Science.gov

Sample records for affect plant performance

  1. Regression analysis of technical parameters affecting nuclear power plant performances

    SciTech Connect

    Ghazy, R.; Ricotti, M. E.; Trueco, P.

    2012-07-01

    Since the 80's many studies have been conducted in order to explicate good and bad performances of commercial nuclear power plants (NPPs), but yet no defined correlation has been found out to be totally representative of plant operational experience. In early works, data availability and the number of operating power stations were both limited; therefore, results showed that specific technical characteristics of NPPs were supposed to be the main causal factors for successful plant operation. Although these aspects keep on assuming a significant role, later studies and observations showed that other factors concerning management and organization of the plant could instead be predominant comparing utilities operational and economic results. Utility quality, in a word, can be used to summarize all the managerial and operational aspects that seem to be effective in determining plant performance. In this paper operational data of a consistent sample of commercial nuclear power stations, out of the total 433 operating NPPs, are analyzed, mainly focusing on the last decade operational experience. The sample consists of PWR and BWR technology, operated by utilities located in different countries, including U.S. (Japan)) (France)) (Germany)) and Finland. Multivariate regression is performed using Unit Capability Factor (UCF) as the dependent variable; this factor reflects indeed the effectiveness of plant programs and practices in maximizing the available electrical generation and consequently provides an overall indication of how well plants are operated and maintained. Aspects that may not be real causal factors but which can have a consistent impact on the UCF, as technology design, supplier, size and age, are included in the analysis as independent variables. (authors)

  2. How neighbor canopy architecture affects target plant performance

    SciTech Connect

    Tremmel, D.C.; Bazzaz, F.A. )

    1993-10-01

    Plant competition occurs through the negative effects that individual plants have on resource availability to neighboring individuals. Therefore competition experiments need to examine how different species change resource availability to their neighbors, and how different species respond to these changes-allocationally, architecturally, and physiologically-through time. In a greenhouse study we used a model system of annuals to examine how canopies of species having differing morphologies differed in their architectures and light-interception abilities, and how different species performed when grown in these canopies. Abutilon theophrasti, Datura stramonium, and Polygonum pensylvanicum were grown as [open quotes]targets[close quotes]. Plants were grown in pots, with one target plant and four neighbor plants. Detailed measurements of neighbor canopy structure and target plant canopy architecture were made at five harvests. Species with different morphologies showed large differences in canopy structure, particularly when grass and forb species were compared. Setaria, a grass, had a more open canopy than the other species (all forbs), and was a consistently weak competitor. Overall, however, the relative effects of different neighbors on target biomass varied with target species. Target biomass was poorly correlated with neighbor biomass and leaf area, but was highly correlated with a measure of target light-interception ability that took into account both target leaf deployment and neighbor light interception. Despite clear differences among neighbor species in canopy structure and effect on light penetration, the results suggest no broad generalizations about the effects of different species as neighbors. Knowledge of morphological, physiological, and life history characteristics of both the target and neighbor species may be necessary to explain the results of their competition. 53 refs., 4 figs., 4 tabs.

  3. Feeding Experience of Bemisia tabaci (Hemiptera: Aleyrodidae) Affects Their Performance on Different Host Plants

    PubMed Central

    Shah, M. Mostafizur Rahman; Liu, Tong-Xian

    2013-01-01

    The sweetpotato whitefly, Bemisia tabaci biotype B is extremely polyphagous with >600 species of host plants. We hypothesized that previous experience of the whitefly on a given host plant affects their host selection and performance on the plants without previous experience. We investigated the host selection for feeding and oviposition of adults and development and survival of immatures of three host-plant-experienced populations of B. tabaci, namely Bemisia-eggplant, Bemisia-tomato and Bemisia-cucumber, on their experienced host plant and each of the three other plant species (eggplant, tomato, cucumber and pepper) without previous experience. We found that the influence of previous experience of the whiteflies varied among the populations. All populations refused pepper for feeding and oviposition, whereas the Bemisia-cucumber and the Bemisia-eggplant strongly preferred cucumber. Bemisia-tomato did not show strong preference to any of the three host palnts. Development time from egg to adult eclosion varied among the populations, being shortest on eggplant, longest on pepper, and intermediate on tomato and cucumber except for the Bemisia-cucumber developed similarly on tomato and pepper. The survivorship from egg to adult eclosion of all populations was highest on eggplant (80-98%), lowest on pepper (0-20%), and intermediate on tomato and cucumber. In conclusion, the effects of previous experience of whiteflies on host selection for feeding and oviposition, development, and survivorship varied depending on host plants, and host plants play a stronger role than previous experience. Preference of feeding and oviposition by adults may not accurately reflect host suitability of immatures. These results provided important information for understanding whitefly population dynamics and dispersal among different crop systems. PMID:24146985

  4. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  5. Trichobaris weevils distinguish amongst toxic host plants by sensing volatiles that do not affect larval performance.

