Science.gov

Sample records for affect plant growth

  1. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.

    PubMed

    Xu, Liangzheng; Niu, Junfang; Li, Chunjian; Zhang, Fusuo

    2009-07-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  2. Factors affecting plant growth in membrane nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.

    1990-01-01

    The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.

  3. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.

    PubMed

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  4. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling

    PubMed Central

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M.; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  5. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    PubMed

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  6. Soil particle heterogeneity affects the growth of a rhizomatous wetland plant.

    PubMed

    Huang, Lin; Dong, Bi-Cheng; Xue, Wei; Peng, Yi-Ke; Zhang, Ming-Xiang; Yu, Fei-Hai

    2013-01-01

    Soil is commonly composed of particles of different sizes, and soil particle size may greatly affect the growth of plants because it affects soil physical and chemical properties. However, no study has tested the effects of soil particle heterogeneity on the growth of clonal plants. We conducted a greenhouse experiment in which individual ramets of the wetland plant Bolboschoenus planiculmis were grown in three homogeneous soil treatments with uniformly sized quartz particles (small: 0.75 mm, medium: 1.5 mm, or large: 3 mm), one homogeneous treatment with an even mixture of large and medium particles, and two heterogeneous treatments consisting of 16 or 4 patches of large and medium particles. Biomass, ramet number, rhizome length and spacer length were significantly greater in the treatment with only medium particles than in the one with only large particles. Biomass, ramet number, rhizome length and tuber number in the patchy treatments were greater in patches of medium than of large particles; this difference was more pronounced when patches were small than when they were large. Soil particle size and soil particle heterogeneity can greatly affect the growth of clonal plants. Thus, studies to test the effects of soil heterogeneity on clonal plants should distinguish the effects of nutrient heterogeneity from those of particle heterogeneity.

  7. Plant growth-promoting rhizobacteria affect the growth and nutrient uptake of Fraxinus americana container seedlings.

    PubMed

    Liu, Fangchun; Xing, Shangjun; Ma, Hailin; Du, Zhenyu; Ma, Bingyao

    2013-05-01

    Plant growth-promoting rhizobacteria (PGPR) are important catalysts that regulate the functional properties of agricultural systems. However, there is little information on the effect of PGPR inoculation on the growth and nutrient accumulation of forest container seedlings. This study determined the effects of a growth medium inoculated with PGPR on the nutrient uptake, nutrient accumulation, and growth of Fraxinus americana container seedlings. PGPR inoculation with fertilizer increased the dry matter accumulation of the F. americana aerial parts with delayed seedling emergence time. Under fertilized conditions, the accumulation time of phosphorous (P) and potassium (K) in the F. americana aerial parts was 13 days longer due to PGPR inoculation. PGPR increased the maximum daily P and K accumulations in fertilized seedlings by 9.31 and 10.44 %, respectively, but had little impact on unfertilized ones. Regardless of fertilizer application, the root exudates, namely sugars, amino acids, and organic acids significantly increased because of PGPR inoculation. PGPR inoculation with fertilizer increased the root, shoot, and leaf yields by 19.65, 22.94, and 19.44 %, respectively, as well as the P and K contents by 8.33 and 10.60 %, respectively. Consequently, the N, P, and K uptakes increased by 19.85, 31.97, and 33.95 %, respectively. Hence, PGPR inoculation with fertilizer can be used as a bioenhancer for plant growth and nutrient uptake in forest container seedling nurseries.

  8. Metal/metalloid fixation by litter during decomposition affected by silicon availability during plant growth.

    PubMed

    Schaller, Jörg

    2013-03-01

    Organic matter is known to accumulate high amounts of metals/metalloids, enhanced during the process of decomposition by heterotrophic biofilms (with high fixation capacity for metals/metalloids). The colonization by microbes and the decay rate of the organic matter depends on different litter properties. Main litter properties affecting the decomposition of organic matter such as the nutrient ratios and the content of cellulose, lignin and phenols are currently described to be changed by silicon availability. But less is known about the impact of silicon availability during plant growth on elemental fixation during decay. Hence, this research focuses on the impact of silicon availability during plant growth on fixation of 42 elements during litter decay, by controlling the litter properties. The results of this experiment are a significantly higher metal/metalloid accumulation during decomposition of plant litter grown under low silicon availability. This may be explained by the altered litter properties (mainly nutrient content) affecting the microbial decomposition of the litter, the microbial growth on the litter and possibly by the silicon double layer, which is evident in leaf litter with high silicon content and reduces the binding sites for metals/metalloids. Furthermore, this silicon double layer may also reduce the growing biofilm by reducing the availability of carbon compounds at the litter surface and has to be elucidated in further research. Hence, low silicon availability during plant growth enhances the metal/metalloid accumulation into plant litter during aquatic decomposition.

  9. Macronutrient content of plant-based food affects growth of a carnivorous arthropod.

    PubMed

    Wilder, Shawn M; Holway, David A; Suarez, Andrew V; Eubanks, Micky D

    2011-02-01

    Many arthropods engage in mutualisms in which they consume plant-based foods including nectar, extrafloral nectar, and honeydew. However, relatively little is known about the manner in which the specific macronutrients in these plant-based resources affect growth, especially for carnivorous arthropods. Using a combination of laboratory and field experiments, we tested (1) how plant-based foods, together with ad libitum insect prey, affect the growth of a carnivorous ant, Solenopsis invicta, and (2) which macronutrients in these resources (i.e., carbohydrates, amino acids, or both) contribute to higher colony growth. Access to honeydew increased the production of workers and brood in experimental colonies. This growth effect appeared to be due to carbohydrates alone as colonies provided with the carbohydrate component of artificial extrafloral nectar had greater worker and brood production compared to colonies deprived of carbohydrates. Surprisingly, amino acids only had a slight interactive effect on the proportion of a colony composed of brood and negatively affected worker survival. Diet choice in the laboratory and field matched performance in the laboratory with high recruitment to carbohydrate baits and only slight recruitment to amino acids. The strong, positive effects of carbohydrates on colony growth and the low cost of producing this macronutrient for plants and hemipterans may have aided the evolution of food-for-protection mutualisms and help explain why these interactions are so common in ants. In addition, greater access to plant-based resources in the introduced range of S. invicta may help to explain the high densities achieved by this species throughout the southeastern United States.

  10. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    PubMed Central

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  11. Salt affects plant Cd-stress responses by modulating growth and Cd accumulation.

    PubMed

    Xu, Jin; Yin, Hengxia; Liu, Xiaojing; Li, Xia

    2010-01-01

    Cadmium contamination is a serious environmental problem for modern agriculture and human health. Salinity affects plant growth and development, and interactions between salt and cadmium have been reported. However, the molecular mechanisms of salinity-cadmium interactions are not fully understood. Here, we show that a low concentration of salt alleviates Cd-induced growth inhibition and increases Cd accumulation in Arabidopsis thaliana. Supplementation with low concentrations of salt reduced the reactive oxygen species level in Cd-stressed roots by increasing the contents of proline and glutathione and down-regulating the expression of RCD1, thereby protecting the plasma membrane integrity of roots under cadmium stress. Salt supplementation substantially reduces the Cd-induced elevation of IAA oxidase activity, thereby maintaining auxin levels in Cd-stressed plants, as indicated by DR5::GUS expression. Salt supply increased Cd absorption in roots and increased Cd accumulation in leaves, implying that salt enhances both Cd uptake in roots and the root-to-shoot translocation of Cd. The elevated Cd accumulation in plants in response to salt was found to be correlated with the elevated levels of phytochelatin the expression of heavy metal transporters AtHMA1-4, especially AtHMA4. Salt alleviated growth inhibition caused by Cd and increased Cd accumulation also was observed in Cd accumulator Solanum nigrum.

  12. Defoliation negatively affects plant growth and the ectomycorrhizal community of Pinus pinaster in Spain.

    PubMed

    Pestaña, Montserrat; Santolamazza-Carbone, Serena

    2011-03-01

    In this work, by artificially reproducing severe (75%) and moderate (25%) defoliation on maritime pines Pinus pinaster in NW Spain, we investigated, under natural conditions, the consequences of foliage loss on reproduction, abundance, diversity and richness of the fungal symbionts growing belowground and aboveground. The effect of defoliation on tree growth was also assessed. Mature needles were clipped during April 2007 and 2008. Root samples were collected in June-July 2007 and 2008. Collection of sporocarps was performed weekly from April 2007 to April 2009. Taxonomic identity of ectomycorrhizal fungi was assessed by using the internal transcribed spacer (ITS) regions of rDNA through the polymerase chain reaction (PCR) method, subsequent direct sequencing and BLAST search. Ectomycorrhizal colonization was significantly reduced (from 54 to 42%) in 2008 by 75% defoliation, accompanied with a decline in species richness and diversity. On the other hand, sporocarp abundance, richness and diversity were not affected by foliage loss. Some ECM fungal symbionts, which are assumed to have a higher carbon cost according to the morphotypes structure, were reduced due to severe (75%) defoliation. Furthermore, 75% foliage loss consistently depressed tree growth, which in turn affected the ectomycorrhizal growth pattern. Defoliation impact on ECM symbionts largely depends on the percentage of foliage removal and on the number of defoliation bouts. Severe defoliation (75%) in the short term (2 years) changed the composition of the ECM community likely because root biomass would be adjusted to lower levels in parallel with the depletion of the aboveground plant biomass, which probably promoted the competition among mycorrhizal types for host resources. The persistence of fungal biomass in mycorrhizal roots would be crucial for nutrient up-take and recovery from defoliation stress of the host plants.

  13. How Will Global Environmental Changes Affect the Growth of Alien Plants?

    PubMed Central

    Jia, Jujie; Dai, Zhicong; Li, Feng; Liu, Yanjie

    2016-01-01

    Global environmental changes can create novel habitats, promoting the growth of alien plants that often exhibit broad environmental tolerance and high phenotypic plasticity. However, the mechanisms underlying these growth promotory effects are unknown at present. Here, we conducted a phylogenetically controlled meta-analysis using data from 111 published studies encompassing the responses of 129 alien plants to global warming, increased precipitation, N deposition, and CO2 enrichment. We compared the differences in the responses of alien plants to the four global environmental change factors across six categories of functional traits between woody and non-woody life forms as well as C3 and C4 photosynthetic pathways. Our results showed that all four global change factors promote alien plant growth. Warming had a more positive effect on C4 than C3 plants. Although the effects of the four factors on the functional traits of alien plants were variable, plant growth was mainly promoted via an increase in growth rate and size. Our data suggest that potential future global environmental changes could further facilitate alien plant growth. PMID:27847511

  14. How Will Global Environmental Changes Affect the Growth of Alien Plants?

    PubMed

    Jia, Jujie; Dai, Zhicong; Li, Feng; Liu, Yanjie

    2016-01-01

    Global environmental changes can create novel habitats, promoting the growth of alien plants that often exhibit broad environmental tolerance and high phenotypic plasticity. However, the mechanisms underlying these growth promotory effects are unknown at present. Here, we conducted a phylogenetically controlled meta-analysis using data from 111 published studies encompassing the responses of 129 alien plants to global warming, increased precipitation, N deposition, and CO2 enrichment. We compared the differences in the responses of alien plants to the four global environmental change factors across six categories of functional traits between woody and non-woody life forms as well as C3 and C4 photosynthetic pathways. Our results showed that all four global change factors promote alien plant growth. Warming had a more positive effect on C4 than C3 plants. Although the effects of the four factors on the functional traits of alien plants were variable, plant growth was mainly promoted via an increase in growth rate and size. Our data suggest that potential future global environmental changes could further facilitate alien plant growth.

  15. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  16. A pathway of bisphenol A affecting mineral element contents in plant roots at different growth stages.

    PubMed

    Xia, Binxin; Wang, Lihong; Nie, Lijun; Zhou, Qing; Huang, Xiaohua

    2017-01-01

    Bisphenol A (BPA), an environmental endocrine disruptor, is an important industrial raw material. The wide use of BPA has increased the risk of BPA release into the environment, and it has become a new environmental pollutant. In this work, the ecological deleterious effects of this new pollutant on soybean roots at different growth stages were investigated by determining the contents of mineral elements (P, K, Ca, and Mg) and analyzing root activity and the activities of critical respiratory enzymes (hexokinase, phosphofructokinase, pyruvate kinase, and isocitrate dehydrogenase). Our results revealed that low dose (1.5mg/L) of BPA increased the levels of P, K, Mg, and Ca in soybean roots at different growth stages. Whereas, high doses (6.0 and 12.0mg/L) of BPA decreased the levels of P, K, and Mg contents in a dose-dependent manner. BPA had a promotive effect on the content of Ca in soybean roots. Synchronous observation showed that the aforementioned dual response to BPA were also observed in the root activity and respiratory enzyme activities. The effects of BPA on the mineral element contents, root activity and respiratory enzyme activities in soybean roots at different growth stages followed the order: flowering and podding stage>seed-filling stage>seedling stage (mineral element contents); seedling stage>flowering and podding stage>seed-filling stage (root activity and respiratory enzyme activities). In a word, the response of plant root activity and respiratory enzyme activities to BPA pollution is a pathway of BPA affecting mineral element contents in plant roots.

  17. NIMA-related kinase NEK6 affects plant growth and stress response in Arabidopsis.

    PubMed

    Zhang, Bo; Chen, Hao-Wei; Mu, Rui-Ling; Zhang, Wang-Ke; Zhao, Ming-Yu; Wei, Wei; Wang, Fang; Yu, Hui; Lei, Gang; Zou, Hong-Feng; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2011-12-01

    The NIMA-related kinases (NEKs) are a family of serine/threonine kinases involved largely in cell cycle control in fungi, mammals and other eukaryotes. In Arabidopsis, NEK6 is involved in the regulation of epidermal cell morphogenesis. However, other roles of NEK6 in plants are less well understood. Here we report functions of NEK6 in plant growth, development and stress responses in Arabidopsis. NEK6 transcripts and proteins are induced by ethylene precursor ACC and salt stress. Expression of other NEK genes except NEK5 is also responsive to the two treatments. Overexpression and mutant analysis disclose that the NEK6 gene increases rosette growth, seed yield and lateral root formation. However, NEK6 appears to play a negative role in the control of seed size. The gene also promotes plant tolerance to salt stress and osmotic stress in its overexpressing plants. The NEK6 gene may achieve its function through suppression of ethylene biosynthesis and activation of CYCB1;1 and CYCA3;1 expression. Our present study reveals new functions of the NEK6 gene in plant growth and stress tolerance, and manipulation of NEK6 may improve important agronomic traits in crop plants.

  18. Complex inter-Kingdom interactions: carnivorous plants affect growth of an aquatic vertebrate.

    PubMed

    Davenport, Jon M; Riley, Alex W

    2017-05-01

    Coexistence of organisms in nature is more likely when phenotypic similarities of individuals are reduced. Despite the lack of similarity, distantly related taxa still compete intensely for shared resources. No larger difference between organisms that share a common prey could exist than between carnivorous plants and animals. However, few studies have considered inter-Kingdom competition among carnivorous plants and animals. In order to evaluate interactions between a carnivorous plant (greater bladderwort, Utricularia vulgaris) and a vertebrate (bluegill, Lepomis macrochirus) on a shared prey (zooplankton), we conducted a mesocosm experiment. We deployed two levels of bladderwort presence (functional and crushed) and measured bluegill responses (survival and growth). Zooplankton abundance was reduced the greatest in bluegill and functional bladderwort treatments. Bluegill survival did not differ among treatments, but growth was greatest with crushed bladderwort. Thus, bluegill growth was facilitated by reducing interference competition in the presence of crushed bladderwort. The facilitating effect was dampened, however, when functional bladderwort removed a shared prey. To our knowledge, this is one of the first studies to experimentally demonstrate interactions between a carnivorous plant and a fish. Our data suggest that carnivorous plants may actively promote or reduce animal co-occurrence from some ecosystems via facilitation or competition.

  19. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra.

    PubMed

    Khaling, Eliezer; Papazian, Stefano; Poelman, Erik H; Holopainen, Jarmo K; Albrectsen, Benedicte R; Blande, James D

    2015-04-01

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools.

  20. Expression of a calmodulin methylation mutant affects the growth and development of transgenic tobacco plants.

    PubMed Central

    Roberts, D M; Besl, L; Oh, S H; Masterson, R V; Schell, J; Stacey, G

    1992-01-01

    Transgenic plants were constructed that express two foreign calmodulins (VU-1 and VU-3 calmodulins) derived from a cloned synthetic calmodulin gene. VU-1 calmodulin, similar to endogenous plant calmodulin, possesses a lysine residue at position 115 and undergoes posttranslational methylation. VU-3 calmodulin is a site-directed mutant of VU-1 calmodulin that is identical in sequence except for the substitution of an arginine at position 115 and thus is incapable of methylation. Both calmodulin genes, under the control of the cauliflower mosaic virus 35S promoter, were expressed in transgenic tobacco. Foreign calmodulin protein accumulated in plant tissues to levels equivalent to that of the endogenous calmodulin. All transformed lines of VU-1 plants were indistinguishable from untransformed controls with respect to growth and development. However, all transformed lines of VU-3 plants were characterized by decreased stem internode growth, reduced seed production, and reduced seed and pollen viability. The data suggest that these phenotypes are the result of the expression of the calmodulin mutant rather than the position of transferred DNA insertion or the overall alteration of calmodulin levels. Analyses of the activity of the purified transgenic calmodulins suggest that calmodulin-dependent NAD kinase is among the potential targets that may have altered regulation in VU-3 transgenic plants. Images PMID:1325656

  1. Molecular analyses of nuclear-cytoplasmic interactions affecting plant growth and yield. Final technical report

    SciTech Connect

    Newton, K.J.

    1998-11-01

    Mitochondria have a central role in the production of cellular energy. The biogenesis and functioning of mitochondria depends on the expression of both mitochondrial and nuclear genes. One approach to investigating the role of nuclear-mitochondrial cooperation in plant growth and development is to identify combinations of nuclear and mitochondrial genomes that result in altered but sublethal phenotypes. Plants that have certain maize nuclear genotypes in combination with cytoplasmic genomes from more distantly-related teosintes can exhibit incompatible phenotypes, such as reduced plant growth and yield and cytoplasmic male sterility, as well as altered mitochondrial gene expression. The characterization of these nuclear-cytoplasmic interactions was the focus of this grant. The authors were investigating the effects of two maize nuclear genes, RcmI and Mct, on mitochondrial function and gene expression. Plants with the teosinte cytoplasms and homozygous for the recessive rcm allele are small (miniature) and-slow-growing and the kernels are reduced in size. The authors mapped this locus to molecular markers on chromosome 7 and attempted to clone this locus by transposon tagging. The effects of the nuclear-cytoplasmic interaction on mitochondrial function and mitochondrial protein profiles were also studied.

  2. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application.

    PubMed

    Jones, D L; Quilliam, R S

    2014-07-15

    Pyrolysis or combustion of waste wood can provide a renewable source of energy and produce byproducts which can be recycled back to land. To be sustainable requires that these byproducts pose minimal threat to the environment or human health. Frequently, reclaimed waste wood is contaminated by preservative-treated timber containing high levels of heavy metals. We investigated the effect of feedstock contamination from copper-preservative treated wood on the behaviour of pyrolysis-derived biochar and combustion-derived ash in plant-soil systems. Biochar and wood ash were applied to soil at typical agronomic rates. The presence of preservative treated timber in the feedstock increased available soil Cu; however, critical Cu guidance limits were only exceeded at high rates of feedstock contamination. Negative effects on plant growth and soil quality were only seen at high levels of biochar contamination (>50% derived from preservative-treated wood). Negative effects of wood ash contamination were apparent at lower levels of contamination (>10% derived from preservative treated wood). Complete removal of preservative treated timber from wood recycling facilities is notoriously difficult and low levels of contamination are commonplace. We conclude that low levels of contamination from Cu-treated wood should pose minimal environmental risk to biochar and ash destined for land application.

  3. Patchy Distributions of Competitors Affect the Growth of a Clonal Plant When the Competitor Density Is High

    PubMed Central

    Xue, Wei; Huang, Lin; Dong, Bi-Cheng; Zhang, Ming-Xiang; Yu, Fei-Hai

    2013-01-01

    Environments are patchy in not only abiotic factors but also biotic ones. Many studies have examined effects of spatial heterogeneity in abiotic factors such as light, water and nutrients on the growth of clonal plants, but few have tested those in biotic factors. We conducted a greenhouse experiment to examine how patchy distributions of competitors affect the growth of a rhizomatous wetland plant Bolboschoenus planiculmis and whether such effects depend on the density of the competitors. We grew one ramet of B. planiculmis in the center of each of the experimental boxes without competitors (Schoenoplectus triqueter), with a homogeneous distribution of the competitors of low or high density, and with a patchy distribution of the competitors of low or high density. The presence of competitors markedly decreased the growth (biomass, number of ramets, number of tubers and rhizome length) of the B. planiculmis clones. When the density of the competitors was low, the growth of B. planiculmis did not differ significantly between the competitor patches and competitor-free patches. However, when the density of the competitors was high, the growth of B. planiculmis was significantly higher in the competitor-free patches than in the competitor patches. Therefore, B. planiculmis can respond to patchy distributions of competitors by placing more ramets in competition-free patches when the density of competitors is high, but cannot do so when the density of competitors is low. PMID:24205165

  4. Factors affecting bone growth.

    PubMed

    Gkiatas, Ioannis; Lykissas, Marios; Kostas-Agnantis, Ioannis; Korompilias, Anastasios; Batistatou, Anna; Beris, Alexandros

    2015-02-01

    Bone growth and development are products of the complex interactions of genetic and environmental factors. Longitudinal bone growth depends on the growth plate. The growth plate has 5 different zones-each with a different functional role-and is the final target organ for longitudinal growth. Bone length is affected by several systemic, local, and mechanical factors. All these regulation systems control the final length of bones in a complicated way. Despite its significance to bone stability, bone growth in width has not been studied as extensively as longitudinal bone growth. Bone growth in width is also controlled by genetic factors, but mechanical loading regulates periosteal apposition. In this article, we review the most recent data regarding bone growth from the embryonic age and analyze the factors that control bone growth. An understanding of this complex system is important in identifying metabolic and developmental bone diseases and fracture risk.

  5. Plant Products Affect Growth and Digestive Efficiency of Cultured Florida Pompano (Trachinotus carolinus) Fed Compounded Diets

    PubMed Central

    Lech, Gregory P.; Reigh, Robert C.

    2012-01-01

    Costs of compounded diets containing fish meal as a primary protein source can be expected to rise as fish meal prices increase in response to static supply and growing demand. Alternatives to fish meal are needed to reduce production costs in many aquaculture enterprises. Some plant proteins are potential replacements for fish meal because of their amino acid composition, lower cost and wide availability. In this study, we measured utilization of soybean meal (SBM) and soy protein concentrate (SPC) by Florida pompano fed compounded diets, to determine the efficacy of these products as fish meal replacements. We also calculated apparent digestibility coefficients (ADCs) for canola meal (CM), corn gluten meal (CGM), and distillers dried grains with solubles (DDGS), following typical methods for digestibility trials. Juvenile Florida pompano were fed fish-meal-free diets containing graded levels of SBM and SPC, and weight gain was compared to a control diet that contained SBM, SPC, and fish meal. Fish fed diets that contained 25–30 percent SBM in combination with 43–39 percent SPC had weight gain equivalent to fish fed the control diet with fish meal, while weight gain of fish fed other soy combinations was significantly less than that of the control group. Apparent crude protein digestibility of CGM was significantly higher than that of DDGS but not significantly different from CM. Apparent energy digestibility of DDGS was significantly lower than CGM but significantly higher than CM. Findings suggested that composition of the reference diet used in a digestibility trial affects the values of calculated ADCs, in addition to the chemical and physical attributes of the test ingredient. PMID:22536344

  6. Plant products affect growth and digestive efficiency of cultured Florida pompano (Trachinotus carolinus) fed compounded diets.

    PubMed

    Lech, Gregory P; Reigh, Robert C

    2012-01-01

    Costs of compounded diets containing fish meal as a primary protein source can be expected to rise as fish meal prices increase in response to static supply and growing demand. Alternatives to fish meal are needed to reduce production costs in many aquaculture enterprises. Some plant proteins are potential replacements for fish meal because of their amino acid composition, lower cost and wide availability. In this study, we measured utilization of soybean meal (SBM) and soy protein concentrate (SPC) by Florida pompano fed compounded diets, to determine the efficacy of these products as fish meal replacements. We also calculated apparent digestibility coefficients (ADCs) for canola meal (CM), corn gluten meal (CGM), and distillers dried grains with solubles (DDGS), following typical methods for digestibility trials. Juvenile Florida pompano were fed fish-meal-free diets containing graded levels of SBM and SPC, and weight gain was compared to a control diet that contained SBM, SPC, and fish meal. Fish fed diets that contained 25-30 percent SBM in combination with 43-39 percent SPC had weight gain equivalent to fish fed the control diet with fish meal, while weight gain of fish fed other soy combinations was significantly less than that of the control group. Apparent crude protein digestibility of CGM was significantly higher than that of DDGS but not significantly different from CM. Apparent energy digestibility of DDGS was significantly lower than CGM but significantly higher than CM. Findings suggested that composition of the reference diet used in a digestibility trial affects the values of calculated ADCs, in addition to the chemical and physical attributes of the test ingredient.

  7. Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning.

    PubMed

    Pilling, J; Willmitzer, L; Bücking, H; Fisahn, J

    2004-05-01

    Two pectin methyl esterases (PMEs; EC 3.1.1.11) from Solanum tuberosum were isolated and their expression characterised. One partial clone ( pest1) was expressed in leaves and fruit tissue, while pest2 was a functional full-length clone and was expressed ubiquitously, with a preference for aerial organs. Potato plants were transformed with a chimeric antisense construct that was designed to simultaneously inhibit pest1 and pest2 transcript accumulation; however, reduction of mRNA levels was confined to pest2. The decrease in pest2 transcript was accompanied by up to 50% inhibition of total PME activity, which was probably due to the reduction of only one PME isoform. PME inhibition affected plant development as reflected by smaller stem elongation rates of selected transformants when compared with control plants, leading to a reduction in height throughout the entire course of development. Expansion rates of young developing leaves were measured simultaneously by two displacement transducers in the direction of the leaf tip (proximal-distal axis) and in the perpendicular direction (medial-lateral axis). Significant differences in leaf growth patterns were detected between wild-type and transgenic plants. We suggest that these visual phenotypes could be correlated with modifications of ion accumulation and partitioning within the transgenic plants. The ion-binding capacities of cell walls from PME-inhibited plants were specifically modified as they preferentially bound more sodium, but less potassium and calcium. X-ray microanalysis also indicated an increase in the concentration of several ions within the leaf apoplast of transgenic plants. Moreover, quantification of the total content of major cations revealed differences specific for a given element between the leaves of PME-inhibited and wild-type plants. Reduced growth rates might also be due to effects of PME inhibition on pectin metabolism, predominantly illustrated by an accumulation of galacturonic acid

  8. Mycorrhizal symbiosis in leeks increases plant growth under low phosphorus and affects the levels of specific flavonoid glycosides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction- Mycorrhizae symbiosis is a universal phenomenon in nature that promotes plant growth and food quality in most plants, especially, under phosphorus deficiency and water stress. Objective- The objective of this study was to assess the effects of mycorrhizal symbiosis on changes in the le...

  9. Plant Growth Regulators.

    ERIC Educational Resources Information Center

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  10. MAPK-dependent JA and SA signalling in Nicotiana attenuata affects plant growth and fitness during competition with conspecifics

    PubMed Central

    2012-01-01

    Background Induced defense responses to herbivores are generally believed to have evolved as cost-saving strategies that defer the fitness costs of defense metabolism until these defenses are needed. The fitness costs of jasmonate (JA)-mediated defenses have been well documented. Those of the early signaling units mediating induced resistance to herbivores have yet to be examined. Early signaling components that mediate herbivore-induced defense responses in Nicotiana attenuata, have been well characterized and here we examine their growth and fitness costs during competition with conspecifics. Two mitogen-activated protein kinases (MAPKs), salicylic acid (SA)-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK) are rapidly activated after perception of herbivory and both kinases regulate herbivory-induced JA levels and JA-mediated defense metabolite accumulations. Since JA-induced defenses result in resource-based trade-offs that compromise plant productivity, we evaluated if silencing SIPK (irSIPK) and WIPK (irWIPK) benefits the growth and fitness of plants competiting with wild type (WT) plants, as has been shown for plants silenced in JA-signaling by the reduction of Lipoxygenase 3 (LOX3) levels. Results As expected, irWIPK and LOX3-silenced plants out-performed their competing WT plants. Surprisingly, irSIPK plants, which have the largest reductions in JA signaling, did not. Phytohormone profiling of leaves revealed that irSIPK plants accumulated higher levels of SA compared to WT. To test the hypothesis that these high levels of SA, and their presumed associated fitness costs of pathogen associated defenses in irSIPK plants had nullified the JA-deficiency-mediated growth benefits in these plants, we genetically reduced SA levels in irSIPK plants. Reducing SA levels partially recovered the biomass and fitness deficits of irSIPK plants. We also evaluated whether the increased fitness of plants with reduced SA or JA levels resulted from

  11. [Plant hormones, plant growth regulators].

    PubMed

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  12. Availability and temporal heterogeneity of water supply affect the vertical distribution and mortality of a belowground herbivore and consequently plant growth.

    PubMed

    Tsunoda, Tomonori; Kachi, Naoki; Suzuki, Jun-Ichirou

    2014-01-01

    We examined how the volume and temporal heterogeneity of water supply changed the vertical distribution and mortality of a belowground herbivore, and consequently affected plant biomass. Plantago lanceolata (Plantaginaceae) seedlings were grown at one per pot under different combinations of water volume (large or small volume) and heterogeneity (homogeneous water conditions, watered every day; heterogeneous conditions, watered every 4 days) in the presence or absence of a larva of the belowground herbivorous insect, Anomala cuprea (Coleoptera: Scarabaeidae). The larva was confined in different vertical distributions to top feeding zone (top treatment), middle feeding zone (middle treatment), or bottom feeding zone (bottom treatment); alternatively no larva was introduced (control treatment) or larval movement was not confined (free treatment). Three-way interaction between water volume, heterogeneity, and the herbivore significantly affected plant biomass. With a large water volume, plant biomass was lower in free treatment than in control treatment regardless of heterogeneity. Plant biomass in free treatment was as low as in top treatment. With a small water volume and in free treatment, plant biomass was low (similar to that under top treatment) under homogeneous water conditions but high under heterogeneous ones (similar to that under middle or bottom treatment). Therefore, there was little effect of belowground herbivory on plant growth under heterogeneous water conditions. In other watering regimes, herbivores would be distributed in the shallow soil and reduced root biomass. Herbivore mortality was high with homogeneous application of a large volume or heterogeneous application of a small water volume. Under the large water volume, plant biomass was high in pots in which the herbivore had died. Thus, the combinations of water volume and heterogeneity affected plant growth via the change of a belowground herbivore.

  13. Plant perceptions of plant growth-promoting Pseudomonas.

    PubMed Central

    Preston, Gail M

    2004-01-01

    Plant-associated Pseudomonas live as saprophytes and parasites on plant surfaces and inside plant tissues. Many plant-associated Pseudomonas promote plant growth by suppressing pathogenic micro-organisms, synthesizing growth-stimulating plant hormones and promoting increased plant disease resistance. Others inhibit plant growth and cause disease symptoms ranging from rot and necrosis through to developmental dystrophies such as galls. It is not easy to draw a clear distinction between pathogenic and plant growth-promoting Pseudomonas. They colonize the same ecological niches and possess similar mechanisms for plant colonization. Pathogenic, saprophytic and plant growth-promoting strains are often found within the same species, and the incidence and severity of Pseudomonas diseases are affected by environmental factors and host-specific interactions. Plants are faced with the challenge of how to recognize and exclude pathogens that pose a genuine threat, while tolerating more benign organisms. This review examines Pseudomonas from a plant perspective, focusing in particular on the question of how plants perceive and are affected by saprophytic and plant growth-promoting Pseudomonas (PGPP), in contrast to their interactions with plant pathogenic Pseudomonas. A better understanding of the molecular basis of plant-PGPP interactions and of the key differences between pathogens and PGPP will enable researchers to make more informed decisions in designing integrated disease-control strategies and in selecting, modifying and using PGPP for plant growth promotion, bioremediation and biocontrol. PMID:15306406

  14. Plant growth promoting rhizobacterium

    DOEpatents

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  15. The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi

    PubMed Central

    Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande

    2017-01-01

    Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml−1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies. PMID:28079180

  16. The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi

    NASA Astrophysics Data System (ADS)

    Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande

    2017-01-01

    Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml‑1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.

  17. The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi.

    PubMed

    Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande

    2017-01-12

    Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml(-1) improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.

  18. Overexpression of a cotton gene that encodes a putative transcription factor of AP2/EREBP family in Arabidopsis affects growth and development of transgenic plants.

    PubMed

    Zhou, Ying; Xia, Hui; Li, Xiao-Jie; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2013-01-01

    In the study, a gene encoding a putative ethylene response factor of AP2/EREBP family was isolated from cotton (Gossypium hirsutum) and designated as GhERF12. Sequence alignment showed that GhERF12 protein contains a central AP2/ERF domain (58 amino acids) with two functional conserved amino acid residues (ala14 and asp19). Transactivation assay indicated that GhERF12 displayed strong transcription activation activity in yeast cells, suggesting that this protein may be a transcriptional activator in cotton. Quantitative RT-PCR analysis showed that GhERF12 expression in cotton was induced by ACC and IAA. Overexpression of GhERF12 in Arabidopsis affected seedling growth and development. The GhERF12 transgenic plants grew slowly, and displayed a dwarf phenotype. The mean bolting time of the transgenic plants was delayed for about 10 days, compared with that of wild type. Further study revealed that some ethylene-related and auxin-related genes were dramatically up-regulated in the transgenic plants, compared with those of wild type. Collectively, we speculated that GhERF12, as a transcription factor, may be involved in regulation of plant growth and development by activating the constitutive ethylene response likely related to auxin biosynthesis and/or signaling.

  19. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth.

    PubMed

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K; Singh, Rakshapal; Verma, Rajesh K; Kalra, Alok

    2015-10-27

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants.

  20. Plant Growth Facility (PGF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In a microgravity environment aboard the Space Shuttle Columbia Life and Microgravity Mission STS-78, compression wood formation and hence altered lignin deposition and cell wall structure, was induced upon mechanically bending the stems of the woody gymnosperms, Douglas fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda). Although there was significant degradation of many of the plant specimens in space-flight due to unusually high temperatures experienced during the mission, it seems evident that gravity had little or no effect on compression wood formation upon bending even in microgravity. Instead, it apparently results from alterations in the stress gradient experienced by the plant itself during bending under these conditions. This preliminary study now sets the stage for long-term plant growth experiments to determine whether compression wood formation can be induced in microgravity during phototropic-guided realignment of growing woody plant specimens, in the absence of any externally provided stress and strain.

  1. Salinity and Alkaline pH of Irrigation Water Affect Marigold Plants: I. Growth and Shoot Dry Weight Partitioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marigold, is one of the most popular annual ornamental plants. Both the short-statured cultivars (Tagetes patula L.) and the taller cultivars (T. erecta L.) are used as container plants, in landscape and garden settings. Tagetes erecta varieties make excellent cut and dried flowers for the florist...

  2. Plant growth and soil microorganisms responses to SO/sub 2/, NO/sub 2/, and ozone as affected by soils

    SciTech Connect

    Roberts, B.W.

    1987-01-01

    Glycine max (L.) Merr. cv. Nathan, Phaseolus vulgaris (L.) cv. Bush Blue Lake, and Lycopersicon esculentum (Mill.) cv. Tiny Tim grown in four soils were exposed to O/sub 3/. General responses were linear declines in dry weight with increasing levels of O/sub 3/. Soil and O/sub 3/ interactions occurred with P. vulgaris, but not with other species. In two related studies, L esculentum was exposed to SO/sub 2/ and NO/sub 2/ in various combinations. Nitrogen dioxide alone either increased or had no effect on plant dry weight. Sulfur dioxide alone inhibited growth at 0.2 uL L/sup -1/ and stimulated growth at 0.3 uL L/sup -1/. Sulfur dioxide and NO/sub 2/ in combination inhibited growth more than either pollutant alone. Rhizosphere microorganism populations in the same studies sometimes showed significant changes in response to pollutants, but were affected much more by soils in which the plants were grown than by either SO/sub 2/ or NO/sub 2/.

  3. Radish introduction affects soil biota and has a positive impact on the growth of a native plant.

    PubMed

    Pearse, Ian S; Bastow, Justin L; Tsang, Alia

    2014-02-01

    Introduced plants may out-compete natives by belowground allelopathic effects on soil communities including the symbionts of native plants. We tested for an allelopathic effect of an introduced crucifer, Raphanus sativus, on a common neighboring legume, Lupinus nanus, on the legume's rhizobium affiliates, and on the broader soil community. In both field observations and a greenhouse experiment, we found that R. sativus decreased the density of nodules on L. nanus roots. However, in the greenhouse experiment, R. sativus soils only decreased the density of small, likely non-beneficial rhizobium nodules. In the same experiment, R. sativus soils decreased fungivorous nematode abundance, though there was no effect of R. sativus introduction on fungal density. In the greenhouse experiment, R. sativus soils had a net positive effect on L. nanus biomass. One explanation of this effect is that R. sativus introduction might alter the mutualistic/parasitic relationship between L. nanus and its rhizobial associates with a net benefit to L. nanus. Our results suggest that introduced brassicas can quickly alter belowground communities, but that the net effect of this on neighboring plants is not necessarily negative.

  4. Students' Ideas about Plants and Plant Growth

    ERIC Educational Resources Information Center

    Barman, Charles R.; Stein, Mary; McNair, Shannan; Barman, Natalie S.

    2006-01-01

    Because the National Science Education Standards (1996) outline specific things K-8 students should know about plants, and previous data indicated that elementary students had difficulty understanding some major ideas about plants and plant growth, the authors of this article thought it appropriate to initiate an investigation to determine the…

  5. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters.

    PubMed

    Nascente, Adriano Stephan; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; de Souza, Alan Carlos Alves; da Silva Lobo, Valácia Lemes; da Silva, Gisele Barata

    2017-01-01

    Microorganisms are considered a genetic resource with great potential for achieving sustainable development of agricultural areas. The objective of this research was to determine the effect of microorganism application forms on the production of biomass, gas exchange, and nutrient content in upland rice. The experiment was conducted under greenhouse conditions in a completely randomized design in a factorial 7 × 3 + 1, with four replications. The treatments consisted of combining seven microorganisms with three application forms (microbiolized seed; microbiolized seed + soil drenched with a microorganism suspension at 7 and 15 days after sowing (DAS); and microbiolized seed + plant sprayed with a microorganism suspension at 7 and 15 DAS) and a control (water). Treatments with Serratia sp. (BRM32114), Bacillus sp. (BRM32110 and BRM32109), and Trichoderma asperellum pool provided, on average, the highest photosynthetic rate values and dry matter biomass of rice shoots. Plants treated with Burkolderia sp. (BRM32113), Serratia sp. (BRM32114), and Pseudomonas sp. (BRM32111 and BRM32112) led to the greatest nutrient uptake by rice shoots. Serratia sp. (BRM 32114) was the most effective for promoting an increase in the photosynthetic rate, and for the greatest accumulation of nutrients and dry matter at 84 DAS, in rice shoots, which differed from the control treatment. The use of microorganisms can bring numerous benefits of rice, such as improving physiological characteristics, nutrient uptake, biomass production, and grain yield.

  6. Solar Ultraviolet-B Radiation Affects Seedling Emergence, DNA Integrity, Plant Morphology, Growth Rate, and Attractiveness to Herbivore Insects in Datura ferox.

    PubMed Central

    Ballare, C. L.; Scopel, A. L.; Stapleton, A. E.; Yanovsky, M. J.

    1996-01-01

    To study functional relationships between the effects of solar ultraviolet-B radiation (UV-B) on different aspects of the physiology of a wild plant, we carried out exclusion experiments in the field with the summer annual Datura ferox L. Solar UV-B incident over Buenos Aires reduced daytime seedling emergence, inhibited stem elongation and leaf expansion, and tended to reduce biomass accumulation during early growth. However, UV-B had no effect on calculated net assimilation rate. Using a monoclonal antibody specific to the cyclobutane-pyrimidine dimer (CPD), we found that plants receiving full sunlight had more CPDs per unit of DNA than plants shielded from solar UV-B, but the positive correlation between UV-B and CPD burden tended to level off at high (near solar) UV-B levels. At our field site, Datura plants were consumed by leaf beetles (Coleoptera), and the proportion of plants attacked by insects declined with the amount of UV-B received during growth. Field experiments showed that plant exposure to solar UV-B reduced the likelihood of leaf beetle attack by one-half. Our results highlight the complexities associated with scaling plant responses to solar UV-B, because they show: (a) a lack of correspondence between UV-B effects on net assimilation rate and whole-plant growth rate, (b) nonlinear UV-B dose-response curves, and (c) UV-B effects of plant attractiveness to natural herbivores. PMID:12226382

  7. Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox

    SciTech Connect

    Ballare, C.L.; Scopel, A.L.; Stapleton, A.E.

    1996-09-01

    To study functional relationships between the effects of solar ultraviolet-B radiation (UV0B) on different aspects of the physiology of a wild plant, we carried out exclusion experiments in the field with the summer annual Datura ferrox L. Solar UV-B incident over Buenos Aires reduced daytime seedling emergence, inhibited stem elongation and leaf expansion, and tended to reduce biomass accumulation during early growth. However, UV-B had no effect on calculated net assimilation rate. Using a monoclonal antibody specific to the cyclobutane-pyrimidine dimer (CPD), we found that plants receiving full sunlight had more CPDs per unit of DNA than plants shielded from solar UV-B, but the positive correlation between UV-B and CPD burden tended to level off at high (near solar) UV-B levels. At our field site, Datura plants were consumed by leaf beetles (Coleoptera), and the proportion of plants attacked by insects declined with the amount of UV-B received during growth. Field experiments showed that plant exposure to solar UV-B reduced the likelihood of leaf beetle attack by one-half. Our results highlight the complexities associated with scaling plant responses to solar UV-B, because they show: (a) a lack of correspondence between UV-B effects on net assimilation rate and whole-plant growth rate, (b) nonlinear UV-B dose-response curves, and (c) UV-B effects of plant attractiveness to natural herbivores. 56 refs., 7 figs.

  8. Chemical Control of Plant Growth.

    ERIC Educational Resources Information Center

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  9. Plant-growth-promoting rhizobacteria.

    PubMed

    Lugtenberg, Ben; Kamilova, Faina

    2009-01-01

    Several microbes promote plant growth, and many microbial products that stimulate plant growth have been marketed. In this review we restrict ourselves to bacteria that are derived from and exert this effect on the root. Such bacteria are generally designated as PGPR (plant-growth-promoting rhizobacteria). The beneficial effects of these rhizobacteria on plant growth can be direct or indirect. This review begins with describing the conditions under which bacteria live in the rhizosphere. To exert their beneficial effects, bacteria usually must colonize the root surface efficiently. Therefore, bacterial traits required for root colonization are subsequently described. Finally, several mechanisms by which microbes can act beneficially on plant growth are described. Examples of direct plant growth promotion that are discussed include (a) biofertilization, (b) stimulation of root growth, (c) rhizoremediation, and (d) plant stress control. Mechanisms of biological control by which rhizobacteria can promote plant growth indirectly, i.e., by reducing the level of disease, include antibiosis, induction of systemic resistance, and competition for nutrients and niches.

  10. Phytochrome, plant growth and flowering

    NASA Technical Reports Server (NTRS)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  11. (Plant growth with limited water)

    SciTech Connect

    Not Available

    1991-01-01

    The work supported by DOE in the last year built on our earlier findings that stem growth in soybean subjected to limited water is inhibited first by a physical limitation followed in a few hours by metabolic changes that reduce the extensibility of the cell walls. With time, there is modest recovery in extensibility and a 28kD protein accumulates in the walls of the growth-affected cells. A 31kD protein that was 80% similar in amino acid sequence also was present but did not accumulate in the walls of the stem cells. Explorations of the mRNA for these proteins showed that the mRNA for the 28kD protein increased in the shoot in response to water deprivation but the mRNA for the 31kD protein did not accumulate. In contrast, the roots continued to grow and the mRNA for the 31kD protein accumulated but the mRNA for the 28kD protein was undetectable. We also explored how growth occurs in the absence of an external water supply. We found that, under these conditions, internal water is mobilized from surrounding nongrowing or slowly growing tissues and is used by rapidly growing cells. We showed that a low water potential is normally present in the enlarging tissues and is the likely force that extracts water from the surrounding tissues. We found that it involved a gradient in water potential that extended from the xylem to the outlying cells in the enlarging region and was not observed in the slowly growing basal tissue of the stems of the same plant. The gradient was measured directly with single cell determinations of turgor and osmotic potential in intact plants. The gradient may explain instances of growth inhibition with limited water when there is no change in the turgor of the enlarging cells. 17 refs.

  12. Flooding and Plant Growth

    PubMed Central

    VISSER, E. J. W.; VOESENEK, L. A. C. J.; VARTAPETIAN, B. B.; JACKSON, M. B.

    2003-01-01

    This Special Issue is based on the 7th Conference of the International Society for Plant Anaerobiosis (ISPA), held in Nijmegen, The Netherlands, 12–16 June 2001. The papers describe and analyse many of the responses that plants display when subjected to waterlogging of the soil or deeper submergence. These responses may be injurious or adaptive, and are discussed at various levels of organizational complexity ranging from ecosystem processes, through individual plants to single cells. The research incorporates molecular biology and genetics, cell physiology, biochemistry, hormone physiology, whole plant physiology, plant demography and ecology. The study of the damage to young rice plants caused by submergence, especially as experienced in the rainfed lowlands of Asia, is comprehensively addressed. This work integrates various specialized approaches ranging from agronomy to molecular genetics, and demonstrates how plant biology can be harnessed to improve stress tolerance in an important crop species while simultaneously improving basic understanding of tolerance mechanisms and plant processes.

  13. Pepper plants growth, yield, photosynthetic pigments, and total phenols as affected by foliar application of potassium under different salinity irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation with high salinity water influences plant growth, production of photosynthetic pigments and total phenols, leading to reduction in crop yield and quality. Foliar application of macro- and/or micro-nutrients can, to some extent, mitigate negative effects of high salinity irrigation water o...

  14. Bean Plants: A Growth Experience

    ERIC Educational Resources Information Center

    West, Donna

    2004-01-01

    Teaching plant growth to seventh-grade life science students has been interesting for the author because she grew up in a rural area and always had to help in the garden. She made many assumptions about what her rural and suburban students knew. One year she decided to have them grow plants to observe the roots, stems, leaves, flowers, and fruit…

  15. Parameter Stability of the Functional–Structural Plant Model GREENLAB as Affected by Variation within Populations, among Seasons and among Growth Stages

    PubMed Central

    Ma, Yuntao; Li, Baoguo; Zhan, Zhigang; Guo, Yan; Luquet, Delphine; de Reffye, Philippe; Dingkuhn, Michael

    2007-01-01

    Background and Aims It is increasingly accepted that crop models, if they are to simulate genotype-specific behaviour accurately, should simulate the morphogenetic process generating plant architecture. A functional–structural plant model, GREENLAB, was previously presented and validated for maize. The model is based on a recursive mathematical process, with parameters whose values cannot be measured directly and need to be optimized statistically. This study aims at evaluating the stability of GREENLAB parameters in response to three types of phenotype variability: (1) among individuals from a common population; (2) among populations subjected to different environments (seasons); and (3) among different development stages of the same plants. Methods Five field experiments were conducted in the course of 4 years on irrigated fields near Beijing, China. Detailed observations were conducted throughout the seasons on the dimensions and fresh biomass of all above-ground plant organs for each metamer. Growth stage-specific target files were assembled from the data for GREENLAB parameter optimization. Optimization was conducted for specific developmental stages or the entire growth cycle, for individual plants (replicates), and for different seasons. Parameter stability was evaluated by comparing their CV with that of phenotype observation for the different sources of variability. A reduced data set was developed for easier model parameterization using one season, and validated for the four other seasons. Key Results and Conclusions The analysis of parameter stability among plants sharing the same environment and among populations grown in different environments indicated that the model explains some of the inter-seasonal variability of phenotype (parameters varied less than the phenotype itself), but not inter-plant variability (parameter and phenotype variability were similar). Parameter variability among developmental stages was small, indicating that parameter

  16. A 3-year study reveals that plant growth stage, season and field site affect soil fungal communities while cultivar and GM-trait have minor effects.

