropriate services to ensure personnel, population and environmental radiation safety. The most hazardous sites are those which are situated in the Caspian Sea coastal zone. The bulk of the accumulated waste is represented by a loose mixture of sand and charcoal, which was basically used as the iodine extraction sorbent. The amounts of these wastes were estimated to be approximately 20,000 metric tons. The waste contamination is mainly composed of Ra-226 (U-238 decay series) and Ra-224, Ra-228 (Th-232 decay series). In 2009, the 'ECOMET-S', a Closed Joint-Stock Company from St. Petersburg, Russian Federation, was authorized by the Turkmenistan government to launch the rehabilitation project. The project includes D and D activities, contaminated areas remediation, collected wastes safe transportation to the repository and its disposal following repository closure. The work at the Khazar chemical plant started in September, 2010. Comprehensive radiological surveys to estimate the waste quantities were carried out in advance. In course of the rehabilitation work at the site of the Khazar chemical plant additional waste quantities (5,000 MT, 10,000 m{sup 3}) were discovered after the sludge was dumped and drained. Disposal volumes for this waste was not provided initially. The additional volume of the construction wastes was required in order to accommodate all the waste to be disposed. For the larger disposal volume the project design enterprise VNIPIET, offered to erect a second wall outside the existing one and this solution was adopted. As of May, 2011, 40,575 m{sup 3} of contaminated waste were collected and disposed safely. This volume represents 96.6% of the initial repository volume

  17. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals. PMID:26079739

  18. Plant sterols: factors affecting their efficacy and safety as functional food ingredients

    PubMed Central

    Berger, Alvin; Jones, Peter JH; Abumweis, Suhad S

    2004-01-01

    Plant sterols are naturally occurring molecules that humanity has evolved with. Herein, we have critically evaluated recent literature pertaining to the myriad of factors affecting efficacy and safety of plant sterols in free and esterified forms. We conclude that properly solubilized 4-desmetyl plant sterols, in ester or free form, in reasonable doses (0.8–1.0 g of equivalents per day) and in various vehicles including natural sources, and as part of a healthy diet and lifestyle, are important dietary components for lowering low density lipoprotein (LDL) cholesterol and maintaining good heart health. In addition to their cholesterol lowering properties, plant sterols possess anti-cancer, anti-inflammatory, anti-atherogenicity, and anti-oxidation activities, and should thus be of clinical importance, even for those individuals without elevated LDL cholesterol. The carotenoid lowering effect of plant sterols should be corrected by increasing intake of food that is rich in carotenoids. In pregnant and lactating women and children, further study is needed to verify the dose required to decrease blood cholesterol without affecting fat-soluble vitamins and carotenoid status. PMID:15070410

  19. Plant-bacteria bioremediation agents affect the response of plant bioindicators independent of 2-chlorobenzoic acid degradation

    SciTech Connect

    Siciliano, S.D.; Germida, J.J.

    1995-12-31

    Plants are known to degrade toxicants in soil and are potentially useful bioremediation agents. The authors developed plant-bacteria associations (e.g., Meadow brome [Bromus riparius] and Pseudomonas aeruginosa strain R75) that degrade 2-chlorobenzoic acid (2CBA) in soil, and assessed their success using Slender wheatgrass (Agropyron trachycaulum) germination as a bioindicator of 2CBA levels. Gas chromatography was used to chemically assess 2CBA levels. Specific plant-bacteria bioremediation treatments decreased soil 2CBA levels by 17 to 52%, but bioindicator response did not correspond to chemical analysis. Contaminated and uncontaminated soil was subjected to bioremediation treatments. After 42 days, uncontaminated soil was collected and amended to various 2CBA levels. This soil and the remediated soil were analyzed by the plant bioindicator and gas chromatography. Bioremediation treatments altered germination of Slender wheatgrass in both contaminated and noncontaminated soils to a similar extent. These treatments decreased the toxicity of 2CBA to Slender wheatgrass in both contaminated and noncontaminated soils to a similar extent. These treatments decreased the toxicity of 2CBA to Slender wheatgrass at low 2CBA levels, but increased the toxicity of 2CBA at high 2CBA levels. For example, germination in soil subjected to the Meadow brome and R75 treatment was increased by ca. 30% at 50 mg kg{sup {minus}1} 2CBA, but decreased by ca. 50% at 150 mg kg{sup {minus}1} 2CBA. The results indicate that specific plant-bacteria bioremediation treatments affect plant bioindicator response independent of 2CBA degradation, and may confound efforts to determine the toxicity of 2CBA in soil.

  20. Institutional implications of establishing safety goals for nuclear power plants. [PWR; BWR

    SciTech Connect

    Morris, F.A.; Hooper, R.L.

    1983-07-01

    The purpose of this project is to anticipate and address institutional problems that may arise from the adoption of NRC's proposed Policy Statement on Safety Goals for Nuclear Power Plants. The report emphasizes one particular category of institutional problems: the possible use of safety goals as a basis for legal challenges to NRC actions, and the resolution of such challenges by the courts. Three types of legal issues are identified and analyzed. These are, first, general legal issues such as access to the legal system, burden of proof, and standard of proof. Second is the particular formulation of goals. Involved here are such questions as sustainable rationale, definitions, avoided issues, vagueness of time and space details, and degree of conservatism. Implementation brings up the third set of issues which include interpretation and application, linkage to probabilistic risk assessment, consequences as compared to events, and the use of results.

  1. Dioecy, more than monoecy, affects plant spatial genetic structure: the case study of Ficus

    PubMed Central

    Nazareno, Alison G; Alzate-Marin, Ana L; Pereira, Rodrigo Augusto S

    2013-01-01

    In this analysis, we attempt to understand how monoecy and dioecy drive spatial genetic structure (SGS) in plant populations. For this purpose, plants of the genus Ficus were used as a comparative model due to their particular characteristics, including high species diversity, variation in life histories, and sexual systems. One of the main issues we assessed is whether dioecious fig tree populations are more spatially genetically structured than monoecious populations. Using the Sp statistic, which allows for quantitative comparisons among different studies, we compared the extent of SGS between monoecious and dioecious Ficus species. To broaden our conclusions we used published data on an additional 27 monoecious and dioecious plant species. Furthermore, genetic diversity analyses were performed for two monoecious Ficus species using 12 microsatellite markers in order to strengthen our conclusions about SGS. Our results show that dioecy, more than monoecy, significantly contributes to SGS in plant populations. On average, the estimate of Sp was six times higher for dioecious Ficus species than monoecious Ficus species and it was two times higher in dioecious than monoecious plant species. Considering these results, we emphasize that the long-distance pollen dispersal mechanism in monoecious Ficus species seems to be the dominant factor in determining weak spatial genetic structure, high levels of genetic diversity, and lack of inbreeding. Although Ficus constitute a model species to study SGS, a more general comparison encompassing a wider range of plants is required in order to better understand how sexual systems affect genetic structure. PMID:24223285

  2. Does a decade of elevated [CO2] affect a desert perennial plant community?

    PubMed

    Newingham, Beth A; Vanier, Cheryl H; Kelly, Lauren J; Charlet, Therese N; Smith, Stanley D

    2014-01-01

    Understanding the effects of elevated [CO2 ] on plant community structure is crucial to predicting ecosystem responses to global change. Early predictions suggested that productivity in deserts would increase via enhanced water-use efficiency under elevated [CO2], but the response of intact arid plant communities to elevated [CO2 ] is largely unknown. We measured changes in perennial plant community characteristics (cover, species richness and diversity) after 10 yr of elevated [CO2] exposure in an intact Mojave Desert community at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Contrary to expectations, total cover, species richness, and diversity were not affected by elevated [CO2]. Over the course of the experiment, elevated [CO2] had no effect on changes in cover of the evergreen C3 shrub, Larrea tridentata; alleviated decreases in cover of the C4 bunchgrass, Pleuraphis rigida; and slightly reduced the cover of C3 drought-deciduous shrubs. Thus, we generally found no effect of elevated [CO2] on plant communities in this arid ecosystem. Extended drought, slow plant growth rates, and highly episodic germination and recruitment of new individuals explain the lack of strong perennial plant community shifts after a decade of elevated [CO2]. PMID:24117700

  3. A Nostoc punctiforme Sugar Transporter Necessary to Establish a Cyanobacterium-Plant Symbiosis1[C][W

    PubMed Central

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L.; Meeks, John C.; Flores, Enrique

    2013-01-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using 14C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work. PMID:23463784

  4. Multilevel Dynamic Systems Affecting Introduction of HIV/STI Prevention Innovations among Chinese Women in Sex Work Establishments

    ERIC Educational Resources Information Center

    Weeks, Margaret R.; Li, Jianghong; Liao, Susu; Zhang, Qingning; Dunn, Jennifer; Wang, Yanhong; Jiang, Jingmei

    2013-01-01

    Social and public health scientists are increasingly interested in applying system dynamics theory to improve understanding and to harness the forces of change within complex, multilevel systems that affect community intervention implementation, effects, and sustainability. Building a system dynamics model based on ethnographic case study has the…

  5. Differential seed handling by two African primates affects seed fate and establishment of large-seeded trees

    NASA Astrophysics Data System (ADS)

    Gross-Camp, Nicole D.; Kaplin, Beth A.

    2011-11-01

    We examined the influence of seed handling by two semi-terrestrial African forest primates, chimpanzees ( Pan troglodytes) and l'Hoest's monkeys ( Cercopithecus lhoesti), on the fate of large-seeded tree species in an afromontane forest. Chimpanzees and l'Hoest's monkeys dispersed eleven seed species over one year, with quantity and quality of dispersal varying through time. Primates differed in their seed handling behaviors with chimpanzees defecating large seeds (>0.5 cm) significantly more than l'Hoest's. Furthermore, they exhibited different oral-processing techniques with chimpanzees discarding wadges containing many seeds and l'Hoest's monkeys spitting single seeds. A PCA examined the relationship between microhabitat characteristics and the site where primates deposited seeds. The first two components explained almost half of the observed variation. Microhabitat characteristics associated with sites where seeds were defecated had little overlap with those characteristics describing where spit seeds arrived, suggesting that seed handling in part determines the location where seeds are deposited. We monitored a total of 552 seed depositions through time, recording seed persistence, germination, and establishment. Defecations were deposited significantly farther from an adult conspecific than orally-discarded seeds where they experienced the greatest persistence but poorest establishment. In contrast, spit seeds were deposited closest to an adult conspecific but experienced the highest seed establishment rates. We used experimental plots to examine the relationship between seed handling, deposition site, and seed fate. We found a significant difference in seed handling and fate, with undispersed seeds in whole fruits experiencing the lowest establishment rates. Seed germination differed by habitat type with open forest experiencing the highest rates of germination. Our results highlight the relationship between primate seed handling and deposition site and seed

  6. Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure

    SciTech Connect

    Whitham, T.G.; Martinsen, G.D.; Keim, P.; Floate, K.D.; Dungey, H.S. |; Potts, B.M.

    1999-03-01

    Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

  7. The effects of seed ingestion by livestock, dung fertilization, trampling, grass competition and fire on seedling establishment of two woody plant species.

    PubMed

    Tjelele, Julius; Ward, David; Dziba, Luthando

    2015-01-01

    The increasing rate of woody plant encroachment in grasslands or savannas remains a challenge to livestock farmers. The causes and control measures of woody plant encroachment are of common interest, especially where it negatively affects the objectives of an agricultural enterprise. The objectives of this study were to determine the effects of gut passage (goats, cattle), dung (nutrients), fire, grass competition and trampling on establishment of A. nilotica and D. cinerea seedlings. Germination trials were subjected to the following treatments: 1) seed passage through the gut of cattle and goats and unpassed/ untreated seeds (i.e. not ingested), 2) dung and control (no dung), 3) grass and control (mowed grass), 4) fire and control (no fire), 5) trampling and control (no trampling). The interaction of animal species, grass and fire had an effect on seedling recruitment (P < 0.0052). Seeds retrieved from goats and planted with no grass and with fire (6.81% ± 0.33) had a significant effect on seedling recruitment than seeds retrieved from goats and planted with grass and no fire (2.98% ± 0.33). Significantly more D. cinerea and A. nilotica seeds germinated following seed ingestion by goats (3.59% ± 0.16) than cattle (1.93% ± 0.09) and control or untreated seeds (1.69% ± 0.11). Less dense grass cover, which resulted in reduced grass competition with tree seedlings for light, space and water, and improved seed scarification due to gut passage were vital for emergence and recruitment of Acacia seedlings. These results will contribute considerably to the understanding of the recruitment phase of woody plant encroachment. PMID:25695765

  8. Relative amount of symbionts in Bemisia tabaci (Gennadius) Q changes with host plant and establishing the method of analyzing free amino acid in B. tabaci

    PubMed Central

    Pan, Huipeng; Su, Qi; Jiao, Xiaoguo; Zhou, Long; Liu, Baiming; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Xu, Baoyun; Zhang, YouJun

    2013-01-01

    The impact of symbionts on their insect hosts depends on their infection density. In the current study, we investigated the effects of host plants (cucumber, cabbage, and cotton) on the relative amount of symbionts Portiera and Hamiltonella in the whitefly Bemisia tabaci (Gennadius) Q. The relative amounts of symbionts in 3 host plant B. tabaci Q populations with the same genetic background were evaluated by quantitative PCR. The whiteflies of cabbage population harbored more Portiera than those of cucumber and cotton populations, and the relative amount of Portiera did not differ statistically between cotton and cucumber populations. The whiteflies of cucumber and cabbage populations harbored more Hamiltonella than that of cotton population, and the relative amount of Hamiltonella did not differ statistically between cabbage and cucumber populations, indicated that the relative amount of symbionts was significantly affected by host plant. In addition, the method of analyzing the composition of free amino acid in B. tabaci was established. Twenty-eight amino acids were detected in the B. tabaci Q population, the non-essential amino acids, such as glutamate, glutamine, alanine, proline and the essential amino acid arginine were the dominant amino acids in B. tabaci Q. PMID:23750302

  9. Feeding Experience of Bemisia tabaci (Hemiptera: Aleyrodidae) Affects Their Performance on Different Host Plants

    PubMed Central

    Shah, M. Mostafizur Rahman; Liu, Tong-Xian

    2013-01-01

    The sweetpotato whitefly, Bemisia tabaci biotype B is extremely polyphagous with >600 species of host plants. We hypothesized that previous experience of the whitefly on a given host plant affects their host selection and performance on the plants without previous experience. We investigated the host selection for feeding and oviposition of adults and development and survival of immatures of three host-plant-experienced populations of B. tabaci, namely Bemisia-eggplant, Bemisia-tomato and Bemisia-cucumber, on their experienced host plant and each of the three other plant species (eggplant, tomato, cucumber and pepper) without previous experience. We found that the influence of previous experience of the whiteflies varied among the populations. All populations refused pepper for feeding and oviposition, whereas the Bemisia-cucumber and the Bemisia-eggplant strongly preferred cucumber. Bemisia-tomato did not show strong preference to any of the three host palnts. Development time from egg to adult eclosion varied among the populations, being shortest on eggplant, longest on pepper, and intermediate on tomato and cucumber except for the Bemisia-cucumber developed similarly on tomato and pepper. The survivorship from egg to adult eclosion of all populations was highest on eggplant (80-98%), lowest on pepper (0-20%), and intermediate on tomato and cucumber. In conclusion, the effects of previous experience of whiteflies on host selection for feeding and oviposition, development, and survivorship varied depending on host plants, and host plants play a stronger role than previous experience. Preference of feeding and oviposition by adults may not accurately reflect host suitability of immatures. These results provided important information for understanding whitefly population dynamics and dispersal among different crop systems. PMID:24146985

  10. Some considerations for establishing seismic design criteria for nuclear plant piping

    SciTech Connect

    Chen, W.P.; Chokshi, N.C.

    1997-01-01

    The Energy Technology Engineering Center (ETEC) is providing assistance to the U.S. NRC in developing regulatory positions on the seismic analysis of piping. As part of this effort, ETEC previously performed reviews of the ASME Code, Section III piping seismic design criteria as revised by the 1994 Addenda. These revised criteria were based on evaluations by the ASME Special Task Group on Integrated Piping Criteria (STGIPC) and the Technical Core Group (TCG) of the Advanced Reactor Corporation (ARC) of the earlier joint Electric Power Research Institute (EPRI)/NRC Piping & Fitting Dynamic Reliability (PFDR) program. Previous ETEC evaluations reported at the 23rd WRSM of seismic margins associated with the revised criteria are reviewed. These evaluations had concluded, in part, that although margins for the timed PFDR tests appeared acceptable (>2), margins in detuned tests could be unacceptable (<1). This conclusion was based primarily on margin reduction factors (MRFs) developed by the ASME STGIPC and ARC/TCG from realistic analyses of PFDR test 36. This paper reports more recent results including: (1) an approach developed for establishing appropriate seismic margins based on PRA considerations, (2) independent assessments of frequency effects on margins, (3) the development of margins based on failure mode considerations, and (4) the implications of Code Section III rules for Section XI.

  11. Modulation of Ethylene Responses Affects Plant Salt-Stress Responses1[OA

    PubMed Central

    Cao, Wan-Hong; Liu, Jun; He, Xin-Jian; Mu, Rui-Ling; Zhou, Hua-Lin; Chen, Shou-Yi; Zhang, Jin-Song

    2007-01-01

    Ethylene signaling plays important roles in multiple aspects of plant growth and development. Its functions in abiotic stress responses remain largely unknown. Here, we report that alteration of ethylene signaling affected plant salt-stress responses. A type II ethylene receptor homolog gene NTHK1 (Nicotiana tabacum histidine kinase 1) from tobacco (N. tabacum) conferred salt sensitivity in NTHK1-transgenic Arabidopsis (Arabidopsis thaliana) plants as judged from the phenotypic change, the relative electrolyte leakage, and the relative root growth under salt stress. Ethylene precursor 1-aminocyclopropane-1-carboxylic acid suppressed the salt-sensitive phenotype. Analysis of Arabidopsis ethylene receptor gain-of-function mutants further suggests that receptor function may lead to salt-sensitive responses. Mutation of EIN2, a central component in ethylene signaling, also results in salt sensitivity, suggesting that EIN2-mediated signaling is beneficial for plant salt tolerance. Overexpression of the NTHK1 gene or the receptor gain-of-function activated expression of salt-responsive genes AtERF4 and Cor6.6. In addition, the transgene NTHK1 mRNA was accumulated under salt stress, suggesting a posttranscriptional regulatory mechanism. These findings imply that ethylene signaling may be required for plant salt tolerance. PMID:17189334

  12. Plants on the move: The role of seed dispersal and initial population establishment for climate-driven range expansions

    NASA Astrophysics Data System (ADS)

    Hampe, Arndt

    2011-11-01

    Recent climate change will presumably allow many plant species to expand their geographical range up to several hundred kilometres towards the poles within a few decades. Much uncertainty exists however to which extent species will actually be able to keep pace with a rapidly changing climate. A suite of direct and indirect research approaches have explored the phenomenon of range expansions, and the existing evidence is scattered across the literature of diverse research subdisciplines. Here I attempt to synthesise the available information within a population ecological framework in order to evaluate implications of patterns of seed dispersal and initial population establishment for range expansions. After introducing different study approaches and their respective contributions, I review the empirical evidence for the role of long-distance seed dispersal in past and ongoing expansions. Then I examine how some major ecological determinants of seed dispersal and colonisation processes - population fecundity, dispersal pathways, arrival site conditions, and biotic interactions during recruitment - could be altered by a rapidly changing climate. While there is broad consensus that long-distance dispersal is likely to be critical for rapid range expansions, it remains challenging to relate dispersal processes and pathways with the establishment of pioneer populations ahead of the continuous species range. Further transdisciplinary efforts are clearly needed to address this link, key for understanding how plant populations 'move' across changing landscapes.

  13. Carbon gas fluxes in re-established wetlands on organic soils differ relative to plant community and hydrology

    USGS Publications Warehouse

    Miller, Robin L.

    2011-01-01

    We measured CO2 and CH4 fluxes for 6 years following permanent flooding of an agriculturally managed organic soil at two water depths (~25 and ~55 cm standing water) in the Sacramento–San Joaquin Delta, California, as part of research studying C dynamics in re-established wetlands. Flooding rapidly reduced gaseous C losses, and radiocarbon data showed that this, in part, was due to reduced oxidation of "old" C preserved in the organic soils. Both CO2 and CH4 emissions from the water surface increased during the first few growing seasons, concomitant with emergent marsh establishment, and thereafter appeared to stabilize according to plant communities. Areas of emergent marsh vegetation in the shallower wetland had greater net CO2 influx (-485 mg Cm-1 h-1), and lower CH4 emissions (11.5 mg Cm-2 h-1), than in the deeper wetland (-381 and 14.1 mg Cm-2 h-1, respectively). Areas with submerged and floating vegetation in the deeper wetland had CH4 emissions similar to emergent vegetation (11.9 and 12.6 mg Cm-2 h-1, respectively), despite lower net CO2 influx (-102 gC m-2 h-1). Measurements of plant moderated net CO2 influx and CH4 efflux indicated greatest potential reduction of greenhouse gases in the more shallowly flooded wetland.

  14. Can corn plants inoculated with arbuscular mycorrhiza fungi affect soil clay assemblage?

    NASA Astrophysics Data System (ADS)

    Adamo, P.; Cozzolino, V.; Di Meo, V.; Velde, B.

    2012-04-01

    Plants can extract K from exchangeable and non-exchangeable sites in the soil clay mineral structures. The latter, known as fixed K, is usually seen as an illite layer, i.e. an anhydrous K layer that forms a 1.0 nm structural layer unit as seen by X-ray diffraction. Nutrient availability can be enhanced in the root zone by arbuscular mycorrhiza fungi. In this study, the effects of non-inoculated and Glomus intraradices inoculated corn plant growth under different experimental conditions on soil K-bearing clay minerals were identified. The soil, a Vertic Xerofluvent, was planted in corn in a 2008-2010 randomized field experiment. Bulk and rhizosphere soil sampling was carried out from May to September 2010 from fertilized plots (N200P90K160 and N200P0K160) with and without plants. According to XRD analysis, three major K-bearing minerals were present in soil: smectite-rich mixed layer mineral, illite-rich mixed layer mineral and illite. Results at 40DAS indicate extraction of K from clay minerals by plant uptake, whereas at 130DAS much of the nutrient seems to be returned to the soil. There is an apparent difference between bulk and rhizophere clays. The XRD patterns are not unequivocally affected by Glomus inoculation. There are observable changes in clay mineralogy in fallow unfertilized compared with fertilized soil. In the studied soil, the illite rich mixed-layer minerals seem to be the source of K absorbed by plants, while illite acts as sink of K released from the plant-microorganisms system at the end of the growing season and as source for the following crop.

  15. CLIMATE CONDITIONS AFFECTING THE WITHIN-PLANT SPREAD OF BROAD MITES ON AZALEA.

    PubMed

    Mechant, E; Pauwels, E; Gobin, B

    2014-01-01

    The broad mite Polyphagotarsonemus latus (Banks) is considered a major pest in potted azalea, Flanders' flagship ornamental crop of Rhododendron simsii hybrids. In addition to severe economic damage, the broad mite is dreaded for its increasing resistance to acaricides. Due to restrictions in the use of broad spectrum acaricides, Belgian azalea growers are left with only three compounds, belonging to two mode of action groups and restricted in their number of applications, for broad mite control: abamectin, milbemectin and pyrethrin. Although P. latus can be controlled with predatory mites, the high cost of this system makes it (not yet) feasible for integration into standard azalea pest management systems. Hence, a maximum efficacy of treatments with available compounds is essential. Because abamectin, milbemectin and pyrethrin are contact acaricides with limited trans laminar flow, only broad mites located on shoot tips of azalea plants will be controlled after spraying. Consequently, the efficacy of chemical treatments is influenced by the location and spread of P. latus on the plant. Unfortunately, little is known on broad mites' within-plant spread or how it is affected by climatic conditions like temperature and relative humidity. Therefore, experiments were set up to verify whether climate conditions have an effect on the location and migration of broad mites on azalea. Broad mite infected azalea plants were placed in standard growth chambers under different temperature (T:2.5-25°C) and relative humidity (RH:55-80%) treatments. Within-plant spread was determined by counting mites on the shoot tips and inner leaves of azalea plants. Results indicate that temperature and relative humidity have no significant effect on the within-plant spread of P. latus. To formulate recommendations for optimal spray conditions to maximize the efficacy of broad mite control with acaricides, further experiments on the effect of light intensity and rain are scheduled. PMID

  16. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass.

    PubMed

    Alofs, Karen M; Fowler, Norma L

    2013-03-01

    Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent

  17. Agave salmiana Plant Communities in Central Mexico as Affected by Commercial Use

    NASA Astrophysics Data System (ADS)

    Martínez Salvador, Martin; Mata-González, Ricardo; Morales Nieto, Carlos; Valdez-Cepeda, Ricardo

    2012-01-01

    Agave salmiana is a native plant species harvested for the commercial production of mezcal ( Agave spirits) in the highlands of central Mexico. The objective of this study was to identify vegetation changes in natural communities where A. salmiana has been differentially harvested for commercial purposes. Three plant community categories were identified in the state of Zacatecas based on their history of A. salmiana utilization: short (less than 10 years of use), moderate (about 25 years), and long (60 or more years). Species cover, composition, and density were evaluated in field surveys by use category. A gradient of vegetation structure of the communities parallels the duration of A. salmiana use. A. salmiana density was greatest (3,125 plants ha-1) in the short-use areas and less (892 plants ha-1) in the moderate-use areas, associated with markedly greater density of shrubs (200%) and Opuntia spp. (50%) in moderate-use areas. The main shrubs were Larrea tridentata, Mimosa biuncifera, Jatropha dioica and Buddleia scordioides while the main Opuntia species were Opuntia leucotricha and Opuntia robusta. A. salmiana density was least (652 plants ha-1) in the long-use areas where shrubs were less abundant but Opuntia spp. density was 25% higher than in moderate-use areas. We suggest that shrubs may increase with moderate use creating an intermediate successional stage that facilitates the establishment of Opuntia spp. Long-term Agave use is generating new plant communities dominated by Opuntia spp. (nopaleras) as a replacement of the original communities dominated by A. salmiana (magueyeras).

  18. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model

    PubMed Central

    Sarlikioti, V.; de Visser, P. H. B.; Buck-Sorlin, G. H.; Marcelis, L. F. M.

    2011-01-01

    Background and Aims Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a range of different plant architectural characteristics was tested for two different seasons in order to find the optimal architecture with respect to light absorption and photosynthesis. Methods Simulations were performed with an FSPM of a greenhouse-grown tomato crop. Sensitivity analyses were carried out for leaf elevation angle, leaf phyllotaxis, leaflet angle, leaf shape, leaflet arrangement and internode length. From the results of this analysis two possible ideotypes were proposed. Four different vertical light distributions were also tested, while light absorption cumulated over the whole canopy was kept the same. Key Results Photosynthesis was augmented by 6 % in winter and reduced by 7 % in summer, when light absorption in the top part of the canopy was increased by 25 %, while not changing light absorption of the canopy as a whole. The measured plant structure was already optimal with respect to leaf elevation angle, leaflet angle and leaflet arrangement for both light absorption and photosynthesis while phyllotaxis had no effect. Increasing the length : width ratio of leaves by 1·5 or increasing internode length from 7 cm to 12 cm led to an increase of 6–10 % for light absorption and photosynthesis. Conclusions At high light intensities (summer) deeper penetration of light in the canopy improves crop photosynthesis, but not at low light intensities (winter). In particular, internode length and leaf shape affect the vertical distribution of light in the canopy. A new plant ideotype with more spacious canopy architecture due to long internodes and long and narrow leaves led to an increase in crop photosynthesis of up to 10 %. PMID:21865217

  19. Isolating Fungal Pathogens from a Dynamic Disease Outbreak in a Native Plant Population to Establish Plant-Pathogen Bioassays for the Ecological Model Plant Nicotiana attenuata

    PubMed Central

    Schuck, Stefan; Baldwin, Ian T.

    2014-01-01

    The wild tobacco species Nicotiana attenuata has been intensively used as a model plant to study its interaction with insect herbivores and pollinators in nature, however very little is known about its native pathogen community. We describe a fungal disease outbreak in a native N. attenuata population comprising 873 plants growing in an area of about 1500 m2. The population was divided into 14 subpopulations and disease symptom development in the subpopulations was monitored for 16 days, revealing a waxing and waning of visible disease symptoms with some diseased plants recovering fully. Native fungal N. attenuata pathogens were isolated from diseased plants, characterized genetically, chemotaxonomically and morphologically, revealing several isolates of the ascomycete genera Fusarium and Alternaria, that differed in the type and strength of the disease symptoms they caused in bioassays on either detached leaves or intact soil-grown plants. These isolates and the bioassays will empower the study of N. attenuata-pathogen interactions in a realistic ecological context. PMID:25036191

  20. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen.

    PubMed

    Cárcamo, Héctor A; Herle, Carolyn E; Lupwayi, Newton Z

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  1. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen

    PubMed Central

    Cárcamo, Héctor A.; Herle, Carolyn E.; Lupwayi, Newton Z.

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  2. Colorimetric Method for Identifying Plant Essential Oil Components That Affect Biofilm Formation and Structure

    PubMed Central

    Niu, C.; Gilbert, E. S.

    2004-01-01

    The specific biofilm formation (SBF) assay, a technique based on crystal violet staining, was developed to locate plant essential oils and their components that affect biofilm formation. SBF analysis determined that cinnamon, cassia, and citronella oils differentially affected growth-normalized biofilm formation by Escherichia coli. Examination of the corresponding essential oil principal components by the SBF assay revealed that cinnamaldehyde decreased biofilm formation compared to biofilms grown in Luria-Bertani broth, eugenol did not result in a change, and citronellol increased the SBF. To evaluate these results, two microscopy-based assays were employed. First, confocal laser scanning microscopy (CLSM) was used to examine E. coli biofilms cultivated in flow cells, which were quantitatively analyzed by COMSTAT, an image analysis program. The overall trend for five parameters that characterize biofilm development corroborated the findings of the SBF assay. Second, the results of an assay measuring growth-normalized adhesion by direct microscopy concurred with the results of the SBF assay and CLSM imaging. Viability staining indicated that there was reduced toxicity of the essential oil components to cells in biofilms compared to the toxicity to planktonic cells but revealed morphological damage to E. coli after cinnamaldehyde exposure. Cinnamaldehyde also inhibited the swimming motility of E. coli. SBF analysis of three Pseudomonas species exposed to cinnamaldehyde, eugenol, or citronellol revealed diverse responses. The SBF assay could be useful as an initial step for finding plant essential oils and their components that affect biofilm formation and structure. PMID:15574886

  3. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    PubMed

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities. PMID:26481794

  4. Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana

    PubMed Central

    2014-01-01

    Fungal volatile organic compounds (VOCs) play important ecophysiological roles in mediating inter-kingdom signaling with arthropods but less is known about their interactions with plants. In this study, Arabidopsis thaliana was used as a model in order to test the physiological effects of 23 common vapor-phase fungal VOCs that included alcohols, aldehydes, ketones, and other chemical classes. After exposure to a shared atmosphere with the 23 individual VOCs for 72 hrs, seeds were assayed for rate of germination and seedling formation; vegetative plants were assayed for fresh weight and chlorophyll concentration. All but five of the VOCs tested (1-decene, 2-n-heptylfuran, nonanal, geosmin and -limonene) had a significant effect in inhibiting either germination, seedling formation or both. Seedling formation was entirely inhibited by exposure to 1-octen-3-one, 2-ethylhexanal, 3-methylbutanal, and butanal. As assayed by a combination of fresh weight and chlorophyll concentration, 2-ethylhexanal had a negative impact on two-week-old vegetative plants. Three other compounds (1-octen-3-ol, 2-ethylhexanal, and 2-heptylfuran) decreased fresh weight alone. Most of the VOCs tested did not change the fresh weight or chlorophyll concentration of vegetative plants. In summary, when tested as single compounds, fungal VOCs affected A. thaliana in positive, negative or neutral ways. PMID:25045602

  5. Different Degrees of Plant Invasion Significantly Affect the Richness of the Soil Fungal Community

    PubMed Central

    Si, Chuncan; Liu, Xueyan; Wang, Congyan; Wang, Lei; Dai, Zhicong; Qi, Shanshan; Du, Daolin

    2013-01-01

    Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process. PMID:24392015

  6. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578

  7. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    PubMed

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production. PMID:17803646

  8. A hyperparasite affects the population dynamics of a wild plant pathogen

    PubMed Central

    Tollenaere, C; Pernechele, B; Mäkinen, H S; Parratt, S R; Németh, M Z; Kovács, G M; Kiss, L; Tack, A J M; Laine, A-L

    2014-01-01

    Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of the Åland archipelago (southwest Finland). Regionally, the pathogen persists through a balance of extinctions and colonizations, yet factors affecting extinction rates remain poorly understood. Mycoparasites of the genus Ampelomyces appear as good candidates for testing the role of a hyperparasite, i.e. a parasite of other parasites, in the regulation of their fungal hosts' population dynamics. For this purpose, we first designed a quantitative PCR assay for detection of Ampelomyces spp. in field-collected samples. This newly developed molecular test was then applied to a large-scale sampling within the Åland archipelago, revealing that Ampelomyces is a widespread hyperparasite in this system, with high variability in prevalence among populations. We found that the hyperparasite was more common on leaves where multiple powdery mildew strains coexist, a pattern that may be attributed to differential exposure. Moreover, the prevalence of Ampelomyces at the plant level negatively affected the overwinter survival of its fungal host. We conclude that this hyperparasite may likely impact on its host population dynamics and argue for increased focus on the role of hyperparasites in disease dynamics. PMID:25204419

  9. A hyperparasite affects the population dynamics of a wild plant pathogen.

    PubMed

    Tollenaere, C; Pernechele, B; Mäkinen, H S; Parratt, S R; Németh, M Z; Kovács, G M; Kiss, L; Tack, A J M; Laine, A-L

    2014-12-01

    Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of the Åland archipelago (southwest Finland). Regionally, the pathogen persists through a balance of extinctions and colonizations, yet factors affecting extinction rates remain poorly understood. Mycoparasites of the genus Ampelomyces appear as good candidates for testing the role of a hyperparasite, i.e. a parasite of other parasites, in the regulation of their fungal hosts' population dynamics. For this purpose, we first designed a quantitative PCR assay for detection of Ampelomyces spp. in field-collected samples. This newly developed molecular test was then applied to a large-scale sampling within the Åland archipelago, revealing that Ampelomyces is a widespread hyperparasite in this system, with high variability in prevalence among populations. We found that the hyperparasite was more common on leaves where multiple powdery mildew strains coexist, a pattern that may be attributed to differential exposure. Moreover, the prevalence of Ampelomyces at the plant level negatively affected the overwinter survival of its fungal host. We conclude that this hyperparasite may likely impact on its host population dynamics and argue for increased focus on the role of hyperparasites in disease dynamics. PMID:25204419

  10. Spectral quality affects disease development of three pathogens on hydroponically grown plants

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the

  11. Soil biota can change after exotic plant invasion: Does this affect ecosystem processes?

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Sherrod, S.K.; Moldenke, A.

    2005-01-01

    Invasion of the exotic annual grass Bromus tectorum into stands of the native perennial grass Hilaria jamesii significantly reduced the abundance of soil biota, especially microarthropods and nematodes. Effects of invasion on active and total bacterial and fungal biomass were variable, although populations generally increased after 50+ years of invasion. The invasion of Bromus also resulted in a decrease in richness and a species shift in plants, microarthropods, fungi, and nematodes. However, despite the depauperate soil fauna at the invaded sites, no effects were seen on cellulose decomposition rates, nitrogen mineralization rates, or vascular plant growth. When Hilaria was planted into soils from not-invaded, recently invaded, and historically invaded sites (all currently or once dominated by Hilaria), germination and survivorship were not affected. In contrast, aboveground Hilaria biomass was significantly greater in recently invaded soils than in the other two soils. We attributed the Hilaria response to differences in soil nutrients present before the invasion, especially soil nitrogen, phosphorus, and potassium, as these nutrients were elevated in the soils that produced the greatest Hilaria biomass. Our data suggest that it is not soil biotic richness per se that determines soil process rates or plant productivity, but instead that either (1) the presence of a few critical soil food web taxa can keep ecosystem function high, (2) nutrient loss is very slow in this ecosystem, and/or (3) these processes are microbially driven. However, the presence of Bromus may reduce key soil nutrients over time and thus may eventually suppress native plant success. ?? 2005 by the Ecological Society of America.

  12. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  13. Dynamic Response of Large Wind Power Plant Affected by Diverse Conditions at Individual Turbines

    SciTech Connect

    Elizondo, Marcelo A.; Lu, Shuai; Lin, Guang; Wang, Shaobu

    2014-07-31

    Diverse operating conditions at individual wind turbine generators (WTG) within wind power plants (WPPs) can affect the WPP dynamic response to system faults. For example, individual WTGs can experience diverse terminal voltage and power output caused by different wind direction and speed, affecting the response of protection and control limiters. In this paper, we present a study to investigate the dynamic response of a detailed WPP model under diverse power outputs of its individual WTGs. Wake effect is considered as the reason for diverse power outputs. The diverse WTG power output is evaluated in a test system where a large 168-machine test WPP is connected to the IEEE-39-bus system. The power output from each WTG is derived from a wake effect model that uses realistic statistical data for incoming wind speed and direction. The results show that diverse WTG output due to wake effect can affect the WPP dynamic response activating specialized control in some turbines. In addition, transient stability is affected by exhibiting uncertainty in critical clearing time calculation.

  14. Phytostabilization of arsenic in soils with plants of the genus Atriplex established in situ in the Atacama Desert.

    PubMed

    Fernández, Yasna Tapia; Diaz, O; Acuña, E; Casanova, M; Salazar, O; Masaguer, A

    2016-04-01

    In the ChiuChiu village (Atacama Desert, Chile), there is a high concentration of arsenic (As) in the soil due to natural causes related to the presence of volcanoes and geothermal activity. To compare the levels of As and the growth parameters among plants of the same genus, three species of plants were established in situ: Atriplex atacamensis (native of Chile), Atriplex halimus, and Atriplex nummularia. These soils have an As concentration of 131.2 ± 10.4 mg kg(-1), a pH of 8.6 ± 0.1, and an electrical conductivity of 7.06 ± 2.37 dS m(-1). Cuttings of Atriplex were transplanted and maintained for 5 months with periodic irrigation and without the addition of fertilizers. The sequential extraction of As indicated that the metalloid in these soils has a high bioavailability (38 %), which is attributed to the alkaline pH, low organic matter and Fe oxide content, and sandy texture. At day 90 of the assay, the As concentrations in the leaves of A. halimus (4.53 ± 1.14 mg kg(-1)) and A. nummularia (3.85 ± 0.64 mg kg(-1)) were significantly higher than that in A. atacamensis (2.46 ± 1.82 mg kg(-1)). However, the three species accumulated higher levels of As in their roots, indicating a phytostabilization capacity. At the end of the assay, A. halimus and A. nummularia generated 30 % more biomass than A. atacamensis without significant differences in the As levels in the leaves. Despite the difficult conditions in these soils, the establishment of plants of the genus Atriplex is a recommended strategy to generate a vegetative cover that prevents the metalloid from spreading in this arid area through the soil or by wind. PMID:27000320

  15. The odor of a plant metabolite affects life history traits in dietary restricted adult olive flies

    PubMed Central

    Gerofotis, Christos D.; Ioannou, Charalampos S.; Nakas, Christos T.; Papadopoulos, Nikos T.

    2016-01-01

    Food quality shapes life history traits either directly or through response of individuals to additional environmental factors, such as chemical cues. Plant extracts used as food additives modulate key life history traits; however little is known regarding such effects for olfactory chemical cues. Exploiting an interesting experimental system that involves the olive fly (Bactrocera oleae) and the plant metabolite α-pinene we asked whether exposure of adults to this compound modulates adult longevity and female reproduction in similar manner in a stressful – dietary (protein) restricted (DR) and in a relaxed- full diet (FD) feeding environment. Accordingly, we exposed males and females to the aroma of α-pinene and measured lifespan and age-specific fecundity in the above two dietary contexts. Our results demonstrate that exposure to α-pinene increased longevity in males and fecundity in females only under dietary restricted conditions. In relaxed food conditions, females exposed to α-pinene shifted high egg-laying towards younger ages compared to non-exposed ones. This is the first report demonstrating that a plant compound affects key life history traits of adult olive flies through olfaction. These effects are sex-specific and more pronounced in dietary restricted adults. Possible underlying mechanisms and the ecological significance are discussed. PMID:27339862

  16. The odor of a plant metabolite affects life history traits in dietary restricted adult olive flies.

    PubMed

    Gerofotis, Christos D; Ioannou, Charalampos S; Nakas, Christos T; Papadopoulos, Nikos T

    2016-01-01

    Food quality shapes life history traits either directly or through response of individuals to additional environmental factors, such as chemical cues. Plant extracts used as food additives modulate key life history traits; however little is known regarding such effects for olfactory chemical cues. Exploiting an interesting experimental system that involves the olive fly (Bactrocera oleae) and the plant metabolite α-pinene we asked whether exposure of adults to this compound modulates adult longevity and female reproduction in similar manner in a stressful - dietary (protein) restricted (DR) and in a relaxed- full diet (FD) feeding environment. Accordingly, we exposed males and females to the aroma of α-pinene and measured lifespan and age-specific fecundity in the above two dietary contexts. Our results demonstrate that exposure to α-pinene increased longevity in males and fecundity in females only under dietary restricted conditions. In relaxed food conditions, females exposed to α-pinene shifted high egg-laying towards younger ages compared to non-exposed ones. This is the first report demonstrating that a plant compound affects key life history traits of adult olive flies through olfaction. These effects are sex-specific and more pronounced in dietary restricted adults. Possible underlying mechanisms and the ecological significance are discussed. PMID:27339862

  17. Host plant affects the sexual attractiveness of the female white-spotted longicorn beetle, Anoplophora malasiaca.

    PubMed

    Yasui, Hiroe; Fujiwara-Tsujii, Nao

    2016-01-01

    Anoplophora malasiaca (Coleoptera: Cerambycidae) is a serious pest that destroys various landscape and crop trees in Japan. We evaluated the precopulatory responses of three different A. malasiaca populations collected from mandarin orange, willow and blueberry trees. Most of the males accepted mates from within the same host plant population as well as females from the willow and blueberry populations. However, significant number of males from the blueberry and willow populations rejected females from the mandarin orange population immediately after touching them with their antennae. Because all three of the female populations produced contact sex pheromones on their elytra, the females of the mandarin orange population were predicted to possess extra chemicals that repelled the males of the other two populations. β-Elemene was identified as a key component that was only found in mandarin orange-fed females and induced a rejection response in willow-fed males. Our results represent the first example of a female-acquired repellent against conspecific males of different host plant populations, indicating that the host plant greatly affects the female's sexual attractiveness. PMID:27412452

  18. Host plant affects the sexual attractiveness of the female white-spotted longicorn beetle, Anoplophora malasiaca

    PubMed Central

    Yasui, Hiroe; Fujiwara-Tsujii, Nao

    2016-01-01

    Anoplophora malasiaca (Coleoptera: Cerambycidae) is a serious pest that destroys various landscape and crop trees in Japan. We evaluated the precopulatory responses of three different A. malasiaca populations collected from mandarin orange, willow and blueberry trees. Most of the males accepted mates from within the same host plant population as well as females from the willow and blueberry populations. However, significant number of males from the blueberry and willow populations rejected females from the mandarin orange population immediately after touching them with their antennae. Because all three of the female populations produced contact sex pheromones on their elytra, the females of the mandarin orange population were predicted to possess extra chemicals that repelled the males of the other two populations. β-Elemene was identified as a key component that was only found in mandarin orange-fed females and induced a rejection response in willow-fed males. Our results represent the first example of a female-acquired repellent against conspecific males of different host plant populations, indicating that the host plant greatly affects the female’s sexual attractiveness. PMID:27412452

  19. Does Plant Biomass Manipulation in Static Chambers Affect Nitrous Oxide Emissions from Soils?

    PubMed

    Collier, Sarah M; Dean, Andrew P; Oates, Lawrence G; Ruark, Matthew D; Jackson, Randall D

    2016-03-01

    One of the most widespread approaches for measurement of greenhouse gas emissions from soils involves the use of static chambers. This method is relatively inexpensive, is easily replicated, and is ideally suited to plot-based experimental systems. Among its limitations is the loss of detection sensitivity with increasing chamber height, which creates challenges for deployment in systems including tall vegetation. It is not always possible to avoid inclusion of plants within chambers or to extend chamber height to fully accommodate plant growth. Thus, in many systems, such as perennial forages and biomass crops, plants growing within static chambers must either be trimmed or folded during lid closure. Currently, data on how different types of biomass manipulation affect measured results is limited. Here, we compare the effects of cutting vs. folding of biomass on nitrous oxide measurements in switchgrass ( L.) and alfalfa ( L.) systems. We report only limited evidence of treatment effects during discrete sampling events and little basis for concern that effects may intensify over time as biomass manipulation is repeatedly imposed. However, nonsignificant treatment effects that were consistently present amounted to significant overall trends in three out of the four systems studied. Such minor disparities in flux could amount to considerable quantities over time, suggesting that caution should be exercised when comparing cumulative emission values from studies using different biomass manipulation strategies. PMID:27065424

  20. Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli.