    PubMed

    Lee, Gisuk; Joo, Youngsung; Diezel, Celia; Lee, Eun Ju; Baldwin, Ian T; Kim, Sang-Gyu

    2016-07-01

    Herbivorous insects use plant metabolites to inform their host plant selection for oviposition. These host-selection behaviours are often consistent with the preference-performance hypothesis; females oviposit on hosts that maximize the performance of their offspring. However, the metabolites used for these oviposition choices and those responsible for differences in offspring performance remain unknown for ecologically relevant interactions. Here, we examined the host-selection behaviours of two sympatric weevils, the Datura (Trichobaris compacta) and tobacco (T. mucorea) weevils in field and glasshouse experiments with transgenic host plants specifically altered in different components of their secondary metabolism. Adult females of both species strongly preferred to feed on D. wrightii rather than on N. attenuata leaves, but T. mucorea preferred to oviposit on N. attenuata, while T. compacta oviposited only on D. wrightii. These oviposition behaviours increased offspring performance: T. compacta larvae only survived in D. wrightii stems and T. mucorea larvae survived better in N. attenuata than in D. wrightii stems. Choice assays with nicotine-free, JA-impaired, and sesquiterpene-over-produced isogenic N. attenuata plants revealed that although half of the T. compacta larvae survived in nicotine-free N. attenuata lines, nicotine did not influence the oviposition behaviours of both the nicotine-adapted and nicotine-sensitive species. JA-induced sesquiterpene volatiles are key compounds influencing T. mucorea females' oviposition choices, but these sesquiterpenes had no effect on larval performance. We conclude that adult females are able to choose the best host plant for their offspring and use chemicals different from those that influence larval performance to inform their oviposition decisions. PMID:27146082

  6. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance.

    PubMed

    Murrell, Ebony G; Cullen, Eileen M

    2014-10-01

    Few studies compare how different soil fertilization practices affect plant mineral content and insect performance in organic systems. This study examined: 1) The European corn borer, Ostrinia nubilalis (Hübner), larval response on corn (Zea mays L.) grown in field soils with different soil management histories; and 2) resilience of these plants to O. nubilalis herbivory. Treatments included: 1) standard organic--organically managed soil fertilized with dairy manure and 2 yr of alfalfa (Medicago sativa L.) in the rotation; 2) basic cation saturation ratio--organically managed soil fertilized with dairy manure and alfalfa nitrogen credits, plus addition of gypsum (CaSO4·2H2O) according to the soil balance hypothesis; and 3) conventional--conventionally managed soil fertilized with synthetic fertilizers. Corn plants were reared to maturity in a greenhouse, and then infested with 0-40 O. nubilalis larvae for 17 d. O. nubilalis exhibited negative competitive response to increasing larval densities. Mean development time was significantly faster for larvae consuming basic cation saturation ratio plants than those on standard organic plants, with intermediate development time on conventional plants. Neither total yield (number of kernels) nor proportion kernels damaged differed among soil fertility treatments. Soil nutrients differed significantly in S and in Ca:Mg and Ca:K ratios, but principal components analysis of plant tissue samples taken before O. nubilalis infestation showed that S, Fe, and Cu contributed most to differences in plant nutrient profiles among soil fertility treatments. Results demonstrate that different fertilization regimens can significantly affect insect performance within the context of organic systems, but the effects in this study were relatively minor compared with effects of intraspecific competition. PMID:25203485

  7. Experimental defoliation affects male but not female reproductive performance of the tropical monoecious plant Croton suberosus (Euphorbiaceae)