    PubMed

    Hannula, Silja Emilia; de Boer, Wietse; van Veen, Johannes

    2012-01-01

    In this three year field study the impact of different potato (Solanum tuberosum L.) cultivars including a genetically modified (GM) amylopectin-accumulating potato line on rhizosphere fungal communities are investigated using molecular microbiological methods. The effects of growth stage of a plant, soil type and year on the rhizosphere fungi were included in this study. To compare the effects, one GM cultivar, the parental isoline, and four non-related cultivars were planted in the fields and analysed using T-RFLP on the basis of fungal phylum specific primers combined with multivariate statistical methods. Additionally, fungal biomass and some extracellular fungal enzymes (laccases, Mn-peroxidases and cellulases) were quantified in order to gain insight into the function of the fungal communities. Plant growth stage and year (and agricultural management) had the strongest effect on both diversity and function of the fungal communities while the GM-trait studied was the least explanatory factor. The impact of cultivar and soil type was intermediate. Occasional differences between cultivars, the amylopectin-accumulating potato line, and its parental variety were detected, but these differences were mostly transient in nature and detected either only in one soil, one growth stage or one year.

  17. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    PubMed

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains.

  18. A 3-Year Study Reveals That Plant Growth Stage, Season and Field Site Affect Soil Fungal Communities while Cultivar and GM-Trait Have Minor Effects

    PubMed Central

    Hannula, Silja Emilia; de Boer, Wietse; van Veen, Johannes

    2012-01-01

    In this three year field study the impact of different potato (Solanum tuberosum L.) cultivars including a genetically modified (GM) amylopectin-accumulating potato line on rhizosphere fungal communities are investigated using molecular microbiological methods. The effects of growth stage of a plant, soil type and year on the rhizosphere fungi were included in this study. To compare the effects, one GM cultivar, the parental isoline, and four non-related cultivars were planted in the fields and analysed using T-RFLP on the basis of fungal phylum specific primers combined with multivariate statistical methods. Additionally, fungal biomass and some extracellular fungal enzymes (laccases, Mn-peroxidases and cellulases) were quantified in order to gain insight into the function of the fungal communities. Plant growth stage and year (and agricultural management) had the strongest effect on both diversity and function of the fungal communities while the GM-trait studied was the least explanatory factor. The impact of cultivar and soil type was intermediate. Occasional differences between cultivars, the amylopectin-accumulating potato line, and its parental variety were detected, but these differences were mostly transient in nature and detected either only in one soil, one growth stage or one year. PMID:22529898

  19. Static Magnetic Field and Plant Growth

    NASA Astrophysics Data System (ADS)

    Maharramov, Akif A.

    2007-04-01

    In the conditions of stable existence of Static Magnetic Field (SMF) the growth processes of some plants' (chickpeas, beans and lentils) seeds have been investigated in different temperatures of microenvironment. It has been established that the rate of the plant growths is affected (speeded up) by SMF that is intimately related to environmental temperature, any other environmental parameters (humidity, illumination, soil chemical state, etc) being under control. At the same time, the highest rate of growth has been observed in beans at a range of 30, 0 +/- 2, 0 °C. Special experiments and analyses of the data obtained, testified that the plants roots occurred the main target for SMF to be affected to get increasing rate. In order to standardize experimental conditions, the SMF have been created by magnetic bars of the intensity of B, equal that of the Earth at a distance of 23 cm from a pole of a bar magnet on the line passing along the both of its poles. Taking as a basis the results, it may be concluded that SMF can affect plant growth process, being regarded as an environmental factor of ecological importance.

  20. Constitutive expression of two apple (Malus x domestica Borkh.) homolog genes of LIKE HETEROCHROMATIN PROTEIN1 affects flowering time and whole-plant growth in transgenic Arabidopsis.

    PubMed

    Mimida, Naozumi; Kidou, Shin-Ichiro; Kotoda, Nobuhiro

    2007-09-01

    Fruit trees, such as apple (Malus x domestica Borkh.), are woody perennial plants with a long juvenile phase. The biological analysis for the regulation of flowering time provides insights into the reduction of juvenile phase and the acceleration of breeding in fruit trees. In Arabidopsis, LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is involved in epigenetic silencing of the target genes such as flowering genes. We isolated and characterized twin apple LHP1 homolog genes, MdLHP1a and MdLHP1b. These genes may have been generated as a result of ancient genome duplication. Although the putative MdLHP1 proteins showed lower similarity to any other known plant LHP1 homologs, a chromo domain, a chromo shadow domain, and the nuclear localization signal motifs were highly conserved among them. RT-PCR analysis showed that MdLHP1a and MdLHP1b were expressed constantly in developing shoot apices of apple trees throughout the growing season. Constitutive expression of MdLHP1a or MdLHP1b could compensate for the pleiotropic phenotype of lhp1/tfl2 mutant, suggesting that apple LHP1 homolog genes are involved in the regulation of flowering time and whole-plant growth. Based on these results, LHP1 homolog genes might have rapidly evolved among plant species, but the protein functions were conserved, at least between Arabidopsis and apple.

  1. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations

    PubMed Central

    Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan

    2016-01-01

    The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice roots after treatments with CNTs, and all three types of CNTs had the same effects on the C:N ratio. Interestingly, the increase in the C:N ratio in roots was largely because of decreased N content, indicating that the CNTs significantly decreased N assimilation. Analyses of the Fe and Co contents in plant tissues, transmission electron microscope (TEM) observations and energy dispersive X-ray spectroscopy (EDS) analysis proved that the CNTs could penetrate the cell wall and the cell membrane, and then enter the root cells. According to the author's knowledge, this is the first time to study the relationship between carbon nanotubes and carbon nitrogen ratio and plant hormones. PMID:27284692

  2. Ecologically relevant UV-B dose combined with high PAR intensity distinctly affect plant growth and accumulation of secondary metabolites in leaves of Centella asiatica L. Urban.

    PubMed

    Müller, Viola; Albert, Andreas; Barbro Winkler, J; Lankes, Christa; Noga, Georg; Hunsche, Mauricio

    2013-10-05

    We investigated the effects of environmentally relevant dose of ultraviolet (UV)-B and photosynthetic active radiation (PAR) on saponin accumulation in leaves on the example of Centella asiatica L. Urban. For this purpose, plants were exposed to one of four light regimes i.e., two PAR intensities with or without UV-B radiation. The experiment was conducted in technically complex sun simulators under almost natural irradiance and climatic conditions. As observed, UV-B radiation increased herb and leaf production as well as the content of epidermal flavonols, which was monitored by non-destructive fluorescence measurements. Specific fluorescence indices also indicate an increase in the content of anthocyanins under high PAR; this increase was likewise observed for the saponin concentrations. In contrast, UV-B radiation had no distinct effects on saponin and sapogenin concentrations. Our findings suggest that besides flavonoids, also saponins were accumulated under high PAR protecting the plant from oxidative damage. Furthermore, glycosylation of sapogenins seems to be important either for the protective function and/or for compartmentalization of the compounds. Moreover, our study revealed that younger leaves contain higher amounts of saponins, while in older leaves the sapogenins were the most abundant constituents. Concluding, our results proof that ambient dose of UV-B and high PAR intensity distinctly affect the accumulation of flavonoids and saponins, enabling the plant tissue to adapt to the light conditions.

  3. Plant growth-promoting bacterial endophytes.

    PubMed

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes.

  4. Water-Conserving Plant-Growth System

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Brown, Christopher S.

    1993-01-01

    Report presents further information about plant-growth apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375). Apparatus provides nutrient solution to roots of seedlings without flooding. Conserves water by helping to prevent evaporation from plant bed. Solution supplied only as utilized by seedlings. Device developed for supporting plant growth in space, also has applications for growing plants with minimum of water, such as in arid environments.

  5. LED Systems Target Plant Growth

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To help develop technologies for growing edible biomass (food crops) in space, Kennedy Space Center partnered with Orbital Technologies Corporation (ORBITEC), of Madison, Wisconsin, through the Small Business Innovation Research (SBIR) program. One result of this research was the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system, components of which have been incorporated into a variety of agricultural greenhouse and consumer aquarium lighting features. The new lighting systems can be adapted to a specific plant species during a specific growth stage, allowing maximum efficiency in light absorption by all available photosynthetic tissues.

  6. The vascular plants: open system of growth.

    PubMed

    Basile, Alice; Fambrini, Marco; Pugliesi, Claudio

    2017-03-01

    function as new SAMs: form axillary buds with a few leaves and then the buds can either stay dormant or develop into shoot branches to define a plant architecture, which in turn affects assimilate production and reproductive efficiency. Therefore, the radiation of angiosperms was accompanied by a huge diversification in growth forms that determine an enormous morphological plasticity helping plants to environmental changes. In this review, we focused on the developmental processes of AM initiation and outgrowth. In particular, we summarized the primary growth of SAM, the key role of positional signals for AM initiation, and the dissection of molecular players involved in AM initiation and outgrowth. Finally, the interaction between phytohormone signals and gene regulatory network controlling AM development was discussed.

  7. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    PubMed

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here.

  8. The regulation of plant growth by the circadian clock.

    PubMed

    Farré, E M

    2012-05-01

    Circadian regulated changes in growth rates have been observed in numerous plants as well as in unicellular and multicellular algae. The circadian clock regulates a multitude of factors that affect growth in plants, such as water and carbon availability and light and hormone signalling pathways. The combination of high-resolution growth rate analyses with mutant and biochemical analysis is helping us elucidate the time-dependent interactions between these factors and discover the molecular mechanisms involved. At the molecular level, growth in plants is modulated through a complex regulatory network, in which the circadian clock acts at multiple levels.

  9. Plant growth chamber M design

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M.

    1986-01-01

    Crop production is just one of the many processes involved in establishing long term survival of man in space. The benefits of integrating higher plants into the overall plan was recognized early by NASA through the Closed Ecological Life Support System (CELSS) program. The first step is to design, construct, and operate a sealed (gas, liquid, and solid) plant growth chamber. A 3.6 m diameter by 6.7 m high closed cylinder (previously used as a hypobaric vessel during the Mercury program) is being modified for this purpose. The chamber is mounted on legs with the central axis vertical. Entrance to the chamber is through an airlock. This chamber will be devoted entirely to higher plant experimentation. Any waste treatment, food processing or product storage studies will be carried on outside of this chamber. Its primary purpose is to provide input and output data on solids, liquids, and gases for single crop species and multiple species production using different nutrient delivery systems.

  10. Clonal growth and plant species abundance

    PubMed Central

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-01-01

    Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially

  11. (Plant growth with limited water)

    SciTech Connect

    Not Available

    1992-01-01

    When water is in short supply, soybean stem growth is inhibited by a physical limitation followed in a few hours by metabolic changes that reduce the extensibility of the cell walls. The extensibility then becomes the main limitation. With time, there is a modest recovery in extensibility along with an accumulation of a 28kD protein in the walls of the growth-affected cells. A 3lkD protein that was 80% similar in amino acid sequence also was present but did not accumulate in the walls of the stem cells. In the stem, growth was inhibited and the mRNA for the 28kD protein increased in response to water deprivation but the mRNA for the 3 1 kD protein did not. The roots continued to grow and the mRNA for the 28kD protein did not accumulate but the mRNA for the 3lkD protein did. Thus, there was a tissuespecific response of gene expression that correlated with the contrasting growth response to low water potential in the same seedlings. Further work using immunogold labeling, fluorescence labeling, and western blotting gave evidence that the 28kD protein is located in the cell wall as well as several compartments in the cytoplasm. Preliminary experiments indicate that the 28kD protein is a phosphatase.

  12. Silencing of the GDP-D-mannose 3,5-epimerase affects the structure and cross-linking of the pectic polysaccharide rhamnogalacturonan II and plant growth in tomato.

    PubMed

    Voxeur, Aline; Gilbert, Louise; Rihouey, Christophe; Driouich, Azeddine; Rothan, Christophe; Baldet, Pierre; Lerouge, Patrice

    2011-03-11

    L-galactose (L-Gal), a monosaccharide involved in L-ascorbate and rhamnogalacturonan II (RG-II) biosynthesis in plants, is produced in the cytosol by a GDP-D-mannose 3,5-epimerase (GME). It has been recently reported that the partial inactivation of GME induced growth defects affecting both cell division and cell expansion (Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F., Bouchet, B., Faurobert, M., Gouble, B., Page, D., Garcia, V., Petit, J., Stevens, R., Causse, M., Fernie, A. R., Lahaye, M., Rothan, C., and Baldet, P. (2009) Plant J. 60, 499-508). In the present study, we show that the silencing of the two GME genes in tomato leaves resulted in approximately a 60% decrease in terminal L-Gal content in the side chain A of RG-II as well as in a lower capacity of RG-II to perform in muro cross-linking. In addition, we show that unlike supplementation with L-Gal or ascorbate, supplementation of GME-silenced lines with boric acid was able to restore both the wild-type growth phenotype of tomato seedlings and an efficient in muro boron-mediated cross-linking of RG-II. Our findings suggest that developmental phenotypes in GME-deficient lines are due to the structural alteration of RG-II and further underline the crucial role of the cross-linking of RG-II in the formation of the pectic network required for normal plant growth and development.

  13. Constitutively overexpressing a tomato fructokinase gene (lefrk1) in cotton (Gossypium hirsutum L. cv. coker 312) positively affects plant vegetative growth, boll number and seed cotton yield.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing fructokinase (FRK) activity in cotton (Gossypium hirsutum L.) plants may reduce fructose inhibition of sucrose synthase (Sus) and lead to improved fibre yield and quality. Cotton was transformed with a tomato (Solanum lycopersicum L.) fructokinase gene (LeFRK1) under the control of the C...

  14. Mechanical forces in plant growth and development.

    PubMed

    Fisher, D D; Cyr, R J

    2000-06-01

    Plant cells perceive forces that arise from the environment and from the biophysics of plant growth. These forces provide meaningful cues that can affect the development of the plant. Seedlings of Arabidopsis thaliana were used to examine the cytoplasmic tensile character of cells that have been implicated in the gravitropic response. Laser-trapping technology revealed that the starch-containing statoliths of the central columella cells in root caps are held loosely within the cytoplasm. In contrast, the peripheral cells have starch granules that are relatively resistant to movement. The role of the actin cytoskeleton in affecting the tensile character of these cells is discussed. To explore the role that biophysical forces might play in generating developmental cues, we have developed an experimental model system in which protoplasts, embedded in a synthetic agarose matrix, are subjected to stretching or compression. We have found that protoplasts subjected to these forces from five minutes to two hours will subsequently elongate either at right angles or parallel to the tensive or compressive force vector. Moreover, the cortical microtubules are found to be organized either at right angles or parallel to the tensive or compressive force vector. We discuss these results in terms of an interplay of information between the extracellular matrix and the underlying cytoskeleton.

  15. Mechanical forces in plant growth and development

    NASA Technical Reports Server (NTRS)

    Fisher, D. D.; Cyr, R. J.

    2000-01-01

    Plant cells perceive forces that arise from the environment and from the biophysics of plant growth. These forces provide meaningful cues that can affect the development of the plant. Seedlings of Arabidopsis thaliana were used to examine the cytoplasmic tensile character of cells that have been implicated in the gravitropic response. Laser-trapping technology revealed that the starch-containing statoliths of the central columella cells in root caps are held loosely within the cytoplasm. In contrast, the peripheral cells have starch granules that are relatively resistant to movement. The role of the actin cytoskeleton in affecting the tensile character of these cells is discussed. To explore the role that biophysical forces might play in generating developmental cues, we have developed an experimental model system in which protoplasts, embedded in a synthetic agarose matrix, are subjected to stretching or compression. We have found that protoplasts subjected to these forces from five minutes to two hours will subsequently elongate either at right angles or parallel to the tensive or compressive force vector. Moreover, the cortical microtubules are found to be organized either at right angles or parallel to the tensive or compressive force vector. We discuss these results in terms of an interplay of information between the extracellular matrix and the underlying cytoskeleton.

  16. ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis

    PubMed Central

    Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. PMID:24391508

  17. ADP1 affects plant architecture by regulating local auxin biosynthesis.

    PubMed

    Li, Ruixi; Li, Jieru; Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs.

  18. Ethylene signaling and regulation in plant growth and stress responses.

    PubMed

    Wang, Feifei; Cui, Xiankui; Sun, Yue; Dong, Chun-Hai

    2013-07-01

    Gaseous phytohormone ethylene affects many aspects of plant growth and development. The ethylene signaling pathway starts when ethylene binds to its receptors. Since the cloning of the first ethylene receptor ETR1 from Arabidopsis, a large number of studies have steadily improved our understanding of the receptors and downstream components in ethylene signal transduction pathway. This article reviews the regulation of ethylene receptors, signal transduction, and the posttranscriptional modulation of downstream components. Functional roles and importance of the ethylene signaling components in plant growth and stress responses are also discussed. Cross-reactions of ethylene with auxin and other phytohormones in plant organ growth will be analyzed. The studies of ethylene signaling in plant growth, development, and stress responses in the past decade greatly advanced our knowledge of how plants respond to endogenous signals and environmental factors.

  19. Elevated CO2, warmer temperatures and soil water deficit affect plant growth, physiology and water use of cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in temperature, atmospheric [CO2] and precipitation under the scenarios of projected climate change present a challenge to crop production, and may have significant impacts on the physiology, growth and yield of cotton (Gossypium hirsutum L.). A glasshouse experiment explored the early growt...

  20. Spiral Growth in Plants: Models and Simulations

    ERIC Educational Resources Information Center

    Allen, Bradford D.

    2004-01-01

    The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…

  1. Modeling plant growth and development.

    PubMed

    Prusinkiewicz, Przemyslaw

    2004-02-01

    Computational plant models or 'virtual plants' are increasingly seen as a useful tool for comprehending complex relationships between gene function, plant physiology, plant development, and the resulting plant form. The theory of L-systems, which was introduced by Lindemayer in 1968, has led to a well-established methodology for simulating the branching architecture of plants. Many current architectural models provide insights into the mechanisms of plant development by incorporating physiological processes, such as the transport and allocation of carbon. Other models aim at elucidating the geometry of plant organs, including flower petals and apical meristems, and are beginning to address the relationship between patterns of gene expression and the resulting plant form.

  2. Magnetic fields: how is plant growth and development impacted?

    PubMed

    da Silva, Jaime A Teixeira; Dobránszki, Judit

    2016-03-01

    This review provides detailed insight on the effects of magnetic fields on germination, growth, development, and yield of plants focusing on ex vitro growth and development and discussing the possible physiological and biochemical responses. The MFs considered in this review range from the nanoTesla (nT) to geomagnetic levels, up to very strong MFs greater than 15 Tesla (T) and also super-weak MFs (near 0 T). The theoretical bases of the action of MFs on plant growth, which are complex, are not discussed here and thus far, there is limited mathematical background about the action of MFs on plant growth. MFs can positively influence the morphogenesis of several plants which allows them to be used in practical situations. MFs have thus far been shown to modify seed germination and affect seedling growth and development in a wide range of plants, including field, fodder, and industrial crops; cereals and pseudo-cereals; grasses; herbs and medicinal plants; horticultural crops (vegetables, fruits, ornamentals); trees; and model crops. This is important since MFs may constitute a non-residual and non-toxic stimulus. In addition to presenting and summarizing the effects of MFs on plant growth and development, we also provide possible physiological and biochemical explanations for these responses including stress-related responses of plants, explanations based on dia-, para-, and ferromagnetism, oriented movements of substances, and cellular and molecular changes.

  3. Variations in grain lipophilic phytochemicals, proteins and resistance to Fusarium spp. growth during grain storage as affected by biological plant protection with Aureobasidium pullulans (de Bary).

    PubMed

    Wachowska, Urszula; Tańska, Małgorzata; Konopka, Iwona

    2016-06-16

    Modern agriculture relies on an integrated approach, where chemical treatment is reduced to a minimum and replaced by biological control that involves the use of active microorganisms. The effect of the antagonistic yeast-like fungus Aureobasidium pullulans on proteins and bioactive compounds (alkylresorcinols, sterols, tocols and carotenoids) in winter wheat grain and on the colonization of wheat kernels by fungal microbiota, mainly Fusarium spp. pathogens, was investigated. Biological treatment contributed to a slight increase contents of tocols, alkylresorcinols and sterols in grain. At the same time, the variation of wheat grain proteins was low and not significant. Application of A. pullulans enhanced the natural yeast colonization after six months of grain storage and inhibited growth of F. culmorum pathogens penetrating wheat kernel. This study demonstrated that an integrated approach of wheat grain protection with the use of the yeast-like fungus A. pullulans reduced kernel colonization by Fusarium spp. pathogens and increased the content of nutritionally beneficial phytochemicals in wheat grain without a loss of gluten proteins responsible for baking value.

  4. Plant photomorphogenesis and canopy growth

    NASA Technical Reports Server (NTRS)

    Ballare, Carlos L.; Scopel, Ana L.

    1994-01-01

    An important motivation for studying photomorphogenesis is to understand the relationships among plant photophysiology in canopies, canopy productivity, and agronomic yield. This understanding is essential to optimize lighting systems used for plant farming in controlled environments (CE) and for the design of genetically engineered crop strains with altered photoresponses. This article provides an overview of some basic principles of plant photomorphogenesis in canopies and discusses their implications for (1) scaling up information on plant photophysiology from individual plants in CE to whole canopies in the field, and (2) designing lighting conditions to increase plant productivity in CE used for agronomic purposes (e.g. space farming in CE Life Support Systems). We concentrate on the visible (lambda between 400 and 700 nm) and far-infrared (FR; lambda greater than 700 nm) spectral regions, since the ultraviolet (UV; 280 to 400 nm) is covered by other authors in this volume.

  5. Alum sludge land application and its effect on plant growth

    SciTech Connect

    Lucas, J.B. ); Dillaha, T.A.; Reneau, R.B.; Novak, J.T.; Knocke, W.R. )

    1994-11-01

    These investigators conducted three greenhouse experiments to determine the impact of alum sludge from the Harwood's Mill water treatment plant, newport News, Va., on the growth and chemical composition of fescue grass. Fescue yields decreased with increased sludge addition, a trend that was attributed to reductions in plant-available phosphorus (P) at higher loadings. Supplemental P fertilization corrected this deficiency. Lime addition did not affect yield. The presence of manganese and copper in the sludge increased metal uptake by the plants but did not affect yield.

  6. Increasing rice plant growth by Trichoderma sp.

    NASA Astrophysics Data System (ADS)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  7. Expert System Control of Plant Growth in an Enclosed Space

    NASA Technical Reports Server (NTRS)

    May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.

    2008-01-01

    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.

  8. How Plants Make Light Work of Growth.

    ERIC Educational Resources Information Center

    Kendrick, R. E.

    1981-01-01

    Presented is one of a series of articles designed to help science teachers keep current on ideas in specific areas in biology. Contained is information on how plants use light for growth, seed germination, and flowering. (PB)

  9. Does iodine biofortification affect oxidative metabolism in lettuce plants?

    PubMed

    Blasco, Begoña; Ríos, Juan Jose; Leyva, Rocío; Cervilla, Luis Miguel; Sánchez-Rodríguez, Eva; Rubio-Wilhelmi, María Mar; Rosales, Miguel Angel; Ruiz, Juan Manuel; Romero, Luis

    2011-09-01

    Plants produce low levels of reactive oxygen species (ROS), which form part of basic cell chemical communication; however, different types of stress can lead to an overexpression of ROS that can damage macromolecules essential for plant growth and development. Iodine is vital to human health, and iodine biofortification programs help improve the human intake through plant consumption. This biofortification process has been shown to influence the antioxidant capacity of lettuce plants, suggesting that the oxidative metabolism of the plant may be affected. The results of this study demonstrate that the response to oxidative stress is variable and depends on the form of iodine applied. Application of iodide (I(-)) to lettuce plants produces a reduction in superoxide dismutase (SOD) activity and an increase in catalase (CAT) and L-galactono dehydrogenase enzyme activities and in the activity of antioxidant compounds such as ascorbate (AA) and glutathione. This did not prove a very effective approach since a dose of 80 μM produced a reduction in the biomass of the plants. For its part, application of iodate (IO (3) (-) ) produced an increase in the activities of SOD, ascorbate peroxidase, and CAT, the main enzymes involved in ROS detoxification; it also increased the concentration of AA and the regenerative activities of the Halliwell-Asada cycle. These data confirm the non-phytotoxicity of IO (3) (-) since there is no lipid peroxidation or biomass reduction. According to our results, the ability of IO (3) (-) to induce the antioxidant system indicates that application of this form of iodine may be an effective strategy to improve the response of plants to different types of stress.

  10. Sealed Plant-Growth Chamber For Clinostat

    NASA Technical Reports Server (NTRS)

    Brown, Christopher S.; Dreschel, Thomas W.

    1993-01-01

    Laboratory chamber for growing plants used to measure photosynthesis and respiration in simulated microgravity. Holds plant specimens while rotated on clinostat, see article, "Clinostat Delivers Power To Plant-Growth Cabinets" (KSC-11537). Provides way of comparing gas-exchange rates of plants rotated horizontally on clinostat with those of stationary or vertically rotated plants. Gas extracted for analysis without stopping clinostat. Chamber includes potlike base and cylindrical cover, both made of transparent acrylic pipe. Gasket forms seal between cover and bottom plate of base. Cover bolted to pot baseplate, which in turn bolted to clinostat.

  11. Rotary plant growth accelerating apparatus. [weightlessness

    NASA Technical Reports Server (NTRS)

    Dedolph, R. D. (Inventor)

    1975-01-01

    Rotary plant growth accelerating apparatus for increasing plant yields by effectively removing the growing plants from the constraints of gravity and increasing the plant yield per unit of space is described. The apparatus is comprised of cylindrical plant beds supported radially removed from a primary axis of rotation, with each plant bed being driven about its own secondary axis of rotation and simultaneously moved in a planetary path about the primary axis of rotation. Each plant bed is formed by an apertured outer cylinder, a perforated inner cylinder positioned coaxially, and rooting media disposed in the space between. A rotatable manifold distributes liquid nutrients and water to the rooting media through the perforations in the inner cylinders as the plant beds are continuously rotated by suitable drive means.

  12. Plant Growth Under Light Emitting Diode Irradiation.

    NASA Astrophysics Data System (ADS)

    Tennessen, Daniel John

    Plant growth under light emitting diodes (LEDs) was investigated to determine if LEDs would be useful to provide radiant energy for two plant processes, photosynthesis and photomorphogenesis. Photosynthesis of tomato (Lycopersicon esculentum L.) and Kudzu (Pueraria lobata (Willd) Ohwi.) was measured using photons from LEDs to answer the following: (1) Are leaves able to use red LED light for photosynthesis? and (2) Is the efficiency of photosynthesis in pulsed light equal to that of continuous light? In 175 Pa CO _2, or in response to changes in CO _2,<=af photosynthesis and ATP status were the same in LED as in white xenon arc light. In 35 Pa CO_2, photosynthesis was 10% lower in LED than in xenon arc light due to lowered stomatal conductance. The quantum efficiency of photosynthesis in pulsed light was equal to continuous light, even when pulses were twice as bright as sunlight. Xanthophyll pigments were not affected by these bright pulses. Photomorphogenesis of tobacco (Nicotiana tabacum L.), tomato (Lycopersicon esculentum Mill.) and transformed tobacco and tomato (expressing oat phytochrome-A) was assessed by growing plants under red LED lamps in an attempt to answer the following: (1) What is the developmental response of non-transformed and transformed tobacco to red LED light? and (2) Can tomato plants that grow tall and spindly in red LED light be made to grow short by increasing the amount of phytochrome-A? The short phenotype of transformed tobacco was not evident when plants were grown in LED light. Addition of photons of far-red or blue light to red light resulted in short transformed tobacco. Tomato plants grew three times as tall and lacked leaf development in LED versus white light, but transformed tomato remained short and produced fruit under LED light. I have determined that the LED photons are useful for photosynthesis and that the photon efficiency of photosynthesis is the same in pulsed as in continuous light. From responses of tobacco, I

  13. Effect of microgravity on plant growth

    NASA Technical Reports Server (NTRS)

    Lewis, Norman G.

    1994-01-01

    The overall goal of this research is to determine the effect of microgravity proper on plant growth (metabolism and cell wall formation). In addressing this goal, the work conducted during this grant period was divided into three components: analyses of various plant tissues previously grown in space aboard MIR Space Station; analyses of wheat tissues grown on Shuttle flight STS-51; and Phenylpropanoid metabolism and plant cell wall synthesis (earth-based investigations).

  14. Plant Growth Module (PGM) conceptual design

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Rasmussen, Daryl

    1987-01-01

    The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.

  15. A continuous growth model for plant tissue

    NASA Astrophysics Data System (ADS)

    Bozorg, Behruz; Krupinski, Pawel; Jönsson, Henrik

    2016-12-01

    Morphogenesis in plants and animals involves large irreversible deformations. In plants, the response of the cell wall material to internal and external forces is determined by its mechanical properties. An appropriate model for plant tissue growth must include key features such as anisotropic and heterogeneous elasticity and cell dependent evaluation of mechanical variables such as turgor pressure, stress and strain. In addition, a growth model needs to cope with cell divisions as a necessary part of the growth process. Here we develop such a growth model, which is capable of employing not only mechanical signals but also morphogen signals for regulating growth. The model is based on a continuous equation for updating the resting configuration of the tissue. Simultaneously, material properties can be updated at a different time scale. We test the stability of our model by measuring convergence of growth results for a tissue under the same mechanical and material conditions but with different spatial discretization. The model is able to maintain a strain field in the tissue during re-meshing, which is of particular importance for modeling cell division. We confirm the accuracy of our estimations in two and three-dimensional simulations, and show that residual stresses are less prominent if strain or stress is included as input signal to growth. The approach results in a model implementation that can be used to compare different growth hypotheses, while keeping residual stresses and other mechanical variables updated and available for feeding back to the growth and material properties.

  16. Transgenic plants with enhanced growth characteristics

    DOEpatents

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-09-06

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  17. Plant Growth Modelling and Applications: The Increasing Importance of Plant Architecture in Growth Models

    PubMed Central

    Fourcaud, Thierry; Zhang, Xiaopeng; Stokes, Alexia; Lambers, Hans; Körner, Christian

    2008-01-01

    Background Modelling plant growth allows us to test hypotheses and carry out virtual experiments concerning plant growth processes that could otherwise take years in field conditions. The visualization of growth simulations allows us to see directly and vividly the outcome of a given model and provides us with an instructive tool useful for agronomists and foresters, as well as for teaching. Functional–structural (FS) plant growth models are nowadays particularly important for integrating biological processes with environmental conditions in 3-D virtual plants, and provide the basis for more advanced research in plant sciences. Scope In this viewpoint paper, we ask the following questions. Are we modelling the correct processes that drive plant growth, and is growth driven mostly by sink or source activity? In current models, is the importance of soil resources (nutrients, water, temperature and their interaction with meristematic activity) considered adequately? Do classic models account for architectural adjustment as well as integrating the fundamental principles of development? Whilst answering these questions with the available data in the literature, we put forward the opinion that plant architecture and sink activity must be pushed to the centre of plant growth models. In natural conditions, sinks will more often drive growth than source activity, because sink activity is often controlled by finite soil resources or developmental constraints. PMA06 This viewpoint paper also serves as an introduction to this Special Issue devoted to plant growth modelling, which includes new research covering areas stretching from cell growth to biomechanics. All papers were presented at the Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA06), held in Beijing, China, from 13–17 November, 2006. Although a large number of papers are devoted to FS models of agricultural and forest crop species, physiological and genetic

  18. Plant growth strategies are remodeled by spaceflight

    PubMed Central

    2012-01-01

    Background Arabidopsis plants were grown on the International Space Station within specialized hardware that combined a plant growth habitat with a camera system that can capture images at regular intervals of growth. The Imaging hardware delivers telemetric data from the ISS, specifically images received in real-time from experiments on orbit, providing science without sample return. Comparable Ground Controls were grown in a sister unit that is maintained in the Orbital Environment Simulator at Kennedy Space Center. One of many types of biological data that can be analyzed in this fashion is root morphology. Arabidopsis seeds were geminated on orbit on nutrient gel Petri plates in a configuration that encouraged growth along the surface of the gel. Photos were taken every six hours for the 15 days of the experiment. Results In the absence of gravity, but the presence of directional light, spaceflight roots remained strongly negatively phototropic and grew in the opposite direction of the shoot growth; however, cultivars WS and Col-0 displayed two distinct, marked differences in their growth patterns. First, cultivar WS skewed strongly to the right on orbit, while cultivar Col-0 grew with little deviation away from the light source. Second, the Spaceflight environment also impacted the rate of growth in Arabidopsis. The size of the Flight plants (as measured by primary root and hypocotyl length) was uniformly smaller than comparably aged Ground Control plants in both cultivars. Conclusions Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent, and the general patterns of directional root growth typified by a given genotype in unit gravity are recapitulated on orbit, although overall growth patterns on orbit are less uniform. Skewing appears independent of axial orientation on the ISS – suggesting that other tropisms (such as

  19. Removal of the local geomagnetic field affects reproductive growth in Arabidopsis.

    PubMed

    Xu, Chunxiao; Wei, Shufeng; Lu, Yan; Zhang, Yuxia; Chen, Chuanfang; Song, Tao

    2013-09-01

    The influence of the geomagnetic field-removed environment on Arabidopsis growth was investigated by cultivation of the plants in a near-null magnetic field and local geomagnetic field (45 µT) for the whole growth period under laboratory conditions. The biomass accumulation of plants in the near-null magnetic field was significantly suppressed at the time when plants were switching from vegetative growth to reproductive growth compared with that of plants grown in the local geomagnetic field, which was caused by a delay in the flowering of plants in the near-null magnetic field. At the early or later growth stage, no significant difference was shown in the biomass accumulation between the plants in the near-null magnetic field and local geomagnetic field. The average number of siliques and the production of seeds per plant in the near-null magnetic field was significantly lower by about 22% and 19%, respectively, than those of control plants. These resulted in a significant reduction of about 20% in the harvest index of plants in the near-null magnetic field compared with that of the controls. These results suggest that the removal of the local geomagnetic field negatively affects the reproductive growth of Arabidopsis, which thus affects the yield and harvest index.

  20. Methods of affecting nitrogen assimilation in plants

    DOEpatents

    Coruzzi, Gloria; Gutierrez, Rodrigo A.; Nero, Damion C.

    2016-10-11

    Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.

  1. The role of microbial signals in plant growth and development

    PubMed Central

    Ortíz-Castro, Randy; Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes

    2009-01-01

    Plant growth and development involves a tight coordination of the spatial and temporal organization of cell division, cell expansion and cell differentiation. Orchestration of these events requires the exchange of signaling molecules between the root and shoot, which can be affected by both biotic and abiotic factors. The interactions that occur between plants and their associated microorganisms have long been of interest, as knowledge of these processes could lead to the development of novel agricultural applications. Plants produce a wide range of organic compounds including sugars, organic acids and vitamins, which can be used as nutrients or signals by microbial populations. On the other hand, microorganisms release phytohormones, small molecules or volatile compounds, which may act directly or indirectly to activate plant immunity or regulate plant growth and morphogenesis. In this review, we focus on recent developments in the identification of signals from free-living bacteria and fungi that interact with plants in a beneficial way. Evidence has accumulated indicating that classic plant signals such as auxins and cytokinins can be produced by microorganisms to efficiently colonize the root and modulate root system architecture. Other classes of signals, including N-acyl-L-homoserine lactones, which are used by bacteria for cell-to-cell communication, can be perceived by plants to modulate gene expression, metabolism and growth. Finally, we discuss the role played by volatile organic compounds released by certain plant growth-promoting rhizobacteria in plant immunity and developmental processes. The picture that emerges is one in which plants and microbes communicate themselves through transkingdom signaling systems involving classic and novel signals. PMID:19820333

  2. The role of microbial signals in plant growth and development.

    PubMed

    Ortíz-Castro, Randy; Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; López-Bucio, José

    2009-08-01

    Plant growth and development involves a tight coordination of the spatial and temporal organization of cell division, cell expansion and cell differentiation. Orchestration of these events requires the exchange of signaling molecules between the root and shoot, which can be affected by both biotic and abiotic factors. The interactions that occur between plants and their associated microorganisms have long been of interest, as knowledge of these processes could lead to the development of novel agricultural applications. Plants produce a wide range of organic compounds including sugars, organic acids and vitamins, which can be used as nutrients or signals by microbial populations. On the other hand, microorganisms release phytohormones, small molecules or volatile compounds, which may act directly or indirectly to activate plant immunity or regulate plant growth and morphogenesis. In this review, we focus on recent developments in the identification of signals from free-living bacteria and fungi that interact with plants in a beneficial way. Evidence has accumulated indicating that classic plant signals such as auxins and cytokinins can be produced by microorganisms to efficiently colonize the root and modulate root system architecture. Other classes of signals, including N-acyl-L-homoserine lactones, which are used by bacteria for cell-to-cell communication, can be perceived by plants to modulate gene expression, metabolism and growth. Finally, we discuss the role played by volatile organic compounds released by certain plant growth-promoting rhizobacteria in plant immunity and developmental processes. The picture that emerges is one in which plants and microbes communicate themselves through transkingdom signaling systems involving classic and novel signals.

  3. Plant Hormones: How They Affect Root Formation.

    ERIC Educational Resources Information Center

    Reinhard, Diana Hereda

    This science study aid, produced by the U.S. Department of Agriculture, includes a series of plant rooting activities for secondary science classes. The material in the pamphlet is written for students and includes background information on plant hormones, a vocabulary list, and five learning activities. Objectives, needed materials, and…

  4. A nondestructive method for continuously monitoring plant growth

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1985-01-01

    In the past, plant growth generally has been measured using destructive methods. This paper describes a nondestructive technique for continuously monitoring plant growth. The technique provides a means of directly and accurately measuring plant growth over both short and long time intervals. Application of this technique to the direct measurement of plant growth rates is illustrated using corn (Zea mays L.) as an example.

  5. Lunar base agriculture: Soils for plant growth

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Editor); Henninger, Donald L. (Editor)

    1989-01-01

    This work provides information on research and experimentation concerning various aspects of food production in space and particularly on the moon. Options for human settlement of the moon and Mars and strategies for a lunar base are discussed. The lunar environment, including the mineralogical and chemical properties of lunar regolith are investigated and chemical and physical considerations for a lunar-derived soil are considered. It is noted that biological considerations for such a soil include controlled-environment crop production, both hydroponic and lunar regolith-based; microorganisms and the growth of higher plants in lunar-derived soils; and the role of microbes to condition lunar regolith for plant cultivation. Current research in the controlled ecological life support system (CELSS) project is presented in detail and future research areas, such as the growth of higher research plants in CELSS are considered. Optimum plant and microbiological considerations for lunar derived soils are examined.

  6. Dynamical scaling analysis of plant callus growth

    NASA Astrophysics Data System (ADS)

    Galeano, J.; Buceta, J.; Juarez, K.; Pumariño, B.; de la Torre, J.; Iriondo, J. M.

    2003-07-01

    We present experimental results for the dynamical scaling properties of the development of plant calli. We have assayed two different species of plant calli, Brassica oleracea and Brassica rapa, under different growth conditions, and show that their dynamical scalings share a universality class. From a theoretical point of view, we introduce a scaling hypothesis for systems whose size evolves in time. We expect our work to be relevant for the understanding and characterization of other systems that undergo growth due to cell division and differentiation, such as, for example, tumor development.

  7. Developmental Stages in Dynamic Plant Growth Models

    NASA Astrophysics Data System (ADS)

    Maclean, Heather; Dochain, Denis; Waters, Geoff; Stasiak, Michael; Dixon, Mike; Van Der Straeten, Dominique

    2011-09-01

    During the growth of red beet plants in a closed environment plant growth chamber, a change in metabolism was observed (decreasing photosynthetic quotient) which was not predicted by a previously developed simple dynamic model of photosynthesis and respiration reactions. The incorporation of developmental stages into the model allowed for the representation of this change in metabolism without adding unnecessary complexity. Developmental stages were implemented by dividing the model into two successive sub-models with independent yields. The transition between the phases was detected based on online measurements. Results showed an accurate prediction of carbon dioxide and oxygen fluxes.

  8. Osmolyte cooperation affects turgor dynamics in plants

    PubMed Central

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-01-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes. PMID:27445173

  9. Osmolyte cooperation affects turgor dynamics in plants

    NASA Astrophysics Data System (ADS)

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-07-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes.

  10. Regulation of plant growth by cytokinin

    PubMed Central

    Werner, Tomáš; Motyka, Václav; Strnad, Miroslav; Schmülling, Thomas

    2001-01-01

    Cytokinins are a class of plant-specific hormones that play a central role during the cell cycle and influence numerous developmental programs. Because of the lack of biosynthetic and signaling mutants, the regulatory roles of cytokinins are not well understood. We genetically engineered cytokinin oxidase expression in transgenic tobacco plants to reduce their endogenous cytokinin content. Cytokinin-deficient plants developed stunted shoots with smaller apical meristems. The plastochrone was prolonged, and leaf cell production was only 3–4% that of wild type, indicating an absolute requirement of cytokinins for leaf growth. In contrast, root meristems of transgenic plants were enlarged and gave rise to faster growing and more branched roots. These results suggest that cytokinins are an important regulatory factor of plant meristem activity and morphogenesis, with opposing roles in shoots and roots. PMID:11504909

  11. Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria.

    PubMed

    Ahmed, Ambreen; Hasnain, Shahida

    2014-01-01

    Plant growth promoting rhizobacteria (PGPR) promote plant growth by various mechanisms such as phytohormone production, enhanced water and nutrient uptake, improved nitrogen availability in the soil, production of ACC-deaminase for ethylene breakdown, phosphate solubilization, siderophore production etc. Microbial auxin production is the major factor not only responsible for strengthening the plant-microbe relationship but it also promotes plant growth and development in a positive manner. Thus, bacterial auxin production potential can be exploited for plant growth improvement that may be effective in reducing the hazardous effects of chemical fertilizers on the ecosystem used to obtain higher yields. The present review gives a better understanding of various factors and mechanisms involved in auxin production by PGPR that may be helpful in proper exploitation of these natural resources in a beneficial way.

  12. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands.

  13. Plant growth responses to polypropylene--biocontainers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of bio-fillers incorporated into polypropylene (PP) on the growth of plants was evaluated. Biocontainers were created by injection molding of PP with 25-40% by weight of Osage orange tree, Paulownia tree, coffee tree wood or dried distillers grain and 5% by weight of maleated polypropy...

  14. Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy.

    PubMed

    Goga, Michal; Antreich, Sebastian J; Bačkor, Martin; Weckwerth, Wolfram; Lang, Ingeborg

    2016-09-19

    Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens, but there is still little information on the interactions between lichens and bryophytes.In the present study, we used extracts from six lichen thalli containing secondary metabolites like usnic acid, protocetraric acid, atranorin, lecanoric acid, nortistic acid, and thamnolic acid. To observe the influence of these metabolites on bryophytes, the moss Physcomitrella patens was cultivated for 5 weeks under laboratory conditions and treated with lichen extracts. Toxicity of natural mixtures of secondary metabolites was tested at three selected doses (0.001, 0.01, and 0.1 %). When the mixture contained substantial amounts of usnic acid, we observed growth inhibition of protonemata and reduced development of gametophores. Significant differences in cell lengths and widths were also noticed. Furthermore, usnic acid had a strong effect on cell division in protonemata suggesting a strong impact on the early stages of bryophyte development by allelochemicals contained in the lichen secondary metabolites.Biological activities of lichen secondary metabolites were confirmed in several studies such as antiviral, antibacterial, antitumor, antiherbivore, antioxidant, antipyretic, and analgetic action or photoprotection. This work aimed to expand the knowledge on allelopathic effects on bryophyte growth.

  15. Water vapor recovery from plant growth chambers

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Newbold, D. D.; Colton, R. H.; Mccray, S. B.

    1991-01-01

    NASA is investigating the use of plant growth chambers (PGCs) for space missions and for bases on the moon and Mars. Key to successful development of PGCs is a system to recover and reuse the water vapor that is transpired from the leaves of the plants. A design is presented for a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in PGCs. The system is based on two membrane technologies: (1) dehumidification membrane modules to remove water vapor from the air, and (2) membrane contactors to return water vapor to the PGC (and, in doing so, to control the humidity and temperature within the PGC). The membrane-based system promises to provide an ideal, stable growth environment for a variety of plants, through a design that minimizes energy usage, volume, and mass, while maximizing simplicity and reliability.

  16. Plant Growth/Plant Phototropism - Skylab Student Experiment ED-61/62

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart describes the Skylab student experiment ED-61, Plant Growth, and experiment ED-62, Plant Phototropism. Two similar proposals were submitted by Joel G. Wordekemper of West Point, Nebraska, and Donald W. Schlack of Downey, California. Wordekemper's experiment (ED-61) was to see how the lack of gravity would affect the growth of roots and stems of plants. Schlack's experiment (ED-62) was to study the effect of light on a seed developing in zero gravity. The growth container of the rice seeds for their experiment consisted of eight compartments arranged in two parallel rows of four. Each had two windowed surfaces to allow periodic photography of the developing seedlings. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  17. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    PubMed Central

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734

  18. Effects of engineered nanomaterials on plants growth: an overview.

    PubMed

    Aslani, Farzad; Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan; Baghdadi, Ali

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.

  19. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction.

    PubMed

    Tanino, Karen K; Kalcsits, Lee; Silim, Salim; Kendall, Edward; Gray, Gordon R

    2010-05-01

    The role of temperature during dormancy development is being reconsidered as more research emerges demonstrating that temperature can significantly influence growth cessation and dormancy development in woody plants. However, there are seemingly contradictory responses to warm and low temperature in the literature. This research/review paper aims to address this contradiction. The impact of temperature was examined in four poplar clones and two dogwood ecotypes with contrasting dormancy induction patterns. Under short day (SD) conditions, warm night temperature (WT) strongly accelerated timing of growth cessation leading to greater dormancy development and cold hardiness in poplar hybrids. In contrast, under long day (LD) conditions, low night temperature (LT) can completely bypass the short photoperiod requirement in northern but not southern dogwood ecotypes. These findings are in fact consistent with the literature in which both coniferous and deciduous woody plant species' growth cessation, bud set or dormancy induction are accelerated by temperature. The contradictions are addressed when photoperiod and ecotypes are taken into account in which the combination of either SD/WT (northern and southern ecotypes) or LD/LT (northern ecotypes only) are separated. Photoperiod insensitive types are driven to growth cessation by LT. Also consistent is the importance of night temperature in regulating these warm and cool temperature responses. However, the physiological basis for these temperature effects remain unclear. Changes in water content, binding and mobility are factors known to be associated with dormancy induction in woody plants. These were measured using non-destructive magnetic resonance micro-imaging (MRMI) in specific regions within lateral buds of poplar under SD/WT dormancing inducing conditions. Under SD/WT, dormancy was associated with restrictions in inter- or intracellular water movement between plant cells that reduces water mobility during dormancy

  20. Mechanical regulation of plant growth and development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1984-01-01

    Soybean and eggplant grown and shaken in a greenhouse exhibited decreased internode length, internode diameter, leaf area, and fresh and dry weight of roots and shoots in much the same way as outdoor-exposed plants. Perhaps more important than decreased dimensions of plant parts resulting from periodic seismic treatment is the inhibition of photosynthetic productivity that accompanies this stress. Soybeam plants briefly shaken or rubbed twice daily experienced a decrease in relative as well as absolute growth rate compared to that of undisturbed controls. Growth dynamics analysis revealed that virtually all of the decline in relative growth rate (RGR) was due to a decline in net assimilation rate (NAR), but not in leaf area ratio (LAR). Lower NAR suggests that the stress-induced decrease in dry weight gain is due to a decline in photosynthetic efficiency. Possible effects on stomatal aperture was investigated by measuring rates of whole plant transpiration as a function of seismo-stress, and a transitory decrease followed by a gradual, partial recovery was detected.