    PubMed

    Wojnicz, Dorota; Kucharska, Alicja Z; Sokół-Łętowska, Anna; Kicia, Marta; Tichaczek-Goska, Dorota

    2012-12-01

    Medicinal plants are an important source for the therapeutic remedies of various diseases including urinary tract infections. This prompted us to perform research in this area. We decided to focus on medicinal plants species used in urinary tract infections prevention. The aim of our study was to determine the influence of Betula pendula, Equisetum arvense, Herniaria glabra, Galium odoratum, Urtica dioica, and Vaccinium vitis-idaea extracts on bacterial survival and virulence factors involved in tissue colonization and biofilm formation of the uropathogenic Escherichia coli rods. Qualitative and quantitative analysis of plant extracts were performed. Antimicrobial assay relied on the estimation of the colony forming unit number. Hydrophobicity of cells was established by salt aggregation test. Using motility agar, the ability of bacteria to move was examined. The erythrocyte hemagglutination test was used for fimbriae P screening. Curli expression was determined using YESCA agar supplemented with congo red. Quantification of biofilm formation was carried out using a microtiter plate assay and a spectrophotometric method. The results of the study indicate significant differences between investigated extracts in their antimicrobial activities. The extracts of H. glabra and V. vitis-idaea showed the highest growth-inhibitory effects (p < 0.05). Surface hydrophobicity of autoaggregating E. coli strain changed after exposure to all plant extracts, except V. vitis-idaea (p > 0.05). The B. pendula and U. dioica extracts significantly reduced the motility of the E. coli rods (p < 0.05). All the extracts exhibited the anti-biofilm activity. PMID:22915095

  1. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    PubMed Central

    Zhou, Lin; Xu, Hui; Mischke, Sue; Meinhardt, Lyndel W; Zhang, Dapeng; Zhu, Xujun; Li, Xinghui; Fang, Wanping

    2014-01-01

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant under drought stress is essential to develop drought-tolerant tea genotypes, along with crop management practices that can mitigate drought stress. The objective of the present investigation is evaluation of effects of exogenous ABA on the leaf proteome in tea plant exposed to drought stress. Leaf protein patterns of tea plants under simulated drought stress [(polyethylene glycol (PEG)-treated] and exogenous ABA treatment were analyzed in a time-course experiment using two-dimensional electrophoresis (2-DE), followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Among the 72 protein spots identified by MALDI-TOF MS, 16 proteins were downregulated and two were upregulated by exogenous ABA. The upregulated proteins have roles in glycolysis and photosystem II stabilization. Twenty-one protein spots were responsive to drought stress and most participate in carbohydrate and nitrogen metabolism, control of reactive oxygen species (ROS), defense, signaling or nucleic acid metabolism. The combined treatments of exogenous ABA and drought showed upregulation of 10 protein spots at 12 h and upregulation of 11 proteins at 72 h after initiation of drought stress. The results support the importance of the role that ABA plays in the tea plant during drought stress, by improving protein transport, carbon metabolism and expression of resistance proteins. PMID:27076915

  2. Plant material as bioaccumulator of arsenic in soils affected by mining activities

    NASA Astrophysics Data System (ADS)

    Martínez-López, Salvadora; Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen

    2010-05-01

    fraction (oxidaizable medium extraction procedure). Arsenic concentration in leaves was positively correlated with the arsenic extracted by HCl, with the oxidizable-organic matter and sulfides fraction and with the arsenic extracted by Mehra-Jackson extraction. According to our results, As is accumulated in the leaves of the plants and is linked with iron oxides of these soils affected by mining activities.

  3. Investigations of cellular parameters to establish the response of a biomodulator: galactoside-specific Lectin from Viscum album plant extract.

    PubMed

    Hajto, T; Hostanska, K; Fischer, J; Lentzen, H

    1996-09-01

    Injections of non-toxic doses of purified galactoside-specific lectin from the Viscum album plant (VAA-I) caused significant changes in the cellular host defense system in animal models. To establish the immunomodulatory potency of VAA-I on human subjects, four randomized double blind crossover trials were performed on healthy volunteers. In the first and second trials using either older (storage over 8 months at 4°C) or freshly (application immediately after production) isolated lectin enriched preparation from mistletoe extract by ultrafiltration with known VAA-I content, the effect of lectin on the number of CD 3+, CD4+, CD 8+, CD 16+/56+ cells, natural killer cytotoxicity and frequency of large granular lymphocytes was tested in peripheral blood of nine and eight individuals, respectively. In comparison to the significant increase in the number of peripheral lymphocytes observed in balb/c mice, human healthy individuals showed no significant difference between their responses after lectin enriched preparation and saline treatment. Due the considerable intrinsic fluctuation of these parameters in placebo control and the assumption that a change in immunomodulatory potency of VAA-I in lectin enriched preparation depends on aging, a third and fourth double blind trial, in this case using freshly isolated VAA-I from plant, were performed on six and eight healthy volunteers, respectively. In these studies an other more rapidly detectable parameter, the priming of polymorphonuclear (PMN) leukocytes, was monitored. In both studies, 5 h after lectin injection, significant enhancement in priming of circulating PMNs was found compared to the placebo response. PMID:23194960

  4. Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae).

    PubMed

    Feng, Yi; Wratten, Steve; Sandhu, Harpinder; Keller, Michael

    2015-01-01

    The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats. PMID

  5. Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae)

    PubMed Central

    Feng, Yi; Wratten, Steve; Sandhu, Harpinder; Keller, Michael

    2015-01-01

    The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats. PMID

  6. Novel ideas for maximising dew collection to aid plant establishment to combat desertification and restore degraded dry and arid lands

    NASA Astrophysics Data System (ADS)

    Kotzen, Benz

    2014-05-01

    This paper focuses on the potential of dew to provide water to plants and potentially to people as well in remote and difficult to reach areas where rainfall and underground water cannot be harvested. The combat of desertification and the restoration of degraded and desertified dry and arid lands has never been more urgent. A key practical component of this strategy is the restoration of habitat with planting. But for habitat and planting to survive there needs to be an adequate supply of water. In most cases providing water to the plant's roots is vital. In some areas where habitats have been destroyed, sufficient water is immediately available, for example through seasonal rainfall, or it can be harvested to concentrate adequate supplies of water to the roots. However, in arid and hyper arid areas, as well as in some dryland areas, a consistent and adequate supply of water cannot be provided by any conventional proven method. Thus, as the need to combat desertification and to restore desertified dry and arid land increases, so the need to find novel methods of establishing and maintaining planting and thus habitat increases. In more traditional land management scenarios this can be achieved through manipulating landform on a micro and macro scale, for example, by creating catchments, thereby collecting precipitation and directing it to the plants. Where this cannot be done, other means of water supply are usually required. Bainbridge (2007) and others have shown that supplying water to plants is possible through a number of traditional methods, for example, using clay pots. But most of these techniques require an introduced source of water, for example, obtained through water harvesting methods or by delivering water to site in tanks and by water bowser. This can work but requires continuous manpower. It is expensive and can be physically prohibitive in areas where access is difficult and/or remote. The concept of using dew to supply water in drylands is not new

  7. Novel ideas for maximising dew collection to aid plant establishment to combat desertification and restore degraded dry and arid lands

    NASA Astrophysics Data System (ADS)

    Kotzen, Benz

    2014-05-01

    This paper focuses on the potential of dew to provide water to plants and potentially to people as well in remote and difficult to reach areas where rainfall and underground water cannot be harvested. The combat of desertification and the restoration of degraded and desertified dry and arid lands has never been more urgent. A key practical component of this strategy is the restoration of habitat with planting. But for habitat and planting to survive there needs to be an adequate supply of water. In most cases providing water to the plant's roots is vital. In some areas where habitats have been destroyed, sufficient water is immediately available, for example through seasonal rainfall, or it can be harvested to concentrate adequate supplies of water to the roots. However, in arid and hyper arid areas, as well as in some dryland areas, a consistent and adequate supply of water cannot be provided by any conventional proven method. Thus, as the need to combat desertification and to restore desertified dry and arid land increases, so the need to find novel methods of establishing and maintaining planting and thus habitat increases. In more traditional land management scenarios this can be achieved through manipulating landform on a micro and macro scale, for example, by creating catchments, thereby collecting precipitation and directing it to the plants. Where this cannot be done, other means of water supply are usually required. Bainbridge (2007) and others have shown that supplying water to plants is possible through a number of traditional methods, for example, using clay pots. But most of these techniques require an introduced source of water, for example, obtained through water harvesting methods or by delivering water to site in tanks and by water bowser. This can work but requires continuous manpower. It is expensive and can be physically prohibitive in areas where access is difficult and/or remote. The concept of using dew to supply water in drylands is not new

  8. Riparian Vegetation Response to the March 2008 Short-Duration, High-Flow Experiment-Implications of Timing and Frequency of Flood Disturbance on Nonnative Plant Establishment Along the Colorado River Below Glen Canyon Dam

    USGS Publications Warehouse

    Ralston, Barbara E.

    2010-01-01

    Riparian plant communities exhibit various levels of diversity and richness. These communities are affected by flooding and are vulnerable to colonization by nonnative species. Since 1996, a series of three high-flow experiments (HFE), or water releases designed to mimic natural seasonal flooding, have been conducted at Glen Canyon Dam, Ariz., primarily to determine the effectiveness of using high flows to conserve sediment, a limited resource. These experiments also provide opportunities to examine the susceptibility of riparian plant communities to nonnative species invasions. The third and most recent HFE was conducted from March 5 to 9, 2008, and scientists with the U.S. Geological Survey's Grand Canyon Monitoring and Research Center examined the effects of high flows on riparian vegetation as part of the overall experiment. Total plant species richness, nonnative species richness, percent plant cover, percent organic matter, and total carbon measured from sediment samples were compared for Grand Canyon riparian vegetation zones immediately following the HFE and 6 months later. These comparisons were used to determine if susceptibility to nonnative species establishment varied among riparian vegetation zones and if the timing of the HFE affected nonnative plant establishment success. The 2008 HFE primarily buried vegetation rather than scouring it. Percent nonnative cover did not differ among riparian vegetation zones; however, in the river corridor affected by Glen Canyon Dam operations, nonnative species richness showed significant variation. For example, species richness was significantly greater immediately after and 6 months following the HFE in the hydrologic zone farthest away from the shoreline, the area that represents the oldest riparian zone within the post-dam riparian area. In areas closer to the river channel, tamarisk (Tamarix ramosissima X chinensis) seedling establishment occurred (<2 percent cover) in 2008 but not to the extent reported in

  9. Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape?

    PubMed

    Wäschke, Nicole; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2015-09-01

    Anthropogenic land use may shape vegetation composition and affect trophic interactions by altering concentrations of host plant metabolites. Here, we investigated the hypotheses that: (1) plant N and defensive secondary metabolite contents of the herb Plantago lanceolata are affected by land use intensity (LUI) and the surrounding vegetation composition (=plant species richness and P. lanceolata density), and that (2) changes in plant chemistry affect abundances of the herbivorous weevils Mecinus pascuorum and Mecinus labilis, as well as their larval parasitoid Mesopolobus incultus, in the field. We determined plant species richness, P. lanceolata density, and abundances of the herbivores and the parasitoid in 77 grassland plots differing in LUI index in three regions across Germany. We also measured the N and secondary metabolite [the iridoid glycosides (IGs) aucubin and catalpol] contents of P. lanceolata leaves. Mixed-model analysis revealed that: (1) concentrations of leaf IGs were positively correlated with plant species richness; leaf N content was positively correlated with the LUI index. Furthermore: (2) herbivore abundance was not related to IG concentrations, but correlated negatively with leaf N content. Parasitoid abundance correlated positively only with host abundance over the three regions. Structural equation models revealed a positive impact of IG concentrations on parasitoid abundance in one region. We conclude that changes in plant chemistry due to land use and/or vegetation composition may affect higher trophic levels and that the manifestation of these effects may depend on local biotic or abiotic features of the landscape. PMID:25986560

  10. Unpreferred plants affect patch choice and spatial distribution of European brown hares

    NASA Astrophysics Data System (ADS)

    Kuijper, D. P. J.; Bakker, J. P.

    2008-11-01

    Many herbivore species prefer to forage on patches of intermediate biomass. Plant quality and forage efficiency are predicted to decrease with increasing plant standing crop which explains the lower preference of the herbivore. However, often is ignored that on the long-term, plant species composition is predicted to change with increasing plant standing crop. The amount of low-quality, unpreferred food plants increases with increasing plant standing crop. In the present study the effects of unpreferred plants on patch choice and distribution of European brown hare in a salt-marsh system were studied. In one experiment, unpreferred plants were removed from plots. In the second experiment, plots were planted with different densities of an unpreferred artificial plant. Removal of unpreferred plants increased hare-grazing pressure more than fivefold compared to unmanipulated plots. Planting of unpreferred plants reduced hare-grazing pressure, with a significant reduction of grazing already occurring at low unpreferred plant density. Spatial distribution of hares within this salt-marsh system was related to spatial arrangement of unpreferred plants. Hare-grazing intensity decreased strongly with increasing abundance of unpreferred plants despite a high abundance of principal food plants. The results of this study indicate that plant species replacement is an important factor determining patch choice and spatial distribution of hares next to changing plant quality. Increasing abundance of unpreferred plant species can strengthen the decreasing patch quality with increasing standing crop and can decrease grazing intensity when preferred food plants are still abundantly present.

  11. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-06-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

  12. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-09-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  13. Ozone Differentially Affects Perception of Plant Volatiles in Western Honey Bees.

    PubMed

    Dötterl, Stefan; Vater, Marina; Rupp, Thomas; Held, Andreas

    2016-06-01

    Floral scents play a key role in mediating plant-pollinator interactions. Volatile organic compounds (VOCs) emitted by flowers are used by flower visitors as olfactory cues to locate flowers, both from a distance and at close range. More recently it has been demonstrated that reactive molecules such as ozone can modify or degrade VOCs, and this may impair the communication between plants and their pollinators. However, it is not known whether such reactive molecules also may affect the olfactory system of pollinators, and thus not only influence signal transmission but perception of the signal. In this study, we used electroantennographic measurements to determine the effect of increased levels of ozone on antennal responses in western honey bees (Apis mellifera L.). Linalool and 2-phenylethanol, both known to be involved in location of flowers by the bees, and (Z)-3-hexenyl acetate, a widespread green leaf volatile also detected by bees, were used. The results showed that ozone affected antennal responses to the different substances differently. Ozone decreased antennal responses to (Z)-3-hexenyl acetate, whereas responses to linalool and 2-phenylethanol were not influenced by ozone. Overall, the study does not provide evidence that pollination by honey bees is impaired by damage in the olfactory system of the bees caused by increased levels of ozone, at least when linalool and 2-phenylethanol are the attractive signals. However, the results also suggest that ozone can change the overall perception of an odor blend. This might have negative effects in pollination systems and other organismic interactions mediated by specific ratios of compounds. PMID:27344162

  14. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  15. Does nitrate co-pollution affect biological responses of an aquatic plant to two common herbicides?

    PubMed

    Nuttens, A; Chatellier, S; Devin, S; Guignard, C; Lenouvel, A; Gross, E M

    2016-08-01

    Aquatic systems in agricultural landscapes are subjected to multiple stressors, among them pesticide and nitrate run-off, but effects of both together have rarely been studied. We investigated possible stress-specific and interaction effects using the new OECD test organism, Myriophyllum spicatum, a widespread aquatic plant. In a fully factorial design, we used two widely applied herbicides, isoproturon and mesosulfuron-methyl, in concentration-response curves at two nitrate levels (219.63 and 878.52mg N-NO3). We applied different endpoints reflecting plant performance such as growth, pigment content, content in phenolic compounds, and plant stoichiometry. Relative growth rates based on length (RGR-L) were affected strongly by both herbicides, while effects on relative growth rate based on dry weight (RGR-DW) were apparent for isoproturon but hardly visible for mesosulfuron-methyl due to an increase in dry matter content. The higher nitrate level further reduced growth rates, specifically with mesosulfuron-methyl. Effects were visible between 50 and 500μgL(-1) for isoproturon and 0.5-5μgL(-1) for mesosulfuron-methyl, with some differences between endpoints. The two herbicides had opposite effects on chlorophyll, carotenoid and nitrogen contents in plants, with values increasing with increasing concentrations of isoproturon and decreasing for mesosulfuron-methyl. Herbicides and nitrate level exhibited distinct effects on the content in phenolic compounds, with higher nitrate levels reducing total phenolic compounds in controls and with isoproturon, but not with mesosulfuron-methyl. Increasing concentrations of mesosulfuron-methyl lead to a decline of total phenolic compounds, while isoproturon had little effect. Contents of carbon, nitrogen and phosphorus changed depending on the stressor combination. We observed higher phosphorus levels in plants exposed to certain concentrations of herbicides, potentially indicating a metabolic response. The C:N molar ratio

  16. Ecological context and metapopulation dynamics affect sex-ratio variation among dioecious plant populations

    PubMed Central

    Field, David L.; Pickup, Melinda; Barrett, Spencer C. H.

    2013-01-01

    Background and Aims Populations of dioecious flowering plants commonly exhibit heterogeneity in sex ratios and deviations from the equilibrium expectation of equal numbers of females and males. Yet the role of ecological and demographic factors in contributing towards biased sex ratios is currently not well understood. Methods Species-level studies from the literature were analysed to investigate ecological correlates of among-population sex-ratio variation and metapopulation models and empirical data were used to explore the influence of demography and non-equilibrium conditions on flowering sex ratios. Key Results The survey revealed significant among-population heterogeneity in sex ratios and this was related to the degree of sampling effort. For some species, sex-ratio bias was associated with the proportion of non-reproductive individuals, with greater male bias in populations with a lower proportion of individuals that were flowering. Male-biased ratios were also found at higher altitudes and latitudes, and in more xeric sites. Simulations and empirical data indicated that clonal species exhibited greater heterogeneity in sex ratios than non-clonal species as a result of their slower approach to equilibrium. The simulations also indicated the importance of interactions between reproductive mode and founder effects, with greater departures from equilibrium in clonal populations with fewer founding individuals. Conclusions The results indicate that sex-based differences in costs of reproduction and non-equilibrium conditions can each play important roles in affecting flowering sex ratios in populations of dioecious plants. PMID:23444124

  17. Glycogen catabolism, but not its biosynthesis, affects virulence of Fusarium oxysporum on the plant host.

    PubMed

    Corral-Ramos, Cristina; Roncero, M Isabel G

    2015-04-01

    The role of glycogen metabolism was investigated in the fungal pathogen Fusarium oxysporum. Targeted inactivation was performed of genes responsible for glycogen biosynthesis: gnn1 encoding glycogenin, gls1 encoding glycogen synthase, and gbe1 encoding glycogen branching enzyme. Moreover genes involved in glycogen catabolism were deleted: gph1 encoding glycogen phosphorylase and gdb1 encoding glycogen de-branching enzyme. Glycogen reserves increased steadily during growth of the wild type strain in axenic cultures, to reach up to 1500μg glucose equivalents mg(-1) protein after 14 days. Glycogen accumulation was abolished in mutants lacking biosynthesis genes, whereas it increased by 20-40% or 80%, respectively, in the single and double mutants affected in catabolic genes. Transcript levels of glycogen metabolism genes during tomato plant infection peaked at four days post inoculation, similar to the results observed during axenic culture. Significant differences were observed between gdb mutants and the wild type strain for vegetative hyphal fusion ability. The single mutants defective in glycogen metabolism showed similar levels of virulence in the invertebrate animal model Galleria mellonella. Interestingly, the deletion of gdb1 reduced virulence on the plant host up to 40% compared to the wild type in single and in double mutant backgrounds, whereas the other mutants showed the virulence at the wild-type level. PMID:25865793

  18. Light Influences How the Fungal Toxin Deoxynivalenol Affects Plant Cell Death and Defense Responses

    PubMed Central

    Ansari, Khairul I.; Doyle, Siamsa M.; Kacprzyk, Joanna; Khan, Mojibur R.; Walter, Stephanie; Brennan, Josephine M.; Arunachalam, Chanemouga Soundharam; McCabe, Paul F.; Doohan, Fiona M.

    2014-01-01

    The Fusarium mycotoxin deoxynivalenol (DON) can cause cell death in wheat (Triticum aestivum), but can also reduce the level of cell death caused by heat shock in Arabidopsis (Arabidopsis thaliana) cell cultures. We show that 10 μg mL−1 DON does not cause cell death in Arabidopsis cell cultures, and its ability to retard heat-induced cell death is light dependent. Under dark conditions, it actually promoted heat-induced cell death. Wheat cultivars differ in their ability to resist this toxin, and we investigated if the ability of wheat to mount defense responses was light dependent. We found no evidence that light affected the transcription of defense genes in DON-treated roots of seedlings of two wheat cultivars, namely cultivar CM82036 that is resistant to DON-induced bleaching of spikelet tissue and cultivar Remus that is not. However, DON treatment of roots led to genotype-dependent and light-enhanced defense transcript accumulation in coleoptiles. Wheat transcripts encoding a phenylalanine ammonia lyase (PAL) gene (previously associated with Fusarium resistance), non-expressor of pathogenesis-related genes-1 (NPR1) and a class III plant peroxidase (POX) were DON-upregulated in coleoptiles of wheat cultivar CM82036 but not of cultivar Remus, and DON-upregulation of these transcripts in cultivar CM82036 was light enhanced. Light and genotype-dependent differences in the DON/DON derivative content of coleoptiles were also observed. These results, coupled with previous findings regarding the effect of DON on plants, show that light either directly or indirectly influences the plant defense responses to DON. PMID:24561479

  19. Light influences how the fungal toxin deoxynivalenol affects plant cell death and defense responses.

    PubMed

    Ansari, Khairul I; Doyle, Siamsa M; Kacprzyk, Joanna; Khan, Mojibur R; Walter, Stephanie; Brennan, Josephine M; Arunachalam, Chanemouga Soundharam; McCabe, Paul F; Doohan, Fiona M

    2014-02-01

    The Fusarium mycotoxin deoxynivalenol (DON) can cause cell death in wheat (Triticum aestivum), but can also reduce the level of cell death caused by heat shock in Arabidopsis (Arabidopsis thaliana) cell cultures. We show that 10 μg mL(-1) DON does not cause cell death in Arabidopsis cell cultures, and its ability to retard heat-induced cell death is light dependent. Under dark conditions, it actually promoted heat-induced cell death. Wheat cultivars differ in their ability to resist this toxin, and we investigated if the ability of wheat to mount defense responses was light dependent. We found no evidence that light affected the transcription of defense genes in DON-treated roots of seedlings of two wheat cultivars, namely cultivar CM82036 that is resistant to DON-induced bleaching of spikelet tissue and cultivar Remus that is not. However, DON treatment of roots led to genotype-dependent and light-enhanced defense transcript accumulation in coleoptiles. Wheat transcripts encoding a phenylalanine ammonia lyase (PAL) gene (previously associated with Fusarium resistance), non-expressor of pathogenesis-related genes-1 (NPR1) and a class III plant peroxidase (POX) were DON-upregulated in coleoptiles of wheat cultivar CM82036 but not of cultivar Remus, and DON-upregulation of these transcripts in cultivar CM82036 was light enhanced. Light and genotype-dependent differences in the DON/DON derivative content of coleoptiles were also observed. These results, coupled with previous findings regarding the effect of DON on plants, show that light either directly or indirectly influences the plant defense responses to DON. PMID:24561479

  20. Parental age affects somatic mutation rates in the progeny of flowering plants.

    PubMed

    Singh, Amit Kumar; Bashir, Tufail; Sailer, Christian; Gurumoorthy, Viswanathan; Ramakrishnan, Anantha Maharasi; Dhanapal, Shanmuhapreya; Grossniklaus, Ueli; Baskar, Ramamurthy

    2015-05-01

    In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes. PMID:25810093

  1. Plant-derived decapeptide OSIP108 interferes with Candida albicans biofilm formation without affecting cell viability.

    PubMed

    Delattin, Nicolas; De Brucker, Katrijn; Craik, David J; Cheneval, Olivier; Fröhlich, Mirjam; Veber, Matija; Girandon, Lenart; Davis, Talya R; Weeks, Anne E; Kumamoto, Carol A; Cos, Paul; Coenye, Tom; De Coninck, Barbara; Cammue, Bruno P A; Thevissen, Karin

    2014-05-01

    We previously identified a decapeptide from the model plant Arabidopsis thaliana, OSIP108, which is induced upon fungal pathogen infection. In this study, we demonstrated that OSIP108 interferes with biofilm formation of the fungal pathogen Candida albicans without affecting the viability or growth of C. albicans cells. OSIP108 displayed no cytotoxicity against various human cell lines. Furthermore, OSIP108 enhanced the activity of the antifungal agents amphotericin B and caspofungin in vitro and in vivo in a Caenorhabditis elegans-C. albicans biofilm infection model. These data point to the potential use of OSIP108 in combination therapy with conventional antifungal agents. In a first attempt to unravel its mode of action, we screened a library of 137 homozygous C. albicans mutants, affected in genes encoding cell wall proteins or transcription factors important for biofilm formation, for altered OSIP108 sensitivity. We identified 9 OSIP108-tolerant C. albicans mutants that were defective in either components important for cell wall integrity or the yeast-to-hypha transition. In line with these findings, we demonstrated that OSIP108 activates the C. albicans cell wall integrity pathway and that its antibiofilm activity can be blocked by compounds inhibiting the yeast-to-hypha transition. Furthermore, we found that OSIP108 is predominantly localized at the C. albicans cell surface. These data point to interference of OSIP108 with cell wall-related processes of C. albicans, resulting in impaired biofilm formation. PMID:24566179

  2. Parental Age Affects Somatic Mutation Rates in the Progeny of Flowering Plants1

    PubMed Central

    Singh, Amit Kumar; Bashir, Tufail; Sailer, Christian; Gurumoorthy, Viswanathan; Ramakrishnan, Anantha Maharasi; Dhanapal, Shanmuhapreya; Grossniklaus, Ueli; Baskar, Ramamurthy

    2015-01-01

    In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes. PMID:25810093

  3. Establishing a food-chain link between aquatic plant material and avian vacuolar myelinopathy in mallards (Anas platyrhynchos).

    PubMed

    Birrenkott, Anna H; Wilde, Susan B; Hains, John J; Fischer, John R; Murphy, Thomas M; Hope, Charlotte P; Parnell, Pamela G; Bowerman, William W

    2004-07-01

    Avian vacuolar myelinopathy (AVM) is a neurologic disease primarily affecting bald eagles (Haliaeetus leucocephalus) and American coots (Fulica americana). The disease was first characterized in bald eagles in Arkansas in 1994 and then in American coots in 1996. To date, AVM has been confirmed in six additional avian species. Attempts to identify the etiology of AVM have been unsuccessful to date. The objective of this study was to evaluate dermal and oral routes of exposure of birds to hydrilla (Hydrilla verticillata) and associated materials to evaluate their ability to induce AVM. Mallards (Anas platyrhynchos) were used in all trials; bobwhite quail (Colinus virginianus) also were used in one fresh hydrilla material exposure trial. Five trials were conducted, including two fresh hydrilla material exposure trials, two cyanobacteria exposure trials, and a frozen hydrilla material exposure trial. The cyanobacteria exposure trials and frozen hydrilla material trial involved gavaging mallards with either Pseudanabaena catenata (live culture), Hapalosiphon fontinalis, or frozen hydrilla material with both cyanobacteria species present. With the exception of one fresh hydrilla exposure trial, results were negative or inconclusive. In the 2002 hydrilla material exposure trial, six of nine treated ducks had histologic lesions of AVM. This established the first cause-effect link between aquatic vegetation and AVM and provided evidence supporting an aquatic source for the causal agent. PMID:15465716

  4. Population rules can apply to individual plants and affect their architecture: an evaluation on the cushion plant Mulinum spinosum (Apiaceae)

    PubMed Central

    Puntieri, Javier G.; Damascos, María A.; Llancaqueo, Yanina; Svriz, Maya

    2010-01-01

    Background and aims Plants are regarded as populations of modules such as axes and growth units (GUs, i.e. seasonally produced axis segments). Due to their dense arrays of GUs, cushion plants may resemble crowded plant populations in the way the number of components (GUs in plants, individuals in populations) relates to their individual sizes. Methodology The morphological differentiation of GUs and its relationship with biomass accumulation and plant size were studied for the cushion subshrub Mulinum spinosum (Apiaceae), a widespread species in dry areas of Patagonia. In 2009, GUs were sampled from one-quarter of each of 24 adult plants. Within- and between-plant variations in GU length, diameter, number of nodes and biomass were analysed and related to whole-plant size. Principal results Each year, an M. spinosum cushion develops flowering GUs and vegetative GUs. Flowering GUs are larger, twice as numerous and contain two to four times more dry mass (excluding reproductive structures) than vegetative GUs. The hemispherical area of the cushions was positively correlated with the biomass of last-year GUs. The biomass of flowering GUs was negatively correlated with the density of GUs. Mulinum spinosum plants exhibited a notable differentiation between flowering and vegetative GUs, but their axes, i.e. the sequences of GUs, were not differentiated throughout the plants. Flowering GUs comprised a major proportion of each plant's photosynthetic tissues. Conclusions A decrease in the size of flowering GUs and in their number relative to the total number of GUs per plant, parallel to an increase in GU density, is predicted as M. spinosum plants age over years. The assimilative role of vegetative GUs is expected to increase in summer because of their less exposed position in the cushion. These GUs would therefore gain more from warm and dry conditions than flowering GUs. PMID:22476077

  5. Alkaloid Quantities in Endophyte-Infected Tall Fescue are Affected by the Plant-Fungus Combination and Environment.

    PubMed

    Helander, M; Phillips, T; Faeth, S H; Bush, L P; McCulley, R; Saloniemi, I; Saikkonen, K

    2016-02-01

    Many grass species are symbiotic with systemic, vertically-transmitted, asymptomatic Epichloë endophytic fungi. These fungi often produce alkaloids that defend the host against herbivores. We studied how environmental variables affect alkaloids in endophyte-infected tall fescue (Schedonorus phoenix) from three Northern European wild origins and the widely planted US cultivar 'Kentucky-31' (KY31). The plants were grown in identical common garden experiments in Finland and Kentucky for two growing seasons. Plants were left as controls (C) or given water (W), nutrient (N) or water and nutrient (WN) treatments. For 8-10 replications of each plant origin and treatment combination in both experiments, we analyzed ergot alkaloids, lysergic acid, and lolines. In Finland, tall fescue plants produced 50 % more ergot alkaloids compared to plants of the same origin and treatments in Kentucky. Origin of the plants affected the ergot alkaloid concentration at both study sites: the wild origin plants produced 2-4 times more ergot alkaloids than KY31, but the ergot alkaloid concentration of KY31 plants was the same at both locations. Overall lysergic acid content was 60 % higher in plants grown in Kentucky than in those grown in Finland. Nutrient treatments (N, WN) significantly increased ergot alkaloid concentrations in plants from Finland but not in plants from Kentucky. These results suggest that the success of KY31 in US is not due to selection for high ergot alkaloid production but rather other traits associated with the endophyte. In addition, the environmental effects causing variation in alkaloid production of grass-endophyte combinations should be taken into account when using endophyte-infected grasses agriculturally. PMID:26815170

  6. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri.

    PubMed

    Muehe, E Marie; Weigold, Pascal; Adaktylou, Irini J; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas; Behrens, Sebastian

    2015-03-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  7. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  8. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.

    PubMed

    Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D

    2015-10-15

    Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection. PMID:26150068

  9. Can plant phloem properties affect the link between ecosystem assimilation and respiration?

    NASA Astrophysics Data System (ADS)

    Mencuccini, M.; Hölttä, T.; Sevanto, S.; Nikinmaa, E.

    2012-04-01

    Phloem transport of carbohydrates in plants under field conditions is currently not well understood. This is largely the result of the lack of techniques suitable for measuring phloem physiological properties continuously under field conditions. This lack of knowledge is currently hampering our efforts to link ecosystem-level processes of carbon fixation, allocation and use, especially belowground. On theoretical grounds, the properties of the transport pathway from canopy to roots must be important in affecting the link between carbon assimilation and respiration, but it is unclear whether their effect is partially or entirely masked by processes occurring in other parts of the ecosystem. One can also predict the characteristic time scales over which these effects should occur and, as consequence, predict whether the transfer of turgor and osmotic signals from the site of carbon assimilation to the sites of carbon use are likely to control respiration. We will present two sources of evidence suggesting that the properties of the phloem transport system may affect processes that are dependent on the supply of carbon substrate, such as root or soil respiration. Firstly, we will summarize the results of a literature survey on soil and ecosystem respiration where the speed of transfer of photosynthetic sugars from the plant canopy to the soil surface was determined. Estimates of the transfer speed could be grouped according to whether the study employed isotopic or canopy soil flux-based techniques. These two groups provided very different estimates of transfer times likely because transport of sucrose molecules, and pressure-concentration waves, in phloem differed. Secondly, we will argue that simultaneous measurements of bark and xylem diameters provide a novel tool to determine the continuous variations of phloem turgor in vivo in the field. We will present a model that interprets these changes in xylem and live bark diameters and present data testing the model

  10. The Gastropod Menace: Slugs on Brassica Plants Affect Caterpillar Survival through Consumption and Interference with Parasitoid Attraction.

    PubMed

    Desurmont, Gaylord A; Zemanova, Miriam A; Turlings, Ted C J

    2016-03-01

    Terrestrial molluscs and insect herbivores play a major role as plant consumers in a number of ecosystems, but their direct and indirect interactions have hardly been explored. The omnivorous nature of slugs makes them potential disrupters of predator-prey relationships, as a direct threat to small insects and through indirect, plant-mediated effects. Here, we examined the effects of the presence of two species of slugs, Arion rufus (native) and A. vulgaris (invasive) on the survivorship of young Pieris brassicae caterpillars when feeding on Brassica rapa plants, and on plant attractiveness to the main natural enemy of P. brassicae, the parasitoid Cotesia glomerata. In two separate predation experiments, caterpillar mortality was significantly higher on plants co-infested with A. rufus or A. vulgaris. Moreover, caterpillar mortality correlated positively with slug mass and leaf consumption by A. vulgaris. At the third trophic level, plants infested with slugs and plants co-infested with slugs and caterpillars were far less attractive to parasitoids than plants damaged by caterpillars only, independently of slug species. Chemical analyses confirmed that volatile emissions, which provide foraging cues for parasitoids, were strongly reduced in co-infested plants. Our study shows that the presence of slugs has the potential to affect insect populations, directly via consumptive effects, and indirectly via changes in plant volatiles that result in a reduced attraction of natural enemies. The fitness cost for P. brassicae imposed by increased mortality in presence of slugs may be counterbalanced by the benefit of escaping its parasitoids. PMID:27002323

  11. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    PubMed

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear

  12. How do land management practices affect net ecosystem CO2 exchange of an invasive plant infestation?

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Detto, M.; Runkle, B.; Kelly, M.; Baldocchi, D. D.

    2009-12-01

    Ecosystem gas and energy exchanges of invasive plant infestations under different land management practices have been subject of few studies and thus little is known. Our goal is to characterize seasonal changes in net ecosystem CO2 exchange (NEE) through the processes of photosynthesis (GEP) and ecosystem respiration (Reco) of a grassland used as pasture yet infested by perennial pepperweed (Lepidium latifolium) in California’s Sacramento-San Joaquin River Delta. We analyze eddy-covariance supported by environmental and canopy-scale hyperspectral reflectance measurements acquired in 2007-2009. Our study covers three summer drought periods with slightly different land management practices. Over the study period the site was subject to year-round grazing, and in 2008 the site was additionally mowed. Specific questions we address are a) how does pepperweed flowering affect GEP, b) does a mowing event affect NEE mainly through GEP or Reco, and c) can the combined effects of phenology and mowing on pepperweed NEE potentially be tracked using routinely applied remote sensing techniques? Preliminary results indicate that pepperweed flowering drastically decreases photosynthetic CO2 uptake due to shading by the dense arrangement of white flowers at the canopy top, causing the infestation to be almost CO2 neutral. In contrast, mowing causes the infestation to act as moderate net CO2 sink, mainly due to increased CO2 uptake during regrowth. We demonstrate that spectral regions other than commonly-used red and near-infrared might be more promising for pepperweed monitoring because of its spectral uniqueness during the flowering phase. Our results have important implications for land-use land-cover (LULC) change studies when biological invasions and their management alter ecosystem structure and functioning but not necessarily the respective LULC class.

  13. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field.

    PubMed

    Roux, Fabrice; Mary-Huard, Tristan; Barillot, Elise; Wenes, Estelle; Botran, Lucy; Durand, Stéphanie; Villoutreix, Romain; Martin-Magniette, Marie-Laure; Camilleri, Christine; Budar, Françoise

    2016-03-29

    Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits inArabidopsis thaliana To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics ofA. thaliana. PMID:26979961

  14. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field

    PubMed Central

    Roux, Fabrice; Mary-Huard, Tristan; Barillot, Elise; Wenes, Estelle; Botran, Lucy; Durand, Stéphanie; Villoutreix, Romain; Martin-Magniette, Marie-Laure; Camilleri, Christine; Budar, Françoise

    2016-01-01

    Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits in Arabidopsis thaliana. To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics of A. thaliana. PMID:26979961

  15. Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method.

    PubMed

    Martin-Ortigosa, Susana; Valenstein, Justin S; Sun, Wei; Moeller, Lorena; Fang, Ning; Trewyn, Brian G; Lin, Victor S-Y; Wang, Kan

    2012-02-01

    Applying nanotechnology to plant science requires efficient systems for the delivery of nanoparticles (NPs) to plant cells and tissues. The presence of a cell wall in plant cells makes it challenging to extend the NP delivery methods available for animal research. In this work, research is presented which establishes an efficient NP delivery system for plant tissues using the biolistic method. It is shown that the biolistic delivery of mesoporous silica nanoparticle (MSN) materials can be improved by increasing the density of MSNs through gold plating. Additionally, a DNA-coating protocol is used based on calcium chloride and spermidine for MSN and gold nanorods to enhance the NP-mediated DNA delivery. Furthermore, the drastic improvement of NP delivery is demonstrated when the particles are combined with 0.6 μm gold particles during bombardment. The methodology described provides a system for the efficient delivery of NPs into plant cells using the biolistic method. PMID:22174078

  16. Limited field establishment of a weed biocontrol agent, Floracarus perrepae (Acariformes: Eriophyidae), against Old World climbing fern in Florida - a possible role of mite resistant plant genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Floracarus perrepae was released on Lygodium microphyllum in 63 plots at five sites in South Florida during 2008. Mite-induced leaf galls or feeding damage were observed on field plants in 34 of these plots. Leaf galls were observed in six plots, but in only two of these plots did mites establish pe...

  17. Late Holocene to present climatic and anthropogenic drivers affecting wetland plant communities, Florida Everglades, USA

    NASA Astrophysics Data System (ADS)

    Bernhardt, C. E.; Willard, D. A.

    2011-12-01

    We synthesize the paleoecological results of dozens of sediment cores to evaluate the complex interactions of regional climate variability and anthropogenic modifications during the late Holocene affecting the development, stability, and resilience of the Florida Everglades wetlands. The Everglades is a mosaic of wetland types whose distributions are controlled by water depth, hydroperiod, fire, and substrate. External stressors could trigger shifts in the vegetation composition and change the community structure. Episodic severe periods of aridity during the late Holocene caused regional shifts in vegetation including the initiation and development of tree islands and sawgrass ridges, which became established during abrupt drought events. While the timing varies site to site, most droughts occurred during well-documented global climate events like the Medieval Climate Anomaly and the Little Ice Age. However, slough vegetation is more resilient to climate variability and quickly returns to its original composition after droughts. Twentieth century modification to the natural Everglades hydrology saw the distribution wetlands severely altered. The response was not homogeneous. Some communities were drowned by prolonged hydroperiods whereas other communities, such as marl prairies became drier. However, slough vegetation in the ridge and slough landscape did not respond to 20th century land use but instead has been sensitive to changes in precipitation associated with the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation.

  18. Identification of viral and phytoplasmal agents responsible for diseases affecting plants of Gaillardia Foug. in Lithuania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gaillardia plants exhibiting symptoms characteristic of viral and phytoplasmal diseases were collected at botanical gardens and floriculture farms in Lithuania. Cucumber mosaic virus was isolated from diseased plants exhibiting symptoms characterized stunting, color breaking and malformation of flo...

  19. Proteomic analysis reveals suppression of bark chitinases and proteinase inhibitors in citrus plants affected by the citrus sudden death disease.

    PubMed

    Cantú, M D; Mariano, A G; Palma, M S; Carrilho, E; Wulff, N A

    2008-10-01

    Citrus sudden death (CSD) is a disease of unknown etiology that greatly affects sweet oranges grafted on Rangpur lime rootstock, the most important rootstock in Brazilian citriculture. We performed a proteomic analysis to generate information related to this plant pathogen interaction. Protein profiles from healthy, CSD-affected and CSD-tolerant stem barks, were generated using two-dimensional gel electrophoresis. The protein spots were well distributed over a pI range of 3.26 to 9.97 and a molecular weight (MW) range from 7.1 to 120 kDa. The patterns of expressed proteins on 2-DE gels made it possible to distinguish healthy barks from CSD-affected barks. Protein spots with MW around 30 kDa and pI values ranging from 4.5 to 5.2 were down-regulated in the CSD-affected root-stock bark. This set of protein spots was identified as chitinases. Another set of proteins, ranging in pI from 6.1 to 9.6 with an MW of about 20 kDa, were also suppressed in CSD-affected rootstock bark; these were identified as miraculin-like proteins, potential trypsin inhibitors. Down-regulation of chitinases and proteinase inhibitors in CSD-affected plants is relevant since chitinases are well-known pathogenesis-related protein, and their activity against plant pathogens is largely accepted. PMID:18943454

  20. Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit.

    PubMed

    Hoffmann, Anna M; Noga, Georg; Hunsche, Mauricio

    2015-03-01

    We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m(-2) s(-1)) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations. PMID:25626402

  1. Seed germination of medicinal plant, fennel (Foeniculum vulgare Mill), as affected by different priming techniques.

    PubMed

    Tahaei, Amirreza; Soleymani, Ali; Shams, Majid

    2016-09-01

    Reduced seed germination is among the most important factors adversely affecting crop stand and subsequent plant growth. Fennel (Foeniculum vulgare Mill) is an important medicinal plant with poor seed germination rate, occasionally. It is accordingly pertinent to find methods which can enhance fennel seed germination and remove the barriers of dormancy breaking. The present experiments studied the effects of two different priming (cold moist stratification and osmopriming) and 14 dormancy breaking techniques (hormonal, osmopriming, biopriming, chemical priming, and hydropriming) on the seed germination and seedling growth of two different fennel genotypes under growth chamber conditions. In the first and second experiment, the priming techniques including the time lengths of cold moist stratification (0, 15, 30, and 45 days) and the concentrations of polyethylene glycol 6000 (PEG6000, osmopriming at -0.99, -1.35, and -2.33 MPa) were used as the main plots. However, in both experiments, the dormancy breaking techniques and fennel genotypes were factorially combined and used as the subplots. Different seed- and seedling-related parameters including germination (%), plumule, radicle and seedling length, average germination time, rate and homogeneity of germination, and seed vigor index were determined. Both priming techniques were efficient on the enhancement of seed germination and seedling growth. Among the dormancy breaking techniques, Aminol Forte (biopriming), kadostim (biopriming), benzyl adenine + kinetin (biopriming), distilled water (hydropriming), gibberellin + kinetin (hormonal priming), and benzyl adenine + kinetin + gibberellin (biopriming) were the most effective ones. The related concentrations were equal to 100 mg/l, 10(-5) M, and 0.4 %. The fennel genotypes reacted significantly different under priming conditions. It is possible to enhance seed germination and seedling growth of fennel using priming and dormancy breaking

  2. How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands

    USGS Publications Warehouse

    Stohlgren, T.J.; Schell, L.D.; Vanden, Heuvel B.