    PubMed Central

    Narbona, Eduardo; Dirzo, Rodolfo

    2010-01-01

    Background and Aims Monoecious plants have the capacity to allocate resources separately to male and female functions more easily than hermaphrodites. This can be advantageous against environmental stresses such as leaf herbivory. However, studies showing effects of herbivory on male and female functions and on the interaction with the plant's pollinators are limited, particularly in tropical plants. Here, the effects of experimental defoliation were examined in the monoecious shrub Croton suberosus (Euphorbiaceae), a wasp-pollinated species from a Mexican tropical dry forest. Methods Three defoliation treatments were applied: 0 % (control), 25 % (low) or 75 % (high) of plant leaf area removed. Vegetative (production of new leaves) and reproductive (pistillate and staminate flower production, pollen viability, nectar production, fruit set, and seed set) performance variables, and the abundance and activity of floral visitors were examined. Key Results Defoliated plants overcompensated for tissue loss by producing more new leaves than control plants. Production of staminate flowers gradually decreased with increasing defoliation and the floral sex ratio (staminate : pistillate flowers) was drastically reduced in high-defoliation plants. In contrast, female reproductive performance (pistillate flower production, fruit set and seed set) and pollinator visitation and abundance were not impacted by defoliation. Conclusions The asymmetrical effects of defoliation on male and female traits of C. suberosus may be due to the temporal and spatial flexibility in the allocation of resources deployed by monoecious plants. We posit that this helps to maintain the plant's pollination success in the face of leaf herbivory stress. PMID:20519239

  8. Quantum Tunneling Affects Engine Performance.

    PubMed

    Som, Sibendu; Liu, Wei; Zhou, Dingyu D Y; Magnotti, Gina M; Sivaramakrishnan, Raghu; Longman, Douglas E; Skodje, Rex T; Davis, Michael J

    2013-06-20

    We study the role of individual reaction rates on engine performance, with an emphasis on the contribution of quantum tunneling. It is demonstrated that the effect of quantum tunneling corrections for the reaction HO2 + HO2 = H2O2 + O2 can have a noticeable impact on the performance of a high-fidelity model of a compression-ignition (e.g., diesel) engine, and that an accurate prediction of ignition delay time for the engine model requires an accurate estimation of the tunneling correction for this reaction. The three-dimensional model includes detailed descriptions of the chemistry of a surrogate for a biodiesel fuel, as well as all the features of the engine, such as the liquid fuel spray and turbulence. This study is part of a larger investigation of how the features of the dynamics and potential energy surfaces of key reactions, as well as their reaction rate uncertainties, affect engine performance, and results in these directions are also presented here. PMID:26283246

  9. Between-Population Outbreeding Affects Plant Defence

    PubMed Central

    Leimu, Roosa; Fischer, Markus

    2010-01-01

    Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies. PMID:20838662

  10. Oxygen Sensing via the Ethylene Response Transcription Factor RAP2.12 Affects Plant Metabolism and Performance under Both Normoxia and Hypoxia.

    PubMed

    Paul, Melanie Verena; Iyer, Srignanakshi; Amerhauser, Carmen; Lehmann, Martin; van Dongen, Joost T; Geigenberger, Peter

    2016-09-01

    Subgroup-VII-ethylene-response-factor (ERF-VII) transcription factors are involved in the regulation of hypoxic gene expression and regulated by proteasome-mediated proteolysis via the oxygen-dependent branch of the N-end-rule pathway. While research into ERF-VII mainly focused on their role to regulate anoxic gene expression, little is known on the impact of this oxygen-sensing system in regulating plant metabolism and growth. By comparing Arabidopsis (Arabidopsis thaliana) plants overexpressing N-end-rule-sensitive and insensitive forms of the ERF-VII-factor RAP2.12, we provide evidence that oxygen-dependent RAP2.12 stability regulates central metabolic processes to sustain growth, development, and anoxic resistance of plants. (1) Under normoxia, overexpression of N-end-rule-insensitive Δ13RAP2.12 led to increased activities of fermentative enzymes and increased accumulation of fermentation products, which were accompanied by decreased adenylate energy states and starch levels, and impaired plant growth and development, indicating a role of oxygen-regulated RAP2.12 degradation to prevent aerobic fermentation. (2) In Δ13RAP2.12-overexpressing plants, decreased carbohydrate reserves also led to a decrease in anoxic resistance, which was prevented by external Suc supply. (3) Overexpression of Δ13RAP2.12 led to decreased respiration rates, changes in the levels of tricarboxylic acid cycle intermediates, and accumulation of a large number of amino acids, including Ala and γ-amino butyric acid, indicating a role of oxygen-regulated RAP2.12 abundance in controlling the flux-modus of the tricarboxylic acid cycle. (4) The increase in amino acids was accompanied by increased levels of immune-regulatory metabolites. These results show that oxygen-sensing, mediating RAP2.12 degradation is indispensable to optimize metabolic performance, plant growth, and development under both normoxic and hypoxic conditions. PMID:27372243