  1. Bacterial Ammonia Causes Significant Plant Growth Inhibition

    PubMed Central

    Weise, Teresa; Kai, Marco; Piechulla, Birgit

    2013-01-01

    Many and complex plant-bacteria inter-relationships are found in the rhizosphere, since plants release a variety of photosynthetic exudates from their roots and rhizobacteria produce multifaceted specialized compounds including rich mixtures of volatiles, e.g., the bouquet of Serratia odorifera 4Rx13 is composed of up to 100 volatile organic and inorganic compounds. Here we show that when growing on peptone-rich nutrient medium S. odorifera 4Rx13 and six other rhizobacteria emit high levels of ammonia, which during co-cultivation in compartmented Petri dishes caused alkalization of the neighboring plant medium and subsequently reduced the growth of A. thaliana. It is argued that in nature high-protein resource degradations (carcasses, whey, manure and compost) are also accompanied by bacterial ammonia emission which alters the pH of the rhizosphere and thereby influences organismal diversity and plant-microbe interactions. Consequently, bacterial ammonia emission may be more relevant for plant colonization and growth development than previously thought. PMID:23691060

  2. Condensate Recycling in Closed Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Bledsoe, J. O.; Sager, J. C.; Fortson, R. E.

    1994-01-01

    Water used in the the Controlled Ecological Life Support System (CELSS) Breadboard Project at the Kennedy Space Center is being recycled. Condensation is collected in the air ducts, filtered and deionized, and resupplied to the system for nutrient solutions, supplemental humidification, solvents and diluents. While the system functions well from a process control standpoint, precise and accurate tracking of water movement through the system to answer plant physiological questions is not consistent. Possible causes include hardware errors, undetected vapor loss from chamber leakage, and unmeasured changes in water volume in the plant growth trays.

  3. Plant Growth and Development in the ASTROCULTURE(trademark) Space-Based Growth Unit-Ground Based Experiments

    NASA Technical Reports Server (NTRS)

    Bula, R. J.

    1997-01-01

    The ASTROCULTURE(trademark) plant growth unit flown as part on the STS-63 mission in February 1995, represented the first time plants were flown in microgravity in a enclosed controlled environment plant growth facility. In addition to control of the major environmental parameters, nutrients were provided to the plants with the ZEOPONICS system developed by NASA Johnson Space Center scientists. Two plant species were included in this space experiment, dwarf wheat (Triticum aestivum) and a unique mustard called "Wisconsin Fast Plants" (Brassica rapa). Extensive post-flight analyses have been performed on the plant material and it has been concluded that plant growth and development was normal during the period the plants were in the microgravity environment of space. However, adequate plant growth and development control data were not available for direct comparisons of plant responses to the microgravity environment with those of plants grown at 1 g. Such data would allow for a more complete interpretation of the extent that microgravity affects plant growth and development.

  4. 22-Oxocholestanes as plant growth promoters.

    PubMed

    Zeferino-Diaz, Reyna; Hilario-Martinez, J Ciciolil; Rodriguez-Acosta, Maricela; Sandoval-Ramirez, Jesus; Fernandez-Herrera, Maria A

    2015-06-01

    The spirostanic steroidal side-chain of diosgenin and hecogenin was modified to produce 22-oxocholestane derivatives. This type of side-chain was obtained in good yields through a straightforward four-step pathway. These compounds show potent brassinosteroid-like growth promoting activity evaluated via the rice lamina joint inclination bioassay. This is the first report of steroidal skeletons bearing the 22-oxocholestane side-chain and preserving the basic structure (A-D rings) from their corresponding parent compounds acting as plant growth promoters.

  5. Klebsiella pneumoniae inoculants for enhancing plant growth

    DOEpatents

    Triplett, Eric W.; Kaeppler, Shawn M.; Chelius, Marisa K.

    2008-07-01

    A biological inoculant for enhancing the growth of plants is disclosed. The inoculant includes the bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101, Pantoea agglomerans P102, Klebsiella pneumoniae 342, Klebsiella pneumoniae zmvsy, Herbaspirillum seropedicae Z152, Gluconacetobacter diazotrophicus PA15, with or without a carrier. The inoculant also includes strains of the bacterium Pantoea agglomerans and K. pneumoniae which are able to enhance the growth of cereal grasses. Also disclosed are the novel bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101 and P102, and Klebsiella pneumoniae 342 and zmvsy.

  6. Chemical agents and peptides affect hair growth.

    PubMed

    Uno, H; Kurata, S

    1993-07-01

    During the past decade we have examined both the therapeutic and the prophylactic effects of several agents on the macaque model of androgenetic alopecia. Minoxidil and diazoxide, potent hypotensive agents acting as peripheral vasodilators, are known to have a hypertrichotic side effect. Topical use of both agents induced significant hair regrowth in the bald scalps of macaques. The application of a steroid 5 alpha-reductase inhibitor (4MA) in non-bald preadolescent macaques has prevented baldness, whereas controls developed it during 2 years of treatment. The effects of hair growth were determined by 1) phototrichogram, 2) folliculogram (micro-morphometric analysis), and 3) the rate of DNA synthesis in the follicular cells. These effects were essentially a stimulation of the follicular cell proliferation, resulting in an enlargement of the anagen follicles from vellus to terminal type (therapy) or a maintenance of the prebald terminal follicles (prevention). A copper binding peptide (PC1031) had the effect of follicular enlargement on the back skin of fuzzy rats, covering the vellus follicles; the effect was similar to that of topical minoxidil. Analyzing the quantitative sequences of follicular size and cyclic phases, we speculate on the effect of agents on follicular growth. We also discuss the triggering mechanism of androgen in the follicular epithelial-mesenchymal (dermal papilla) interaction.

  7. Operational development of small plant growth systems

    NASA Technical Reports Server (NTRS)

    Scheld, H. W.; Magnuson, J. W.; Sauer, R. L.

    1986-01-01

    The results of a study undertaken on the first phase of an empricial effort in the development of small plant growth chambers for production of salad type vegetables on space shuttle or space station are discussed. The overall effort is visualized as providing the underpinning of practical experience in handling of plant systems in space which will provide major support for future efforts in planning, design, and construction of plant-based (phytomechanical) systems for support of human habitation in space. The assumptions underlying the effort hold that large scale phytomechanical habitability support systems for future space stations must evolve from the simple to the complex. The highly complex final systems will be developed from the accumulated experience and data gathered from repetitive tests and trials of fragments or subsystems of the whole in an operational mode. These developing system components will, meanwhile, serve a useful operational function in providing psychological support and diversion for the crews.

  8. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis.

    PubMed

    Hemsley, Piers A; Kemp, Alison C; Grierson, Claire S

    2005-09-01

    TIP GROWTH DEFECTIVE1 (TIP1) of Arabidopsis thaliana affects cell growth throughout the plant and has a particularly strong effect on root hair growth. We have identified TIP1 by map-based cloning and complementation of the mutant phenotype. TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue. Two homologues of TIP1 in yeast (Saccharomyces cerevisiae) and human (Homo sapiens) have been shown to have S-acyl transferase (also known as palmitoyl transferase) activity. S-acylation is a reversible hydrophobic protein modification that offers swift, flexible control of protein hydrophobicity and affects protein association with membranes, signal transduction, and vesicle trafficking within cells. We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Delta, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1- mutant phenotype. Our results demonstrate that S-acylation is essential for normal plant cell growth and identify a plant S-acyl transferase, an essential research tool if we are to understand how this important, reversible lipid modification operates in plant cells.

  9. A novel family of small proteins that affect plant development

    SciTech Connect

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  10. Growth and photosynthetic responses of wheat plants grown in space.

    PubMed

    Tripathy, B C; Brown, C S; Levine, H G; Krikorian, A D

    1996-03-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  11. Growth and photosynthetic responses of wheat plants grown in space

    NASA Technical Reports Server (NTRS)

    Tripathy, B. C.; Brown, C. S.; Levine, H. G.; Krikorian, A. D.

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  12. Growth and photosynthetic responses of wheat plants grown in space.

    PubMed Central

    Tripathy, B C; Brown, C S; Levine, H G; Krikorian, A D

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment. PMID:8819868

  13. [Review on application of plant growth retardants in medicinal plants cultivation].

    PubMed

    Zhai, Yu-Yao; Guo, Bao-Lin; Cheng, Ming

    2013-09-01

    Plant growth retardants are widely used in cultivation of medicinal plant, but there is still lack of scientific guidance. In order to guide the use of plant growth retardants in medicinal plant cultivation efficiently and reasonably, this paper reviewed the mechanism, function characteristic, plant and soil residue of plant growth retardants, such as chlorocholine chloride, mepiquat chloride, paclobutrazol, unicnazle and succinic acid, and summarized the application of plant growth retardants in medicinal plants cultivation in recent years, with focus on the effect of growth and yield of the officinal organs and secondary metabolites.

  14. The growth and form of plant shoots

    NASA Astrophysics Data System (ADS)

    Chelakkot, Raghunath; Mahadevan, L.

    2015-03-01

    Growing plant stems and shoots exhibit a variety of shapes that embody growth in response to various stimuli. We provide a quantitative biophysical theory for these shapes by accounting for the inherent observed passive and active effects: (i) the passive elastic deflection of the shoot due to its own weight, and (ii) the active controllable growth response of the shoot in response to its orientation relative to gravity, and (iii) proprioception, the shoot's growth response to its own observable shape, which is itself determined by its elasticity and weight. A morphospace diagram in terms of two dimensionless parameters representing a scaled local active gravitropic sensitivity, and a scaled passive elastic sag shows how a variety of observed transient and steady morphologies with effective positive, negative and even oscillatory gravitropic behaviors arise in a sentient growing filament naturally, without the need for ad-hoc complex spatio-temporal control strategies.

  15. (Metabolic mechanisms of plant growth at low water potentials)

    SciTech Connect

    Not Available

    1990-01-01

    The work supported by DOE showed that water-limitation inhibits plant growth first by imposing a physical limitation that is followed in a few h by metabolic changes leading to reduced wall extensibility in the enlarging cells. After the wall extensibility decreased, a 28kD protein accumulated particularly in the walls of the growth-affected cells. Antibodies were used to identify cDNA for the protein. The base sequence of the cDNA was typical of an enzyme rather than known structural components of walls. The sequence was identical to one published by another laboratory at the same time and encoding a protein that accumulates in vacuoles of depodded soybean plants.

  16. Host plant species affects virulence in monarch butterfly parasites.

    PubMed

    de Roode, Jacobus C; Pedersen, Amy B; Hunter, Mark D; Altizer, Sonia

    2008-01-01

    1. Studies have considered how intrinsic host and parasite properties determine parasite virulence, but have largely ignored the role of extrinsic ecological factors in its expression. 2. We studied how parasite genotype and host plant species interact to determine virulence of the protozoan parasite Ophryocystis elektroscirrha (McLaughlin & Myers 1970) in the monarch butterfly Danaus plexippus L. We infected monarch larvae with one of four parasite genotypes and reared them on two milkweed species that differed in their levels of cardenolides: toxic chemicals involved in predator defence. 3. Parasite infection, replication and virulence were affected strongly by host plant species. While uninfected monarchs lived equally long on both plant species, infected monarchs suffered a greater reduction in their life spans (55% vs. 30%) on the low-cardenolide vs. the high-cardenolide host plant. These life span differences resulted from different levels of parasite replication in monarchs reared on the two plant species. 4. The virulence rank order of parasite genotypes was unaffected by host plant species, suggesting that host plant species affected parasite genotypes similarly, rather than through complex plant species-parasite genotype interactions. 5. Our results demonstrate that host ecology importantly affects parasite virulence, with implications for host-parasite dynamics in natural populations.

  17. Agriculture on Mars: Soils for Plant Growth

    NASA Technical Reports Server (NTRS)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  18. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture.

    PubMed

    Saleem, Muhammad; Arshad, Muhammad; Hussain, Sarfraz; Bhatti, Ahmad Saeed

    2007-10-01

    Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into alpha-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.

  19. Redox control of plant growth and development.

    PubMed

    Kocsy, Gábor; Tari, Irma; Vanková, Radomíra; Zechmann, Bernd; Gulyás, Zsolt; Poór, Péter; Galiba, Gábor

    2013-10-01

    Redox changes determined by genetic and environmental factors display well-organized interactions in the control of plant growth and development. Diurnal and seasonal changes in the environmental conditions are important for the normal course of these physiological processes and, similarly to their mild irregular alterations, for stress adaptation. However, fast or large-scale environmental changes may lead to damage or death of sensitive plants. The spatial and temporal redox changes influence growth and development due to the reprogramming of metabolism. In this process reactive oxygen and nitrogen species and antioxidants are involved as components of signalling networks. The control of growth, development and flowering by reactive oxygen and nitrogen species and antioxidants in interaction with hormones at organ, tissue, cellular and subcellular level will be discussed in the present review. Unsolved problems of the field, among others the need for identification of new components and interactions in the redox regulatory network at various organization levels using systems biology approaches will be also indicated.

  20. Enzyme-Less Growth in Chara and Terrestrial Plants

    PubMed Central

    Boyer, John S.

    2016-01-01

    Enzyme-less chemistry appears to control the growth rate of the green alga Chara corallina. The chemistry occurs in the wall where a calcium pectate cycle determines both the rate of wall enlargement and the rate of pectate deposition into the wall. The process is the first to indicate that a wall polymer can control how a plant cell enlarges after exocytosis releases the polymer to the wall. This raises the question of whether other species use a similar mechanism. Chara is one of the closest relatives of the progenitors of terrestrial plants and during the course of evolution, new wall features evolved while pectate remained one of the most conserved components. In addition, charophytes contain auxin which affects Chara in ways resembling its action in terrestrial plants. Therefore, this review considers whether more recently acquired wall features require different mechanisms to explain cell expansion. PMID:27446106

  1. 7-Rhamnosylated Flavonols Modulate Homeostasis of the Plant Hormone Auxin and Affect Plant Development*

    PubMed Central

    Kuhn, Benjamin M.; Errafi, Sanae; Bucher, Rahel; Dobrev, Petre; Geisler, Markus; Bigler, Laurent; Zažímalová, Eva; Ringli, Christoph

    2016-01-01

    Flavonols are a group of secondary metabolites that affect diverse cellular processes. They are considered putative negative regulators of the transport of the phytohormone auxin, by which they influence auxin distribution and concomitantly take part in the control of plant organ development. Flavonols are accumulating in a large number of glycosidic forms. Whether these have distinct functions and diverse cellular targets is not well understood. The rol1-2 mutant of Arabidopsis thaliana is characterized by a modified flavonol glycosylation profile that is inducing changes in auxin transport and growth defects in shoot tissues. To determine whether specific flavonol glycosides are responsible for these phenotypes, a suppressor screen was performed on the rol1-2 mutant, resulting in the identification of an allelic series of UGT89C1, a gene encoding a flavonol 7-O-rhamnosyltransferase. A detailed analysis revealed that interfering with flavonol rhamnosylation increases the concentration of auxin precursors and auxin metabolites, whereas auxin transport is not affected. This finding provides an additional level of complexity to the possible ways by which flavonols influence auxin distribution and suggests that flavonol glycosides play an important role in regulating plant development. PMID:26742840

  2. 7-Rhamnosylated Flavonols Modulate Homeostasis of the Plant Hormone Auxin and Affect Plant Development.

    PubMed

    Kuhn, Benjamin M; Errafi, Sanae; Bucher, Rahel; Dobrev, Petre; Geisler, Markus; Bigler, Laurent; Zažímalová, Eva; Ringli, Christoph

    2016-03-04

    Flavonols are a group of secondary metabolites that affect diverse cellular processes. They are considered putative negative regulators of the transport of the phytohormone auxin, by which they influence auxin distribution and concomitantly take part in the control of plant organ development. Flavonols are accumulating in a large number of glycosidic forms. Whether these have distinct functions and diverse cellular targets is not well understood. The rol1-2 mutant of Arabidopsis thaliana is characterized by a modified flavonol glycosylation profile that is inducing changes in auxin transport and growth defects in shoot tissues. To determine whether specific flavonol glycosides are responsible for these phenotypes, a suppressor screen was performed on the rol1-2 mutant, resulting in the identification of an allelic series of UGT89C1, a gene encoding a flavonol 7-O-rhamnosyltransferase. A detailed analysis revealed that interfering with flavonol rhamnosylation increases the concentration of auxin precursors and auxin metabolites, whereas auxin transport is not affected. This finding provides an additional level of complexity to the possible ways by which flavonols influence auxin distribution and suggests that flavonol glycosides play an important role in regulating plant development.

  3. Plant growth conditions alter phytolith carbon

    PubMed Central

    Gallagher, Kimberley L.; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O.; Santos, Guaciara M.

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a “glass wastebasket.” Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction. PMID:26442066

  4. Plant growth conditions alter phytolith carbon.

    PubMed

    Gallagher, Kimberley L; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O; Santos, Guaciara M

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a "glass wastebasket." Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction.

  5. Gravitational effects on plant growth hormone concentration

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.

    1983-01-01

    Dolk's (1936) finding that more growth hormone diffuses from the lower side of a gravity-stimulated plant shoot than from the upper side is presently confirmed by means of both an isotope dilution assay and selected ion monitoring-gas chromatography-mass spectrometry, and it is established that the asymmetrically distributed hormone is indole-3-acetic acid (IAA). This is the first physicochemical demonstration that there is more IAA on the lower sides of a geostimulated plant shoot. It is also found that free IAA primarily occurs in the conductive vascular tissues of the shoot, while IAA esters predominate in the growing cortical cells. A highly sensitive gas chromatographic isotope dilution assay shows that the hormone asymmetry also occurs in the nonvascular tissue.

  6. Different Growth Promoting Effects of Endophytic Bacteria on Invasive and Native Clonal Plants

    PubMed Central

    Dai, Zhi-Cong; Fu, Wei; Wan, Ling-Yun; Cai, Hong-Hong; Wang, Ning; Qi, Shan-Shan; Du, Dao-Lin

    2016-01-01

    The role of the interactions between endophytes and alien plants has been unclear yet in plant invasion. We used a completely germ-free culture system to quantify the plant growth-promoting (PGP) effects of endophytic bacteria Bacillus sp. on aseptic seedlings of Wedelia trilobata and of its native clonal congener W. chinensis. The endophytic bacteria did not affect the growth of W. chinensis, but they significantly promoted the growth of W. trilobata. With the PGP effects of endophytic bacteria, relative change ratios of the clonal traits and the ramets’ growth traits of W. trilobata were significantly greater than those of W. chinensis. Our results indicate that the growth-promoting effects of endophytes may differ between invasive and native clonal plants, and the endophytes of invasive plant may be host-specific to facilitate plant invasion. PMID:27252722

  7. Controlled ecological life support systems: Development of a plant growth module

    NASA Technical Reports Server (NTRS)

    Averner, Mel M.; Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity.

  8. Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill) Fluoranthene mists negatively affected tomato plants.

    PubMed

    Oguntimehin, Ilemobayo; Eissa, Fawzy; Sakugawa, Hiroshi

    2010-02-01

    Cherry tomato plants (Lycopersicon esculentum Mill) were sprayed with fluoranthene and mixture of fluoranthene and mannitol solutions for 30d. The exposure was carried out in growth chambers in field conditions, and the air was filtered through charcoal filters to remove atmospheric contaminants. Plants were sprayed with 10microM fluoranthene as mist until they reached the fruiting stage, and the eco-physiological parameters were measured to determine the effects of the treatments. We measured CO(2) uptake and water vapour exchange, chlorophyll fluorescence, leaf pigment contents, visual symptoms and biomass allocation. Fluoranthene which was deposited as mist onto leaves negatively affected both growth and the quality of tomato plants, while other treatments did not. The photosynthetic rate measured at saturated irradiance was approximately 37% lower in fluoranthene-treated plants compared with the control group. Other variables, such as stomata conductance, the photochemical efficiency of PSII in the dark, Chl a, Chl b, and the total chlorophyll contents of the tomato leaves were significantly reduced in the fluoranthene-treated plants. Tomato plants treated with fluoranthene showed severe visible injury symptoms on the foliage during the exposure period. Mannitol (a reactive oxygen scavenger) mitigated effects of fluoranthene; thus, reactive oxygen species generated through fluoranthene may be responsible for the damaged tomato plants. It is possible for fluoranthene to decrease the aesthetic and hence the economic value of this valuable crop plant.

  9. Peat soil composition as indicator of plants growth environment

    NASA Astrophysics Data System (ADS)

    Noormets, M.; Tonutare, T.; Kauer, K.; Szajdak, L.; Kolli, R.

    2009-04-01

    Exhausted milled peat areas have been left behind as a result of decades-lasting intensive peat production in Estonia and Europe. According to different data there in Estonia is 10 000 - 15 000 ha of exhausted milled peat areas that should be vegetated. Restoration using Sphagnum species is most advantageous, as it creates ecological conditions closest to the natural succession towards a natural bog area. It is also thought that the large scale translocation of vegetation from intact bogs, as used in some Canadian restoration trials, is not applicable in most of European sites due to limited availability of suitable donor areas. Another possibility to reduce the CO2 emission in these areas is their use for cultivation of species that requires minimum agrotechnical measures exploitation. It is found by experiments that it is possible to establish on Vaccinium species for revegetation of exhausted milled peat areas. Several physiological activity of the plant is regulated by the number of phytohormones. These substances in low quantities move within the plant from a site of production to a site of action. Phytohormone, indole-3-acetic acid (IAA) is formed in soils from tryptophane by enzymatic conversion. This compound seems to play an important function in nature as result to its influence in regulation of plant growth and development. A principal feature of IAA is its ability to affect growth, development and health of plants. This compound activates root morphology and metabolic changes in the host plant. The physiological impact of this substance is involved in cell elongation, apical dominance, root initiation, parthenocarpy, abscission, callus formation and the respiration. The investigation areas are located in the county of Tartu (58˚ 22' N, 26˚ 43' E), in the southern part of Estonia. The soil of the experimental fields belongs according to the WRB soil classification, to the soils subgroups of Fibri-Dystric Histosols. The investigation areas were

  10. A natural plant growth promoter calliterpenone from a plant Callicarpa macrophylla Vahl improves the plant growth promoting effects of plant growth promoting rhizobacteria (PGPRs).

    PubMed

    Maji, Deepamala; Barnawal, Deepti; Gupta, Aakansha; King, Shikha; Singh, A K; Kalra, A

    2013-05-01

    Experiments were conducted to evaluate the efficacy of calliterpenone, a natural plant growth promoter from a shrub Callicarpa macrophylla Vahl., in enhancing the growth and yield promoting effects of plant growth promoting rhizobacteria (PGPRs), in menthol mint (Mentha arvensis L).This study is based on our previous results indicating the microbial growth promotion by calliterpenone and assumption that application of calliterpenone along with PGPRs will improve the population of PGPRs resulting in higher impacts on plant growth and yield. Of the 15 PGPRs (identified as potent ones in our laboratory), 25 μl of 0.01 mM calliterpenone (8.0 μg/100 ml) was found to be useful in improving the population of nine PGPRs in culture media. The five selected strains of PGPRs exhibiting synergy with calliterpenone in enhancing growth of maize compared to PGPR or calliterpenone alone were selected and tested on two cultivars (cvs. Kosi and Kushal) of M. arvensis. Of the five strains, Bacillus subtilis P-20 (16S rDNA sequence homologous to Accession No NR027552) and B. subtilis Daz-26 (16SrDNA sequence homologuos to Accession No GU998816) were found to be highly effective in improving the herb and essential oil yield in the cultivars Kushal and Kosi respectively when co-treated with calliterpenone. The results open up the possibilities of using a natural growth promoter along with PGPRs as a bio-agri input for sustainable and organic agriculture.

  11. Specifications for and preliminary design of a plant growth chamber for orbital experimental experiments

    NASA Technical Reports Server (NTRS)

    Sweet, H. C.; Simmonds, R. C.

    1976-01-01

    It was proposed that plant experiments be performed on board the space shuttle. To permit the proper execution of most tests, the craft must contain a plant growth chamber which is adequately designed to control those environmental factors which can induce changes in a plant's physiology and morphology. The various needs of, and environmental factors affecting, plants are identified. The permissilbe design, construction and performance limits for a plant-growth chamber are set, and tentative designs were prepared for units which are compatible with both the botanical requirements and the constraints imposed by the space shuttle.

  12. Gravitational effects on plant growth hormone concentration

    NASA Astrophysics Data System (ADS)

    Bandurski, Robert S.; Schulze, Aga

    Numerous studies, particularly those of H. Dolk in the 1930's, established by means of bio-assay, that more growth hormone diffused from the lower, than from the upper side of a gravity-stimulated plant shoot. Now, using an isotope dilution assay, with 4,5,6,7 tetradeutero indole-3-acetic acid as internal standard, and selected ion monitoring-gas chromatography-mass spectrometry as the method of determination, we have confirmed Dolk's finding and established that the asymmetrically distributed hormone is, in fact, indole-3-acetic acid (IAA). This is the first physico-chemical demonstration that there is more free IAA on the lower sides of a geo-stimulated plant shoot. We have also shown that free IAA occurs primarily in the conductive vascular tissues of the shoot, whereas IAA esters predominate in the growing cortical cells. Now, using an especially sensitive gas chromatographic isotope dilution assay we have found that the hormone asymmetry also occurs in the non-vascular tissue. Currently, efforts are directed to developing isotope dilution assays, with picogram sensitivity, to determine how this asymmetry of IAA distribution is attained so as to better understand how the plant perceives the geo-stimulus.

  13. Instrumentation for plant health and growth

    NASA Astrophysics Data System (ADS)

    Schlager, K. J.

    1994-11-01

    Comprehensive spectroscopic monitoring of plant health and growth in bioregenerative life support system environments is possible using a variety of spectrometric technologies. Absorption spectrometry and atomic emission spectrometry in combination allow for direct, on-line, reagentless monitoring of plant nutrients from nitrate and potassium to micronutrients such as copper and zinc. Fluorometric spectrometry is ideal for the on-line detection, identification and quantification of bacteria and fungi. Liquid Atomic Emission Spectrometry (LAES) is a new form of spectrometry that allows for direct measurement of atomic emission spectra in liquids. An electric arc is generated by a pair of electrodes in the liquid to provide the energy necessary to break molecular bonds and reduce the substance to atomic form. With a fiber probe attached to the electrodes, spectral light can be transmitted to a photodiode array spectrometer for light dispersion and analysis. Ultraviolet (UV) absorption spectrometry is a long-established technology, but applications typically have required specific reagents to produce an analyte-specific absorption. Nitrate and iron nutrients have native UV absorption spectra that have been used to accurately determine nutrient concentrations at the +/- 5% level. Fluorescence detection and characterization of microbes is based upon the native fluorescent signatures of most microbiological species. Spectral and time-resolved fluorometers operating with remote fiber-optic probes will be used for on-line microbial monitoring in plant nutrient streams.

  14. Biomass Production System (BPS) Plant Growth Unit

    NASA Astrophysics Data System (ADS)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  15. Biomass Production System (BPS) plant growth unit.

    PubMed

    Morrow, R C; Crabb, T M

    2000-01-01

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses its own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive.

  16. Phenolic-rich leaf carbon fractions differentially influence microbial respiration and plant growth.

    PubMed

    Meier, Courtney L; Bowman, William D

    2008-11-01

    Phenolics can reduce soil nutrient availability, either indirectly by stimulating microbial nitrogen (N) immobilization or directly by enhancing physical protection within soil. Phenolic-rich plants may therefore negatively affect neighboring plant growth by restricting the N supply. We used a slow-growing, phenolic-rich alpine forb, Acomastylis rossii, to test the hypothesis that phenolic-rich carbon (C) fractions stimulate microbial population growth and reduce plant growth. We generated low-molecular-weight (LMW) fractions, tannin fractions, and total soluble C fractions from A. rossii and measured their effects on soil respiration and growth of Deschampsia caespitosa, a fast-growing, co-dominant grass. Fraction effects fell into two distinct categories: (1) fractions did not increase soil respiration and killed D. caespitosa plants, or (2) fractions stimulated soil respiration and reduced plant growth and plant N concentration while simultaneously inhibiting root growth. The LMW phenolic-rich fractions increased soil respiration and reduced plant growth more than tannins. These results suggest that phenolic compounds can inhibit root growth directly as well as indirectly affect growth by reducing pools of plant available N by stimulating soil microbes. Both mechanisms illustrate how below-ground phenolic effects may influence the growth of neighboring plants. We also examined patterns of foliar phenolic concentrations among populations of A. rossii across a natural productivity gradient (productivity was used as a proxy for competition intensity). Concentrations of some LMW phenolics increased significantly in more productive sites where A. rossii is a competitive equal with the faster growing D. caespitosa. Taken together, our results contribute important information to the growing body of evidence indicating that the quality of C moving from plants to soils can have significant effects on neighboring plant performance, potentially associated with phytoxic

  17. [Plant growth with limited water]. Performance report

    SciTech Connect

    Not Available

    1992-10-01

    When water is in short supply, soybean stem growth is inhibited by a physical limitation followed in a few hours by metabolic changes that reduce the extensibility of the cell walls. The extensibility then becomes the main limitation. With time, there is a modest recovery in extensibility along with an accumulation of a 28kD protein in the walls of the growth-affected cells. A 3lkD protein that was 80% similar in amino acid sequence also was present but did not accumulate in the walls of the stem cells. In the stem, growth was inhibited and the mRNA for the 28kD protein increased in response to water deprivation but the mRNA for the 3 1 kD protein did not. The roots continued to grow and the mRNA for the 28kD protein did not accumulate but the mRNA for the 3lkD protein did. Thus, there was a tissuespecific response of gene expression that correlated with the contrasting growth response to low water potential in the same seedlings. Further work using immunogold labeling, fluorescence labeling, and western blotting gave evidence that the 28kD protein is located in the cell wall as well as several compartments in the cytoplasm. Preliminary experiments indicate that the 28kD protein is a phosphatase.

  18. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    PubMed

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  19. Ammonia And Ethylene Optrodes For Research On Plant Growth

    NASA Technical Reports Server (NTRS)

    Zhou, Quan; Tabacco, Mary Beth

    1995-01-01

    Fiber-optic sensors developed for use in measuring concentrations of ammonia and ethylene near plants during experiments on growth of plants in enclosed environments. Developmental fiber-optic sensors satisfy need to measure concentrations as low as few parts per billion (ppb) and expected to contribute to research on roles of ethylene and ammonia in growth of plants.

  20. Climate warming affects biological invasions by shifting interactions of plants and herbivores.

    PubMed

    Lu, Xinmin; Siemann, Evan; Shao, Xu; Wei, Hui; Ding, Jianqing

    2013-08-01

    Plants and herbivorous insects can each be dramatically affected by temperature. Climate warming may impact plant invasion success directly but also indirectly through changes in their natural enemies. To date, however, there are no tests of how climate warming shifts the interactions among invasive plants and their natural enemies to affect invasion success. Field surveys covering the full latitudinal range of invasive Alternanthera philoxeroides in China showed that a beetle introduced for biocontrol was rare or absent at higher latitudes. In contrast, plant cover and mass increased with latitude. In a 2-year field experiment near the northern limit of beetle distribution, we found the beetle sustained populations across years under elevated temperature, dramatically decreasing A. philoxeroides growth, but it failed to overwinter in ambient temperature. Together, these results suggest that warming will allow the natural enemy to expand its range, potentially benefiting biocontrol in regions that are currently too cold for the natural enemy. However, the invader may also expand its range further north in response to warming. In such cases where plants tolerate cold better than their natural enemies, the geographical gap between plant and herbivorous insect ranges may not disappear but will shift to higher latitudes, leading to a new zone of enemy release. Therefore, warming will not only affect plant invasions directly but also drive either enemy release or increase that will result in contrasting effects on invasive plants. The findings are also critical for future management of invasive species under climate change.

  1. Effects of microgravity on growth hormone concentration and distribution in plants

    NASA Technical Reports Server (NTRS)

    Schulze, Aga; Jensen, Philip; Desrosiers, Mark; Bandurski, Robert S.

    1989-01-01

    On earth, gravity affects the distribution of the plant growth hormone, indole-3-acetic acid (IAA), in a manner such that the plant grows into a normal vertical orientation (shoots up, roots down). How the plant controls the amount and distribution of IAA is only partially understood and is currently under investigation in this laboratory. The question to be answered in the flight experiment concerns the effect of gravity on the concentration, turn over, and distribution of the growth hormone. The answer to this question will aid in understanding the mechanism by which plants control the amount and distribution of growth hormone. Such knowledge of a plant's hormonal metabolism may aid in the growth of plants in space and will lead to agronomic advances.

  2. Modulation of plant growth and metabolism in cadmium-enriched environments.

    PubMed

    Qadir, Shaista; Jamshieed, Sumiya; Rasool, Saiema; Ashraf, Muhammad; Akram, Nudrat Aisha; Ahmad, Parvaiz

    2014-01-01

    Cadmium (Cd) is a water soluble metal pollutant that is not essential to plant growth.It has attracted attention from soil scientists and plant nutritionists in recent years because of its toxicity and mobility in the soil-plant continuum. Even low levels of Cd (0.1-1 J.!M) cause adverse effects on plant growth and metabolism. Cadmium is known to trigger the synthesis of reactive oxygen species, hinder utilization, uptake and transport of essential nutrients and water, and modify photosynthetic machinery,thereby resulting in plant tissue death. Although the effects of Cd are dose- as well as plant species-dependent, some plants show Cd tolerance through a wide range of cellular responses. Such tolerance results from synthesis of osmolytes,generation of enzymatic and non-enzymatic antioxidants and metal-detoxifying peptides, changes in gene expression, and metal ion homeostasis and compartmentalization of ligand-metal complexes. Cd toxicity in plants produces effects on chlorophyllbio synthesis, reduces photosynthesis, and upsets plant water relations and hormonal and/or nutritional balances. All of these effects on plants and on plant metabolism ultimately reduce growth and productivity.In this review, we describe the extent to which Cd affects underlying metabolic processes in plants and how such altered processes affect plant growth. We review the sources of Cd contamination, its uptake, transportation and bioavailability and accumulation in plants, and its antagonistic and synergistic effects with other metals and compounds. We further address the effects of Cd on plant genetics and metabolism,and how plants respond to mitigate the adverse effects of Cd exposure, as well as strategies(e.g., plant breeding) that can reduce the impact of Cd contamination on plants.

  3. Strategic rehabilitation of the earthquake affected microhydropower plants in Nepal

    NASA Astrophysics Data System (ADS)

    Baidar, B.; Koirala, R.; Neopane, H. P.; Shrestha, M. V.; Thapa, B.

    2016-11-01

    Most people in the rural areas of Nepal rely on Micro-hydro Power Plants (MHPs) for their energy sources. With around four decade experiences in design and development of MHPs, Nepalese techno-entrepreneurs have gained wider reputation in the South Asian region and the beyond. However with the lack of competences in developing Francis turbines, majority of the MHPs are equipped with either Pelton of Cross Flow turbine, even though Francis units are suitable. With the devastating earthquake of a 7.6 magnitude that struck in the Gorkha district on Saturday, 25 April 2015, about 76 km northwest of the capital city Kathmandu, and the aftershocks followed claimed more than 8000 lives. It did not leave hydropower plants either. Many big plants have been affected and hundreds of MHPs were damaged, needing short to long term rehabilitation. The preliminary assessment of the 61 affected MHPs in the 6 earthquake affected districts shows more than 50% sites are suitable for Francis turbine. Hence the strategic rehabilitation plan has been developed in the present paper for the affected plants considering issues like geographical shift, dislocation of people and also with the focus on replacing the old turbine with Francis turbine in the suitable sites. The similar strategy can also be implemented in other developing countries with such situations.

  4. Martian Soil Plant Growth Experiment: The Effects of Adding Nitrogen, Bacteria, and Fungi to Enhance Plant Growth

    NASA Technical Reports Server (NTRS)

    Kliman, D. M.; Cooper, J. B.; Anderson, R. C.

    2000-01-01

    Plant growth is enhanced by the presence of symbiotic soil microbes. In order to better understand how plants might prosper on Mars, we set up an experiment to test whether symbiotic microbes function to enhance plant growth in a Martian soil simulant.

  5. Influence of calcium foliar fertilization on plant growth, nutrient concentrations, and fruit quality of papaya.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium (Ca) is a major plant nutrient that affects cell wall and plasma membrane formation and plays a key role in plant growth and biomass production. It can be used to decrease fruit decay and increase firmness and shelf life. So far, little attention has been paid to investigate the effects of f...

  6. Small Variance in Growth Rate in Annual Plants has Large Effects on Genetic Drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When plant size is strongly correlated with plant reproduction, variance in growth rates results in a lognormal distribution of seed production within a population. Fecundity variance affects effective population size (Ne), which reflects the ability of a population to maintain beneficial mutations ...

  7. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth.

    PubMed

    Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F

    2015-10-01

    The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.

  8. Demonstrating the Effects of Light Quality on Plant Growth.

    ERIC Educational Resources Information Center

    Whitesell, J. H.; Garcia, Maria

    1977-01-01

    Describes a lab demonstration that illustrates the effect of different colors or wavelengths of visible light on plant growth and development. This demonstration is appropriate for use in college biology, botany, or plant physiology courses. (HM)

  9. Plant-fungus mutualism affects spider composition in successional fields.

    PubMed

    Finkes, Laura K; Cady, Alan B; Mulroy, Juliana C; Clay, Keith; Rudgers, Jennifer A

    2006-03-01

    Mutualistic symbionts are widespread in plants and may have strong, bottom-up influences on community structure. Here we show that a grass-endophyte mutualism shifts the composition of a generalist predator assemblage. In replicated, successional fields we manipulated endophyte infection by Neotyphodium coenophialum in a dominant, non-native plant (Lolium arundinaceum). We compared the magnitude of the endophyte effect with manipulations of thatch biomass, a habitat feature of known importance to spiders. The richness of both spider families and morphospecies was greater in the absence of the endophyte, although total spider abundance was not affected. Thatch removal reduced both spider abundance and richness, and endophyte and thatch effects were largely additive. Spider families differed in responses, with declines in Linyphiidae and Thomisidae due to the endophyte and declines in Lycosidae due to thatch removal. Results demonstrate that the community impacts of non-native plants can depend on plants' mutualistic associates, such as fungal endophytes.

  10. Sugar signals and the control of plant growth and development.

    PubMed

    Lastdrager, Jeroen; Hanson, Johannes; Smeekens, Sjef

    2014-03-01

    Sugars have a central regulatory function in steering plant growth. This review focuses on information presented in the past 2 years on key players in sugar-mediated plant growth regulation, with emphasis on trehalose 6-phosphate, target of rapamycin kinase, and Snf1-related kinase 1 regulatory systems. The regulation of protein synthesis by sugars is fundamental to plant growth control, and recent advances in our understanding of the regulation of translation by sugars will be discussed.

  11. Corridors affect plants, animals, and their interactions in fragmented landscapes.

    SciTech Connect

    Tewksbury, Joshua, J.; Levey, Douglas, J.; Haddad, Nick, M.; Sargent, Sarah; Orrock, John, L.; Weldon, Aimee; Danielson, Brent, J.; Brinkerhoff, Jory; Damschen, Ellen, I.; Townsend, Patricia

    2002-10-01

    Tewksbury, J.J., D.J. Levey, N.M. Haddad, S. Sargent, J.L. Orrock, A. Weldon, B.J. Danielson, J. Brinkerhoff, E.I. Damschen, and P. Townsend. 2002. Corridors affect plants, animals, and their interactions in fragmented landscapes. PNAS 99(20):12923-12926. Among the most popular strategies for maintaining populations of both plants and animals in fragmented landscapes is to connect isolated patches with thin strips of habitat, called corridors. Corridors are thought to increase the exchange of individuals between habitat patches, promoting genetic exchange and reducing population fluctuations. Empirical studies addressing the effects of corridors have either been small in scale or have ignored confounding effects of increased habitat area created by the presence of a corridor. These methodological difficulties, coupled with a paucity of studies examining the effects of corridors on plants and plant-animal interactions, have sparked debate over the purported value of corridors in conservation planning. We report results of a large-scale experiment that directly address this debate. We demonstrate that corridors not only increase the exchange of animals between patches, but also facilitate two key plant-animal interactions: pollination and seed dispersal. Our results show that the beneficial effects of corridors extend beyond the area they add, and suggest that increased plant and animal movement through corridors will have positive impacts on plant populations and community interactions in fragmented landscapes.

  12. Zinc stress affects ionome and metabolome in tea plants.

    PubMed

    Zhang, Yinfei; Wang, Yu; Ding, Zhaotang; Wang, Hui; Song, Lubin; Jia, Sisi; Ma, Dexin

    2017-02-01

    The research of physiological responses to Zn stress in plants has been extensively studied. However, the ionomics and metabolomics responses of plants to Zn stress remain largely unknown. In present study, the nutrient elements were identified involved in ion homeostasis and metabolomics changes related to Zn deficiency or excess in tea plants. Nutrient element analysis demonstrated that the concentrations of Zn affected the ion-uptake in roots and the nutrient element transportation to leaves, leading to the different distribution of P, S, Al, Ca, Fe and Cu in the tea leaves or roots. Metabolomics analysis revealed that Zn deficiency or excess differentially influenced the metabolic pathways in the tea leaves. More specifically, Zn deficiency affected the metabolism of carbohydrates, and Zn excess affected flavonoids metabolism. Additionally, the results showed that both Zn deficiency and Zn excess led to reduced nicotinamide levels, which speeded up NAD(+) degradation and thus reduced energy metabolism. Furthermore, element-metabolite correlation analysis illustrated that Zn contents in the tea leaves were positively correlated with organic acids, nitrogenous metabolites and some carbohydrate metabolites, and negatively correlated with the metabolites involved in secondary metabolism and some other carbohydrate metabolites. Meanwhile, metabolite-metabolite correlation analysis demonstrated that organic acids, sugars, amino acids and flavonoids played dominant roles in the regulation of the tea leaf metabolism under Zn stress. Therefore, the conclusion should be drawn that the tea plants responded to Zn stress by coordinating ion-uptake and regulation of metabolism of carbohydrates, nitrogenous metabolites, and flavonoids.

  13. Plant growth-promoting hormones activate mammalian guanylate cyclase activity.

    PubMed

    Vesely, D L; Hudson, J L; Pipkin, J L; Pack, L D; Meiners, S E

    1985-05-01

    In vivo injections of plant growth-promoting hormones increase the growth of animals as well as plants. Plant growth-promoting hormones and positive plant growth regulators are known to increase RNA and protein synthesis. Since cyclic GMP also increases RNA and protein synthesis, the object of the present investigation was to determine whether physiological levels of plant growth-promoting hormones and positive plant growth regulators have part of their mechanism(s) of action through stimulation of the guanylate cyclase (EC 4.6.1.2)-cyclic GMP system. Representatives of the three classes of growth-promoting hormones were investigated. Thus, auxins (indole-3-acetic acid, indole-3-butyric acid, beta-naphthoxyacetic acid, and 2,4,5-trichlorophenoxy acetic acid), gibberellins (gibberellic acid), and cytokinins [N6-benzyl adenine, kinetin (6-furfuryl aminopurine), and beta-(2-furyl) acrylic acid] all increased rat lung, small intestine, liver, and renal cortex guanylate cyclase activity 2- to 4-fold at the 1 microM concentration. Dose response curves revealed that maximal stimulation of guanylate cyclase by these plant growth regulators was at 1 microM; there was no augmented cyclase activity at 1 nM. The guanylate cyclase cationic cofactor manganese was not essential for augmentation of guanylate cyclase by these plant growth-promoting regulators. The antioxidant butylated hydroxytoluene did not block the enhancement of guanylate cyclase by these plant growth-promoting factors. These data suggest that guanylate cyclase may play a role in the mechanism of action of plant growth-promoting hormones and even of positive plant regulators at the cellular level.

  14. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor.

    PubMed

    Amy-Sagers, Cherisse; Reinhardt, Keith; Larson, Danelle M

    2017-04-01

    Pharmaceuticals and personal care products (PPCP) are prevalent in aquatic systems, yet the fate and impacts on aquatic plants needs quantification for many compounds. We measured and detected sucralose (an artificial sweetener), fluoxetine (an antidepressant), and other PPCP in the Portneuf River in Idaho, USA, where Lemna minor (an aquatic plant in the environment and used in ecotoxicology studies) naturally occurs. Sucralose was hypothesized to negatively affect photosynthesis and growth of L. minor because sucralose is a chlorinated molecule that may be toxic or unusable for plant metabolism. A priori hypotheses were not created for fluoxetine due to lack of previous studies examining its impacts on plants. We conducted laboratory ecotoxicological assessments for a large range of concentrations of sucralose and fluoxetine on L. minor physiology and photosynthetic function. Frond green leaf area, root length, growth rate, photosynthetic capacity, and plant carbon isotopic composition (discrimination relative to a standard; δ(13)C) were measured among treatments ranging from 0 to 15000nmol/L-sucralose and 0-323nmol/L-fluoxetine. Contrary to our predictions, sucralose significantly increased green leaf area, photosynthetic capacity, and δ (13)C of L. minor at environmentally relevant concentrations. The increase of δ (13)C from sucralose amendments and an isotope-mixing model indicated substantial sucralose uptake and assimilation within the plant. Unlike humans who cannot break down and utilize sucralose, we documented that L. minor-a mixotrophic plant-can use sucralose as a sugar substitute to increase its green leaf area and photosynthetic capacity. Fluoxetine significantly decreased L. minor root growth, daily growth rate, and asexual reproduction at 323nmol/L-fluoxetine; however, ambiguity remains regarding the mechanisms responsible and the applicability of these extreme concentrations unprecedented in the natural environment. To our knowledge, this was

  15. Inference of allelopathy is complicated by effects of activated carbon on plant growth.

    PubMed

    Lau, Jennifer A; Puliafico, Kenneth P; Kopshever, Joseph A; Steltzer, Heidi; Jarvis, Edward P; Schwarzländer, Mark; Strauss, Sharon Y; Hufbauer, Ruth A

    2008-01-01

    Allelopathy can play an important role in structuring plant communities, but allelopathic effects are often difficult to detect because many methods used to test for allelopathy can be confounded by experimental artifacts. The use of activated carbon, a technique for neutralizing allelopathic compounds, is now employed in tests for allelopathy; however, this technique also could produce large experimental artifacts. In three independent experiments, it was shown that adding activated carbon to potting media affected nutrient availability and plant growth. For most species tested, activated carbon increased plant biomass, even in the absence of the potentially allelopathic agent. The increased growth corresponded to increased plant nitrogen content, likely resulting from greater nitrogen availability. Activated carbon also affected nitrogen and other nutrient concentrations in soil media in the absence of plants. The observed effects of activated carbon on plant growth can confound its use to test for allelopathy. The detection of allelopathy relies on the difference between plant growth in medium with carbon and that in medium without carbon in the presence of the potentially allelopathic competitor; however, this difference may be biased if activated carbon alters soil nutrient availability and plant growth even in the absence of the focal allelopathic agent.

  16. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.

  17. Phasic temperature change patterns affect growth and tuberization in potatoes

    SciTech Connect

    Cao, W.; Tibbitts, T.W. . Dept. of Horticulture)

    1994-07-01

    This study determined the response of potato (Solanum tuberosum L., cv. Norland) plants to various patterns of air temperature changes over different growth periods. In each of two experiments under controlled environments, eight treatments of temperature changes were carried out in two growth rooms maintained at 17 and 22 C and a constant vapor pressure deficit of 0.60 kPa and 14-hour photoperiod. Plants were grown for 63 days after transplanting of tissue culture plantlets in 20-liter pots containing peat-vermiculite mix. Temperature changes were imposed on days 21 and 42, which were essentially at the beginning of tuber initiation and tuber enlargement, respectively, for this cultivar. Plants were moved between two temperature rooms to obtain eight temperature change patterns: 17-17-17, 17-17-22, 17-22-17, 22-17-17, 17-22-22, 22-17-22, 22-22-17, and 22-22-22C over three 21-day growth periods. At harvest on day 63, total plant dry weight was higher for the treatments beginning with 22 C than for those beginning with 17C, with highest biomass obtained at 22-22-17 and 22-17-17C. Shoot dry weight increased with temperature increased from 17-17-17 to 22-22-22C during the three growth periods. Tuber dry weight was highest with 22-17-17C, and lowest with 17-17-22 and 17-22-22C. With 22-17-17C, both dry weights of stolons and roots were lowest. Total tuber number and number of small tubers were highest with 17-17-17 and 17-17-22C, and lowest with 17-22-22 and 22-22-22C, whereas number of medium tubers was highest with 22-17-22C, and number of large tubers was highest with 22-17-17C. This study indicates that tuber development of potatoes is optimized with a phasic pattern of high temperature during early growth and low temperature during later growth.