    1999-01-01

    (adjacent and distant 1000-m2 plots) in the same vegetation type overlapped just 48.6 ?? 3.6%, and the ungrazed plots and distant grazed plots overlapped 49.4 ?? 3.6%. Differences in vegetation and soils between grazed and ungrazed sites were minimal in most cases, but soil characteristics and elevation were strongly correlated with native and exotic plant diversity in the study region. For the 78 1000-m2 plots, 59.4% of the variance in total species richness was explained by percentage of silt (coefficient = 0.647, t = 5.107, P < 0.001), elevation (coefficient = 0.012, t = 5.084, P < 0.001), and total foliar cover (coefficient = 0.110, t = 2.104, P < 0.039). Only 12.8% of the variance in exotic species cover (log10cover) was explained by percentage of clay (coefficient = -0.011, t = -2.878, P < 0.005), native species richness (coefficient = -0.011, t = -2.156, P < 0.034), and log10N (coefficient = 2.827, t = 1.860, P < 0.067). Native species cover and exotic species richness and frequency were also significantly positively correlated with percentage of soil N at the 1000-m2 plot scale. Our research led to five broad generalizations about current levels of grazing in these Rocky Mountain grasslands: (1) grazing probably has little effect on native species richness at landscape scales; (2) grazing probably has little effect on the accelerated spread of most exotic plant species at landscape scales; (3) grazing affects local plant species and life-form composition and cover, but spatial variation is considerable; (4) soil characteristics, climate, and disturbances may have a greater effect on plant species diversity than do current levels of grazing; and (5) few plant species show consistent, directional responses to grazing or cessation of grazing.

  3. The impact of global warming on floral traits that affect the selfing rate in a high-altitude plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in the abiotic environment, as those expected under global warming, can influence plant mating systems through changes in floral traits that affect selfing. Herkogamy (spatial separation of male and female functions within a flower), dichogamy (temporal separation) and total flower number af...

  4. Elevated atmospheric carbon dioxide concentration affects interactions between Spodoptera exigua (Lepidoptera: Noctuidae) larvae and two host plant species outdoors

    SciTech Connect

    Caulfield, F.; Bunce, J.A. )

    1994-08-01

    Beet armyworm, Spodoptera exigua (Huebner), larvae were placed on sugarbeet (Beta vulgaris L.) and pigweed (Amaranthus hybridus L.) plants in outdoor chambers in which the plants were growing at either the ambient ([approximately] 350 [mu]l liter[sup [minus]1]) or ambient plus 350 [mu]l liter[sup [minus]1] ([approximately] 700 [mu]l liter[sup [minus]1]) carbon dioxide concentration. A series of experiments was performed to determine if larvae reduced plant growth differently at the two carbon dioxide concentrations in either species and if the insect growth or survival differed with carbon dioxide concentration. Leaf nitrogen, water, starch, and soluble carbohydrate contents were measured to assess carbon dioxide concentration effects on leaf quality. Insect feeding significantly reduced plant growth in sugarbeet plants at 350 [mu]l liter[sup [minus]1] but not at 700 [mu]l liter[sup [minus]1] nor in pigweed at either carbon dioxide concentration. Larval survival was greater on sugarbeet plants at the elevated carbon dioxide concentration. Increased survival occurred only if the insects were at the elevated carbon dioxide concentration and consumed leaf material grown at the elevated concentration. Leaf quality was only marginally affected by growth at elevated carbon dioxide concentration in these experiments. The results indicate that in designing experiments to predict effects of elevated atmospheric carbon dioxide concentrations on plant-insect interactions, both plants and insects should be exposed to the experimental carbon dioxide concentrations, as well as to as realistic environmental conditions as possible.

  5. Factors Affecting Distribution of Estrogenicity in the Influents, Effluents, and Biosolids of Canadian Wastewater Treatment Plants.

    PubMed

    Shieh, Ben H H; Louie, Alvin; Law, Francis C P

    2016-05-01

    Canadian wastewater treatment plants (WWTPs) release significant amounts of estrogenic chemicals to nearby surface waters. Environmental estrogens have been implicated as the causative agents of many developmental and reproductive problems in animals, including fish. The goals of this study were to assess the estrogenic activity in the influents, effluents, and biosolids of thirteen Canadian WWTPs using the yeast estrogen screen (YES) bioassay and to investigate whether factors, such as wastewater treatment method, sample storage, extraction efficiency, population, and summer/winter temperature had any effects on the distribution of estrogenicity in the WWTPs. Results of the study showed that estrogenicity from the influent to the effluent decreased in seven WWTPs, increased in two WWTPs, and did not change in four WWTPs during the winter. Estrogenic concentrations generally decreased in the order of biosolids > influents > effluents and ranged from 1.57 to 24.6, 1.25E-02 to 3.84E-01, and 9.46E-03 to 3.90E-01 ng estradiol equivalents/g or ml, respectively. The estrogenicity in the final effluents, but not those in the influents and biosolids, was significantly higher in the summer than the winter. Among the WWTP treatment methods, advanced, biological nutrient removal appeared to be the most effective method to remove estrogenic chemicals from wastewaters in Canada. Our studies help to identify factors or mechanisms that affect the distribution of estrogenicity in WWTPs, providing a better understanding on the discharges of estrogenic chemicals from WWTPs. PMID:26433808

  6. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    PubMed

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed. PMID:21533611

  7. Plant Products Affect Growth and Digestive Efficiency of Cultured Florida Pompano (Trachinotus carolinus) Fed Compounded Diets

    PubMed Central

    Lech, Gregory P.; Reigh, Robert C.

    2012-01-01

    Costs of compounded diets containing fish meal as a primary protein source can be expected to rise as fish meal prices increase in response to static supply and growing demand. Alternatives to fish meal are needed to reduce production costs in many aquaculture enterprises. Some plant proteins are potential replacements for fish meal because of their amino acid composition, lower cost and wide availability. In this study, we measured utilization of soybean meal (SBM) and soy protein concentrate (SPC) by Florida pompano fed compounded diets, to determine the efficacy of these products as fish meal replacements. We also calculated apparent digestibility coefficients (ADCs) for canola meal (CM), corn gluten meal (CGM), and distillers dried grains with solubles (DDGS), following typical methods for digestibility trials. Juvenile Florida pompano were fed fish-meal-free diets containing graded levels of SBM and SPC, and weight gain was compared to a control diet that contained SBM, SPC, and fish meal. Fish fed diets that contained 25–30 percent SBM in combination with 43–39 percent SPC had weight gain equivalent to fish fed the control diet with fish meal, while weight gain of fish fed other soy combinations was significantly less than that of the control group. Apparent crude protein digestibility of CGM was significantly higher than that of DDGS but not significantly different from CM. Apparent energy digestibility of DDGS was significantly lower than CGM but significantly higher than CM. Findings suggested that composition of the reference diet used in a digestibility trial affects the values of calculated ADCs, in addition to the chemical and physical attributes of the test ingredient. PMID:22536344

  8. The presence of Bt-transgenic oilseed rape in wild mustard populations affects plant growth.

    PubMed

    Liu, Yongbo; Stewart, C Neal; Li, Junsheng; Huang, Hai; Zhang, Xitao

    2015-12-01

    The adventitious presence of transgenic plants in wild plant populations is of ecological and regulatory concern, but the consequences of adventitious presence are not well understood. Here, we introduced Bacillus thuringiensis Cry1Ac (Bt)-transgenic oilseed rape (Bt OSR, Brassica napus) with various frequencies into wild mustard (Brassica juncea) populations. We sought to better understand the adventitious presence of this transgenic insecticidal crop in a wild-relative plant population. We assessed the factors of competition, resource availability and diamondback moth (Plutella xylostella) infestation on plant population dynamics. As expected, Bt OSR performed better than wild mustard in mixed populations under herbivore attack in habitats with enough resources, whereas wild mustard had higher fitness when Bt OSR was rarer in habitats with limited resources. Results suggest that the presence of insect-resistant transgenic plants could decrease the growth of wild mustard and Bt OSR plants and their populations, especially under high herbivore pressure. PMID:26338267

  9. Pulverizer tramp iron problems affect coal switching at Union Electric`s Labadie Plant

    SciTech Connect

    Fife, P.A.; Mahr, D.

    1997-07-01

    Union Electric`s Labadie Plant, is a 2400 MWe (4 x 600) coal-fired power generating plant. It is located 35 miles west of St. Louis. The four units were commissioned between 1970 and 1973. Major plant equipment is summarized. Coal is delivered via unit-trains and stacked by two tower style, radial stackers. The plant annually consumes approximately six million tons of coal. In 1981, a coal blending system was retrofitted to the plant. This system features a traveling stacker on an elevated berm and rotary plow reclaimers. The coal blending system feeds all four units. Bins weigh feeders, and belt scales precisely control blending proportions. The blending system has served the plant, increasing fuel flexibility in the types and blends of coal that can be used.

  10. Using Novel Earthquake Early Warning (EEW) with Optimized Sensor Model to Determine How Establishments Will Be Affected in a 7.0 Hayward Earthquake Scenario

    NASA Astrophysics Data System (ADS)

    Munnangi, P.

    2015-12-01

    The Bay Area is one of the world's most vulnerable places to earthquakes, and being ready is vital to survival. The purpose of this study was to determine the distribution of places affected in a 7.0 Hayward Earthquake and the effectiveness of earthquake early warning (EEW) in this scenario. We manipulated three variables: the location of the epicenter, the station placement, and algorithm used for early warning. To compute the blind zone and warning times, we calculated the P and S wave velocities by using data from the Northern California Earthquake Catalog and the radius of the blind zone using appropriate statistical models. We came up with a linear regression model directly relating warning time and distance from the epicenter. We used Google Earth to plot three hypothetical epicenters on the Hayward Fault and determine which establishments would be affected. By varying the locations, the blind zones and warning times changed. As the radius from the epicenter increased, the warning times also increased. The intensity decreased as the distance from the epicenter grew. We determined which cities were most vulnerable. We came up with a list of cities and their predicted warning times in this hypothetical scenario. For example, for the epicenter in northern Hayward, the cities at most risk were San Pablo, Richmond, and surrounding cities, while the cities at least risk were Gilroy, Modesto, Lincoln, and other cities within that radius. To find optimal station placement, we chose two cities with stations placed variable distances apart from each other. There was more variability in scattered stations than dense stations, suggesting stations placed closer together are more effective since they provide precise warnings. We compared the algorithms ElarmS, which is currently used in the California Integrated Seismic Network (CISN) and Onsite, which is a single-sensor approach that uses one to two stations, by calculating the blind zone and warning times for each

  11. Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.).

    PubMed

    Kumar, Rakesh; Bhatia, Ranjana; Kukreja, K; Behl, Rishi Kumar; Dudeja, Surjit Singh; Narula, Neeru

    2007-10-01

    Biofertilizers contribute in N(2) fixation, P solubilization, phytohormone production and thus enhance plant growth. Beneficial plant-microbe interactions and the stability and effectiveness of biofertilizer depend upon the establishment of bacterial strains in the rhizosphere of the plant. This interaction depends upon many factors, one of them being plant exudates. Root exudates are composed of small organic molecules like carbonic acids, amino acids or sugars etc., which are released into the soil and bacteria can be attracted towards these exudates due to chemotaxis. The chemotactic behaviour of Azotobacter strains was studied using cotton (Desi HD 123 and American H 1098) and wheat (WH 711) seedlings and the root exudates of these two plants were chemically characterized. Analysis of the root exudates revealed the presence of sugars and simple polysaccharides (glucose), amino acids (glutamate, lysine) and organic acids (citric acid, succinic acid, maleic acid, malonic acid). Differences between cotton cultivars in root exudates were observed which influenced chemotactic response in Azotobacter. These results indicate colonization with rhizobacteria which implies that optimal symbionts, on the sides of both plant cultivar and bioinoculant bacteria can lead to better plant growth under cultivation conditions. PMID:17910096

  12. Simulated climate-vegetation interaction in semi-arid regions affected by plant diversity

    NASA Astrophysics Data System (ADS)

    Claussen, M.; Bathiany, S.; Brovkin, V.; Kleinen, T.

    2013-11-01

    The end of the African Humid Period between 6,000 and 4,000 years ago was associated with large changes in precipitation and vegetation cover. Sediment records from Lake Yoa, Chad, show a gradual decline in precipitation and fluctuation in vegetation over this interval, and have been suggested to demonstrate a weak interaction between climate and vegetation. However, interpretation of these data has neglected the potential effects of plant diversity on the stability of the climate-vegetation system. Here we use a conceptual model that represents plant diversity in terms of moisture requirement. Some of the plant types simulated are sensitive to changes in precipitation, which alone would lead to an unstable system with the possibility of abrupt changes. Other plants are more resilient, resulting in a stable system that changes gradually. We demonstrate that plant diversity tends to attenuate the instability of the interaction between climate and sensitive plant types, whereas it reduces the stability of the interaction between climate and less-sensitive plant types. Hence, despite large sensitivities of individual plant types to precipitation, a gradual decline in precipitation and shift in mean vegetation cover can occur. However, we suggest that the system could become unstable if some plant types were removed or introduced, leading to an abrupt regime shift.

  13. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance.

    PubMed

    Murrell, Ebony G; Cullen, Eileen M

    2014-10-01

    Few studies compare how different soil fertilization practices affect plant mineral content and insect performance in organic systems. This study examined: 1) The European corn borer, Ostrinia nubilalis (Hübner), larval response on corn (Zea mays L.) grown in field soils with different soil management histories; and 2) resilience of these plants to O. nubilalis herbivory. Treatments included: 1) standard organic--organically managed soil fertilized with dairy manure and 2 yr of alfalfa (Medicago sativa L.) in the rotation; 2) basic cation saturation ratio--organically managed soil fertilized with dairy manure and alfalfa nitrogen credits, plus addition of gypsum (CaSO4·2H2O) according to the soil balance hypothesis; and 3) conventional--conventionally managed soil fertilized with synthetic fertilizers. Corn plants were reared to maturity in a greenhouse, and then infested with 0-40 O. nubilalis larvae for 17 d. O. nubilalis exhibited negative competitive response to increasing larval densities. Mean development time was significantly faster for larvae consuming basic cation saturation ratio plants than those on standard organic plants, with intermediate development time on conventional plants. Neither total yield (number of kernels) nor proportion kernels damaged differed among soil fertility treatments. Soil nutrients differed significantly in S and in Ca:Mg and Ca:K ratios, but principal components analysis of plant tissue samples taken before O. nubilalis infestation showed that S, Fe, and Cu contributed most to differences in plant nutrient profiles among soil fertility treatments. Results demonstrate that different fertilization regimens can significantly affect insect performance within the context of organic systems, but the effects in this study were relatively minor compared with effects of intraspecific competition. PMID:25203485

  14. Establishment of non-native plant species after wildfires: Effects of fuel treatments, abiotic and biotic factors, and post-fire grass seeding treatments

    USGS Publications Warehouse

    Hunter, M.E.; Omi, P.N.; Martinson, E.J.; Chong, G.W.

    2006-01-01

    Establishment and spread of non-native species following wildfires can pose threats to long-term native plant recovery. Factors such as disturbance severity, resource availability, and propagule pressure may influence where non-native species establish in burned areas. In addition, pre- and post-fire management activities may influence the likelihood of non-native species establishment. In the present study we examine the establishment of non-native species after wildfires in relation to native species richness, fire severity, dominant native plant cover, resource availability, and pre- and post-fire management actions (fuel treatments and post-fire rehabilitation treatments). We used an information-theoretic approach to compare alternative hypotheses. We analysed post-fire effects at multiple scales at three wildfires in Colorado and New Mexico. For large and small spatial scales at all fires, fire severity was the most consistent predictor of non-native species cover. Non-native species cover was also correlated with high native species richness, low native dominant species cover, and high seeded grass cover. There was a positive, but non-significant, association of non-native species with fuel-treated areas at one wildfire. While there may be some potential for fuels treatments to promote non-native species establishment, wildfire and post-fire seeding treatments seem to have a larger impact on non-native species. ?? IAWF 2006.

  15. Soil moisture variations affect short-term plant-microbial competition for ammonium, glycine, and glutamate

    PubMed Central

    Månsson, Katarina F; Olsson, Magnus O; Falkengren-Grerup, Ursula; Bengtsson, Göran

    2014-01-01

    We tested whether the presence of plant roots would impair the uptake of ammonium (), glycine, and glutamate by microorganisms in a deciduous forest soil exposed to constant or variable moisture in a short-term (24-h) experiment. The uptake of 15NH4 and dual labeled amino acids by the grass Festuca gigantea L. and soil microorganisms was determined in planted and unplanted soils maintained at 60% WHC (water holding capacity) or subject to drying and rewetting. The experiment used a design by which competition was tested in soils that were primed by plant roots to the same extent in the planted and unplanted treatments. Festuca gigantea had no effect on microbial N uptake in the constant moist soil, but its presence doubled the microbial uptake in the dried and rewetted soil compared with the constant moist. The drying and rewetting reduced by half or more the uptake by F. gigantea, despite more than 60% increase in the soil concentration of . At the same time, the amino acid and -N became equally valued in the plant uptake, suggesting that plants used amino acids to compensate for the lower acquisition. Our results demonstrate the flexibility in plant-microbial use of different N sources in response to soil moisture fluctuations and emphasize the importance of including transient soil conditions in experiments on resource competition between plants and soil microorganisms. Competition between plants and microorganisms for N is demonstrated by a combination of removal of one of the potential competitors, the plant, and subsequent observations of the uptake of N in the organisms in soils that differ only in the physical presence and absence of the plant during a short assay. Those conditions are necessary to unequivocally test for competition. PMID:24772283

  16. Retention of OsNMD3 in the cytoplasm disturbs protein synthesis efficiency and affects plant development in rice.

    PubMed

    Shi, Yanyun; Liu, Xiangling; Li, Rui; Gao, Yaping; Xu, Zuopeng; Zhang, Baocai; Zhou, Yihua

    2014-07-01

    The ribosome is the basic machinery for translation, and biogenesis of ribosomes involves many coordinated events. However, knowledge about ribosomal dynamics in higher plants is very limited. This study chose a highly conserved trans-factor, the 60S ribosomal subunit nuclear export adaptor NMD3, to characterize the mechanism of ribosome biogenesis in the monocot plant Oryza sativa (rice). O. sativa NMD3 (OsNMD3) shares all the common motifs and shuttles between the nucleus and cytoplasm via CRM1/XPO1. A dominant negative form of OsNMD3 with a truncated nuclear localization sequence (OsNMD3(ΔNLS)) was retained in the cytoplasm, consequently interfering with the release of OsNMD3 from pre-60S particles and disturbing the assembly of ribosome subunits. Analyses of the transactivation activity and cellulose biosynthesis level revealed low protein synthesis efficiency in the transgenic plants compared with the wild-type plants. Pharmaceutical treatments demonstrated structural alterations in ribosomes in the transgenic plants. Moreover, global expression profiles of the wild-type and transgenic plants were investigated using the Illumina RNA sequencing approach. These expression profiles suggested that overexpression of OsNMD3(ΔNLS) affected ribosome biogenesis and certain basic pathways, leading to pleiotropic abnormalities in plant growth. Taken together, these results strongly suggest that OsNMD3 is important for ribosome assembly and the maintenance of normal protein synthesis efficiency. PMID:24723395

  17. Retail Survey of Brazilian Milk and Minas Frescal Cheese and a Contaminated Dairy Plant To Establish Prevalence, Relatedness, and Sources of Listeria monocytogenes Isolates▿

    PubMed Central

    Brito, J. Renaldi F.; Santos, Emilia M. P.; Arcuri, Edna F.; Lange, Carla C.; Brito, Maria A. V. P.; Souza, Guilherme N.; Cerqueira, Mônica M. P. O.; Beltran, J. Marcela Soto; Call, Jeffrey E.; Liu, Yanhong; Porto-Fett, Anna C. S.; Luchansky, John B.

    2008-01-01

    A study was designed to recover Listeria monocytogenes from pasteurized milk and Minas frescal cheese (MFC) sampled at retail establishments (REs) and to identify the contamination source(s) of these products in the corresponding dairy processing plant. Fifty milk samples (9 brands) and 55 MFC samples (10 brands) were tested from REs located in Juiz de Fora, Minas Gerais, Brazil. All milk samples and 45 samples from 9 of 10 MFC brands tested negative for L. monocytogenes; however, “brand F” of MFC obtained from REs 119 and 159 tested positive. Thus, the farm/plant that produced brand F MFC was sampled; all samples from the milking parlor tested negative for L. monocytogenes, whereas several sites within the processing plant and the MFC samples tested positive. All 344 isolates recovered from retail MFC, plant F MFC, and plant F environmental samples were serotype 1/2a and displayed the same AscI or ApaI fingerprints. Since these results established that the storage coolers served as the contamination source of the MFC, plant F was closed so that corrective renovations could be made. Following renovation, samples from sites that previously tested positive for the pathogen were collected from the processing environment and from MFC on multiple visits; all tested negative for L. monocytogenes. In addition, on subsequent visits to REs 159 and 119, all MFC samples tested negative for the pathogen. Studies are ongoing to quantify the prevalence, levels, and types of L. monocytogenes in MFC and associated processing plants to lessen the likelihood of listeriosis in Brazil. PMID:18502929

  18. Recovery and characterization of a Citrus clementina Hort. ex Tan. 'Clemenules' haploid plant selected to establish the reference whole Citrus genome sequence

    PubMed Central

    2009-01-01

    Background In recent years, the development of structural genomics has generated a growing interest in obtaining haploid plants. The use of homozygous lines presents a significant advantage for the accomplishment of sequencing projects. Commercial citrus species are characterized by high heterozygosity, making it difficult to assemble large genome sequences. Thus, the International Citrus Genomic Consortium (ICGC) decided to establish a reference whole citrus genome sequence from a homozygous plant. Due to the existence of important molecular resources and previous success in obtaining haploid clementine plants, haploid clementine was selected as the target for the implementation of the reference whole genome citrus sequence. Results To obtain haploid clementine lines we used the technique of in situ gynogenesis induced by irradiated pollen. Flow cytometry, chromosome counts and SSR marker (Simple Sequence Repeats) analysis facilitated the identification of six different haploid lines (2n = x = 9), one aneuploid line (2n = 2x+4 = 22) and one doubled haploid plant (2n = 2x = 18) of 'Clemenules' clementine. One of the haploids, obtained directly from an original haploid embryo, grew vigorously and produced flowers after four years. This is the first haploid plant of clementine that has bloomed and we have, for the first time, characterized the histology of haploid and diploid flowers of clementine. Additionally a double haploid plant was obtained spontaneously from this haploid line. Conclusion The first haploid plant of 'Clemenules' clementine produced directly by germination of a haploid embryo, which grew vigorously and produced flowers, has been obtained in this work. This haploid line has been selected and it is being used by the ICGC to establish the reference sequence of the nuclear genome of citrus. PMID:19698121

  19. Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.)

    PubMed Central

    Wu, Qi; Li, Dayong; Li, Dejun; Liu, Xue; Zhao, Xianfeng; Li, Xiaobing; Li, Shigui; Zhu, Lihuang

    2015-01-01

    Dof (DNA binding with one finger) proteins, a class of plant-specific transcription factors, are involved in plant growth and developmental processes and stress responses. However, their biological functions remain to be elucidated, especially in rice (Oryza sativa L.). Previously, we have reported that OsDof12 can promote rice flowering under long-day conditions. Here, we further investigated the other important agronomical traits of the transgenic plants overexpressing OsDof12 and found that overexpressing OsDof12 could lead to reduced plant height, erected leaf, shortened leaf blade, and smaller panicle resulted from decreased primary and secondary branches number. These results implied that OsDof12 is involved in rice plant architecture formation. Furthermore, we performed a series of Brassinosteroid (BR)-responsive tests and found that overexpression of OsDof12 could also result in BR hyposensitivity. Of note, in WT plants the expression of OsDof12 was found up-regulated by BR treatment while in OsDof12 overexpression plants two positive BR signaling regulators, OsBRI1 and OsBZR1, were significantly down-regulated, indicating that OsDof12 may act as a negative BR regulator in rice. Taken together, our results suggested that overexpression of OsDof12 could lead to altered plant architecture by suppressing BR signaling. Thus, OsDof12 might be used as a new potential genetic regulator for future rice molecular breeding. PMID:26500670

  20. Decoupling factors affecting plant diversity and cover on extensive green roofs.

    PubMed

    MacIvor, J Scott; Margolis, Liat; Puncher, Curtis L; Carver Matthews, Benjamin J

    2013-11-30

    Supplemental irrigation systems are often specified on green roofs to ensure plant cover and growth, both important components of green roof performance and aesthetics. Properties of the growing media environment too can alter the assemblage of plant species able to thrive. In this study we determine how plant cover, above ground biomass and species diversity are influenced by irrigation and growing media. Grass and forb vegetative cover and biomass were significantly greater in organic based growing media but there was no effect of supplemental irrigation, with two warm season grasses dominating in those treatments receiving no supplemental irrigation. On the other hand, plant diversity declined without irrigation in organic media, and having no irrigation in inorganic growing media resulted in almost a complete loss of cover. Sedum biomass was less in inorganic growing media treatments and species dominance shifted when growing media organic content increased. Our results demonstrate that supplemental irrigation is required to maintain plant diversity on an extensive green roof, but not necessarily plant cover or biomass. These results provide evidence that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought. PMID:24100190

  1. Salt tolerance and stress level affect plant biomass-density relationships and neighbor effects

    NASA Astrophysics Data System (ADS)

    Yu, Zhenxing; Chen, Wenwen; Zhang, Qian; Yang, Haishui; Tang, Jianjun; Weiner, Jacob; Chen, Xin

    2014-07-01

    It has been shown that plant biomass-density relationships are altered under extreme or stressed conditions. We do not know whether variation in biomass-density relationships is a direct result of stress tolerance or occurs via changes in plant-plant interactions. Here, we evaluated biomass-density relationships and neighbor effects in six plant species that differ in salt tolerance in a salt marsh, and conducted a literature review of biomass-density relationship under higher and lower stress levels. Our field study showed that both neighbor effects and the exponent of the biomass-density relationship (α) varied among plant species with different degrees of salt tolerance. There was a positive relationship between neighbor effects (measured as relative interaction index) and α-value among the tested species. The literature review showed that α and its variation increased under higher stress. Our results indicate that plant species with different salinity tolerance differ in the direction and strength of neighbor effects, resulting in variation in biomass-density relationships. Our results support the hypothesis that differences in biomass-density relationships among species are not due to differences in stress tolerance alone, they are mediated by changes in plant-plant interactions.

  2. Are herbage yield and yield stability affected by plant species diversity in sown pasture mixtures?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A tenet of plant biodiversity theory in grasslands is that increased diversity contributes to the stability of ecosystems. In managed grasslands, such as pastures, greater stability of herbage production as a result of increased plant species diversity would be beneficial. In this study, I combined ...

  3. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses.

    PubMed

    Wang, Zhenyu; Zhao, Xiuyang; Wang, Bing; Liu, Erlong; Chen, Ni; Zhang, Wei; Liu, Heng

    2016-04-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. PMID:26923071

  4. Drought induced changes of plant belowground carbon allocation affect soil microbial community function in a subalpine meadow

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Bahn, M.; Fritz, K.; Hasibeder, R.; Richter, A.

    2012-12-01

    There is growing evidence that climate extremes may affect ecosystem carbon dynamics more strongly than gradual changes in temperatures or precipitation. Climate projections suggest more frequent heat waves accompanied by extreme drought periods in many parts of Europe, including the Alps. Drought is considered to decrease plant C uptake and turnover, which may in turn decrease belowground C allocation and potentially has significant consequences for microbial community composition and functioning. However, information on effects of drought on C dynamics at the plant-soil interface in real ecosystems is still scarce. Our study aimed at understanding how summer drought affects soil microbial community composition and the uptake of recently assimilated plant C by different microbial groups in grassland. We hypothesized that under drought 1) the microbial community shifts, fungi being less affected than bacteria, 2) plants decrease belowground C allocation, which further reduces C transfer to soil microbes and 3) the combined effects of belowground C allocation, reduced soil C transport due to reduced soil moisture and shift in microbial communities cause an accumulation of extractable organic C in the soil. Our study was conducted as part of a rain-exclusion experiment in a subalpine meadow in the Austrian Central Alps. After eight weeks of rain exclusion we pulse labelled drought and control plots with 13CO2 and traced C in plant biomass, extractable organic C (EOC) and soil microbial communities using phospholipid fatty acids (PLFA). Drought induced a shift of the microbial community composition: gram-positive bacteria became more dominant, whereas gram-negative bacteria were not affected by drought. Also the relative abundance of fungal biomass was not affected by drought. While total microbial biomass (as estimated by total microbial PLFA content) increased during drought, less 13C was taken up. This reduction was pronounced for bacterial biomarkers. It reflects

  5. Effects of cover crop management and planting operations on cotton establishment and yield in a no-till system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One method to save resources while positively impacting the environment is combining agricultural field operations. In no-till systems, for example, termination of cover crops and planting of the cash crop can be performed simultaneously utilizing a tractor as a single power source. A no-till field ...

  6. EVALUATING THE ROLE OF HABITAT QUALITY ON ESTABLISHMENT OF GM AGROSTIS STOLONIFERA PLANTS IN NON-AGRONOMIC SETTINGS

    EPA Science Inventory

    We compared soil chemistry and plant community data at non-agronomic mesic locations that either did or did not contain genetically modified (GM) Agrostis stolonifera. The best two-variable logistic regression model included soil Mn content and A. stolonifera cover and explained...

  7. Dynamics of invasive plant monocultures following the establishment of natural enemies: an example from the Melaleuca quinquenervia system in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Melaleuca quinquenervia (melaleuca), a native tree of Australian origin has become one of the most invasive plants in Florida. Biological control was implemented as a long-term solution to melaleuca control in Florida. Now several natural enemies (insects and a pathogen) of melaleuca are well estab...

  8. Response of highbush blueberry to nitrogen fertilizer during field establishment. II. Plant nutrient requirements in relation to nitrogen fertilizer supply

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was done to determine the macro- and micronutrient requirements in young northern highbush blueberries. The plants were fertilized with 0, 50, or 100 kg/ha N each year and excavated and sampled periodically for complete nutrient analysis. Leaf concentration of several nutrients including N, ...

  9. The influence of alternative plant propagation and stand establishment techniques on survival and growth of eastern cottonwood (Populus deltoides Bartr.) clones.

    SciTech Connect

    Kaczmarek, Donald J.; et. al.,

    2014-02-09

    Four eastern cottonwood clones, including standard operational clone ST66 and three advanced clonal selections were produced and included in a test utilizing five different plant propagation methods. Despite relatively large first-year growth differences among clones, all clones demonstrated similar responses to the treatments and clone 9 cutting treatment interactions were generally non-significant. The effects of changing cutting lengths are consistent with previous studies which indicated the potential for increased plant survival and growth with increased cutting lengths. Differences in stored carbohydrate reserves alone do not appear to completely control first-year growth and development of cuttings. First-year growth of 51 cm long cuttings planted 30.5 cm deep was greater than the same cuttings planted 48 cm deep. Stem form of plants derived from whip-tip propagation did not differ from plants derived from standard, unrooted cuttings. This propagation method offers the potential of far greater production capacity from a cutting orchard and rapid bulk-up of new or limited clones. Stand uniformity assessments suggest that surviving trees of each individual cutting treatment exhibit similar levels of growth variation. Optimization of plantation establishment techniques has the potential to increase growth of young Populus plantations.

  10. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions

    PubMed Central

    Ton, Jurriaan; Brandenburg, Anna; Karlen, Danielle; Zopfi, Jakob; Turlings, Ted C. J.

    2014-01-01

    Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community. PMID:24127750

  11. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions.

    PubMed

    D'Alessandro, Marco; Erb, Matthias; Ton, Jurriaan; Brandenburg, Anna; Karlen, Danielle; Zopfi, Jakob; Turlings, Ted C J

    2014-04-01

    Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community. PMID:24127750

  12. Plant Trait Assembly Affects Superiority of Grazer's Foraging Strategies in Species-Rich Grasslands

    PubMed Central

    Mládek, Jan; Mládková, Pavla; Hejcmanová, Pavla; Dvorský, Miroslav; Pavlu, Vilém; De Bello, Francesco; Duchoslav, Martin; Hejcman, Michal; Pakeman, Robin J.

    2013-01-01

    Background Current plant – herbivore interaction models and experiments with mammalian herbivores grazing plant monocultures show the superiority of a maximizing forage quality strategy (MFQ) over a maximizing intake strategy (MI). However, there is a lack of evidence whether grazers comply with the model predictions under field conditions. Methodology/Findings We assessed diet selection of sheep (Ovis aries) using plant functional traits in productive mesic vs. low-productivity dry species-rich grasslands dominated by resource-exploitative vs. resource-conservative species respectively. Each grassland type was studied in two replicates for two years. We investigated the first grazing cycle in a set of 288 plots with a diameter of 30 cm, i.e. the size of sheep feeding station. In mesic grasslands, high plot defoliation was associated with community weighted means of leaf traits referring to high forage quality, i.e. low leaf dry matter content (LDMC) and high specific leaf area (SLA), with a high proportion of legumes and the most with high community weighted mean of forage indicator value. In contrast in dry grasslands, high community weighted mean of canopy height, an estimate of forage quantity, was the best predictor of plot defoliation. Similar differences in selection on forage quality vs. quantity were detected within plots. Sheep selected plants with higher forage indicator values than the plot specific community weighted mean of forage indicator value in mesic grasslands whereas taller plants were selected in dry grasslands. However, at this scale sheep avoided legumes and plants with higher SLA, preferred plants with higher LDMC while grazing plants with higher forage indicator values in mesic grasslands. Conclusions Our findings indicate that MFQ appears superior over MI only in habitats with a predominance of resource-exploitative species. Furthermore, plant functional traits (LDMC, SLA, nitrogen fixer) seem to be helpful correlates of forage quality

  13. Plant Quantity Affects Development and Survival of a Gregarious Insect Herbivore and Its Endoparasitoid Wasp

    PubMed Central

    Fei, Minghui; Gols, Rieta; Zhu, Feng; Harvey, Jeffrey A.

    2016-01-01

    Virtually all studies of plant-herbivore-natural enemy interactions focus on plant quality as the major constraint on development and survival. However, for many gregarious feeding insect herbivores that feed on small or ephemeral plants, the quantity of resources is much more limiting, yet this area has received virtually no attention. Here, in both lab and semi-field experiments using tents containing variably sized clusters of food plants, we studied the effects of periodic food deprivation in a tri-trophic system where quantitative constraints are profoundly important on insect performance. The large cabbage white Pieris brassicae, is a specialist herbivore of relatively small wild brassicaceous plants that grow in variable densities, with black mustard (Brassica nigra) being one of the most important. Larvae of P. brassicae are in turn attacked by a specialist endoparasitoid wasp, Cotesia glomerata. Increasing the length of food deprivation of newly molted final instar caterpillars significantly decreased herbivore and parasitoid survival and biomass, but shortened their development time. Moreover, the ability of caterpillars to recover when provided with food again was correlated with the length of the food deprivation period. In outdoor tents with natural vegetation, we created conditions similar to those faced by P. brassicae in nature by manipulating plant density. Low densities of B. nigra lead to potential starvation of P. brassicae broods and their parasitoids, replicating nutritional conditions of the lab experiments. The ability of both unparasitized and parasitized caterpillars to find corner plants was similar but decreased with central plant density. Survival of both the herbivore and parasitoid increased with plant density and was higher for unparasitized than for parasitized caterpillars. Our results, in comparison with previous studies, reveal that quantitative constraints are far more important that qualitative constraints on the performance of

  14. Thermal tolerance affects mutualist attendance in an ant-plant protection mutualism

    PubMed Central

    Fitzpatrick, Ginny; Lanan, Michele C.; Bronstein, Judith L.

    2014-01-01

    Mutualism is an often-complex interaction among multiple species, each of which may respond differently to abiotic conditions. The effects of temperature on the formation, dissolution, and success of these and other species interactions remain poorly understood. We studied the thermal ecology of the mutualism between the cactus Ferocactus wislizeni and its ant defenders (Forelius pruinosus, Crematogaster opuntiae, Solenopsis aurea, and Solenopsis xyloni) in the Sonoran Desert, USA. The ants are attracted to extrafloral nectar produced by the plants and in exchange protect the plants from herbivores; there is a hierarchy of mutualist effectiveness based on aggression toward herbivores. We determined the relationship between temperature and ant activity on plants, the thermal tolerance of each ant species, and ant activity in relation to the thermal environment of plants. Temperature played a role in determining which species interact as mutualists. Three of the four ant species abandoned the plants during the hottest part of the day (up to 40°C), returning when surface temperature began to decrease in the afternoon. The least effective ant mutualist, F. pruinosus, had a significantly higher critical thermal maximum than the other three species, was active across the entire range of plant surface temperatures observed (13.8-57.0°C), and visited plants that reached the highest temperatures. F. pruinosus occupied some plants full-time and invaded plants occupied by more dominant species when those species were thermally excluded. Combining data on thermal tolerance and mutualist effectiveness provides a potentially powerful tool for predicting the effects of temperature on mutualisms and mutualistic species. PMID:25012597

  15. Thermal tolerance affects mutualist attendance in an ant-plant protection mutualism.

    PubMed

    Fitzpatrick, Ginny; Lanan, Michele C; Bronstein, Judith L

    2014-09-01

    Mutualism is an often complex interaction among multiple species, each of which may respond differently to abiotic conditions. The effects of temperature on the formation, dissolution, and success of these and other species interactions remain poorly understood. We studied the thermal ecology of the mutualism between the cactus Ferocactus wislizeni and its ant defenders (Forelius pruinosus, Crematogaster opuntiae, Solenopsis aurea, and Solenopsis xyloni) in the Sonoran Desert, USA. The ants are attracted to extrafloral nectar produced by the plants and, in exchange, protect the plants from herbivores; there is a hierarchy of mutualist effectiveness based on aggression toward herbivores. We determined the relationship between temperature and ant activity on plants, the thermal tolerance of each ant species, and ant activity in relation to the thermal environment of plants. Temperature played a role in determining which species interact as mutualists. Three of the four ant species abandoned the plants during the hottest part of the day (up to 40 °C), returning when surface temperature began to decrease in the afternoon. The least effective ant mutualist, F. pruinosus, had a significantly higher critical thermal maximum than the other three species, was active across the entire range of plant surface temperatures observed (13.8-57.0 °C), and visited plants that reached the highest temperatures. F. pruinosus occupied some plants full-time and invaded plants occupied by more dominant species when those species were thermally excluded. Combining data on thermal tolerance and mutualist effectiveness provides a potentially powerful tool for predicting the effects of temperature on mutualisms and mutualistic species. PMID:25012597

  16. Plant Quantity Affects Development and Survival of a Gregarious Insect Herbivore and Its Endoparasitoid Wasp.

    PubMed

    Fei, Minghui; Gols, Rieta; Zhu, Feng; Harvey, Jeffrey A

    2016-01-01

    Virtually all studies of plant-herbivore-natural enemy interactions focus on plant quality as the major constraint on development and survival. However, for many gregarious feeding insect herbivores that feed on small or ephemeral plants, the quantity of resources is much more limiting, yet this area has received virtually no attention. Here, in both lab and semi-field experiments using tents containing variably sized clusters of food plants, we studied the effects of periodic food deprivation in a tri-trophic system where quantitative constraints are profoundly important on insect performance. The large cabbage white Pieris brassicae, is a specialist herbivore of relatively small wild brassicaceous plants that grow in variable densities, with black mustard (Brassica nigra) being one of the most important. Larvae of P. brassicae are in turn attacked by a specialist endoparasitoid wasp, Cotesia glomerata. Increasing the length of food deprivation of newly molted final instar caterpillars significantly decreased herbivore and parasitoid survival and biomass, but shortened their development time. Moreover, the ability of caterpillars to recover when provided with food again was correlated with the length of the food deprivation period. In outdoor tents with natural vegetation, we created conditions similar to those faced by P. brassicae in nature by manipulating plant density. Low densities of B. nigra lead to potential starvation of P. brassicae broods and their parasitoids, replicating nutritional conditions of the lab experiments. The ability of both unparasitized and parasitized caterpillars to find corner plants was similar but decreased with central plant density. Survival of both the herbivore and parasitoid increased with plant density and was higher for unparasitized than for parasitized caterpillars. Our results, in comparison with previous studies, reveal that quantitative constraints are far more important that qualitative constraints on the performance of

  17. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    SciTech Connect

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  18. Mulch and fertilizer management practices for organic production of highbush blueberry. II. Impact on plant and soil nutrients during establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A systems trial was established to evaluate management practices for organic production of highbush blueberry. The practices included two bed types (flat and raised), two sources and rates of fertilizer (feather meal and fish emulsion applied at 29 and 57 kg/ha N), three mulches [sawdust, compost to...

  19. 76 FR 36493 - Endangered and Threatened Wildlife and Plants; Proposed Rule To Establish a Manatee Refuge in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ...We, the U.S. Fish and Wildlife Service, propose to establish a manatee refuge in Citrus County, Florida, in the waters of Kings Bay, including its tributaries and connected waters. We propose this action based on our determination that there is substantial evidence showing that certain waterborne activities would result in the taking of one or more manatees and that certain waterborne......

  20. Mulch and fertilizer management practices for organic production of highbush blueberry. I. Plant growth and allocation of biomass during establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A systems trial was established to evaluate management practices for organic production of highbush blueberry. The practices included two bed types (flat and raised), two sources and rates of fertilizer (feather meal and fish emulsion applied at 29 and 57 kg/ha N), three mulches [sawdust, compost to...

  1. 77 FR 15617 - Endangered and Threatened Wildlife and Plants; Establishing a Manatee Refuge in Kings Bay, Citrus...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ...We, the U.S. Fish and Wildlife Service, establish a manatee refuge in Citrus County, Florida, in the waters of Kings Bay, including its tributaries and connected waters. This action is based on our determination that there is substantial evidence showing that certain waterborne activities would result in the taking of one or more manatees and that certain waterborne activities must be......

  2. Plant establishment and invasions: an increase in a seed disperser combined with land abandonment causes an invasion of the non-native walnut in Europe

    PubMed Central

    Lenda, Magdalena; Skórka, Piotr; Knops, Johannes M. H.; Moroń, Dawid; Tworek, Stanisław; Woyciechowski, Michał

    2012-01-01

    Successful invasive species often are established for a long time period before increasing exponentially in abundance. This lag phase is one of the least understood phenomena of biological invasions. Plant invasions depend on three factors: a seed source, suitable habitat and a seed disperser. The non-native walnut, Juglans regia, has been planted for centuries in Central Europe but, until recently, has not spread beyond planted areas. However, in the past 20 years, we have observed a rapid increase in walnut abundance, specifically in abandoned agricultural fields. The dominant walnut disperser is the rook, Corvus frugilegus. During the past 50 years, rooks have increased in abundance and now commonly inhabit human settlements, where walnut trees are planted. Central Europe has, in the past few decades, experienced large-scale land abandonment. Walnut seeds dispersed into ploughed fields do not survive, but when cached into ploughed and then abandoned fields, they successfully establish. Rooks preferentially cache seeds in ploughed fields. Thus, land-use change combined with disperser changes can cause rapid increase of a non-native species, allowing it to become invasive. This may have cascading effects on the entire ecosystem. Thus, species that are non-native and not invasive can become invasive as habitats and dispersers change. PMID:22072603

  3. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    PubMed

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473

  4. Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation.