  11. Co-localisation of host plant resistance QTLs affecting the performance and feeding behaviour of the aphid Myzus persicae in the peach tree

    PubMed Central

    Sauge, M-H; Lambert, P; Pascal, T

    2012-01-01

    The architecture and action of quantitative trait loci (QTL) contributing to plant resistance mechanisms against aphids, the largest group of phloem-feeding insects, are not well understood. Comparative mapping of several components of resistance to the green peach aphid (Myzus persicae) was undertaken in Prunus davidiana, a wild species related to peach. An interspecific F1 population of Prunus persica var. Summergrand × P. davidiana clone P1908 was scored for resistance (aphid colony development and foliar damage) and 17 aphid feeding behaviour traits monitored by means of the electrical penetration graph technique. Seven resistance QTLs were detected, individually explaining 6.1–43.1% of the phenotypic variation. Consistency was shown over several trials. Nine QTLs affecting aphid feeding behaviour were identified. All resistance QTLs except one co-located with QTLs underlying aphid feeding behaviour. A P. davidiana resistance allele at the major QTL was associated with drastic reductions in phloem sap ingestion by aphids, suggesting a phloem-based resistance mechanism. Resistance was also positively correlated with aphid salivation into sieve elements, suggesting an insect response to restore the appropriate conditions for ingestion after phloem occlusion. No significant QTL was found for traits characterising aphid mouthpart activity in plant tissues other than phloem vessels. Two QTLs with effects on aphid feeding behaviour but without effect on resistance were identified. SSR markers linked to the main QTLs involved in resistance are of potential use in marker-assisted selection for aphid resistance. Linking our results with the recent sequencing of the peach genome may help clarify the physiological resistance mechanisms. PMID:21897441

  12. How Coriolis meter design affects field performance

    SciTech Connect

    Levien, A.; Dudiak, A.

    1995-12-31

    Although many possibilities exist for the design of Coriolis flowmeters, a common set of fundamental physical principles affect practical meter design. Design criteria such as tube geometry, alloy section, operating frequencies, stress levels, and tubing wall thickness have varying impacts on meter performance. Additionally, field conditions such as changing temperature, pressure, pipeline stress and vibration affect measurement performance. The challenge created in Coriolis flow meter design is to maximize the sensitivity of the meter Coriolis forces, while minimizing the impact of outside environmental influences. Data are presented on the physical principles that affect Coriolis flowmeters, and how the various aspects of meter design influence field performance.

  13. Improvements in plant performance [Sequoyah Nuclear Plant

    SciTech Connect

    Lorek, M.J.

    1999-11-01

    The improvements in plant reliability and performance at Sequoyah in the last two years can be directly attributed to ten key ingredients; teamwork, management stability, a management team that believes in teamwork, clear direction from the top, a strong focus on human performance, the company wide STAR 7 initiative, strong succession planning, a very seasoned and effective outage management organization, an infrastructure that ensures that the station is focused on the right hardware priorities, and a very strong line organization owned self-assessment program. Continued focus on these key ingredients and realization on a daily basis that good performance can lead to complacency will ensure that performance at Sequoyah will remain at a very high level well into the 21st century.

  14. MECHANICAL RELIABILITY AND PLANT PERFORMANCE

    EPA Science Inventory

    A two state statistical model is proposed for studying the effect of equipment outages on plant performance. Simulation of lost treatment capacity in an activated sludge treatment system indicates the degree to which BOD violation frequencies are much more sensitive to lost aerat...

  15. Herbicide drift affects plant and arthropod communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field edges, old fields, and other semi-natural habitats in agricultural landscapes support diverse plant communities that help sustain pollinators, predators, and other beneficial arthropods. These plant and arthropod communities may be at persistent ecotoxicological risk from herbicides applied to...