  18. Plants are less negatively affected by flooding when growing in species-rich plant communities.

    PubMed

    Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje

    2017-01-01

    Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding.

  19. Dietary phosphorus affects the growth of larval Manduca sexta.

    PubMed

    Perkins, Marc C; Woods, H Arthur; Harrison, Jon F; Elser, James J

    2004-03-01

    Although phosphorus has long been considered an important factor in the growth of diverse biota such as bacteria, algae, and zooplankton, insect nutrition has classically focused on dietary protein and energy content. However, research in elemental stoichiometry has suggested that primary producer biomass has similar N:P ratios in aquatic and terrestrial systems, and phosphorus-rich herbivores in freshwater systems frequently face phosphorus-limited nutritional conditions. Therefore, herbivorous insects should also be prone to phosphorus limitation. We tested this prediction by rearing Manduca sexta larvae on artificial and natural (Datura wrightii leaves) diets containing varying levels of phosphorus (approximately 0.20, 0.55, or 1.2% phosphorus by dry weight). For both artificial and natural diets, increased dietary phosphorus significantly increased growth rates and body phosphorus contents, and shortened the time to the final instar molt. Caterpillars did not consistently exhibit compensatory feeding for phosphorus on either type of diet. The growth and body phosphorus responses were not explicable by changes in amounts of potassium or calcium, which co-varied with phosphorus in the diets. Concentrations of phosphorus in D. wrightii leaves collected in the field varied over a range in which leaf phosphorus is predicted to affect M. sexta's growth rates. These results suggest that natural variation in dietary phosphorus is likely to affect the growth rate and population dynamics of M. sexta, and perhaps larval insects more generally.

  20. Plant growth-promoting bacteria as inoculants in agricultural soils

    PubMed Central

    de Souza, Rocheli; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2015-01-01

    Abstract Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria. PMID:26537605

  1. Plant growth-promoting bacteria as inoculants in agricultural soils.

    PubMed

    Souza, Rocheli de; Ambrosini, Adriana; Passaglia, Luciane M P

    2015-12-01

    Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.

  2. Ionizing radiation from Chernobyl affects development of wild carrot plants

    PubMed Central

    Boratyński, Zbyszek; Arias, Javi Miranda; Garcia, Cristina; Mappes, Tapio; Mousseau, Timothy A.; Møller, Anders P.; Pajares, Antonio Jesús Muñoz; Piwczyński, Marcin; Tukalenko, Eugene

    2016-01-01

    Radioactivity released from disasters like Chernobyl and Fukushima is a global hazard and a threat to exposed biota. To minimize the deleterious effects of stressors organisms adopt various strategies. Plants, for example, may delay germination or stay dormant during stressful periods. However, an intense stress may halt germination or heavily affect various developmental stages and select for life history changes. Here, we test for the consequence of exposure to ionizing radiation on plant development. We conducted a common garden experiment in an uncontaminated greenhouse using 660 seeds originating from 33 wild carrots (Daucus carota) collected near the Chernobyl nuclear power plant. These maternal plants had been exposed to radiation levels that varied by three orders of magnitude. We found strong negative effects of elevated radiation on the timing and rates of seed germination. In addition, later stages of development and the timing of emergence of consecutive leaves were delayed by exposure to radiation. We hypothesize that low quality of resources stored in seeds, damaged DNA, or both, delayed development and halted germination of seeds from plants exposed to elevated levels of ionizing radiation. We propose that high levels of spatial heterogeneity in background radiation may hamper adaptive life history responses. PMID:27982121

  3. Ionizing radiation from Chernobyl affects development of wild carrot plants

    NASA Astrophysics Data System (ADS)

    Boratyński, Zbyszek; Arias, Javi Miranda; Garcia, Cristina; Mappes, Tapio; Mousseau, Timothy A.; Møller, Anders P.; Pajares, Antonio Jesús Muñoz; Piwczyński, Marcin; Tukalenko, Eugene

    2016-12-01

    Radioactivity released from disasters like Chernobyl and Fukushima is a global hazard and a threat to exposed biota. To minimize the deleterious effects of stressors organisms adopt various strategies. Plants, for example, may delay germination or stay dormant during stressful periods. However, an intense stress may halt germination or heavily affect various developmental stages and select for life history changes. Here, we test for the consequence of exposure to ionizing radiation on plant development. We conducted a common garden experiment in an uncontaminated greenhouse using 660 seeds originating from 33 wild carrots (Daucus carota) collected near the Chernobyl nuclear power plant. These maternal plants had been exposed to radiation levels that varied by three orders of magnitude. We found strong negative effects of elevated radiation on the timing and rates of seed germination. In addition, later stages of development and the timing of emergence of consecutive leaves were delayed by exposure to radiation. We hypothesize that low quality of resources stored in seeds, damaged DNA, or both, delayed development and halted germination of seeds from plants exposed to elevated levels of ionizing radiation. We propose that high levels of spatial heterogeneity in background radiation may hamper adaptive life history responses.

  4. Singlet oxygen signaling links photosynthesis to translation and plant growth.

    PubMed

    Reinbothe, Christiane; Pollmann, Stephan; Reinbothe, Steffen

    2010-09-01

    Translation is a major target of metabolic and growth control in animals and plants. Changes in the phosphorylation status of ribosomal protein S6 are responsible for rapid adjustments in the growth pattern of higher plants in response to changes in the environment. In this review, we illuminate some common and unique aspects of translational control in animals and plants and discuss recent studies that link photosynthesis to growth via specific signal transduction cascades, one of which relies on singlet oxygen and the plant growth regulator jasmonic acid (JA). It is the aim of this review to discuss the role of the target of rapamycin (TOR) signaling network in plants and what mechanisms could contribute to growth control in response to the changing environment.

  5. Marker gene tethering by nucleoporins affects gene expression in plants.

    PubMed

    Smith, Sarah; Galinha, Carla; Desset, Sophie; Tolmie, Frances; Evans, David; Tatout, Christophe; Graumann, Katja

    2015-01-01

    In non-plant systems, chromatin association with the nuclear periphery affects gene expression, where interactions with nuclear envelope proteins can repress and interactions with nucleoporins can enhance transcription. In plants, both hetero- and euchromatin can localize at the nuclear periphery, but the effect of proximity to the nuclear periphery on gene expression remains largely unknown. This study explores the putative function of Seh1 and Nup50a nucleoporins on gene expression by using the Lac Operator / Lac Repressor (LacI-LacO) system adapted to Arabidopsis thaliana. We used LacO fused to the luciferase reporter gene (LacO:Luc) to investigate whether binding of the LacO:Luc transgene to nucleoporin:LacI protein fusions alters luciferase expression. Two separate nucleoporin-LacI-YFP fusions were introduced into single insert, homozygous LacO:Luc Arabidopsis plants. Homozygous plants carrying LacO:Luc and a single insert of either Seh1-LacI-YFP or Nup50a-LacI-YFP were tested for luciferase activity and compared to plants containing LacO:Luc only. Seh1-LacI-YFP increased, while Nup50a-LacI-YFP decreased luciferase activity. Seh1-LacI-YFP accumulated at the nuclear periphery as expected, while Nup50a-LacI-YFP was nucleoplasmic and was not selected for further study. Protein and RNA levels of luciferase were quantified by western blotting and RT-qPCR, respectively. Increased luciferase activity in LacO:Luc+Seh1-LacI-YFP plants was correlated with increased luciferase protein and RNA levels. This change of luciferase expression was abolished by disruption of LacI-LacO binding by treating with IPTG in young seedlings, rosette leaves and inflorescences. This study suggests that association with the nuclear periphery is involved in the regulation of gene expression in plants.

  6. Experimental determination of magnesium isotope fractionation during higher plant growth

    NASA Astrophysics Data System (ADS)

    Bolou-Bi, Emile B.; Poszwa, Anne; Leyval, Corinne; Vigier, Nathalie

    2010-05-01

    Two higher plant species (rye grass and clover) were cultivated under laboratory conditions on two substrates (solution, phlogopite) in order to constrain the corresponding Mg isotope fractionations during plant growth and Mg uptake. We show that bulk plants are systematically enriched in heavy isotopes relative to their nutrient source. The Δ 26Mg plant-source range from 0.72‰ to 0.26‰ for rye grass and from 1.05‰ to 0.41‰ for clover. Plants grown on phlogopite display Mg isotope signatures (relative to the Mg source) ˜0.3‰ lower than hydroponic plants. For a given substrate, rye grass display lower δ 26Mg (by ˜0.3‰) relative to clover. Magnesium desorbed from rye grass roots display a δ 26Mg greater than the nutrient solution. Adsorption experiments on dead and living rye grass roots also indicate a significant enrichment in heavy isotopes of the Mg adsorbed on the root surface. Our results indicate that the key processes responsible for heavy isotope enrichment in plants are located at the root level. Both species also exhibit an enrichment in light isotopes from roots to shoots (Δ 26Mg leaf-root = -0.65‰ and -0.34‰ for rye grass and clover grown on phlogopite respectively, and Δ 26Mg leaf-root of -0.06‰ and -0.22‰ for the same species grown hydroponically). This heavy isotope depletion in leaves can be explained by biological processes that affect leaves and roots differently: (1) organo-Mg complex (including chlorophyll) formation, and (2) Mg transport within plant. For both species, a positive correlation between δ 26Mg and K/Mg was observed among the various organs. This correlation is consistent with the link between K and Mg internal cycles, as well as with formation of organo-magnesium compounds associated with enrichment in heavy isotopes. Considering our results together with the published range for δ 26Mg of natural plants and rivers, we estimate that a significant change in continental vegetation would induce a change of

  7. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi.

    PubMed

    Holste, Ellen K; Kobe, Richard K; Gehring, Catherine A

    2017-04-01

    Experiments with plant species that can host both arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) are important to separating the roles of fungal type and plant species and understanding the influence of the types of symbioses on plant growth and nutrient acquisition. We examined the effects of mycorrhizal fungal type on the growth and tissue nutrient content of two tree species (Eucalyptus grandis and Quercus costaricensis) grown under four nutrient treatments (combinations of low versus high nitrogen (N) and phosphorus (P) with different N:P ratios) in the greenhouse. Trees were inoculated with unidentified field mixtures of AMF or EMF species cultivated on root fragments of AMF- or EMF-specific bait plants. In E. grandis, inoculation with both AMF and EMF positively affected belowground plant dry weight and negatively affected aboveground dry weight, while only inoculation with AMF increased tissue nutrient content. Conversely, Q. costaricensis dry weight and nutrient content did not differ significantly among inoculation treatments, potentially due to its dependence on cotyledon reserves for growth. Mineral nutrition of both tree species differed with the ratio of N to P applied while growth did not. Our results demonstrate that both tree species' characteristics and the soil nutrient environment can affect how AMF and EMF interact with their host plants. This research highlights the importance of mycorrhizal fungal-tree-soil interactions during early seedling growth and suggests that differences between AMF and EMF associations may be crucial to understanding forest ecosystem functioning.

  8. Plant architecture and growth response of kudzu (fabaceae: Fabaceae) to simulated insect herbivory.

    PubMed

    Frye, M J; Hough-Goldstein, J

    2013-10-01

    Kudzu [Pueraria montana variety lobata (Willd.) Maesen & S. M. Almeida] plant architecture and growth were compared for plants subjected to 4 wk of simulated herbivory (75% leaf cutting) and no damage. Simulated herbivory reduced above-ground and root biomass by 40 and 47%, respectively, whereas total vine length and average length of the 10 longest vines were reduced by 48 and 43%, respectively, compared with control plants. Plant architecture was also affected, with damaged plants showing a significantly reduced proportion of primary vines, shorter secondary vines, and reduced average internode distances compared with the control plants. In natural situations, these changes would reduce the ability of kudzu to compete for light and other resources by affecting the plant's climbing habit.

  9. Functional and Structural Optimality in Plant Growth: A Crop Modelling Case Study

    NASA Astrophysics Data System (ADS)

    Caldararu, S.; Purves, D. W.; Smith, M. J.

    2014-12-01

    Simple mechanistic models of vegetation processes are essential both to our understanding of plant behaviour and to our ability to predict future changes in vegetation. One concept that can take us closer to such models is that of plant optimality, the hypothesis that plants aim to achieve an optimal state. Conceptually, plant optimality can be either structural or functional optimality. A structural constraint would mean that plants aim to achieve a certain structural characteristic such as an allometric relationship or nutrient content that allows optimal function. A functional condition refers to plants achieving optimal functionality, in most cases by maximising carbon gain. Functional optimality conditions are applied on shorter time scales and lead to higher plasticity, making plants more adaptable to changes in their environment. In contrast, structural constraints are optimal given the specific environmental conditions that plants are adapted to and offer less flexibility. We exemplify these concepts using a simple model of crop growth. The model represents annual cycles of growth from sowing date to harvest, including both vegetative and reproductive growth and phenology. Structural constraints to growth are represented as an optimal C:N ratio in all plant organs, which drives allocation throughout the vegetative growing stage. Reproductive phenology - i.e. the onset of flowering and grain filling - is determined by a functional optimality condition in the form of maximising final seed mass, so that vegetative growth stops when the plant reaches maximum nitrogen or carbon uptake. We investigate the plants' response to variations in environmental conditions within these two optimality constraints and show that final yield is most affected by changes during vegetative growth which affect the structural constraint.

  10. Spaceflight and age affect tibial epiphyseal growth plate histomorphometry

    NASA Technical Reports Server (NTRS)

    Montufar-Solis, Dina; Duke, Pauline J.; Durnova, G.

    1992-01-01

    Growth plate histomorphometry of rats flown aboard the Soviet biosatellite Cosmos 2044, a 14-day spaceflight, was compared with that of control groups. In growth plates of flight animals, there was a significant increase in cell number per column and height of the proliferative zone and a reduction in height and cell number in the hypertrophy/calcification zone. No significant differences were found in matrix organization at the ultrastructural level of flight animals, indicating that although spacefligfht continues to affect bone growth of 15-wk-old rats, extracellular matrix is not altered in the same manner as seen previously in younger animals. All groups showed growth plate characteristics attributed to aging: lack of calcification zone, reduced hypertrophy zone, and unraveling of collagen fibrils. Tail-suspended controls did not differ from other controls in any of the parameters measured. The results suggest that growth plates of older rats are less responsive to unloading by spaceflight or suspension than those of younger rats and provide new evidence about the modifying effect of spaceflight on the growth plate.

  11. Preliminary terrestrial based experiments on gravity-affected crystal growth

    NASA Technical Reports Server (NTRS)

    Johnston, M. H.

    1970-01-01

    Tin was melted in a heating assembly secured to the arm of a centrifuge. The furnace was allowed to pivot and reach its equilibrium angle of swing for the gravity force being experienced. The crucible was cooled during rotation to allow the growth of single crystals. The crystals were etched for the purpose of observing the growth striations. Slices were removed from some of the crystals to permit observation of the striations in the interior. Visual analyses were made with a scanning electron microscope. Preliminary conclusions relating the appearance of the striations to gravity forces and the affected growth mechanisms are presented. Further experiments that will verify these conclusions and determine other gravity effects are proposed.

  12. Mechanical Stress Regulation of Plant Growth and Development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1985-01-01

    Growth dynamics analysis was used to determine to what extent the seismic stress induced reduction in photosynthetic productivity in shaken soybeans was due to less photosynthetic surface, and to what extent to lower efficiency of assimulation. Seismic stress reduces shoot transpiration rate 17% and 15% during the first and second 45 minute periods following a given treatment. Shaken plants also had a 36% greater leaf water potential 30 minutes after treatment. Continuous measurement of whole plant photosynthetic rate shows that a decline in CO2 fixation began within seconds after the onset of shaking treatment and continued to decline to 16% less than that of controls 20 minutes after shaking, after which gradual recovery of photosynthesis begins. Photosynthetic assimilation recovered completely before the next treatment 5 hours later. The transitory decrease in photosynthetic rate was due entirely to a two fold increase in stomatal resistance to CO2 by the abaxial leaf surface. Mesophyll resistance was not significantly affected by periodic seismic treatment. Temporary stomatal aperture reduction and decreased CO2 fixation are responsible for the lower dry weight of seismic stressed plants growing in a controlled environment.

  13. Formaldehyde exposure affects growth and metabolism of common bean

    SciTech Connect

    Mutters, R.G.; Madore, M. ); Bytnerowicz, A. )

    1993-01-01

    Recent state and federal directives have slated a substantial increase in the use of methanol as an alternative to gasoline in both fleet and private vehicles in the coming decade. The incomplete combustion of methanol produces formaldehyde vapor, and catalytic converter technology that completely oxidizes formaldehyde has yet to be developed. The approach of this study was to use a range of methanol concentrations encompassing levels currently found or that may occur in the future in the ambient air of some heavily polluted areas to test the potential phytotoxicity of formaldehyde. The study had the following objectives: (1) design and build a formaldehyde vapor generator with sufficient capacity for long-term plant fumigations; (2) determine growth response of common bean to formaldehyde; (3) evaluate physiological and biochemical changes of bean plants associated with formaldehyde exposures. 20 refs., 2 figs., 2 tabs.

  14. Salinity fluctuation of the brine discharge affects growth and survival of the seagrass Cymodocea nodosa.

    PubMed

    Garrote-Moreno, A; Fernández-Torquemada, Y; Sánchez-Lizaso, J L

    2014-04-15

    The increase of seawater desalination plants may affect seagrasses as a result of its hypersaline effluents. There are some studies on the salinity tolerance of seagrasses under controlled laboratory conditions, but few have been done in situ. To this end, Cymodocea nodosa shoots were placed during one month at four localities: two close to a brine discharge; and the other two not affected by the discharge, and this experiment was repeated four times. The results obtained showed a decrease in growth and an increased mortality at the localities affected by the brine discharge. An increase was detected in the percentage of horizontal shoots in respect to vertical shoots at the impacted localities. It is probably that not only the average salinity, but also the constant salinity fluctuations and slightly higher temperatures associated with the brine that may have caused physiological stress thus reducing C. nodosa growth and survival.

  15. Root cooling strongly affects diel leaf growth dynamics, water and carbohydrate relations in Ricinus communis.

    PubMed

    Poiré, Richard; Schneider, Heike; Thorpe, Michael R; Kuhn, Arnd J; Schurr, Ulrich; Walter, Achim

    2010-03-01

    In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root-zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant - especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root-zone temperature and its heterogeneity inside pots.

  16. The root herbivore history of the soil affects the productivity of a grassland plant community and determines plant response to new root herbivore attack.

    PubMed

    Sonnemann, Ilja; Hempel, Stefan; Beutel, Maria; Hanauer, Nicola; Reidinger, Stefan; Wurst, Susanne

    2013-01-01

    Insect root herbivores can alter plant community structure by affecting the competitive ability of single plants. However, their effects can be modified by the soil environment. Root herbivory itself may induce changes in the soil biota community, and it has recently been shown that these changes can affect plant growth in a subsequent season or plant generation. However, so far it is not known whether these root herbivore history effects (i) are detectable at the plant community level and/or (ii) also determine plant species and plant community responses to new root herbivore attack. The present greenhouse study determined root herbivore history effects of click beetle larvae (Elateridae, Coleoptera, genus Agriotes) in a model grassland plant community consisting of six common species (Achillea millefolium, Plantago lanceolata, Taraxacum officinale, Holcus lanatus, Poa pratensis, Trifolium repens). Root herbivore history effects were generated in a first phase of the experiment by growing the plant community in soil with or without Agriotes larvae, and investigated in a second phase by growing it again in the soils that were either Agriotes trained or not. The root herbivore history of the soil affected plant community productivity (but not composition), with communities growing in root herbivore trained soil producing more biomass than those growing in untrained soil. Additionally, it influenced the response of certain plant species to new root herbivore attack. Effects may partly be explained by herbivore-induced shifts in the community of arbuscular mycorrhizal fungi. The root herbivore history of the soil proved to be a stronger driver of plant growth on the community level than an actual root herbivore attack which did not affect plant community parameters. History effects have to be taken into account when predicting the impact of root herbivores on grasslands.

  17. The Root Herbivore History of the Soil Affects the Productivity of a Grassland Plant Community and Determines Plant Response to New Root Herbivore Attack

    PubMed Central

    Sonnemann, Ilja; Hempel, Stefan; Beutel, Maria; Hanauer, Nicola; Reidinger, Stefan; Wurst, Susanne

    2013-01-01

    Insect root herbivores can alter plant community structure by affecting the competitive ability of single plants. However, their effects can be modified by the soil environment. Root herbivory itself may induce changes in the soil biota community, and it has recently been shown that these changes can affect plant growth in a subsequent season or plant generation. However, so far it is not known whether these root herbivore history effects (i) are detectable at the plant community level and/or (ii) also determine plant species and plant community responses to new root herbivore attack. The present greenhouse study determined root herbivore history effects of click beetle larvae (Elateridae, Coleoptera, genus Agriotes) in a model grassland plant community consisting of six common species (Achillea millefolium, Plantago lanceolata, Taraxacum officinale, Holcus lanatus, Poa pratensis, Trifolium repens). Root herbivore history effects were generated in a first phase of the experiment by growing the plant community in soil with or without Agriotes larvae, and investigated in a second phase by growing it again in the soils that were either Agriotes trained or not. The root herbivore history of the soil affected plant community productivity (but not composition), with communities growing in root herbivore trained soil producing more biomass than those growing in untrained soil. Additionally, it influenced the response of certain plant species to new root herbivore attack. Effects may partly be explained by herbivore-induced shifts in the community of arbuscular mycorrhizal fungi. The root herbivore history of the soil proved to be a stronger driver of plant growth on the community level than an actual root herbivore attack which did not affect plant community parameters. History effects have to be taken into account when predicting the impact of root herbivores on grasslands. PMID:23441201

  18. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants.

    PubMed

    Wei, Wei; Li, Qing-Tian; Chu, Ya-Nan; Reiter, Russel J; Yu, Xiao-Min; Zhu, Dan-Hua; Zhang, Wan-Ke; Ma, Biao; Lin, Qing; Zhang, Jin-Song; Chen, Shou-Yi

    2015-02-01

    Melatonin is a well-known agent that plays multiple roles in animals. Its possible function in plants is less clear. In the present study, we tested the effect of melatonin (N-acetyl-5-methoxytryptamine) on soybean growth and development. Coating seeds with melatonin significantly promoted soybean growth as judged from leaf size and plant height. This enhancement was also observed in soybean production and their fatty acid content. Melatonin increased pod number and seed number, but not 100-seed weight. Melatonin also improved soybean tolerance to salt and drought stresses. Transcriptome analysis revealed that salt stress inhibited expressions of genes related to binding, oxidoreductase activity/process, and secondary metabolic processes. Melatonin up-regulated expressions of the genes inhibited by salt stress, and hence alleviated the inhibitory effects of salt stress on gene expressions. Further detailed analysis of the affected pathways documents that melatonin probably achieved its promotional roles in soybean through enhancement of genes involved in cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis, and ascorbate metabolism. Our results demonstrate that melatonin has significant potential for improvement of soybean growth and seed production. Further study should uncover more about the molecular mechanisms of melatonin's function in soybeans and other crops.

  19. Planting geometry and plant population affect dryland maize grain yield and harvest index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water for dryland grain production in the Texas panhandle is limited. Agronomic practices such as reduction in plant population or change in sowing time may help increase maize (Zea mays L.) yield potential. Tiller formation under dryland conditions leads to more vegetative growth and reduced yield....

  20. Legacy effects of drought on plant growth and the soil food web.

    PubMed

    de Vries, Franciska Trijntje; Liiri, Mira E; Bjørnlund, Lisa; Setälä, Heikki M; Christensen, Søren; Bardgett, Richard D

    2012-11-01

    Soils deliver important ecosystem services, such as nutrient provision for plants and the storage of carbon (C) and nitrogen (N), which are greatly impacted by drought. Both plants and soil biota affect soil C and N availability, which might in turn affect their response to drought, offering the potential to feed back on each other's performance. In a greenhouse experiment, we compared legacy effects of repeated drought on plant growth and the soil food web in two contrasting land-use systems: extensively managed grassland, rich in C and with a fungal-based food web, and intensively managed wheat lower in C and with a bacterial-based food web. Moreover, we assessed the effect of plant presence on the recovery of the soil food web after drought. Drought legacy effects increased plant growth in both systems, and a plant strongly reduced N leaching. Fungi, bacteria, and their predators were more resilient after drought in the grassland soil than in the wheat soil. The presence of a plant strongly affected the composition of the soil food web, and alleviated the effects of drought for most trophic groups, regardless of the system. This effect was stronger for the bottom trophic levels, whose resilience was positively correlated to soil available C. Our results show that plant belowground inputs have the potential to affect the recovery of belowground communities after drought, with implications for the functions they perform, such as C and N cycling.

  1. Minesoil grading and ripping affect black walnut growth and survival

    SciTech Connect

    Josiah, S.J.

    1986-07-01

    In 1980 and 1981, the Botany Department of Southern Illinois University and Sahara Coal Company, Inc. of Harrisburg, Illinois established a series of experimental tree plantings, including black walnut, on a variety of minesoils to explore the effects of different intensities of grading on tree growth. Subsequent walnut stem and root growth were examined during 1985 on five different mine sites: unmined former agricultural land, graded minespoil, replaced (with pan scrapers) topsoil over graded spoil, ripped-graded spoil, and ungraded spoil. Soil bulk density, resistance to penetration, and spoil/soil fertility levels were also measured. The most vigorous trees were found on sites having the lowest soil bulk density and soil strength and lacking horizontal barriers to root growth - the ungraded and ripped sites. Topsoiled sites had the poorest growth and survival, and the greatest stem dieback of any site measured, probably attributable to the confinement of root growth to the upper 15 cm of friable soil above the severely compacted zone. The overall results indicate that most of the minesoil construction techniques examined in this study, which are representative of techniques commonly used in the midwestern US, cause severe minesoil compaction and do not create the proper soil conditions necessary for the survival and vigorous growth of black walnut. Ripping compacted spoil in this and other studies proved to be very effective in alleviating the negative impacts of minesoil compaction. When planning surface mine reclamation activities, ripping should be considered as a possible ameliorative technique when compaction of mined lands is unavoidable and trees are the desired vegetative cover. 4 figures.

  2. Factors affecting growth of foodborne pathogens on minimally processed apples.

    PubMed

    Alegre, Isabel; Abadias, Maribel; Anguera, Marina; Oliveira, Marcia; Viñas, Inmaculada

    2010-02-01

    Escherichia coli O157:H7, Salmonella and Listeria innocua increased by more than 2 log(10) units over a 24 h period on fresh-cut 'Golden Delicious' apple plugs stored at 25 and 20 degrees C. L. innocua reached the same final population level at 10 degrees C meanwhile E. coli and Salmonella only increased 1.3 log(10) units after 6 days. Only L. innocua was able to grow at 5 degrees C. No significant differences were observed between the growth of foodborne pathogens on fresh-cut 'Golden Delicious', 'Granny Smith' and 'Shampion' apples stored at 25 and 5 degrees C. The treatment of 'Golden Delicious' and 'Granny Smith' apple plugs with the antioxidants, ascorbic acid (2%) and NatureSeal (6%), did not affect pathogen growth. The effect of passive modified atmosphere packaging (MAP) on the growth of E. coli, Salmonella and L. innocua on 'Golden Delicious' apple slices was also tested. There were no significant differences in growth of pathogens in MAP conditions compared with air packaging of 'Golden Delicious' apple plugs, but the growth of mesophilic and psychrotrophic microorganisms was inhibited. These results highlight the importance of avoiding contamination of fresh-cut fruit with foodborne pathogens and the maintenance of the cold chain during storage until consumption.

  3. Impact of sugar factory effluent on the growth and biochemical characteristics of terrestrial and aquatic plants.

    PubMed

    Ayyasamy, P M; Yasodha, R; Rajakumar, S; Lakshmanaperumalsamy, P; Rahman, P K S M; Lee, Sanghoon

    2008-11-01

    The physico-chemical characteristics of sugar industry effluent were measured and some were found to be above those limits permissible in the Indian irrigation water standard. A pot study was initially conducted to study the effects of different concentrations (20%, 40%, 60%, 80% and 100%) of sugar factory effluent on seed germination, seedling growth and biochemical characteristics of green gram and maize. A similar study was also carried out using the aquatic plants, water hyacinth and water lettuce. The higher effluent concentrations (above 60%) were found to affect plant growth, but diluted effluent (up to 60%) favored seedling growth.

  4. Anatomical, morphological, and phytochemical effects of inoculation with plant growth- promoting rhizobacteria on peppermint (Mentha piperita).

    PubMed

    del Rosario Cappellari, Lorena; Santoro, Maricel Valeria; Reinoso, Herminda; Travaglia, Claudia; Giordano, Walter; Banchio, Erika

    2015-02-01

    Plant growth-promoting rhizobacteria (PGPR) generally exert their effects through enhancement of plant nutrient status and/or phytohormone production. The effects of PGPR on aromatic plant species are poorly known. We measured plant growth parameters, chlorophyll content, trichome density, stomatal density, and levels of secondary metabolites in peppermint (Mentha piperita) seedlings inoculated with PGPR strains Bacillus subtilis GB03, Pseudomonas fluorescens WCS417r, P. putida SJ04, or a combination of WCS417r + SJ04. The treated plants, in comparison with controls, showed increases in shoot biomass, root biomass, leaf area, node number, trichome density, and stomatal density, and marked qualitative and quantitative changes in monoterpene content. Improved knowledge of the factors that control or affect biosynthesis of secondary metabolites and monoterpene accumulation will lead to strategies for improved cultivation and productivity of aromatic plants and other agricultural crops without the use of chemical fertilizers or pesticides.

  5. Plant growth regulators enhance gold uptake in Brassica juncea.

    PubMed

    Kulkarni, Manoj G; Stirk, Wendy A; Southway, Colin; Papenfus, Heino B; Swart, Pierre A; Lux, Alexander; Vaculík, Marek; Martinka, Michal; Van Staden, Johannes

    2013-01-01

    The use of plant growth regulators is well established and they are used in many fields of plant science for enhancing growth. Brassica juncea plants were treated with 2.5, 5.0 and 7.5 microM auxin indole-3-butyric acid (IBA), which promotes rooting. The IBA-treated plants were also sprayed with 100 microM gibberellic acid (GA3) and kinetin (Kin) to increase leaf-foliage. Gold (I) chloride (AuCl) was added to the growth medium of plants to achieve required gold concentration. The solubilizing agent ammonium thiocyanate (1 g kg(-1)) (commonly used in mining industries to solubilize gold) was added to the nutrient solution after six weeks of growth and, two weeks later, plants were harvested. Plant growth regulators improved shoot and root dry biomass of B. juncea plants. Inductively Coupled Plasma Optical Emission Spectrometry analysis showed the highest Au uptake for plants treated with 5.0 microM IBA. The average recovery of Au with this treatment was significantly greater than the control treatment by 45.8 mg kg(-1) (155.7%). The other IBA concentrations (2.5 and 7.5 microM) also showed a significant increase in Au uptake compared to the control plants by 14.7 mg kg(-1) (50%) and 42.5 mg kg(-1) (144.5%) respectively. A similar trend of Au accumulation was recorded in the roots of B. juncea plants. This study conducted in solution culture suggests that plant growth regulators can play a significant role in improving phytoextraction of Au.

  6. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    PubMed

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  7. Plant growth and architectural modelling and its applications

    PubMed Central

    Guo, Yan; Fourcaud, Thierry; Jaeger, Marc; Zhang, Xiaopeng; Li, Baoguo

    2011-01-01

    Over the last decade, a growing number of scientists around the world have invested in research on plant growth and architectural modelling and applications (often abbreviated to plant modelling and applications, PMA). By combining physical and biological processes, spatially explicit models have shown their ability to help in understanding plant–environment interactions. This Special Issue on plant growth modelling presents new information within this topic, which are summarized in this preface. Research results for a variety of plant species growing in the field, in greenhouses and in natural environments are presented. Various models and simulation platforms are developed in this field of research, opening new features to a wider community of researchers and end users. New modelling technologies relating to the structure and function of plant shoots and root systems are explored from the cellular to the whole-plant and plant-community levels. PMID:21638797

  8. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments.

    PubMed

    Nadeem, Sajid Mahmood; Ahmad, Maqshoof; Zahir, Zahir Ahmad; Javaid, Arshad; Ashraf, Muhammad

    2014-01-01

    Both biotic and abiotic stresses are major constrains to agricultural production. Under stress conditions, plant growth is affected by a number of factors such as hormonal and nutritional imbalance, ion toxicity, physiological disorders, susceptibility to diseases, etc. Plant growth under stress conditions may be enhanced by the application of microbial inoculation including plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi. These microbes can promote plant growth by regulating nutritional and hormonal balance, producing plant growth regulators, solubilizing nutrients and inducing resistance against plant pathogens. In addition to their interactions with plants, these microbes also show synergistic as well as antagonistic interactions with other microbes in the soil environment. These interactions may be vital for sustainable agriculture because they mainly depend on biological processes rather than on agrochemicals to maintain plant growth and development as well as proper soil health under stress conditions. A number of research articles can be deciphered from the literature, which shows the role of rhizobacteria and mycorrhizae alone and/or in combination in enhancing plant growth under stress conditions. However, in contrast, a few review papers are available which discuss the synergistic interactions between rhizobacteria and mycorrhizae for enhancing plant growth under normal (non-stress) or stressful environments. Biological interactions between PGPR and mycorrhizal fungi are believed to cause a cumulative effect on all rhizosphere components, and these interactions are also affected by environmental factors such as soil type, nutrition, moisture and temperature. The present review comprehensively discusses recent developments on the effectiveness of PGPR and mycorrhizal fungi for enhancing plant growth under stressful environments. The key mechanisms involved in plant stress tolerance and the effectiveness of microbial inoculation for

  9. Tubular Membrane Plant-Growth Unit

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.

    1992-01-01

    Hydroponic system controls nutrient solution for growing crops in space. Pump draws nutrient solution along inside of tubular membrane in pipe from reservoir, maintaining negative pressure in pipe. Roots of plants in slot extract nutrient through membrane within pipe. Crop plants such as wheat, rice, lettuce, tomatoes, soybeans, and beans grown successfully with system.

  10. Functional approach to high-throughput plant growth analysis

    PubMed Central

    2013-01-01

    Method Taking advantage of the current rapid development in imaging systems and computer vision algorithms, we present HPGA, a high-throughput phenotyping platform for plant growth modeling and functional analysis, which produces better understanding of energy distribution in regards of the balance between growth and defense. HPGA has two components, PAE (Plant Area Estimation) and GMA (Growth Modeling and Analysis). In PAE, by taking the complex leaf overlap problem into consideration, the area of every plant is measured from top-view images in four steps. Given the abundant measurements obtained with PAE, in the second module GMA, a nonlinear growth model is applied to generate growth curves, followed by functional data analysis. Results Experimental results on model plant Arabidopsis thaliana show that, compared to an existing approach, HPGA reduces the error rate of measuring plant area by half. The application of HPGA on the cfq mutant plants under fluctuating light reveals the correlation between low photosynthetic rates and small plant area (compared to wild type), which raises a hypothesis that knocking out cfq changes the sensitivity of the energy distribution under fluctuating light conditions to repress leaf growth. Availability HPGA is available at http://www.msu.edu/~jinchen/HPGA. PMID:24565437

  11. Interplay between cell growth and cell cycle in plants.

    PubMed

    Sablowski, Robert; Carnier Dornelas, Marcelo

    2014-06-01

    The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

  12. Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris.

    PubMed

    Chatelain, Philippe G; Pintado, Manuela E; Vasconcelos, Marta W

    2014-02-01

    Chitooligosaccharides (COS) - water soluble derivatives from chitin, are an interesting group of molecules for several biological applications, for they can enter plant cells and bind negatively charged molecules. Several studies reported an enhanced plant growth and higher crop yield due to chitosan application in soil grown plants, but no studies have looked on the effect of COS application on plant mineral nutrient dynamics in hydroponically grown plants. In this study, Phaseolus vulgaris was grown in hydroponic culture and the effect of three different concentrations of COS on plant growth and mineral accumulation was assessed. There were significant changes in mineral allocations for Mo, B, Zn, P, Pb, Cd, Mn, Fe, Mg, Ca, Cu, Na, Al and K among treatments. Plant morphology was severely affected in high doses of COS, as well as lignin concentration in the stem and the leaves, but not in the roots. Chlorophyll A, B and carotenoid concentrations did not change significantly among treatments, suggesting that even at higher concentrations, COS application did not affect photosynthetic pigment accumulation. Plants grown at high COS levels had shorter shoots and roots, suggesting that COS can be phytotoxic to the plant. The present study is the first detailed report on the effect of COS application on mineral nutrition in plants, and opens the door for future studies that aim at utilizing COS in biofortification or phytoremediation programs.

  13. Chemical Growth Regulators for Guayule Plants

    NASA Technical Reports Server (NTRS)

    Dastoor, M. N.; Schubert, W. W.; Petersen, G. R.

    1982-01-01

    Test Tubes containing Guayule - tissue cultures were used in experiments to test effects of chemical-growth regulators. The shoots grew in response to addition of 2-(3,4-dichlorophenoxy)-triethylamine (triethylamine (TEA) derivative) to agar medium. Preliminary results indicate that a class of compounds that promotes growth in soil may also promote growth in a culture medium. Further experiments are needed to define the effect of the TEA derivative.

  14. A plant growth form dataset for the New World.

    PubMed

    Engemann, K; Sandel, B; Boyle, B; Enquist, B J; Jørgensen, P M; Kattge, J; McGill, B J; Morueta-Holme, N; Peet, R K; Spencer, N J; Violle, C; Wiser, S K; Svenning, J-C

    2016-11-01

    This dataset provides growth form classifications for 67,413 vascular plant species from North, Central, and South America. The data used to determine growth form were compiled from five major integrated sources and two original publications: the Botanical Information and Ecology Network (BIEN), the Plant Trait Database (TRY), the SALVIAS database, the USDA PLANTS database, Missouri Botanical Garden's Tropicos database, Wright (2010), and Boyle (1996). We defined nine plant growth forms based on woodiness (woody or non-woody), shoot structure (self-supporting or not self-supporting), and root traits (rooted in soil, not rooted in soil, parasitic or aquatic): Epiphyte, Liana, Vine, Herb, Shrub, Tree, Parasite, or Aquatic. Species with multiple growth form classifications were assigned the growth form classification agreed upon by the majority (>2/3) of sources. Species with ambiguous or otherwise not interpretable growth form assignments were excluded from the final dataset but are made available with the original data. Comparisons with independent estimates of species richness for the Western hemisphere suggest that our final dataset includes the majority of New World vascular plant species. Coverage is likely more complete for temperate than for tropical species. In addition, aquatic species are likely under-represented. Nonetheless, this dataset represents the largest compilation of plant growth forms published to date, and should contribute to new insights across a broad range of research in systematics, ecology, biogeography, conservation, and global change science.

  15. Overexpression of a glutamine synthetase gene affects growth and development in sorghum.

    PubMed

    Urriola, Jazmina; Rathore, Keerti S

    2015-06-01

    Nitrogen is a primary macronutrient in plants, and nitrogen fertilizers play a critical role in crop production and yield. In this study, we investigated the effects of overexpressing a glutamine synthetase (GS) gene on nitrogen metabolism, and plant growth and development in sorghum (Sorghum bicolor L., Moench). GS catalyzes the ATP dependent reaction between ammonia and glutamate to produce glutamine. A 1,071 bp long coding sequence of a sorghum cytosolic GS gene (Gln1) under the control of the maize ubiquitin (Ubq) promoter was introduced into sorghum immature embryos by Agrobacterium-mediated transformation. Progeny of the transformants exhibited higher accumulation of the Gln1 transcripts and up to 2.2-fold higher GS activity compared to the non-transgenic controls. When grown under optimal nitrogen conditions, these Gln1 transgenic lines showed greater tillering and up to 2.1-fold increase in shoot vegetative biomass. Interestingly, even under greenhouse conditions, we observed a seasonal component to both these parameters and the grain yield. Our results, showing that the growth and development of sorghum Gln1 transformants are also affected by N availability and other environmental factors, suggest complexity of the relationship between GS activity and plant growth and development. A better understanding of other control points and the ability to manipulate these will be needed to utilize the transgenic technology to improve nitrogen use efficiency of crop plants.

  16. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health.

    PubMed

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M; Bauer, Rudolf; Berg, Gabriele

    2013-12-20

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants' flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  17. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  18. Plant growth-promoting rhizobacteria and root system functioning.

    PubMed

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-09-17

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

  19. Experiments with Corn To Demonstrate Plant Growth and Development.

    ERIC Educational Resources Information Center

    Haldeman, Janice H.; Gray, Margarit S.

    2000-01-01

    Explores using corn seeds to demonstrate plant growth and development. This experiment allows students to formulate hypotheses, observe and record information, and practice mathematics. Presents background information, materials, procedures, and observations. (SAH)

  20. Quassinoids from Eurycoma longifolia as plant growth inhibitors.

    PubMed

    Jiwajinda, S; Santisopasri, V; Murakami, A; Hirai, N; Ohigashi, H

    2001-11-01

    Seven quassinoids including a new 12-epi-11-dehydroklaineanone were isolated from the leaves of Eurycoma longifolia (Simaroubaceae) as plant growth inhibitors or related compounds. The strongest activity was found in 14,15beta-dihydroxyklaineanone.

  1. An engineering analysis of a closed cycle plant growth module

    NASA Technical Reports Server (NTRS)

    Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.

    1986-01-01

    The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.

  2. How managed care growth affects where physicians locate their practices.

    PubMed

    Polsky, D; Escarce, J J

    2000-11-01

    Managed care has had a profound effect on physician practice. It has altered patterns in the use of physician services, and consequently, the practice and employment options available to physicians. But managed care growth has not been uniform across the United States, and has spawned wide geographic disparities in earning opportunities for generalists and specialists. This Issue Brief summarizes new information on how managed care has affected physicians' labor market decisions and the impact of managed care on the number and distribution of physicians across the country.

  3. Plant Growth Models Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  4. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space

    PubMed Central

    Hoson, Takayuki

    2014-01-01

    The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front) directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms. PMID:25370193

  5. Magnetic field effects on plant growth, development, and evolution

    PubMed Central

    Maffei, Massimo E.

    2014-01-01

    The geomagnetic field (GMF) is a natural component of our environment. Plants, which are known to sense different wavelengths of light, respond to gravity, react to touch and electrical signaling, cannot escape the effect of GMF. While phototropism, gravitropism, and tigmotropism have been thoroughly studied, the impact of GMF on plant growth and development is not well-understood. This review describes the effects of altering magnetic field (MF) conditions on plants by considering plant responses to MF values either lower or higher than those of the GMF. The possible role of GMF on plant evolution and the nature of the magnetoreceptor is also discussed. PMID:25237317

  6. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health

    PubMed Central

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M.; Bauer, Rudolf; Berg, Gabriele

    2013-01-01

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants’ flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome. PMID:24391634

  7. All about Plant Structure & Growth. Plant Life for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    How does a tiny seed sprout and grow into a towering tree? Join the kids from M.A.P.L.E as they learn about some of the incredible transformations that a plant goes through during its lifetime. In All About Plant Structure & Growth, uncover the secrets of roots, stems and leaves - structures that are vital to a plant's role as an energy…

  8. Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly Pieris rapae.

    PubMed

    Zheng, Si-Jun; Snoeren, Tjeerd A L; Hogewoning, Sander W; van Loon, Joop J A; Dicke, Marcel

    2010-05-01

    Optical plant characteristics are important cues to plant-feeding insects. In this article, we demonstrate for the first time that silencing the phytoene desaturase (PDS) gene, encoding a key enzyme in plant carotenoid biosynthesis, affects insect oviposition site selection behaviour. Virus-induced gene silencing employing tobacco rattle virus was used to knock down endogenous PDS expression in three plant species (Arabidopsis thaliana, Brassica nigra and Nicotiana benthamiana) by its heterologous gene sequence from Brassica oleracea. We investigated the consequences of the silencing of PDS on oviposition behaviour by Pieris rapae butterflies on Arabidopsis and Brassica plants; first landing of the butterflies on Arabidopsis plants (to eliminate an effect of contact cues); first landing on Arabidopsis plants enclosed in containers (to eliminate an effect of volatiles); and caterpillar growth on Arabidopsis plants. Our results show unambiguously that P. rapae has an innate ability to visually discriminate between green and variegated green-whitish plants. Caterpillar growth was significantly lower on PDS-silenced than on empty vector control plants. This study presents the first analysis of PDS function in the interaction with an herbivorous insect. We conclude that virus-induced gene silencing is a powerful tool for investigating insect-plant interactions in model and nonmodel plants.

  9. Plant growth regulation of Bt-cotton through Bacillus species.

    PubMed

    Pindi, Pavan Kumar; Sultana, Tasleem; Vootla, Praveen Kumar

    2014-06-01

    Deccan plateau in India periodically experiences droughts due to irregular rain fall and the soil in many parts of the region is considered to be poor for farming. Plant growth promoting rhizobacteria are originally defined as root-colonizing bacteria, i.e., Bacillus that cause either plant growth promotion or biological control of plant diseases. The study aims at the isolation of novel Bacillus species and to assess the biotechnological potential of the novel species as a biofertilizer, with respect to their plant growth promoting properties as efficient phosphate-solubilizing bacteria. Seven different strains of Bacillus were isolated from cotton rhizosphere soil near boys' hostel of Palamuru University which belongs to Deccan plateau. Among seven isolated strains, Bacillus strain-7 has shown maximum support for good growth of eight cotton cultivars. This bacterial species is named Bacillus sp. PU-7 based on the phenotypic and phylogenetic analysis. Among eight cotton cultivars, Mahyco has shown high levels of IAA, proteins, chlorophyll, sugars and low level of proline. Efficacy of novel Bacillus sp. PU-7 with Mahyco cultivar has been checked experimentally at field level in four different cotton grown agricultural soils. The strains supported plant growth in almost all the cases, especially in the deep black soil, with a clear evidence of maximum plant growth by increased levels of phytohormone production and biochemical analysis, followed by shallow black soil. Hence, it is inferred that the novel isolate can be used as bioinoculant in the cotton fields.

  10. Plant growth promotion by Bacillus megaterium involves cytokinin signaling

    PubMed Central

    Ortíz-Castro, Randy; Valencia-Cantero, Eduardo

    2008-01-01

    Accumulating evidence indicates that plant growth promoting rhizobacteria (PGPR) influence plant growth and development by the production of phytohormones such as auxins, gibberellins, and cytokinins. Little is known on the genetic basis and signal transduction components that mediate the beneficial effects of PGPRs in plants. We recently reported the identification of a Bacillus megaterium strain that promoted growth of A. thaliana and P. vulgaris seedlings. In this addendum, the role of cytokinin signaling in mediating the plant responses to bacterial inoculation was investigated using A. thaliana mutants lacking one, two or three of the putative cytokinin receptors CRE1, AHK2 and AHK3, and RPN12 a gene involved in cytokinin signaling. We show that plant growth promotion by B. megaterium is reduced in AHK2-2 single and double mutant combinations and in RPN12. Furthermore, the triple cytokinin-receptor CRE1-12/AHK2-2/AHK3-3 knockout was insensitive to inoculation in terms of growth promotion and root developmental responses. Our results indicate that cytokinin receptors play a complimentary role in plant growth promotion by B. megaterium. PMID:19704649

  11. Multiscale Models in the Biomechanics of Plant Growth

    PubMed Central

    Fozard, John A.