    PubMed

    Astolfi, S; Zuchi, S; Neumann, G; Cesco, S; Sanità di Toppi, L; Pinton, R

    2012-02-01

    Both Fe deficiency and Cd exposure induce rapid changes in the S nutritional requirement of plants. The aim of this work was to characterize the strategies adopted by plants to cope with both Fe deficiency (release of phytosiderophores) and Cd contamination [production of glutathione (GSH) and phytochelatins] when grown under conditions of limited S supply. Experiments were performed in hydroponics, using barley plants grown under S sufficiency (1.2 mM sulphate) and S deficiency (0 mM sulphate), with or without Fe(III)-EDTA at 0.08 mM for 11 d and subsequently exposed to 0.05 mM Cd for 24 h or 72 h. In S-sufficient plants, Fe deficiency enhanced both root and shoot Cd concentrations and increased GSH and phytochelatin levels. In S-deficient plants, Fe starvation caused a slight increase in Cd concentration, but this change was accompanied neither by an increase in GSH nor by an accumulation of phytochelatins. Release of phytosiderophores, only detectable in Fe-deficient plants, was strongly decreased by S deficiency and further reduced after Cd treatment. In roots Cd exposure increased the expression of the high affinity sulphate transporter gene (HvST1) regardless of the S supply, and the expression of the Fe deficiency-responsive genes, HvYS1 and HvIDS2, irrespective of Fe supply. In conclusion, adequate S availability is necessary to cope with Fe deficiency and Cd toxicity in barley plants. Moreover, it appears that in Fe-deficient plants grown in the presence of Cd with limited S supply, sulphur may be preferentially employed in the pathway for biosynthesis of phytosiderophores, rather than for phytochelatin production. PMID:22090437

  5. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields

    PubMed Central

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473

  6. Regulation of Expansin Gene Expression Affects Growth and Development in Transgenic Rice Plants

    PubMed Central

    Choi, Dongsu; Lee, Yi; Cho, Hyung-Taeg; Kende, Hans

    2003-01-01

    To investigate the in vivo functions of expansins, we generated transgenic rice plants that express sense and antisense constructs of the expansin gene OsEXP4. In adult plants with constitutive OsEXP4 expression, 12% of overexpressors were taller and 88% were shorter than the average control plants, and most overexpressors developed at least two additional leaves. Antisense plants were shorter and flowered earlier than the average control plants. In transgenic plants with inducible OsEXP4 expression, we observed a close correlation between OsEXP4 protein levels and seedling growth. Coleoptile and mesocotyl length increased by up to 31 and 97%, respectively, in overexpressors, whereas in antisense seedlings, they decreased by up to 28 and 43%, respectively. The change in seedling growth resulted from corresponding changes in cell size, which in turn appeared to be a function of altered cell wall extensibility. Our results support the hypothesis that expansins are involved in enhancing growth by mediating cell wall loosening. PMID:12782731

  7. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection.

    PubMed

    De La Fuente, Leonardo; Parker, Jennifer K; Oliver, Jonathan E; Granger, Shea; Brannen, Phillip M; van Santen, Edzard; Cobine, Paul A

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547

  8. Drying and Storage Methods Affect Cyfluthrin Concentrations in Exposed Plant Samples.

    PubMed

    Moore, M T; Kröger, R; Locke, M A

    2016-08-01

    Standard procedures do not exist for drying and storage of plant samples prior to chemical analyses. Since immediate analysis is not always possible, current research examined which plant drying and storage method yielded the highest cyfluthrin recovery rates compared to traditional mechanical freeze-drying methods. Fifteen mesocosms were planted with rice. Cyfluthrin (5 mg L(-1)) was amended into the water column of individual mesocosms. 48 h later, plant material in the water column was collected from each mesocosm. Control (mechanical freeze drying) recovery was significantly greater (p < 0.001) than all 14 combinations of drying and storage. Significant differences also existed between all 14 different combinations. Greatest cyfluthrin recoveries in non-control plants were from the freezer-greenhouse-freezer drying and storage method. Results offer evidence for the efficient plant drying and storage methods prior to cyfluthrin analysis. Future studies should perform comparable analyses on various pesticide classes to determine possible relationships. PMID:27225509

  9. Population-related variation in plant defense more strongly affects survival of an herbivore than its solitary parasitoid wasp.

    PubMed

    Harvey, Jeffrey A; Gols, Rieta

    2011-10-01

    The performance of natural enemies, such as parasitoid wasps, is affected by differences in the quality of the host's diet, frequently mediated by species or population-related differences in plant allelochemistry. Here, we compared survival, development time, and body mass in a generalist herbivore, the cabbage moth, Mamestra brassicae, and its solitary endoparasitoid, Microplitis mediator, when reared on two cultivated (CYR and STH) and three wild (KIM, OH, and WIN) populations of cabbage, Brassica oleracea. Plants either were undamaged or induced by feeding of larvae of the cabbage butterfly, Pieris rapae. Development and biomass of M. brassicae and Mi. mediator were similar on both cultivated and one wild cabbage population (KIM), intermediate on the OH population, and significantly lower on the WIN population. Moreover, development was prolonged and biomass was reduced on herbivore-induced plants. However, only the survival of parasitized hosts (and not that of healthy larvae) was affected by induction. Analysis of glucosinolates in leaves of the cabbages revealed higher levels in the wild populations than cultivars, with the highest concentrations in WIN plants. Multivariate statistics revealed a negative correlation between insect performance and total levels of glucosinolates (GS) and levels of 3-butenyl GS. However, GS chemistry could not explain the reduced performance on induced plants since only indole GS concentrations increased in response to herbivory, which did not affect insect performance based on multivariate statistics. This result suggests that, in addition to aliphatic GS, other non-GS chemicals are responsible for the decline in insect performance, and that these chemicals affect the parasitoid more strongly than the host. Remarkably, when developing on WIN plants, the survival of Mi. mediator to adult eclosion was much higher than in its host, M. brassicae. This may be due to the fact that hosts parasitized by Mi. mediator pass through fewer

  10. An evaluation of new and established methods to determine T-DNA copy number and homozygosity in transgenic plants.

    PubMed

    Głowacka, Katarzyna; Kromdijk, Johannes; Leonelli, Lauriebeth; Niyogi, Krishna K; Clemente, Tom E; Long, Stephen P

    2016-04-01

    Stable transformation of plants is a powerful tool for hypothesis testing. A rapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations. Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL-)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T-DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL-PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher variability than ddPCR. Comparison of segregation analyses and ddPCR of T1 progeny from 26 T0 plants showed that at least 19% of the lines carried multiple T-DNA insertions per locus, which can lead to unstable transgene expression. Segregation analyses failed to detect these multiple copies, presumably because of their close linkage. This shows the importance of routine T-DNA copy number estimation. Based on our results, ddPCR is the most suitable method, because it is as reliable as Southern blot analysis yet much faster. A protocol for this application of ddPCR to large plant genomes is provided. PMID:26670088

  11. Root zone temperature affects the phytoextraction of Ba, Cl, Sn, Pt, and Rb using potato plants (Solanum tuberosum L. var. Spunta) in the field.

    PubMed

    Baghour, M; Moreno, D A; Víllora, G; Hernández, J; Castilla, N; Romero, L

    2002-01-01

    Three consecutive years of field experiments were conducted to investigate how different root-zone temperatures, manipulated by using different mulches, affect the phytoextraction of Ba, Cl, Sn, Pt and Rb in different organs of potato plants (roots, tubers, stems and leaves). Four different plastic covers were used (T1: transparent polyethylene; T2: white polyethylene; T3: white and black coextruded polyethylene, and T4: black polyethylene), using uncovered plants as control (T0). The different treatments had a significant effect on mean root zone temperatures (T0 = 16 degrees C, T1 = 20 degrees C, T2 = 23 degrees C, T3 = 27 degrees C and T4 = 30 degrees C) and induced a significantly different response in Ba, Cl, Sn, Pt and Rb concentration and accumulation. The T3 treatment gave rise to the greatest phytoextraction of Ba, Pt, Cl and Sn in the roots, leaflets and tubers. In terms of the relative distribution of the phytoaccumulated elements (as percentage of the total within the plant), Pt and Ba accumulated mainly in the roots whereas Rb, Sn and Cl accumulated primarily in tubers, establishing a close relationship between the biomass development of each organ and phytoaccumulation capacity of metals in response to temperature in the root zone. PMID:11846271

  12. Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels.

    PubMed

    He, Lei; Yang, Haishui; Yu, Zhenxing; Tang, Jianjun; Xu, Ligen; Chen, Xin

    2014-10-01

    Arbuscular mycorrhizal fungi (AMF) are important components of soil microbial communities, and play important role in plant growth. However, the effects of AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) on host plant under various heavy metal levels are not clear. Here we conducted a meta-analysis to compare symbiotic relationship between AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) and host plant functional groups (herbs vs. trees, and non-legumes vs. legumes) at three heavy metal levels. In the meta-analysis, we calculate the effect size (ln(RR)) by taking the natural logarithm of the response ratio of inoculated to non-inoculated shoot biomass from each study. We found that the effect size of Glomeraceae increased, but the effect size of non-Glomeraceae decreased under high level of heavy metal compared to low level. According to the effect size, both Glomeraceae and non-Glomeraceae promoted host plant growth, but had different effects under various heavy metal levels. Glomeraceae provided more benefit to host plants than non-Glomeraceae did under heavy metal condition, while non-Glomeraceae provided more benefit to host plants than Glomeraceae did under no heavy metal. AMF phylogenetic groups also differed in promoting plant functional groups under various heavy metal levels. Interacting with Glomeraceae, herbs and legumes grew better than trees and non-legumes did under high heavy metal level, while trees and legumes grew better than herbs and non-legumes did under medium heavy metal level. Interacting with non-Glomeraceae, herbs and legumes grew better than trees and non-legumes did under no heavy metal. We suggested that the combination of legume with Glomeraceae could be a useful way in the remediation of heavy metal polluted environment. PMID:25288547

  13. Roads in northern hardwood forests affect adjacent plant communities and soil chemistry in proportion to the maintained roadside area.

    PubMed

    Neher, Deborah A; Asmussen, David; Lovell, Sarah Taylor

    2013-04-01

    The spatial extent of the transported materials from three road types was studied in forest soil and vegetative communities in Vermont. Hypotheses were two-fold: 1) soil chemical concentrations above background environment would reflect traffic volume and road type (highway>2-lane paved>gravel), and 2) plant communities close to the road and near roads with greater traffic will be disturbance-tolerant and adept at colonization. Soil samples were gathered from 12 randomly identified transects for each of three road types classified as "highway," "two-lane paved," and "gravel." Using GIS mapping, transects were constructed perpendicular to the road, and samples were gathered at the shoulder, ditch, backslope, 10 m from the edge of the forest, and 50 m from road center. Sample locations were analyzed for a suite of soil elements and parameters, as well as percent area coverage by plant species. The main effects from roads depended on the construction modifications required for a roadway (i.e., vegetation clearing and topography modification). The cleared area defined the type of plant community and the distance that road pollutants travel. Secondarily, road presence affected soil chemistry. Metal concentrations (e.g., Pb, Cd, Cu, and Zn) correlated positively with road type. Proximity to all road types made the soils more alkaline (pH 7.7) relative to the acidic soil of the adjacent native forest (pH 5.6). Roadside microtopography had marked effects on the composition of plant communities based on the direction of water flow. Ditch areas supported wetland plant species, greater soil moisture and sulfur content, while plant communities closer to the road were characteristic of drier upland zones. The area beyond the edge of the forest did not appear to be affected chemically or physically by any of the road types, possibly due to the dense vegetation that typically develops outside of the managed right-of-way. PMID:23435063

  14. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    PubMed

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. PMID:27317970

  15. Microbial composition in a deep saline aquifer in the North German Basin -microbiologically induced corrosion and mineral precipitation affecting geothermal plant operation and the effects of plant downtime

    NASA Astrophysics Data System (ADS)

    Lerm, Stephanie; Westphal, Anke; Miethling-Graff, Rona; Alawi, Mashal; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2013-04-01

    The microbial composition in fluids of a deep saline geothermal used aquifer in the North German Basin was characterized over a period of five years. The genetic fingerprinting techniques PCR-SSCP and PCR-DGGE revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of Bacteria and sulfate reducing bacteria (SRB) in cold fluids compared to warm fluids. Predominating SRB in the cold well probably accounted for corrosion damage to the submersible well pump, and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to a lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favoured growth of hydrogenotrophic SRB. Plant downtime significantly influenced the microbial biocenosis in fluids. Samples taken after plant restart gave indications about the processes occurring downhole during those phases. High DNA concentrations in fluids at the beginning of the restart process with a decreasing trend over time indicated a higher abundance of microbes during plant downtime compared to regular plant operation. It is likely that a gradual drop in temperature as well as stagnant conditions favoured the growth of microbes and maturation of biofilms at the casing and in pores of the reservoir rock in the near wellbore area. Furthermore, it became obvious that the microorganisms were more associated to particles then free-living. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability. Those processes may favourably occur during plant downtime due to enhanced

  16. How do soil texture, plant community composition and earthworms affected the infiltration rate in a grassland plant diversity experiment depending on season?

    NASA Astrophysics Data System (ADS)

    Fischer, Christine; Britta, Merkel; Nico, Eisenhauer; Christiane, Roscher; Sabine, Attinger; Stefan, Scheu; Anke, Hildebrandt

    2013-04-01

    Background and aims: In this study we analyzed the influences of plant community characteristics, soil texture and earthworm presence on infiltration rates on a managed grassland plant diversity experiment assessing the role of biotic and abiotic factors on soil hydrology. Methods: We measured infiltration using a hood infiltrometer in subplots with ambient and reduced earthworm density (earthworm extraction) nested in plots of different plant species richness (1, 4, and 16), plant functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) in early summer (June) and autumn (September, October) 2011. Results: The presence of certain plant functional groups such as grasses and legumes influenced infiltration rates and this effect enhanced during the growing season. Infiltration was significantly higher in plots containing legumes than in plots without, and it was significantly lower in the presence of grasses than in their absence. In early summer, earthworm presence and biomass increased the infiltration rates, independently of plant species richness. In October, plant species richness only affected infiltration rates in reduced earthworm plots. At the end of the growing season earthworm populations were negatively influenced by grasses and positively by legumes. In September, infiltration rates were positive related to the proportion of finer grains. The correlation disappears when removing all plots containing legumes from the sample. For all measurements the infiltration rates decreases from early summer to autumn at the matric potentials at pressure zero and -0.02 m, but not for smaller macropores at matric potentials -0.04 and -0.06m. Conclusions: Considering infiltration rates as ecosystem function, this function will largely depend on the ecosystem composition and season, not on biodiversity per se. Our results indicate that biotic factors are of overriding influence for shaping infiltration rates mainly for larger macropores

  17. A comprehensive dose evaluation project concerning animals affected by the Fukushima Daiichi Nuclear Power Plant accident: its set-up and progress.

    PubMed

    Takahashi, Shintaro; Inoue, Kazuya; Suzuki, Masatoshi; Urushihara, Yusuke; Kuwahara, Yoshikazu; Hayashi, Gohei; Shiga, Soichiro; Fukumoto, Motoi; Kino, Yasushi; Sekine, Tsutomu; Abe, Yasuyuki; Fukuda, Tomokazu; Isogai, Emiko; Yamashiro, Hideaki; Fukumoto, Manabu

    2015-12-01

    It is not an exaggeration to say that, without nuclear accidents or the analysis of radiation therapy, there is no way in which we are able to quantify radiation effects on humans. Therefore, the livestock abandoned in the ex-evacuation zone and euthanized due to the Fukushima Daiichi Nuclear Power Plant (FNPP) accident are extremely valuable for analyzing the environmental pollution, its biodistribution, the metabolism of radionuclides, dose evaluation and the influence of internal exposure. We, therefore, sought to establish an archive system and to open it to researchers for increasing our understanding of radiation biology and improving protection against radiation. The sample bank of animals affected by the FNPP accident consists of frozen tissue samples, formalin-fixed paraffin-embedded specimens, dose of radionuclides deposited, etc., with individual sampling data. PMID:26687285

  18. A comprehensive dose evaluation project concerning animals affected by the Fukushima Daiichi Nuclear Power Plant accident: its set-up and progress

    PubMed Central

    Takahashi, Shintaro; Inoue, Kazuya; Suzuki, Masatoshi; Urushihara, Yusuke; Kuwahara, Yoshikazu; Hayashi, Gohei; Shiga, Soichiro; Fukumoto, Motoi; Kino, Yasushi; Sekine, Tsutomu; Abe, Yasuyuki; Fukuda, Tomokazu; Isogai, Emiko; Yamashiro, Hideaki; Fukumoto, Manabu

    2015-01-01

    It is not an exaggeration to say that, without nuclear accidents or the analysis of radiation therapy, there is no way in which we are able to quantify radiation effects on humans. Therefore, the livestock abandoned in the ex-evacuation zone and euthanized due to the Fukushima Daiichi Nuclear Power Plant (FNPP) accident are extremely valuable for analyzing the environmental pollution, its biodistribution, the metabolism of radionuclides, dose evaluation and the influence of internal exposure. We, therefore, sought to establish an archive system and to open it to researchers for increasing our understanding of radiation biology and improving protection against radiation. The sample bank of animals affected by the FNPP accident consists of frozen tissue samples, formalin-fixed paraffin-embedded specimens, dose of radionuclides deposited, etc., with individual sampling data. PMID:26687285

  19. Different Factors Affecting Short Circuit Behavior of a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Samaan, Nader A.; Gevorgian, Vahan; Li, Jun; Pasupulati, Subbaiah

    2013-01-31

    A wind power plant consists of a large number of turbines interconnected by underground cable. A pad-mount transformer at each turbine steps up the voltage from generating voltage (690 V) to a medium voltage (34.5 kV). All turbines in the plant are connected to the substation transformer where the voltage is stepped up to the transmission level. An important aspect of wind power plant (WPP) impact studies is to evaluate the short-circuit (SC) current contribution of the plant into the transmission network under different fault conditions. This task can be challenging to protection engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short circuit behavior of a wind power plant for different types of faults. The impact of wind turbine types, the transformer configuration, and the reactive compensation capacitor will be investigated. The voltage response at different buses will be observed. Finally, the SC line currents will be presented along with its symmetrical components.

  20. Different Factors Affecting Short Circuit Behavior of a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Samaan, Nader A.; Gevorgian, Vahan; Li, Jun; Pasupulati, Subbaiah

    2010-12-21

    A wind power plant consists of a large number of turbines interconnected by underground cable. A pad-mount transformer at each turbine steps up the voltage from generating voltage (690 V) to a medium voltage (34.5 kV). All turbines in the plant are connected to the substation transformer where the voltage is stepped up to the transmission level. An important aspect of wind power plant (WPP) impact studies is to evaluate the short-circuit (SC) current contribution of the plant into the transmission network under different fault conditions. This task can be challenging to protection engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short circuit behavior of a wind power plant for different types of faults. The impact of wind turbine types, the transformer configuration, and the reactive compensation capacitor will be investigated. The voltage response at different buses will be observed. Finally, the SC line currents will be presented along with its symmetrical components.

  1. Do postfire mulching treatments affect plant community recovery in California coastal sage scrub lands?

    PubMed

    McCullough, Sarah A; Endress, Bryan A

    2012-01-01

    In recent years, the use of postfire mulch treatments to stabilize slopes and reduce soil erosion in shrubland ecosystems has increased; however, the potential effects on plant recovery have not been examined. To evaluate the effects of mulching treatments on postfire plant recovery in southern California coastal sage scrub, we conducted a field experiment with three experimental treatments, consisting of two hydromulch products and an erosion control blanket, plus a control treatment. The area burned in 2007, and treatments were applied to six plot blocks before the 2008 growing season. Treatment effects on plant community recovery were analyzed with a mixed effects ANOVA analysis using a univariate repeated measures approach. Absolute plant cover increased from 13 to 90% by the end of the second growing season, and the mean relative cover of exotic species was 32%. The two hydromulch treatments had no effect on any plant community recovery response variable measured. For the erosion control blanket treatment, the amount of bare ground cover at the end of the second growing season was significantly lower (P = 0.01), and greater shrub height was observed (P < 0.01). We conclude that postfire mulch treatments did not provide either a major benefit or negative impact to coastal sage scrub recovery on the study area. PMID:22042409

  2. Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases.

    PubMed

    Carter, Laura J; Williams, Mike; Böttcher, Christine; Kookana, Rai S

    2015-10-20

    The detection of a range of active pharmaceutical ingredients (APIs) in the soil environment has led to a number of publications demonstrating uptake by crops, however very few studies have explored the potential for impacts on plant development as a result of API uptake. This study investigated the effect of carbamazepine and verapamil (0.005-10 mg/kg) on a range of plant responses in zucchini (Cucurbita pepo). Uptake increased in a dose-dependent manner, with maximum leaf concentrations of 821.9 and 2.2 mg/kg for carbamazepine and verapamil, respectively. Increased carbamazepine uptake by zucchini resulted in a decrease in above (<60%) and below (<30%) ground biomass compared to the controls (p < 0.05). At soil concentrations >4 mg/kg the mature leaves suffered from burnt edges and white spots as well as a reduction in photosynthetic pigments but no such effects were seen for verapamil. For both APIs, further investigations revealed significant differences in the concentrations of selected plant hormones (auxins, cytokinins, abscisic acid and jasmonates), and in the nutrient composition of the leaves in comparison to the controls (p < 0.05). This is some of the first research to demonstrate that the exposure of plants to APIs is likely to cause impacts on plant development with unknown implications. PMID:26418514

  3. Morphological Characteristics of Maize Canopy Development as Affected by Increased Plant Density

    PubMed Central

    Song, Youhong; Rui, Yukui; Bedane, Guta; Li, Jincai

    2016-01-01

    Improving crop productivity through higher plant density requires a detailed understanding of organ development in response to increased interplant competition. The objective of this paper is thus to investigate the characteristics of organ development under increased interplant competition. A field experiment was conducted to investigate organ development across 4 maize plant densities i.e. 2, 6, 12 and 20 plants m–2 (referred to PD2, PD6, PD12 and PD20 respectively). In response to increased interplant competition, lengths of both laminae and sheaths increased in lower phytomers, but decreased in upper phytomers. Sheath extension appeared to be less sensitive to increased interplant competition than lamina extension. Extension of laminae and internodes responded to increased plant density as soon as onset of mild interplant competition, but did not respond any further to severe competition. Both lamina width and internode diameter were reduced due to a smaller growth rate in response to increased plant density. Overall, this study identified that organ expansion rate can be taken as the key morphological factor to determine the degree of interplant competition. PMID:27129101

  4. Establishing operations

    PubMed Central

    Michael, Jack

    1993-01-01

    The first two books on behavior analysis (Skinner, 1938; Keller & Schoenfeld, 1950) had chapter-length coverage of motivation. The next generation of texts also had chapters on the topic, but by the late 1960s it was no longer being given much treatment in the behavior-analytic literature. The present failure to deal with the topic leaves a gap in our understanding of operant functional relations. A partial solution is to reintroduce the concept of the establishing operation, defined as an environmental event, operation, or stimulus condition that affects an organism by momentarily altering (a) the reinforcing effectiveness of other events and (b) the frequency of occurrence of that part of the organism's repertoire relevant to those events as consequences. Discriminative and motivative variables can be distinguished as follows: The former are related to the differential availability of an effective form of reinforcement given a particular type of behavior; the latter are related to the differential reinforcing effectiveness of environmental events. An important distinction can also be made between unconditioned establishing operations (UEOs), such as food deprivation and painful stimulation, and conditioned establishing operations (CEOs) that depend on the learning history of the organism. One type of CEO is a stimulus that has simply been paired with a UEO and as a result may take on some of the motivative properties of that UEO. The warning stimulus in avoidance procedures is another important type of CEO referred to as reflexive because it establishes its own termination as a form of reinforcement and evokes the behavior that has accomplished such termination. Another CEO is closely related to the concept of conditional conditioned reinforcement and is referred to as a transitive CEO, because it establishes some other stimulus as a form of effective reinforcement and evokes the behavior that has produced that other stimulus. The multiple control of human

  5. Sweetgum and broomsedge response to competition across a range of soil organic matter during the first year of plant establishment

    SciTech Connect

    Zutter, B.R.; Glover, G.R.; Mitchell, R.J.; Gjerstad, D.H.

    1999-08-01

    Sweetgum (Liquidambar styraciflua L.) seedlings and broomsedge (Andropogon virginicus L.) rooted tillers were planted in a factorial combination of densities in east central Alabama on a formerly cultivated field which varied in soil organic matter (soil OM). Mean plant aboveground biomass of sweetgum one growing season after planting declined in a hyperbolic fashion as a function of increasing density of either itself or broomsedge. Broomsedge biomass over the same time period also declined in a hyperbolic fashion as a function of increasing density of itself and sweetgum, except for sweetgum densities from 0 to 1 m{sup {minus}2}, where biomass did not change. Sweetgum response was positively correlated with soil OM across all species-density combinations, whereas broomsedge response was correlated with soil OM only at higher densities of broomsedge. Nonlinear models including both species density and sol OM explained a nearly equal amount of variation in response of each species: 74 to 75% for sweetgum and 70% for broomsedge. Relative effects of intraspecific versus interspecific competition on the response of each species was dependent on the density of one or both species. Effect of sweetgum on broomsedge response was two to three times that of broomsedge of itself, with the effect decreasing slightly as soil OM decreased. Over a common range of densities of each species, effects of broomsedge or sweetgum were slightly greater than or nearly equal to effects of sweetgum on itself. The greater interspecific effects on the response of each species suggests no niche differentiation between broomsedge and sweetgum through one growing season.

  6. Effects of tannin-rich host plants on the infection and establishment of the entomopathogenic nematode Heterorhabditis bacteriophora.

    PubMed

    Glazer, Itamar; Salame, Liora; Dvash, Levana; Muklada, Hussein; Azaizeh, Hassan; Mreny, Raghda; Markovics, Alex; Landau, SergeYan

    2015-06-01

    Parasitized animals can self-medicate. As ingested plant phenolics, mainly tannins, reduce strongyle nematode infections in mammalian herbivores. We investigated the effect of plant extracts known to be anthelmintic in vertebrate herbivores on the recovery of the parasitic entomopathogenic nematode Heterorhabditis bacteriophora infecting African cotton leafworm (Spodoptera littoralis). Nematode infective juveniles (IJs) were exposed to 0, 300, 900, 1200, 2400 ppm of Pistacia lentiscus L. (lentisk), Inula viscosa L. (strong-smelling inula), Quercus calliprinos Decne. (common oak) and Ceratonia siliqua L. (carob) extracts on growth medium (in vitro assay). In control treatments, 50-80% of IJs resumed development to J4, young and developed adult hermaphrodites, whereas all extracts, except for C. siliqua at 300 ppm, impaired IJ exsheathment and development. The highest concentration of I. viscosa extract (2400 ppm) had the strongest effect, killing 95% of exposed nematodes. Surviving nematodes did not recover, remaining at the IJ stage. Over the whole cycle, I. viscosa extract inhibited recovery to 25% or less, and did not allow full development to adulthood, whereas 65% of IJs in the control treatment recovered and resumed development, 12% reaching complete maturation within 72 h of incubation. When herbivorous S. littoralis larvae were fed with different plant extracts in vivo, I. viscosa had the strongest effect at concentrations above 300 ppm, with 90% of insect-invading IJs not developing to parasitic stages, whereas in the control treatment, 85% of IJs resumed development. Exposure to C. siliqua extract also inhibited exsheathment and development of 75% of the IJs. Half of those that resumed development reached full maturation. P. lentiscus and Q. calliprinos extracts also inhibited development of 50% IJs. Our results suggest that H. bacteriophora can be used to study herbal medication against parasites in animals. PMID:25935140

  7. How do increasing background concentrations of tropospheric ozone affect peatland plant growth and carbon gas exchange?

    NASA Astrophysics Data System (ADS)

    Williamson, Jennifer L.; Mills, Gina; Hayes, Felicity; Jones, Timothy; Freeman, Chris

    2016-02-01

    In this study we have demonstrated that plants originating from upland peat bogs are sensitive to increasing background concentrations of ozone. Peatland mesocosms from an upland peat bog in North Wales, UK were exposed to eight levels of elevated background ozone in solardomes for 4 months from May to August, with 24 h mean ozone concentrations ranging from 16 to 94 ppb and cumulative AOT024hr ranging from 45.98 ppm h to 259.63 ppm h. Our results show that plant senescence increased with increasing exposure to ozone, although there was no significant effect of increasing ozone on plant biomass. Assessments of carbon dioxide and methane fluxes from the mesocosms suggests that there was no change in carbon dioxide fluxes over the 4 month exposure period but that methane fluxes increased as cumulative ozone exposure increased to a maximum AOT 024hr of approximately 120 ppm h and then decreased as cumulative ozone exposure increased further.

  8. Plant species diversity affects soil-atmosphere fluxes of methane and nitrous oxide.

    PubMed

    Niklaus, Pascal A; Le Roux, Xavier; Poly, Franck; Buchmann, Nina; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Barnard, Romain L

    2016-07-01

    Plant diversity effects on ecosystem functioning can potentially interact with global climate by altering fluxes of the radiatively active trace gases nitrous oxide (N2O) and methane (CH4). We studied the effects of grassland species richness (1-16) in combination with application of fertilizer (nitrogen:phosphorus:potassium = 100:43.6:83 kg ha(-1) a(-1)) on N2O and CH4 fluxes in a long-term field experiment. Soil N2O emissions, measured over 2 years using static chambers, decreased with species richness unless fertilizer was added. N2O emissions increased with fertilization and the fraction of legumes in plant communities. Soil CH4 uptake, a process driven by methanotrophic bacteria, decreased with plant species numbers, irrespective of fertilization. Using structural equation models, we related trace gas fluxes to soil moisture, soil inorganic N concentrations, nitrifying and denitrifying enzyme activity, and the abundance of ammonia oxidizers, nitrite oxidizers, and denitrifiers (quantified by real-time PCR of gene fragments amplified from microbial DNA in soil). These analyses indicated that plant species richness increased soil moisture, which in turn increased N cycling-related activities. Enhanced N cycling increased N2O emission and soil CH4 uptake, with the latter possibly caused by removal of inhibitory ammonium by nitrification. The moisture-related indirect effects were surpassed by direct, moisture-independent effects opposite in direction. Microbial gene abundances responded positively to fertilizer but not to plant species richness. The response patterns we found were statistically robust and highlight the potential of plant biodiversity to interact with climatic change through mechanisms unrelated to carbon storage and associated carbon dioxide removal. PMID:27038993

  9. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    SciTech Connect

    Ding, Shi-You

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  10. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants

    PubMed Central

    El-Kereamy, Ashraf; Bi, Yong-Mei; Mahmood, Kashif; Ranathunge, Kosala; Yaish, Mahmoud W.; Nambara, Eiji; Rothstein, Steven J.

    2015-01-01

    Glutaredoxins (GRXs) are small glutathione dependent oxidoreductases that belong to the Thioredoxin (TRX) superfamily and catalyze the reduction of disulfide bonds of their substrate proteins. Plant GRXs include three different groups based on the motif sequence, namely CPYC, CGFS, and CC-type proteins. The rice CC-type proteins, OsGRX6 was identified during the screening for genes whose expression changes depending on the level of available nitrate. Overexpression of OsGRX6 in rice displayed a semi-dwarf phenotype. The OsGRX6 overexpressors contain a higher nitrogen content than the wild type, indicating that OsGRX6 plays a role in homeostatic regulation of nitrogen use. Consistent with this, OsGRX6 overexpressors displayed delayed chlorophyll degradation and senescence compared to the wild type plants. To examine if the growth defect of these transgenic lines attribute to disturbed plant hormone actions, plant hormone levels were measured. The levels of two cytokinins (CKs), 2-isopentenyladenine and trans-zeatin, and gibberellin A1 (GA1) were increased in these lines. We also found that these transgenic lines were less sensitive to exogenously applied GA, suggesting that the increase in GA1 is a result of the feedback regulation. These data suggest that OsGRX6 affects hormone signaling and nitrogen status in rice plants. PMID:26579177

  11. Assessment of Habitat Suitability Is Affected by Plant-Soil Feedback: Comparison of Field and Garden Experiment

    PubMed Central

    Hemrová, Lucie; Knappová, Jana; Münzbergová, Zuzana

    2016-01-01

    Background Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities) are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern. Aims and Methods In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment. Key Results In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly

  12. CO2, Temperature, and Soil Moisture Interactions Affect NDVI and Reproductive Phenology in Old-Field Plant Communities

    NASA Astrophysics Data System (ADS)

    Engel, C.; Weltzin, J.; Norby, R.

    2004-12-01

    Plant community composition and ecosystem function may be altered by global atmospheric and climate change, including increased atmospheric [CO2], temperature, and varying precipitation regimes. We are conducting an experiment at Oak Ridge National Laboratory (ORNL) utilizing open-top chambers to administer experimental treatments of elevated CO2 (+300 ppm), warming (+ 3 degrees Celsius), and varying soil moisture availability to experimental plant communities constructed of seven common old-field species, including C3 and C4 grasses, forbs, and legumes. During 2004 we monitored plant community phenology (NDVI) and plant reproductive phenology. Early in the year, NDVI was greater in wet treatment plots, and was unaffected by main effects of temperature or CO2. This result suggests that early in the season warming is insufficient to affect early canopy development. Differences in soil moisture sustained throughout the winter and into early spring may constitute an important control on early canopy greenup. Elevated CO2 alleviated detrimental effects of warming on NDVI, but only early in the season. As ambient temperatures increased, elevated temperatures negatively impacted NDVI only in the dry plots. Wetter conditions ameliorate the effects of warming on canopy greenness during the warmer seasons of the year. Warming increased rates of bolting, number of inflorescences, and time to reproductive maturity for Andropogon virginicus (a C4 bunchgrass). Solidago Canadensis (a C3 late-season forb) also produced flowers earlier in elevated temperatures. Conversely, none of the C3 grasses and forbs that bolt or flower in late spring or early summer responded to temperature or CO2. Results indicate that warming and drought may impact plant community phenology, and plant species reproductive phenology. Clearly community phenology is driven by complex interactions among temperature, water, and CO2 that change throughout the season. Our data stresses the importance of

  13. Metal-binding hydrogel particles alleviate soil toxicity and facilitate healthy plant establishment of the native metallophyte grass Astrebla lappacea in mine waste rock and tailings.

    PubMed

    Bigot, M; Guterres, J; Rossato, L; Pudmenzky, A; Doley, D; Whittaker, M; Pillai-McGarry, U; Schmidt, S

    2013-03-15

    Soil contaminants are potentially a major threat to human and ecosystem health and sustainable production of food and energy where mineral processing wastes are discharged into the environment. In extreme conditions, metal concentrations in wastes often exceed even the metal tolerance thresholds of metallophytes (metal-tolerant plants) and sites remain barren with high risks of contaminant leaching and dispersion into the environment via erosion. A novel soil amendment based on micron-size thiol functional cross-linked acrylamide polymer hydrogel particles (X3) binds toxic soluble metals irreversibly and significantly reduces their concentrations in the soil solution to below the phytotoxicity thresholds. X3 mixed into the top 50mm of phytotoxic mine waste materials in pots in glasshouse conditions reduced total soluble concentrations of toxic contaminants by 90.3-98.7% in waste rock, and 88.6-96.4% in tailings immediately after application. After 61 days, quality of unamended bottom layer of X3-treated pots was also significantly improved in both wastes. Combination of X3 and metallophytes was more efficient at improving soil solution quality than X3 alone. Addition of X3 to substrates increased substrate water retention and water availability to plants by up to 108% and 98% for waste rock and tailings respectively. Soil quality improvement by X3 allowed successful early establishment of the native metallophyte grass Astrebla lappacea on both wastes where plants failed to establish otherwise. PMID:23416487

  14. Plant invasions differentially affected by diversity and dominant species in native- and exotic-dominated grasslands.

    PubMed

    Xu, Xia; Polley, H Wayne; Hofmockel, Kirsten; Daneshgar, Pedram P; Wilsey, Brian J

    2015-12-01

    Plant invasions are an increasingly serious global concern, especially as the climate changes. Here, we explored how plant invasions differed between native- and novel exotic-dominated grasslands with experimental addition of summer precipitation in Texas in 2009. Exotic species greened up earlier than natives by an average of 18 days. This was associated with a lower invasion rate early in the growing season compared to native communities. However, invasion rate did not differ significantly between native and exotic communities across all sampling times. The predictors of invasion rate differed between native and exotic communities, with invasion being negatively influenced by species richness in natives and by dominant species in exotics. Interestingly, plant invasions matched the bimodal pattern of precipitation in Temple, Texas, and did not respond to the pulse of precipitation during the summer. Our results suggest that we will need to take different approaches in understanding of invasion between native and exotic grasslands. Moreover, with anticipated increasing variability in precipitation under global climate change, plant invasions may be constrained in their response if the precipitation pulses fall outside the normal growing period of invaders. PMID:27069615

  15. Molecular analyses of nuclear-cytoplasmic interactions affecting plant growth and yield. Final technical report

    SciTech Connect

    Newton, K.J.

    1998-11-01

    Mitochondria have a central role in the production of cellular energy. The biogenesis and functioning of mitochondria depends on the expression of both mitochondrial and nuclear genes. One approach to investigating the role of nuclear-mitochondrial cooperation in plant growth and development is to identify combinations of nuclear and mitochondrial genomes that result in altered but sublethal phenotypes. Plants that have certain maize nuclear genotypes in combination with cytoplasmic genomes from more distantly-related teosintes can exhibit incompatible phenotypes, such as reduced plant growth and yield and cytoplasmic male sterility, as well as altered mitochondrial gene expression. The characterization of these nuclear-cytoplasmic interactions was the focus of this grant. The authors were investigating the effects of two maize nuclear genes, RcmI and Mct, on mitochondrial function and gene expression. Plants with the teosinte cytoplasms and homozygous for the recessive rcm allele are small (miniature) and-slow-growing and the kernels are reduced in size. The authors mapped this locus to molecular markers on chromosome 7 and attempted to clone this locus by transposon tagging. The effects of the nuclear-cytoplasmic interaction on mitochondrial function and mitochondrial protein profiles were also studied.

  16. Mercury Concentrations in Plant Tissues as Affected by FGDG Application to Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flue Gas Desulfurization Gypsum (FGDG) is produced by reducing sulfur dioxide emissions from themo-electric coal-fired power plants. The most common practice of FGDG production may trap some of the Mercury (Hg) present in the coal that normally would escape as vapor in the stack gases. Concern for t...

  17. Plant sterol consumption frequency affects plasma lipid levels and cholesterol kinetics in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Objectives: To compare the efficacy of single versus multiple doses of plant sterols on circulating lipid level and cholesterol trafficking. Subjects/Methods: A randomized, placebo-controlled, three-phase (6 days/phase) crossover, supervised feeding trial was conducted in 19 subjects. Sub...

  18. Drying and storage methods affect cyfluthrin concentrations in exposed plant samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standard procedures exist for collection and chemical analyses of pyrethroid insecticides in environmental matrices. However, less detail is given for drying and potential storage methods of plant samples prior to analyses. Due to equipment and financial limitations, immediate sample analysis is n...

  19. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus.

    PubMed

    Li-Byarlay, Hongmei; Pittendrigh, Barry R; Murdock, Larry L

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant-insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789

  20. Artificial elevation of glutathione affects symptom development in ZYMV-infected Cucurbita pepo L. plants.

    PubMed

    Zechmann, B; Zellnig, G; Urbanek-Krajnc, A; Müller, M

    2007-01-01

    Styrian oil pumpkin seedlings (Cucurbita pepo L. subsp. pepo var. styriaca GREB: .) were treated for 48 h with 1 mM OTC (L-2-oxothiazolidine-4-carboxylic acid) in order to artificially increase cellular glutathione content. They were inoculated with zucchini yellow mosaic virus (ZYMV) 10 days later. The effects of OTC treatment and ZYMV infection on glutathione levels were examined at the subcellular level by immunogold labeling of glutathione using a transmission electron microscope (TEM). These effects were further tested at the whole-tissue level by high performance liquid chromatography (HPLC). Such tests were carried out a) on roots, cotyledons and the first true leaves immediately after OTC treatment in order to analyze to which extent OTC increases glutathione levels in different cell compartments as well as in the whole organ; and b) in older and younger leaves and in roots three weeks after ZYMV inoculation in order to study how possible effects of OTC on symptom development would correlate with glutathione levels at the subcellular level and in the whole organ. Immunocytological and biochemical investigations revealed that, 48 h after OTC treatment, glutathione content had increased in all investigated organs, up to 144% in peroxisomes of cotyledons. Three weeks after ZYMV inoculation, glutathione labeling density had significantly increased within intact cells of infected leaves, up to 124% in the cytosol of younger leaves. Roots showed decreased amounts of glutathione in the TEM. Biochemical studies revealed that OTC treatment resulted in 41 and 51% higher glutathione content in older and younger ZYMV-infected leaves, respectively, in comparison to untreated and ZYMV-infected plants. Evaluation of symptom development at this point revealed that all untreated ZYMV-infected plants had symptoms, whereas only 42% of OTC-treated ZYMV-infected plants showed signs of symptoms. Quantification of ZYMV particles revealed that all organs of OTC-treated and ZYMV

  1. A cyst nematode effector binds to diverse plant proteins, increases nematode susceptibility and affects root morphology.

    PubMed

    Pogorelko, Gennady; Juvale, Parijat S; Rutter, William B; Hewezi, Tarek; Hussey, Richard; Davis, Eric L; Mitchum, Melissa G; Baum, Thomas J

    2016-08-01

    Cyst nematodes are plant-parasitic roundworms that are of significance in many cropping systems around the world. Cyst nematode infection is facilitated by effector proteins secreted from the nematode into the plant host. The cDNAs of the 25A01-like effector family are novel sequences that were isolated from the oesophageal gland cells of the soybean cyst nematode (Heterodera glycines). To aid functional characterization, we identified an orthologous member of this protein family (Hs25A01) from the closely related sugar beet cyst nematode H. schachtii, which infects Arabidopsis. Constitutive expression of the Hs25A01 CDS in Arabidopsis plants caused a small increase in root length, accompanied by up to a 22% increase in susceptibility to H. schachtii. A plant-expressed RNA interference (RNAi) construct targeting Hs25A01 transcripts in invading nematodes significantly reduced host susceptibility to H. schachtii. These data document that Hs25A01 has physiological functions in planta and a role in cyst nematode parasitism. In vivo and in vitro binding assays confirmed the specific interactions of Hs25A01 with an Arabidopsis F-box-containing protein, a chalcone synthase and the translation initiation factor eIF-2 β subunit (eIF-2bs), making these proteins probable candidates for involvement in the observed changes in plant growth and parasitism. A role of eIF-2bs in the mediation of Hs25A01 virulence function is further supported by the observation that two independent eIF-2bs Arabidopsis knock-out lines were significantly more susceptible to H. schachtii. PMID:26575318

  2. The town Crepis and the country Crepis: How does fragmentation affect a plant-pollinator interaction?

    NASA Astrophysics Data System (ADS)

    Andrieu, Emilie; Dornier, Antoine; Rouifed, Soraya; Schatz, Bertrand; Cheptou, Pierre-Olivier

    2009-01-01

    In fragmented habitats, one cause of the decrease of plant diversity and abundance is the disruption of plant-animal interactions, and in particular plant-pollinator interactions. Since habitat fragmentation acts both on pollinator behaviour and plant reproduction, its consequences for the stability of such interactions are complex. An extreme case of habitat fragmentation occurs in urbanised areas where suitable habitat (in the present study small patches around ornamental trees) is embedded in a highly unsuitable environment (concrete matrix). Based on simple experiments, we ask whether pollinators can adapt their foraging behaviour in response to the amount of available resources (flowers) in the fragments and their isolation, as predicted by the optimal foraging theory. To do so we analysed the effect of fragmentation on the behaviour of pollinators visiting Crepis sancta (L.) Bornm. (Asteraceae), which forms large populations in the countryside and patchy populations in urban environments. More precisely we studied pollinator visitation rates, capitulum visit durations, capitulum search durations and capitulum size choice. Pollinators chose larger capitula in both types of populations and their foraging behaviour differed between the two population types in three ways: (1) pollinator visits were lower in urban fragmented populations, perhaps due to the lower accessibility of urban patches; (2) capitulum visit durations were longer in urban fragmented populations, a possible compensation of energy lost during flights among patches; and (3) capitulum search durations where longer in urban fragmented populations, which may represent an increase in capitulum prospecting effort. We discuss the possible impacts of such differences for plant population functioning in the two types of populations.