  16. Plant Hormones: How They Affect Root Formation.

    ERIC Educational Resources Information Center

    Reinhard, Diana Hereda

    This science study aid, produced by the U.S. Department of Agriculture, includes a series of plant rooting activities for secondary science classes. The material in the pamphlet is written for students and includes background information on plant hormones, a vocabulary list, and five learning activities. Objectives, needed materials, and…

  17. Osmolyte cooperation affects turgor dynamics in plants.

    PubMed

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-01-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes. PMID:27445173

  18. Osmolyte cooperation affects turgor dynamics in plants

    PubMed Central

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-01-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes. PMID:27445173

  19. Osmolyte cooperation affects turgor dynamics in plants

    NASA Astrophysics Data System (ADS)

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-07-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes.

  20. Agroforestry planting design affects loblolly pine growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of plantation design on resource utilization has not been adequately investigated in agroforestry plantations. An experiment was conducted near Booneville, AR on a silt loam soil with a fragipan. Loblolly pine trees were planted in 1994 in an east-west row orientation in three designs: ...

  1. Factors affecting performance of dispenser photocathodes

    NASA Astrophysics Data System (ADS)

    Moody, Nathan A.; Jensen, Kevin L.; Feldman, Donald W.; Montgomery, Eric J.; O'Shea, Patrick G.

    2007-11-01

    Usable lifetime has long been a limitation of high efficiency photocathodes in high average current accelerator applications such as free electron lasers, where poor vacuum conditions and high incident laser power contribute to early degradation in electron beam emission. Recent progress has been made in adapting well known thermionic dispenser techniques to photocathodes, resulting in a dispenser photocathode whose photosensitive surface coating of cesium can be periodically replenished to extend effective lifetime. This article details the design and fabrication process of a prototype cesium dispenser photocathode and describes in detail the dominant factors affecting its performance: activation procedure, surface cleanliness, temperature, and substrate microstructure.

  2. Do transgenic plants affect rhizobacteria populations?

    PubMed Central

    Filion, Martin

    2008-01-01

    Summary Plant genetic manipulation has led to the development of genetically modified plants (GMPs) expressing various traits. Since their first commercial use in 1996, GMPs have been increasingly used, reaching a global cultivating production area of 114.3 million hectares in 2007. The rapid development of agricultural biotechnology and release of GMPs have provided many agronomic and economic benefits, but has also raised concerns over the potential impact these plants might have on the environment. Among these environmental concerns, the unintentional impact that GMPs might have on soil‐associated microbes, especially rhizosphere‐inhabiting bacteria or rhizobacteria, represents one of the least studied and understood areas. As rhizobacteria are responsible for numerous key functions including nutrient cycling and decomposition, they have been defined as good indicator organisms to assess the general impact that GMPs might have on the soil environment. This minireview summarizes the results of various experiments that have been conducted to date on the impact of GMPs on rhizobacteria. Both biological and technical parameters are discussed and an attempt is made to determine if specific rhizobacterial responses exist for the different categories of GMPs developed to date. PMID:21261867

  3. Plant phenolics affect oxidation of tryptophan.

    PubMed

    Salminen, Hanna; Heinonen, Marina

    2008-08-27

    The effect of berry phenolics such as anthocyanins, ellagitannins, and proanthocyanidins from raspberry (Rubus idaeus), black currant (Ribes nigrum), and cranberry (Vaccinium oxycoccus) and byproducts of deoiling processes rich in phenolics such as rapeseed (Brassica rapa L.), camelina (Camelina sativa), and soy (Glycine max L.) as well as scots pine bark (Pinus sylvestris) was investigated in an H2O2-oxidized tryptophan (Trp) solution. The oxidation of Trp was analyzed with high-performance liquid chromatography using both fluorescence and diode array detection of Trp and its oxidation products. Mechanisms of antioxidative action of the phenolic compounds toward the oxidation of Trp were different as the pattern of Trp oxidation products varied with different phenolic compounds. The antioxidant protection toward oxidation of Trp was best provided with pine bark phenolics, black currant anthocyanins, and camelina meal phenolics as well as cranberry proanthocyanidins. PMID:18646765

  4. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. PMID:25871977

  5. Does Motivation Affect Performance via Persistence?

    ERIC Educational Resources Information Center

    Vollmeyer, Regina; Rheinberg, Falko

    2000-01-01

    Studied the relationships among motivation, persistence, and performance in a sample of 51 German college students. Path analysis showed that initial motivation influenced persistence but that the relationship between persistence and performance was disrupted because learners with more knowledge stopped sooner. (SLD)

  6. Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids.