    2015-01-01

    Plant growth occurs through the coordinated expansion of tightly adherent cells, driven by regulated softening of cell walls. It is an intrinsically multiscale process, with the integrated properties of multiple cell walls shaping the whole tissue. Multiscale models encode physical relationships to bring new understanding to plant physiology and development. PMID:25729061

  12. Plant growth with new fluorescent lamps : II. Growth and reproduction of mature bean plants and dwarf marigold plants.

    PubMed

    Thomas, A S; Dunn, S

    1966-06-01

    Bean and marigold plants were grown to maturity under several kinds of fluorescent lamps to evaluate the effects of spectral differences on development and reproduction. Six kinds of lamps were tested including five lamps that were used in closely related experiments on tomato seedling growth (THOMAS and DUNN, 1967). Evaluation was by fresh- and dry-weight yields of immature and mature pods, and of vegetative tops of plants for bean; and by flowering and fresh-and dry-weight yields for marigold.Bean plants grown under two experimental lamps, Com I and IR III produced significantly higher fresh- and dry-weight yields of both mature and total pods than under Warm-white lamps. This effect could be attributed largely to the considerable energy emitted by the experimental lamps in the red and far-red, as compared to a larger emission in the green and blue for the Warm-white lamps. The differences in the yields for immature pods and vegetative portions of the mature tops were not significant.In a comparison of the effects of three experimental lamps with those of three commercial lamps on growth response of bean plants, the yields were in general higher for the experimental lamps, except for immature pods. The yields of vegetative tops were significantly greater for the 78/22 lamp over the yields for all other lamps. The larger proportion of red and far-red light emitted by the experimental lamps is again the probable cause of the higher yields with these lamps.Two sets of experiments on growth and flowering of marigold under various experimental and commercial lamps were largely inconclusive although there was some indication of beneficial effects by the experimental lamps.In general, the results with bean agree with those for tomato (THOMAS and DUNN, 1967), in that best growth was obtained with a lamp high in red light emission, a moderate amount in the far-red, and very little in the blue part of the spectrum.

  13. Shoot Turgor Does Not Limit Shoot Growth of NaCl-Affected Wheat and Barley 1

    PubMed Central

    Termaat, Annie; Passioura, John B.; Munns, Rana

    1985-01-01

    The aim of this work was to test the hypothesis that the reduced growth rate of wheat and barley that results when the roots are exposed to NaCl is due to inadequate turgor in the expanding cells of the leaves. The hypothesis was tested by exposing plants to 100 millimolar NaCl (which reduced their growth rates by about 20%), growing them for 7 to 10 days with their roots in pressure chambers, and applying sufficient pneumatic pressure in the chambers to offset the osmotic pressure of the NaCl, namely, 0.48 megapascals. The results showed that applying the pressure had no sustained effect (relative to unpressurized controls) on growth rates, transpiration rates, or osmotic pressures of the cell sap, in either the fully expanded or currently expanding leaf tissue, of both wheat and barley. The results indicate that the applied pressure correspondingly increased turgor in the shoot although this was not directly measured. We conclude that shoot turgor alone was not regulating the growth of these NaCl-affected plants, and, after discussing other possible influences, argue that a message arising in the roots may be regulating the growth of the shoot. PMID:16664152

  14. IMPLICATIONS OF CHILD GROWTH AND DEVELOPMENT FOR SCHOOL PLANT DESIGN.

    ERIC Educational Resources Information Center

    CHERRY, RALPH W.

    IT IS THE BELIEF OF SOME THAT SCHOOL PLANTS ARE FOR CHILDREN. TO SERVE AS A STUDY GUIDE FOR IMPLEMENTATION OF THIS BELIEF, THIS PAPER PRESENTS PRINCIPLES, NEEDS OF CHILDREN, AND A LIST OF SUGGESTED READING. BASIC PRINCIPLES DISCUSSED ARE--(1) DEVELOPMENT IS A PRODUCT OF TWO FACTORS--LEARNING AND GROWTH, (2) HUMAN GROWTH AND DEVELOPMENT FOLLOW AN…

  15. Do submerged aquatic plants influence their periphyton to enhance the growth and reproduction of invertebrate mutualists?

    PubMed

    Jones, J I; Young, J O; Haynes, G M; Moss, B; Eaton, J W; Hardwick, K J

    1999-08-01

    It has been suggested that submerged aquatic plants can influence the nutritional quality of the periphyton which grows on their surfaces, making it more nutritious for grazing invertebrates, particularly snails. In return, these grazers might preferentially feed on the periphyton and clear the plants of a potential competitor, with the plants and grazers both gaining from this mutualistic relationship. A highly replicated experiment was conducted, in which the nature of the plant (isoetid and elodeid types compared with similar-shaped inert substrata), the nutrient loading, and the influence of periphyton grazers (the bladder snail, Physa fontinalis) of similar size and history were controlled. Plant growth and survival significantly increased in the presence of the periphyton grazer. Whilst the presence of the grazers had the largest influence on periphyton abundance, nutrient availability and plant type also had effects. Plant type had little influence on the nutritional quality of the periphyton measured as carbohydrate, protein and C:N. Effects of treatment on snail growth, and the timing and extent of snail reproduction disappeared when they were compared with the quantity of periphyton available. There was no evidence of enhanced grazer success in the presence of the live plants compared with inert substrata. Although submerged plants affect the growth and reproduction of the grazers which feed on their surfaces, through differences in the amount of periphyton which grows there, we found no evidence that they manipulate the periphyton to encourage such grazers.

  16. Effects of glycoalkaloids from Solanum plants on cucumber root growth.

    PubMed

    Sun, Fang; Li, Shengyu; He, Dajun; Cao, Gang; Ni, Xiuzhen; Tai, Guihua; Zhou, Yifa; Wang, Deli

    2010-09-01

    The phytotoxic effect of four glycoalkaloids and two 6-O-sulfated glycoalkaloid derivatives were evaluated by testing their inhibition of cucumber root growth. The bioassays were performed using both compounds singly and in equimolar mixtures, respectively. Cucumber root growth was reduced by chaconine (C), solanine (S), solamargine (SM) and solasonine (SS) with IC(50) values of 260 (C), 380 (S), 530 (SM), and 610 microM (SS). The inhibitory effect was concentration-dependent. 6-O-sulfated chaconine and 6-O-sulfated solamargine had no inhibitory effects, which indicated that the carbohydrate moieties play an important role in inhibiting cucumber root growth. The equimolar mixtures of paired glycoalkaloids, both chaconine/solanine and solamargine/solasonine, produced synergistic effects on inhibition of cucumber root growth. By contrast, mixtures of unpaired glycoalkaloids from different plants had no obviously synergistic effects. The growth inhibited plant roots lacked hairs, which implied that inhibition was perhaps at the level of root hair growth.

  17. Stiff Mutant Genes of Phycomyces Affect Turgor Pressure and Wall Mechanical Properties to Regulate Elongation Growth Rate

    PubMed Central

    Ortega, Joseph K. E.; Munoz, Cindy M.; Blakley, Scott E.; Truong, Jason T.; Ortega, Elena L.

    2012-01-01

    Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses) and differential elongation growth rate (tropic responses). “Stiff” mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least five genes; madD, E, F, G, and J. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the “growth zone.” Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type (WT). A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (−) and C216 geo- (−). Experimental results demonstrate that turgor pressure is larger but irreversible wall deformation rates within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to WT. These findings can explain the diminished tropic responses of the stiff mutant sporangiophores. It is speculated that the defective genes affect the amount of wall-building material delivered to the inner cell

  18. Stiff mutant genes of phycomyces affect turgor pressure and wall mechanical properties to regulate elongation growth rate.

    PubMed

    Ortega, Joseph K E; Munoz, Cindy M; Blakley, Scott E; Truong, Jason T; Ortega, Elena L

    2012-01-01

    Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses) and differential elongation growth rate (tropic responses). "Stiff" mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least five genes; madD, E, F, G, and J. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the "growth zone." Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type (WT). A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (-) and C216 geo- (-). Experimental results demonstrate that turgor pressure is larger but irreversible wall deformation rates within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to WT. These findings can explain the diminished tropic responses of the stiff mutant sporangiophores. It is speculated that the defective genes affect the amount of wall-building material delivered to the inner cell wall.

  19. Elevated atmospheric carbon dioxide concentration affects interactions between Spodoptera exigua (Lepidoptera: Noctuidae) larvae and two host plant species outdoors

    SciTech Connect

    Caulfield, F.; Bunce, J.A. )

    1994-08-01

    Beet armyworm, Spodoptera exigua (Huebner), larvae were placed on sugarbeet (Beta vulgaris L.) and pigweed (Amaranthus hybridus L.) plants in outdoor chambers in which the plants were growing at either the ambient ([approximately] 350 [mu]l liter[sup [minus]1]) or ambient plus 350 [mu]l liter[sup [minus]1] ([approximately] 700 [mu]l liter[sup [minus]1]) carbon dioxide concentration. A series of experiments was performed to determine if larvae reduced plant growth differently at the two carbon dioxide concentrations in either species and if the insect growth or survival differed with carbon dioxide concentration. Leaf nitrogen, water, starch, and soluble carbohydrate contents were measured to assess carbon dioxide concentration effects on leaf quality. Insect feeding significantly reduced plant growth in sugarbeet plants at 350 [mu]l liter[sup [minus]1] but not at 700 [mu]l liter[sup [minus]1] nor in pigweed at either carbon dioxide concentration. Larval survival was greater on sugarbeet plants at the elevated carbon dioxide concentration. Increased survival occurred only if the insects were at the elevated carbon dioxide concentration and consumed leaf material grown at the elevated concentration. Leaf quality was only marginally affected by growth at elevated carbon dioxide concentration in these experiments. The results indicate that in designing experiments to predict effects of elevated atmospheric carbon dioxide concentrations on plant-insect interactions, both plants and insects should be exposed to the experimental carbon dioxide concentrations, as well as to as realistic environmental conditions as possible.

  20. Salicylic acid negatively affects the response to salt stress in pea plants.

    PubMed

    Barba-Espín, G; Clemente-Moreno, M J; Alvarez, S; García-Legaz, M F; Hernández, J A; Díaz-Vivancos, P

    2011-11-01

    We studied the effect of salicylic acid (SA) treatment on the response of pea plants to salinity. Sodium chloride (NaCl)-induced damage to leaves was increased by SA, which was correlated with a reduction in plant growth. The content of reduced ascorbate and glutathione in leaves of salt-treated plants increased in response to SA, although accumulation of the respective oxidised forms occurred. An increase in hydrogen peroxide also occurred in leaves of salt-exposed plants treated with SA. In the absence of NaCl, SA increased ascorbate peroxidase (APX; 100 μm) and glutathione-S transferase (GST; 50 μm) activities and increased catalase (CAT) activity in a concentration-dependent manner. Salinity decreased glutathione reductase (GR) activity, but increased GST and CAT activity. In salt-stressed plants, SA also produced changes in antioxidative enzymes: 100 μm SA decreased APX but increased GST. Finally, a concentration-dependent increase in superoxide dismutase (SOD) activity was induced by SA treatment in salt-stressed plants. Induction of PR-1b was observed in NaCl-stressed plants treated with SA. The treatment with SA, as well as the interaction between salinity and SA treatment, had a significant effect on PsMAPK3 expression. The expression of PsMAPK3 was not altered by 70 mm NaCl, but was statistically higher in the absence than in the presence of SA. Overall, the results show that SA treatment negatively affected the response of pea plants to NaCl, and this response correlated with an imbalance in antioxidant metabolism. The data also show that SA treatment could enhance the resistance of salt-stressed plants to possible opportunistic pathogen attack, as suggested by increased PR-1b gene expression.

  1. Material and methods to increase plant growth and yield

    DOEpatents

    Kirst, Matias

    2015-09-15

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  2. Effects of lighting and air movement on temperatures in reproductive organs of plants in a closed plant growth facility

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.

    Temperature increases in plant reproductive organs such as anthers and stigmas could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions without adequately controlled environments in closed plant growth facilities. There is a possibility such a situation could occur in Bioregenerative Life Support Systems under microgravity conditions in space because there will be little natural convective or thermal mixing. This study was conducted to determine the temperature of the plant reproductive organs as affected by illumination and air movement under normal gravitational forces on the earth and to make an estimation of the temperature increase in reproductive organs in closed plant growth facilities under microgravity in space. Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at air temperatures of 10 11 °C. Compared to the air temperature, temperatures of petals, stigmas and anthers of strawberry increased by 24, 22 and 14 °C, respectively, after 5 min of lighting at an irradiance of 160 W m-2 from incandescent lamps. Temperatures of reproductive organs and leaves of strawberry were significantly higher than those of rice. The temperatures of petals, stigmas, anthers and leaves of strawberry decreased by 13, 12, 13 and 14 °C, respectively, when the air velocity was increased from 0.1 to 1.0 ms-1. These results show that air movement is necessary to reduce the temperatures of plant reproductive organs in plant growth facilities.

  3. Characteristics of coal mine overburden important to plant growth

    SciTech Connect

    McFee, W.W.; Byrnes, W.R.; Stockton, J.G.

    1981-09-01

    This investigation was conducted to determine physical and chemical properties of mineland overburden, to evaluate plant growth in these materials, and to identify properties of overburden materials before mining that may serve as predictors of potential plant growth. Eighteen overburden materials from five surface coal mines in the Illinois coal basin of southwestern Indiana were sampled and analyzed for 20 physical and chemical properties. Twelve were unconsolidated materials, including A and B horizons, lacustrine sediments, and glacial tills, and six were rock strata that break and weather easily. Growth potential for overburden materials, with and without sewage sludge and fertilizer amendments, was evaluated in greenhouse pot culture using alfalfa, wheat, and white pine. Oats yield, and survival and growth of Virginia pine and yellow-poplar were evaluated for 10 materials in outdoor containers. Regression analysis of plant growth against chemical and physical properties of the overburden materials did not reveal properties that could be consistently used in a formula approach to predicting plant growth potential of the materials. Electrical conductivity of the material extract and water storage capacity was most frequently significantly related to growth. High plant tissue levels of B, Fe, Mn, and Al suggested toxicity problems on some materials. The general ranking of overburden materials evaluated for plant growth potential was lacustrine sediment greater than or equal to A horizons > B horizons = glacial tills greater than or equal to brown shale > sandstone > gray shale > black fissile shales; however, physical properties unfavorable to extraction and replacement of lacustrine material may limit its use under field conditions. Addition of sewage sludge resulted in vastly improved growth of wheat, and to a lesser extent alfalfa, on most materials in the greenhouse.

  4. Bioassay of Plant Growth Regulator Activity on Aquatic Plants

    DTIC Science & Technology

    1990-07-01

    weed submersed aquatic plants, hydrilla (Hydrilla verticillata Royle) and Eurasian watermilfoil (11yriophyllum splcatum L .). The gibberellin synthesis...Programs, Mr. J. L . Decell, Manager. The HQUSACE Technical Monitor for the APCRP was Mr. James W. Wolcott. The principal investigator for this work was...supervision of Dr. John Harrison, Chief, EL, and Mr. Donald L . Robey, Chief, ERSD, and under the direct supervision of Dr. Thomas L . Hart, Chief

  5. Effects of road runoff on plant growth and heavy metal content

    NASA Astrophysics Data System (ADS)

    Ponce, J.

    2013-12-01

    Previous studies have shown road runoff to be a source of heavy-metal contamination in ground water. My hypothesis was that this pollution would affect the plants grown nearby and its product. 30 Spinach seedlings were grown under four watering conditions: tap-water control, and three concentrations of 'artificial road runoff,' prepared with soil collected from the sides of highways. Plant weights decreased with increasing concentrations of roadside soil in the water used to grow the plants. Also, iron, cadmium, and lead concentrations seem to increase in plant tissues with more concentrated road runoff. The conclusion is that the irrigation canals do have heavy metals and that affects the growth and the plant itself and this my effect us as well.

  6. Plant reproduction: GABA gradient, guidance and growth.

    PubMed

    Ma, Hong

    2003-10-28

    How a pollen tube manages to navigate through the female tissues during plant reproduction has been a mystery. A new analysis of an Arabidopsis mutant has provided the strongest evidence yet that a GABA gradient may be a critical signal for correct targeting of the pollen tube.

  7. Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings

    SciTech Connect

    Grandlic, C.J.; Mendez, M.O.; Chorover, J.; Machado, B.; Maier, R.M.

    2009-05-19

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal content tailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  8. Design and Construction of an Inexpensive Homemade Plant Growth Chamber

    PubMed Central

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K.; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140–250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  9. Design and construction of an inexpensive homemade plant growth chamber.

    PubMed

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  10. Manufactured soils for plant growth at a lunar base

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    1989-01-01

    Advantages and disadvantages of synthetic soils are discussed. It is pointed out that synthetic soils may provide the proper physical and chemical properties necessary to maximize plant growth, such as a toxic-free composition and cation exchange capacities. The importance of nutrient retention, aeration, moisture retention, and mechanical support as qualities for synthetic soils are stressed. Zeoponics, or the cultivation of plants in zeolite substrates that both contain essential plant-growth cations on their exchange sites and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth ions, is discussed. It is suggested that synthetic zeolites at lunar bases could provide adsorption media for separation of various gases, act as catalysts and as molecular sieves, and serve as cation exchangers in sewage-effluent treatment, radioactive-waste disposal, and pollution control. A flow chart of a potential zeoponics system illustrates this process.

  11. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates

    PubMed Central

    Oteino, Nicholas; Lally, Richard D.; Kiwanuka, Samuel; Lloyd, Andrew; Ryan, David; Germaine, Kieran J.; Dowling, David N.

    2015-01-01

    The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilization. The study presented here describes the ability of endophytic bacteria to produce gluconic acid (GA), solubilize insoluble phosphate, and stimulate the growth of Pisum sativum L. plants. This study also describes the genetic systems within three of these endophyte strains thought to be responsible for their effective phosphate solubilizing abilities. The results showed that many of the endophytic strains produced GA (14–169 mM) and have moderate to high phosphate solubilization capacities (~400–1300 mg L−1). When inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, the endophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects. PMID:26257721

  12. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    PubMed

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  13. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure.

    PubMed

    Niu, C; Gilbert, E S

    2004-12-01

    The specific biofilm formation (SBF) assay, a technique based on crystal violet staining, was developed to locate plant essential oils and their components that affect biofilm formation. SBF analysis determined that cinnamon, cassia, and citronella oils differentially affected growth-normalized biofilm formation by Escherichia coli. Examination of the corresponding essential oil principal components by the SBF assay revealed that cinnamaldehyde decreased biofilm formation compared to biofilms grown in Luria-Bertani broth, eugenol did not result in a change, and citronellol increased the SBF. To evaluate these results, two microscopy-based assays were employed. First, confocal laser scanning microscopy (CLSM) was used to examine E. coli biofilms cultivated in flow cells, which were quantitatively analyzed by COMSTAT, an image analysis program. The overall trend for five parameters that characterize biofilm development corroborated the findings of the SBF assay. Second, the results of an assay measuring growth-normalized adhesion by direct microscopy concurred with the results of the SBF assay and CLSM imaging. Viability staining indicated that there was reduced toxicity of the essential oil components to cells in biofilms compared to the toxicity to planktonic cells but revealed morphological damage to E. coli after cinnamaldehyde exposure. Cinnamaldehyde also inhibited the swimming motility of E. coli. SBF analysis of three Pseudomonas species exposed to cinnamaldehyde, eugenol, or citronellol revealed diverse responses. The SBF assay could be useful as an initial step for finding plant essential oils and their components that affect biofilm formation and structure.

  14. Influence of Merosesquiterpenoids from Marine Sponges on Seedling Root Growth of Agricultural Plants.

    PubMed

    Chaikina, Elena L; Utkina, Natalia K; Anisimov, Mikhail M

    2016-01-01

    The impact of the merosesquiterpenoids avarol (1), avarone (2), 18-methylaminoavarone (3), melemeleone A (4), isospongiaquinone (5), ilimaquinone (6), and smenoquinone (7), isolated from marine sponges of the Dictyoceratida order, was studied on the root growth of seedlings of buckwheat (Fagopyrumesculentum Moench), wheat (Triticumaestivum L.), soy (Glycine max (L.) Merr.), and barley (Hordeumvulgare L.). Compounds 2and 6 were effective for the root growth of wheat seedlings, compound 3 stimulated the root growth of seedlings of buckwheat and soy, compound 4 affected the roots of barley seedlings, and compound 5 stimulated the root growth of seedlings of buckwheat and barley. Compounds 1 and 7 showed no activity on the root growth of the seedlings of any of the studied plants. The stimulatory effect depends on the chemical structure of the compounds and the type of crop plant.

  15. Temperature extremes: Effect on plant growth and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature is a primary factor affecting the rate of plant development. Warmer temperatures expected with climate change and the potential for more extreme temperature events will further impact plant productivity. Pollination is one of the most sensitive phenological stages to temperature extremes...

  16. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems.

  17. Microsensor Technologies for Plant Growth System Monitoring

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo

    2004-01-01

    This document covered the following: a) demonstration of feasibility of microsensor for tube and particulate growth systems; b) Dissolved oxygen; c)Wetness; d) Flexible microfluidic substrate with microfluidic channels and microsensor arrays; e)Dynamic root zone control/monitoring in microgravity; f)Rapid prototyping of phytoremediation; and g) A new tool for root physiology and pathology.

  18. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  19. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.).

    PubMed

    van Overbeek, Leo; van Elsas, Jan Dirk

    2008-05-01

    The effects of genotype, plant growth and experimental factors (soil and year) on potato-associated bacterial communities were studied. Cultivars Achirana Inta, Désirée, Merkur and transgenic Désirée line DL12 (containing T4 lysozyme gene) were assessed in two field experiments. Cross-comparisons between both experiments were made using Désirée plants. Culture-dependent and -independent approaches were used to demonstrate effects on total bacterial, actinobacterial and Pseudomonas communities in bulk and rhizosphere soils and endospheres. PCR-denaturing gradient gel electrophoresis fingerprints prepared with group-specific primers were analyzed using multivariate analyses and revealed that bacterial communities in Achirana Inta plants differed most from those of Désirée and Merkur. No significant effects were found between Désirée and DL12 lines. Plant growth stage strongly affected different plant-associated communities in both experiments. To investigate the effect of plant-associated communities on plant health, 800 isolates from rhizospheres and endospheres at the flowering stage were tested for suppression of Ralstonia solanacearum biovar 2 and/or Rhizoctonia solani AG3. A group of isolates closely resembling Lysobacter sp. dominated in young plants. Its prevalence was affected by plant growth stage and experiment rather than by plant genotype. It was concluded that plant growth stage overwhelmed any effect of plant genotype on the bacterial communities associated with potato.

  20. Do plastic particles affect microalgal photosynthesis and growth?

    PubMed

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size.

  1. Root foraging influences plant growth responses to earthworm foraging.

    PubMed

    Cameron, Erin K; Cahill, James F; Bayne, Erin M

    2014-01-01

    Interactions among the foraging behaviours of co-occurring animal species can impact population and community dynamics; the consequences of interactions between plant and animal foraging behaviours have received less attention. In North American forests, invasions by European earthworms have led to substantial changes in plant community composition. Changes in leaf litter have been identified as a critical indirect mechanism driving earthworm impacts on plants. However, there has been limited examination of the direct effects of earthworm burrowing on plant growth. Here we show a novel second pathway exists, whereby earthworms (Lumbricus terrestris L.) impact plant root foraging. In a mini-rhizotron experiment, roots occurred more frequently in burrows and soil cracks than in the soil matrix. The roots of Achillea millefolium L. preferentially occupied earthworm burrows, where nutrient availability was presumably higher than in cracks due to earthworm excreta. In contrast, the roots of Campanula rotundifolia L. were less likely to occur in burrows. This shift in root behaviour was associated with a 30% decline in the overall biomass of C. rotundifolia when earthworms were present. Our results indicate earthworm impacts on plant foraging can occur indirectly via physical and chemical changes to the soil and directly via root consumption or abrasion and thus may be one factor influencing plant growth and community change following earthworm invasion. More generally, this work demonstrates the potential for interactions to occur between the foraging behaviours of plants and soil animals and emphasizes the importance of integrating behavioural understanding in foraging studies involving plants.

  2. Family poverty affects the rate of human infant brain growth.

    PubMed

    Hanson, Jamie L; Hair, Nicole; Shen, Dinggang G; Shi, Feng; Gilmore, John H; Wolfe, Barbara L; Pollak, Seth D

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems.

  3. Family Poverty Affects the Rate of Human Infant Brain Growth

    PubMed Central

    Hanson, Jamie L.; Hair, Nicole; Shen, Dinggang G.; Shi, Feng; Gilmore, John H.; Wolfe, Barbara L.; Pollak, Seth D.

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems. PMID:24349025

  4. Analysing growth and development of plants jointly using developmental growth stages

    PubMed Central

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Background and Aims Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Methods Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Key Results Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Conclusions Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. PMID:25452250

  5. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  6. Plant Pathogen-Induced Water-Soaking Promotes Salmonella enterica Growth on Tomato Leaves

    PubMed Central

    Potnis, Neha; Colee, James; Jones, Jeffrey B.

    2015-01-01

    Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants. PMID:26386057

  7. Jasmonic acid affects plant morphology and calcium-dependent protein kinase expression and activity in Solanum tuberosum.

    PubMed

    Ulloa, Rita M; Raíces, Marcela; MacIntosh, Gustavo C; Maldonado, Sara; Téllez-Iñón, María T

    2002-07-01

    The effect of jasmonic acid (JA) on plant growth and on calcium-dependent protein kinase (CDPK) activity and expression was studied in non-photoperiodic potato plants, Solanum tuberosum L. var. Spunta, grown in vitro. Stem cuttings were grown for 45 days (long treatment, LT) in MS medium with increasing concentrations of JA. For short treatments (ST) adult plants grown in MS were transferred for 1, 4 and 20 h to JA containing media. During the LT, low concentrations of JA promoted cell expansion and shoot elongation while higher concentrations caused growth inhibition. Under these conditions, treated plants showed root shortening and tuber formation was not induced. Morphological and histochemical studies using light microscopy and TEM analysis of leaves from treated plants revealed that JA also affected subcellular organelles of mesophyll cells. Peroxisomes increased in size and number, and an autophagic process was triggered in response to high concentrations of the hormone. CDPK activity, determined in crude extracts of treated plants (LT), was inhibited (up to 80%). Plant growth and CDPK inhibition were reverted upon transfer of the plants to hormone-free medium. Soluble CDPK activity decreased in response to JA short treatment. Concomitantly, a decline in the steady state levels of StCDPK2 mRNA, a potato CDPK isoform that is expressed in leaves, was observed. These data suggest that the phytohormone down-regulated the expression and activity of the kinase.

  8. Gravity related features of plant growth behavior studied with rotating machines.

    PubMed

    Brown, A H

    1996-04-01

    Research in plant physiology consists mostly of studies on plant growth because almost everything a plant does is done by growing. Most aspects of plant growth are strongly influenced by the earth's gravity vector. Research on those phenomena address scientific questions specifically about how plants use gravity to guide their growth processes.

  9. Gravity related features of plant growth behavior studied with rotating machines

    NASA Technical Reports Server (NTRS)

    Brown, A. H.

    1996-01-01

    Research in plant physiology consists mostly of studies on plant growth because almost everything a plant does is done by growing. Most aspects of plant growth are strongly influenced by the earth's gravity vector. Research on those phenomena address scientific questions specifically about how plants use gravity to guide their growth processes.

  10. Symbiotic regulation of plant growth, development and reproduction

    USGS Publications Warehouse

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  11. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L.

    PubMed

    Singh, Namrata; Marwa, Naina; Mishra, Shashank K; Mishra, Jyoti; Verma, Praveen C; Rathaur, Sushma; Singh, Nandita

    2016-03-01

    Arsenic (As), a toxic metalloid adversely affects plant growth in polluted areas. In the present study, we investigated the possibility of improving phytostablization of arsenic through application of new isolated strain Brevundimonas diminuta (NBRI012) in rice plant [Oryza sativa (L.) Var. Sarju 52] at two different concentrations [10ppm (low toxic) and 50ppm (high toxic)] of As. The plant growth promoting traits of bacterial strains revealed the inherent ability of siderophores, phosphate solubilisation, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production which may be associated with increased biomass, chlorophyll and MDA content of rice and thereby promoting plant growth. The study also revealed the As accumulation property of NBRI012 strain which could play an important role in As removal from contaminated soil. Furthermore, NBRI012 inoculation significantly restored the hampered root epidermal and cortical cell growth of rice plant and root hair elimination. Altogether our study highlights the multifarious role of B. diminuta in mediating stress tolerance and modulating translocation of As in edible part of rice plant.

  12. Herbivory Differentially Affects Plant Fitness in Three Populations of the Perennial Herb Lythrum salicaria along a Latitudinal Gradient.

    PubMed

    Lehndal, Lina; Ågren, Jon

    2015-01-01

    Herbivory can negatively and selectively affect plant fitness by reducing growth, survival and reproductive output, thereby influencing plant population dynamics and evolution. Latitudinal variation in intensity of herbivory is common, but the extent to which it translates into corresponding variation in effects on plant performance is still poorly known. We tested the hypothesis that variation in the fitness-consequences of herbivory mirror differences in intensity of herbivory among three natural populations of the perennial herb Lythrum salicaria along a latitudinal gradient from southern to northernmost Sweden. We documented intensity of herbivory and examined its effect on survival, growth and reproductive output over two years by experimentally removing herbivores with insecticide. The intensity of herbivory and the effects of herbivory on plant fitness were strongest in the southern population, intermediate in the central population and weakest in the northern population. The mean proportion of the leaf area removed ranged from 11% in the southern to 3% in the northern population. Herbivore removal increased plant height 1.5-fold in the southern and 1.2-fold in the central population, the proportion plants flowering 4-fold in the southern and 2-fold in the central population, and seed production per flower 1.6-fold in the southern and 1.2-fold in the central population, but did not affect plant fitness in the northern population. Herbivore removal thus affected the relative fecundity of plants in the three populations: In the control, seed output per plant was 8.6 times higher in the northern population compared to the southern population, whereas after herbivore removal it was 2.5 times higher in the southern population. The results demonstrate that native herbivores may strongly affect the demographic structure of L. salicaria populations and thereby shape geographic patterns of seed production. They further suggest that the strength of herbivore

  13. Time interval between cover crop termination and planting influences corn seedling disease, plant growth, and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...

  14. CLIMATE CONDITIONS AFFECTING THE WITHIN-PLANT SPREAD OF BROAD MITES ON AZALEA.

    PubMed

    Mechant, E; Pauwels, E; Gobin, B

    2014-01-01

    The broad mite Polyphagotarsonemus latus (Banks) is considered a major pest in potted azalea, Flanders' flagship ornamental crop of Rhododendron simsii hybrids. In addition to severe economic damage, the broad mite is dreaded for its increasing resistance to acaricides. Due to restrictions in the use of broad spectrum acaricides, Belgian azalea growers are left with only three compounds, belonging to two mode of action groups and restricted in their number of applications, for broad mite control: abamectin, milbemectin and pyrethrin. Although P. latus can be controlled with predatory mites, the high cost of this system makes it (not yet) feasible for integration into standard azalea pest management systems. Hence, a maximum efficacy of treatments with available compounds is essential. Because abamectin, milbemectin and pyrethrin are contact acaricides with limited trans laminar flow, only broad mites located on shoot tips of azalea plants will be controlled after spraying. Consequently, the efficacy of chemical treatments is influenced by the location and spread of P. latus on the plant. Unfortunately, little is known on broad mites' within-plant spread or how it is affected by climatic conditions like temperature and relative humidity. Therefore, experiments were set up to verify whether climate conditions have an effect on the location and migration of broad mites on azalea. Broad mite infected azalea plants were placed in standard growth chambers under different temperature (T:2.5-25°C) and relative humidity (RH:55-80%) treatments. Within-plant spread was determined by counting mites on the shoot tips and inner leaves of azalea plants. Results indicate that temperature and relative humidity have no significant effect on the within-plant spread of P. latus. To formulate recommendations for optimal spray conditions to maximize the efficacy of broad mite control with acaricides, further experiments on the effect of light intensity and rain are scheduled.

  15. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  16. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  17. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  18. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  19. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  20. Use of lunar regolith as a substrate for plant growth

    NASA Astrophysics Data System (ADS)

    Ming, D. W.; Henninger, D. L.

    1994-11-01

    Regenerative Life Support Systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration missions to the Moon and Mars. It may be possible to supplement some of the materials needed for a lunar RLSS from resources on the Moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (i) soils or solid-support substrates for plant growth, (ii) sources for extraction of essential, plant-growth nutrients, (iii) substrates for microbial populations in the degradation of wastes, (iv) sources of O2 and H2, which may be used to manufacture water, (v) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (vi) shielding materials surrounding the outpost structure to protect humans, plants, and microorganism from harmful radiation. Use of indigenous lunar regolith as a terrestrial-like soil for plant growth could offer a solid support substrate, buffering capacity, nutrient source/storage/retention capabilities, and should be relatively easy to maintain. The lunar regolith could, with a suitable microbial population, play a role in waste renovation; much like terrestrial waste application directly on soils. Issues associated with potentially toxic elements, pH, nutrient availability, air and fluid movement parameters, and cation exchange capacity of lunar regolith need to be addressed before lunar materials can be used effectively as soils for plant growth.

  1. Use of lunar regolith as a substrate for plant growth

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Henninger, D. L.

    1994-01-01

    Regenerative Life Support Systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration missions to the Moon and Mars. It may be possible to supplement some of the materials needed for a lunar RLSS from resources on the Moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (1) soils or solid-support substrates for plant growth, (2) sources for extraction of essential, plant-growth nutrients, (3) substrates for microbial populations in the degradation of wastes, (4) sources of O2 and H2, which may be used to manufacture water, (5) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (6) shielding materials surrounding the outpost structure to protect humans, plants, and microorganisms from harmful radiation. Use of indigenous lunar regolith as a terrestrial-like soil for plant growth could offer a solid support substrate, buffering capacity, nutrient source/storage/retention capabilities, and should be relatively easy to maintain. The lunar regolith could, with a suitable microbial population, play a role in waste renovation; much like terrestrial waste application directly on soils. Issues associated with potentially toxic elements, pH, nutrient availability, air and fluid movement parameters, and cation exchange capacity of lunar regolith need to be addressed before lunar materials can be used effectively as soils for plant growth.

  2. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    PubMed Central

    Glick, Bernard R.

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise. PMID:24278762

  3. Designing Extraterrestrial Plant Growth Habitats With Low Pressure Atmospheres

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2001-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  4. Designing Extraterrestrial Plant Growth Habitats with Low Pressure Atmospheres

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2002-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  5. Use of lunar regolith as a substrate for plant growth.

    PubMed

    Ming, D W; Henninger, D L

    1994-01-01

    Regenerative Life Support Systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration missions to the Moon and Mars. It may be possible to supplement some of the materials needed for a lunar RLSS from resources on the Moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (i) soils or solid-support substrates for plant growth, (ii) sources for extraction of essential, plant-growth nutrients, (iii) substrates for microbial populations in the degradation of wastes, (iv) sources of O2 and H2, which may be used to manufacture water, (v) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (vi) shielding materials surrounding the outpost structure to protect humans, plants, and microorganisms from harmful radiation. Use of indigenous lunar regolith as a terrestrial-like soil for plant growth could offer a solid support substrate, buffering capacity, nutrient source/storage/retention capabilities, and should be relatively easy to maintain. The lunar regolith could, with a suitable microbial population, play a role in waste renovation; much like terrestrial waste application directly on soils. Issues associated with potentially toxic elements, pH, nutrient availability, air and fluid movement parameters, and cation exchange capacity of lunar regolith need to be addressed before lunar materials can be used effectively as soils for plant growth.

  6. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture.

    PubMed

    Bhattacharyya, P N; Jha, D K

    2012-04-01

    Plant growth-promoting rhizobacteria (PGPR) are the rhizosphere bacteria that can enhance plant growth by a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, rhizosphere engineering, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing (QS) signal interference and inhibition of biofilm formation, phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. The potentiality of PGPR in agriculture is steadily increased as it offers an attractive way to replace the use of chemical fertilizers, pesticides and other supplements. Growth promoting substances are likely to be produced in large quantities by these rhizosphere microorganisms that influence indirectly on the overall morphology of the plants. Recent progress in our understanding on the diversity of PGPR in the rhizosphere along with their colonization ability and mechanism of action should facilitate their application as a reliable component in the management of sustainable agricultural system. The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.

  7. The Mars Plant Growth Experiment and Implications for Planetary Protection

    NASA Astrophysics Data System (ADS)

    Smith, Heather

    Plants are the ultimate and necessary solution for O2 production at a human base on Mars. Currently it is unknown if seeds can germinate on the Martian surface. The Mars Plant growth experiment (MPX) is a proposal for the first step in the development of a plant- based O2 production system by demonstrating plant germination and growth on the Martian surface. There is currently no planetary protection policy in place that covers plants on the Martian surface. We describe a planetary protection plan in compliance with NASA and COSPAR policy for a closed plant growth chamber on a Mars rover. We divide the plant growth chamber into two categories for planetary protection, the Outside: the outside of the chamber exposed to the Martian environment, and the Inside: the inside of the chamber which is sealed off from Mars atmosphere and contains the plant seeds and ancillary components for seed growth. We will treat outside surfaces of the chamber as other outside surfaces on the rover, wiped with a mixture of isopropyl alcohol and water as per Category IVb planetary protection requirements. All internal components of the MPX except the seeds and camera (including the water system, the plant growth stage and interior surface walls) will be sterilized by autoclave and subjected to sterilizing dry heat at a temperature of 125°C at an absolute humidity corresponding to a relative humidity of less than 25 percent referenced to the standard conditions of 0°C and 760 torr pressure. The seeds and internal compartments of the MPX in contact with the growth media will be assembled and tested to be free of viable microbes. MPX, once assembled, cannot survive Dry Heat Microbial Reduction. The camera with the radiation and CO2 sensors will be sealed in their own container and vented through HEPA filters. The seeds will be vernalized (microbe free) as per current Space Station methods described by Paul et al. 2001. Documentation of the lack of viable microbes on representative seeds

  8. Mechanical stress regulation of plant growth and development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.; Myers, P. N.

    1995-01-01

    The authors introduce the chapter with a discussion of lessons from nature, agriculture, and landscapes; terms and definitions; and an historical perspective of mechanical stress regulation of plant growth and development. Topics include developmental responses to mechanical stress; mechanical stress-environment interactions; metabolic, productivity, and compositional changes; hormonal involvement; mechanoperception and early transduction mechanisms; applications in agriculture; and research implications. The discussion of hormonal involvement in mechanical stress physiology includes ethylene, auxin, gibberellins, and other phytohormones. The discussion of applications in agriculture examines windbreaks, nursery practices, height control and conditioning, and enhancement of growth and productivity. Implications for research are related to handling plant materials, space biology, and future research needs.

  9. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  10. Tuning plant signaling and growth to survive salt.

    PubMed

    Julkowska, Magdalena M; Testerink, Christa

    2015-09-01

    Salinity is one of the major abiotic factors threatening food security worldwide. Recently, our understanding of early processes underlying salinity tolerance has expanded. In this review, early signaling events, such as phospholipid signaling, calcium ion (Ca(2+)) responses, and reactive oxygen species (ROS) production, together with salt stress-induced abscisic acid (ABA) accumulation, are brought into the context of long-term salt stress-specific responses and alteration of plant growth. Salt-induced quiescent and recovery growth phases rely on modification of cell cycle activity, cell expansion, and cell wall extensibility. The period of initial growth arrest varies among different organs, leading to altered plant morphology. Studying stress-induced changes in growth dynamics can be used for screening to discover novel genes contributing to salt stress tolerance in model species and crops.

  11. Influence of Atmospheric Pressure Torch Plasma Irradiation on Plant Growth

    NASA Astrophysics Data System (ADS)

    Akiyoshi, Yusuke; Hayashi, Nobuya; Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu

    2011-10-01

    Growth stimulation characteristics of plants seeds are investigated by an atmospheric discharge irradiation into plasma seeds. Atmospheric pressure plasma torch is consisted of alumina ceramics tube and the steel mesh electrodes wind inside and outside of the tube. When AC high voltage (8 kHz) is applied to the electrode gap, the barrier discharge plasma is produced inside the alumina ceramics tube. The barrier discharge plasma is blown outside with the gas flow in ceramics tube. Radish sprouts seeds locate at 1 cm from the torch edge. The growth stimulation was observed in the length of a stem and a root after the plasma irradiation. The stem length increases approximately 2.8 times at the cultivation time of 24 h. And the growth stimulation effect is found to be maintained for 40 h, after sowing seeds. The mechanism of the growth stimulation would be the redox reaction inside plant cells induced by oxygen radicals.

  12. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.

    PubMed

    Ma, Y; Prasad, M N V; Rajkumar, M; Freitas, H

    2011-01-01

    Technogenic activities (industrial-plastic, textiles, microelectronics, wood preservatives; mining-mine refuse, tailings, smelting; agrochemicals-chemical fertilizers, farm yard manure, pesticides; aerosols-pyrometallurgical and automobile exhausts; biosolids-sewage sludge, domestic waste; fly ash-coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches.

  13. Providing controlled environments for plant growth in space.

    PubMed

    Bula, R J; Ignatius, R W

    1996-12-01

    Providing a controlled environment for growth of plants in a space environment involves development of unique technologies for the various subsystems of the plant growing facility. These subsystems must be capable of providing the desired environmental control within the operational constraints of currently available space vehicles, primarily the US Space Shuttle or the Russian Space Station, MIR. These constraints include available electrical power, limited total payload mass, and limited volume of the payload. In addition, the space hardware must meet safety requirements for a man-rated space vehicle. The ASTROCULTURE (TM) space-based plant growth unit provides control of temperature, humidity, and carbon dioxide concentration of the plant chamber air. A light emitting diode (LED) unit provides red and blue photons with a total intensity adjustable from 0 to 500 micromoles m-2 s-1. Ethylene released by the plant material is removed with a non-consumable ethylene removable unit. A porous tube and rooting matrix subsystem is used to supply water and nutrients to the plants. The ASTROCULTURE(TM) flight unit is sized to be accommodated in a single middeck locker of the US Space Shuttle, the SPACEHAB module, and with slight modification in the SPACELAB module. The environmental control capabilities of the subsystems used in the ASTROCULTURE(TM) flight unit have been validated in a microgravity environment during five US Space Shuttle missions, including two with plants. The unique environmental control technologies developed for the space-based plant growth facility can be used to enhance the environmental control capabilities of terrestrial controlled environment plant chambers.

  14. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  15. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  16. Magnetic fluids effect upon growth processes in plants

    NASA Astrophysics Data System (ADS)

    Sala, F.

    1999-07-01

    The metabolic processes of plants growth and development take place according to some organic rules which are specific to their genetic potential. These processes may exhibit modifications of intensity, rhythm, sense, under the influence of the environmental conditions of agricultural systems, through certain factors and bioregulators artificially introduced by man. The results of some investigations regarding effects of biocompatible magnetic fluids (LMW 100 G) on the vegetal organism's (growth, development, fructifying, the level and quality of the yield precocity) are presented.

  17. Ethylene production throughout growth and development of plants

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Peterson, Barbara V.; Stutte, Gary W.

    2004-01-01

    Ethylene production by 10 or 20 m2 stands of wheat, soybean, lettuce, potato, and tomato was monitored throughout growth and development in an atmospherically closed plant chamber. Chamber ethylene levels varied among species and rose during periods of canopy expansion and rapid growth for all species. Following this, ethylene levels either declined during seed fill and maturation for wheat and soybean, or remained relatively constant for potato and tomato (during flowering and early fruit development). Lettuce plants were harvested during rapid growth and peak ethylene production. Chamber ethylene levels increased rapidly during tomato ripening, reaching concentrations about 10 times that measured during vegetative growth. The highest ethylene production rates during vegetative growth ranged from 1.6 to 2.5 nmol m-2 d-1 during rapid growth of lettuce and wheat stands, or about 0.3 to 0.5 nmol g-1 fresh weight per hour. Estimates of stand ethylene production during tomato ripening showed that rates reached 43 nmol m-2 d-1 in one study and 93 nmol m-2 d-1 in a second study with higher lighting, or about 50x that of the rate during vegetative growth of tomato. In a related test with potato, the photoperiod was extended from 12 to 24 hours (continuous light) at 58 days after planting (to increase tuber yield), but this change in the environment caused a sharp increase in ethylene production from the basal rate of 0.4 to 6.2 nmol m-2 d-1. Following this, the photoperiod was changed back to 12 h at 61 days and ethylene levels decreased. The results suggest three separate categories of ethylene production were observed with whole stands of plants: 1) production during rapid vegetative growth, 2) production during climacteric fruit ripening, and 3) production from environmental stress.

  18. Ethylene production throughout growth and development of plants.

    PubMed

    Wheeler, Raymond M; Peterson, Barbara V; Stutte, Gary W

    2004-12-01

    Ethylene production by 10 or 20 m2 stands of wheat, soybean, lettuce, potato, and tomato was monitored throughout growth and development in an atmospherically closed plant chamber. Chamber ethylene levels varied among species and rose during periods of canopy expansion and rapid growth for all species. Following this, ethylene levels either declined during seed fill and maturation for wheat and soybean, or remained relatively constant for potato and tomato (during flowering and early fruit development). Lettuce plants were harvested during rapid growth and peak ethylene production. Chamber ethylene levels increased rapidly during tomato ripening, reaching concentrations about 10 times that measured during vegetative growth. The highest ethylene production rates during vegetative growth ranged from 1.6 to 2.5 nmol m-2 d-1 during rapid growth of lettuce and wheat stands, or about 0.3 to 0.5 nmol g-1 fresh weight per hour. Estimates of stand ethylene production during tomato ripening showed that rates reached 43 nmol m-2 d-1 in one study and 93 nmol m-2 d-1 in a second study with higher lighting, or about 50x that of the rate during vegetative growth of tomato. In a related test with potato, the photoperiod was extended from 12 to 24 hours (continuous light) at 58 days after planting (to increase tuber yield), but this change in the environment caused a sharp increase in ethylene production from the basal rate of 0.4 to 6.2 nmol m-2 d-1. Following this, the photoperiod was changed back to 12 h at 61 days and ethylene levels decreased. The results suggest three separate categories of ethylene production were observed with whole stands of plants: 1) production during rapid vegetative growth, 2) production during climacteric fruit ripening, and 3) production from environmental stress.

  19. Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria.

    PubMed

    Barriuso, Jorge; Ramos Solano, Beatriz; Fray, Rupert G; Cámara, Miguel; Hartmann, Anton; Gutiérrez Mañero, F Javier

    2008-06-01

    Two Gram-negative, plant growth-promoting rhizobacteria (PGPRs), denominated as M12 and M14, were classified by 16S rDNA sequencing as Burkholderia graminis species. Both strains were shown to produce a variety of N-acyl-homoserine lactone (AHL) quorum sensing (QS) signalling molecules. The involvement of these molecules in plant growth promotion and the induction of protection against salt stress was examined. AHL production was evaluated in vitro by thin-layer chromatography using AHL biosensors, and the identity of the AHLs produced was determined by liquid chromatography-tandem mass spectrometry. The in situ production of AHLs by M12 and M14 in the rhizosphere of Arabidopsis thaliana plants was detected by co-inoculation with green fluorescent protein-based biosensor strains and confocal laser scanning microscopy. To determine whether plant growth promotion and protection against salt stress were mediated by QS, these PGPRs were assayed on wild-type tomato plants, as well as their corresponding transgenics expressing YenI (short-chain AHL producers) and LasI (long-chain AHL producers). In wild-type tomato plants, only M12 promoted plant growth, and this effect disappeared in both transgenic lines. In contrast, M14 did not promote growth in wild-type tomatoes, but did so in the LasI transgenic line. Resistance to salt stress was induced by M14 in wild-type tomato, but this effect disappeared in both transgenic lines. The strain M12, however, did not induce salt resistance in wild-type tomato, but did so in LasI tomato plants. These results reveal that AHL QS signalling molecules mediate the ability of both PGPR strains M12 and M14 to promote plant growth and to induce protection against salt stress.