  3. Trichobaris weevils distinguish amongst toxic host plants by sensing volatiles that do not affect larval performance.

    PubMed

    Lee, Gisuk; Joo, Youngsung; Diezel, Celia; Lee, Eun Ju; Baldwin, Ian T; Kim, Sang-Gyu

    2016-07-01

    Herbivorous insects use plant metabolites to inform their host plant selection for oviposition. These host-selection behaviours are often consistent with the preference-performance hypothesis; females oviposit on hosts that maximize the performance of their offspring. However, the metabolites used for these oviposition choices and those responsible for differences in offspring performance remain unknown for ecologically relevant interactions. Here, we examined the host-selection behaviours of two sympatric weevils, the Datura (Trichobaris compacta) and tobacco (T. mucorea) weevils in field and glasshouse experiments with transgenic host plants specifically altered in different components of their secondary metabolism. Adult females of both species strongly preferred to feed on D. wrightii rather than on N. attenuata leaves, but T. mucorea preferred to oviposit on N. attenuata, while T. compacta oviposited only on D. wrightii. These oviposition behaviours increased offspring performance: T. compacta larvae only survived in D. wrightii stems and T. mucorea larvae survived better in N. attenuata than in D. wrightii stems. Choice assays with nicotine-free, JA-impaired, and sesquiterpene-over-produced isogenic N. attenuata plants revealed that although half of the T. compacta larvae survived in nicotine-free N. attenuata lines, nicotine did not influence the oviposition behaviours of both the nicotine-adapted and nicotine-sensitive species. JA-induced sesquiterpene volatiles are key compounds influencing T. mucorea females' oviposition choices, but these sesquiterpenes had no effect on larval performance. We conclude that adult females are able to choose the best host plant for their offspring and use chemicals different from those that influence larval performance to inform their oviposition decisions. PMID:27146082

  4. Atmospheric CO2 level affects plants' carbon use efficiency: insights from a 13C labeling experiment on sunflower stands

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoying; Schäufele, Rudi; Schnyder, Hans

    2015-04-01

    The increase of atmospheric CO2 concentration has been shown to stimulate plant photosynthesis and (to a lesser extent) growth, thereby acting as a possible sink for the additional atmospheric CO2. However, this effect is dependent on the efficiency with which plants convert atmospheric carbon into biomass carbon, since a considerable proportion of assimilated carbon is returned to the atmosphere via plant respiration. As a core parameter for carbon cycling, carbon use efficiency of plants (CUE, the ratio of net primary production to gross primary production) quantifies the proportion of assimilated carbon that is incorporated into plant biomass. CUE has rarely been assessed based on measurements of complete carbon balance, due to methodological difficulties in measuring respiration rate of plants in light. Moreover, foliar respiration is known to be inhibited in light, thus foliar respiration rate is generally lower in light than in dark. However, this phenomenon, termed as inhibition of respiration in light (IRL), has rarely been assessed at the stand-scale and been incorporated into the calculation of CUE. Therefore, how CUE responses to atmospheric CO2 levels is still not clear. We studied CUE of sunflower stands grown at sub-ambient CO2 level (200 μmol mol-1) and elevated CO2 level (1000 μmol mol-1) using mesocosm-scale gas exchange facilities which enabled continuous measurements of 13CO2/12CO2 exchange. Appling steady-state 13C labeling, fluxes of respiration and photosynthesis in light were separated, and tracer kinetic in respiration was analyzed. This study provides the first data on CUE at a mesocosm-level including respiration in light in different CO2 environments. We found that CUE of sunflower was lower at an elevated CO2 level than at a sub-ambient CO2 level; and the ignorance of IRL lead to erroneous estimations of CUE. Variation in CUE at atmospheric CO2 levels was attributed to several mechanisms. In this study, CO2 enrichment i) affected the

  5. Issues in establishing an aerosol radiological baseline for the Waste Isolation Pilot Plant near Carlsbad, New Mexico

    SciTech Connect

    Rodgers, J.C.; Kenney, J.W.

    1997-02-01

    The Department of Energy has constructed a deep geologic repository for defense transuranic waste disposal. The Waste Isolation Pilot Plant, located in Southeastern New Mexico, is slated to receive transuranic waste by truck delivery beginning in 1998. The Environmental Evaluation Group (EEG) provides an independent evaluation of the impact on the health and environment in New Mexico of the WIPP project. Since 1985, the EEG has operated a network of air monitoring sites around WIPP and in nearby communities. The radionuclide concentration data from these air samples have been assembled into a useful baseline data base after resolution of a number of methodological and quality assurance issues. Investigation thresholds for the principal radionuclides have been calculated from combined data collected from several sites. These action levels will provide a critical quantitative basis for decisions of whether future airborne radionuclide measurements are attributable to accidental releases. 26 refs., 4 figs., 3 tabs.

  6. Water temperature differences by plant community and location in re-established wetlands in the Sacramento-San Joaquin Delta, California, July 2005 to February 2008

    USGS Publications Warehouse

    Crepeau, Kathryn L.; Miller, Robin L.

    2014-01-01

    Rates of carbon storage in wetlands are determined by the balance of its inputs and losses, both of which are affected by environmental factors such as water temperature and depth. In the autumn of 1997, the U.S. Geological Survey re-established two wetlands with different shallow water depths—about 25 and 55 centimeters deep—to investigate the potential to reverse subsidence of delta islands by preserving and accumulating organic substrates derived from plant biomass inputs over time. Because cooler water temperatures can slow decomposition rates and increase accretion of plant biomass, water temperature was recorded from July 2005 to February 2008 in the deeper of the two wetlands, where areas of emergent and submerged vegetation persisted throughout the study, to assess differences in water temperature between the two vegetation types. Water temperature was compared at three depths in the water column between areas of emergent and submerged vegetation and between areas near the water inflow and in the wetland interior in both vegetation types. The latter comparison was a way of evaluating the effect of the length of time water had resided in the wetland on water temperatures. There were statistically significant differences in water temperature at all depths between the two vegetation types. Overall, in areas of emergent marsh vegetation, the mean water temperature at the surface was 1.4 degrees Celsius (°C) less than it was in areas of submerged vegetation; however, when analyses accounted for the changes in temperature due to seasonal and diurnal cycles, differences in the mean water temperature between the vegetation types were even greater than this. For example, in the spring, the mean temperatures in areas of emergent marsh vegetation at the surface, mid-point, and near the sediment in the water column were 2.0, 2.3, and 2.1 °C less, respectively, than water temperatures in areas of submerged vegetation. When diurnal changes in temperature were

  7. Modelling Plant and Soil Nitrogen Feedbacks Affecting Forest Carbon Gain at High CO2

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Franklin, O.; Pepper, D. A.

    2007-12-01

    Short-term, direct effects of elevated atmospheric CO2 concentrations on plant carbon gain are relatively well understood. There is considerable uncertainty, however, about longer-term effects, which are influenced by various plant and ecosystem feedbacks. A key feedback in terrestrial ecosystems occurs through changes in plant carbon (C) allocation patterns. For instance, if high CO2 were to increase C allocation to roots, then plants may experience positive feedback through improved plant nutrition. A second type of feedback, associated with decomposition of soil-organic matter, may reduce soil-nutrient availability at high CO2. This paper will consider mechanistic models of both feedbacks. Effects of high CO2 on plant C allocation will be investigated using a simple model of forest net primary production (NPP) that incorporates the primary mechanisms of plant carbon and nitrogen (N) balance. The model called MATE (Model Any Terrestrial Ecosystem) includes an equation for annual C balance that depends on light- saturated photosynthetic rate and therefore on [CO2], and an equation for N balance incorporating an expression for N uptake as a function of root mass. The C-N model is applied to a Free Air CO2 Exchange (FACE) experiment at Oak Ridge National Laboratory (ORNL) in Tennessee, USA, where closed-canopy, monoculture stands of the deciduous hardwood sweetgum ( Liquidambar styraciflua) have been growing at [CO2] of 375 and 550 ppm for ten years. Features of this experiment are that the annual NPP response to elevated CO2 has averaged approximately 25% over seven years, but that annual fine-root production has almost doubled on average, with especially large increases in later years of the experiment (Norby et al. 2006). The model provides a simple graphical approach for analysing effects of elevated CO2 and N supply on leaf/root/wood C allocation and productivity. It simulates increases in NPP and fine-root production at the ORNL FACE site that are consistent

  8. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice.

    PubMed

    Ren, Deyong; Rao, Yuchun; Wu, Liwen; Xu, Qiankun; Li, Zizhuang; Yu, Haiping; Zhang, Yu; Leng, Yujia; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Dong, Guojun; Zhang, Guangheng; Guo, Longbiao; Zeng, Dali; Qian, Qian

    2016-06-01

    Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull-like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1-green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes. PMID:26486996

  9. Use of on-site mycorrhizal inoculum for plant establishment on abandoned mined lands. Final report, 31 May 1988-31 March 1990

    SciTech Connect

    Helm, D.J.; Carling, D.E.

    1990-04-27

    Natural vegetation succession on abandoned coal-mined lands does not provide sufficient plant cover to control soil erosion in the short term. Soil inoculum of mycorrhizal fungi from an adjacent undisturbed area was used to inoculate balsam poplar cuttings and alder seedlings to improve plant growth. Soil inoculum contains the species of mycorrhizal fungi indigenous to the area as well as other beneficial organisms. An initial survey of mycorrhizal fungi in soils was conducted to determine the existing levels of mycorrhizal infection on native and disturbed soils. Four experiments were implemented to determine (1) fertilizer and mycorrhizal effects, (2) effects of successional stage of inoculum source, (3) effects of nitrogen sources in conjunction with mycorrhizae, and (4) the combinations of microsites, fertilizer, and mycorrhizae needed to establish vegetation on a steep slope. Soil-borne inoculum improved the growth of balsam poplar cuttings and alder seedlings over the 2-yr period.

  10. Barium uptake by maize plants as affected by sewage sludge in a long-term field study.

    PubMed

    Nogueira, Thiago Assis Rodrigues; deMelo, Wanderley José; Fonseca, Ivana Machado; Marques, Marcos Omir; He, Zhenli

    2010-09-15

    A long-term experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the concentration of Ba in soil and in maize plants grown in a soil treated with sewage sludge for nine consecutive years. During 2005/2006, maize was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. Treatments consisted of: 0.0, 45.0, 90.0 and 127.5 t ha(-1) sewage sludge (dry basis). Sewage sludge application increased soil Ba concentration. Barium accumulated in the parts of maize plants were generally affected by the successive applications of sewage sludge to the soil. However, the concentration of Ba in maize grain did not exceed the critical levels of Ba for human consumption. Sewage sludge applied to soil for a long time did not affect dry matter and grain production, nevertheless had the similar effect of mineral fertilization. PMID:20579810

  11. Characterising microbial protein test substances and establishing their equivalence with plant-produced proteins for use in risk assessments of transgenic crops.

    PubMed

    Raybould, Alan; Kilby, Peter; Graser, Gerson

    2013-04-01

    Most commercial transgenic crops are genetically engineered to produce new proteins. Studies to assess the risks to human and animal health, and to the environment, from the use of these crops require grams of the transgenic proteins. It is often extremely difficult to produce sufficient purified transgenic protein from the crop. Nevertheless, ample protein of acceptable purity may be produced by over-expressing the protein in microbes such as Escherichia coli. When using microbial proteins in a study for risk assessment, it is essential that their suitability as surrogates for the plant-produced transgenic proteins is established; that is, the proteins are equivalent for the purposes of the study. Equivalence does not imply that the plant and microbial proteins are identical, but that the microbial protein is sufficiently similar biochemically and functionally to the plant protein such that studies using the microbial protein provide reliable information for risk assessment of the transgenic crop. Equivalence is a judgement based on a weight of evidence from comparisons of relevant properties of the microbial and plant proteins, including activity, molecular weight, amino acid sequence, glycosylation and immuno-reactivity. We describe a typical set of methods used to compare proteins in regulatory risk assessments for transgenic crops, and discuss how risk assessors may use comparisons of proteins to judge equivalence. PMID:23065372

  12. Spatial heterogeneity in light supply affects intraspecific competition of a stoloniferous clonal plant.

    PubMed

    Wang, Pu; Lei, Jing-Pin; Li, Mai-He; Yu, Fei-Hai

    2012-01-01

    Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition) or nine ramets (with intraspecific competition) of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensity) and two heterogeneous ones differing in patch size (large and small patch treatments). The total light in the two heterogeneous treatments was the same as that in the homogeneous medium light treatment. Both decreasing light intensity and intraspecific competition significantly decreased the growth (biomass, number of ramets and total stolon length) of D. indica. As compared with the homogeneous medium light treatment, the large patch treatment significantly increased the growth of D. indica without intraspecific competition. However, the growth of D. indica with competition did not differ among the homogeneous medium light, the large and the small patch treatments. Consequently, light heterogeneity significantly increased intraspecific competition intensity, as measured by the decreased log response ratio. These results suggest that spatial heterogeneity in light supply can alter intraspecific interactions of clonal plants. PMID:22720041

  13. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    PubMed

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; North, Gretchen; Visel, Axel; Partida-Martinez, Laila P; Tringe, Susannah G

    2016-01-01

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions. PMID:26467257

  14. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process

    PubMed Central

    Jia, Yuying; Yao, Xingdong; Zhao, Mingzhe; Zhao, Qiang; Du, Yanli; Yu, Cuimei; Xie, Futi

    2015-01-01

    The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert) with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman), which showed a relatively weak susceptibility. Gibberellin (GA) levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA). Higher zeatin riboside (ZR) content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA) content, polyphenol oxidase (PPO) and peroxidase (POD) activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively. PMID:26262617

  15. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus

    PubMed Central

    Li-Byarlay, Hongmei; Pittendrigh, Barry R.; Murdock, Larry L.

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant–insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789

  16. Spatial Heterogeneity in Light Supply Affects Intraspecific Competition of a Stoloniferous Clonal Plant

    PubMed Central

    Wang, Pu; Lei, Jing-Pin; Li, Mai-He; Yu, Fei-Hai

    2012-01-01

    Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition) or nine ramets (with intraspecific competition) of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensity) and two heterogeneous ones differing in patch size (large and small patch treatments). The total light in the two heterogeneous treatments was the same as that in the homogeneous medium light treatment. Both decreasing light intensity and intraspecific competition significantly decreased the growth (biomass, number of ramets and total stolon length) of D. indica. As compared with the homogeneous medium light treatment, the large patch treatment significantly increased the growth of D. indica without intraspecific competition. However, the growth of D. indica with competition did not differ among the homogeneous medium light, the large and the small patch treatments. Consequently, light heterogeneity significantly increased intraspecific competition intensity, as measured by the decreased log response ratio. These results suggest that spatial heterogeneity in light supply can alter intraspecific interactions of clonal plants. PMID:22720041

  17. The community structure of endophytic bacteria in different parts of Huanglongbing-affected citrus plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The analyses methods of Pearson correlation coefficient (PCC), hierarchical cluster analysis and diversity index were used to study the relevance between citrus huanglongbing (HLB) and the endophytic bacteria in different branches and leaves as well as roots of huanglongbing (HLB)-affected citrus tr...

  18. Solubility and Plant Availability of Nutrients as Affected by Soil Drainage Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn growth is affected due to oxygen deficiency and root death in a perched water table (PWT). The study objective was to evaluate a surface application of FGD gypsum (FGDG) and glyphosate (GLY) on nutrient uptake in corn with different drainage conditions. The experiment was conducted in greenhous...

  19. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status.

    PubMed

    Verslues, Paul E; Agarwal, Manu; Katiyar-Agarwal, Surekha; Zhu, Jianhua; Zhu, Jian-Kang

    2006-02-01

    The abiotic stresses of drought, salinity and freezing are linked by the fact that they all decrease the availability of water to plant cells. This decreased availability of water is quantified as a decrease in water potential. Plants resist low water potential and related stresses by modifying water uptake and loss to avoid low water potential, accumulating solutes and modifying the properties of cell walls to avoid the dehydration induced by low water potential and using protective proteins and mechanisms to tolerate reduced water content by preventing or repairing cell damage. Salt stress also alters plant ion homeostasis, and under many conditions this may be the predominant factor affecting plant performance. Our emphasis is on experiments that quantify resistance to realistic and reproducible low water potential (drought), salt and freezing stresses while being suitable for genetic studies where a large number of lines must be analyzed. Detailed protocols for the use of polyethylene glycol-infused agar plates to impose low water potential stress, assay of salt tolerance based on root elongation, quantification of freezing tolerance and the use of electrolyte leakage experiments to quantify cellular damage induced by freezing and low water potential are also presented. PMID:16441347

  20. Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids?

    PubMed

    Pinto, Delia M; Blande, James D; Nykänen, Riikka; Dong, Wen-Xia; Nerg, Anne-Marja; Holopainen, Jarmo K

    2007-04-01

    Inducible terpenes and lipoxygenase pathway products, e.g., green-leaf volatiles (GLVs), are emitted by plants in response to herbivory. They are used by carnivorous arthropods to locate prey. These compounds are highly reactive with atmospheric pollutants. We hypothesized that elevated ozone (O(3)) may affect chemical communication between plants and natural enemies of herbivores by degrading signal compounds. In this study, we have used two tritrophic systems (Brassica oleracea-Plutella xylostella-Cotesia plutellae and Phaseolus lunatus-Tetranychus urticae-Phytoseiulus persimilis) to show that exposure of plants to moderately enhanced atmospheric O(3) levels (60 and 120 nl l(-1)) results in complete degradation of most herbivore-induced terpenes and GLVs, which is congruent with our hypothesis. However, orientation behavior of natural enemies was not disrupted by O(3) exposure in either tritrophic system. Other herbivore-induced volatiles, such as benzyl cyanide, a nitrile in cabbage, and methyl salicylate in lima bean, were not significantly reduced in reactions with O(3). We suggest that more atmospherically stable herbivore-induced volatile compounds can provide important long-distance plant-carnivore signals and may be used by natural enemies of herbivores to orientate in O(3)-polluted environments. PMID:17333375

  1. Contamination of soil, medicinal, and fodder plants with lead and cadmium present in mine-affected areas, Northern Pakistan.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Qamar, Zahir; Din, Islamud; Mahmood, Qaisar; Gul, Nayab; Huang, Qing

    2015-09-01

    This study aimed to investigate the lead (Pb) and cadmium (Cd) concentrations in the soil and plants (medicinal and fodder) grown in chromite mining-affected areas, Northern Pakistan. Soil and plant samples were collected and analyzed for Pb and Cd concentrations using atomic absorption spectrometer. Soil pollution load indices (PLIs) were greater than 2 for both Cd and Pb, indicating high level of contamination in the study area. Furthermore, Cd concentrations in the soil surrounding the mining sites exceeded the maximum allowable limit (MAL) (0.6 mg kg(-1)), while the concentrations of Pb were lower than the MAL (350 mg kg(-1)) set by State Environmental Protection Administration (SEPA) for agriculture soil. The concentrations of Cd and Pb were significantly higher (P < 0.001) in the soil of the mining-contaminated sites as compared to the reference site, which can be attributed to the dispersion of toxic heavy metals, present in the bed rocks and waste of the mines. The concentrations of Pb and Cd in majority of medicinal and fodder plant species grown in surrounding areas of mines were higher than their MALs set by World Health Organization/Food Agriculture Organization (WHO/FAO) for herbal (10 and 0.3 mg kg(-1), respectively) and edible (0.3 and 0.2 mg kg(-1), respectively) plants. The high concentrations of Cd and Pb may cause contamination of the food chain and health risk. PMID:26324064

  2. A Novel Role for Arabidopsis CBL1 in Affecting Plant Responses to Glucose and Gibberellin during Germination and Seedling Development

    PubMed Central

    Li, Zhi-Yong; Xu, Zhao-Shi; Chen, Yang; He, Guang-Yuan; Yang, Guang-Xiao; Chen, Ming; Li, Lian-Cheng; Ma, You-Zhi

    2013-01-01

    Glucose and phytohormones such as abscisic acid (ABA), ethylene, and gibberellin (GA) coordinately regulate germination and seedling development. However, there is still inadequate evidence to link their molecular roles in affecting plant responses. Calcium acts as a second messenger in a diverse range of signal transduction pathways. As calcium sensors unique to plants, calcineurin B-like (CBL) proteins are well known to modulate abiotic stress responses. In this study, it was found that CBL1 was induced by glucose in Arabidopsis. Loss-of-function mutant cbl1 exhibited hypersensitivity to glucose and paclobutrazol, a GA biosynthetic inhibitor. Several sugar-responsive and GA biosynthetic gene expressions were altered in the cbl1 mutant. CBL1 protein physically interacted with AKINβ1, the regulatory β subunit of the SnRK1 complex which has a central role in sugar signaling. Our results indicate a novel role for CBL1 in modulating responses to glucose and GA signals. PMID:23437128

  3. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  4. Initial Assessment of Sulfur-Iodine Process Safety Issues and How They May Affect Pilot Plant Design and Operation

    SciTech Connect

    Robert S. Cherry

    2006-09-01

    The sulfur-iodine process to make hydrogen by the thermochemical splitting of water is under active development as part of a U.S. Department of Energy program. An integrated lab scale system is currently being designed and built. The next planned stage of development is a pilot plant with a thermal input of about 500 kW, equivalent to about 30,000 standard liters per hour of hydrogen production. The sulfur-iodine process contains a variety of hazards, including temperatures up to 850 ºC and hazardous chemical species including SO2, H2SO4, HI, I2, and of course H2. The siting and design of a pilot plant must consider these and other hazards. This report presents an initial analysis of the hazards that might affect pilot plant design and should be considered in the initial planning. The general hazards that have been identified include reactivity, flammability, toxicity, pressure, electrical hazards, and industrial hazards such as lifting and rotating equipment. Personnel exposure to these hazards could occur during normal operations, which includes not only running the process at the design conditions but also initial inventory loading, heatup, startup, shutdown, and system flushing before equipment maintenance. Because of the complexity and severity of the process, these ancillary operations are expected to be performed frequently. In addition, personnel could be exposed to the hazards during various abnormal situations which could include unplanned phase changes of liquids or solids, leaks of process fluids or cooling water into other process streams, unintentional introducion of foreign species into the process, and unexpected side reactions. Design of a pilot plant will also be affected by various codes and regulations such as the International Building Code, the International Fire Code, various National Fire Protection Association Codes, and the Emergency Planning and Community Right-to-Know Act.

  5. Lignin, land plants, and fungi: Biological evolution affecting Phanerozoic oxygen balance

    SciTech Connect

    Robinson, J.M. )

    1990-07-01

    As dominance shifted from lycopsids and pteridophytes in the Paleozoic, to gymnosperms in the Mesozoic, to angiosperms in the Tertiary, plant architecture became more sparing in its use of lignin. Lignin-degrading organisms were rare or absent in the Paleozoic, but diverse and abundant in the Tertiary. Thus the terrigenous organic-carbon cycle has quickened over time, the fraction of terrestrial primary production preserved in coals and kerogens has declined, and terrestrial production has been able to increase over time without concomitant rises in atmospheric O{sub 2}.

  6. Factors Affecting the Extraction of Intact Ribonucleic Acid from Plant Tissues Containing Interfering Phenolic Compounds

    PubMed Central

    Newbury, H. John; Possingham, John V.

    1977-01-01

    Using conventional methods it is impossible to extract RNA as uncomplexed intact molecules from the leaves of grapevines (Vitis vinifera L.) and from a number of woody perennial species that contain high levels of reactive phenolic compounds. A procedure involving the use of high concentrations of the chaotropic agent sodium perchlorate prevents the binding of phenolic compounds to RNA during extraction. Analyses of the phenolics present in plant tissues used in these experiments indicate that there is a poor correlation between the total phenolic content and the complexing of RNA. However, qualitative analyses suggest that proanthocyanidins are involved in the tanning of RNA during conventional extractions. PMID:16660134

  7. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression.

    PubMed

    Vallianou, Ioanna; Hadzopoulou-Cladaras, Margarita

    2016-01-01

    The control of hyperlipidemia plays a central role in cardiovascular disease. Previously, we have shown that camphene, a constituent of mastic gum oil, lowers cholesterol and triglycerides (TG) in the plasma of hyperlipidemic rats without affecting HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. In the present study, we examine the mechanism by which camphene exerts its hypolipidemic action. We evaluated the effect of camphene on the de novo synthesis of cholesterol and TG from [14C]-acetate in HepG2 cells, along with the statin mevinolin. Camphene inhibited the biosynthesis of cholesterol in a concentration-dependent manner, and a maximal inhibition of 39% was observed at 100 μM while mevinolin nearly abolished cholesterol biosynthesis. Moreover, treatment with camphene reduced TG by 34% and increased apolipoprotein AI expression. In contrast, mevinolin increased TG by 26% and had a modest effect on apolipoprotein AI expression. To evaluate the mode of action of camphene, we examined its effects on the expression of SREBP-1, which affects TG biosynthesis and SREBP-2, which mostly affects sterol synthesis. Interestingly, camphene increased the nuclear translocation of the mature form of SREBP-1 while mevinolin was found to increase the amount of the mature form of SREBP-2. The effect of camphene is most likely regulated through SREBP-1 by affecting MTP levels in response to a decrease in the intracellular cholesterol. We propose that camphene upregulates SREBP-1 expression and MTP inhibition is likely to be a probable mechanism whereby camphene exerts its hypolipidemic effect. PMID:26784701

  8. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression

    PubMed Central

    Vallianou, Ioanna; Hadzopoulou-Cladaras, Margarita

    2016-01-01

    The control of hyperlipidemia plays a central role in cardiovascular disease. Previously, we have shown that camphene, a constituent of mastic gum oil, lowers cholesterol and triglycerides (TG) in the plasma of hyperlipidemic rats without affecting HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. In the present study, we examine the mechanism by which camphene exerts its hypolipidemic action. We evaluated the effect of camphene on the de novo synthesis of cholesterol and TG from [14C]-acetate in HepG2 cells, along with the statin mevinolin. Camphene inhibited the biosynthesis of cholesterol in a concentration-dependent manner, and a maximal inhibition of 39% was observed at 100 μM while mevinolin nearly abolished cholesterol biosynthesis. Moreover, treatment with camphene reduced TG by 34% and increased apolipoprotein AI expression. In contrast, mevinolin increased TG by 26% and had a modest effect on apolipoprotein AI expression. To evaluate the mode of action of camphene, we examined its effects on the expression of SREBP-1, which affects TG biosynthesis and SREBP-2, which mostly affects sterol synthesis. Interestingly, camphene increased the nuclear translocation of the mature form of SREBP-1 while mevinolin was found to increase the amount of the mature form of SREBP-2. The effect of camphene is most likely regulated through SREBP-1 by affecting MTP levels in response to a decrease in the intracellular cholesterol. We propose that camphene upregulates SREBP-1 expression and MTP inhibition is likely to be a probable mechanism whereby camphene exerts its hypolipidemic effect. PMID:26784701

  9. Within plant distribution of Potato Virus Y in hairy nightshade (Solanum sarrachoides): an inoculum source affecting PVY aphid transmission.

    PubMed

    Cervantes, Felix A; Alvarez, Juan M

    2011-08-01

    Potato virus Y (PVY) is vectored by several potato-colonizing and non-colonizing aphid species in a non-persistent manner and has a wide host range. It occurs naturally in several plant families. Myzus persicae and Macrosiphum euphorbiae are the most efficient potato-colonizing aphid vectors of PVY. Rhopalosiphum padi, a cereal aphid that migrates in large numbers through potato fields during the middle of the growing season, does not colonize potato plants but can transmit PVY. Hairy nightshade, Solanum sarrachoides, a prevalent annual solanaceous weed in the Pacific Northwest (PNW) of the United States, is an alternative host for PVY and a preferred host for M. persicae and M. euphorbiae. Hence, hairy nightshade plants might play an important role as an inoculum source in the epidemiology of PVY. We looked at titre accumulation and distribution of PVY(O), PVY(N:O) and PVY(NTN) in S. sarrachoides and potato after aphid inoculation with M. persicae and studied the transmission of PVY(O) and PVY(NTN), by M. persicae, M. euphorbiae and R. padi from hairy nightshade to potato plants. Virus titre at different positions on the plant was similar in S. sarrachoides and potato plants with strains PVY(O) and PVY(N:O). Titres of PVY(NTN) were similar in S. sarrachoides and potato but differences in titre were observed at different positions within the plant depending on the plant phenology. Percentage transmission of PVY(NTN) by M. persicae and M. euphorbiae was twice as high (46 and 34%, respectively) from hairy nightshade to potato than from potato to potato (20 and 14%). Percentage transmission of PVY(O) by M. persicae and M. euphorbiae was not affected by the inoculum source. No effect of the inoculum source was observed in the transmission of either PVY strain by R. padi. These results show that hairy nightshade may be an equal or better virus reservoir than potato and thus, important in the epidemiology of PVY. PMID:21601597

  10. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application.

    PubMed

    Jones, D L; Quilliam, R S

    2014-07-15

    Pyrolysis or combustion of waste wood can provide a renewable source of energy and produce byproducts which can be recycled back to land. To be sustainable requires that these byproducts pose minimal threat to the environment or human health. Frequently, reclaimed waste wood is contaminated by preservative-treated timber containing high levels of heavy metals. We investigated the effect of feedstock contamination from copper-preservative treated wood on the behaviour of pyrolysis-derived biochar and combustion-derived ash in plant-soil systems. Biochar and wood ash were applied to soil at typical agronomic rates. The presence of preservative treated timber in the feedstock increased available soil Cu; however, critical Cu guidance limits were only exceeded at high rates of feedstock contamination. Negative effects on plant growth and soil quality were only seen at high levels of biochar contamination (>50% derived from preservative-treated wood). Negative effects of wood ash contamination were apparent at lower levels of contamination (>10% derived from preservative treated wood). Complete removal of preservative treated timber from wood recycling facilities is notoriously difficult and low levels of contamination are commonplace. We conclude that low levels of contamination from Cu-treated wood should pose minimal environmental risk to biochar and ash destined for land application. PMID:24915641

  11. Nature's amazing biopolymer: basic mechanical and hydrological properties of soil affected by plant exudates

    NASA Astrophysics Data System (ADS)

    Naveed, Muhammad; Roose, Tiina; Raffan, Annette; George, Timothy; Bengough, Glyn; Brown, Lawrie; Keyes, Sam; Daly, Keith; Hallett, Paul

    2016-04-01

    Plant exudates are known to have a very large impact on soil physical properties through changes in mechanical and hydrological processes driven by long-chain polysaccharides and surface active compounds. Whilst these impacts are well known, the basic physical properties of these exudates have only been reported in a small number of studies. We present data for exudates obtained from barley roots and chia seeds, incorporating treatments examining biological decomposition of the exudates. When these exudates were added to a sandy loam soil, contact angle and drop penetration time increased exponentially with increasing exudate concentration. These wetting properties were strongly correlated with both exudate density and zero-shear viscosity, but not with exudate surface tension. Water holding capacity and water repellency of exudate mixed soil tremendously increased with exudate concentration, however they were significantly reduced on decomposition when measured after 14 days of incubation at 16C. Mechanical stability greatly increased with increasing exudate amendment to soils, which was assessed using a rheological amplitude sweep test near saturation, at -50 cm matric potential (field capacity) using indentation test, and at air-dry condition using the Brazilian test. This reflects that exudates not only attenuate plant water stress but also impart mechanical stability to the rhizosphere. These data are highly relevant to the understanding and modelling of rhizosphere development, which is the next phase of our research.

  12. Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants[W

    PubMed Central

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R.; Hellmann, Hanjo

    2013-01-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that CULLIN3-based E3 ligases have the potential to interact with a broad range of ETHYLENE RESPONSE FACTOR (ERF)/APETALA2 (AP2) transcription factors, mediated by MATH-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the WRINKLED1 ERF/AP2 protein. Furthermore, loss of MATH-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members. PMID:23792371

  13. Conjugative transfer of a derivative of the IncP-1α plasmid RP4 and establishment of transconjugants in the indigenous bacterial community of poplar plants

    PubMed Central

    Ulrich, Andreas; Becker, Regina; Ulrich, Kristina; Ewald, Dietrich

    2015-01-01

    The persistence of traits introduced into the indigenous bacterial community of poplar plants was investigated using bioluminescence mediated by the luc gene. Three endophytic bacterial strains provided with the IncP-1α plasmid RP4-Tn-luc were used to inoculate poplar cuttings at different phenological stages. Screening of isolates by bioluminescence and real-time PCR detection of the luc gene revealed stable persistence for at least 10 weeks. Although the inoculated strains became established with a high population density after inoculation at leaf development (April) and senescence (October), the strains were suppressed by the indigenous bacteria at stem elongation (June). Transconjugants could be detected only at this phenological stage. Indigenous bacteria harbouring RP4-Tn-luc became established with densities ranging from 2 × 105 to 9 × 106 CFU g−1 fresh weight 3 and 10 weeks after inoculation. The increased colonization of the cuttings by indigenous bacteria at stem elongation seemed to strongly compete with the introduced strains. Otherwise, the phenological stage of the plants as well as the density of the indigenous recipients could serve as the driver for a more frequent conjugative plasmid transfer. A phylogenetic assignment of transconjugants indicated the transfer of RP4-Tn-luc into six genera of Proteobacteria, mainly Sphingomonas, Stenotrophomonas and Xanthomonas. PMID:26490946

  14. Factors affecting preovulatory concentrations of estradiol and its role in establishment and maintenance of pregnancy in suckled beef cows using reciprocal embryo transfer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In postpartum beef cows, GnRH-induced ovulation of small dominant follicles decreased pregnancy rates and increased late embryonic/fetal mortality; however, ovulatory follicle size had no apparent effect on the establishment or maintenance of pregnancy when ovulation occurred spontaneously (Perry et...

  15. Teacher Autonomy in the United States: Establishing a Standard Definition, Validation of a Nationally Representative Construct and an Investigation of Policy Affected Teacher Groups

    ERIC Educational Resources Information Center

    Gwaltney, Kevin Dale

    2012-01-01

    This effort: 1) establishes an autonomy definition uniquely tailored for teaching, 2) validates a nationally generalizable teacher autonomy construct, 3) demonstrates that the model describes and explains the autonomy levels of particular teacher groups, and 4) verifies the construct can represent teacher autonomy in other empirical models. The…

  16. In vitro regeneration and optimization of factors affecting Agrobacterium mediated transformation in Artemisia Pallens, an important medicinal plant.

    PubMed

    Alok, Anshu; Shukla, Vishnu; Pala, Zarna; Kumar, Jitesh; Kudale, Subhash; Desai, Neetin

    2016-04-01

    Artemisia pallens is an important medicinal plant. In-vitro regeneration and multiplication of A. pallens have been established using attached cotyledons. Different growth regulators were considered for regeneration of multiple shoots. An average of 36 shoots per explants were obtained by culturing attached cotyledons on Murashige and Skoog's medium containing 2 mg/L BAP and 0.1 mg/L NAA, after 45 days. The shoots were rooted best on half Murashige and Skoog's medium with respect to media containing 1 mg/L IBA or 1 mg/L NAA. Different parameters such as type of bacterial strains, OD600 of bacterial culture, co-cultivation duration, concentration of acetosyringone and explants type were optimized for transient expression of the reporter gene. Agrobacterium tumefaciens harbouring pCambia1301 plasmid carrying β-glucuronidase as a reporter gene and hygromycin phosphotransferase as plant selectable marker genes were used for genetic transformation of A. pallens. Hygromycin lethality test showed concentration of 15 mg/L were sufficient to inhibit the growth of attached cotyledons and multiple shoot buds of nontransgenics in selection media. Up to 83 % transient transformation was found when attached cotyledons were co-cultivated with Agrobacterium strain AGL1 for 2 days at 22 °C on shoot induction medium. The bacterial growth was eliminated by addition of cefotaxime (200 mg/L) in selection media. T0 transgenic plants were confirmed by GUS histochemical assay and further by polymerase chain reaction (PCR) using uidA and hpt gene specific primers. The study is useful in establishing technological improvement in A. pallens by genetic engineering. PMID:27436917

  17. Nanosecond electric pulses affect a plant-specific kinesin at the plasma membrane.

    PubMed

    Kühn, Sebastian; Liu, Qiong; Eing, Christian; Frey, Wolfgang; Nick, Peter

    2013-12-01

    Electric pulses with high field strength and durations in the nanosecond range (nsPEFs) are of considerable interest for biotechnological and medical applications. However, their actual cellular site of action is still under debate--due to their extremely short rise times, nsPEFs are thought to act mainly in the cell interior rather than at the plasma membrane. On the other hand, nsPEFs can induce membrane permeability. We have revisited this issue using plant cells as a model. By mapping the cellular responses to nsPEFs of different field strength and duration in the tobacco BY-2 cell line, we could define a treatment that does not impinge on short-term viability, such that the physiological responses to the treatment can be followed. We observe, for these conditions, a mild disintegration of the cytoskeleton, impaired membrane localization of the PIN1 auxin-efflux transporter and a delayed premitotic nuclear positioning followed by a transient mitotic arrest. To address the target site of nsPEFs, we made use of the plant-specific KCH kinesin, which can assume two different states with different localization (either near the nucleus or at the cell membrane) driving different cellular functions. We show that nsPEFs reduce cell expansion in nontransformed cells but promote expansion in a line overexpressing KCH. Since cell elongation and cell widening are linked to the KCH localized at the cell membrane, the inverted response in the KCH overexpressor provides evidence for a direct action of nsPEFs, also at the cell membrane. PMID:24062185

  18. Plant Pathogenic Microbial Communication Affected by Elevated Temperature in Pectobacterium carotovorum subsp. carotovorum.

    PubMed

    Saha, N D; Chaudhary, A; Singh, S D; Singh, D; Walia, S; Das, T K

    2015-11-01

    Gram-negative plant pathogenic bacteria regulate specific gene expression in a population density-dependent manner by sensing level of Acyl-Homoserine Lactone (HSL) molecules which they produce and liberate to the environment, called Quorum Sensing (QS). The production of virulence factors (extracellular enzyme viz. cellulase, pectinase, etc.) in Pectobacterium carotovorum subsp. carotovorum (Pcc) is under strong regulation of QS. The QS signal molecule, N-(3-oxohexanoyl)-L-Homoserine Lactone (OHHL) was found as the central regulatory system for the virulence factor production in Pcc and is also under strict regulation of external environmental temperature. Under seven different incubation temperatures (24, 26, 28, 30, 33, 35, and 37 °C) in laboratory condition, highest amount of OHHL (804 violacein unit) and highest (79 %) Disease Severity Index (DSI) were measured at 33 °C. The OHHL production kinetics showed accumulation of highest concentration of OHHL at late log phase of the growth but diminution in the concentration occurred during stationary phase onwards to death phase. At higher temperature (35 and 37 °C) exposure, OHHL was not at detectable range. The effect of temperature on virulence factor production is the concomitant effect of HSL production and degradation which justifies less disease severity index in cross-inoculated tomato fruits incubated at 35 and 37 °C. The nondetection of the OHHL in the elevated temperature may because of degradation as these signal molecules are quite sensitive and prone to get degraded under different physical factors. This result provides the rationale behind the highest disease severity up to certain elevated temperature and leaves opportunities for investigation on mutation, co-evolution of superior plant pathogen with more stable HSL signals-mediated pathogenesis under global warming context. PMID:26271295

  19. Accumulation of N-Acetylglucosamine Oligomers in the Plant Cell Wall Affects Plant Architecture in a Dose-Dependent and Conditional Manner1[W][OPEN

    PubMed Central

    Vanholme, Bartel; Vanholme, Ruben; Turumtay, Halbay; Goeminne, Geert; Cesarino, Igor; Goubet, Florence; Morreel, Kris; Rencoret, Jorge; Bulone, Vincent; Hooijmaijers, Cortwa; De Rycke, Riet; Gheysen, Godelieve; Ralph, John; De Block, Marc; Meulewaeter, Frank; Boerjan, Wout

    2014-01-01

    To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane. PMID:24664205

  20. Understanding the State of Discipline in a Suburban High School: Factors That Affect the Perceptions of Stakeholders That Have Responsibility for Establishing and Implementing Disciplinary Policies

    ERIC Educational Resources Information Center

    Moyer, Gary S.

    2013-01-01

    The purpose of this research study was to increase the understanding of the state of discipline of a suburban high school by interrogating the factors that affect the perception held by the school's various stakeholders. The stakeholders in this study consisted of those individuals who have the responsibility for the formation of the school's…

  1. From facilitation to competition: temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands.

    PubMed

    Olsen, Siri L; Töpper, Joachim P; Skarpaas, Olav; Vandvik, Vigdis; Klanderud, Kari

    2016-05-01

    Biotic interactions are often ignored in assessments of climate change impacts. However, climate-related changes in species interactions, often mediated through increased dominance of certain species or functional groups, may have important implications for how species respond to climate warming and altered precipitation patterns. We examined how a dominant plant functional group affected the population dynamics of four co-occurring forb species by experimentally removing graminoids in seminatural grasslands. Specifically, we explored how the interaction between dominants and subordinates varied with climate by replicating the removal experiment across a climate grid consisting of 12 field sites spanning broad-scale temperature and precipitation gradients in southern Norway. Biotic interactions affected population growth rates of all study species, and the net outcome of interactions between dominants and subordinates switched from facilitation to competition with increasing temperature along the temperature gradient. The impacts of competitive interactions on subordinates in the warmer sites could primarily be attributed to reduced plant survival. Whereas the response to dominant removal varied with temperature, there was no overall effect of precipitation on the balance between competition and facilitation. Our findings suggest that global warming may increase the relative importance of competitive interactions in seminatural grasslands across a wide range of precipitation levels, thereby favouring highly competitive dominant species over subordinate species. As a result, seminatural grasslands may become increasingly dependent on disturbance (i.e. traditional management such as grazing and mowing) to maintain viable populations of subordinate species and thereby biodiversity under future climates. Our study highlights the importance of population-level studies replicated under different climatic conditions for understanding the underlying mechanisms of climate

  2. Whole Genome Duplication Affects Evolvability of Flowering Time in an Autotetraploid Plant

    PubMed Central

    Martin, Sara L.; Husband, Brian C.

    2012-01-01

    Whole genome duplications have occurred recurrently throughout the evolutionary history of eukaryotes. The resulting genetic and phenotypic changes can influence physiological and ecological responses to the environment; however, the impact of genome copy number on evolvability has rarely been examined experimentally. Here, we evaluate the effect of genome duplication on the ability to respond to selection for early flowering time in lines drawn from naturally occurring diploid and autotetraploid populations of the plant Chamerion angustifolium (fireweed). We contrast this with the result of four generations of selection on synthesized neoautotetraploids, whose genic variability is similar to diploids but genome copy number is similar to autotetraploids. In addition, we examine correlated responses to selection in all three groups. Diploid and both extant tetraploid and neoautotetraploid lines responded to selection with significant reductions in time to flowering. Evolvability, measured as realized heritability, was significantly lower in extant tetraploids ( = 0.31) than diploids ( = 0.40). Neotetraploids exhibited the highest evolutionary response ( = 0.55). The rapid shift in flowering time in neotetraploids was associated with an increase in phenotypic variability across generations, but not with change in genome size or phenotypic correlations among traits. Our results suggest that whole genome duplications, without hybridization, may initially alter evolutionary rate, and that the dynamic nature of neoautopolyploids may contribute to the prevalence of polyploidy throughout eukaryotes. PMID:23028620

  3. Plant essential oils affect the toxicities of carbaryl and permethrin against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Tong, Fan; Bloomquist, Jeffrey R

    2013-07-01

    ABSTRACT Phytochemicals have been considered as alternatives for conventional pesticides because of their low mammalian toxicity and environmental safety. They usually display less potent insecticidal effects than synthetic compounds, but may express as yet unknown modes of action. In the current study, we evaluated 14 plant essential oils for their toxicities and synergistic effects with carbaryl and permethrin against fourth instars of Aedes aegypti (L.) as well as 5-7-d-old adults. Six essential oils showed significant synergistic effects with carbaryl at 10-50 mg/liter, but paradoxically all of them decreased the toxicity of permethrin against Ae. aegypti larvae. None showed toxicity or synergistic effects on Ae. aegypti adults, at doses up to 2,000 ng/ insect. The six essential oils displaying synergistic effects in Ae. aegypti larvae inhibited the in vitro activities of cytochrome P450 monooxygenases and carboxylesterases in the low milligram per liter range. The data indicated that cytochrome P450 monooxygenases and carboxylesterase were probably targets for these natural synergists. Thus, the mechanism of synergism was most likely inhibition of metabolism and not interacting target site effects. PMID:23926781

  4. Source population characteristics affect heterosis following genetic rescue of fragmented plant populations

    PubMed Central

    Pickup, M.; Field, D. L.; Rowell, D. M.; Young, A. G.