    PubMed

    Weldegergis, Berhane T; Zhu, Feng; Poelman, Erik H; Dicke, Marcel

    2015-03-01

    One of the main abiotic stresses that strongly affects plant survival and the primary cause of crop loss around the world is drought. Drought stress leads to sequential morphological, physiological, biochemical and molecular changes that can have severe effects on plant growth, development and productivity. As a consequence of these changes, the interaction between plants and insects can be altered. Using cultivated Brassica oleracea plants, the parasitoid Microplitis mediator and its herbivorous host Mamestra brassicae, we studied the effect of drought stress on (1) the emission of plant volatile organic compounds (VOCs), (2) plant hormone titres, (3) preference and performance of the herbivore, and (4) preference of the parasitoid. Higher levels of jasmonic acid (JA) and abscisic acid (ABA) were recorded in response to herbivory, but no significant differences were observed for salicylic acid (SA) and indole-3-acetic acid (IAA). Drought significantly impacted SA level and showed a significant interactive effect with herbivory for IAA levels. A total of 55 VOCs were recorded and the difference among the treatments was influenced largely by herbivory, where the emission rate of fatty acid-derived volatiles, nitriles and (E)-4,8-dimethylnona-1,3,7-triene [(E)-DMNT] was enhanced. Mamestra brassicae moths preferred to lay eggs on drought-stressed over control plants; their offspring performed similarly on plants of both treatments. VOCs due to drought did not affect the choice of M. mediator parasitoids. Overall, our study reveals an influence of drought on plant chemistry and insect-plant interactions. PMID:25370387

  7. Nutrient enrichment affects the mechanical resistance of aquatic plants.

    PubMed

    Lamberti-Raverot, Barbara; Puijalon, Sara

    2012-10-01

    For many plant species, nutrient availability induces important anatomical responses, particularly the production of low-density tissues to the detriment of supporting tissues. Due to the contrasting biomechanical properties of plant tissues, these anatomical responses may induce important modifications in the biomechanical properties of plant organs. The aim of this study was to determine the effects of nutrient enrichment on the anatomical traits of two freshwater plant species and its consequences on plant biomechanical performance. Two plant species were grown under controlled conditions in low versus high nutrient levels. The anatomical and biomechanical traits of the plant stems were measured. Both species produced tissues with lower densities under nutrient-rich conditions, accompanied by modifications in the structure of the aerenchyma for one species. As expected, nutrient enrichment also led to important modifications in the biomechanical properties of the stem for both species. In particular, mechanical resistance (breaking force and strength) and stiffness of stems were significantly reduced under nutrient rich conditions. The production of weaker stem tissues as a result of nutrient enrichment may increase the risk of plants to mechanical failure, thus challenging plant maintenance in mechanically stressful or disturbed habitats. PMID:23028018

  8. Student Profiles and Factors Affecting Performance.

    ERIC Educational Resources Information Center

    Chansarkar, B. A.; Michaeloudis, A.

    2001-01-01

    Studies the profiling of first year students studying the Quantitative Methods for Business module at a British university, and makes policy recommendations to improve student performance. Indicates that the highest proportion of students are United Kingdom students, 58% of the students are male, and only 30% of the students are mature students.…

  9. Factors affecting performance of engineered barriers

    SciTech Connect

    Blink, J. A., LLNL

    1998-03-01

    For the Yucca Mountain Viability Assessment (VA), a reference design was tentatively selected` In September 1997, and a series of model abstractions are being prepared for the performance assessment (PA) of that design. To determine the sensitivity of peak dose rate at the accessible environment to engineered components, several design options were subjected to the PA models available late in FY97.

  10. FACTORS AFFECTING PERFORMANCE OF ENGINEERED BARRIERS

    SciTech Connect

    Blink, J. A.; Bailey, T. W.; Doering, W.; Lee, J. K.; Mccoy, J. K.; McKenzie, D. G.; Sevougian, D.; Vallikat, V.