  20. Two novel herbicide candidates affect Arabidopsis thaliana growth by inhibiting nitrogen and phosphate absorption.

    PubMed

    Sun, Chongchong; Jin, Yujian; He, Haifeng; Wang, Wei; He, Hongwu; Fu, Zhengwei; Qian, Haifeng

    2015-09-01

    Both 2-[(2,4-dichlorophenoxy)acetoxy](methy)lmethyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIa) and 2-[(4-chloro-2-methyl-phenoxy)-acetoxy](methyl)methyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIr) are novel herbicide candidates that positively affect herbicidal activity via the introduction of a phosphorus-containing heterocyclic ring. This report investigated the mechanism of IIa and IIr on weed control in the model plant Arabidopsis thaliana at physiological, ultrastructural and molecular levels. IIa and IIr significantly inhibited the growth of A. thaliana and altered its root structure by inhibiting energy metabolism and lipid or protein biosynthesis. These compounds also significantly affected the absorption of nitrogen and phosphorus by down-regulating the transcripts of nitrate transporter-related genes, ammonium transporter-related genes and phosphorus transporter-related genes.

  1. Waving and skewing: how gravity and the surface of growth media affect root development in Arabidopsis.

    PubMed

    Oliva, Michele; Dunand, Christophe

    2007-01-01

    Arabidopsis seedlings growing on inclined agar surfaces exhibit characteristic root behaviours called 'waving' and 'skewing': the former consists of a series of undulations, whereas the latter is a deviation from the direction of gravity. Even though the precise basis of these growth patterns is not well understood, both gravity and the contact between the medium and the root are considered to be the major players that result in these processes. The influence of these forces on root surface-dependent behaviours can be verified by growing seedlings at different gel pitches: plants growing on vertical plates present roots with slight waving and skewing when compared with seedlings grown on plates held at minor angles of < 90 degrees . However, other factors are thought to modulate root growth on agar; for instance, it has been demonstrated that the presence and concentration of certain compounds in the medium (such as sucrose) and of drugs able to modify the plant cell cytoskeleton also affect skewing and waving. The recent discovery of an active role of ethylene on surface-dependent root behaviour, and the finding of new mutants showing anomalous growth, pave the way for a more detailed description of these phenomena.

  2. Growth Chambers on the International Space Station for Large Plants

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Wheeler, R. M.; Morrow, R. C.; Levine, H. G.

    2016-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species under LED lighting, and those capabilities continue to expand. The 'Veggie' vegetable production system was deployed to the ISS as an applied research platform for food production in space. Veggie is capable of growing a wide array of horticultural crops. It was designed for low power usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nm), blue, (455 nm) and green (530 nm) LEDs. Interfacing with the light cap is an extendable bellows/baseplate for enclosing the plant canopy. A second large plant growth chamber, the Advanced Plant Habitat (APH), is will fly to the ISS in 2017. APH will be a fully controllable environment for high-quality plant physiological research. APH will control light (quality, level, and timing), temperature, CO2, relative humidity, and irrigation, while scrubbing any cabin or plant-derived ethylene and other volatile organic compounds. Additional capabilities include sensing of leaf temperature and root zone moisture, root zone temperature, and oxygen concentration. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs (4100K). There will be several internal cameras (visible and IR) to monitor and record plant growth and operations. Veggie and APH are available for research proposals.

  3. Growth Chambers on the International Space Station for Large Plants

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Wheeler, Raymond M.; Morrow, Robert C.; Levine, Howard G.

    2016-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species under LED (Light Emitting Diodes) lighting, and those capabilities continue to expand. The Veggie vegetable production system was deployed to the ISS as an applied research platform for food production in space. Veggie is capable of growing a wide array of horticultural crops. It was designed for low power usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nanometers), blue, (455 nanometers) and green (530 nanometers) LEDs. Interfacing with the light cap is an extendable bellowsbaseplate for enclosing the plant canopy. A second large plant growth chamber, the Advanced Plant Habitat (APH), is will fly to the ISS in 2017. APH will be a fully controllable environment for high-quality plant physiological research. APH will control light (quality, level, and timing), temperature, CO2, relative humidity, and irrigation, while scrubbing any cabin or plant-derived ethylene and other volatile organic compounds. Additional capabilities include sensing of leaf temperature and root zone moisture, root zone temperature, and oxygen concentration. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs (4100K). There will be several internal cameras (visible and IR) to monitor and record plant growth and operations. Veggie and APH are available for research proposals.

  4. Mixed planting with a leguminous plant outperforms bacteria in promoting growth of a metal remediating plant through histidine synthesis.

    PubMed

    Adediran, Gbotemi A; Ngwenya, Bryne T; Mosselmans, J Frederick W; Heal, Kate V; Harvie, Barbra A

    2016-01-01

    The effectiveness of plant growth promoting bacteria (PGPB) in improving metal phytoremediation is still limited by stunted plant growth under high soil metal concentrations. Meanwhile, mixed planting with leguminous plants is known to improve yield in nutrient deficient soils but the use of a metal tolerant legume to enhance metal tolerance of a phytoremediator has not been explored. We compared the use of Pseudomonas brassicacearum, Rhizobium leguminosarum, and the metal tolerant leguminous plant Vicia sativa to promote the growth of Brassica juncea in soil contaminated with 400 mg Zn kg(-1), and used synchrotron based microfocus X-ray absorption spectroscopy to probe Zn speciation in plant roots. B. juncea grew better when planted with V. sativa than when inoculated with PGPB. By combining PGPB with mixed planting, B. juncea recovered full growth while also achieving soil remediation efficiency of >75%, the maximum ever demonstrated for B. juncea. μXANES analysis of V. sativa suggested possible root exudation of the Zn chelates histidine and cysteine were responsible for reducing Zn toxicity. We propose the exploration of a legume-assisted-phytoremediation system as a more effective alternative to PGPB for Zn bioremediation.

  5. Growth of ponderosa pine seedlings as affected by air pollution

    NASA Astrophysics Data System (ADS)

    Momen, B.; Anderson, P. D.; Houpis, J. L. J.; Helms, J. A.

    The effect of air pollution on seedling survival and competitive ability is important to natural and artificial regeneration of forest trees. Although biochemical and physiological processes are sensitive indicators of pollution stress, the cumulative effects of air pollutants on seedling vigor and competitive ability may be assessed directly from whole-plant growth characteristics such as diameter, height, and photosynthetic area. A few studies that have examined intraspecific variation in seedling response to air pollution indicate that genotypic differences are important in assessing potential effects of air pollution on forest regeneration. Here, we studied the effects of acid rain (no-rain, pH 5.1 rain, pH 3.0 rain) and ozone (filtered, ambient, twice-ambient) in the field on height, diameter, volume, the height:diameter ratio, maximum needle length, and time to reach maximum needle length in seedlings of three families of ponderosa pine ( Pinus ponderosa Dougl. ex Laws). Seedling diameter, height, volume, and height:diameter ratio related significantly to their pre-treatment values. Twice-ambient ozone decreased seedling diameter compared with ozone-filtered air. A significant family-by-ozone interaction was detected for seedling height, as the height of only one of the three families was decreased by twice-ambient ozone compared with the ambient level. Seedling diameter was larger and the height:diameter ratio was smaller under pH 3.0 rain compared to either the no-rain or the pH 5.1-rain treatment. This suggests greater seedling vigor, perhaps due to a foliar fertilization effect of the pH 3.0 rain.

  6. Affective imagery and acceptance of replacing nuclear power plants.

    PubMed

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed.

  7. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant growth-promoting rhizobacteria (PGPR) have garnered interest in agriculture due to their ability to influence the growth and production of host plants. ATP-binding cassette (ABC) transporters play important roles in plant-microbe interactions by modulating plant root exudation. The present stu...

  8. Effects of the Plant Growth-Promoting Bacterium Burkholderia phytofirmans PsJN throughout the Life Cycle of Arabidopsis thaliana

    PubMed Central

    Poupin, María Josefina; Timmermann, Tania; Vega, Andrea; Zuñiga, Ana; González, Bernardo

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects of these relevant

  9. Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana.

    PubMed

    Poupin, María Josefina; Timmermann, Tania; Vega, Andrea; Zuñiga, Ana; González, Bernardo

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects of these relevant

  10. Effects of plant density on plant growth before and after recurrent selection in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding for higher grain yield in Maize (Zea mays L.) has produced varieties that are adapted to grow at higher population densities. While the effects of density on final grain yield and plant phenotypes are well known, how density affects the early development of the plant has been less studied....

  11. Short-Chain Chitin Oligomers: Promoters of Plant Growth.

    PubMed

    Winkler, Alexander J; Dominguez-Nuñez, Jose Alfonso; Aranaz, Inmaculada; Poza-Carrión, César; Ramonell, Katrina; Somerville, Shauna; Berrocal-Lobo, Marta

    2017-02-15

    Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer) induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL) enriched to 92% with dimers (2mer), trimers (3mer) and tetramers (4mer) was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%), radicle length (25%) and total carbon and nitrogen content (6% and 8%, respectively). Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.

  12. Short-Chain Chitin Oligomers: Promoters of Plant Growth

    PubMed Central

    Winkler, Alexander J.; Dominguez-Nuñez, Jose Alfonso; Aranaz, Inmaculada; Poza-Carrión, César; Ramonell, Katrina; Somerville, Shauna; Berrocal-Lobo, Marta

    2017-01-01

    Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer) induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL) enriched to 92% with dimers (2mer), trimers (3mer) and tetramers (4mer) was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%), radicle length (25%) and total carbon and nitrogen content (6% and 8%, respectively). Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields. PMID:28212295

  13. Nutrient enrichment affects the mechanical resistance of aquatic plants

    PubMed Central

    Puijalon, Sara

    2012-01-01

    For many plant species, nutrient availability induces important anatomical responses, particularly the production of low-density tissues to the detriment of supporting tissues. Due to the contrasting biomechanical properties of plant tissues, these anatomical responses may induce important modifications in the biomechanical properties of plant organs. The aim of this study was to determine the effects of nutrient enrichment on the anatomical traits of two freshwater plant species and its consequences on plant biomechanical performance. Two plant species were grown under controlled conditions in low versus high nutrient levels. The anatomical and biomechanical traits of the plant stems were measured. Both species produced tissues with lower densities under nutrient-rich conditions, accompanied by modifications in the structure of the aerenchyma for one species. As expected, nutrient enrichment also led to important modifications in the biomechanical properties of the stem for both species. In particular, mechanical resistance (breaking force and strength) and stiffness of stems were significantly reduced under nutrient rich conditions. The production of weaker stem tissues as a result of nutrient enrichment may increase the risk of plants to mechanical failure, thus challenging plant maintenance in mechanically stressful or disturbed habitats. PMID:23028018

  14. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen.

    PubMed

    Cárcamo, Héctor A; Herle, Carolyn E; Lupwayi, Newton Z

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs.

  15. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen

    PubMed Central

    Cárcamo, Héctor A.; Herle, Carolyn E.; Lupwayi, Newton Z.

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  16. Does Training Affect Growth? Answers to Common Questions.

    ERIC Educational Resources Information Center

    Daly, Robin M.; Bass, Shona; Caine, Dennis; Howe, Warren

    2002-01-01

    Adolescent athletes may be at risk of restricted growth and delayed maturation when combining intense training with insufficient energy intake. Because catch-up growth commonly occurs with reduced training, final adult stature is generally not compromised. However, in athletes with long-term, clinically delayed maturation, catch-up growth may be…

  17. Herbivory: effects on plant abundance, distribution and population growth

    PubMed Central

    Maron, John L; Crone, Elizabeth

    2006-01-01

    Plants are attacked by many different consumers. A critical question is how often, and under what conditions, common reductions in growth, fecundity or even survival that occur due to herbivory translate to meaningful impacts on abundance, distribution or dynamics of plant populations. Here, we review population-level studies of the effects of consumers on plant dynamics and evaluate: (i) whether particular consumers have predictably more or less influence on plant abundance, (ii) whether particular plant life-history types are predictably more vulnerable to herbivory at the population level, (iii) whether the strength of plant–consumer interactions shifts predictably across environmental gradients and (iv) the role of consumers in influencing plant distributional limits. Existing studies demonstrate numerous examples of consumers limiting local plant abundance and distribution. We found larger effects of consumers on grassland than woodland forbs, stronger effects of herbivory in areas with high versus low disturbance, but no systematic or unambiguous differences in the impact of consumers based on plant life-history or herbivore feeding mode. However, our ability to evaluate these and other patterns is limited by the small (but growing) number of studies in this area. As an impetus for further study, we review strengths and challenges of population-level studies, such as interpreting net impacts of consumers in the presence of density dependence and seed bank dynamics. PMID:17002942

  18. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    PubMed Central

    Bell, Colin; Mancini, Lauren M.; Lee, Melanie N.; Conant, Richard T.; Wallenstein, Matthew D.

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity. PMID:27326379

  19. Phosphorus mobilizing consortium Mammoth P(™) enhances plant growth.

    PubMed

    Baas, Peter; Bell, Colin; Mancini, Lauren M; Lee, Melanie N; Conant, Richard T; Wallenstein, Matthew D

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound-P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth P(TM), could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth P(TM) increased productivity up to twofold compared to the fertilizer treatments without the Mammoth P(TM) inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth P(TM) by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth P(TM) to enhance plant growth and crop productivity.

  20. Characterization of Minnesota lunar simulant for plant growth

    NASA Technical Reports Server (NTRS)

    Oglesby, James P.; Lindsay, Willard L.; Sadeh, Willy Z.

    1993-01-01

    Processing of lunar regolith into a plant growth medium is crucial in the development of a regenerative life support system for a lunar base. Plants, which are the core of such a system, produce food and oxygen for humans and, at the same time, consume carbon dioxide. Because of the scarcity of lunar regolith, simulants must be used to infer its properties and to develop procedures for weathering and chemical analyses. The Minnesota Lunar Simulant (MLS) has been identified to date as the best available simulant for lunar regolith. Results of the dissolution studies reveal that appropriately fertilized MLS can be a suitable medium for plant growth. The techniques used in conducting these studies can be extended to investigate the suitability of actual lunar regolith as a plant growth medium. Dissolution experiments were conducted using the MLS to determine its nutritional and toxicity characteristics for plant growth and to develop weathering and chemical analysis techniques. Two weathering regimes, one with water and one with dilute organic acids simulating the root rhizosphere microenvironment, were investigated. Elemental concentrations were measured using inductively-coupled-plasma (ICP) emission spectrometry and ion chromatography (IC). The geochemical speciation model, MINTEQA2, was used to determine the major solution species and the minerals controlling them. Acidification was found to be a useful method for increasing cation concentrations to meaningful levels. Initial results indicate that MLS weathers to give neutral to slightly basic solutions which contain acceptable amounts of the essential elements required for plant nutrition (i.e., potassium, calcium, magnesium, sulfur, zinc, sodium, silicon, manganese, copper, chlorine, boron, molybdenum, and cobalt). Elements that need to be supplemented include carbon, nitrogen, and perhaps phosphorus and iron. Trace metals in solution were present at nontoxic levels.

  1. Plant growth promoting bacteria from Crocus sativus rhizosphere.

    PubMed

    Ambardar, Sheetal; Vakhlu, Jyoti

    2013-12-01

    Present study deals with the isolation of rhizobacteria and selection of plant growth promoting bacteria from Crocus sativus (Saffron) rhizosphere during its flowering period (October-November). Bacterial load was compared between rhizosphere and bulk soil by counting CFU/gm of roots and soil respectively, and was found to be ~40 times more in rhizosphere. In total 100 bacterial isolates were selected randomly from rhizosphere and bulk soil (50 each) and screened for in-vitro and in vivo plant growth promoting properties. The randomly isolated bacteria were identified by microscopy, biochemical tests and sequence homology of V1-V3 region of 16S rRNA gene. Polyphasic identification categorized Saffron rhizobacteria and bulk soil bacteria into sixteen different bacterial species with Bacillus aryabhattai (WRF5-rhizosphere; WBF3, WBF4A and WBF4B-bulk soil) common to both rhizosphere as well as bulk soil. Pseudomonas sp. in rhizosphere and Bacillus and Brevibacterium sp. in the bulk soil were the predominant genera respectively. The isolated rhizobacteria were screened for plant growth promotion activity like phosphate solubilization, siderophore and indole acetic acid production. 50 % produced siderophore and 33 % were able to solubilize phosphate whereas all the rhizobacterial isolates produced indole acetic acid. The six potential PGPR showing in vitro activities were used in pot trial to check their efficacy in vivo. These bacteria consortia demonstrated in vivo PGP activity and can be used as PGPR in Saffron as biofertilizers.This is the first report on the isolation of rhizobacteria from the Saffron rhizosphere, screening for plant growth promoting bacteria and their effect on the growth of Saffron plant.

  2. Computational Morphodynamics: A modeling framework to understand plant growth

    PubMed Central

    Chickarmane, Vijay; Roeder, Adrienne H.K.; Tarr, Paul T.; Cunha, Alexandre; Tobin, Cory; Meyerowitz, Elliot M.

    2014-01-01

    Computational morphodynamics utilizes computer modeling to understand the development of living organisms over space and time. Results from biological experiments are used to construct accurate and predictive models of growth. These models are then used to make novel predictions providing further insight into the processes in question, which can be tested experimentally to either confirm or rule out the validity of the computational models. This review highlights two fundamental issues: (1.) models should span and integrate single cell behavior with tissue development and (2.) the necessity to understand the feedback between mechanics of growth and chemical or molecular signaling. We review different approaches to model plant growth and discuss a variety of model types that can be implemented, with the aim of demonstrating how this methodology can be used, to explore the morphodynamics of plant development. PMID:20192756

  3. Root growth and plant biomass in Lolium perenne exploring a nutrient-rich patch in soil.

    PubMed

    Nakamura, Ryoji; Kachi, Naoki; Suzuki, Jun-Ichirou

    2008-11-01

    We investigated soil exploration by roots and plant growth in a heterogeneous environment to determine whether roots can selectively explore a nutrient-rich patch, and how nutrient heterogeneity affects biomass allocation and total biomass before a patch is reached. Lolium perenne L. plants were grown in a factorial experiment with combinations of fertilization (heterogeneous and homogeneous) and day of harvest (14, 28, 42, or 56 days after transplanting). The plant in the heterogeneous treatment was smaller in its mean total biomass, and allocated more biomass to roots. The distributions of root length and root biomass in the heterogeneous treatment did not favor the nutrient-rich patch, and did not correspond to the patchy distribution of inorganic nitrogen. Specific root length (length/biomass) was higher and root elongation was more extensive both laterally and vertically in the heterogeneous treatment. These characteristics may enable plants to acquire nutrients efficiently and increase the probability of encountering nutrient-rich patches in a heterogeneous soil. However, heterogeneity of soil nutrients would hold back plant growth before a patch was reached. Therefore, although no significant selective root placement in the nutrient-rich patch was observed, plant growth before reaching nutrient-rich patches differed between heterogeneous and homogeneous environments.

  4. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil.

    PubMed

    Fatima, K; Imran, A; Amin, I; Khan, Q M; Afzal, M

    2016-04-01

    Plants coupled with endophytic bacteria hold great potential for the remediation of polluted environment. The colonization patterns and activity of inoculated endophytes in rhizosphere and endosphere of host plant are among the primary factors that may influence the phytoremediation process. However, these colonization patterns and metabolic activity of the inoculated endophytes are in turn controlled by none other than the host plant itself. The present study aims to determine such an interaction specifically for plant-endophyte systems remediating crude oil-contaminated soil. A consortium (AP) of two oil-degrading endophytic bacteria (Acinetobacter sp. strain BRSI56 and Pseudomonas aeruginosa strain BRRI54) was inoculated to two grasses, Brachiaria mutica and Leptochloa fusca, vegetated in crude oil-contaminated soil. Colonization patterns and metabolic activity of the endophytes were monitored in the rhizosphere and endosphere of the plants. Bacterial augmentation enhanced plant growth and crude oil degradation. Maximum crude oil degradation (78%) was achieved with B. mutica plants inoculated with AP consortium. This degradation was significantly higher than those treatments, where plants and bacteria were used individually or L. fusca and endophytes were used in combination. Moreover, colonization and metabolic activity of the endophytes were higher in the rhizosphere and endosphere of B. mutica than L. fusca. The plant species affected not only colonization pattern and biofilm formation of the inoculated bacteria in the rhizosphere and endosphere of the host plant but also affected the expression of alkane hydroxylase gene, alkB. Hence, the investigation revealed that plant species can affect colonization patterns and metabolic activity of inoculated endophytic bacteria and ultimately the phytoremediation process.

  5. Spatial heterogeneity of soil biochar content affects soil quality and wheat growth and yield.

    PubMed

    Olmo, Manuel; Lozano, Ana María; Barrón, Vidal; Villar, Rafael

    2016-08-15

    Biochar (BC) is a carbonaceous material obtained by pyrolysis of organic waste materials and has been proposed as a soil management strategy to mitigate global warming and to improve crop productivity. Once BC has been applied to the soil, its imperfect and incomplete mixing with soil during the first few years and the standard agronomic practices (i.e. tillage, sowing) may generate spatial heterogeneity of the BC content in the soil, which may have implications for soil properties and their effects on plant growth. We investigated how, after two agronomic seasons, the spatial heterogeneity of olive-tree prunings BC applied to a vertisol affected soil characteristics and wheat growth and yield. During the second agronomic season and just before wheat germination, we determined the BC content in the soil by an in-situ visual categorization based on the soil darkening, which was strongly correlated to the BC content of the soil and the soil brightness. We found a high spatial heterogeneity in the BC plots, which affected soil characteristics and wheat growth and yield. Patches with high BC content showed reduced soil compaction and increased soil moisture, pH, electrical conductivity, and nutrient availability (P, Ca, K, Mn, Fe, and Zn); consequently, wheat had greater tillering and higher relative growth rate and grain yield. However, if the spatial heterogeneity of the soil BC content had not been taken into account in the data analysis, most of the effects of BC on wheat growth would not have been detected. Our study reveals the importance of taking into account the spatial heterogeneity of the BC content.

  6. Plant-mediated interactions between two herbivores differentially affect a subsequently arriving third herbivore in populations of wild cabbage.

    PubMed

    Kroes, A; Stam, J M; David, A; Boland, W; van Loon, J J A; Dicke, M; Poelman, E H

    2016-11-01

    Plants are part of biodiverse communities and frequently suffer from attack by multiple herbivorous insects. Plant responses to these herbivores are specific for insect feeding guilds: aphids and caterpillars induce different plant phenotypes. Moreover, plants respond differentially to single or dual herbivory, which may cascade into a chain of interactions in terms of resistance to other community members. Whether differential responses to single or dual herbivory have consequences for plant resistance to yet a third herbivore is unknown. We assessed the effects of single or dual herbivory by Brevicoryne brassicae aphids and/or Plutella xylostella caterpillars on resistance of plants from three natural populations of wild cabbage to feeding by caterpillars of Mamestra brassicae. We measured plant gene expression and phytohormone concentrations to illustrate mechanisms involved in induced responses. Performance of both B. brassicae and P. xylostella was reduced when feeding simultaneously with the other herbivore, compared to feeding alone. Gene expression and phytohormone concentrations in plants exposed to dual herbivory were different from those found in plants exposed to herbivory by either insect alone. Plants previously induced by both P. xylostella and B. brassicae negatively affected growth of the subsequently arriving M. brassicae. Furthermore, induced responses varied between wild cabbage populations. Feeding by multiple herbivores differentially activates plant defences, which has plant-mediated negative consequences for a subsequently arriving herbivore. Plant population-specific responses suggest that plant populations adapt to the specific communities of insect herbivores. Our study contributes to the understanding of plant defence plasticity in response to multiple insect attacks.

  7. The effect of differential growth rates across plants on spectral predictions of physiological parameters.

    PubMed

    Rapaport, Tal; Hochberg, Uri; Rachmilevitch, Shimon; Karnieli, Arnon

    2014-01-01

    Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants--often based on leaves' position but not age--becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R(2) = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and abiotic

  8. The Effect of Differential Growth Rates across Plants on Spectral Predictions of Physiological Parameters

    PubMed Central

    Rapaport, Tal; Hochberg, Uri; Rachmilevitch, Shimon; Karnieli, Arnon

    2014-01-01

    Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants – often based on leaves' position but not age – becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R2 = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and

  9. Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils.

    PubMed

    Chang, Pearl; Gerhardt, Karen E; Huang, Xiao-Dong; Yu, Xiao-Ming; Glick, Bernard R; Gerwing, Perry D; Greenberg, Bruce M

    2014-01-01

    Plant growth-promoting bacteria (PGPB) strains that contain the enzyme 1-amino-cyclopropane-1-carboxylate (ACC) deaminase can lower stress ethylene levels and improve plant growth. In this study, ACC deaminase-producing bacteria were isolated from a ) salt-impacted ( 50 dS/m) farm field, and their ability to promote plant growth of barley 1): and oats in saline soil was investigated in pouch assays (1% NaCI), greenhouse trials (9.4 dS/m), and field trials (6-24 dS/m). A mix of previously isolated PGPB strains UW3 (Pseudomonas sp.) and UW4 (P. sp.) was also tested for comparison. Rhizobacterial isolate CMH3 (P. corrugata) and UW3+UW4 partially alleviated plant salt stress in growth pouch assays. In greenhouse trials, CMH3 enhanced root biomass of barley and oats by 200% and 50%, respectively. UW3+UW4, CMH3 and isolate CMH2 also enhanced barley and oat shoot growth by 100%-150%. In field tests, shoot biomass of oats tripled when treated with UW3+UW4 and doubled with CHM3 compared with that of untreated plants. PGPB treatment did not affect salt uptake on a per mass basis; higher plant biomass led to greater salt uptake, resulting in decreased soil salinity. This study demonstrates a method for improving plant growth in marginal saline soils. Associated implications for salt

  10. Transcriptional responses to sucrose mimic the plant-associated life style of the plant growth promoting endophyte Enterobacter sp. 638.

    PubMed

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g., flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  11. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    DOE PAGES

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; ...

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involvedmore » in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.« less

  12. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    SciTech Connect

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  13. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability. PMID:25607953

  14. Irrigation timing and volume affects growth of container grown maples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Container nursery production requires large inputs of water and nutrients but frequently irrigation inputs exceed plant demand and lack application precision or are not applied at optimal times for plant production. The results from this research can assist producers in developing irrigation manage...

  15. 15. international conference on plant growth substances: Program -- Abstracts

    SciTech Connect

    1995-12-31

    Since the 14th Conference in Amsterdam in 1991, progress in plant hormone research and developmental plant biology has been truly astonishing. The five ``classical`` plant hormones, auxin, gibberellin, cytokinin, ethylene, and abscisic acid, have been joined by a number of new signal molecules, e.g., systemin, jasmonic acid, salicylic acid, whose biosynthesis and functions are being understood in ever greater detail. Molecular genetics has opened new vistas in an understanding of transduction pathways that regulate developmental processes in response to hormonal and environmental signals. The program of the 15th Conference includes accounts of this progress and brings together scientists whose work focuses on physiological, biochemical, and chemical aspects of plant growth regulation. This volume contains the abstracts of papers presented at this conference.

  16. Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth.

    PubMed

    Dong, S; Scagel, C F; Cheng, L; Fuchigami, L H; Rygiewicz, P T

    2001-05-01

    In spring, nitrogen (N) uptake by apple roots begins about 3 weeks after bud break. We used 1-year-old 'Fuji' Malus domestica Borkh on M26 bare-root apple trees to determine whether the onset of N uptake in spring is dependent solely on the growth stage of the plant or is a function of soil temperature. Five times during early season growth, N uptake and total amino acid concentration were measured in trees growing at aboveground day/night temperatures of 23/15 degrees C and belowground temperatures of 8, 12, 16 or 20 degrees C. We used (15NH4)(15NO3) to measure total N uptake and rate of uptake and found that both were significantly influenced by both soil temperature and plant growth stage. Rate of uptake of 15N increased with increasing soil temperature and changed with plant growth stage. Before bud break, 15N was not detected in trees growing in the 8 degrees C soil treatment, whereas 15N uptake increased with increasing soil temperatures between 12 and 20 degrees C. Ten days after bud break, 15N was still not detected in trees growing in the 8 degrees C soil treatment, although total 15N uptake and uptake rate continued to increase with increasing soil temperatures between 12 and 20 degrees C. Twenty-one days after bud break, trees in all temperature treatments were able to acquire 15N from the soil, although the amount of uptake increased with increasing soil temperature. Distribution of 15N in trees changed as plants grew. Most of the 15N absorbed by trees before bud break (approximately 5% of 15N supplied per tree) remained in the roots. Forty-six days after bud break, approximately one-third of the 15N absorbed by the trees in the 12-20 degrees C soil temperature treatments remained in the roots, whereas the shank, stem and new growth contained about two-thirds of the 15N taken up by the roots. Total amino acid concentration and distribution of amino acids in trees changed with plant growth stage, but only the amino acid concentration in new growth and

  17. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    PubMed

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.

  18. Temperature-dependent growth of Botrytis cinerea isolates from potted plants.

    PubMed

    Martínez, J A; Gómez-Bellot, M J; Bañón, S

    2009-01-01

    Botrytis cinereo is a common aggressive saprophyte fungus which also invades injured plant tissues, causing Botrytis blight (Grey mould) in many ornamental plants, including potted flowering plants. Several B. cinerea isolates from potted plants (Pelargonium x hortorum, Lantana camara, Lonicera japonica, Hydrangea macrophylla, and Cyclamen persicum) affected by Botrytis blight in the south of Spain were studied and identified by PCR. The isolates showed phenotypic differences between them, as previously reported by the authors. In this work we demonstrate that these isolates show different temperature-dependent growth phenomena, expressed as mycelial growth rates, conidiation (measured as the number of conidia per colony and time of appearance), mass of both aerial and submerged mycelia, and sclerotia production. Growth rates were assessed from differences in colony area and mass of both aerial and submerged mycelium growing in potato dextrose agar culture medium (PDA). Three temperatures were used to measure these variables (6, 16, and 26 degrees C) and to establish the differences among isolates by modelling the effects of temperature on the growth variables. B. cinerea showed a high degree of phenotypic variability and differences in its growth kinetics, depending on temperature and isolate in question. The isolate from P. x hortorum showed the greatest conidiation although this process did not depend on the temperatures assayed. The growth rate of the isolates from P. x hortorum was the highest. The growth rates in all the isolates were determined and the growth kinetics could be fitted to a typical equation of fungi growing on solid culture medium. The isolate from P. x hortorum was the most vigorous, while the least vigorous was the isolate from L. japonica. A relationship between mycelial growth rate, conidiation and aerial mycelium could be established. A temperature of 26 degrees C accelerated sclerotia production, but only in the isolate from C. persicum

  19. Does nitrate co-pollution affect biological responses of an aquatic plant to two common herbicides?

    PubMed

    Nuttens, A; Chatellier, S; Devin, S; Guignard, C; Lenouvel, A; Gross, E M

    2016-08-01

    Aquatic systems in agricultural landscapes are subjected to multiple stressors, among them pesticide and nitrate run-off, but effects of both together have rarely been studied. We investigated possible stress-specific and interaction effects using the new OECD test organism, Myriophyllum spicatum, a widespread aquatic plant. In a fully factorial design, we used two widely applied herbicides, isoproturon and mesosulfuron-methyl, in concentration-response curves at two nitrate levels (219.63 and 878.52mg N-NO3). We applied different endpoints reflecting plant performance such as growth, pigment content, content in phenolic compounds, and plant stoichiometry. Relative growth rates based on length (RGR-L) were affected strongly by both herbicides, while effects on relative growth rate based on dry weight (RGR-DW) were apparent for isoproturon but hardly visible for mesosulfuron-methyl due to an increase in dry matter content. The higher nitrate level further reduced growth rates, specifically with mesosulfuron-methyl. Effects were visible between 50 and 500μgL(-1) for isoproturon and 0.5-5μgL(-1) for mesosulfuron-methyl, with some differences between endpoints. The two herbicides had opposite effects on chlorophyll, carotenoid and nitrogen contents in plants, with values increasing with increasing concentrations of isoproturon and decreasing for mesosulfuron-methyl. Herbicides and nitrate level exhibited distinct effects on the content in phenolic compounds, with higher nitrate levels reducing total phenolic compounds in controls and with isoproturon, but not with mesosulfuron-methyl. Increasing concentrations of mesosulfuron-methyl lead to a decline of total phenolic compounds, while isoproturon had little effect. Contents of carbon, nitrogen and phosphorus changed depending on the stressor combination. We observed higher phosphorus levels in plants exposed to certain concentrations of herbicides, potentially indicating a metabolic response. The C:N molar ratio

  20. Improvements in plant growth rate using underwater discharge

    NASA Astrophysics Data System (ADS)

    Takaki, K.; Takahata, J.; Watanabe, S.; Satta, N.; Yamada, O.; Fujio, T.; Sasaki, Y.

    2013-03-01

    The drainage water from plant pots was irradiated by plasma and then recycled to irrigate plants for improving the growth rate by supplying nutrients to plants and inactivating the bacteria in the bed-soil. Brassica rapa var. perviridis (Chinese cabbage; Brassica campestris) plants were cultivated in pots filled with artificial soil, which included the use of chicken droppings as a fertiliser. The water was recycled once per day from a drainage water pool and added to the bed-soil in the pots. A magnetic compression type pulsed power generator was used to produce underwater discharge with repetition rate of 250 pps. The plasma irradiation times were set as 10 and 20 minutes per day over 28 days of cultivation. The experimental results showed that the growth rate increased significantly with plasma irradiation into the drainage water. The growth rate increased with the plasma irradiation time. The nitrogen concentration of the leaves increased as a result of plasma irradiation based on chlorophyll content analysis. The bacteria in the drainage water were inactivated by the plasma irradiation.

  1. miRNA-based heavy metal homeostasis and plant growth.

    PubMed

    Noman, Ali; Aqeel, Muhammad

    2017-02-22

    Plants have been naturally gifted with mechanisms to adjust under very high or low nutrient concentrations. Heavy metal toxicity is considered as a major growth and yield-limiting factor for plants. This stress includes essential as well as non-essential metals. MicroRNAs (miRNAs) are known for mediating post-transcriptional regulation by cleaving transcripts or translational inhibition. It is commonly agreed that an extensive understanding of plant miRNAs will significantly help in the induction of tolerance against environmental stresses. With the introduction of the latest technology like next generation sequencing (NGS), a growing figure of miRNAs has been productively recognized in several plants for their diverse roles. These miRNAs are well-known modulators of plant responses to heavy metal (HM) stress. Data regarding metal-responsive miRNAs point out the vital role of plant miRNAs in supplementing metal detoxification by means of transcription factors (TF) or gene regulation. Acting as systemic signals, miRNAs also synchronize different physiological processes for plant responses to metal toxicities. In contrast to practicing techniques, using miRNA is a greatly helpful, pragmatic, and feasible approach. The earlier findings point towards miRNAs as a prospective target to engineer heavy metal tolerance in plants. Therefore, there is a need to augment our knowledge about the orchestrated functions of miRNAs during HM stress. We reviewed the deterministic significance of plant miRNAs in heavy metal tolerance and their role in mediating plant responses to HM toxicities. This review also summarized the topical developments by identification and validation of different metal stress-responsive miRNAs.

  2. European corn borer (Lepidoptera: Crambidae) infestation level and plant growth stage on whole-plant corn yield grown for silage in Virginia.

    PubMed

    Tiwari, S; Youngman, R R; Laub, C A; Brewster, C C; Jordan, T A; Teutsch, C

    2009-12-01

    Field experiments were conducted in 2004 and 2005 to determine the effect of different levels of hand-infested third instar European corn borer, Ostrinia nubilalis (Hiibner) (Lepidoptera: Crambidae), on whole-plant yield and plant growth stage in corn, Zea mays L., grown for silage. In 2004 and 2005, European corn borer infestation level had a significant negative impact on whole-plant yield (grams of dry matter per plant) with increasing infestation; however, whole-plant yield was not significantly affected by plant growth stage in either year. In 2004, the six larvae per plant treatment caused the greatest percentage of reduction (23.4%) in mean (+/-SEM) whole-plant yield (258.5 +/- 21.0 g dry matter per plant) compared with the Bacillus thuringiensis (Bt) CrylAb control (337.3 +/- 11.1 g dry matter per plant). In 2005, the five larvae per plant treatment caused the greatest percentage of reduction (8.3%) in mean whole-plant yield (282.3 +/- 10.8 g dry matter per plant) compared with the Bt CrylAb control (307.8 +/- 8.3 g dry matter per plant). The relationship between mean whole-plant yield and European corn borer larvae infestation level from the pooled data of both years was described well by using an exponential decay model (r2 = 0.84, P = 0.0038). The economic injury level for silage corn was estimated to be approximately 73% higher than for corn grown for grain based on similar control costs and crop values. In addition, plant growth stage and European corn borer infestation level had no effect on percentage of acid detergent fiber, neutral detergent fiber, and crude protein values in either year of the study.

  3. Exogenously treated mammalian sex hormones affect inorganic constituents of plants.

    PubMed

    Erdal, Serkan; Dumlupinar, Rahmi

    2011-10-01

    The present study was undertaken to reveal the changes in inorganic constituents of plants exposed to mammalian sex hormones (MSH). Chickpea leaves were sprayed with 10(-4), 10(-6), 10(-9), 10(-12), and 10(-15) M concentrations of progesterone, β-estradiol, and androsterone at 7th day after sowing. The plants were harvested at the end of 18 days after treatment of MSH solutions and the inorganic components determined using a wavelength-dispersive X-ray fluorescence spectroscopy technique. At all of the concentrations tested, MSH significantly increased the contents of K, S, Na, Ca, Mg, Zn, Fe, P, Cu, and Ni. Interestingly, only Mn and Cl contents decreased. The maximum changes in the inorganic composition were recorded at 10(-6) M for plants treated with progesterone and 10(-9) M for plants treated with β-estradiol and androsterone.

  4. Plant toxins that affect nicotinic acetylcholine receptors: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants produce wide variety of chemical compounds termed secondary metabolites that are not involved in basic metabolism, photosynthesis or reproduction. These compounds are used as flavors, fragrances, insecticides, dyes, hallucinogens, nutritional supplements, poisons, and pharmaceutical agents. ...

  5. Isolation and screening of phlD (+) plant growth promoting rhizobacteria antagonistic to Ralstonia solanacearum.

    PubMed

    Ramadasappa, Srinivasamurthy; Rai, Ashwani K; Jaat, Ranjeet Singh; Singh, Aqbal; Rai, Rhitu

    2012-04-01

    Tomato (Lycopersicon esculentum) is important widely grown vegetable in India and its productivity is affected by bacterial wilt disease infection caused by Ralstonia solanacearum. To prevent this disease infection a study was conducted to isolate and screen effective plant growth promoting rhizobacteria (PGPR) antagonistic to R. solanacearum. A total 297 antagonistic bacteria were isolated through dual culture inoculation technique, out of which forty-two antagonistic bacteria were found positive for phlD gene by PCR amplification using two primer sets Phl2a:Phl2b and B2BF:BPR4. The genetic diversity of phlD (+) bacteria was studied by amplified 16S rDNA restriction analysis and demonstrated eleven groups at 65% similarity level. Out of these 42 phlD (+) antagonistic isolates, twenty exhibited significantly fair plant growth promoting activities like phosphate solubilization (0.92-5.33%), 25 produced indole acetic acid (1.63-7.78 μg ml(-1)) and few strains show production of antifungal metabolites (HCN and siderophore). The screening of PGPR (phlD (+)) for suppression of bacterial wilt disease in glass house conditions was showed ten isolated phlD (+) bacteria were able to suppress infection of bacterial wilt disease in tomato plant (var. Arka vikas) in the presence R. solanacearum. The PGPR (phlD (+)) isolates s188, s215 and s288 was observed to be effective plant growth promoter as it shows highest dry weight per plant (3.86, 3.85 and 3.69 g plant(-1) respectively). The complete absence of wilt disease symptoms in tomato crop plants was observed by these treatments compared to negative control. Therefore inoculation of tomato plant with phlD (+) isolate s188 and other similar biocontrol agents may prove to be a positive strategy for checking wilt disease and thus improving plant vigor.

  6. Dynamic trajectories of growth and nitrogen capture by competing plants.

    PubMed

    Trinder, Clare; Brooker, Rob; Davidson, Hazel; Robinson, David

    2012-03-01

    Although dynamic, plant competition is usually estimated as biomass differences at a single, arbitrary time; resource capture is rarely measured. This restricted approach perpetuates uncertainty. To address this problem, we characterized the competitive dynamics of Dactylis glomerata and Plantago lanceolata as continuous trajectories of biomass production and nitrogen (N) capture. Plants were grown together or in isolation. Biomass and N content were measured at 17 harvests up to 76 d after sowing. Data were fitted to logistic models to derive instantaneous growth and N capture rates. Plantago lanceolata was initially more competitive in terms of cumulative growth and N capture, but D. glomerata was eventually superior. Neighbours reduced maximum biomass, but influenced both maximum N capture and its rate constant. Timings of maximal instantaneous growth and N capture rates were similar between species when they were isolated, but separated by 16 d when they were competing, corresponding to a temporal convergence in maximum growth and N capture rates in each species. Plants processed N and produced biomass differently when they competed. Biomass and N capture trajectories demonstrated that competitive outcomes depend crucially on when and how 'competition' is measured. This potentially compromises the interpretation of conventional competition experiments.

  7. Fuel breaks affect nonnative species abundance in Californian plant communities

    USGS Publications Warehouse

    Merriam, K.E.; Keeley, J.E.; Beyers, J.L.

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment programs throughout the United States to reduce the threat of wildland fire. Our study included 24 fuel breaks located across the State of California. We found that nonnative plant abundance was over 200% higher on fuel breaks than in adjacent wildland areas. Relative nonnative cover was greater on fuel breaks constructed by bulldozers (28%) than on fuel breaks constructed by other methods (7%). Canopy cover, litter cover, and duff depth also were significantly lower on fuel breaks constructed by bulldozers, and these fuel breaks had significantly more exposed bare ground than other types of fuel breaks. There was a significant decline in relative nonnative cover with increasing distance from the fuel break, particularly in areas that had experienced more numerous fires during the past 50 years, and in areas that had been grazed. These data suggest that fuel breaks could provide establishment sites for nonnative plants, and that nonnatives may invade surrounding areas, especially after disturbances such as fire or grazing. Fuel break construction and maintenance methods that leave some overstory canopy and minimize exposure of bare ground may be less likely to promote nonnative plants. ?? 2006 by the Ecological Society of America.

  8. Rhizosphere microbiome assemblage is affected by plant development

    PubMed Central

    Chaparro, Jacqueline M; Badri, Dayakar V; Vivanco, Jorge M

    2014-01-01

    There is a concerted understanding of the ability of root exudates to influence the structure of rhizosphere microbial communities. However, our knowledge of the connection between plant development, root exudation and microbiome assemblage is limited. Here, we analyzed the structure of the rhizospheric bacterial community associated with Arabidopsis at four time points corresponding to distinct stages of plant development: seedling, vegetative, bolting and flowering. Overall, there were no significant differences in bacterial community structure, but we observed that the microbial community at the seedling stage was distinct from the other developmental time points. At a closer level, phylum such as Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and specific genera within those phyla followed distinct patterns associated with plant development and root exudation. These results suggested that the plant can select a subset of microbes at different stages of development, presumably for specific functions. Accordingly, metatranscriptomics analysis of the rhizosphere microbiome revealed that 81 unique transcripts were significantly (P<0.05) expressed at different stages of plant development. For instance, genes involved in streptomycin synthesis were significantly induced at bolting and flowering stages, presumably for disease suppression. We surmise that plants secrete blends of compounds and specific phytochemicals in the root exudates that are differentially produced at distinct stages of development to help orchestrate rhizosphere microbiome assemblage. PMID:24196324

  9. Plant surface wax affects parasitoid's response to host footprints

    NASA Astrophysics Data System (ADS)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  10. Simulation model for plant growth in controlled environment systems

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Wann, M.

    1986-01-01

    The role of the mathematical model is to relate the individual processes to environmental conditions and the behavior of the whole plant. Using the controlled-environment facilities of the phytotron at North Carolina State University for experimentation at the whole-plant level and methods for handling complex models, researchers developed a plant growth model to describe the relationships between hierarchial levels of the crop production system. The fundamental processes that are considered are: (1) interception of photosynthetically active radiation by leaves, (2) absorption of photosynthetically active radiation, (3) photosynthetic transformation of absorbed radiation into chemical energy of carbon bonding in solube carbohydrates in the leaves, (4) translocation between carbohydrate pools in leaves, stems, and roots, (5) flow of energy from carbohydrate pools for respiration, (6) flow from carbohydrate pools for growth, and (7) aging of tissues. These processes are described at the level of organ structure and of elementary function processes. The driving variables of incident photosynthetically active radiation and ambient temperature as inputs pertain to characterization at the whole-plant level. The output of the model is accumulated dry matter partitioned among leaves, stems, and roots; thus, the elementary processes clearly operate under the constraints of the plant structure which is itself the output of the model.

  11. Soil biota can change after exotic plant invasion: Does this affect ecosystem processes?

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Sherrod, S.K.; Moldenke, A.

    2005-01-01

    Invasion of the exotic annual grass Bromus tectorum into stands of the native perennial grass Hilaria jamesii significantly reduced the abundance of soil biota, especially microarthropods and nematodes. Effects of invasion on active and total bacterial and fungal biomass were variable, although populations generally increased after 50+ years of invasion. The invasion of Bromus also resulted in a decrease in richness and a species shift in plants, microarthropods, fungi, and nematodes. However, despite the depauperate soil fauna at the invaded sites, no effects were seen on cellulose decomposition rates, nitrogen mineralization rates, or vascular plant growth. When Hilaria was planted into soils from not-invaded, recently invaded, and historically invaded sites (all currently or once dominated by Hilaria), germination and survivorship were not affected. In contrast, aboveground Hilaria biomass was significantly greater in recently invaded soils than in the other two soils. We attributed the Hilaria response to differences in soil nutrients present before the invasion, especially soil nitrogen, phosphorus, and potassium, as these nutrients were elevated in the soils that produced the greatest Hilaria biomass. Our data suggest that it is not soil biotic richness per se that determines soil process rates or plant productivity, but instead that either (1) the presence of a few critical soil food web taxa can keep ecosystem function high, (2) nutrient loss is very slow in this ecosystem, and/or (3) these processes are microbially driven. However, the presence of Bromus may reduce key soil nutrients over time and thus may eventually suppress native plant success. ?? 2005 by the Ecological Society of America.

  12. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability

    PubMed Central

    Mora, Camilo; Caldwell, Iain R.; Caldwell, Jamie M.; Fisher, Micah R.; Genco, Brandon M.; Running, Steven W.

    2015-01-01

    Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under “business as usual” (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world’s terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world’s population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people. PMID:26061091

  13. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability.

    PubMed

    Mora, Camilo; Caldwell, Iain R; Caldwell, Jamie M; Fisher, Micah R; Genco, Brandon M; Running, Steven W

    2015-06-01

    Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under "business as usual" (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world's terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world's population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.

  14. The effect of ultradian and orbital cycles on plant growth

    NASA Technical Reports Server (NTRS)

    Berry, W.; Hoshizaki, T.; Ulrich, A.

    1986-01-01

    In a series of experiments using sugar beets, researchers investigated the effects of varying cycles lengths on growth (0.37 hr to 48 hr). Each cycle was equally divided into a light and dark period so that each treatment regardless of cycle length received the same amount of light over the 17 weeks of the experiment. Two growth parameters were used to evaluate the effects of cycle length, total fresh weight and sucrose content of the storage root. Both parameters showed very similar responses in that under long cycles (12 hr or greater) growth was normal, whereas plants growing under shorter cycle periods were progressively inhibited. Minimum growth occurred at a cycle period of 0.75 hr. The yield at the 0.75 hr cycle, where was at a minimum, for total fresh weight was only 51 percent compared to the 24 hr cycle. The yield of sucrose was even more reduced at 41 percent of the 24 hr cycle.