    2013-01-01

    Understanding the relative importance of heterosis and outbreeding depression over multiple generations is a key question in evolutionary biology and is essential for identifying appropriate genetic sources for population and ecosystem restoration. Here we use 2455 experimental crosses between 12 population pairs of the rare perennial plant Rutidosis leptorrhynchoides (Asteraceae) to investigate the multi-generational (F1, F2, F3) fitness outcomes of inter-population hybridization. We detected no evidence of outbreeding depression, with inter-population hybrids and backcrosses showing either similar fitness or significant heterosis for fitness components across the three generations. Variation in heterosis among population pairs was best explained by characteristics of the foreign source or home population, and was greatest when the source population was large, with high genetic diversity and low inbreeding, and the home population was small and inbred. Our results indicate that the primary consideration for maximizing progeny fitness following population augmentation or restoration is the use of seed from large, genetically diverse populations. PMID:23173202

  5. Factors affecting population of filamentous bacteria in wastewater treatment plants with nutrients removal.

    PubMed

    Miłobędzka, Aleksandra; Witeska, Anna; Muszyński, Adam

    2016-01-01

    Filamentous population in activated sludge and key operational parameters of full-scale municipal wastewater treatment plants (WWTPs) with bulking problems representative for Poland were investigated with quantitative fluorescence in situ hybridization. Statistical analyses revealed few relationships between operational parameters and biovolume of filamentous bacteria. Sludge age was not only positively correlated with abundance of Chloroflexi (parametric correlation and principal component analysis (PCA)), but also differentiated Microthrix population (analysis of variance (ANOVA)). Phylum Chloroflexi and pH presented a negative relation during the study (PCA). ANOVA showed that pH of influent and sludge volume index (SVI) differentiated abundance of types 0803 and 1851 of Chloroflexi and candidate division TM7. SVI increased along with higher abundance of Microthrix (positive parametric and non-parametric correlations and positive relation in PCA). Biovolumes of morphotypes 0803 and 1851 of Chloroflexi were differentiated by organic matter in influent, also by nutrients in the case of Chloroflexi type 1851. Chemical and biological oxygen demands (COD and BOD5, respectively) were negatively correlated with Microthrix. COD also differentiated the abundance of Haliscomenobacter hydrossis. Results of the study can be used to prevent WWTPs from excessive proliferation of filamentous bacteria and operational problems caused by them--bulking and foaming of activated sludge. PMID:26901721

  6. Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil

    SciTech Connect

    Topp, E.; Scheunert, I.; Attar, A.; Korte, F.

    1986-04-01

    The uptake of /sup 14/C from various /sup 14/C-labeled organic chemicals from different chemical classes by barley and cress seedlings from soil was studied for 7 days in a closed aerated laboratory apparatus. Uptake by roots and by leaves via the air was determined separately. Although comparative long-term outdoor studies showed that an equilibrium is not reached within a short time period, plant concentration factors after 7 days could be correlated to some physicochemical and structural substance properties. Barley root concentration factors due to root uptake, expressed as concentration in roots divided by concentration in soil, gave a fairly good negative correlation to adsorption coefficients based on soil organic carbon. Barley root concentration factors, expressed as concentration in roots divided by concentration in soil liquid, gave a positive correlation to the n-octanol/water partition coefficients. Uptake of chemicals by barley leaves via air was strongly positively correlated to volatilization of chemicals from soil. Both root and foliar uptake by barley could be correlated well to the molecular weight of 14 chemicals. Uptake of chemicals by cress differed from that by barley, and correlations to physicochemical substance properties mostly were poor.

  7. Solubility, mobility and plant uptake of toxic elements in retorted oil shales as affected by recarbonation

    SciTech Connect

    Reddy, K.J.

    1986-01-01

    The primary objective of this study was to develop a method of lowering the alkalinity of retorted shales and of reducing the solubility of toxic elements. The solubility relationships and mineral transformations associated with recarbonation of retorted shales were evaluated by determining the solubilities of different elements and by using X-ray diffraction analysis. An accurate method of measuring carbonate activity in shale extracts was developed. This method consisted of acidifying shale extracts with concentrated HCI. The evolved CO/sub 2/(g) was trapped in NaOH and titrated to pH 8.5. A computer speciation model was developed to calculate the equilibrium activities of different ions and the CO/sub 2/(g) partial pressure. Recarbonation dissolved silicates, restored the carbonate deficit, and lowered pH to near 8.5 when equilibrium with CaCO/sub 3/ and CO/sub 2/(g) partial pressure of approximately 10/sup -4.65/ atm. was attained. Furthermore, recarbonation decreased the solubilities of F, Ba, Cr, Sr, and Mo and lowered their concentrations in shale leachates, showing that recarbonation of spent shales can retard the movement of toxic elements into the groundwater. Tall wheatgrass (Agropyron elongatum) seeds placed in Lurgi shale without soil cover failed to germinate. On recarbonated Lurgi shale, plants grew normally without soil cover and accumulated normal levels of As, Se, Ba, B, Cu, Cd, Sr, and Ti. The results suggest that recarbonated retorted shales can be revegetated directly without a soil cover

  8. Seasonal timing of first rain storms affects rare plant population dynamics

    USGS Publications Warehouse

    Levine, J.M.; McEachern, A.K.; Cowan, C.

    2011-01-01

    A major challenge in forecasting the ecological consequences of climate change is understanding the relative importance of changes to mean conditions vs. changes to discrete climatic events, such as storms, frosts, or droughts. Here we show that the first major storm of the growing season strongly influences the population dynamics of three rare and endangered annual plant species in a coastal California (USA) ecosystem. In a field experiment we used moisture barriers and water addition to manipulate the timing and temperature associated with first major rains of the season. The three focal species showed two- to fivefold variation in per capita population growth rates between the different storm treatments, comparable to variation found in a prior experiment imposing eightfold differences in season-long precipitation. Variation in germination was a major demographic driver of how two of three species responded to the first rains. For one of these species, the timing of the storm was the most critical determinant of its germination, while the other showed enhanced germination with colder storm temperatures. The role of temperature was further supported by laboratory trials showing enhanced germination in cooler treatments. Our work suggests that, because of species-specific cues for demographic transitions such as germination, changes to discrete climate events may be as, if not more, important than changes to season-long variables.

  9. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Einsiedl, Florian; Radke, Michael; Maloszewski, Piotr

    2010-09-01

    The occurrence of two pharmaceuticals, ibuprofen and diclofenac, in a vulnerable karst groundwater system was investigated. The hydrogeology of the karst system was identified by collecting 3H samples in groundwater over 27 years and by performing tracer tests. The isotopes and tracer data were interpreted by mathematical modeling to estimate the mean transit time of water and to characterize the hydrogeological flow paths in the groundwater system. By this approach, a mean 3H transit time of 4.6 years for the fissured-porous karst aquifer was determined, whereas the fast flowing water in the conduit system showed a mean transit time of days. Both pharmaceuticals which infiltrated along sinkholes and small streams into the karst system were detected in concentrations of up to approximately 1 μg/L in effluent water of the wastewater treatment plants. Diclofenac was present in most samples collected from four springs discharging the karst groundwater to the rivers Altmühl and Anlauter in concentrations between 3.6 and 15.4 ng/L. In contrast, ibuprofen was rarely detected in groundwater. The results of this study suggest that both pharmaceuticals move into the fractured system of the karst system and go into storage. Thus dilution processes are the dominant control on the concentrations of both pharmaceuticals in the fractured system, whereas biodegradation is likely less important.

  10. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass.

    PubMed

    Munier-Lamy, C; Deneux-Mustin, S; Mustin, C; Merlet, D; Berthelin, J; Leyval, C

    2007-01-01

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil. PMID:17544553

  11. How does altered precipitation and annual grass invasion affect plant N uptake in a native semi-arid shrub community?

    NASA Astrophysics Data System (ADS)

    Mauritz, M.; Lipson, D.; Cleland, E. E.

    2012-12-01

    Climate change is expected to alter precipitation patterns, which will change the timing and amount of plant resources. Precipitation patterns determine water and nitrogen (N) availability, because water stimulates microbial N turnover and N transport. In order for plants to utilize water and N, they must coincide with the phenology and meet physiological requirements of the plant. As resource supply shifts, differences in species' ability to acquire resources will affect plant community composition. Semiarid ecosystems, such as shrublands in Southern California, are particularly sensitive to shifts in precipitation because they are severely water limited. This study takes advantage of the altered phenology and resource demands presented by invasive annual grasses in a native semiarid shrubland. The goal is to understand how altered precipitation patterns affect plant N uptake. Rainfall levels were manipulated to 50% and 150% of ambient levels. It is expected that higher rainfall levels promote annual grass invasion because grasses have higher water and N requirements and begin to grow earlier in the season than shrubs. A 15N tracer was added with the first rain event and plant samples were collected regularly to track the movement of N into the plants. Net soil N accumulation was determined using resin bags. Invasive grasses altered the timing and amount of N uptake but amount of rainfall had less effect on N distribution. 15N was detected sooner and at higher level in grasses than shrubs. 24hours after the first rain event 15N was detectable in grasses, 15N accumulated rapidly and peaked 2 months earlier than shrubs. Shrub 15N levels remained at pre-rain event levels for the first 2 months and began to increase at the beginning of spring, peak mid-spring and decline as the shrubs entered summer dormancy. One year later 15N levels in annual grass litter remained high, while 15N levels in shrubs returned to initial background levels as a result of resorption. 15N

  12. Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts.

    PubMed

    Ott, Karl-Heinz; Araníbar, Nelly; Singh, Bijay; Stockton, Gerald W

    2003-03-01

    The biochemical mode-of-action (MOA) for herbicides and other bioactive compounds can be rapidly and simultaneously classified by automated pattern recognition of the metabonome that is embodied in the 1H NMR spectrum of a crude plant extract. The ca. 300 herbicides that are used in agriculture today affect less than 30 different biochemical pathways. In this report, 19 of the most interesting MOAs were automatically classified. Corn (Zea mays) plants were treated with various herbicides such as imazethapyr, glyphosate, sethoxydim, and diuron, which represent various biochemical modes-of-action such as inhibition of specific enzymes (acetohydroxy acid synthase [AHAS], protoporphyrin IX oxidase [PROTOX], 5-enolpyruvylshikimate-3-phosphate synthase [EPSPS], acetyl CoA carboxylase [ACC-ase], etc.), or protein complexes (photosystems I and II), or major biological process such as oxidative phosphorylation, auxin transport, microtubule growth, and mitosis. Crude isolates from the treated plants were subjected to 1H NMR spectroscopy, and the spectra were classified by artificial neural network analysis to discriminate the herbicide modes-of-action. We demonstrate the use and refinement of the method, and present cross-validated assignments for the metabolite NMR profiles of over 400 plant isolates. The MOA screen also recognizes when a new mode-of-action is present, which is considered extremely important for the herbicide discovery process, and can be used to study deviations in the metabolism of compounds from a chemical synthesis program. The combination of NMR metabolite profiling and neural network classification is expected to be similarly relevant to other metabonomic profiling applications, such as in drug discovery. PMID:12590124

  13. A Locus in Drosophila sechellia Affecting Tolerance of a Host Plant Toxin

    PubMed Central

    Hungate, Eric A.; Earley, Eric J.; Boussy, Ian A.; Turissini, David A.; Ting, Chau-Ti; Moran, Jennifer R.; Wu, Mao-Lien; Wu, Chung-I; Jones, Corbin D.

    2013-01-01

    Many insects feed on only one or a few types of host. These host specialists often evolve a preference for chemical cues emanating from their host and develop mechanisms for circumventing their host’s defenses. Adaptations like these are central to evolutionary biology, yet our understanding of their genetics remains incomplete. Drosophila sechellia, an emerging model for the genetics of host specialization, is an island endemic that has adapted to chemical toxins present in the fruit of its host plant, Morinda citrifolia. Its sibling species, D. simulans, and many other Drosophila species do not tolerate these toxins and avoid the fruit. Earlier work found a region with a strong effect on tolerance to the major toxin, octanoic acid, on chromosome arm 3R. Using a novel assay, we narrowed this region to a small span near the centromere containing 18 genes, including three odorant binding proteins. It has been hypothesized that the evolution of host specialization is facilitated by genetic linkage between alleles contributing to host preference and alleles contributing to host usage, such as tolerance to secondary compounds. We tested this hypothesis by measuring the effect of this tolerance locus on host preference behavior. Our data were inconsistent with the linkage hypothesis, as flies bearing this tolerance region showed no increase in preference for media containing M. citrifolia toxins, which D. sechellia prefers. Thus, in contrast to some models for host preference, preference and tolerance are not tightly linked at this locus nor is increased tolerance per se sufficient to change preference. Our data are consistent with the previously proposed model that the evolution of D. sechellia as a M. citrifolia specialist occurred through a stepwise loss of aversion and gain of tolerance to M. citrifolia’s toxins. PMID:24037270

  14. A locus in Drosophila sechellia affecting tolerance of a host plant toxin.

    PubMed

    Hungate, Eric A; Earley, Eric J; Boussy, Ian A; Turissini, David A; Ting, Chau-Ti; Moran, Jennifer R; Wu, Mao-Lien; Wu, Chung-I; Jones, Corbin D

    2013-11-01

    Many insects feed on only one or a few types of host. These host specialists often evolve a preference for chemical cues emanating from their host and develop mechanisms for circumventing their host's defenses. Adaptations like these are central to evolutionary biology, yet our understanding of their genetics remains incomplete. Drosophila sechellia, an emerging model for the genetics of host specialization, is an island endemic that has adapted to chemical toxins present in the fruit of its host plant, Morinda citrifolia. Its sibling species, D. simulans, and many other Drosophila species do not tolerate these toxins and avoid the fruit. Earlier work found a region with a strong effect on tolerance to the major toxin, octanoic acid, on chromosome arm 3R. Using a novel assay, we narrowed this region to a small span near the centromere containing 18 genes, including three odorant binding proteins. It has been hypothesized that the evolution of host specialization is facilitated by genetic linkage between alleles contributing to host preference and alleles contributing to host usage, such as tolerance to secondary compounds. We tested this hypothesis by measuring the effect of this tolerance locus on host preference behavior. Our data were inconsistent with the linkage hypothesis, as flies bearing this tolerance region showed no increase in preference for media containing M. citrifolia toxins, which D. sechellia prefers. Thus, in contrast to some models for host preference, preference and tolerance are not tightly linked at this locus nor is increased tolerance per se sufficient to change preference. Our data are consistent with the previously proposed model that the evolution of D. sechellia as a M. citrifolia specialist occurred through a stepwise loss of aversion and gain of tolerance to M. citrifolia's toxins. PMID:24037270

  15. Changes of the soil environment affected by fly ash dumping site of the electric power plant

    NASA Astrophysics Data System (ADS)

    Weber, Jerzy; Gwizdz, Marta; Jamroz, Elzbieta; Debicka, Magdalena; Kocowicz, Andrzej

    2014-05-01

    In this study the effect of fly ash dumping site of the electric power plant on the surrounding soil environment was investigated. The fly ash dumping site collect wastes form brown coal combustion of Belchatow electric power station, central Poland. The dumping site is surrounding by forest, where pine trees overgrow Podzols derived from loose quartz sands. The soil profiles under study were located at a distance of 50, 100, 400 and 500 m from the dumping site, while control profiles were located 8 km away from the landfill. In all horizons of soil profiles the mpain hysico-chemical and chemical properties were determined. The humic substances were extracted from ectohumus horizons by Shnitzer's method, purified using XAD resin and freeze-dried. The fulvic acids were passed through a cation exchange column and freeze-dried. Optical density, elemental composition and atomic ratios were determined in the humic and fulvic acids. Organic carbon by KMnO4 oxidation was also determined in the organic soil horizons. The fly ash from the landfill characterized by high salinity and strong alkaline reaction (pH=10), which contributed significantly to the changes of the pH values in soils horizons. The alkalization of soils adjacent to the landfill was found, which manifested in increasing of pH values in the upper soil horizons. The impact of the landfill was also noted in the changes of the soil morphology of Podzols analysed. As a result of the alkalization, Bhs horizons have been converted into a Bs horizons. Leaching of low molecular humus fraction - typical for podzolization - has been minimized as a result of pH changes caused by the impact of the landfill, and originally occurring humic substances in the Bhs horizon (present in the control profiles) have been probably transported out of the soil profile and then into the groundwater.

  16. Volatiles induced by larvae of asian corn borer (Ostrinia furnacalis) in maize plants affect behavior of conspecific larvae and female adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Larvae of the Asian corn borer (ACB), Ostrinia furnacalis, (Guenée), feeding on maize (Zea mays L.) induced volatiles from the plants that affected orientation behaviors of ACB larvae and oviposition of ACB adult females. Nineteen volatile chemicals were identified from maize plants attacked by thir...

  17. Population size and relatedness affect fitness of a self-incompatible invasive plant.

    PubMed

    Elam, Diane R; Ridley, Caroline E; Goodell, Karen; Ellstrand, Norman C

    2007-01-01

    One of the lingering paradoxes in invasion biology is how founder populations of an introduced species are able to overcome the limitations of small size and, in a "reversal of fortune," proliferate in a new habitat. The transition from colonist to invader is especially enigmatic for self-incompatible species, which must find a mate to reproduce. In small populations, the inability to find a mate can result in the Allee effect, a positive relationship between individual fitness and population size or density. Theoretically, the Allee effect should be common in founder populations of self-incompatible colonizing species and may account for the high rate of failed introductions, but little supporting evidence exists. We created a field experiment to test whether the Allee effect affects the maternal fitness of a self-incompatible invasive species, wild radish (Raphanus sativus). We created populations of varying size and relatedness. We measured maternal fitness in terms of both fruit set per flower and seed number per fruit. We found that both population size and the level of genetic relatedness among individuals influence maternal reproductive success. Our results explicitly define an ecological genetic obstacle faced by populations of an exotic species on its way to becoming invasive. Such a mechanistic understanding of the invasions of species that require a mate can and should be exploited for both controlling current outbreaks and reducing their frequency in the future. PMID:17197422

  18. Do non-native plant species affect the shape of productivity-diversity relationships?

    USGS Publications Warehouse

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  19. Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant.

    PubMed

    Grabicova, Katerina; Grabic, Roman; Blaha, Martin; Kumar, Vimal; Cerveny, Daniel; Fedorova, Ganna; Randak, Tomas

    2015-04-01

    Aquatic organisms can be affected not only via polluted water but also via their food. In the present study, we examined bioaccumulation of seventy pharmaceuticals in two benthic organisms, Hydropsyche sp. and Erpobdella octoculata in a small stream affected by the effluent from a sewage treatment plant (STP) in Prachatice (South Bohemia region, Czech Republic). Furthermore, water samples from similar locations were analyzed for all seventy pharmaceuticals. In water samples from a control locality situated upstream of the STP, ten of the seventy pharmaceuticals were found with average total concentrations of 200 ng L(-1). In water samples collected at STP-affected sites (downstream the STP's effluent), twenty-nine, twenty-seven and twenty-nine pharmaceuticals were determined at average total concentrations of 2000, 2100 and 1700 ng L(-1), respectively. Six of the seventy pharmaceuticals (azithromycin, citalopram, clarithromycin, clotrimazole, sertraline, and verapamil) were found in Hydropsyche. Four pharmaceuticals (clotrimazole, diclofenac, sertraline, and valsartan) were detected in Erpobdella. Using evaluation criterion bioconcentration factor (BCF) is higher than 2000 we can assign azithromycin and sertraline as bioaccumulative pharmaceuticals. Even pharmaceuticals present at low levels in water were found in benthic organisms at relatively high concentrations (up to 85 ng g(-1) w.w. for azithromycin). Consequently, the uptake of pharmaceuticals via the food web could be an important exposure pathway for the wild fish population. PMID:25283339

  20. Increased nitrogen deposition did not affect the composition and turnover of plant and microbial biomarkers in forest soil density fractions

    NASA Astrophysics Data System (ADS)

    Griepentrog, Marco; Bodé, Samuel; Boeckx, Pascal; Hagedorn, Frank; Wiesenberg, Guido L. B.; Schmidt, Michael W. I.

    2013-04-01

    Increased atmospheric nitrogen (N) deposition and elevated CO2 concentrations affect many forests and their ecosystem functions, including organic matter cycling in soils, the largest carbon pool of terrestrial ecosystems. However, it is still not clear how, and what the underlying mechanisms are. Specific molecules of plant and microbial origin (biomarkers) might respond differently to N deposition, depending on their internal N content. Microbial cell-wall-constituents with high-N content like amino sugars are reliable biomarkers to distinguish between fungal- and bacterial-derived organic residues. Individual lipids are plant-specific biomarkers that lack N in their molecular structure. Here, we tested the effects of elevated CO2 and increased N deposition on the dynamics of plant and microbial biomarkers by studying their composition and turnover in forest soil density fractions. Furthermore, we tested the hypothesis that these biomarkers respond differently to increased N deposition, depending on their internal N content. We used soil samples from a 4-year elevated CO2 and N deposition experiment in model forest ecosystems (open-top chambers), that were fumigated with ambient and 13C-depleted CO2 and treated with two levels of 15N-labeled fertilizer. Bulk soil was separated into free light fraction, occluded light fraction and heavy fraction by density fractionation and ultrasonic dispersion. The heavy fraction was further particle-size fractionated with 20 μm as a cut-off. We determined carbon and N concentrations and their isotopic compositions (δ13C, δ15N) within bulk soil and density fractions. Therein, we extracted and quantified individual amino sugars and lipids and conducted compound-specific stable-isotope-analysis using GC- and LC-IRMS. Results show that amino sugars were mainly stabilized in association with soil minerals. Especially bacterial amino sugars were preferentially associated with soil minerals, exemplified by a consistent decrease

  1. Six-year growth of Eucalyptus saligna plantings as affected by nitrogen and phosphorus fertilizer. Forest Service research paper (Final)

    SciTech Connect

    Whitesell, C.D.; DeBell, D.S.; Schubert, T.H.

    1987-10-01

    Growth responses of Eucalyptus saligna to nitrogen (N) and phosphorus (P) fertilizers were assessed in bioenergy plantations on abandoned sugarcane land in Hawaii. Fertilizers were applied three times (0.6, and 15 months after planting) in a factorial design with four dosages each of N(0, 25, 50, and 75 g urea per tree) and P(0, 30, 60, and 90 g triple superphosphate per tree). Phosphorus and the N x P interaction had little effect on tree growth. Effects of N, however, were dramatic during the first year, and benefits were sustained through 6 years. Effects of N on height growth and diameter growth dropped markedly during the third year and thereafter. Bioenergy plantations of E. saligna established on similar sites and soils will benefit from high dosages of N fertilizer and presumably from repeated applications.

  2. Remedial habitat creation: does Nereis diversicolor play a confounding role in the colonisation and establishment of the pioneering saltmarsh plant, Spartina anglica?

    NASA Astrophysics Data System (ADS)

    Emmerson, M.

    2000-07-01

    Increasing concerns over global warming and expected sea level rises have led to the adoption of new coastal management strategies around the south-east coast of England. This paper explores the role played by the estuarine invertebrate Nereis diversicolor in limiting the colonisation and establishment of the invasive pioneering salt marsh plant, Spartina anglica. The biology of N. diversicolor is briefly reviewed and data from field experiments are presented demonstrating significant negative effects of worm abundance on transplanted S. anglica biomass. Laboratory-based experiments demonstrated significant negative effects of N. diversicolor abundance on the survival of S. anglica seeds transplanted to sediment cores. The importance of estuarine invertebrates in engineering the mudflat habitat may confound the foreseen ecosystem services and function provided by saltmarsh management schemes.

  3. Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil.

    PubMed

    Rincón, Ana; de Felipe, M R; Fernández-Pascual, M

    2007-12-01

    Vegetative inoculum of Amanita ovoidea (Bull.) Link and three isolates of Suillus collinitus (Fr.) Kuntze, as well as spore inoculum of Rhizopogon roseolus (Corda) Th. M. Fr. and S. collinitus, were evaluated for the production of Pinus halepensis Mill. in nursery and for the establishment of seedlings in a degraded gypsum soil. In nursery, most of the fungi significantly improved the height of seedlings and modified the accumulation of nutrients in needles. The percentage of ectomycorrhizas (ESR) per seedling ranged from 25 to 78%, depending on the fungi. One and 2 years after planting in the field, the survival of seedlings was significantly improved by inoculation with two isolates of S. collinitus and with spores of the same fungus. Inoculation with A. ovoidea had no significant effect on seedling survival, whilst R. roseolus caused a significant mortality of seedlings. Seedling height was significantly improved by inoculation with all fungi except R. roseolus and isolate CCMA-1 of S. collinitus. One year after planting, mycorrhization of control seedlings was negligible, and percentages of ESR were under 38% for the rest of treatments. In spring of the second year, seedlings in all treatments, including the control, became highly mycorrhizal (60-77% of ESR). Low ectomycorrhizal diversity (five morphotypes described) and seasonal variation on morphotype composition were detected 2 years after plantation. From a perspective of soil restoration management under limiting environmental conditions, nursery inoculation with selected fungi can be a key advantage for tree seedlings to surmount the initial transplant stress, assuring their establishment in the field. Our results emphasise the importance of selecting compatible fungal-host species combinations for nursery inoculation and sources of inoculum adapted to the environmental conditions of the transplantation site. PMID:17874144

  4. Colletotrichum orbiculare Regulates Cell Cycle G1/S Progression via a Two-Component GAP and a GTPase to Establish Plant Infection[OPEN

    PubMed Central

    2015-01-01

    Morphogenesis in filamentous fungi depends on appropriate cell cycle progression. Here, we report that cells of the cucumber anthracnose fungus Colletotrichum orbiculare regulate G1/S progression via a two-component GAP, consisting of Budding-uninhibited-by-benomyl-2 (Bub2) and Byr-four-alike-1 (Bfa1) as well as its GTPase Termination-of-M-phase-1 (Tem1) to establish successful infection. In a random insertional mutagenesis screen of infection-related morphogenesis, we isolated a homolog of Saccharomyces cerevisiae, BUB2, which encodes a two-component Rab GAP protein that forms a GAP complex with Bfa1p and negatively regulates mitotic exit. Interestingly, disruption of either Co BUB2 or Co BFA1 resulted in earlier onset of nuclear division and decreased the time of phase progression from G1 to S during appressorium development. S. cerevisiae GTPase Tem1p is the downstream target of the Bub2p/Bfa1p GAP complex. Introducing the dominant-negative form of Co Tem1 into Co bub2Δ or Co bfa1Δ complemented the defect in G1/S progression, indicating that Co Bub2/Co Bfa1 regulates G1/S progression via Co Tem1. Based on a pathogenicity assay, we found that Co bub2Δ and Co bfa1Δ reduced pathogenesis by attenuating infection-related morphogenesis and enhancing the plant defense response. Thus, during appressorium development, C. orbiculare Bub2/Bfa1 regulates G1/S progression via Co Tem1, and this regulation is essential to establish plant infection. PMID:26320225

  5. The Effects of Site Conditions and Mitigation Practices on Success of Establishing the Valley Elderberry Longhorn Beetle and Its Host Plant, Blue Elderberry

    NASA Astrophysics Data System (ADS)

    Holyoak, Marcel; Koch-Munz, Molly

    2008-09-01

    This study performed the first systematic evaluation of the success of habitat mitigation at establishing the threatened Valley elderberry longhorn beetle ( Desmocerus californicus dimorphus) and its host plant, blue elderberry ( Sambucus mexicana). Habitat mitigation performed through enforcement of the U.S. Endangered Species Act represents a tightly controlled form of habitat restoration, facilitating the evaluation of restoration practice. Restoration plantings of blue elderberry have been substantial in our study area, the Central Valley of California. Surveys of 30 mitigation sites and 16 nearby natural sites showed that mitigation sites were a fraction of the size of natural habitat areas (mean = 24%) and contained smaller shrubs. The beetle colonized 53% of mitigation sites and its populations were denser in sites with moderate levels of dead stems on elderberry shrubs, and moderate damage to elderberry stems and bark. This likely indicates that the beetle responds to stressed shrubs, which are likely to contain elevated levels of nitrogen. Beetle density also increased with the size and age of mitigation sites. This indicates a need to make restoration sites as large as possible and to monitor these sites for longer than current guidelines suggest, thereby allowing more time for convergence of natural and mitigation sites. Few factors examined here directly influenced the growth of elderberry shrubs, but elderberry grew more rapidly in sites closer to riparian areas, indicating that such sites should be favored for mitigation sites.

  6. Feasibility studies to establish at the Kazakhstan Ulba metallurgical plant the manufacturing capability to produce low-enriched uranium certified reference materials

    SciTech Connect

    Kuzminski, Jozef; Nesuhoff, J; Cratto, P; Pfennigwerth, G; Mikhailenko, A; Maliutina, I; Nations, J

    2009-01-01

    One of the salient features of the transition plan that the United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) is presently implementing in the Former Soviet Union countries is the availability of uranium certified reference materials for calibration of nondestructive assay (NDA) measurement equipment. To address this challenge, DOE/NNSA and U.S. national laboratories have focused their cooperative efforts on establishing a reliable source for manufacturing, certifying, and supplying of such standards. The Ulba Metallurgical Plant (UMP), Kazakhstan, which processes large quantities of low-enriched uranium to produce ceramic fuel pellets for nuclear-powered reactors, is well situated to become a key supplier of low-enriched uranium certified reference materials for the country and Central Asia region. We have recently completed Phase I of a feasibility study to establish at UMP capabilities of manufacturing these standards. In this paper we will discuss details of a proposed methodology for uranium down-blending, material selection and characterization, and a proposed methodology of measurement by destructive (DA) and non-destructive (NDA) analysis to form a database for material certification by the competent State authorities in the Republic of Kazakhstan. In addition, we will discuss the prospect for manufacturing of such standards at UMP.

  7. Pregnancy rates and corpus luteum-related factors affecting pregnancy establishment in bovine recipients synchronized for fixed-time embryo transfer.

    PubMed

    Siqueira, L G B; Torres, C A A; Souza, E D; Monteiro, P L J; Arashiro, E K N; Camargo, L S A; Fernandes, C A C; Viana, J H M

    2009-10-15

    The objective was to investigate the influence of corpora lutea physical and functional characteristics on pregnancy rates in bovine recipients synchronized for fixed-time embryo transfer (FTET). Crossbred (Bos taurus taurus x Bos taurus indicus) nonlactating cows and heifers (n=259) were treated with the following protocol: 2mg estradiol benzoate (EB) plus an intravaginal progesterone device (CIDR 1.9g progesterone; Day 0); 400 IU equine chorionic gonadotropin (eCG; Day 5); prostaglandin F(2alpha) (PGF(2alpha)) and CIDR withdrawal (Day 8); and 1mg EB (Day 9). Ovarian ultrasonography and blood sample collections were performed on Day 17. Of the 259 cattle initially treated, 197 (76.1%) were suitable recipients; they received a single, fresh, quality grade 1 or 2 in vivo-derived (n=90) or in vitro-produced (n=87) embryo on Day 17. Pregnancy rates (23 d after embryo transfer) were higher for in vivo-derived embryos than for in vitro-produced embryos (58.8% vs. 31.0%, respectively; P<0.001). Mean (+/-SD) plasma progesterone (P(4)) concentration was higher in cattle that became pregnant than that in nonpregnant cattle (5.2+/-5.0 vs. 3.8+/-2.4 ng/mL; P=0.02). Mean pixel values (71.8+/-1.3 vs. 71.2+/-1.1) and pixel heterogeneity (14.8+/-0.3 vs. 14.5+/-0.5) were similar between pregnant and nonpregnant recipients (P>0.10). No significant relationship was detected between pregnancy outcome and plasma P(4), corpus luteum area, or corpus luteum echotexture. Embryo type, however, affected the odds of pregnancy. In conclusion, corpus luteum-related traits were poor predictors of pregnancy in recipients. The type of embryo, however, was a major factor affecting pregnancy outcome. PMID:19709722

  8. Patchy Distributions of Competitors Affect the Growth of a Clonal Plant When the Competitor Density Is High

    PubMed Central

    Xue, Wei; Huang, Lin; Dong, Bi-Cheng; Zhang, Ming-Xiang; Yu, Fei-Hai

    2013-01-01

    Environments are patchy in not only abiotic factors but also biotic ones. Many studies have examined effects of spatial heterogeneity in abiotic factors such as light, water and nutrients on the growth of clonal plants, but few have tested those in biotic factors. We conducted a greenhouse experiment to examine how patchy distributions of competitors affect the growth of a rhizomatous wetland plant Bolboschoenus planiculmis and whether such effects depend on the density of the competitors. We grew one ramet of B. planiculmis in the center of each of the experimental boxes without competitors (Schoenoplectus triqueter), with a homogeneous distribution of the competitors of low or high density, and with a patchy distribution of the competitors of low or high density. The presence of competitors markedly decreased the growth (biomass, number of ramets, number of tubers and rhizome length) of the B. planiculmis clones. When the density of the competitors was low, the growth of B. planiculmis did not differ significantly between the competitor patches and competitor-free patches. However, when the density of the competitors was high, the growth of B. planiculmis was significantly higher in the competitor-free patches than in the competitor patches. Therefore, B. planiculmis can respond to patchy distributions of competitors by placing more ramets in competition-free patches when the density of competitors is high, but cannot do so when the density of competitors is low. PMID:24205165

  9. Do selenium hyperaccumulators affect selenium speciation in neighboring plants and soil? An X-Ray Microprobe Analysis.

    PubMed

    El Mehdawi, Ali F; Lindblom, Stormy D; Cappa, Jennifer J; Fakra, Sirine C; Pilon-Smits, Elizabeth A H

    2015-01-01

    Neighbors of Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus were found earlier to have elevated Se levels. Here we investigate whether Se hyperaccumulators affect Se localization and speciation in surrounding soil and neighboring plants. X-ray fluorescence mapping and X-ray absorption near-edge structure spectroscopy were used to analyze Se localization and speciation in leaves of Artemisia ludoviciana, Symphyotrichum ericoides and Chenopodium album growing next to Se hyperaccumulators or non-accumulators at a seleniferous site. Regardless of neighbors, A. ludoviciana, S. ericoides and C. album accumulated predominantly (73-92%) reduced selenocompounds with XANES spectra similar to the C-Se-C compounds selenomethionine and methyl-selenocysteine. Preliminary data indicate that the largest Se fraction (65-75%), both in soil next to hyperaccumulator S. pinnata and next to nonaccumulator species was reduced Se with spectra similar to C-Se-C standards. These same C-Se-C forms are found in hyperaccumulators. Thus, hyperaccumulator litter may be a source of organic soil Se, but soil microorganisms may also contribute. These findings are relevant for phytoremediation and biofortification since organic Se is more readily accumulated by plants, and more effective for dietary Se supplementation. PMID:26030363

  10. Bromus tectorum and native grass establishment under drought and warming in sagebrush steppe after fire

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire and climate change are two important drivers of desert plant communities. Changes in precipitation and temperature due to climate change will create novel environmental conditions that will likely affect post-fire plant establishment, invasions, and eventually alter plant community assemblages....

  11. National Institutes of Health (NIH) Chronic GVHD Staging in Severely Affected Patients: Organ and Global Scoring Correlate with Established Indicators of Disease Severity and Prognosis

    PubMed Central

    Baird, K.; Steinberg, S.M.; Grkovic, L.; Pulanic, D.; Cowen, E.W.; Mitchell, S.A.; Williams, K.M.; Datiles, M.B.; Bishop, R.; Bassim, C.W.; Mays, J.W.; Edwards, D.; Cole, K.; Avila, D.N.; Taylor, T.; Urban, A.; Joe, G.O.; Comis, L.E.; Berger, A.; Stratton, P.; Zhang, D.; Shelhamer, J.H.; Gea-Banacloche, J.C.; Sportes, C.; Fowler, D.H.; Gress, R.E.; Pavletic, S.Z.

    2013-01-01

    Between 2004 and 2010, 189 adult patients were enrolled on the National Cancer Institute (NCI) cross-sectional chronic Graft-versus-Host disease (cGVHD) natural history study. Patients were evaluated by multiple disease scales and outcome measures including the 2005 NIH Consensus Project cGVHD severity score. The purpose of this study is to assess the validity of the NIH scoring variables as determinants of disease severity in severely affected patients in order to standardize clinician evaluation and staging of cGVHD. 125 of 189 patients met criteria for severe cGVHD on the NIH global score and 62 had moderate disease, with a median of 4 (range 1–8) involved organs. Clinician average NIH organ score and the corresponding organ scores performed by subspecialists were highly correlated (r=0.64). NIH global severity scores showed significant associations with nearly all functional and quality of life outcome measures including Lee Scale, SF-36 Physical Component Scale (PCS), 2 minutes walk, grip strength, range of motion and Human Activity Profile (HAP). Joints/fascia, skin, and lung involvement impacted function and quality of life most significantly and showed highest number of correlations with outcome measures. The final Cox model showing factors jointly predictive for survival contained the time from cGVHD diagnosis (>49 vs. ≤49 months, HR=0.23; p=0.0011), absolute eosinophil count of (0–0.5 vs. >0.5 cells/µL, HR=3.95; p=0.0006) at the time of NIH evaluation, and NIH lung score (3 vs. 0–2, HR=11.02; p <0.0001). These results demonstrate that NIH organs and global severity scores are reliable measures of cGVHD disease burden. Strong association with subspecialist evaluation suggests that NIH organs and global severity scores are appropriate for clinical and research assessments, and may serve as a surrogate for more complex sub-specialist exams. In this population of severely affected patients, NIH lung score is the strongest predictor of poor overall

  12. New analytical technique for establishing the quality of Soil Organic Matter affected by a wildfire. A first approach using Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; González-Pérez, José A.; Waggoner, Derek C.; Almendros, Gonzalo; González-Vila, Francisco J.; Hatcher, Patrick G.

    2016-04-01

    Introduction: Fire is one of the most important modulator factors of the environment and the forest. It is able to induce chemical and biological shifts and these, in turn, can alter the physical properties of soil. Generally, fire affects the most reactive fraction, soil organic matter (SOM) (González-Pérez et al., 2004) resulting in changes to several soil properties and functions. To study changes in SOM following a wildfire, researchers can count on several traditional as well as new analytical techniques. One of the most recently employed techniques is Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). This new powerful ultra-high resolution mass spectral technique, together with graphic interpretation tools such as van Krevelen diagrams (Kim et al, 2003), may be used to shed light on alterations caused by the burning of SOM. The objective of this research is to study fire impacts on SOM, using a sandy soil collected under a Cork oak (Quercus suber) in Doñana National Park, Southwest Spain. that was affected by a wildfire in August 2012. Methods: The impact of fire on SOM was studied in various different sieve fractions (coarse, 1-2 mm, and fine, <0.05 mm) collected in a burned area and an adjacent unburned control site with the same physiographic conditions. Alkaline extracts of SOM from each soil sample were examined using a Bruker Daltonics 12 Tesla Apex Qe FT-ICR-MS equipped with an Apollo II ESI ion source (operating in negative ion mode). The ESI voltages were optimized for each sample, and all spectra were internally calibrated following the procedure of (Sleighter and Hatcher, 2007), after which, peaks were assigned unique molecular formulas using a MatLab script written in house by Dr. Wassim Obeid of Old Dominion University. Results: The van Krevelen diagrams together with the relative intensity of each chemical compound, both obtained by FT-ICR-MS, allowed us to assess SOM quality for each sample and size fractions. The

  13. New analytical technique for establishing the quality of Soil Organic Matter affected by a wildfire. A first approach using Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; González-Pérez, José A.; Waggoner, Derek C.; Almendros, Gonzalo; González-Vila, Francisco J.; Hatcher, Patrick G.

    2016-04-01

    Introduction: Fire is one of the most important modulator factors of the environment and the forest. It is able to induce chemical and biological shifts and these, in turn, can alter the physical properties of soil. Generally, fire affects the most reactive fraction, soil organic matter (SOM) (González-Pérez et al., 2004) resulting in changes to several soil properties and functions. To study changes in SOM following a wildfire, researchers can count on several traditional as well as new analytical techniques. One of the most recently employed techniques is Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). This new powerful ultra-high resolution mass spectral technique, together with graphic interpretation tools such as van Krevelen diagrams (Kim et al, 2003), may be used to shed light on alterations caused by the burning of SOM. The objective of this research is to study fire impacts on SOM, using a sandy soil collected under a Cork oak (Quercus suber) in Doñana National Park, Southwest Spain. that was affected by a wildfire in August 2012. Methods: The impact of fire on SOM was studied in various different sieve fractions (coarse, 1-2 mm, and fine, <0.05 mm) collected in a burned area and an adjacent unburned control site with the same physiographic conditions. Alkaline extracts of SOM from each soil sample were examined using a Bruker Daltonics 12 Tesla Apex Qe FT-ICR-MS equipped with an Apollo II ESI ion source (operating in negative ion mode). The ESI voltages were optimized for each sample, and all spectra were internally calibrated following the procedure of (Sleighter and Hatcher, 2007), after which, peaks were assigned unique molecular formulas using a MatLab script written in house by Dr. Wassim Obeid of Old Dominion University. Results: The van Krevelen diagrams together with the relative intensity of each chemical compound, both obtained by FT-ICR-MS, allowed us to assess SOM quality for each sample and size fractions. The

  14. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants

    PubMed Central

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A. M.; Voesenek, Laurentius A. C. J.; Pierik, Ronald

    2015-01-01

    Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’. Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments. Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’. Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions

  15. Zinc treatment increases the titre of ‘Candidatus Liberibacter asiaticus’ in Huanglongbing-affected citrus plants while affecting the bacterial microbiomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (HLB)-affected citrus often display zinc deficiency symptoms. In this study, supplemental zinc was applied to citrus to determine its effect on Candidatus Liberibacter asiaticus (Las) titer, HLB symptoms, and leaf microbiome. HLB-affected citrus were treated with various amounts of zi...

  16. Zinc treatment increases the titer of ‘Candidatus’ Liberibacter asiaticus’ in HLB-affected citrus plants while affecting the bacterial microbiomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (HLB)-affected citrus often display zinc deficiency symptoms. In this study, supplemental zinc was applied to citrus to determine its effect on Candidatus Liberibacter asiaticus (Las) titer, HLB symptoms, and leaf microbiome. HLB-affected citrus were treated with various amounts of zi...

  17. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    PubMed

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. PMID:27448724

  18. Effective antibiotics against 'Candidatus Liberibacter asiaticus' in HLB-affected citrus plants identified via the graft-based evaluation.

    PubMed

    Zhang, Muqing; Guo, Ying; Powell, Charles A; Doud, Melissa S; Yang, Chuanyu; Duan, Yongping

    2014-01-01

    Citrus huanglongbing (HLB), caused by three species of fastidious, phloem-limited 'Candidatus Liberibacter', is one of the most destructive diseases of citrus worldwide. To date, there is no established cure for this century-old and yet, newly emerging disease. As a potential control strategy for citrus HLB, 31 antibiotics were screened for effectiveness and phytotoxicity using the optimized graft-based screening system with 'Candidatus Liberibacter asiaticus' (Las)-infected citrus scions. Actidione and Oxytetracycline were the most phytotoxic to citrus with less than 10% of scions surviving and growing; therefore, this data was not used in additional analyses. Results of principal component (PCA) and hierarchical clustering analyses (HCA) demonstrated that 29 antibiotics were clustered into 3 groups: highly effective, partly effective, and not effective. In spite of different modes of actions, a number of antibiotics such as, Ampicillin, Carbenicillin, Penicillin, Cefalexin, Rifampicin and Sulfadimethoxine were all highly effective in eliminating or suppressing Candidatus Liberibacter asiaticus indicated by both the lowest Las infection rate and titers of the treated scions and inoculated rootstock. The non-effective group, including 11 antibiotics alone with three controls, such as Amikacin, Cinoxacin, Gentamicin, Kasugamycin, Lincomycin, Neomycin, Polymixin B and Tobramycin, did not eliminate or suppress Las in the tested concentrations, resulting in plants with increased titers of Las. The other 12 antibiotics partly eliminated or suppressed Las in the treated and graft-inoculated plants. The effective and non-phytotoxic antibiotics could be potential candidates for control of citrus HLB, either for the rescue of infected citrus germplasm or for restricted field application. PMID:25372135

  19. Oxidative damage of workers in secondary metal recovery plants affected by smoking status and joining the smelting work.

    PubMed

    Chia, Taipau; Hsu, Ching Yi; Chen, Hsiu Ling

    2008-04-01

    In Taiwan, secondary copper smelters and zinc recovery plants primarily utilize recovering metal from scrap and dross, and handles mostly fly ash and slag with high temperature to produce ZnO from the iron and steel industry. The materials may contain organic impurities, such as plastic and organic chloride chemicals, and amounts of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are produced during the smelting process. Therefore, secondary metal recovery industries are major emission sources of PCDD/Fs, which may have been demonstrated to elicit oxidative stress and to involve the production of plasma malondialdehyde (MDA). Many studies have also indicated that the intake of antioxidants, smoking, age and exposure to environmental pollutants may be implicated to DNA damage or lipid peroxidation. This study therefore aims to elucidate the roles of occupational exposure like joining the smelting work, age, smoking and alcohol status, and antioxidant intake on oxidative damage in secondary metal recovery workers in Taiwan. 73 workers were recruited from 2 secondary metal recovery plants. The analysis of 8-hydroxydeoxyguanosine (8-OH-dG) in urine, DNA strand breakage (comet assay) and lipid peroxidation (MDA) in blood samples were completed for all of the workers. The results showed that the older subjects exhibited significantly lower levels of 8-OH-dG and MDA than younger subjects. Our investigation also showed that working departments were in related to plasma MDA and DNA strand breakage levels of nonsmokers, however, the observation become negligible in smokers. And it is implicated that cigarette type might affect 8-OH-dG levels in secondary metal recovery workers. Since, adding to results above, the MDA level in production workers was significantly higher than those in managerial departments, it is important for the employers to make efforts on improving occupational environments or serving protective equipments to protect workers

  20. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J.

    1997-02-01

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  1. Consuming functional foods enriched with plant sterol or stanol esters for 85 weeks does not affect neurocognitive functioning or mood in statin-treated hypercholesterolemic individuals.

    PubMed

    Schiepers, Olga J G; de Groot, Renate H M; van Boxtel, Martin P J; Jolles, Jelle; de Jong, Ariënne; Lütjohann, Dieter; Plat, Jogchum; Mensink, Ronald P

    2009-07-01

    Recent animal and human studies have shown that plant sterols and stanols, which are used as functional food ingredients to lower increased LDL cholesterol concentrations, pass the blood-brain barrier. Whether this affects neurocognitive functioning and mental well-being in humans has, to our knowledge, never been investigated. The aim of the present study was therefore to examine the effects of long-term plant sterol or stanol consumption on neurocognitive functioning and mood in a randomized, double-blind, placebo-controlled dietary intervention trial. To this end, hypercholesterolemic individuals, aged 43-69 y, receiving stable statin treatment were randomly assigned to an 85-wk supplementation with margarines enriched with plant sterol esters (2.5 g/d), plant stanol esters (2.5 g/d), or placebo. At baseline and at the end of the intervention period, all participants underwent a cognitive assessment. In addition, subjective cognitive functioning and mood were assessed by means of questionnaires (Cognitive Failure Questionnaire and depression subscale of the Symptom Checklist 90, respectively). Long-term supplementation with plant sterol or stanol esters did not affect cognitive performance (memory, simple information processing speed, complex information processing speed, Letter-Digit Substitution test performance), subjective cognitive functioning, or mood. In conclusion, the present results indicate that long-term use of plant sterols or stanols at recommended intakes of 2.5 g/d does not affect neurocognitive functioning or mood in hypercholesterolemic individuals receiving statin treatment. PMID:19458031

  2. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake.

    PubMed

    Vandecasteele, Bart; Sinicco, Tania; D'Hose, Tommy; Vanden Nest, Thijs; Mondini, Claudio

    2016-03-01

    We investigated the use of biochar (10% on a dry weight basis) to improve the composting process and/or the compost quality by adding it to either the feedstock mixture or the mature compost. The addition of biochar to the feedstocks was essayed in a full scale trial using a mixture of green waste and the organic fraction of municipal solid waste. Addition of biochar to mature compost was performed in a medium scale experiment. The use of biochar, even in small amounts, changed the composting process and the properties of the end products. However these effects depended on the time of application. We observed a faster decomposition in the bio-oxidative phase and lower greenhouse gas emissions when biochar was added at the beginning of the composting process, and a reduction in readily available P when biochar was applied during compost storage. Biochar as a means to increase the C content of the compost was only effective during compost storage. The P fertilizer replacement value of the compost with and without biochar was tested in a plant trial with annual ryegrass. While there was a clear effect on readily available P concentrations in the compost, adding biochar to the feedstock or the compost did not affect the P fertilizer replacement value. PMID:26708650

  3. Factors affecting plant diversity during post-fire recovery and succession of mediterranean-climate shrublands in California, USA

    USGS Publications Warehouse

    Keeley, J.E.; Fotheringham, C.J.; Baer-Keeley, M.

    2005-01-01

    Plant community diversity, measured as species richness, is typically highest in the early post-fire years in California shrublands. However, this generalization is overly simplistic and the present study demonstrates that diversity is determined by a complex of temporal and spatial effects. Ninety sites distributed across southern California were studied for 5 years after a series of fires. Characteristics of the disturbance event, in this case fire severity, can alter post-fire diversity, both decreasing and increasing diversity, depending on life form. Spatial variability in resource availability is an important factor explaining patterns of diversity, and there is a complex interaction between landscape features and life form. Temporal variability in resource availability affects diversity, and the diversity peak in the immediate post-fire year (or two) appears to be driven by factors different from subsequent diversity peaks. Early post-fire diversity is influenced by life-history specialization, illustrated by species that spend the bulk of their life cycle as a dormant seed bank, which is then triggered to germinate by fire. Resource fluctuations, precipitation in particular, may be associated with subsequent post-fire diversity peaks. These later peaks in diversity comprise a flora that is compositionally different from the immediate post-fire flora, and their presence may be due to mass effects from population expansion of local populations in adjacent burned areas. ?? 2005 Blackwell Publishing Ltd.

  4. Gibberellins regulate the stem elongation rate without affecting the mature plant height of a quick development mutant of winter wheat (Triticum aestivum L.).

    PubMed

    Zhang, Ning; Xie, Yong-Dun; Guo, Hui-Jun; Zhao, Lin-Shu; Xiong, Hong-Chun; Gu, Jia-Yu; Li, Jun-Hui; Kong, Fu-Quan; Sui, Li; Zhao, Zi-Wei; Zhao, Shi-Rong; Liu, Lu-Xiang

    2016-10-01

    Gibberellin (GA) is essential for determining plant height. Alteration of GA content or GA signaling results in a dwarf or slender phenotype. Here, we characterized a novel wheat mutant, quick development (qd), in which GA regulates stem elongation but does not affect mature plant height. qd and wild-type plants did not exhibit phenotypic differences at the seedling stage. From jointing to heading stage, qd plants were taller than wild-type plants due to elongated cells. However, wild-type and qd plants were the same height at heading. Unlike wild-type plants, qd plants were sensitive to exogenous GA due to mutation of Rht-B1. With continuous GA stimulation, qd seedlings and adult plants were taller than wild-type. Thus, the GA content of qd plants might differ from that of wild-type during the growth process. Analysis of GA biosynthetic gene expression verified this hypothesis and showed that TaKAO, which is involved in catalyzing the early steps of GA biosynthesis, was differentially expressed in qd plants compared with wild-type. The bioactive GA associated gene TaGA20ox was downregulated in qd plants during the late growth stages. Measurements of endogenous GA content were consistent with the gene-expression analysis results. Consistent with the GA content variation, the first three basal internodes were longer and the last two internodes were shorter in qd than in wild-type plants. The qd mutant might be useful in dissecting the mechanism by which GA regulates stem-growing process, and it may be serve as a GA responsive semi-dwarf germplasm in breeding programs. PMID:27317908

  5. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem.

    PubMed

    David, Aaron S; Seabloom, Eric W; May, Georgiana

    2016-05-01

    Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes--fungi living asymptomatically within plants--to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities. PMID:26626912

  6. A trial of production of the plant-derived high-value protein in a plant factory: photosynthetic photon fluxes affect the accumulation of recombinant miraculin in transgenic tomato fruits.

    PubMed

    Kato, Kazuhisa; Maruyama, Shinichiro; Hirai, Tadayoshi; Hiwasa-Tanase, Kyoko; Mizoguchi, Tsuyoshi; Goto, Eiji; Ezura, Hiroshi

    2011-08-01

    One of the ultimate goals of plant science is to test a hypothesis obtained by basic science and to apply it to agriculture and industry. A plant factory is one of the ideal systems for this trial. Environmental factors affect both plant yield and the accumulation of recombinant proteins for industrial applications within transgenic plants. However, there have been few reports studying plant productivity for recombinant protein in closed cultivation systems called plant factories. To investigate the effects of photosynthetic photon flux (PPF) on tomato fruit yield and the accumulation of recombinant miraculin, a taste-modifying glycoprotein, in transgenic tomato fruits, plants were cultivated at various PPFs from 100 to 400 (µmol m(-2) s(-)1) in a plant factory. Miraculin production per unit of energy used was highest at PPF100, although miraculin production per unit area was highest at PPF300. The commercial productivity of recombinant miraculin in transgenic tomato fruits largely depended on light conditions in the plant factory. Our trial will be useful to consider the trade-offs between the profits from production of high-value materials in plants and the costs of electricity. PMID:21791976

  7. Reproductive allocation in plants as affected by elevated carbon dioxide and other environmental changes: a synthesis using meta-analysis and graphical vector analysis.

    PubMed

    Wang, Xianzhong; Taub, Daniel R; Jablonski, Leanne M

    2015-04-01

    Reproduction is an important life history trait that strongly affects dynamics of plant populations. Although it has been well documented that elevated carbon dioxide (CO2) in the atmosphere greatly enhances biomass production in plants, the overall effect of elevated CO2 on reproductive allocation (RA), i.e., the proportion of biomass allocated to reproductive structures, is little understood. We combined meta-analysis with graphical vector analysis to examine the overall effect of elevated CO2 on RA and how other environmental factors, such as low nutrients, drought and elevated atmospheric ozone (O3), interacted with elevated CO2 in affecting RA in herbaceous plants. Averaged across all species of different functional groups and environmental conditions, elevated CO2 had little effect on RA (-0.9%). RA in plants of different reproductive strategies and functional groups, however, differed in response to elevated CO2. For example, RA in iteroparous wild species decreased by 8%, while RA in iteroparous crops increased significantly (+14%) at elevated CO2. RA was unaffected by CO2 in plants grown with no stress or in low-nutrient soils. RA decreased at elevated CO2 and elevated O3, but increased in response to elevated CO2 in drought-stressed plants, suggesting that elevated CO2 could ameliorate the adverse effect of drought on crop production to some extent. Our results demonstrate that elevated CO2 and other global environmental changes have the potential to greatly alter plant community composition through differential effects on RA of different plant species and thus affect the dynamics of natural and agricultural ecosystems in the future. PMID:25537120

  8. Feasibility of using an alternative larval host and host plants to establish Cotesia flavipes (Hymenoptera: Braconidae) in the temperate Louisiana sugarcane ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although successfully introduced and established in sugarcane fields around the world, attempts to establish Cotesia flavipes (Cameron) (Hymenoptera: Bracondiae) in the temperate sugarcane fields of Louisiana as a parasitoid of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae) ...

  9. Establishing and Managing Switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Care should be taken in selecting switchgrass varieties, using only those specifically adapted to the region of interest. Good establishment practices include using high quality seed, an appropriate seeding rate, a well-prepared seedbed, cultipacking after planting, and both pre- and post-emergence...

  10. Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum ssp. brasiliense via quorum sensing regulation.

    PubMed

    Joshi, Janak Raj; Burdman, Saul; Lipsky, Alexander; Yariv, Shaked; Yedidia, Iris

    2016-05-01

    Several studies have reported effects of the plant phenolic acids cinnamic acid (CA) and salicylic acid (SA) on the virulence of soft rot enterobacteria. However, the mechanisms involved in these processes are not yet fully understood. Here, we investigated whether CA and SA interfere with the quorum sensing (QS) system of two Pectobacterium species, P. aroidearum and P. carotovorum ssp. brasiliense, which are known to produce N-acyl-homoserine lactone (AHL) QS signals. Our results clearly indicate that both phenolic compounds affect the QS machinery of the two species, consequently altering the expression of bacterial virulence factors. Although, in control treatments, the expression of QS-related genes increased over time, the exposure of bacteria to non-lethal concentrations of CA or SA inhibited the expression of QS genes, including expI, expR, PC1_1442 (luxR transcriptional regulator) and luxS (a component of the AI-2 system). Other virulence genes known to be regulated by the QS system, such as pecS, pel, peh and yheO, were also down-regulated relative to the control. In agreement with the low levels of expression of expI and expR, CA and SA also reduced the level of the AHL signal. The effects of CA and SA on AHL signalling were confirmed in compensation assays, in which exogenous application of N-(β-ketocaproyl)-l-homoserine lactone (eAHL) led to the recovery of the reduction in virulence caused by the two phenolic acids. Collectively, the results of gene expression studies, bioluminescence assays, virulence assays and compensation assays with eAHL clearly support a mechanism by which CA and SA interfere with Pectobacterium virulence via the QS machinery. PMID:26177258

  11. Consequences of the trans-Atlantic slave trade on medicinal plant selection: plant use for cultural bound syndromes affecting children in Suriname and Western Africa.

    PubMed

    Vossen, Tessa; Towns, Alexandra; Ruysschaert, Sofie; Quiroz, Diana; van Andel, Tinde

    2014-01-01

    Folk perceptions of health and illness include cultural bound syndromes (CBS), ailments generally confined to certain cultural groups or geographic regions and often treated with medicinal plants. Our aim was to compare definitions and plant use for CBS regarding child health in the context of the largest migration in recent human history: the trans-Atlantic slave trade. We compared definitions of four CBS (walk early, evil eye, atita and fontanels) and associated plant use among three Afro-Surinamese populations and their African ancestor groups in Ghana, Bénin and Gabon. We expected plant use to be similar on species level, and assumed the majority to be weedy or domesticated species, as these occur on both continents and were probably recognized by enslaved Africans. Data were obtained by identifying plants mentioned during interviews with local women from the six different populations. To analyse differences and similarities in plant use we used Detrended Component Analysis (DCA) and a Wald Chi-square test. Definitions of the four cultural bound syndromes were roughly the same on both continents. In total, 324 plant species were used. There was little overlap between Suriname and Africa: 15 species were used on two continents, of which seven species were used for the same CBS. Correspondence on family level was much higher. Surinamese populations used significantly more weedy species than Africans, but equal percentages of domesticated plants. Our data indicate that Afro-Surinamers have searched for similar plants to treat their CBS as they remembered from Africa. In some cases, they have found the same species, but they had to reinvent the largest part of their herbal pharmacopeia to treat their CBS using known plant families or trying out new species. Ideas on health and illness appear to be more resilient than the use of plants to treat them. PMID:25372485

  12. Consequences of the Trans-Atlantic Slave Trade on Medicinal Plant Selection: Plant Use for Cultural Bound Syndromes Affecting Children in Suriname and Western Africa

    PubMed Central

    Vossen, Tessa; Towns, Alexandra; Ruysschaert, Sofie; Quiroz, Diana; van Andel, Tinde

    2014-01-01

    Folk perceptions of health and illness include cultural bound syndromes (CBS), ailments generally confined to certain cultural groups or geographic regions and often treated with medicinal plants. Our aim was to compare definitions and plant use for CBS regarding child health in the context of the largest migration in recent human history: the trans-Atlantic slave trade. We compared definitions of four CBS (walk early, evil eye, atita and fontanels) and associated plant use among three Afro-Surinamese populations and their African ancestor groups in Ghana, Bénin and Gabon. We expected plant use to be similar on species level, and assumed the majority to be weedy or domesticated species, as these occur on both continents and were probably recognized by enslaved Africans. Data were obtained by identifying plants mentioned during interviews with local women from the six different populations. To analyse differences and similarities in plant use we used Detrended Component Analysis (DCA) and a Wald Chi-square test. Definitions of the four cultural bound syndromes were roughly the same on both continents. In total, 324 plant species were used. There was little overlap between Suriname and Africa: 15 species were used on two continents, of which seven species were used for the same CBS. Correspondence on family level was much higher. Surinamese populations used significantly more weedy species than Africans, but equal percentages of domesticated plants. Our data indicate that Afro-Surinamers have searched for similar plants to treat their CBS as they remembered from Africa. In some cases, they have found the same species, but they had to reinvent the largest part of their herbal pharmacopeia to treat their CBS using known plant families or trying out new species. Ideas on health and illness appear to be more resilient than the use of plants to treat them. PMID:25372485

  13. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of plant defenses in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant defense responses have been studied through a limited number of models that may have constrained our view of plant-pathogen interactions. Discovery of new defense mechanisms should be favored by broadening the range of pathogens under study. With this aim, Arabidopsis defense response to the ‘...

  14. Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis.

    PubMed

    Doubková, Pavla; Sudová, Radka

    2014-04-01

    Serpentine soils have naturally elevated concentrations of certain heavy metals, including nickel. This study addressed the role of plant origin (serpentine vs. non-serpentine) and symbiosis with arbuscular mycorrhizal fungi (AMF) in plant Ni tolerance. A semi-hydroponic experiment involving three levels of Ni and serpentine and non-serpentine AMF isolates and populations of a model plant species (Knautia arvensis) revealed considerable negative effects of elevated Ni availability on both plant and fungal performance. Plant growth response to Ni was independent of edaphic origin; however, higher Ni tolerance of serpentine plants was indicated by a smaller decline in the concentrations of photosynthetic pigments and restricted root-to-shoot Ni translocation. Serpentine plants also retained relatively more Mg in their roots, resulting in a higher shoot Ca/Mg ratio. AMF inoculation, especially with the non-serpentine isolate, further aggravated Ni toxicity to host plants. Therefore, AMF do not appear to be involved in Ni tolerance of serpentine K. arvensis plants. PMID:24136374

  15. Experimental defoliation affects male but not female reproductive performance of the tropical monoecious plant Croton suberosus (Euphorbiaceae)

    PubMed Central

    Narbona, Eduardo; Dirzo, Rodolfo

    2010-01-01

    Background and Aims Monoecious plants have the capacity to allocate resources separately to male and female functions more easily than hermaphrodites. This can be advantageous against environmental stresses such as leaf herbivory. However, studies showing effects of herbivory on male and female functions and on the interaction with the plant's pollinators are limited, particularly in tropical plants. Here, the effects of experimental defoliation were examined in the monoecious shrub Croton suberosus (Euphorbiaceae), a wasp-pollinated species from a Mexican tropical dry forest. Methods Three defoliation treatments were applied: 0 % (control), 25 % (low) or 75 % (high) of plant leaf area removed. Vegetative (production of new leaves) and reproductive (pistillate and staminate flower production, pollen viability, nectar production, fruit set, and seed set) performance variables, and the abundance and activity of floral visitors were examined. Key Results Defoliated plants overcompensated for tissue loss by producing more new leaves than control plants. Production of staminate flowers gradually decreased with increasing defoliation and the floral sex ratio (staminate : pistillate flowers) was drastically reduced in high-defoliation plants. In contrast, female reproductive performance (pistillate flower production, fruit set and seed set) and pollinator visitation and abundance were not impacted by defoliation. Conclusions The asymmetrical effects of defoliation on male and female traits of C. suberosus may be due to the temporal and spatial flexibility in the allocation of resources deployed by monoecious plants. We posit that this helps to maintain the plant's pollination success in the face of leaf herbivory stress. PMID:20519239

  16. Mycorrhizal symbiosis in leeks increases plant growth under low phosphorus and affects the levels of specific flavonoid glycosides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction- Mycorrhizae symbiosis is a universal phenomenon in nature that promotes plant growth and food quality in most plants, especially, under phosphorus deficiency and water stress. Objective- The objective of this study was to assess the effects of mycorrhizal symbiosis on changes in the le...

  17. WHEAT LEAF RUST SEVERITY AS AFFECTED BY PLANT DENSITY AND SPECIES PROPORTION IN SIMPLE COMMUNITIES OF WHEAT AND WILD OATS

    EPA Science Inventory

    While it is generally accepted that dense stands of plants exacerbate epidermics caused by foliar pathogens, there is little experimental evidence to support this view. We grew model plant communities consisting of wheat and wild oats at different densities and proportions and ex...

  18. Salinity and Alkaline pH of Irrigation Water Affect Marigold Plants: I. Growth and Shoot Dry Weight Partitioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marigold, is one of the most popular annual ornamental plants. Both the short-statured cultivars (Tagetes patula L.) and the taller cultivars (T. erecta L.) are used as container plants, in landscape and garden settings. Tagetes erecta varieties make excellent cut and dried flowers for the florist...

  19. WHEAT LEAF RUST SEVERITY AS AFFECTED BY PLANT DENSITY AND SPECIES PROPORTION IN SIMPLE COMMUNITIES OF WHEAT AND WILD OATS

    EPA Science Inventory

    While it is generally accepted that dense stands of plants exacerbate epidemics caused by foliar pathogens, there is little experimental evidence to support this view. We grew model plant communities consisting of wheat and wild oats at different densities and proportions and exp...

  20. Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria×ananassa.

    PubMed

    Valentinuzzi, Fabio; Pii, Youry; Vigani, Gianpiero; Lehmann, Martin; Cesco, Stefano; Mimmo, Tanja

    2015-10-01

    Strawberries are a very popular fruit among berries, for both their commercial and economic importance, but especially for their beneficial effects for human health. However, their bioactive compound content is strictly related to the nutritional status of the plant and might be affected if nutritional disorders (e.g. Fe or P shortage) occur. To overcome nutrient shortages, plants evolved different mechanisms, which often involve the release of root exudates. The biochemical and molecular mechanisms underlying root exudation and its regulation are as yet still poorly known, in particular in woody crop species. The aim of this work was therefore to characterize the pattern of root exudation of strawberry plants grown in either P or Fe deficiency, by investigating metabolomic changes of root tissues and the expression of genes putatively involved in exudate extrusion. Although P and Fe deficiencies differentially affected the total metabolism, some metabolites (e.g. raffinose and galactose) accumulated in roots similarly under both conditions. Moreover, P deficiency specifically affected the content of galactaric acid, malic acid, lysine, proline, and sorbitol-6-phosphate, whereas Fe deficiency specifically affected the content of sucrose, dehydroascorbic acid, galactonate, and ferulic acid. At the same time, the citrate content did not change in roots under both nutrient deficiencies with respect to the control. However, a strong release of citrate was observed, and it increased significantly with time, being +250% and +300% higher in Fe- and P-deficient plants, respectively, compared with the control. Moreover, concomitantly, a significant acidification of the growth medium was observed in both treatments. Gene expression analyses highlighted for the first time that at least two members of the multidrug and toxic compound extrusion (MATE) transporter family and one member of the plasma membrane H(+)-ATPase family are involved in the response to both P and Fe

  1. Plant population size and isolation affect herbivory of Silene latifolia by the specialist herbivore Hadena bicruris and parasitism of the herbivore by parasitoids.

    PubMed

    Elzinga, Jelmer A; Turin, Hans; van Damme, Jos M M; Biere, Arjen

    2005-07-01

    Habitat fragmentation can affect levels of herbivory in plant populations if plants and herbivores are differentially affected by fragmentation. Moreover, if herbivores are top-down controlled by predators or parasitoids, herbivory may also be affected by differential effects of fragmentation on herbivores and their natural enemies. We used natural Silene latifolia populations to examine the effects of plant population size and isolation on the level of herbivory by the seed predating noctuid Hadena bicruris and the rate of parasitism of the herbivore by its parasitoids. In addition, we examined oviposition rate, herbivory and parasitism in differently sized experimental populations. In natural populations, the level of herbivory increased and the rate of parasitism decreased with decreasing plant population size and increasing degree of isolation. The number of parasitoid species also declined with decreasing plant population size. In the experimental populations, the level of herbivory was also higher in smaller populations, in accordance with higher oviposition rates, but was not accompanied by lower rates of parasitism. Similarly, oviposition rate and herbivory, but not parasitism rate, increased near the edges of populations. These results suggests that in this system with the well dispersing herbivore H. bicruris, habitat fragmentation increases herbivory of the plant through a behavioural response of the moth that leads to higher oviposition rates in fragmented populations with a reduced population size, increased isolation and higher edge-to-interior ratio. Although the rate of parasitism and the number of parasitoid species declined with decreasing population size in the natural populations, we argue that in this system it is unlikely that this decline made a major contribution to increased herbivory. PMID:15891816

  2. Soil microbial abundance, activity and diversity response in two different altitude-adapted plant communities affected by wildfire in Sierra Nevada National Park (Granada, Spain)

    NASA Astrophysics Data System (ADS)

    Bárcenas-Moreno, Gema; Zavala, Lorena; Jordan, Antonio; Bååth, Erland; Mataix-Beneyto, Jorge

    2013-04-01

    Plant communities can play an important role in fire severity and post-fire ecosystem recovery due to their role as combustible and different plant-soil microorganisms interactions. Possible differences induced by plant and microorganisms response after fire could affect the general ecosystem short and long-term response and its sustainability. The main objective of this work was the evaluation of the effect of wildfire on soil microbial abundance, activity and diversity in two different plant communities associated to different altitudes in Sierra Nevada National Park (Granada, Spain). Samples were collected in two areas located on the Sierra Nevada Mountain between 1700 and 2000 m above sea level which were affected by a large wildfire in 2005. Two samplings were carried out 8 and 20 months after fire and samples were collected in both burned and unburned (control) zones in each plant community area. Area A is located at 1700m and it is formed by Quercus rotundifolia forest while area B is located at 2000 m altitude and is composed of alpine vegetation formed by creeping bearing shrubs. Microbial biomass measured by Fumigation-Extraction method followed the same trend in both areas showing slight and no significant differences between burned and unburned area during the study period while viable and cultivable bacteria abundance were markedly higher in fire affected samples than in the control ones in both samplings. Viable and cultivable filamentous fungi had different behavior depending of plant vegetation community studied showing no differences between burned and unburned area in area A while was significantly higher in burned samples than in the control ones in area B. Microbial activity monitoring with soil microbial respiration appears to had been affected immediately after fire since microbial respiration was lower in burned samples from area A than in unburned one only 8 months after fire and no significant differences were observed between burned and

  3. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.

    PubMed

    Li, Fengcheng; Zhang, Mingliang; Guo, Kai; Hu, Zhen; Zhang, Ran; Feng, Yongqing; Yi, Xiaoyan; Zou, Weihua; Wang, Lingqiang; Wu, Changyin; Tian, Jinshan; Lu, Tiegang; Xie, Guosheng; Peng, Liangcai

    2015-05-01

    Rice is a major food crop with enormous biomass residue for biofuels. As plant cell wall recalcitrance basically decides a costly biomass process, genetic modification of plant cell walls has been regarded as a promising solution. However, due to structural complexity and functional diversity of plant cell walls, it becomes essential to identify the key factors of cell wall modifications that could not much alter plant growth, but cause an enhancement in biomass enzymatic digestibility. To address this issue, we performed systems biology analyses of a total of 36 distinct cell wall mutants of rice. As a result, cellulose crystallinity (CrI) was examined to be the key factor that negatively determines either the biomass enzymatic saccharification upon various chemical pretreatments or the plant lodging resistance, an integrated agronomic trait in plant growth and grain production. Notably, hemicellulosic arabinose (Ara) was detected to be the major factor that negatively affects cellulose CrI probably through its interlinking with β-1,4-glucans. In addition, lignin and G monomer also exhibited the positive impact on biomass digestion and lodging resistance. Further characterization of two elite mutants, Osfc17 and Osfc30, showing normal plant growth and high biomass enzymatic digestion in situ and in vitro, revealed the multiple GH9B candidate genes for reducing cellulose CrI and XAT genes for increasing hemicellulosic Ara level. Hence, the results have suggested the potential cell wall modifications for enhancing both biomass enzymatic digestibility and plant lodging resistance by synchronically overexpressing GH9B and XAT genes in rice. PMID:25418842

  4. Reduction of inositol (1,4,5)–trisphosphate affects the overall phosphoinositol pathway and leads to modifications in light signalling and secondary metabolism in tomato plants

    PubMed Central

    Alimohammadi, Mohammad; de Silva, Kanishka; Ballu, Clarisse; Ali, Nawab; Khodakovskaya, Mariya V.

    2012-01-01

    The phosphoinositol pathway is one of the major eukaryotic signalling pathways. The metabolite of the phosphoinositol pathway, inositol- (1,4,5) trisphosphate (InsP3), is a regulator of plant responses to a wide variety of stresses, including light, drought, cold, and salinity. It was found that the expression of InsP 5-ptase, the enzyme that hydrolyses InsP3, also dramatically affects the levels of inositol phosphate metabolites and the secondary metabolites in transgenic tomato plants. Tomato plants expressing InsP 5-ptase exhibited a reduction in the levels of several important inositol phosphates, including InsP1, InsP2, InsP3, and InsP4. Reduced levels of inositol phosphates accompanied an increase in the accumulation of phenylpropanoids (rutin, chlorogenic acid) and ascorbic acid (vitamin C) in the transgenic fruits of tomato plants. The enhanced accumulation of these metabolites in transgenic tomato plants was in direct correspondence with the observed up-regulation of the genes that express the key enzymes of ascorbic acid metabolism (myo-inositol oxygenase, MIOX; L-galactono-γ-lactone dehydrogenase, GLDH) and phenylpropanoid metabolism (chalcone synthase, CHS1; cinnamoyl-CoA shikimate/quinate transferase, HCT). To understand the molecular links between the activation of different branches of plant metabolism and InsP3 reduction in tomato fruits, the expression of transcription factors known to be involved in light signalling was analysed by real-time RT-PCR. The expression of LeHY5, SIMYB12, and LeELIP was found to be higher in fruits expressing InsP 5-ptase. These results suggest possible interconnections between phosphoinositol metabolism, light signalling, and secondary metabolism in plants. Our study also revealed the biotechnological potential for the genetic improvement of crop plants by the manipulation of the phosphoinositol pathway. PMID:21994174

  5. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007-2010.

    PubMed

    Cifelli, Christopher J; Houchins, Jenny A; Demmer, Elieke; Fulgoni, Victor L

    2016-01-01

    Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 for persons two years and older (n = 17,387) were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i) plant-based foods; (ii) protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy); and (iii) milk, cheese and yogurt. Scenarios (i) and (ii) had commensurate reductions in animal product intake. In both children (2-18 years) and adults (≥19 years), the percent not meeting the Estimated Average Requirement (EAR) decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that increasing plant

  6. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007–2010

    PubMed Central

    Cifelli, Christopher J.; Houchins, Jenny A.; Demmer, Elieke; Fulgoni, Victor L.

    2016-01-01

    Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES) 2007–2010 for persons two years and older (n = 17,387) were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i) plant-based foods; (ii) protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy); and (iii) milk, cheese and yogurt. Scenarios (i) and (ii) had commensurate reductions in animal product intake. In both children (2–18 years) and adults (≥19 years), the percent not meeting the Estimated Average Requirement (EAR) decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that increasing plant

  7. Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration.

    PubMed

    Chebli, Youssef; Pujol, Lauranne; Shojaeifard, Anahid; Brouwer, Iman; van Loon, Jack J W A; Geitmann, Anja

    2013-01-01

    Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions. PMID:23516452

  8. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development.

    PubMed

    Liu, Xiaozhu; Zhang, Yan; Yang, Chao; Tian, Zhihong; Li, Jianxiong

    2016-01-01

    Plants transport photoassimilates from source organs to sink tissues through the phloem translocation pathway. In the transport phloem, sugars that escape from the sieve tubes are released into the apoplasmic space between the sieve element/companion cell complex (SE/CC) and phloem parenchyma cells (PPCs) during the process of long-distance transport. The competition for sugar acquisition between SE/CC and adjoining PPCs is mediated by plasma membrane translocators. YFP-tagged AtSWEET4 protein is localized in the plasma membrane, and PromoterAtSWEET4-GUS analysis showed that AtSWEET4 is expressed in the stele of roots and veins of leaves and flowers. Overexpression of AtSWEET4 in Arabidopsis increases plant size and accumulates more glucose and fructose. By contrast, knock-down of AtSWEET4 by RNA-interference leads to small plant size, reduction in glucose and fructose contents, chlorosis in the leaf vein network, and reduction in chlorophyll content in leaves. Yeast assays demonstrated that AtSWEET4 is able to complement both fructose and glucose transport deficiency. Transgenic plants of AtSWEET4 overexpression exhibit higher freezing tolerance and support more growth of bacterium Pseudomonas syringae pv. phaseolicola NPS3121. We conclude that AtSWEET4 plays an important role in mediating sugar transport in axial tissues during plant growth and development. PMID:27102826

  9. Multi-walled Сarbon Nanotubes Penetrate into Plant Cells and Affect the Growth of Onobrychis arenaria Seedlings.

    PubMed

    Smirnova, E A; Gusev, A A; Zaitseva, O N; Lazareva, E M; Onishchenko, G E; Kuznetsova, E V; Tkachev, A G; Feofanov, A V; Kirpichnikov, M P

    2011-01-01

    Engineered nanoparticles (ENPs) are now being used in many sectors of industry; however, the impact of ENPs on the environment still requires further study, since their use, recycling, and accidental spill can result in the accumulation of nanoparticles in the atmosphere, soil, and water. Plants are an integral part of ecosystems; hence their interaction with ENPs is inevitable. It is important to understand the consequences of this interaction and assess its potential effects. The present research is focused on studying the effects of the industrial material Taunit, containing multi-walled carbon nanotubes (MWNTs), on plants, and testing of its ability to penetrate into plant cells and tissues. Taunit has been found to stimulate the growth of roots and stems and cause an increase in peroxidase activity inOnobrychis arenariaseedlings. Peroxidase activity increases with decreasing concentration of Taunit from 1,000 to 100 mg/l. MWNTs from Taunit were detected in the cells and tissues of seedling roots and leaves, implying the ability of MWNTs to penetrate into roots and accumulate there, as well as their ability to be transported into seedling leaves. Thus, the changes in the physiological parameters of plants are associated not only with MWNT adsorption on the root surface, as previously believed, but also with their penetration, uptake and accumulation in the plant cells and tissues. PMID:22649678

  10. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development

    PubMed Central

    Liu, Xiaozhu; Zhang, Yan; Yang, Chao; Tian, Zhihong; Li, Jianxiong

    2016-01-01

    Plants transport photoassimilates from source organs to sink tissues through the phloem translocation pathway. In the transport phloem, sugars that escape from the sieve tubes are released into the apoplasmic space between the sieve element/companion cell complex (SE/CC) and phloem parenchyma cells (PPCs) during the process of long-distance transport. The competition for sugar acquisition between SE/CC and adjoining PPCs is mediated by plasma membrane translocators. YFP-tagged AtSWEET4 protein is localized in the plasma membrane, and PromoterAtSWEET4-GUS analysis showed that AtSWEET4 is expressed in the stele of roots and veins of leaves and flowers. Overexpression of AtSWEET4 in Arabidopsis increases plant size and accumulates more glucose and fructose. By contrast, knock-down of AtSWEET4 by RNA-interference leads to small plant size, reduction in glucose and fructose contents, chlorosis in the leaf vein network, and reduction in chlorophyll content in leaves. Yeast assays demonstrated that AtSWEET4 is able to complement both fructose and glucose transport deficiency. Transgenic plants of AtSWEET4 overexpression exhibit higher freezing tolerance and support more growth of bacterium Pseudomonas syringae pv. phaseolicola NPS3121. We conclude that AtSWEET4 plays an important role in mediating sugar transport in axial tissues during plant growth and development. PMID:27102826

  11. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis.

    PubMed

    Magnin-Robert, Maryline; Le Bourse, Doriane; Markham, Jonathan; Dorey, Stéphan; Clément, Christophe; Baillieul, Fabienne; Dhondt-Cordelier, Sandrine

    2015-11-01

    Sphingolipids are emerging as second messengers in programmed cell death and plant defense mechanisms. However, their role in plant defense is far from being understood, especially against necrotrophic pathogens. Sphingolipidomics and plant defense responses during pathogenic infection were evaluated in the mutant of long-chain base phosphate (LCB-P) lyase, encoded by the dihydrosphingosine-1-phosphate lyase1 (AtDPL1) gene and regulating long-chain base/LCB-P homeostasis. Atdpl1 mutants exhibit tolerance to the necrotrophic fungus Botrytis cinerea but susceptibility to the hemibiotrophic bacterium Pseudomonas syringae pv tomato (Pst). Here, a direct comparison of sphingolipid profiles in Arabidopsis (Arabidopsis thaliana) during infection with pathogens differing in lifestyles is described. In contrast to long-chain bases (dihydrosphingosine [d18:0] and 4,8-sphingadienine [d18:2]), hydroxyceramide and LCB-P (phytosphingosine-1-phosphate [t18:0-P] and 4-hydroxy-8-sphingenine-1-phosphate [t18:1-P]) levels are higher in Atdpl1-1 than in wild-type plants in response to B. cinerea. Following Pst infection, t18:0-P accumulates more strongly in Atdpl1-1 than in wild-type plants. Moreover, d18:0 and t18:0-P appear as key players in Pst- and B. cinerea-induced cell death and reactive oxygen species accumulation. Salicylic acid levels are similar in both types of plants, independent of the pathogen. In addition, salicylic acid-dependent gene expression is similar in both types of B. cinerea-infected plants but is repressed in Atdpl1-1 after treatment with Pst. Infection with both pathogens triggers higher jasmonic acid, jasmonoyl-isoleucine accumulation, and jasmonic acid-dependent gene expression in Atdpl1-1 mutants. Our results demonstrate that sphingolipids play an important role in plant defense, especially toward necrotrophic pathogens, and highlight a novel connection between the jasmonate signaling pathway, cell death, and sphingolipids. PMID:26378098

  12. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis1[OPEN

    PubMed Central

    Magnin-Robert, Maryline; Le Bourse, Doriane; Markham, Jonathan; Dorey, Stéphan; Clément, Christophe; Baillieul, Fabienne; Dhondt-Cordelier, Sandrine

    2015-01-01

    Sphingolipids are emerging as second messengers in programmed cell death and plant defense mechanisms. However, their role in plant defense is far from being understood, especially against necrotrophic pathogens. Sphingolipidomics and plant defense responses during pathogenic infection were evaluated in the mutant of long-chain base phosphate (LCB-P) lyase, encoded by the dihydrosphingosine-1-phosphate lyase1 (AtDPL1) gene and regulating long-chain base/LCB-P homeostasis. Atdpl1 mutants exhibit tolerance to the necrotrophic fungus Botrytis cinerea but susceptibility to the hemibiotrophic bacterium Pseudomonas syringae pv tomato (Pst). Here, a direct comparison of sphingolipid profiles in Arabidopsis (Arabidopsis thaliana) during infection with pathogens differing in lifestyles is described. In contrast to long-chain bases (dihydrosphingosine [d18:0] and 4,8-sphingadienine [d18:2]), hydroxyceramide and LCB-P (phytosphingosine-1-phosphate [t18:0-P] and 4-hydroxy-8-sphingenine-1-phosphate [t18:1-P]) levels are higher in Atdpl1-1 than in wild-type plants in response to B. cinerea. Following Pst infection, t18:0-P accumulates more strongly in Atdpl1-1 than in wild-type plants. Moreover, d18:0 and t18:0-P appear as key players in Pst- and B. cinerea-induced cell death and reactive oxygen species accumulation. Salicylic acid levels are similar in both types of plants, independent of the pathogen. In addition, salicylic acid-dependent gene expression is similar in both types of B. cinerea-infected plants but is repressed in Atdpl1-1 after treatment with Pst. Infection with both pathogens triggers higher jasmonic acid, jasmonoyl-isoleucine accumulation, and jasmonic acid-dependent gene expression in Atdpl1-1 mutants. Our results demonstrate that sphingolipids play an important role in plant defense, especially toward necrotrophic pathogens, and highlight a novel connection between the jasmonate signaling pathway, cell death, and sphingolipids. PMID:26378098

  13. Plant assemblage composition and soil P concentration differentially affect communities of AM and total fungi in a semi-arid grassland.

    PubMed

    Klabi, Rim; Bell, Terrence H; Hamel, Chantal; Iwaasa, Alan; Schellenberg, Mike; Raies, Aly; St-Arnaud, Marc

    2015-01-01

    Adding inorganic P- and N-fixing legumes to semi-arid grasslands can increase forage yield, but soil nutrient concentrations and plant cover may also interact to modify soil fungal populations, impacting short- and long-term forage production. We tested the effect of plant assemblage (seven native grasses, seven native grasses + the domesticated N-fixing legume Medicago sativa, seven native grasses + the native N-fixing legume Dalea purpurea or the introduced grass Bromus biebersteinii + M. sativa) and soil P concentration (addition of 0 or 200 P2O5 kg ha(-1) at sowing) on the diversity and community structure of arbuscular mycorrhizal (AM) fungi and total fungi over two consecutive years, using 454-pyrosequencing of 18S rDNA and ITS amplicons. Treatment effects were stronger in the wet year (2008) than the dry year (2009). The presence of an N-fixing legume with native grasses generally increased AM fungal diversity, while the interaction between soil P concentration and plant assemblage modified total fungal community structure in 2008. Excluding interannual variations, which are likely driven by moisture and plant productivity, AM fungal communities in semi-arid grasslands appear to be primarily affected by plant assemblage composition, while the composition of other fungi is more closely linked to soil P. PMID:25764537

  14. Long-term feeding a plant-based diet devoid of marine ingredients strongly affects certain key metabolic enzymes in the rainbow trout liver.

    PubMed

    Véron, Vincent; Panserat, Stéphane; Le Boucher, Richard; Labbé, Laurent; Quillet, Edwige; Dupont-Nivet, Mathilde; Médale, Françoise

    2016-04-01

    Incorporation of a plant blend in the diet can affect growth parameters and metabolism in carnivorous fish. We studied for the first time the long-term (1 year) metabolic response of rainbow trout fed from first feeding with a plant-based diet totally devoid of marine ingredients. Hepatic enzymes were analyzed at enzymatic and molecular levels, at 3, 8 and 24 h after the last meal to study both the short-term effects of the last meal and long-term effects of the diet. The results were compared with those of fish fed a control diet of fish meal and fish oil. Growth, feed intake, feed efficiency and protein retention were lower in the group fed the plant-based diet. Glucokinase and pyruvate kinase activity were lower in the livers of trout fed the plant-based diet which the proportion of starch was lower than in the control diet. Glutamate dehydrogenase was induced by the plant-based diet, suggesting an imbalance of amino acids and a possible link with the lower protein retention observed. Gene expression of delta 6 desaturase was higher in fish fed the plant-based diet, probably linked to a high dietary level of linolenic acid and the absence of long-chain polyunsaturated fatty acids in vegetable oils. Hydroxymethylglutaryl-CoA synthase expression was also induced by plant-based diet because of the low rate of cholesterol in the diet. Changes in regulation mechanisms already identified through short-term nutritional experiments (<12 weeks) suggest that metabolic responses are implemented at short term and remain in the long term. PMID:26746847

  15. Fractions of calcium in the plant-soil system affected by the application of olive oil wastewater.

    PubMed

    Gallardo-Lara, F; Azcón, M; Quesada, J L; Polo, A

    1998-09-01

    A pot experiment using calcareous soil was conducted in a growth chamber to examine the effects of olive oil wastewater applications on Ca fractions in the plant and on exchangeable Ca in soil after plant growth. The experimental treatments consisted of two rates of olive oil wastewater, two mineral fertilizer treatments including K, which supplied K in amounts equivalent to the K supplied by the olive oil wastewater treatments, a mineral fertilizer without K treatment (F), and a control. The pots were sown with ryegrass which was harvested 3 times at monthly intervals. The high rate of olive oil wastewater resulted in a prolonged increases in dry matter production. It also resulted in a reduction in the concentrations of soluble Ca, bound Ca, inorganic insoluble Ca and organic insoluble Ca in the plant shoots relative to the control and the F treatment. The low rate of olive oil wastewater produced similar but less marked effects, with decreases being observed in the soluble Ca and bound Ca fractions. After 3 months of plant growth, soil exchangeable Ca was higher in the control and F treatment soils than in the soils receiving olive oil wastewater or K fertilizer. At this time, there were no significant differences in exchangeable Ca between the soils receiving olive oil wastewater and those treated with K fertilizer. PMID:9731309

  16. Soil Organic Matter Quality of an Oxisol Affected by Plant Residues and Crop Sequence under No-Tillage

    NASA Astrophysics Data System (ADS)

    Cora, Jose; Marcelo, Adolfo

    2013-04-01

    Plant residues are considered the primarily resource for soil organic matter (SOM) formation and the amounts and properties of plant litter are important controlling factors for the SOM quality. We determined the amounts, quality and decomposition rate of plant residues and the effects of summer and winter crop sequences on soil organic C (TOC) content, both particulate organic C (POC) and mineral-associated organic C (MOC) pools and humic substances in a Brazilian Rhodic Eutrudox soil under a no-tillage system. The organic C analysis in specifics pools used in this study was effective and should be adopted in tropical climates to evaluate the soil quality and the sustainability of various cropping systems. Continuous growth of soybean (Glycine max L. Merrill) on summer provided higher contents of soil POC and continuous growth of maize (Zea mays L.) provided higher soil humic acid and MOC contents. Summer soybean-maize rotation provided the higher plant diversity, which likely improved the soil microbial activity and the soil organic C consumption. The winter sunn hemp (Crotalaria juncea L.), pigeon pea (Cajanus cajan (L.) Millsp), oilseed radish (Raphanus sativus L.) and pearl millet (Pennisetum americanum (L.) Leeke) enhanced the soil MOC, a finding that is attributable to the higher N content of the crop residue. Sunn hemp and pigeon pea provided the higher soil POC content. Sunn hemp showed better performance and positive effects on the SOM quality, making it a suitable winter crop choice for tropical conditions with a warm and dry winter.