  15. Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone.

    PubMed

    Dutta, Swarnalee; Podile, Appa Rao

    2010-08-01

    Interaction of plant growth promoting rhizobacteria (PGPR) with host plants is an intricate and interdependent relationship involving not only the two partners but other biotic and abiotic factors of the rhizosphere region. Survival and establishment of PGPR in the rhizosphere is a major concern of agricultural microbiologists. Various factors that play a determining role include the composition of root exudates, properties of bacterial strain, soil status, and activities of other soil microbes. This review focuses on the different components that affect root colonization of PGPR and the underlying principles behind the success of these bugs to tide over the unfavorable conditions.

  16. Organizational Career Growth, Affective Occupational Commitment and Turnover Intentions

    ERIC Educational Resources Information Center

    Weng, Qingxiong; McElroy, James C.

    2012-01-01

    Survey data, collected from the People's Republic of China, were used to test Weng's (2010) four facet model of career growth and to examine its effect on occupational commitment and turnover intentions. Weng conceptualized career growth as consisting of four factors: career goal progress, professional ability development, promotion speed, and…

  17. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study.

    PubMed

    Santoro, M V; Cappellari, L R; Giordano, W; Banchio, E

    2015-11-01

    Plant growth-promoting rhizobacteria (PGPR) affect growth of host plants through various direct and indirect mechanisms. Three native PGPR (Pseudomonas putida) strains isolated from rhizospheric soil of a Mentha piperita (peppermint) crop field near Córdoba, Argentina, were characterised and screened in vitro for plant growth-promoting characteristics, such as indole-3-acetic acid (IAA) production, phosphate solubilisation and siderophore production, effects of direct inoculation on plant growth parameters (shoot fresh weight, root dry weight, leaf number, node number) and accumulation and composition of essential oils. Each of the three native strains was capable of phosphate solubilisation and IAA production. Only strain SJ04 produced siderophores. Plants directly inoculated with the native PGPR strains showed increased shoot fresh weight, glandular trichome number, ramification number and root dry weight in comparison with controls. The inoculated plants had increased essential oil yield (without alteration of essential oil composition) and biosynthesis of major essential oil components. Native strains of P. putida and other PGPR have clear potential as bio-inoculants for improving productivity of aromatic crop plants. There have been no comparative studies on the role of inoculation with native strains on plant growth and secondary metabolite production (specially monoterpenes). Native bacterial isolates are generally preferable for inoculation of crop plants because they are already adapted to the environment and have a competitive advantage over non-native strains.

  18. A Novel Pyrimidin-Like Plant Activator Stimulates Plant Disease Resistance and Promotes Growth

    PubMed Central

    Sun, Tie-Jun; Lu, Yun; Narusaka, Mari; Shi, Chao; Yang, Yu-Bing; Wu, Jian-Xin; Zeng, Hong-Yun; Narusaka, Yoshihiro; Yao, Nan

    2015-01-01

    Plant activators are chemicals that induce plant defense responses to a broad spectrum of pathogens. Here, we identified a new potential plant activator, 5-(cyclopropylmethyl)-6-methyl-2-(2-pyridyl)pyrimidin-4-ol, named PPA (pyrimidin-type plant activator). Compared with benzothiadiazole S-methyl ester (BTH), a functional analog of salicylic acid (SA), PPA was fully soluble in water and increased fresh weight of rice (Oryza sativa) and Arabidopsis plants at low concentrations. In addition, PPA also promoted lateral root development. Microarray data and real-time PCR revealed that PPA-treated leaves not challenged with pathogen showed up-regulation of genes related to reactive oxygen species (ROS), defenses and SA. During bacterial infection, Arabidopsis plants pretreated with PPA showed dramatically decreased disease symptoms and an earlier and stronger ROS burst, compared with plants pretreated with BTH. Microscopy revealed that H2O2 accumulated in the cytosol, plasma membrane and cell wall around intracellular bacteria, and also on the bacterial cell wall, indicating that H2O2 was directly involved in killing bacteria. The increase in ROS-related gene expression also supported this observation. Our results indicate that PPA enhances plant defenses against pathogen invasion through the plant redox system, and as a water-soluble compound that can promote plant growth, has broad potential applications in agriculture. PMID:25849038

  19. Automated Diagnosis Of Conditions In A Plant-Growth Chamber

    NASA Technical Reports Server (NTRS)

    Clinger, Barry R.; Damiano, Alfred L.

    1995-01-01

    Biomass Production Chamber Operations Assistant software and hardware constitute expert system that diagnoses mechanical failures in controlled-environment hydroponic plant-growth chamber and recommends corrective actions to be taken by technicians. Subjects of continuing research directed toward development of highly automated closed life-support systems aboard spacecraft to process animal (including human) and plant wastes into food and oxygen. Uses Microsoft Windows interface to give technicians intuitive, efficient access to critical data. In diagnostic mode, system prompts technician for information. When expert system has enough information, it generates recovery plan.

  20. Coumarin-related compounds as plant growth inhibitors from two rutaceous plants in Thailand.

    PubMed

    Jiwajinda, S; Santisopasri, V; Ohigashi, H

    2000-02-01

    Chemical investigation of naturally occurring plant growth inhibitors from Rutaceous plants in Thailand led us to identify five 7-methoxycoumarins and one 5,7-dimethoxycoumarin from Murraya paniculata, and six furanocoumarins from Citrus aurantifolia. Of these compounds, murranganon senecioate (1) is a new natural compound found in M. paniculata. Minumicrolin (6) was found to be highly active against the 2nd leaf sheath elongation of rice seedlings.

  1. Inhibitory effects of essential oils of medicinal plants from growth of plant pathogenic fungi.

    PubMed

    Panjehkeh, N; Jahani Hossein-Abadi, Z

    2011-01-01

    Plant cells produce a vast amount of secondary metabolites. Production of some compounds is restricted to a single species. Some compounds are nearly always found only in certain specific plant organs and during a specific developmental period of the plant. Some secondary metabolites of plants serve as defensive compounds against invading microorganisms. Nowadays, it is attempted to substitute the biological and natural agents with chemically synthesized fungicides. In the present research, the antifungal activities of essential oils of seven medicinal plants on mycelial growth of three soilborne plant pathogenic fungi were investigated. The plants consisted of Zataria multiflora, Thymus carmanicus, Mentha pieperata, Satureja hortensis, Lavandual officinolis, Cuminum cyminum and Azadirachta indica. The first five plants are from the family Labiatae. Examined fungi, Fusarium oxysporum f.sp. lycopersici, Fusarium solani and Rhizoctonia solani are the causal agents of tomato root rot. Essential oils of Z. multiflora, T. carmanicus, M. pieperata, S. hortensis and C. cyminum were extracted by hydro-distillation method. Essential oils of L. officinalis and A. indica were extracted by vapor-distillation method. A completely randomized design with five replicates was used to examine the inhibitory impact of each concentration (300, 600 and 900 ppm) of each essential oil. Poisoned food assay using potato dextrose agar (PDA) medium was employed. Results showed that essential oils of A. indica, Z. multiflora, T. carmanicus and S. hortensis in 900 ppm at 12 days post-inoculation, when the control fungi completely covered the plates, prevented about 90% from mycelial growth of each of the fungi. While, the essential oils of M. pieperata, C. cyminum and L. officinalis in the same concentration and time prevented 54.86, 52.77 and 48.84%, respectively, from F. solani growth. These substances did not prevent from F. oxysporum f.sp. lycopersici and R. solani growth. Minimum

  2. Plants Release Precursors of Histone Deacetylase Inhibitors to Suppress Growth of Competitors[OPEN

    PubMed Central

    Venturelli, Sascha; Belz, Regina G.; Kämper, Andreas; Berger, Alexander; von Horn, Kyra; Wegner, André; Böcker, Alexander; Zabulon, Gérald; Barneche, Fredy; Lauer, Ulrich M.; Bitzer, Michael

    2015-01-01

    To secure their access to water, light, and nutrients, many plant species have developed allelopathic strategies to suppress competitors. To this end, they release into the rhizosphere phytotoxic substances that inhibit the germination and growth of neighbors. Despite the importance of allelopathy in shaping natural plant communities and for agricultural production, the underlying molecular mechanisms are largely unknown. Here, we report that allelochemicals derived from the common class of cyclic hydroxamic acid root exudates directly affect the chromatin-modifying machinery in Arabidopsis thaliana. These allelochemicals inhibit histone deacetylases both in vitro and in vivo and exert their activity through locus-specific alterations of histone acetylation and associated gene expression. Our multilevel analysis collectively shows how plant-plant interactions interfere with a fundamental cellular process, histone acetylation, by targeting an evolutionarily highly conserved class of enzymes. PMID:26530086

  3. Reduced Wind Speed Improves Plant Growth in a Desert City

    PubMed Central

    Bang, Christofer; Sabo, John L.; Faeth, Stanley H.

    2010-01-01

    Background The often dramatic effects of urbanization on community and ecosystem properties, such as primary productivity, abundances, and diversity are now well-established. In most cities local primary productivity increases and this extra energy flows upwards to alter diversity and relative abundances in higher trophic levels. The abiotic mechanisms thought to be responsible for increases in urban productivity are altered temperatures and light regimes, and increased nutrient and water inputs. However, another abiotic factor, wind speed, is also influenced by urbanization and well known for altering primary productivity in agricultural systems. Wind effects on primary productivity have heretofore not been studied in the context of urbanization. Methodology/Principal Findings We designed a field experiment to test if increased plant growth often observed in cities is explained by the sheltering effects of built structures. Wind speed was reduced by protecting Encelia farinosa (brittlebush) plants in urban, desert remnant and outlying desert localities via windbreaks while controlling for water availability and nutrient content. In all three habitats, we compared E. farinosa growth when protected by experimental windbreaks and in the open. E. farinosa plants protected against ambient wind in the desert and remnant areas grew faster in terms of biomass and height than exposed plants. As predicted, sheltered plants did not differ from unprotected plants in urban areas where wind speed is already reduced. Conclusion/Significance Our results indicate that reductions in wind speed due to built structures in cities contribute to increased plant productivity and thus also to changes in abundances and diversity of higher trophic levels. Our study emphasizes the need to incorporate wind speed in future urban ecological studies, as well as in planning for green space and sustainable cities. PMID:20548790

  4. Plant Growth Biophysics: the Basis for Growth Asymmetry Induced by Gravity

    NASA Technical Reports Server (NTRS)

    Cosgrove, D.

    1985-01-01

    The identification and quantification of the physical properties altered by gravity when plant stems grow upward was studied. Growth of the stem in vertical and horizontal positions was recorded by time lapse photography. A computer program that uses a cubic spline fitting algorithm was used to calculate the growth rate and curvature of the stem as a function of time. Plant stems were tested to ascertain whether cell osmotic pressure was altered by gravity. A technique for measuring the yielding properties of the cell wall was developed.

  5. Host plant affects morphometric variation of Diaphorina citri (Hemiptera: Liviidae)

    PubMed Central

    Paris, Thomson M.; Hall, David G.; Hentz, Matthew G.; Hetesy, Gabriella; Stansly, Philip A.

    2016-01-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most serious citrus pests worldwide due to its role as vector of huanglongbing or citrus greening disease. While some optimal plant species for ACP oviposition and development have been identified, little is known of the influence of host plants on ACP size and shape. Our goal was to determine how size and shape of ACP wing and body size varies when development occurs on different host plants in a controlled rearing environment. ACP were reared on six different rutaceous species; Bergera koenigii, Citrus aurantifolia, Citrus macrophylla, Citrus maxima, Citrus taiwanica and Murraya paniculata. Adults were examined for morphometric variation using traditional and geometric analysis based on 12 traits or landmarks. ACP reared on C. taiwanica were consistently smaller than those reared on the other plant species. Wing aspect ratio also differed between C. maxima and C. taiwanica. Significant differences in shape were detected with those reared on M. paniculata having narrower wings than those reared on C. macrophylla. This study provides evidence of wing size and shape differences of ACP based on host plant species which potentially may impact dispersal. Further study is needed to determine if behavioral and physiological differences are associated with the observed phenotypic differences. PMID:27833820

  6. Host plant affects morphometric variation of Diaphorina citri (Hemiptera: Liviidae).

    PubMed

    Paris, Thomson M; Allan, Sandra A; Hall, David G; Hentz, Matthew G; Hetesy, Gabriella; Stansly, Philip A

    2016-01-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most serious citrus pests worldwide due to its role as vector of huanglongbing or citrus greening disease. While some optimal plant species for ACP oviposition and development have been identified, little is known of the influence of host plants on ACP size and shape. Our goal was to determine how size and shape of ACP wing and body size varies when development occurs on different host plants in a controlled rearing environment. ACP were reared on six different rutaceous species; Bergera koenigii, Citrus aurantifolia, Citrus macrophylla, Citrus maxima, Citrus taiwanica and Murraya paniculata. Adults were examined for morphometric variation using traditional and geometric analysis based on 12 traits or landmarks. ACP reared on C. taiwanica were consistently smaller than those reared on the other plant species. Wing aspect ratio also differed between C. maxima and C. taiwanica. Significant differences in shape were detected with those reared on M. paniculata having narrower wings than those reared on C. macrophylla. This study provides evidence of wing size and shape differences of ACP based on host plant species which potentially may impact dispersal. Further study is needed to determine if behavioral and physiological differences are associated with the observed phenotypic differences.

  7. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth.

    PubMed

    Belimov, Andrey A; Dodd, Ian C; Safronova, Vera I; Dumova, Valentina A; Shaposhnikov, Alexander I; Ladatko, Alexander G; Davies, William J

    2014-01-01

    Although endogenous phytohormones such as abscisic acid (ABA) regulate root growth, and many rhizobacteria can modulate root phytohormone status, hitherto there have been no reports of rhizobacteria mediating root ABA concentrations and growth by metabolising ABA. Using a selective ABA-supplemented medium, two bacterial strains were isolated from the rhizosphere of rice (Oryza sativa) seedlings grown in sod-podzolic soil and assigned to Rhodococcus sp. P1Y and Novosphingobium sp. P6W using partial 16S rRNA gene sequencing and phenotypic patterns by the GEN III MicroPlate test. Although strain P6W had more rapid growth in ABA-supplemented media than strain P1Y, both could utilize ABA as a sole carbon source in batch culture. When rice seeds were germinated on filter paper in association with bacteria, root ABA concentration was not affected, but shoot ABA concentration of inoculated plants decreased by 14% (strain P6W) and 22% (strain P1Y). When tomato (Solanum lycopersicum) genotypes differing in ABA biosynthesis (ABA deficient mutants flacca - flc, and notabilis - not and the wild-type cv. Ailsa Craig, WT) were grown in gnotobiotic cultures on nutrient solution agar, rhizobacterial inoculation decreased root and/or leaf ABA concentrations, depending on plant and bacteria genotypes. Strain P6W inhibited primary root elongation of all genotypes, but increased leaf biomass of WT plants. In WT plants treated with silver ions that inhibit ethylene perception, both ABA-metabolising strains significantly decreased root ABA concentration, and strain P6W decreased leaf ABA concentration. Since these changes in ABA status also occurred in plants that were not treated with silver, it suggests that ethylene was probably not involved in regulating bacteria-mediated changes in ABA concentration. Correlations between plant growth and ABA concentrations in planta suggest that ABA-metabolising rhizobacteria may stimulate growth via an ABA-dependent mechanism.

  8. Importance of Gravity for Plant Growth and Behavior

    NASA Technical Reports Server (NTRS)

    Brown, A. H.

    1985-01-01

    Flight experiments on the importance of gravity to plant growth and behavior are reported. The following studies were undertaken: (1) hyperastic responses to incremental changes of an axially imposed centripetal force; (2) Spacelab-1 experiments, methods for preparing soil in flight hardware containers were impound, to ensure desired moisture content and minimal contamination probability; (3) mesocotyl growth patterns were established by Avena lore exposure to red light during early seedling outogency; (4) the development of flight hardware; (5) choice of member of seedlings in each cube; (6) data processing and reduction; (7) clinostat validation; circummutation in space was more vigorous than on Earth based clinostat.

  9. Signalling of abscisic acid to regulate plant growth.

    PubMed Central

    Himmelbach, A; Iten, M; Grill, E

    1998-01-01

    Abscisic acid (ABA) mediated growth control is a fundamental response of plants to adverse environmental cues. The linkage between ABA perception and growth control is currently being unravelled by using different experimental approaches such as mutant analysis and microinjection experiments. So far, two protein phosphatases, ABI1 and ABI2, cADPR, pH, and Ca2+ have been identified as main components of the ABA signalling pathway. Here, the ABA signal transduction pathway is compared to signalling cascades from yeast and mammalian cells. A model for a bifurcated ABA signal transduction pathway exerting a positive and negative control mechanism is proposed. PMID:9800207

  10. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.

    PubMed

    Sulochana, M B; Jayachandra, S Y; Kumar, S Anil; Parameshwar, A B; Reddy, K Mohan; Dayanand, A

    2014-09-01

    Siderophores scavenges Fe(+3) from the vicinity of the roots of plants, and thus limit the amount of iron required for the growth of pathogens such as Fusarium oxysporum, Pythium ultimum, and Fusarium udum, which cause wilt and root rot disease in crops. The ability of Pseudomonas to grow and to produce siderophore depends upon the iron content, pH, and temperature. Maximum yield of siderophore of 130 μM was observed at pH 7.0 ± 0.2 and temperature of 30 °C at 30 h. The threshold level of iron was 50 μM, which increases up to 150 μM, favoring growth but drastically affecting the production of siderophore by Pseudomonas aeruginosa JAS-25. The seeds of agricultural crops like Cicer arietinum (chick pea), Cajanus cajan (pigeon pea), and Arachis hypogaea (ground nut) were treated with P. aeruginosa JAS-25, which enhanced the seed germination, root length, shoot length, and dry weight of chick pea, pigeon pea, and ground nut plants under pot studies. The efficient growth of the plants was not only due to the biocontrol activity of the siderophore produced by P. aeruginosa JAS-25 but also may be by the production of indole acetic acid (IAA), which influences the growth of the plants as phytohormones.

  11. Restoring directional growth sense to plants in space

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    Introduction of new plant classification: electrotropic (Et) and non-electrotropic (nEt) plants gives us a criterion which plants need electric field to grow "normally" in space. The electric field: E is measured in V/m (volt per meter). Do not confuse "electrotropism" understood by some as the response to current flow transversely through the plant's root. This effect was previously described in biological textbooks. I suggest to call it as (Ct) (here C stands for current and t for tropism). In the laboratory we have in the plant growth chamber two transparent to light (wire mesh) conducting sheets separated by m(meters) and V volts potential difference. It has been shown in laboratory that Et is a very important factor in electrotropic plant development. Space experiments with plants grown in orbit from seed to seed have been fully successful only (in my very best knowledge) with nEt plants. The most common nEt plants are grasses (more than 50% of all plants). The nEt plants in space use phototropism as their sensor of direction. In space (and most greenhouses) we have to provide the electric field at least for the Et plants. It has been shown that the electric field is also beneficial to nEt plants which also acquire the sense of direction imposed by stronger than the normal 130V/m E field (vector). The stronger horizontal E field of 1.6kV/m (slightly more than 12 times stronger than 130V/m) does not influence the rate of growth of maize (which is nEt) in 130V/m vertical field or even in the Faraday cage 0V/m. Yet when the maize gets its leaves, they all lean in the horizontal field (1.6kV/m) towards the anode. The direction of the E vector is defined by the E field lines running from the positive to the negative charges. Because the electric forces are a factor of 1038 times stronger than the gravitational forces, it is not important for the E field whether it acts on ions in the gravity or in weightlessness. We have to recall that on the Earth and in space Et

  12. Plant movements and climate warming: intraspecific variation in growth responses to nonlocal soils.

    PubMed

    De Frenne, Pieter; Coomes, David A; De Schrijver, An; Staelens, Jeroen; Alexander, Jake M; Bernhardt-Römermann, Markus; Brunet, Jörg; Chabrerie, Olivier; Chiarucci, Alessandro; den Ouden, Jan; Eckstein, R Lutz; Graae, Bente J; Gruwez, Robert; Hédl, Radim; Hermy, Martin; Kolb, Annette; Mårell, Anders; Mullender, Samantha M; Olsen, Siri L; Orczewska, Anna; Peterken, George; Petřík, Petr; Plue, Jan; Simonson, William D; Tomescu, Cezar V; Vangansbeke, Pieter; Verstraeten, Gorik; Vesterdal, Lars; Wulf, Monika; Verheyen, Kris

    2014-04-01

    Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting thermal environments can establish in nonlocal sites. We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional range, and reflecting movement scenarios of up to 1600 km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. We found significantly positive effects of the difference between the temperature of the sites of seed and soil collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently 'colder' soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant performance. Our results suggest that abiotic and biotic soil characteristics can shape climate change-driven plant movements by affecting growth of nonlocal migrants, a mechanism which should be integrated into predictions of future range shifts.

  13. Increasing plant growth by modulating omega-amidase expression in plants

    DOEpatents

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2015-06-30

    The present disclosure relates to compositions and methods for increasing the leaf-to-root ratio of the signal metabolite 2-oxoglutaramate and related proline molecules in plants by modulating levels of .omega.-amidase to increase nitrogen use efficiency, resulting in enhanced growth, faster growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, increased tolerance to high salt conditions, and increased biomass yields.

  14. Cadmium content of plants as affected by soil cadmium concentration

    SciTech Connect

    Lehoczky, E.; Szabados, I.; Marth, P.

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With the same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.

  15. Composition of hydroponic medium affects thorium uptake by tobacco plants.

    PubMed

    Soudek, Petr; Kufner, Daniel; Petrová, Sárka; Mihaljevič, Martin; Vaněk, Tomáš

    2013-08-01

    The ability of thorium uptake as well as responses to heavy metal stress were tested in tobacco cultivar La Burley 21. Thorium was accumulated preferentially in the root system. The presence of citric, tartaric and oxalic acids in hydroponic medium increased thorium accumulation in all plant organs. On the other hand, the addition of diamines and polyamines, the important antioxidants in plants, resulted in decrease of thorium accumulation, especially in the root system. Negative correlation was found between putrescine concentration and thorium accumulation. Nevertheless, the most important factor influencing the accumulation of thorium was the absence of phosphate ions in a hydroponic medium that caused more than 10-fold increase of thorium uptake in all plant parts. Accumulation and distribution of thorium was followed in six cultivars and 14 selected transformants. Cultivar La Barley 21 represented an average between the tested genotypes, having a very good distribution ratio between roots, stems and leaves.

  16. How neighbor canopy architecture affects target plant performance

    SciTech Connect

    Tremmel, D.C.; Bazzaz, F.A. )

    1993-10-01

    Plant competition occurs through the negative effects that individual plants have on resource availability to neighboring individuals. Therefore competition experiments need to examine how different species change resource availability to their neighbors, and how different species respond to these changes-allocationally, architecturally, and physiologically-through time. In a greenhouse study we used a model system of annuals to examine how canopies of species having differing morphologies differed in their architectures and light-interception abilities, and how different species performed when grown in these canopies. Abutilon theophrasti, Datura stramonium, and Polygonum pensylvanicum were grown as [open quotes]targets[close quotes]. Plants were grown in pots, with one target plant and four neighbor plants. Detailed measurements of neighbor canopy structure and target plant canopy architecture were made at five harvests. Species with different morphologies showed large differences in canopy structure, particularly when grass and forb species were compared. Setaria, a grass, had a more open canopy than the other species (all forbs), and was a consistently weak competitor. Overall, however, the relative effects of different neighbors on target biomass varied with target species. Target biomass was poorly correlated with neighbor biomass and leaf area, but was highly correlated with a measure of target light-interception ability that took into account both target leaf deployment and neighbor light interception. Despite clear differences among neighbor species in canopy structure and effect on light penetration, the results suggest no broad generalizations about the effects of different species as neighbors. Knowledge of morphological, physiological, and life history characteristics of both the target and neighbor species may be necessary to explain the results of their competition. 53 refs., 4 figs., 4 tabs.

  17. Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina.

    PubMed

    Viruel, Emilce; Lucca, María E; Siñeriz, Faustino

    2011-07-01

    The ability of soil microorganisms to solubilize phosphate is an important trait of plant growth-promoting bacteria leading to increased yields and smaller use of fertilizers. This study presents the isolation and characterization of phosphobacteria from Puna, northwestern Argentina and the ability to produce phosphate solubilization, alkaline phosphatase, siderophores, and indole acetic acid. The P-solubilizing activity was coincidental with a decrease in pH values of the tricalcium phosphate medium for all strains after 72 h of incubation. All the isolates showed the capacity to produce siderophores and indoles. Identification by 16S rDNA sequencing and phylogenetic analysis revealed that these strains belong to the genera Pantoea, Serratia, Enterobacter, and Pseudomonas. These isolates appear attractive for exploring their plant growth-promoting activity and potential field application.

  18. Plant development in space: Observations on root formation and growth

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Kann, R. P.; Krikorian, Abraham D.

    1990-01-01

    Root growth in space is discussed and observations on root production from plants flown as part of the Chromex project that were defined as to their origin, stage of development and physiological status, are presented. Roots were generated from fully differentiated, aseptically maintained individuals of Haplopappus gracilis (Compositae) under spaceflight conditions. Results are compared for tissue culture generated plantlets and comparably sized seedling clone individuals, both of which had their roots trimmed on Earth before they were loaded into NASA's plant growth unit and subjected to a 5 day shuttle flight (STS-29). Asepsis was maintained throughout the experiment. Overall root production was 40 to 50 percent greater under spaceflight conditions than during ground control tests. However, root formation slowed down towards the end of the flight. This decrease in new roots did not occur in the ground controls that sought to simulate flight except for microgravity.

  19. Impact of accelerated plant growth on seed variety development

    NASA Astrophysics Data System (ADS)

    Christophersen, Eric

    1998-01-01

    The commercial lives of agricultural seed products have steadily declined in recent years. The introduction of genetically engineered crop seeds in 1966 has accentuated that trend. Widespread grower demand for genetically engineered seed requires competitive response by industry followers in order to avert market share losses to the industry leaders. Limitations on plant transformation technology, regulatory requirements and patent impediments require companies to rapidly convert transformed lines into elite commercial products. Massive multigenerational backcrossing efforts are required to distribute genetically engineered traits into a broad product mix. Significant incidents of expression failures, or ``gene silencing,'' have occurred unexpectedly, requiring product substitution strategies. First-to-market strategies, competitive response, broad germplasm conversion and rescue of product failures all share the element of urgency. Technologies which reliably accelerate product development rates can expect favorable reception by commercial seed developers. A growth chamber which dramatically accelerates the rate of plant growth is described.

  20. Aromatic fluorine compounds. VIII. Plant growth regulators and intermediates

    USGS Publications Warehouse

    Finger, G.C.; Gortatowski, M.J.; Shiley, R.H.; White, R.H.

    1959-01-01

    The preparation and properties of 41 fluorophenoxyacetic acids, 4 fluorophenoxypropionic acids, 2 fluorobenzoic acids, several indole derivatives, and a number of miscellaneous compounds are described. Data are given for many intermediates such as new fluorinated phenols, anisoles, anilines and nitrobenzenes. Most of the subject compounds are related to a number of well-known herbicides or plant growth regulators such as 2,4-D, 2,4,5-T and others.

  1. Technology for subsystems of space-based plant growth facilities

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Corey, R. B.

    1990-01-01

    Technologies for different subsystems of space-based plant growth facilities are being developed at the Wisconsin Center for Space Automation and Robotics, a NASA Center for the Commercial Development of Space. The technologies include concepts for water and nutrient delivery, for nutrient composition control, and for irradiation. Effort is being concentrated on these subsystems because available technologies cannot be effectively utilized for space applications.

  2. Effects of shading and removal of plant parts on growth of Trema micrantha seedlings.

    PubMed

    Valio, I F

    2001-01-01

    Effects of artificial shading and removal of plant parts on growth of Trema micrantha (L.) Blume (Ulmaceae) seedlings were studied. Seedlings were grown in pots in a greenhouse in 45, 30, 10.6, 4.8 and 1.8% of full sunlight. Shading for 60 days had no effect on survival, but it influenced all growth parameters measured. Total biomass decreased with decreasing irradiance, reflecting reductions in dry mass of leaves, stems and roots. In response to shading, allocation of biomass to leaves increased, while allocation of biomass to roots decreased. Specific leaf area, leaf area ratio and leaf mass ratio increased with decreasing irradiance. Decreases in relative growth rate were caused by reductions in net assimilation rate rather than leaf area ratio. Photosynthetic efficiency, as determined by the Fv/Fm ratio (Fv = variable fluorescence, Fm = maximal fluorescence), was unaffected by the shading treatments. Partial removal of leaves, stem or roots did not affect seedling survival. Seedlings responded to removal of plant parts by compensatory growth. Topophysis was observed when the apex was removed: the lateral buds developed only as new plagiotropic lateral shoots; consequently, the decapitated plant ceased height growth and was unable to compete with its neighbors for light.

  3. Effect of planting date and spacing on growth and yield of fennel (Foeniculum vulgare Mill.) under irrigated conditions.

    PubMed

    Al-Dalain, Saddam Aref; Abdel-Ghani, Adel H; Al-Dala'een, Jawad A; Thalaen, Haditha A

    2012-12-01

    Fennel (Foeniculum vulgare Mill.) plant is a medicinal aromatic herb and belongs to Apiaceae family. It has a rich nutritional value and has many medicinal usages. Very limited information is available in the literature about fennel cultivation and production practices. Therefore, this study was carried out to evaluate the effect of planting date and plant spacing and their interactive effects on yield, yield components and growth of Fennel under irrigation. Three planting dates (Oct. 1st, Nov. 1st and Dec. 1st) and four plant spacings (10, 20, 30 and 40 cm with constant row width, 60 cm) were used. Fruit yield was significantly (p<0.05) influenced by plant spacing and planting date and their interaction. Early planting significantly increased the fruit yield combined with higher number of branches per plant, number of umbrella per plant, number of fruit per plant and plant height. The percentage of increases in Oct. 1st were 34.4 and 32.2% in fruit and biological yield respectively compared with Dec. 1st. Harvest index and thousand fruit weight was not significantly affected by planting date. Increase plant spacing to 30 cm led to more than 15% increase in fruit and biological yield. The early planting date with 30 cm plant spacing resulted in higher fruit (4136 kg ha(-1)) and biological yield (10,114 kg ha(-1)).

  4. Seed germination of medicinal plant, fennel (Foeniculum vulgare Mill), as affected by different priming techniques.

    PubMed

    Tahaei, Amirreza; Soleymani, Ali; Shams, Majid

    2016-09-01

    Reduced seed germination is among the most important factors adversely affecting crop stand and subsequent plant growth. Fennel (Foeniculum vulgare Mill) is an important medicinal plant with poor seed germination rate, occasionally. It is accordingly pertinent to find methods which can enhance fennel seed germination and remove the barriers of dormancy breaking. The present experiments studied the effects of two different priming (cold moist stratification and osmopriming) and 14 dormancy breaking techniques (hormonal, osmopriming, biopriming, chemical priming, and hydropriming) on the seed germination and seedling growth of two different fennel genotypes under growth chamber conditions. In the first and second experiment, the priming techniques including the time lengths of cold moist stratification (0, 15, 30, and 45 days) and the concentrations of polyethylene glycol 6000 (PEG6000, osmopriming at -0.99, -1.35, and -2.33 MPa) were used as the main plots. However, in both experiments, the dormancy breaking techniques and fennel genotypes were factorially combined and used as the subplots. Different seed- and seedling-related parameters including germination (%), plumule, radicle and seedling length, average germination time, rate and homogeneity of germination, and seed vigor index were determined. Both priming techniques were efficient on the enhancement of seed germination and seedling growth. Among the dormancy breaking techniques, Aminol Forte (biopriming), kadostim (biopriming), benzyl adenine + kinetin (biopriming), distilled water (hydropriming), gibberellin + kinetin (hormonal priming), and benzyl adenine + kinetin + gibberellin (biopriming) were the most effective ones. The related concentrations were equal to 100 mg/l, 10(-5) M, and 0.4 %. The fennel genotypes reacted significantly different under priming conditions. It is possible to enhance seed germination and seedling growth of fennel using priming and dormancy breaking

  5. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria.

    PubMed

    Chakraborty, U; Chakraborty, B N; Chakraborty, A P; Dey, P L

    2013-05-01

    Soil microorganisms with potential for alleviation of abiotic stresses in combination with plant growth promotion would be extremely useful tools in sustainable agriculture. To this end, the present study was initiated where forty-five salt tolerant bacterial isolates with ability to grow in high salt medium were obtained from the rhizosphere of Triticum aestivum and Imperata cylindrica. These bacteria were tested for plant-growth-promoting rhizobacteria traits in vitro such as phosphate solubilization, siderophore, ACC deaminase and IAA production. Of the forty-five isolates, W10 from wheat rhizosphere and IP8 from blady grass rhizosphere, which tested positive in all the tests were identified by morpholological, biochemical and 16SrDNA sequencing as Bacillus safensis and Ochrobactrum pseudogregnonense respectively and selected for in vivo studies. Both the bacteria could promote growth in six varieties of wheat tested in terms of increase in root and shoot biomass, height of plants, yield, as well as increase in chlorophyll content. Besides, the wheat plants could withstand water stress more efficiently in presence of the bacteria as indicated by delay in appearance of wilting symptoms increases in relative water content of treated water stressed plants in comparison to untreated stressed ones, and elevated antioxidant responses. Enhanced antioxidant responses were evident as elevated activities of enzymes such as catalase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase as well as increased accumulation of antioxidants such as carotenoids and ascorbate. Results clearly indicate that the ability of wheat plants to withstand water stress is enhanced by application of these bacteria which also function as plant growth promoting rhizobacteria.

  6. Plant extracts affect in vitro rumen microbial fermentation.

    PubMed

    Busquet, M; Calsamiglia, S; Ferret, A; Kamel, C

    2006-02-01

    Different doses of 12 plant extracts and 6 secondary plant metabolites were incubated for 24 h in diluted ruminal fluid with a 50:50 forage:concentrate diet. Treatments were: control (no additive), plant extracts (anise oil, cade oil, capsicum oil, cinnamon oil, clove bud oil, dill oil, fenugreek, garlic oil, ginger oil, oregano oil, tea tree oil, and yucca), and secondary plant metabolites (anethol, benzyl salicylate, carvacrol, carvone, cinnamaldehyde, and eugenol). Each treatment was supplied at 3, 30, 300, and 3,000 mg/L of culture fluid. At 3,000 mg/L, most treatments decreased total volatile fatty acid concentration, but cade oil, capsicum oil, dill oil, fenugreek, ginger oil, and yucca had no effect. Different doses of anethol, anise oil, carvone, and tea tree oil decreased the proportion of acetate and propionate, which suggests that these compounds may not be nutritionally beneficial to dairy cattle. Garlic oil (300 and 3,000 mg/L) and benzyl salicylate (300 and 3,000 mg/L) reduced acetate and increased propionate and butyrate proportions, suggesting that methane production was inhibited. At 3,000 mg/L, capsicum oil, carvacrol, carvone, cinnamaldehyde, cinnamon oil, clove bud oil, eugenol, fenugreek, and oregano oil resulted in a 30 to 50% reduction in ammonia N concentration. Careful selection and combination of these extracts may allow the manipulation of rumen microbial fermentation.

  7. Host plant affects morphometric variation of Diaphorina citri (Hemiptera: Liviidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian citrus psyllid (ACP), due to its potential to vector the pathogen causing citrus greening disease or huanglongbing, is one of the most serious citrus pests worldwide. While optimal plant cultivars for ACP oviposition and development have been determined, little is known of the influence of...

  8. Maximizing plant density affects broccoli yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased demand for fresh market bunch broccoli (Brassica oleracea L. var. italica) has led to increased production along the United States east coast. Maximizing broccoli yields is a primary concern for quickly expanding southeastern commercial markets. This broccoli plant density study was carr...

  9. Grazing Intensity Does Not Affect Plant Diversity in Shortgrass Steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Responses of livestock gain and forage production to grazing intensity in shortgrass steppe are well-established, but effects on basal cover and plant diversity are less so. A long-term grazing intensity study was initiated on shortgrass steppe at the Central Plains Experimental Range (USDA-Agricult...

  10. Plant community and target species affect responses to restoration strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increases in Kentucky bluegrass and smooth brome on northern Great Plains rangelands have the potential to negatively impact ecosystem function, lower plant diversity and alter seasonal forage distribution, but control strategies are lacking in the region. A project was initiated on a heavily invad...

  11. A hydroponic method for plant growth in microgravity

    NASA Technical Reports Server (NTRS)

    Wright, B. D.

    1985-01-01

    A hydroponic apparatus under development for long-term microgravity plant growth is described. The capillary effect root environment system (CERES) is designed to keep separate the nutrient and air flows, although both must be simultaneously available to the roots. Water at a pressure slightly under air pressure is allowed to seep into a plastic depression covered by a plastic screen and a porous membrane. A root in the air on the membrane outer surface draws the moisture through it. The laboratory model has a wire-based 1.241 mm mesh polyethylene screen and a filter membrane with 0.45 micron pores, small enough to prohibit root hair penetration. The design eliminates the need to seal-off the plant environment. Problems still needing attention include scaling up of the CERES size, controlling biofouling of the membrane, and extending the applications to plants without fibrous root systems.

  12. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity.

    PubMed

    Chung, Joon-hui; Song, Geun Cheol; Ryu, Choong-Min

    2016-04-01

    Beneficial bacteria produce diverse chemical compounds that affect the behavior of other organisms including plants. Bacterial volatile compounds (BVCs) contribute to triggering plant immunity and promoting plant growth. Previous studies investigated changes in plant physiology caused by in vitro application of the identified volatile compounds or the BVC-emitting bacteria. This review collates new information on BVC-mediated plant-bacteria airborne interactions, addresses unresolved questions about the biological relevance of BVCs, and summarizes data on recently identified BVCs that improve plant growth or protection. Recent explorations of bacterial metabolic engineering to alter BVC production using heterologous or endogenous genes are introduced. Molecular genetic approaches can expand the BVC repertoire of beneficial bacteria to target additional beneficial effects, or simply boost the production level of naturally occurring BVCs. The effects of direct BVC application in soil are reviewed and evaluated for potential large-scale field and agricultural applications. Our review of recent BVC data indicates that BVCs have great potential to serve as effective biostimulants and bioprotectants even under open-field conditions.

  13. Proposal of a Simple Plant Growth System under Microgravity Conditions in Space

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro; Tsukamoto, Koya; Yamashita, Youichirou

    2012-07-01

    Plant culture in space has multiple functions for human life support such as providing food and purifying air and water. It is also suggested that crew can relieve their stress by watching growing plants and by enjoying fresh vegetable food during staying for several months in the International Space Station. Under such circumstances, it is an utmost importance to develop plant culture equipment that can be handled more easily by crew. This study aims to develop an easy-to-use plant growth system with modification of commercial household plant culture equipment. The item is equipped with a peltier device for cooling air and collecting water vapor in the growth room. The study was conducted to examine the performance of the equipment under microgravity conditions that were created by the parabolic airplane flights. As a result, the temperature of the peltier device was affected under the microgravity conditions due to the absence of heat convection. When an air flow was made with an air circulation fan, the temperature of the peltier device was stable to gravity changes. The water recycling method for an automatic nutrient solution supply system in the closed plant culture equipment under microgravity is proposed. In addition, a high output white LEDs showing a good performance for growing leafy vegetables will be introduced.

  14. Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria.

    PubMed

    Gontia-Mishra, I; Sapre, S; Sharma, A; Tiwari, S

    2016-11-01

    Drought stress adversely affects the growth and yield of wheat. The present study was planned to investigate the effect of inoculation of plant-growth promoting rhizobacteria (PGPR) strains IG 3 (Klebsiella sp.), IG 10 (Enterobacter ludwigii) and IG 15 (Flavobacterium sp.) in improving drought tolerance in wheat. These PGPR strains were screened for drought tolerance in nutrient broth supplemented with different concentrations (0-25%) of polyethylene glycol (PEG6000). Effect of PGPR inoculation on various physiological, biochemical parameters and gene expression of stress responsive genes were studied under drought stress. Root colonization at the surface and interiors of roots was demonstrated using scanning electron microscopy (SEM) and tetrazolium staining, respectively. Drought stress significantly affected various growth parameters, water status, membrane integrity, osmolyte accumulation and stress-responsive gene expressions, which were positively altered by PGPR-inoculation in wheat. Quantitative real-time (qRT)-PCR analysis revealed the up regulation of some stress-related genes (DREB2A and CAT1) in un-inoculated wheat plants exposed to drought stress. PGPR-inoculated plants showed attenuated transcript levels suggesting improved drought tolerance due to interaction of PGPRs. The PGPR strain IG 3 was found to be the best in terms of influencing biochemical and physiological status of the seedlings under drought stress. Our report demonstrates the role of PGPRs Enterobacter ludwigii and Flavobacterium sp. in plant growth promotion of wheat plants under drought stress. The study reports the potential of PGPR in alleviating drought stress in wheat which could be used as potent biofertilizers.

  15. Growth but Not Photosynthesis Response of a Host Plant to Infection by a Holoparasitic Plant Depends on Nitrogen Supply

    PubMed Central

    Shen, Hao; Xu, Shu-Jun; Hong, Lan; Wang, Zhang-Ming; Ye, Wan-Hui

    2013-01-01

    Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources transferred to the parasite at

  16. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply.

    PubMed

    Shen, Hao; Xu, Shu-Jun; Hong, Lan; Wang, Zhang-Ming; Ye, Wan-Hui

    2013-01-01

    Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources transferred to the parasite at

  17. Key Gaps for Enabling Plant Growth in Future Missions

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Motil, Brian; Barta, Dan; Fritsche, Ralph; Massa, Gioia; Quincy, Charlie; Romeyn, Matthew; Wheeler, Ray; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017. Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space

  18. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    PubMed

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change.

  19. Plant Growth Promotion Activity of Keratinolytic Fungi Growing on a Recalcitrant Waste Known as “Hair Waste”

    PubMed Central

    Cavello, Ivana A.; Crespo, Juan M.; García, Sabrina S.; Zapiola, José M.; Luna, María F.; Cavalitto, Sebastián F.

    2015-01-01

    Purpureocillium lilacinum (Thom) Samsom is one of the most studied fungi in the control of plant parasitic nematodes. However, there is not specific information on its ability to inhibit some pathogenic bacteria, fungi, or yeast. This work reports the production of several antifungal hydrolytic enzymes by a strain of P. lilacinum when it is grown in a medium containing hair waste. The growth of several plant-pathogenic fungi, Alternaria alternata, Aspergillus niger, and Fusarium culmorum, was considerably affected by the presence of P. lilacinum's supernatant. Besides antifungal activity, P. lilacinum demonstrates the capability to produce indoleacetic acid and ammonia during time cultivation on hair waste medium. Plant growth-promoting activity by cell-free supernatant was evidenced through the increase of the percentage of tomato seed germination from 71 to 85% after 48 hours. A 21-day plant growth assay using tomato plants indicates that crude supernatant promotes the growth of the plants similar to a reference fertilizer (p > 0.05). These results suggest that both strain and the supernatant may have potential to be considered as a potent biocontrol agent with multiple plant growth-promoting properties. To our knowledge, this is the first report on the antifungal, IAA production and tomato growth enhancing compounds produced by P. lilacinum LPSC #876. PMID:26697226

  20. CO2 and fertility affect growth and reproduction but not susceptibility to aphids in field grown Solanum ptycanthum

    SciTech Connect

    Long, T.M.

    1995-09-01

    In general, C3 annual plants respond positively in terms of growth, reproduction and biomass accrued when grown under elevated levels of atmospheric carbon dioxide. However, most studies documenting this response have been conducted in growth chambers where plants can be reared under conditions free form environmental stressors such as nutrient and water constraints, UV exposure and damage from pests. During the 1993 fieldseason, I grew 200 individuals of Solanum ptycanthum in an array of 10 outdoor, open-topped CO2 enclosures (5 @ 700 ppm CO2) at the University of Michigan Biological Station in Pellston, MI. Half of the plants were grown in a 50;50 mix of native C-horizon soil and topsoil (low fertility); the other half were grown in 100% topsoil (high-fertility). Plants were censused throughout the growing season for flower and fruit production, growth rate and degree of infestation of aphids. Fertility and CO2 both significantly affected production of flowers and fruits, but only fertility was significantly related to vegetative growth. Aphid infestation varied significantly among enclosures, but was not related to CO2 or fertility.

  1. Evaluating and optimizing horticultural regimes in space plant growth facilities

    NASA Technical Reports Server (NTRS)

    Berkovich, Y. A.; Chetirkin, P. V.; Wheeler, R. M.; Sager, J. C.

    2004-01-01

    In designing innovative space plant growth facilities (SPGF) for long duration space flight, various limitations must be addressed including onboard resources: volume, energy consumption, heat transfer and crew labor expenditure. The required accuracy in evaluating on board resources by using the equivalent mass methodology and applying it to the design of such facilities is not precise. This is due to the uncertainty of the structure and not completely understanding the properties of all associated hardware, including the technology in these systems. We present a simple criteria of optimization for horticultural regimes in SPGF: Qmax = max [M x (EBI)2/(V x E x T], where M is the crop harvest in terms of total dry biomass in the plant growth system; EBI is the edible biomass index (harvest index), V is volume occupied by the crop; E is the crop light energy supply during growth; T is the crop growth duration. The criterion reflects directly on the consumption of onboard resources for crop production. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Evolution of plant growth and defense in a continental introduction.

    PubMed

    Agrawal, Anurag A; Hastings, Amy P; Bradburd, Gideon S; Woods, Ellen C; Züst, Tobias; Harvey, Jeffrey A; Bukovinszky, Tibor

    2015-07-01

    Substantial research has addressed adaptation of nonnative biota to novel environments, yet surprisingly little work has integrated population genetic structure and the mechanisms underlying phenotypic differentiation in ecologically important traits. We report on studies of the common milkweed Asclepias syriaca, which was introduced from North America to Europe over the past 400 years and which lacks most of its specialized herbivores in the introduced range. Using 10 populations from each continent grown in a common environment, we identified several growth and defense traits that have diverged, despite low neutral genetic differentiation between continents. We next developed a Bayesian modeling approach to account for relationships between molecular and phenotypic differences, confirming that continental trait differentiation was greater than expected from neutral genetic differentiation. We found evidence that growth-related traits adaptively diverged within and between continents. Inducible defenses triggered by monarch butterfly herbivory were substantially reduced in European populations, and this reduction in inducibility was concordant with altered phytohormonal dynamics, reduced plant growth, and a trade-off with constitutive investment. Freedom from the community of native and specialized herbivores may have favored constitutive over induced defense. Our replicated analysis of plant growth and defense, including phenotypically plastic traits, suggests adaptive evolution following a continental introduction.

  3. Ligand Receptor-Mediated Regulation of Growth in Plants.

    PubMed

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  4. Watermelon seedling growth and mortality as affected by Anasa tristis (Heteroptera: Coreidae).

    PubMed

    Edelson, J V; Duthie, J; Roberts, W

    2002-06-01

    Adult squash bugs, Anasa tristis (De Geer), were confined on seedling watermelon plants at densities of zero, one, two, and four per plant. Squash bugs were allowed to feed on the plants until plants died or reached 30 cm in height. Number of leaves and length of plant vine were recorded at 2- or 3-d intervals. Seedling foliage, stems, and roots were harvested and dried after plants reached 30 cm in height. Growth of seedlings was regressed on number of squash bugs and results indicated that an increasing density of squash bugs feeding on seedlings resulted in a significant reduction in plant growth. Additionally, increased density of squash bugs resulted in reduced weight of foliage and root dry biomass. Seedling mortality increased as the density of squash bugs increased.

  5. Simulating unstressed crop development and growth using the Unified Plant Growth Model (UPGM)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since development of the EPIC model in 1989, many versions of the plant growth component have been incorporated into other erosion and crop management models and subsequently modified to meet model objectives (e.g., WEPS, WEPP, SWAT, ALMANAC, GPFARM). This has resulted in different versions of the ...

  6. Plant hydraulic traits govern forest water use and growth

    NASA Astrophysics Data System (ADS)

    Matheny, Ashley; Bohrer, Gil; Fiorella, Rich; Mirfenderesgi, Golnazalsadat

    2016-04-01

    Biophysical controls at the leaf, stem, and root levels govern plant water acquisition and use. Suites of sometimes co-varying traits afford plants the ability to manage water stress at each of these three levels. We studied the contrasting hydraulic strategies of red oaks (Q. rubra) and red maples (A. rubrum) in northern Michigan, USA. These two species differ in stomatal regulation strategy and xylem architecture, and are thought to root at different depths. Water use was monitored through sap flux, stem water storage, and leaf water potential measurements. Depth of water acquisition was determined on the basis of stable oxygen and hydrogen isotopes from xylem water samples taken from both species. Fifteen years of bole growth records were used to compare the influence of the trees' opposing hydraulic strategies on carbon acquisition and growth. During non-limiting soil moisture conditions, transpiration from red maples typically exceeded that of red oak. However, during a 20% soil dry down, transpiration from red maples decreased by more than 80%, while transpiration from red oaks only fell by 31%. Stem water storage in red maple also declined sharply, while storage in red oaks remained nearly constant. The more consistent isotopic compositions of xylem water samples indicated that oaks can draw upon a steady, deep supply of water which red maples cannot access. Additionally, red maple bole growth correlated strongly with mean annual soil moisture, while red oak bole growth did not. These results indicate that the deeper rooting strategy of red oaks allowed the species to continue transpiration and carbon uptake during periods of intense soil water limitation, when the shallow-rooted red maples ceased transpiration. The ability to root deeply could provide an additional buffer against drought-induced mortality, which may permit some anisohydric species, like red oak, to survive hydrologic conditions that would be expected to favor survival of more isohydric

  7. Plant Litter Submergence Affects the Water Quality of a Constructed Wetland.

    PubMed

    Pan, Xu; Ping, Yunmei; Cui, Lijuan; Li, Wei; Zhang, Xiaodong; Zhou, Jian; Yu, Fei-Hai; Prinzing, Andreas

    2017-01-01

    Plant litter is an indispensable component of constructed wetlands, but how the submergence of plant litter affects their ecosystem functions and services, such as water purification, is still unclear. Moreover, it is also unclear whether the effects of plant litter submergence depend on other factors such as the duration of litter submergence, water source or litter species identity. Here we conducted a greenhouse experiment by submerging the litter of 7 wetland plant species into three types of water substrates and monitoring changes in water nutrient concentrations. Litter submergence affected water quality positively via decreasing the concentration of nitrate nitrogen and negatively via increasing the concentrations of total nitrogen, ammonium nitrogen and total phosphorus. The effects of litter submergence depended on the duration of litter submergence, the water source, the litter species identity, and the plant life form. Different plant species had different effects on the water nutrient concentrations during litter submergence, and the effects of floating plants might be more negative than that of emergent plants. These results are novel evidence of how the submergence of different plant (life form) litter may affect the purification function of constructed wetlands. For water at low eutrophication levels, submerging a relative small amount of plant litter might improve water quality, via benefiting the denitrification process in water. These findings emphasized the management of floating plant litter (a potential removal) during the maintenance of human-controlled wetland ecosystems and provided a potential tool to improve the water quality of constructed wetlands via submerging plant litter of different types.

  8. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    SciTech Connect

    Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.-B.; Walla, M. D.; Vangronsveld, J.; Newman, L.; Monchy, S.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  9. Effects of Plant Genotype and Growth Stage on the Betaproteobacterial Communities Associated with Different Potato Cultivars in Two Fields▿ †

    PubMed Central

    İnceoğlu, Özgül; Salles, Joana Falcão; van Overbeek, Leo; van Elsas, Jan Dirk

    2010-01-01

    Bacterial communities in the rhizosphere are dynamic and susceptible to changes in plant conditions. Among the bacteria, the betaproteobacteria play key roles in nutrient cycling and plant growth promotion, and hence the dynamics of their community structures in the rhizosphere should be investigated. Here, the effects of plant cultivar, growth stage, and soil type on the communities associated with potato cultivars Aveka, Aventra, Karnico, Modena, Premiere, and Désirée were assessed for two different fields containing sandy soil with either a high or low organic compound content. Thus, bacterial and betaproteobacterial PCR-denaturing gradient gel electrophoresis analyses were performed to analyze the effects of plant cultivar and growth on the rhizosphere community structure. The analyses showed that in both fields all cultivars had a rhizosphere effect on the total bacterial and betaproteobacterial communities. In addition, the plant growth stage strongly affected the betaproteobacterial communities in both fields. Moreover, the community structures were affected by cultivar, and cultivars differed in physiology, as reflected in their growth rates, root development, and estimated tuber starch contents. Analyses of betaproteobacterial clone libraries constructed for two selected cultivars (one cultivar that produced low-starch-content tubers and one cultivar that produced high-starch-content tubers), as well as bulk soil, revealed that the rhizospheres of the two cultivars selected for specific bacteria, including plant-growth-promoting bacteria, such as Variovorax and Achromobacter spp. In addition, quantitative PCR-based quantification of the Variovorax paradoxus-specific functional gene asfA (involved in desulfonation) indicated that there were clear potato rhizosphere effects on the abundance of this gene. Interestingly, both cultivar type and plant growth stage affected the community under some circumstances. PMID:20363788

  10. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields.

    PubMed

    Inceoğlu, Ozgül; Salles, Joana Falcão; van Overbeek, Leo; van Elsas, Jan Dirk

    2010-06-01

    Bacterial communities in the rhizosphere are dynamic and susceptible to changes in plant conditions. Among the bacteria, the betaproteobacteria play key roles in nutrient cycling and plant growth promotion, and hence the dynamics of their community structures in the rhizosphere should be investigated. Here, the effects of plant cultivar, growth stage, and soil type on the communities associated with potato cultivars Aveka, Aventra, Karnico, Modena, Premiere, and Désirée were assessed for two different fields containing sandy soil with either a high or low organic compound content. Thus, bacterial and betaproteobacterial PCR-denaturing gradient gel electrophoresis analyses were performed to analyze the effects of plant cultivar and growth on the rhizosphere community structure. The analyses showed that in both fields all cultivars had a rhizosphere effect on the total bacterial and betaproteobacterial communities. In addition, the plant growth stage strongly affected the betaproteobacterial communities in both fields. Moreover, the community structures were affected by cultivar, and cultivars differed in physiology, as reflected in their growth rates, root development, and estimated tuber starch contents. Analyses of betaproteobacterial clone libraries constructed for two selected cultivars (one cultivar that produced low-starch-content tubers and one cultivar that produced high-starch-content tubers), as well as bulk soil, revealed that the rhizospheres of the two cultivars selected for specific bacteria, including plant-growth-promoting bacteria, such as Variovorax and Achromobacter spp. In addition, quantitative PCR-based quantification of the Variovorax paradoxus-specific functional gene asfA (involved in desulfonation) indicated that there were clear potato rhizosphere effects on the abundance of this gene. Interestingly, both cultivar type and plant growth stage affected the community under some circumstances.

  11. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    PubMed

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  12. Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit.

    PubMed

    Hoffmann, Anna M; Noga, Georg; Hunsche, Mauricio

    2015-03-01

    We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m(-2) s(-1)) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations.

  13. Essential oils from clove affect growth of Penicillium species obtained from lemons.

    PubMed

    Martínez, J A; González, R

    2013-01-01

    Continuous use of fungicides to control citrus postharvest diseases has led to increasing resistant strains of pathogens. Since the appearance of fungicide resistance has become an important factor in limiting the efficacy fungicide treatments, new studies have been needed in order to improve control methods. There is a growing consumer's concern about the possible harmful effects of synthetic fungicides on the human health and the environment. Alternatives to synthetic fungicides for citrus decay control include essential oils. These compounds are known for their natural components and they are searched for potential bioactive plant extracts against fungi. In this study, two isolates of P. digitatum and P. italicum each were collected from lemon fruits affected by green and blue mould, respectively. Isolates were purified in potato dextrose agar (PDA) in order to separate the two species which we are demonstrated that they commonly grow together in nature. In vitro assays, in which isolates were grown at 26 degrees C on Petri dishes containing PDA for up to 17 days, were carried out by pouring several doses of essential oils from clove (Syzygium aromaticum L.) on PDA to obtain the following concentrations (v/v): 1.6; 8, 40, 200 and 500 microL L(-1) + tween 80 (0.1 mL L(-1)). Mycelial growth curves and growth, conidiation, mass of aerial mycelium and conidial size were measured. Penicillium isolates showed a slight degree of variability in their growth kinetics, depending on the isolate. 500 microL L(-1) inhibited the growth of all the isolates, whereas concentrations lower than 40 microL L(-1) slightly increased the growth. 200 microL L(-1) reduced both growth and conidiation in all isolates. Aerial mycelium of P. digitatum was not affected by clove, whereas reduced the mass of mycelium of P. italicum at concentrations higher than 8 microL L(-1). In vivo experiment was carried out inoculating a drop of an extract of conidia with a hypodermal syringe though a

  14. Minimising toxicity of cadmium in plants--role of plant growth regulators.

    PubMed

    Asgher, Mohd; Khan, M Iqbal R; Anjum, Naser A; Khan, Nafees A

    2015-03-01

    A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.

  15. Physiological and growth responses of C3 and C4 plants at the Pleistocene glacial maximum

    SciTech Connect

    Strain, B.R.

    1995-06-01

    A C3 plant (Abutilon theophrasti) and a C4 plant (Amaranthus retroflexus) were grown from seed in the Duke University Phytotron under four CO2 concentrations (15 Pa, below the Pleistocene minimum), 27 Pa (pre-industrial), 35 Pa (current), and 70 Pa (future) to examine photosynthetic, growth and reproduction responses of annual plants to historic and future levels of CO2. Net photosynthesis and growth were greatly inhibited at 15 Pa and greatly stimulated at 70 Pa. in the C3 Abutilon but only slightly affected in the C4 Amaranthus. Flower bud initiation was not affected by CO2 treatment in either species but all flower buds in 15 Pa CO2 aborted in the C3 within two days of appearance while no inhibition of reproduction was observed at low CO2 in the C4. Differences in physiology, growth and reproduction to the low levels of atmospheric CO2 of the Pleistocene suggest that competitive interactions of C3 and C4 annuals have changed through geologic time. A major question concerning the survival and evolution of obligate C3 annuals during the CO2 minima of the Pleistocene is raised by the results of this study.

  16. Dissolved oxygen concentration affects hybrid striped bass growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of dissolved oxygen (DO) concentration in ponds at night during the growing season is important because fish growth and yield are greater in ponds with higher nightly DO concentrations. Three studies were conducted to quantify performance traits and metabolic responses of hybrid striped b...

  17. Shade periodicity affects growth of container grown dogwoods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Container-grown dogwoods rank third in the US in nursery sales of ornamental trees. However, Dogwoods are a challenging crop to produce in container culture, especially when bare root liners are used as the initial transplant into containers due unacceptable levels of mortality and poor growth. This...

  18. Plant growth modeling at the JSC variable pressure growth chamber - An application of experimental design

    NASA Technical Reports Server (NTRS)

    Miller, Adam M.; Edeen, Marybeth; Sirko, Robert J.

    1992-01-01

    This paper describes the approach and results of an effort to characterize plant growth under various environmental conditions at the Johnson Space Center variable pressure growth chamber. Using a field of applied mathematics and statistics known as design of experiments (DOE), we developed a test plan for varying environmental parameters during a lettuce growth experiment. The test plan was developed using a Box-Behnken approach to DOE. As a result of the experimental runs, we have developed empirical models of both the transpiration process and carbon dioxide assimilation for Waldman's Green lettuce over specified ranges of environmental parameters including carbon dioxide concentration, light intensity, dew-point temperature, and air velocity. This model also predicts transpiration and carbon dioxide assimilation for different ages of the plant canopy.

  19. Evaluating and optimizing horticultural regimes in space plant growth facilities

    NASA Astrophysics Data System (ADS)

    Berkovich, Y.; Chetirkin, R.; Wheeler, R.; Sager, J.

    In designing innovative Space Plant Growth Facilities (SPGF) for long duration space f ightl various limitations must be addressed including onboard resources: volume, energy consumption, heat transfer and crew labor expenditure. The required accuracy in evaluating onboard resources by using the equivalent mass methodology and applying it to the design of such facilities is not precise. This is due to the uncertainty of the structure and not completely understanding of the properties of all associated hardware, including the technology in these systems. We present a simple criteria of optimization for horticultural regimes in SPGF: Qmax = max [M · (EBI) 2 / (V · E · T) ], where M is the crop harvest in terms of total dry biomass in the plant growth system; EBI is the edible biomass index (harvest index), V is a volume occupied by the crop; E is the crop light energy supply during growth; T is the crop growth duration. The criterion reflects directly on the consumption of onboard resources for crop production. We analyzed the efficiency of plant crops and the environmental parameters by examining the criteria for 15 salad and 12 wheat crops from the data in the ALS database at Kennedy Space Center. Some following conclusion have been established: 1. The technology involved in growing salad crops on a cylindrical type surface provides a more meaningful Q-criterion; 2. Wheat crops were less efficient than leafy greens (salad crops) when examining resource utilization; 3. By increasing light intensity of the crop the efficiency of the resource utilization could decrease. Using the existing databases and Q-criteria we have found that the criteria can be used in optimizing design and horticultural regimes in the SPGF.

  20. Host plant phenology affects performance of an invasive weevil, Phyllobius oblongus (Coleoptera: Curculionidae), in a northern hardwood forest.

    PubMed

    Coyle, David R; Jordan, Michelle S; Raffa, Kenneth F

    2010-10-01

    We investigated how host plant phenology and plant species affected longevity, reproduction, and feeding behavior of an invasive weevil. Phyllobius oblongus L. (Coleoptera: Curculionidae) is common in northern hardwood forests of the Great Lakes Region. Adults emerge in spring, feed on foliage of woody understory plants, and oviposit in the soil. Preliminary data indicate that adults often feed on sugar maple, Acer saccharum Marshall, foliage early in the season, then feed on other species such as raspberry, Rubus spp. Whether this behavior reflects temporal changes in the quality of A. saccharum tissue or merely subsequent availability of later-season plants is unknown. We tested adult P. oblongus in laboratory assays using young (newly flushed) sugar maple foliage, old (2-3 wk postflush) sugar maple foliage, and raspberry foliage. Raspberry has indeterminate growth, thus always has young foliage available for herbivores. Survival, oviposition, and leaf consumption were recorded. In performance assays under no-choice conditions, mated pairs were provided one type of host foliage for the duration of their lives. In behavioral choice tests, all three host plants were provided simultaneously and leaf area consumption was compared. Adults survived longer on and consumed greater amounts of young maple and raspberry foliage than old maple foliage. P. oblongus preferred young maple foliage to old maple foliage early in the season, however, later in the growing season weevils showed less pronounced feeding preferences. These results suggest how leaf phenology, plant species composition, and feeding plasticity in host utilization may interact to affect P. oblongus population dynamics.

  1. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth

    PubMed Central

    Mascarello, Maurizio

    2015-01-01

    Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW) and dry weight (DW) was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP) fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi. PMID:26641657

  2. Response of Phaseolus vulgaris L. plants to low-let ionizing radiation: Growth and oxidative stress

    NASA Astrophysics Data System (ADS)

    Arena, C.; De Micco, V.; Aronne, G.; Pugliese, M.; Virzo De Santo, A.; De Maio, A.

    2013-10-01

    The scenarios for the long-term habitation of space platforms and planetary stations involve plants as fundamental part of Bioregenerative Life Support Systems (BLSS) to support the crew needs. Several constraints may limit plant growth in space: among them ionizing radiation is recognized to severely affect plant cell at morphological, physiological and biochemical level. In this work, plants of Phaseolus vulgaris L. were subjected to four different doses of X-rays (0.3, 10, 50 and 100 Gy) in order to assess the effects of ionizing radiation on this species and to analyze possible mechanisms carried out to overcome the radiation injuries. The effects of X-rays on plant growth were assessed by measuring stem elongation, number of internodes and leaf dry weight. The integrity of photosynthetic apparatus was evaluated by photosynthetic pigment composition and ribulose 1,5-bisphosphate carboxylase (Rubisco) activity, whereas changes in total antioxidant pool and glutathione S transferase activity (GST) were utilized as markers of oxidative stress. The distribution of phenolic compounds in leaf tissues as natural shielding against radiation was also determined. Irradiation of plants at 0.3 and 10 Gy did not determine differences in all considered parameters as compared to control. On the contrary, at 50 and 100 Gy a reduction of plant growth and a decrease in photosynthetic pigment content, as well as an increase in phenolic compounds and a decrease in total antioxidant content and GST activity were found. Only a slight reduction of Rubisco activity in leaves irradiated at 50 and 100 Gy was found. The overall results indicate P. vulgaris as a species with a good potential to face ionizing radiation and suggest its suitability for utilization in BLSSs.

  3. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth.

    PubMed

    Dovana, Francesco; Mucciarelli, Marco; Mascarello, Maurizio; Fusconi, Anna

    2015-01-01

    Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW) and dry weight (DW) was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP) fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi.

  4. Preferential Promotion of Lycopersicon esculentum (Tomato) Growth by Plant Growth Promoting Bacteria Associated with Tomato.

    PubMed

    Vaikuntapu, Papa Rao; Dutta, Swarnalee; Samudrala, Ram Babu; Rao, Vukanti R V N; Kalam, Sadaf; Podile, Appa Rao

    2014-12-01

    A total of 74 morphologically distinct bacterial colonies were selected during isolation of bacteria from different parts of tomato plant (rhizoplane, phylloplane and rhizosphere) as well as nearby bulk soil. The isolates were screened for plant growth promoting (PGP) traits such as production of indole acetic acid, siderophore, chitinase and hydrogen cyanide as well as phosphate solubilization. Seven isolates viz., NR4, NR6, RP3, PP1, RS4, RP6 and NR1 that exhibited multiple PGP traits were identified, based on morphological, biochemical and 16S rRNA gene sequence analysis, as species that belonged to four genera Aeromonas, Pseudomonas, Bacillus and Enterobacter. All the seven isolates were positive for 1-aminocyclopropane-1-carboxylate deaminase. Isolate NR6 was antagonistic to Fusarium solani and Fusarium moniliforme, and both PP1 and RP6 isolates were antagonistic to F. moniliforme. Except RP6, all isolates adhered significantly to glass surface suggestive of biofilm formation. Seed bacterization of tomato, groundnut, sorghum and chickpea with the seven bacterial isolates resulted in varied growth response in laboratory assay on half strength Murashige and Skoog medium. Most of the tomato isolates positively influenced tomato growth. The growth response was either neutral or negative with groundnut, sorghum and chickpea. Overall, the results suggested that bacteria with PGP traits do not positively influence the growth of all plants, and certain PGP bacteria may exhibit host-specificity. Among the isolates that positively influenced growth of tomato (NR1, RP3, PP1, RS4 and RP6) only RS4 was isolated from tomato rhizosphere. Therefore, the best PGP bacteria can also be isolated from zones other than rhizosphere or rhizoplane of a plant.

  5. Light and Plants. A Series of Experiments Demonstrating Light Effects on Seed Germination, Plant Growth, and Plant Development.

    ERIC Educational Resources Information Center

    Downs, R. J.; And Others

    A brief summary of the effects of light on plant germination, growth and development, including photoperiodism and pigment formation, introduces 18 experiments and demonstrations which illustrate aspects of these effects. Detailed procedures for each exercise are given, the expected results outlined, and possible sources of difficulty discussed.…

  6. Habitats as Complex Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation?

    PubMed Central

    Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2014-01-01

    Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. PMID:24416354

  7. Potential for Plant Growth Promotion of Rhizobacteria Associated with Salicornia Growing in Tunisian Hypersaline Soils

    PubMed Central

    Mapelli, Francesca; Marasco, Ramona; Rolli, Eleonora; Barbato, Marta; Cherif, Hanene; Guesmi, Amel; Ouzari, Imen; Daffonchio, Daniele; Borin, Sara

    2013-01-01

    Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands. PMID:23781499

  8. Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils.

    PubMed

    Mapelli, Francesca; Marasco, Ramona; Rolli, Eleonora; Barbato, Marta; Cherif, Hanene; Guesmi, Amel; Ouzari, Imen; Daffonchio, Daniele; Borin, Sara

    2013-01-01

    Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands.

  9. Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran.

    PubMed

    Zou, Changsong; Li, Zhifang; Yu, Diqiu

    2010-08-01

    Several chemical changes in soil are associated with plant growth-promoting rhizobacteria. An endosporeforming bacterium, strain XTBG34, was isolated from a Xishuangbanna Tropical Botanical Garden soil sample and identified as Bacillus megaterium. The strain's volatiles had remarkable plant growth promotion activity in Arabidopsis thaliana plants; after 15 days treatment, the fresh weight of plants inoculated with XTBG34 was almost 2-fold compared with those inoculated with DH5alpha. Head space volatile compounds produced by XTBG34, trapped with headspace solid phase microextraction and identified by gas chromatography-mass spectrometry, included aldehydes, alkanes, ketones and aroma components. Of the 11 compounds assayed for plant growth promotion activity in divided Petri plates, only 2-pentylfuran increased plant growth. We have therefore identified a new plant growth promotion volatile of B. megaterium XTBG34, which deserves further study in the mechanisms of interaction between plant growth-promoting rhizobacteria and plants.

  10. Steps in Cu(111) thin films affect graphene growth kinetics

    NASA Astrophysics Data System (ADS)

    Miller, David L.; Gannett, Will; Keller, Mark W.

    2014-03-01

    The kinetics of chemical vapor deposition of graphene on Cu substrates depend on the relative rates of C diffusion on the surface, C attachment to graphene islands, and removal of C from the surface or from graphene islands by etching processes involving H atoms. Using Cu(111) thin films with centimeter-sized grains, we have grown graphene under a variety of conditions and examined the edges of graphene islands with SEM and AFM. The Cu surface shows a series of regular steps, roughly 2 nm in height, and the graphene islands are diamond-shaped with faster growth along the edges of Cu steps. In contrast, growth on polycrystalline Cu foils under the same conditions shows hexagonal graphene islands with smooth edges.

  11. Contributions of green light to plant growth and development.

    PubMed

    Wang, Yihai; Folta, Kevin M

    2013-01-01

    Light passing through or reflected from adjacent foliage provides a developing plant with information that is used to guide specific genetic and physiological processes. Changes in gene expression underlie adaptation to, or avoidance of, the light-compromised environment. These changes have been well described and are mostly attributed to a decrease in the red light to far-red light ratio and/or a reduction in blue light fluence rate. In most cases, these changes rely on the integration of red/far-red/blue light signals, leading to changes in phytohormone levels. Studies over the last decade have described distinct responses to green light and/or a shift of the blue-green, or red-green ratio. Responses to green light are typically low-light responses, suggesting that they may contribute to the adaptation to growth under foliage or within close proximity to other plants. This review summarizes the growth responses in artificially manipulated light environments with an emphasis on the roles of green wavebands. The information may be extended to understanding the influence of green light in shade avoidance responses as well as other plant developmental and physiological processes.

  12. Achieving and documenting closure in plant growth facilities

    NASA Technical Reports Server (NTRS)

    Knott, W. M.; Sager, John C.; Wheeler, Ray

    1992-01-01

    As NASA proceeds with its effort to develop a Controlled Ecological Life Support System (CELSS) that will provide life support to crews during long duration space missions, it must address the question of facility and system closure. The concept of closure as it pertains to CELSS and engineering specifications, construction problems and monitoring procedures used in the development and operation of a closed plant growth facility for the CELSS program are described. A plant growth facility is one of several modules required for a CELSS. A prototype of this module at Kennedy Space Center is the large (7m tall x 3.5m diameter) Biomass Production Chamber (BPC), the central facility of the CELSS Breadboard Project. The BPC is atmospherically sealed to a leak rate of approximately 5 percent of its total volume per 24 hours. This paper will discuss the requirements for atmospheric closure in the facility, present CO2 and trace gas data from initial tests of the BPC with and without plants, and describe how the chamber was sealed atmospherically. Implications that research conducted in this type of facility will have for the CELSS program are discussed.

  13. Theoretical search for the growth-temperature relationship in plants.

    PubMed

    Lewicka, S; Pietruszka, M

    2006-06-01

    In this article we deal with the definition of a new phenomenological model with physical bases for the response of short-term cell expansion growth to temperature. Although the interest on both the biomechanical bases of elongation growth and on temperature responses has a long lasting development in plant biology and biophysics, yet the question of the mode of actions of temperature is a very relevant and still open one. The purpose of our paper was not to deal with all the complexity of the possible effects of temperature on a growing cell but to concentrate on two more focused questions: i) whether it is possible to specify an optimal temperature for growth responses all along development by defining some phenomenological equations for temperature response, ii) can we learn something from that on the temperature dependence of the cell wall expansion process using a minimal analytical modelling? To answer both questions we introduce (by extending Lockhart approach) the notion of temperature by simple thermodynamical reasoning. Assuming incompressibility of water (by the constant molar density n/V ) we also accounted for the role of osmosis and consequently - the role of water uptake in growing cell. This approach allowed us (by comparing theoretical solutions and experimental results) not only to determine the specific (resonance) temperature (or corresponding absorption energy kBT*) of the optimal growth but also draw conclusions about the cell wall extensibility dependence on temperature and its evolution in time. A straightforward application of our method to determine optimum growth temperature for different plant species in a greenhouse practice (as its simple implication) can also be recommended.

  14. Organic matter loading affects lodgepole pine seedling growth.

    PubMed

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M J; Armleder, H M

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  15. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  16. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  17. Effects of reduced-risk pesticides and plant growth regulators on rove beetle (Coleoptera: Staphylinidae) adults.

    PubMed

    Echegaray, Erik R; Cloyd, Raymond A

    2012-12-01

    In many regions, pest management of greenhouse crops relies on the use of biological control agents; however, pesticides are also widely used, especially when dealing with multiple arthropod pests and attempting to maintain high esthetic standards. As such, there is interest in using biological control agents in conjunction with chemical control. However, the prospects of combining natural enemies and pesticides are not well known in many systems. The rove beetle, Atheta coriaria (Kraatz), is a biological control agent mainly used against fungus gnats (Bradysia spp.). This study evaluated the effects of reduced-risk pesticides and plant growth regulators on A. coriaria adult survival, development, and prey consumption under laboratory conditions. Rove beetle survival was consistently higher when adults were released 24 h after rather than before applying pesticides. The pesticides acetamiprid, lambda-cyhalothrin, and cyfluthrin were harmful to rove beetle adults, whereas Beauveria bassiana (Balsamo) Vuillemin, azadirachtin, and organic oils (cinnamon oils, rosemary oil, thyme oil, and clove oil) were nontoxic to A. coriaria adults. Similarly, the plant growth regulators acymidol, paclobutrazol, and uniconazole were not harmful to rove beetle adults. In addition, B. bassiana, azadirachtin, kinoprene, organic oils, and the plant growth regulators did not negatively affect A. coriaria development. However, B. bassiana did negatively affect adult prey consumption. This study demonstrated that A. coriaria may not be used when applying the pesticides, acetamiprid, lambda-cyhalothrin, and cyfluthrin, whereas organic oils, B. bassiana, azadirachtin, and the plant growth regulators evaluated may be used in conjunction with A. coriaria adults. As such, these compounds may be used in combination with A. coriaria in greenhouse production systems.

  18. Using plant growth modeling to analyze C source–sink relations under drought: inter- and intraspecific comparison

    PubMed Central

    Pallas, Benoît; Clément-Vidal, Anne; Rebolledo, Maria-Camila; Soulié, Jean-Christophe; Luquet, Delphine

    2013-01-01

    The ability to assimilate C and allocate non-structural carbohydrates (NSCs) to the most appropriate organs is crucial to maximize plant ecological or agronomic performance. Such C source and sink activities are differentially affected by environmental constraints. Under drought, plant growth is generally more sink than source limited as organ expansion or appearance rate is earlier and stronger affected than C assimilation. This favors plant survival and recovery but not always agronomic performance as NSC are stored rather than used for growth due to a modified metabolism in source and sink leaves. Such interactions between plant C and water balance are complex and plant modeling can help analyzing their impact on plant phenotype. This paper addresses the impact of trade-offs between C sink and source activities and plant production under drought, combining experimental and modeling approaches. Two contrasted monocotyledonous species (rice, oil palm) were studied. Experimentally, the sink limitation of plant growth under moderate drought was confirmed as well as the modifications in NSC metabolism in source and sink organs. Under severe stress, when C source became limiting, plant NSC concentration decreased. Two plant models dedicated to oil palm and rice morphogenesis were used to perform a sensitivity analysis and further explore how to optimize C sink and source drought sensitivity to maximize plant growth. Modeling results highlighted that optimal drought sensitivity depends both on drought type and species and that modeling is a great opportunity to analyze such complex processes. Further modeling needs and more generally the challenge of using models to support complex trait breeding are discussed. PMID:24204372

  19. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community.

    PubMed

    Khodakovskaya, Mariya V; Kim, Bong-Soo; Kim, Jong Nam; Alimohammadi, Mohammad; Dervishi, Enkeleda; Mustafa, Thikra; Cernigla, Carl E

    2013-01-14

    Multi-walled carbon nanotubes (CNTs) can affect plant phenotype and the composition of soil microbiota. Tomato plants grown in soil supplemented with CNTs produce two times more flowers and fruit compared to plants grown in control soil. The effect of carbon nanotubes on microbial community of CNT-treated soil is determined by denaturing gradient gel electrophoresis and pyrosequencing analysis. Phylogenetic analysis indicates that Proteobacteria and Bacteroidetes are the most dominant groups in the microbial community of soil. The relative abundances of Bacteroidetes and Firmicutes are found to increase, whereas Proteobacteria and Verrucomicorbia decrease with increasing concentration of CNTs. The results of comparing diversity indices and species level phylotypes (OTUs) between samples showed that there is not a significant affect on bacterial diversity.

  20. Decomposers (Lumbricidae, Collembola) affect plant performance in model grasslands of different diversity.

    PubMed

    Partsch, Stephan; Milcu, Alexandru; Scheu, Stefan

    2006-10-01

    Decomposer invertebrates influence soil structure and nutrient mineralization as well as the activity and composition of the microbial community in soil and therefore likely affect plant performance and plant competition. We established model grassland communities in a greenhouse to study the interrelationship between two different functional groups of decomposer invertebrates, Lumbricidae and Collembola, and their effect on plant performance and plant nitrogen uptake in a plant diversity gradient. Common plant species of Central European Arrhenatherion grasslands were transplanted into microcosms with numbers of plant species varying from one to eight and plant functional groups varying from one to four. Separate and combined treatments with earthworms and collembolans were set up. Microcosms contained 15N labeled litter to track N fluxes into plant shoots. Presence of decomposers strongly increased total plant and plant shoot biomass. Root biomass decreased in the presence of collembolans and even more in the presence of earthworms. However, it increased when both animal groups were present. Also, presence of decomposers increased total N concentration and 15N enrichment of grasses, legumes, and small herbs. Small herbs were at a maximum in the combined treatment with earthworms and collembolans. The impact of earthworms and collembolans on plant performance strongly varied with plant functional group identity and plant species diversity and was modified when both decomposers were present. Both decomposer groups generally increased aboveground plant productivity through effects on litter decomposition and nutrient mineralization leading to an increased plant nutrient acquisition. The non-uniform effects of earthworms and collembolans suggest that functional diversity of soil decomposer animals matters and that the interactions between soil animal functional groups affect the structure of plant communities.

  1. Expert system for controlling plant growth in a contained environment

    NASA Technical Reports Server (NTRS)

    May, George A. (Inventor); Lanoue, Mark Allen (Inventor); Bethel, Matthew (Inventor); Ryan, Robert E. (Inventor)

    2011-01-01

    In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an "expert system" which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the "expert system" remotely, to assess activity within the growth chamber, and can override the "expert system".

  2. Expert system for controlling plant growth in a contained environment

    NASA Technical Reports Server (NTRS)

    May, George A. (Inventor); Lanoue, Mark Allen (Inventor); Bethel, Matthew (Inventor); Ryan, Robert E. (Inventor)

    2009-01-01

    In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an ''expert system'' which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the ''expert system'' remotely, to assess activity within the growth chamber, and can override the ''expert system''.

  3. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion

    PubMed Central

    Majeed, Afshan; Hameed, Sohail; Imran, Asma; Rahim, Nasir

    2015-01-01

    The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram-positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK-3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these Plant growth-promoting rhizobacteria (PGPR) strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76%) and root N contents (up to 32%) was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK. PMID:25852661

  4. Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9.

    PubMed

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2013-07-01

    Pollution of the biosphere by heavy metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The aim of the study is to check the resistance of RL9 towards the metals and to observe the effect of Rhizobium species on growth, pigment content, protein and nickel uptake by lentil in the presence and absence of nickel. The multi metal tolerant and plant growth promoting Rhizobium strain RL9 was isolated from the nodules of lentil. The strain not only tolerated nickel but was also tolerant o cadmium, chromium, nickel, lead, zinc and copper. The strain tolerated nickel 500 μg/mL, cadmium 300 μg/mL, chromium 400 μg/mL, lead 1,400 μg/mL, zinc 1,000 μg/mL and copper 300 μg/mL, produced good amount of indole acetic acid and was also positive for siderophore, hydrogen cyanide and ammonia. The strain RL9 was further assessed with increasing concentrations of nickel when lentil was used as a test crop. The strain RL9 significantly increased growth, nodulation, chlorophyll, leghaemoglobin, nitrogen content, seed protein and seed yield compared to plants grown in the absence of bioinoculant but amended with nickel The strain RL9 decreased uptake of nickel in lentil compared to plants grown in the absence of bio-inoculant. Due to these intrinsic abilities strain RL9 could be utilized for growth promotion as well as for the remediation of nickel in nickel contaminated soil.

  5. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    PubMed

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment.

  6. Weijia Zhou Inspects the Advanced Astroculture plant growth unit

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dr. Weijia Zhou, director of the Wisconsin Center for Space Automation and Robotics at the University of Wisconsin-Madison, inspects the Advanced Astroculture(tm) plant growth unit before its first flight last spring. Coating technology is used inside the miniature plant greenhouse to remove ethylene, a chemical produced by plant leaves that can cause plants to mature too quickly. This same coating technology is used in a new anthrax-killing device. The Space Station experiment is managed by the Space Product Development Program at NASA's Marshall Space Flight Center in Huntsville, Ala. DuPont is partnering with NASA and the Wisconsin Center for Space Automation and Robotics (WCSAR) at the University of Wisconsin-Madison to grow soybeans aboard the Space Station to find out if they have improved oil, protein, carbohydrates or secondary metabolites that could benefit farmers and consumers. Principal Investigators: Dr. Tom Corbin, Pioneer Hi-Bred International Inc., a Dupont Company, with headquarters in Des Moines, Iowa, and Dr. Weijia Zhou, Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison.

  7. DNA from soil mirrors plant taxonomic and growth form diversity.

    PubMed

    Yoccoz, N G; Bråthen, K A; Gielly, L; Haile, J; Edwards, M E; Goslar, T; Von Stedingk, H; Brysting, A K; Coissac, E; Pompanon, F; Sønstebø, J H; Miquel, C; Valentini, A; De Bello, F; Chave, J; Thuiller, W; Wincker, P; Cruaud, C; Gavory, F; Rasmussen, M; Gilbert, M T P; Orlando, L; Brochmann, C; Willerslev, E; Taberlet, P

    2012-08-01

    Ecosystems across the globe are threatened by climate change and human activities. New rapid survey approaches for monitoring biodiversity would greatly advance assessment and understanding of these threats. Taking advantage of next-generation DNA sequencing, we tested an approach we call metabarcoding: high-throughput and simultaneous taxa identification based on a very short (usually <100 base pairs) but informative DNA fragment. Short DNA fragments allow the use of degraded DNA from environmental samples. All analyses included amplification using plant-specific versatile primers, sequencing and estimation of taxonomic diversity. We tested in three steps whether degraded DNA from dead material in soil has the potential of efficiently assessing biodiversity in different biomes. First, soil DNA from eight boreal plant communities located in two different vegetation types (meadow and heath) was amplified. Plant diversity detected from boreal soil was highly consistent with plant taxonomic and growth form diversity estimated from conventional above-ground surveys. Second, we assessed DNA persistence using samples from formerly cultivated soils in temperate environments. We found that the number of crop DNA sequences retrieved strongly varied with years since last cultivation, and crop sequences were absent from nearby, uncultivated plots. Third, we assessed the universal applicability of DNA metabarcoding using soil samples from tropical environments: a large proportion of species and families from the study site were efficiently recovered. The results open unprecedented opportunities for large-scale DNA-based biodiversity studies across a range of taxonomic groups using standardized metabarcoding approaches.

  8. Retention of OsNMD3 in the cytoplasm disturbs protein synthesis efficiency and affects plant development in rice.

    PubMed

    Shi, Yanyun; Liu, Xiangling; Li, Rui; Gao, Yaping; Xu, Zuopeng; Zhang, Baocai; Zhou, Yihua

    2014-07-01

    The ribosome is the basic machinery for translation, and biogenesis of ribosomes involves many coordinated events. However, knowledge about ribosomal dynamics in higher plants is very limited. This study chose a highly conserved trans-factor, the 60S ribosomal subunit nuclear export adaptor NMD3, to characterize the mechanism of ribosome biogenesis in the monocot plant Oryza sativa (rice). O. sativa NMD3 (OsNMD3) shares all the common motifs and shuttles between the nucleus and cytoplasm via CRM1/XPO1. A dominant negative form of OsNMD3 with a truncated nuclear localization sequence (OsNMD3(ΔNLS)) was retained in the cytoplasm, consequently interfering with the release of OsNMD3 from pre-60S particles and disturbing the assembly of ribosome subunits. Analyses of the transactivation activity and cellulose biosynthesis level revealed low protein synthesis efficiency in the transgenic plants compared with the wild-type plants. Pharmaceutical treatments demonstrated structural alterations in ribosomes in the transgenic plants. Moreover, global expression profiles of the wild-type and transgenic plants were investigated using the Illumina RNA sequencing approach. These expression profiles suggested that overexpression of OsNMD3(ΔNLS) affected ribosome biogenesis and certain basic pathways, leading to pleiotropic abnormalities in plant growth. Taken together, these results strongly suggest that OsNMD3 is important for ribosome assembly and the maintenance of normal protein synthesis efficiency.

  9. High temperatures limit plant growth but hasten flowering in root chicory (Cichorium intybus) independently of vernalisation.

    PubMed

    Mathieu, Anne-Sophie; Lutts, Stanley; Vandoorne, Bertrand; Descamps, Christophe; Périlleux, Claire; Dielen, Vincent; Van Herck, Jean-Claude; Quinet, Muriel

    2014-01-15

    An increase in mean and extreme summer temperatures is expected as a consequence of climate changes and this might have an impact on plant development in numerous species. Root chicory (Cichorium intybus L.) is a major crop in northern Europe, and it is cultivated as a source of inulin. This polysaccharide is stored in the tap root during the first growing season when the plant grows as a leafy rosette, whereas bolting and flowering occur in the second year after winter vernalisation. The impact of heat stress on plant phenology, water status, photosynthesis-related parameters, and inulin content was studied in the field and under controlled phytotron conditions. In the field, plants of the Crescendo cultivar were cultivated under a closed plastic-panelled greenhouse to investigate heat-stress conditions, while the control plants were shielded with a similar, but open, structure. In the phytotrons, the Crescendo and Fredonia cultivars were exposed to high temperatures (35°C day/28°C night) and compared to control conditions (17°C) over 10 weeks. In the field, heat reduced the root weight, the inulin content of the root and its degree of polymerisation in non-bolting plants. Flowering was observed in 12% of the heat stressed plants during the first growing season in the field. In the phytotron, the heat stress increased the total number of leaves per plant, but reduced the mean leaf area. Photosynthesis efficiency was increased in these plants, whereas osmotic potential was decreased. High temperature was also found to induced flowering of up to 50% of these plants, especially for the Fredonia cultivar. In conclusion, high temperatures induced a reduction in the growth of root chicory, although photosynthesis is not affected. Flowering was also induced, which indicates that high temperatures can partly substitute for the vernalisation requirement for the flowering of root chicory.

  10. Population rules can apply to individual plants and affect their architecture: an evaluation on the cushion plant Mulinum spinosum (Apiaceae)

    PubMed Central

    Puntieri, Javier G.; Damascos, María A.; Llancaqueo, Yanina; Svriz, Maya

    2010-01-01

    Background and aims Plants are regarded as populations of modules such as axes and growth units (GUs, i.e. seasonally produced axis segments). Due to their dense arrays of GUs, cushion plants may resemble crowded plant populations in the way the number of components (GUs in plants, individuals in populations) relates to their individual sizes. Methodology The morphological differentiation of GUs and its relationship with biomass accumulation and plant size were studied for the cushion subshrub Mulinum spinosum (Apiaceae), a widespread species in dry areas of Patagonia. In 2009, GUs were sampled from one-quarter of each of 24 adult plants. Within- and between-plant variations in GU length, diameter, number of nodes and biomass were analysed and related to whole-plant size. Principal results Each year, an M. spinosum cushion develops flowering GUs and vegetative GUs. Flowering GUs are larger, twice as numerous and contain two to four times more dry mass (excluding reproductive structures) than vegetative GUs. The hemispherical area of the cushions was positively correlated with the biomass of last-year GUs. The biomass of flowering GUs was negatively correlated with the density of GUs. Mulinum spinosum plants exhibited a notable differentiation between flowering and vegetative GUs, but their axes, i.e. the sequences of GUs, were not differentiated throughout the plants. Flowering GUs comprised a major proportion of each plant's photosynthetic tissues. Conclusions A decrease in the size of flowering GUs and in their number relative to the total number of GUs per plant, parallel to an increase in GU density, is predicted as M. spinosum plants age over years. The assimilative role of vegetative GUs is expected to increase in summer because of their less exposed position in the cushion. These GUs would therefore gain more from warm and dry conditions than flowering GUs. PMID:22476077

  11. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase.

    PubMed

    Ali, Shimaila; Charles, Trevor C; Glick, Bernard R

    2014-07-01

    Plant growth and productivity is negatively affected by soil salinity. However, it is predicted that plant growth-promoting bacterial (PGPB) endophytes that contain 1-aminocyclopropane-1-carboxylate (ACC) deaminase (E.C. 4.1.99.4) can facilitate plant growth and development in the presence of a number of different stresses. In present study, the ability of ACC deaminase containing PGPB endophytes Pseudomonas fluorescens YsS6, Pseudomonas migulae 8R6, and their ACC deaminase deficient mutants to promote tomato plant growth in the absence of salt and under two different levels of salt stress (165 mM and 185 mM) was assessed. It was evidence that wild-type bacterial endophytes (P. fluorescens YsS6 and P. migulae 8R6) promoted tomato plant growth significantly even in the absence of stress (salinity). Plants pretreated with wild-type ACC deaminase containing endophytic strains were healthier and grew to a much larger size under high salinity stress compared to plants pretreated with the ACC deaminase deficient mutants or no bacterial treatment (control). The plants pretreated with ACC deaminase containing bacterial endophytes exhibit higher fresh and dry biomass, higher chlorophyll contents, and a greater number of flowers and buds than the other treatments. Since the only difference between wild-type and mutant bacterial endophytes was ACC deaminase activity, it is concluded that this enzyme is directly responsible for the different behavior of tomato plants in response to salt stress. The use of PGPB endophytes with ACC deaminase activity has the potential to facilitate plant growth on land that is not normally suitable for the majority of crops due to their high salt contents.

  12. Mexican propolis flavonoids affect photosynthesis and seedling growth.

    PubMed

    King-Díaz, Beatriz; Granados-Pineda, Jessica; Bah, Mustapha; Rivero-Cruz, J Fausto; Lotina-Hennsen, Blas

    2015-10-01

    As a continuous effort to find new natural products with potential herbicide activity, flavonoids acacetin (1), chrysin (2) and 4',7-dimethylnarangenin (3) were isolated from a propolis sample collected in the rural area of Mexico City and their effects on the photosynthesis light reactions and on the growth of Lolium perenne, Echinochloa crus-galli and Physalis ixocarpa seedlings were investigated. Acacetin (1) acted as an uncoupler by enhancing the electron transport under basal and phosphorylating conditions and the Mg(2+)-ATPase. Chrysin (2) at low concentrations behaved as an uncoupler and at concentrations up to 100 μM its behavior was as a Hill reaction inhibitor. Finally, 4',7-dimethylnarangenin (3) in a concentration-dependent manner behaved as a Hill reaction inhibitor. Flavonoids 2 and 3 inhibited the uncoupled photosystem II reaction measured from water to 2,5-dichloro-1,4-benzoquinone (DCBQ), and they did not inhibit the uncoupled partial reactions measured from water to sodium silicomolybdate (SiMo) and from diphenylcarbazide (DPC) to diclorophenol indophenol (DCPIP). These results indicated that chrysin and 4',7-dimethylnarangenin inhibited the acceptor side of PS II. The results were corroborated with fluorescence of chlorophyll a measurements. Flavonoids also showed activity on the growth of seedlings of Lolium perenne and Echinochloa crus-galli.

  13. Plant Growth on a Gravel Soil: Greenhouse Studies

    DTIC Science & Technology

    1981-03-01

    P and K, respectively. monium nitrate (34.0.0); P, superphosphate (0-20.0); Although little information exists oi nutrient limi- and K, muriate of...Reubens and common KB, K.31 and T.5 tall fes. excess acidity generated by repeated fertilizer appli- cue, FL I HF, Yorktown II PR, AR, and sheep...fescue. cations. The amount of lime will depend on the acid . Plant yields were recorded after 76 days of growth ifying effect of the fertilizer (Pesek et

  14. Does solar radiation affect the growth of tomato seeds relative to their environment?

    NASA Technical Reports Server (NTRS)

    Holzer, Kristi

    1995-01-01

    The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as I plan to note growth in artificial verses natural environment as the basic experiment.

  15. Does solar radiation affect the growth of tomato seeds relative to their environment?

    SciTech Connect

    Holzer, K.

    1995-09-01

    The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as the authors plans to note growth in artificial verses natural environment as the basic experiment.

  16. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants.

    PubMed

    Yin, Liyan; Colman, Benjamin P; McGill, Bonnie M; Wright, Justin P; Bernhardt, Emily S

    2012-01-01

    The increasing commercial production of engineered nanoparticles (ENPs) has led to concerns over the potential adverse impacts of these ENPs on biota in natural environments. Silver nanoparticles (AgNPs) are one of the most widely used ENPs and are expected to enter natural ecosystems. Here we examined the effects of AgNPs on germination and growth of eleven species of common wetland plants. We examined plant responses to AgNP exposure in simple pure culture experiments (direct exposure) and for seeds planted in homogenized field soils in a greenhouse experiment (soil exposure). We compared the effects of two AgNPs-20-nm polyvinylpyrrolidine-coated silver nanoparticles (PVP-AgNPs) and 6-nm gum arabic coated silver nanoparticles (GA-AgNPs)-to the effects of AgNO(3) exposure added at equivalent Ag concentrations (1, 10 or 40 mg Ag L(-1)). In the direct exposure experiments, PVP-AgNP had no effect on germination while 40 mg Ag L(-1) GA-AgNP exposure significantly reduced the germination rate of three species and enhanced the germination rate of one species. In contrast, 40 mg Ag L(-1) AgNO(3) enhanced the germination rate of five species. In general root growth was much more affected by Ag exposure than was leaf growth. The magnitude of inhibition was always greater for GA-AgNPs than for AgNO(3) and PVP-AgNPs. In the soil exposure experiment, germination effects were less pronounced. The plant growth response differed by taxa with Lolium multiflorum growing more rapidly under both AgNO(3) and GA-AgNP exposures and all other taxa having significantly reduced growth under GA-AgNP exposure. AgNO(3) did not reduce the growth of any species while PVP-AgNPs significantly inhibited the growth of only one species. Our findings suggest important new avenues of research for understanding the fate and transport of NPs in natural media, the interactions between NPs and plants, and indirect and direct effects of NPs in mixed plant communities.

  17. Hierarchical Helical Order in the Twisted