  17. Weather and plant age affect the levels of steroidal saponin and Pithomyces chartarum spores in Brachiaria grass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brachiaria species are cultivated worldwide in tropical and subtropical climates as the main forage source for ruminants. Numerous tropical and warm-season grasses cause hepatogenous photosensitization, among them several species of Brachiaria. Steroidal saponins present in these plants may be respo...

  18. Grasshopper herbivory affects native plant diversity and abundance in a grassland dominated by the exotic grass Agropyron cristatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The indirect effects of native generalist insect herbivores on interactions between exotic and native grassland plants have received limited attention. Crested wheatgrass (Agropyron cristatum) is the most common exotic grass in western North America. Crested wheatgrass communities are resistant to c...

  19. VLN2 Regulates Plant Architecture by Affecting Microfilament Dynamics and Polar Auxin Transport in Rice[OPEN

    PubMed Central

    Wu, Shengyang; Xie, Yurong; Guo, Xiuping; Sheng, Peike; Wang, Juan; Wu, Chuanyin; Wang, Haiyang; Wan, Jianmin

    2015-01-01

    As a fundamental and dynamic cytoskeleton network, microfilaments (MFs) are regulated by diverse actin binding proteins (ABPs). Villins are one type of ABPs belonging to the villin/gelsolin superfamily, and their function is poorly understood in monocotyledonous plants. Here, we report the isolation and characterization of a rice (Oryza sativa) mutant defective in VILLIN2 (VLN2), which exhibits malformed organs, including twisted roots and shoots at the seedling stage. Cellular examination revealed that the twisted phenotype of the vln2 mutant is mainly caused by asymmetrical expansion of cells on the opposite sides of an organ. VLN2 is preferentially expressed in growing tissues, consistent with a role in regulating cell expansion in developing organs. Biochemically, VLN2 exhibits conserved actin filament bundling, severing and capping activities in vitro, with bundling and stabilizing activity being confirmed in vivo. In line with these findings, the vln2 mutant plants exhibit a more dynamic actin cytoskeleton network than the wild type. We show that vln2 mutant plants exhibit a hypersensitive gravitropic response, faster recycling of PIN2 (an auxin efflux carrier), and altered auxin distribution. Together, our results demonstrate that VLN2 plays an important role in regulating plant architecture by modulating MF dynamics, recycling of PIN2, and polar auxin transport. PMID:26486445

  20. Deregulation of Plant Cell Death Through Disruption of Chloroplast Functionality Affects Asexual Sporulation of Zymoseptoria tritici on Wheat.

    PubMed

    Lee, Wing-Sham; Devonshire, B Jean; Hammond-Kosack, Kim E; Rudd, Jason J; Kanyuka, Kostya

    2015-05-01

    Chloroplasts have a critical role in plant defense as sites for the biosynthesis of the signaling compounds salicylic acid (SA), jasmonic acid (JA), and nitric oxide (NO) and as major sites of reactive oxygen species production. Chloroplasts, therefore, regarded as important players in the induction and regulation of programmed cell death (PCD) in response to abiotic stresses and pathogen attack. The predominantly foliar pathogen of wheat Zymoseptoria tritici is proposed to exploit the plant PCD, which is associated with the transition in the fungus to the necrotrophic phase of infection. In this study virus-induced gene silencing was used to silence two key genes in carotenoid and chlorophyll biosynthesis, phytoene desaturase (PDS) and Mg-chelatase H subunit (ChlH). The chlorophyll-deficient, PDS- and ChlH-silenced leaves of susceptible plants underwent more rapid pathogen-induced PCD but were significantly less able to support the subsequent asexual sporulation of Z. tritici. Conversely, major gene (Stb6)-mediated resistance to Z. tritici was partially compromised in PDS- and ChlH-silenced leaves. Chlorophyll-deficient wheat ears also displayed increased Z. tritici disease lesion formation accompanied by increased asexual sporulation. These data highlight the importance of chloroplast functionality and its interaction with regulated plant cell death in mediating different genotype and tissue-specific interactions between Z. tritici and wheat. PMID:25496594

  1. Chemical signals from plants previously infected with root knot nematodes affect behavior of infective juvenile root knot nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematodes are a worldwide problem in agriculture, with losses estimated to $100 billion per year in the US. Damage caused by root-knot nematodes (Meloidogyne spp.) (RKN) disrupts the flow of water and nutrients to the plant and increases the plant’s vulnerability to other pathogens. While studies ...

  2. Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types.

    PubMed

    Schweiger, R; Heise, A-M; Persicke, M; Müller, C

    2014-07-01

    The phytohormones jasmonic acid (JA) and salicylic acid (SA) mediate induced plant defences and the corresponding pathways interact in a complex manner as has been shown on the transcript and proteine level. Downstream, metabolic changes are important for plant-herbivore interactions. This study investigated metabolic changes in leaf tissue and phloem exudates of Plantago lanceolata after single and combined JA and SA applications as well as consequences on chewing-biting (Heliothis virescens) and piercing-sucking (Myzus persicae) herbivores. Targeted metabolite profiling and untargeted metabolic fingerprinting uncovered different categories of plant metabolites, which were influenced in a specific manner, indicating points of divergence, convergence, positive crosstalk and pronounced mutual antagonism between the signaling pathways. Phytohormone-specific decreases of primary metabolite pool sizes in the phloem exudates may indicate shifts in sink-source relations, resource allocation, nutrient uptake or photosynthesis. Survival of both herbivore species was significantly reduced by JA and SA treatments. However, the combined application of JA and SA attenuated the negative effects at least against H. virescens suggesting that mutual antagonism between the JA and SA pathway may be responsible. Pathway interactions provide a great regulatory potential for the plant that allows triggering of appropriate defences when attacked by different antagonist species. PMID:24372400

  3. Establishment of papaya banker plant system for Parasitoid, Encarsia sophia (Hymenoptera: Aphilidae) against Bemisia tabaci (Hemiptera: Aleyrodidae) in greenhouse tomato production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera:Aleyrodidae), is a key pest of tomato (Solanum lycopersicum L.) and other vegetable crops worldwide. To combat this pest, a non-crop banker plant system was evaluated that employs a parasitoid, Encarsia sophia (Girault & Dodd) ...

  4. Ornamental pepper as banker plants for establishment of Amblyseius swirskii (Acari: Phytoseiidae) for biological control of multiple pests in greenhouse vegetable production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selectivity factors and host preference of Amblyseius swirskii were determined on ornamental pepper banker plant candidates for control of insect pests in floriculture and landscapes. Cultivar selectivity and preference by the gravid female Amblyseius swirskii (Athias-Henriot) between ornamental pep...

  5. A Retail Survey of Brazilian Milk and Minas Frescal Cheese, and a Contaminated Dairy Plant, To Establish The Prevalence, Relatedness, and Sources of Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was designed to recover Listeria monocytogenes from pasteurized milk and Minas Frescal cheese (MFC) sampled at retail and to identify the source(s) of contaminated products in the corresponding dairy processing plant and farm. Fifty milk samples (9 brands, 5-7 samples/brand) and 55 MFC sampl...

  6. Genetic Structure and Molecular Diversity of Cacao Plants Established as Local Varieties for More than Two Centuries: The Genetic History of Cacao Plantations in Bahia, Brazil.

    PubMed

    Santos, Elisa S L; Cerqueira-Silva, Carlos Bernard M; Mori, Gustavo M; Ahnert, Dário; Mello, Durval L N; Pires, José Luis; Corrêa, Ronan X; de Souza, Anete P

    2015-01-01

    Bahia is the most important cacao-producing state in Brazil, which is currently the sixth-largest country worldwide to produce cacao seeds. In the eighteenth century, the Comum, Pará and Maranhão varieties of cacao were introduced into southern Bahia, and their descendants, which are called 'Bahian cacao' or local Bahian varieties, have been cultivated for over 200 years. Comum plants have been used to start plantations in African countries and extended as far as countries in South Asia and Oceania. In Brazil, two sets of clones selected from Bahian varieties and their mutants, the Agronomic Institute of East (SIAL) and Bahian Cacao Institute (SIC) series, represent the diversity of Bahian cacao in germplasm banks. Because the genetic diversity of Bahian varieties, which is essential for breeding programs, remains unknown, the objective of this work was to assess the genetic structure and diversity of local Bahian varieties collected from farms and germplasm banks. To this end, 30 simple sequence repeat (SSR) markers were used to genotype 279 cacao plants from germplasm and local farms. The results facilitated the identification of 219 cacao plants of Bahian origin, and 51 of these were SIAL or SIC clones. Bahian cacao showed low genetic diversity. It could be verified that SIC and SIAL clones do not represent the true diversity of Bahian cacao, with the greatest amount of diversity found in cacao trees on the farms. Thus, a core collection to aid in prioritizing the plants to be sampled for Bahian cacao diversity is suggested. These results provide information that can be used to conserve Bahian cacao plants and applied in breeding programs to obtain more productive Bahian cacao with superior quality and tolerance to major diseases in tropical cacao plantations worldwide. PMID:26675449

  7. Genetic Structure and Molecular Diversity of Cacao Plants Established as Local Varieties for More than Two Centuries: The Genetic History of Cacao Plantations in Bahia, Brazil

    PubMed Central

    Santos, Elisa S. L.; Cerqueira-Silva, Carlos Bernard M.; Mori, Gustavo M.; Ahnert, Dário; Mello, Durval L. N.; Pires, José Luis; Corrêa, Ronan X.; de Souza, Anete P.

    2015-01-01

    Bahia is the most important cacao-producing state in Brazil, which is currently the sixth-largest country worldwide to produce cacao seeds. In the eighteenth century, the Comum, Pará and Maranhão varieties of cacao were introduced into southern Bahia, and their descendants, which are called ‘Bahian cacao’ or local Bahian varieties, have been cultivated for over 200 years. Comum plants have been used to start plantations in African countries and extended as far as countries in South Asia and Oceania. In Brazil, two sets of clones selected from Bahian varieties and their mutants, the Agronomic Institute of East (SIAL) and Bahian Cacao Institute (SIC) series, represent the diversity of Bahian cacao in germplasm banks. Because the genetic diversity of Bahian varieties, which is essential for breeding programs, remains unknown, the objective of this work was to assess the genetic structure and diversity of local Bahian varieties collected from farms and germplasm banks. To this end, 30 simple sequence repeat (SSR) markers were used to genotype 279 cacao plants from germplasm and local farms. The results facilitated the identification of 219 cacao plants of Bahian origin, and 51 of these were SIAL or SIC clones. Bahian cacao showed low genetic diversity. It could be verified that SIC and SIAL clones do not represent the true diversity of Bahian cacao, with the greatest amount of diversity found in cacao trees on the farms. Thus, a core collection to aid in prioritizing the plants to be sampled for Bahian cacao diversity is suggested. These results provide information that can be used to conserve Bahian cacao plants and applied in breeding programs to obtain more productive Bahian cacao with superior quality and tolerance to major diseases in tropical cacao plantations worldwide. PMID:26675449

  8. Effective antibiotics against 'Candidatus Liberibacter asiaticus' in HLB-affected citrus plants identified via the graft-based evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus huanglongbing (HLB), caused by three species of fastidious, phloem-limited ‘Candidatus Liberibacter’, is one of the most destructive diseases of citrus worldwide. To date, there is no established cure for this century-old and yet, newly emerging disease. As a potential control strategy for ci...

  9. [Microcrystalline cellulose and their flow -- morphological properties modifications as an effective excpients in tablet formulation technology containing lattice established API and also dry plant extract].

    PubMed

    Zgoda, Marian Mikołaj; Nachajski, Michał Jakub; Kołodziejczyk, Michał Krzysztof

    2009-01-01

    The production technology of powder cellulose (Arbocel) and microcrystaline cellulose (Vivapur) and their application in the composition of direct compression tablet mass was provided. The function of silicified microcrystaline cellulose type Prosolv in the direct compression process of dry plant extract was discussed. An analysis of the chemical structure of cellulose fiber (Vitacel) enabled determining its properties and applications in the manufacture of diet supplement, pharmaceutical and food products. PMID:19580170

  10. The content and toxicity of heavy metals in soils affected by aerial emissions from the Pechenganikel plant

    NASA Astrophysics Data System (ADS)

    Evdokimova, G. A.; Mozgova, N. P.; Korneikova, M. V.

    2014-05-01

    The zoning of the terrestrial ecosystems exposed to the aerial emissions from the Pechenganikel plant (Murmansk oblast) was performed; it was based on the state of the soil cover in 2012. The following parameters were determined: the pH, the contents of heavy metals (HMs) and exchangeable calcium and magnesium, the proportion between the organic and mineral soil components, and the state of the soil micro-biota. Three zones differing in the intensity of the soil pollution were distinguished: the zone of strong pollution (at a distance of 3 km from the source of the emission), the zone of medium pollution (16 km), and the zone of weak pollution (25-30 km to the southwest from the pollution source). In the last ten years, the soil pollution in the zone influenced by aerial emissions from the Pechenganikel plant has remained the same. The amount of bacteria and fungi in the air is directly related to that in the soil. The results obtained point to the bacterial pollution of the atmosphere nearby the industrial center. In the vicinity of the plant, gram-negative bacteria ( Gracilicutes) predominate in the air; in remote areas, gram-positive bacteria ( Fermicutes) are dominants. In the air nearby the industrial center, potentially pathogenic fungi ( Gongronella butleri and Alternaria alternata) were revealed.

  11. Host plant resistance in romaine lettuce affects feeding behavior and biology of Trichoplusia ni and Spodoptera exigua (Lepidoptera: Noctuidae).

    PubMed

    Sethi, Amit; McAuslane, Heather J; Nagata, Russell T; Nuessly, Gregg S

    2006-12-01

    Lettuce quality and yield can be reduced by feeding of several lepidopterous pests, particularly cabbage looper, Trichoplusia ni (Hübner), and beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Host plant resistance to these insects is an environmentally sound adjunct to conventional chemical control. In this study we compared the survival, development, and feeding behavior of cabbage looper and beet armyworm on two romaine lettuce cultivars, resistant 'Valmaine' and susceptible 'Tall Guzmaine'. Larval mortality of both species was significantly higher on resistant Valmaine than on susceptible Tall Guzmaine. The average weight per larva after feeding for 1 wk on Tall Guzmaine plants was 6 times (beet armyworm) and 2 times (cabbage looper) greater than that of larvae feeding on Valmaine plants. Significant reduction in larval growth on Valmaine compared with that on Tall Guzmaine resulted in a 5.9- (beet armyworm) and 2.6-d (cabbage looper) increase in larval duration and almost a 1-d increase in pupal duration. Average pupal and adult weights and successful pupation of cabbage looper and beet armyworm were reduced on Valmaine compared with Tall Guzmaine. The sex ratio of progeny did not deviate from 1:1 when larvae were reared on either Valmaine or Tall Guzmaine. The fecundity of cabbage looper and beet armyworm adults that developed from larvae reared on Valmaine was about one-third that of adults from Tall Guzmaine, but adult longevity did not significantly differ on the two lettuce cultivars. The two insect species showed different feeding preferences for leaves of different age groups on Valmaine and Tall Guzmaine. Cabbage loopers cut narrow trenches on the leaf before actual feeding to block the flow of latex to the intended site of feeding. In contrast, beet armyworms did not trench. The different feeding behavior of the two species on Valmaine may explain the superior performance of cabbage looper compared with beet armyworm. PMID:17195688

  12. Factors affecting the initial adhesion and retention of the plant pathogen Xylella fastidiosa in the foregut of an insect vector.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2014-01-01

    Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design. PMID:24185853

  13. Absence of internal radiation contamination by radioactive cesium among children affected by the Fukushima Daiichi nuclear power plant disaster.

    PubMed

    Tsubokura, Masaharu; Kato, Shigeaki; Nomura, Shuhei; Morita, Tomohiro; Sugimoto, Amina; Gilmour, Stuart; Kami, Masahiro; Oikawa, Tomoyoshi; Kanazawa, Yukio

    2015-01-01

    Chronic internal radiation contamination accounts for a substantial fraction of long-term cumulative radiation exposure among residents in radiation-contaminated areas. However, little information is available on ongoing chronic internal radiation contamination among residents near the crippled Fukushima Daiichi nuclear power plant. Using a whole body counter, internal radiation contamination levels among elementary and middle school students who commute to 22 schools located within Minamisoma city were assessed between May and July 2013 (26 to 28 mo after the disaster). Of 3,299 elementary and middle school students in the city, 3,255 individuals (98%) were screened through school health check-ups. Not a single student was detected with internal radiation contamination due to radioactive cesium. The study found no risk of chronic internal radiation exposure among residents near the crippled nuclear power plant. Current food inspection by local governments, volunteers, and farmers has been functioning well within Fukushima prefecture. However, food management by screening suspected contamination along with whole body counter screening are key public health interventions and should be continued to avoid further internal radiation exposure in radiation-contaminated areas. PMID:25437518

  14. Extrachromosomal homologous DNA recombination in plant cells is fast and is not affected by CpG methylation.

    PubMed Central

    Puchta, H; Kocher, S; Hohn, B

    1992-01-01

    Using a sensitive transient assay, we investigated extrachromosomal homologous DNA recombination (ECR) in plant cells. As the plant genome is highly C methylated, we addressed the question of whether CpG methylation has an influence on DNA recombination efficiencies. Whereas the expression level of the fully CpG-methylated DNA molecules was reduced drastically, we found no significant changes in ECR efficiencies between two partly CpG-methylated plasmids or between one fully CpG-methylated and one nonmethylated plasmid. Using a modified polymerase chain reaction analysis, we were able to detect recombination between two fully CpG-methylated plasmids. Furthermore, we characterized the kinetics of the ECR reaction. Cotransfection of plasmids carrying truncated copies of the beta-glucuronidase (GUS) gene resulted in enzyme activity with a delay of only half an hour compared with that of the plasmid carrying the functional marker gene. This indicates that the ECR reaction itself requires no more than 30 min. By polymerase chain reaction, we were able to detect the recombined GUS gene as early as 2 h after transfection. This result and the time course of the transient GUS activity indicate that ECR occurs mainly early after transfection. The biological significance of this finding is discussed, and properties of ECR and intrachromosomal recombination are compared. Images PMID:1630452

  15. Does the passage of seeds through frugivore gut affect their storage: A case study on the endangered plant Euryodendron excelsum

    PubMed Central

    Shikang, Shen; Fuqin, Wu; Yuehua, Wang

    2015-01-01

    Plant-frugivore mutualism serves an important function in multiple ecological processes. Although previous studies have highlighted the effect of frugivore gut passage on fresh seed germinability, no study has investigated the effect on seed storage after frugivore gut passage. We used the endangered plant, Euryodendron excelsum, to determine the combined effects of frugivore gut passage and storage conditions on the germination percentage and rate of seeds. In particular, three treatments that included storage periods, storage methods, and seed types were designed in the experiment. We hypothesized that seeds that passed through the gut will exhibit enhanced germination capacity and rate during storage. Results showed that the final germination percentage decreased in seeds that passed through the gut, whereas the germination rate increased during seed storage. Germination decreased in most types of seeds under both dry and wet storage after 6 months compared with storage after 1 and 3 months. The results suggest that after frugivore gut passage, E. excelsum seeds cannot form persistent soil seed bank in the field, and were not suitable for species germplasm storage. These finding underscore that seeds that passed through frugivore gut have long-term impact on their viability and germination performance. PMID:26109456

  16. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection

    PubMed Central

    Reithner, Barbara; Schuhmacher, Rainer; Stoppacher, Norbert; Pucher, Marion; Brunner, Kurt; Zeilinger, Susanne

    2015-01-01

    Trichoderma atroviride is a mycoparasite of a number of plant pathogenic fungi thereby employing morphological changes and secretion of cell wall degrading enzymes and antibiotics. The function of the tmk1 gene encoding a mitogen-activated protein kinase (MAPK) during fungal growth, mycoparasitic interaction, and biocontrol was examined in T. atroviride. Δtmk1 mutants exhibited altered radial growth and conidiation, and displayed de-regulated infection structure formation in the absence of a host-derived signal. In confrontation assays, tmk1 deletion caused reduced mycoparasitic activity although attachment to Rhizoctonia solani and Botrytis cinerea hyphae was comparable to the parental strain. Under chitinase-inducing conditions, nag1 and ech42 transcript levels and extracellular chitinase activities were elevated in a Δtmk1 mutant, whereas upon direct confrontation with R. solani or B. cinerea a host-specific regulation of ech42 transcription was found and nag1 gene transcription was no more inducible over an elevated basal level. Δtmk1 mutants exhibited higher antifungal activity caused by low molecular weight substances, which was reflected by an over-production of 6-pentyl-α-pyrone and peptaibol antibiotics. In biocontrol assays, a Δtmk1 mutant displayed a higher ability to protect bean plants against R. solani. PMID:17509915

  17. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection.

    PubMed

    Reithner, Barbara; Schuhmacher, Rainer; Stoppacher, Norbert; Pucher, Marion; Brunner, Kurt; Zeilinger, Susanne

    2007-11-01

    Trichoderma atroviride is a mycoparasite of a number of plant pathogenic fungi thereby employing morphological changes and secretion of cell wall degrading enzymes and antibiotics. The function of the tmk 1 gene encoding a mitogen-activated protein kinase (MAPK) during fungal growth, mycoparasitic interaction, and biocontrol was examined in T. atroviride. Deltatmk 1 mutants exhibited altered radial growth and conidiation, and displayed de-regulated infection structure formation in the absence of a host-derived signal. In confrontation assays, tmk 1 deletion caused reduced mycoparasitic activity although attachment to Rhizoctonia solani and Botrytis cinerea hyphae was comparable to the parental strain. Under chitinase-inducing conditions, nag 1 and ech 42 transcript levels and extracellular chitinase activities were elevated in a Deltatmk 1 mutant, whereas upon direct confrontation with R. solani or B. cinerea a host-specific regulation of ech 42 transcription was found and nag 1 gene transcription was no more inducible over an elevated basal level. Deltatmk 1 mutants exhibited higher antifungal activity caused by low molecular weight substances, which was reflected by an over-production of 6-pentyl-alpha-pyrone and peptaibol antibiotics. In biocontrol assays, a Deltatmk 1 mutant displayed a higher ability to protect bean plants against R. solani. PMID:17509915

  18. The Arabidopsis immutans Mutation Affects Plastid Differentiation and the Morphogenesis of White and Green Sectors in Variegated Plants1

    PubMed Central

    Aluru, Maneesha R.; Bae, Hanhong; Wu, Dongying; Rodermel, Steven R.

    2001-01-01

    The immutans (im) variegation mutant of Arabidopsis has green and white leaf sectors due to the action of a nuclear recessive gene, IMMUTANS (IM). This gene encodes the IM protein, which is a chloroplast homolog of the mitochondrial alternative oxidase. Because the white sectors of im accumulate the noncolored carotenoid, phytoene, IM likely serves as a redox component in phytoene desaturation. In this paper, we show that IM has a global impact on plant growth and development and is required for the differentiation of multiple plastid types, including chloroplasts, amyloplasts, and etioplasts. IM promoter activity and IM mRNAs are also expressed ubiquitously in Arabidopsis. IM transcript levels correlate with carotenoid accumulation in some, but not all, tissues. This suggests that IM function is not limited to carotenogenesis. Leaf anatomy is radically altered in the green and white sectors of im: Mesophyll cell sizes are dramatically enlarged in the green sectors and palisade cells fail to expand in the white sectors. The green im sectors also have significantly higher than normal rates of O2 evolution and elevated chlorophyll a/b ratios, typical of those found in “sun” leaves. We conclude that the changes in structure and photosynthetic function of the green leaf sectors are part of an adaptive mechanism that attempts to compensate for a lack of photosynthesis in the white leaf sectors, while maximizing the ability of the plant to avoid photodamage. PMID:11553735

  19. Plant extracts with anti-inflammatory properties--a new approach for characterization of their bioactive compounds and establishment of structure-antioxidant activity relationships.

    PubMed

    Amaral, Sónia; Mira, Lurdes; Nogueira, J M F; da Silva, Alda Pereira; Helena Florêncio, M

    2009-03-01

    Geranium robertianum L. (Geraniacea) and Uncaria tomentosa (Willd.) DC. (Rubiaceae) plant extracts, frequently used in traditional medicine for treatment of inflammatory and cancer diseases, were studied to identify potential bioactive compounds that may justify their therapeutic use and their underlying mechanisms of action. Since some of the pharmacological properties of these plant extracts may be linked to their antioxidant potential, the antioxidant activity, in relation to free radical scavenging, was measured by the ABTS/HRP and DPPH() assays, presenting U. tomentosa the higher activity. The antioxidant activity was also evaluated by scavenging of HOCl, the major strong oxidant produced by neutrophils and a potent pro-inflammatory agent. U. tomentosa was found to be a better protector against HOCl, which may justify its effectiveness against inflammatory diseases. SPE/LC-DAD was used for separation/purification purposes and ESI-MS/MS for identification/characterization of the major non-volatile components, mainly flavonoids and phenolic acids. The ESI-MS/MS methodology proposed can be used as a model procedure for identification/characterization of unknowns without the prerequisite for standard compounds analysis. The ESI-MS/MS data obtained were consistent with the antioxidant activity results and structure-activity relationships for the compounds identified were discussed. PMID:19201196

  20. Targeting Tryptophan Decarboxylase to Selected Subcellular Compartments of Tobacco Plants Affects Enzyme Stability and in Vivo Function and Leads to a Lesion-Mimic Phenotype1

    PubMed Central

    Di Fiore, Stefano; Li, Qiurong; Leech, Mark James; Schuster, Flora; Emans, Neil; Fischer, Rainer; Schillberg, Stefan

    2002-01-01

    Tryptophan decarboxylase (TDC) is a cytosolic enzyme that catalyzes an early step of the terpenoid indole alkaloid biosynthetic pathway by decarboxylation of l-tryptophan to produce the protoalkaloid tryptamine. In the present study, recombinant TDC was targeted to the chloroplast, cytosol, and endoplasmic reticulum (ER) of tobacco (Nicotiana tabacum) plants to evaluate the effects of subcellular compartmentation on the accumulation of functional enzyme and its corresponding enzymatic product. TDC accumulation and in vivo function was significantly affected by the subcellular localization. Immunoblot analysis demonstrated that chloroplast-targeted TDC had improved accumulation and/or stability when compared with the cytosolic enzyme. Because ER-targeted TDC was not detectable by immunoblot analysis and tryptamine levels found in transient expression studies and in transgenic plants were low, it was concluded that the recombinant TDC was most likely unstable if ER retained. Targeting TDC to the chloroplast stroma resulted in the highest accumulation level of tryptamine so far reported in the literature for studies on heterologous TDC expression in tobacco. However, plants accumulating high levels of functional TDC in the chloroplast developed a lesion-mimic phenotype that was probably triggered by the relatively high accumulation of tryptamine in this compartment. We demonstrate that subcellular targeting may provide a useful strategy for enhancing accumulation and/or stability of enzymes involved in secondary metabolism and to divert metabolic flux toward desired end products. However, metabolic engineering of plants is a very demanding task because unexpected, and possibly unwanted, effects may be observed on plant metabolism and/or phenotype. PMID:12114570

  1. Flavonoids Affect the Light Reaction of Photosynthesis in Vitro and in Vivo as Well as the Growth of Plants.

    PubMed

    Morales-Flores, Félix; Olivares-Palomares, Karen Susana; Aguilar-Laurents, María Isabel; Rivero-Cruz, José Fausto; Lotina-Hennsen, Blas; King-Díaz, Beatriz

    2015-09-23

    Flavonoids retusin (5-hydroxy-3,7,3',4'-tetramethoxyflavone) (1) and pachypodol (5,4'-dihydroxy-3,7,3'-trimethoxyflavone) (2) were isolated from Croton ciliatoglanduliferus Ort. Pachypodol acts as a Hill reaction inhibitor with its target on the water splitting enzyme located in PSII. In the search for new herbicides from natural compounds, flavonoids 1 and 2 and flavonoid analogues quercetin (3), apigenin (4), genistein (5), and eupatorin (6) were assessed for their effect in vitro on the photosynthetic electron transport chain and in vivo on the germination and growth of the plants Physalis ixocarpa, Trifolium alexandrinum and Lolium perenne. Flavonoid 3 was the most active inhibitor of the photosynthetic uncoupled electron flow (I50 = 114 μM) with a lower log P value (1.37). Results in vivo suggest that 1, 2, 3, and 5 behave as pre- and postemergent herbicides, with 3 and 5 being more active. PMID:26322527

  2. Establishment of lacZ marked strain of phosphate solubilizing bacterium in the rhizosphere and its effect on plant growth in mungbean.

    PubMed

    Sunita, S; Kapoor, K K; Goyal, S; Sharma, P K

    2010-10-01

    The establishment of lacZ marked strain of P-solubilizing bacterium Pseudomonas in the rhizosphere of mungbean (Vigna radiata) under pothouse conditions was studied. The lacZ marker was transferred to Pseudomonas P-36 on LB medium using donor strain of E. coli. The lacZ marked strain formed blue colonies on selective media and could be identified from soil on the basis of this character. The lacZ marked strain was able to survive in rhizosphere of mungbean under pothouse conditions and maintained a population of about 10(4) g(-1) of rhizosphere soils up to 60 days study period. Positive effect of inoculation with P-solubilizing bacterium on dry matter yield, P and N-uptake was observed using rock phosphate and single super phosphate as P sources with and without farmyard amendment. PMID:22815583

  3. A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants

    PubMed Central

    2013-01-01

    Background Plants that utilize the highly efficient C4 pathway of photosynthesis typically possess kranz-type leaf anatomy that consists of two morphologically and functionally distinct photosynthetic cell types, the bundle sheath (BS) and mesophyll (M) cells. These two cell types differentially express many genes that are required for C4 capability and function. In mature C4 leaves, the plastidic rbcL gene, encoding the large subunit of the primary CO2 fixation enzyme Rubisco, is expressed specifically within BS cells. Numerous studies have demonstrated that BS-specific rbcL gene expression is regulated predominantly at post-transcriptional levels, through the control of translation and mRNA stability. The identification of regulatory factors associated with C4 patterns of rbcL gene expression has been an elusive goal for many years. Results RLSB, encoded by the nuclear RLSB gene, is an S1-domain RNA binding protein purified from C4 chloroplasts based on its specific binding to plastid-encoded rbcL mRNA in vitro. Co-localized with LSU to chloroplasts, RLSB is highly conserved across many plant species. Most significantly, RLSB localizes specifically to leaf bundle sheath (BS) cells in C4 plants. Comparative analysis using maize (C4) and Arabidopsis (C3) reveals its tight association with rbcL gene expression in both plants. Reduced RLSB expression (through insertion mutation or RNA silencing, respectively) led to reductions in rbcL mRNA accumulation and LSU production. Additional developmental effects, such as virescent/yellow leaves, were likely associated with decreased photosynthetic function and disruption of associated signaling networks. Conclusions Reductions in RLSB expression, due to insertion mutation or gene silencing, are strictly correlated with reductions in rbcL gene expression in both maize and Arabidopsis. In both plants, accumulation of rbcL mRNA as well as synthesis of LSU protein were affected. These findings suggest that specific accumulation

  4. Derivatives of Plant Phenolic Compound Affect the Type III Secretion System of Pseudomonas aeruginosa via a GacS-GacA Two-Component Signal Transduction System

    PubMed Central

    Yamazaki, Akihiro; Li, Jin; Zeng, Quan; Khokhani, Devanshi; Hutchins, William C.; Yost, Angela C.; Biddle, Eulandria; Toone, Eric J.

    2012-01-01

    Antibiotic therapy is the most commonly used strategy to control pathogenic infections; however, it has contributed to the generation of antibiotic-resistant bacteria. To circumvent this emerging problem, we are searching for compounds that target bacterial virulence factors rather than their viability. Pseudomonas aeruginosa, an opportunistic human pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors by which it secretes and translocates T3 effector proteins into human host cells. The fact that this human pathogen also is able to infect several plant species led us to screen a library of phenolic compounds involved in plant defense signaling and their derivatives for novel T3 inhibitors. Promoter activity screening of exoS, which encodes a T3-secreted toxin, identified two T3 inhibitors and two T3 inducers of P. aeruginosa PAO1. These compounds alter exoS transcription by affecting the expression levels of the regulatory small RNAs RsmY and RsmZ. These two small RNAs are known to control the activity of carbon storage regulator RsmA, which is responsible for the regulation of the key T3SS regulator ExsA. As RsmY and RsmZ are the only targets directly regulated by GacA, our results suggest that these phenolic compounds affect the expression of exoS through the GacSA-RsmYZ-RsmA-ExsA regulatory pathway. PMID:21968370

  5. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle.

    PubMed

    Lai, Jianbin; Chen, Hao; Teng, Kunling; Zhao, Qingzhen; Zhang, Zhonghui; Li, Yin; Liang, Liming; Xia, Ran; Wu, Yaorong; Guo, Huishan; Xie, Qi

    2009-03-01

    The C4 protein from Curtovirus is known as a major symptom determinant, but the mode of action of the C4 protein remains unclear. To understand the mechanism of involvement of C4 protein in virus-plant interactions, we introduced the C4 gene from Beet severe curly top virus (BSCTV) into Arabidopsis under a conditional expression promoter; the resulting overexpression of BSCTV C4 led to abnormal host cell division. RKP, a RING finger protein, which is a homolog of the human cell cycle regulator KPC1, was discovered to be induced by BSCTV C4 protein. Mutation of RKP reduced the susceptibility to BSCTV in Arabidopsis and impaired BSCTV replication in plant cells. Callus formation is impaired in rkp mutants, indicating a role of RKP in the plant cell cycle. RKP was demonstrated to be a functional ubiquitin E3 ligase and is able to interact with cell-cycle inhibitor ICK/KRP proteins in vitro. Accumulation of the protein ICK2/KRP2 was found increased in the rkp mutant. The above results strengthen the possibility that RKP might regulate the degradation of ICK/KRP proteins. In addition, the protein level of ICK2/KRP2 was decreased upon BSCTV infection. Overexpression of ICK1/KRP1 in Arabidopsis could reduce the susceptibility to BSCTV. In conclusion, we found that RKP is induced by BSCTV C4 and may affect BSCTV infection by regulating the host cell cycle. PMID:19000158

  6. Ecologically relevant UV-B dose combined with high PAR intensity distinctly affect plant growth and accumulation of secondary metabolites in leaves of Centella asiatica L. Urban.

    PubMed

    Müller, Viola; Albert, Andreas; Barbro Winkler, J; Lankes, Christa; Noga, Georg; Hunsche, Mauricio

    2013-10-01

    We investigated the effects of environmentally relevant dose of ultraviolet (UV)-B and photosynthetic active radiation (PAR) on saponin accumulation in leaves on the example of Centella asiatica L. Urban. For this purpose, plants were exposed to one of four light regimes i.e., two PAR intensities with or without UV-B radiation. The experiment was conducted in technically complex sun simulators under almost natural irradiance and climatic conditions. As observed, UV-B radiation increased herb and leaf production as well as the content of epidermal flavonols, which was monitored by non-destructive fluorescence measurements. Specific fluorescence indices also indicate an increase in the content of anthocyanins under high PAR; this increase was likewise observed for the saponin concentrations. In contrast, UV-B radiation had no distinct effects on saponin and sapogenin concentrations. Our findings suggest that besides flavonoids, also saponins were accumulated under high PAR protecting the plant from oxidative damage. Furthermore, glycosylation of sapogenins seems to be important either for the protective function and/or for compartmentalization of the compounds. Moreover, our study revealed that younger leaves contain higher amounts of saponins, while in older leaves the sapogenins were the most abundant constituents. Concluding, our results proof that ambient dose of UV-B and high PAR intensity distinctly affect the accumulation of flavonoids and saponins, enabling the plant tissue to adapt to the light conditions. PMID:24044900

  7. Computational and genetic evidence that different structural conformations of a non-catalytic region affect the function of plant cellulose synthase

    PubMed Central

    Slabaugh, Erin; Sethaphong, Latsavongsakda; Xiao, Chaowen; Amick, Joshua; Anderson, Charles T.; Haigler, Candace H.; Yingling, Yaroslava G.

    2014-01-01

    The β-1,4-glucan chains comprising cellulose are synthesized by cellulose synthases in the plasma membranes of diverse organisms including bacteria and plants. Understanding structure–function relationships in the plant enzymes involved in cellulose synthesis (CESAs) is important because cellulose is the most abundant component in the plant cell wall, a key renewable biomaterial. Here, we explored the structure and function of the region encompassing transmembrane helices (TMHs) 5 and 6 in CESA using computational and genetic tools. Ab initio computational structure prediction revealed novel bi-modal structural conformations of the region between TMH5 and 6 that may affect CESA function. Here we present our computational findings on this region in three CESAs of Arabidopsis thaliana (AtCESA1, 3, and 6), the Atcesa3 ixr1-2 mutant, and a novel missense mutation in AtCESA1. A newly engineered point mutation in AtCESA1 (Atcesa1 F954L) that altered the structural conformation in silico resulted in a protein that was not fully functional in the temperature-sensitive Atcesa1 rsw1-1 mutant at the restrictive temperature. The combination of computational and genetic results provides evidence that the ability of the TMH5–6 region to adopt specific structural conformations is important for CESA function. PMID:25262226

  8. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters.

    PubMed

    Bourceret, Amélia; Cébron, Aurélie; Tisserant, Emilie; Poupin, Pascal; Bauda, Pascale; Beguiristain, Thierry; Leyval, Corinne

    2016-04-01

    Industrial wasteland soils with aged PAH and heavy metal contaminations are environments where pollutant toxicity has been maintained for decades. Although the communities may be well adapted to the presence of stressors, knowledge about microbial diversity in such soils is scarce. Soil microbial community dynamics can be driven by the presence of plants, but the impact of plant development on selection or diversification of microorganisms in these soils has not been established yet. To test these hypotheses, aged-contaminated soil samples from a field trial were collected. Plots planted with alfalfa were compared to bare soil plots, and bacterial and fungal diversity and abundance were assessed after 2 and 6 years. Using pyrosequencing of 16S rRNA gene and ITS amplicons, we showed that the bacterial community was dominated by Proteobacteria, Actinobacteria, and Bacteroidetes and was characterized by low Acidobacteria abundance, while the fungal community was mainly represented by members of the Ascomycota. The short-term toxic impact of pollutants usually reduces the microbial diversity, yet in our samples bacterial and fungal species richness and diversity was high suggesting that the community structure and diversity adapted to the contaminated soil over decades. The presence of plants induced higher bacterial and fungal diversity than in bare soil. It also increased the relative abundance of bacterial members of the Actinomycetales, Rhizobiales, and Xanthomonadales orders and of most fungal orders. Multivariate analysis showed correlations between microbial community structure and heavy metal and PAH concentrations over time, but also with edaphic parameters (C/N, pH, phosphorus, and nitrogen concentrations). PMID:26440298

  9. Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment.

    PubMed

    Thomashow, M F; Karlinsey, J E; Marks, J R; Hurlbert, R E

    1987-07-01

    We have identified a new virulence locus in Agrobacterium tumefaciens. Strains carrying Tn5 inserts at this locus could not incite tumors on Kalanchoe daigremontiana, Nicotiana rustica, tobacco, or sunflower and had severely attenuated virulence on carrot disks. We termed the locus pscA, because the mutants that defined the locus were initially isolated as having an altered polysaccharide composition; they were nonfluorescent on media containing Leucophor or Calcofluor, indicating a defect in the production of cellulose fibrils. Further analysis showed that the pscA mutants produced little, if any, of the four species of exopolysaccharide synthesized by the wild-type strain. DNA hybridization analysis and genetic complementation experiments indicated that the pscA locus is not encoded by the Ti plasmid and that it is distinct from the previously described chromosomal virulence loci chvA and chvB. However, like chvA and chvB mutants, the inability of the pscA mutants to form tumors is apparently due to a defect in plant cell attachment. Whereas we could demonstrate binding of the wild-type strain to tobacco suspension cells, attachment of the pscA mutants was drastically reduced or completely absent. PMID:3597321

  10. Establishment of a rapid, inexpensive protocol for extraction of high quality RNA from small amounts of strawberry plant tissues and other recalcitrant fruit crops.

    PubMed

    Christou, Anastasis; Georgiadou, Egli C; Filippou, Panagiota; Manganaris, George A; Fotopoulos, Vasileios

    2014-03-01

    Strawberry plant tissues and particularly fruit material are rich in polysaccharides and polyphenolic compounds, thus rendering the isolation of nucleic acids a difficult task. This work describes the successful modification of a total RNA extraction protocol, which enables the isolation of high quantity and quality of total RNA from small amounts of strawberry leaf, root and fruit tissues. Reverse-transcription polymerase chain reaction (RT-PCR) amplification of GAPDH housekeeping gene from isolated RNA further supports the proposed protocol efficiency and its use for downstream molecular applications. This novel procedure was also successfully followed using other fruit tissues, such as olive and kiwifruit. In addition, optional treatment with RNase A following initial nucleic acid extraction can provide sufficient quality and quality of genomic DNA for subsequent PCR analyses, as evidenced from PCR amplification of housekeeping genes using extracted genomic DNA as template. Overall, this optimized protocol allows easy, rapid and economic isolation of high quality RNA from small amounts of an important fruit crop, such as strawberry, with extended applicability to other recalcitrant fruit crops. PMID:24321691

  11. RNA Recognition Motif-Containing Protein ORRM4 Broadly Affects Mitochondrial RNA Editing and Impacts Plant Development and Flowering1[OPEN

    PubMed Central

    Germain, Arnaud

    2016-01-01

    Plant RNA editosomes modify cytidines (C) to uridines (U) at specific sites in plastid and mitochondrial transcripts. Members of the RNA-editing factor interacting protein (RIP) family and Organelle RNA Recognition Motif-containing (ORRM) family are essential components of the Arabidopsis (Arabidopsis thaliana) editosome. ORRM2 and ORRM3 have been recently identified as minor mitochondrial editing factors whose silencing reduces editing efficiency at ∼6% of the mitochondrial C targets. Here we report the identification of ORRM4 (for organelle RRM protein 4) as a novel, major mitochondrial editing factor that controls ∼44% of the mitochondrial editing sites. C-to-U conversion is reduced, but not eliminated completely, at the affected sites. The orrm4 mutant exhibits slower growth and delayed flowering time. ORRM4 affects editing in a site-specific way, though orrm4 mutation affects editing of the entire transcript of certain genes. ORRM4 contains an RRM domain at the N terminus and a Gly-rich domain at the C terminus. The RRM domain provides the editing activity of ORRM4, whereas the Gly-rich domain is required for its interaction with ORRM3 and with itself. The presence of ORRM4 in the editosome is further supported by its interaction with RIP1 in a bimolecular fluorescence complementation assay. The identification of ORRM4 as a major mitochondrial editing factor further expands our knowledge of the composition of the RNA editosome and reveals that adequate mitochondrial editing is necessary for normal plant development. PMID:26578708

  12. Effect of radiocesium transfer on ambient dose rate in forest environments affected by the Fukushima Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Kato, H.

    2015-12-01

    We investigated the transfer of canopy-intercepted radiocesium to the forest floor during 3 years following the Fukushima Daiichi Nuclear Power Plant accident. The cesium-137 (Cs-137) contents in throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (Japanese oak with red pine). We a