    1998-03-01

    For the Yucca Mountain Viability Assessment (VA), a reference design was tentatively selected in September 1997, and a series of model abstractions are being prepared for the performance assessment (PA) of that design. To determine the sensitivity of peak dose rate at the accessible environment to engineered components, several design options were subjected to the PA models available late in FY97.

  11. Corridors affect plants, animals, and their interactions in fragmented landscapes.

    SciTech Connect

    Tewksbury, Joshua, J.; Levey, Douglas, J.; Haddad, Nick, M.; Sargent, Sarah; Orrock, John, L.; Weldon, Aimee; Danielson, Brent, J.; Brinkerhoff, Jory; Damschen, Ellen, I.; Townsend, Patricia

    2002-10-01

    Tewksbury, J.J., D.J. Levey, N.M. Haddad, S. Sargent, J.L. Orrock, A. Weldon, B.J. Danielson, J. Brinkerhoff, E.I. Damschen, and P. Townsend. 2002. Corridors affect plants, animals, and their interactions in fragmented landscapes. PNAS 99(20):12923-12926. Among the most popular strategies for maintaining populations of both plants and animals in fragmented landscapes is to connect isolated patches with thin strips of habitat, called corridors. Corridors are thought to increase the exchange of individuals between habitat patches, promoting genetic exchange and reducing population fluctuations. Empirical studies addressing the effects of corridors have either been small in scale or have ignored confounding effects of increased habitat area created by the presence of a corridor. These methodological difficulties, coupled with a paucity of studies examining the effects of corridors on plants and plant-animal interactions, have sparked debate over the purported value of corridors in conservation planning. We report results of a large-scale experiment that directly address this debate. We demonstrate that corridors not only increase the exchange of animals between patches, but also facilitate two key plant-animal interactions: pollination and seed dispersal. Our results show that the beneficial effects of corridors extend beyond the area they add, and suggest that increased plant and animal movement through corridors will have positive impacts on plant populations and community interactions in fragmented landscapes.

  12. Combined effects of positive and negative affectivity and job satisfaction on job performance and turnover intentions.

    PubMed

    Bouckenooghe, Dave; Raja, Usman; Butt, Arif Nazir

    2013-01-01

    Capturing data from employee-supervisor dyads (N = 321) from eight organizations in Pakistan, including human service organizations, an electronics assembly plant, a packaging material manufacturing company, and a small food processing plant, we used moderated regression analysis to examine whether the relationships between trait affect (positive affectivity [PA] and negative affectivity [NA]) and two key work outcome variables (job performance and turnover) are contingent upon the level of job satisfaction. We applied the Trait Activation Theory to explain the moderating effect of job satisfaction on the relationship between affect and performance and between affect and turnover. Overall, the data supported our hypotheses. Positive and negative affectivity influenced performance and the intention to quit, and job satisfaction moderated these relationships. We discuss in detail the results of these findings and their implications for research and practice. PMID:23469474

  13. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra.

    PubMed

    Khaling, Eliezer; Papazian, Stefano; Poelman, Erik H; Holopainen, Jarmo K; Albrectsen, Benedicte R; Blande, James D

    2015-04-01

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools. PMID:25645061

  14. Performance calculations for 1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.

    1981-01-01

    The effects of MHD generator operating conditions and constraints on the performance of MHD/steam power plants are investigated. Power plants using high temperature combustion air preheat (2500 F) and plants using intermediate temperature preheat (1100 F) with oxygen enrichment are considered. Variations of these two types of power plants are compared on the basis of fixed total electrical output (1000 MWe). Results are presented to show the effects of generator plant length and level of oxygen enrichment on the plant thermodynamic efficiency and on the required generator mass flow rate. Factors affecting the optimum levels of oxygen enrichment are analyzed. It is shown that oxygen enrichment can reduce magnet stored energy requirement.

  15. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability. PMID:25883357

  16. Performance of solar multiflash desalination plants

    SciTech Connect

    Ruggiero, U.; Ciciolla, C.; Fabiano, M.; Fortunato, B.

    1982-08-01

    In the present paper the authors study the performance of solar multiflash desalination plants. In the first part of the study a computer program is coded for the design and calculation of the steady working conditions of the desalination plant. The code has been tested by comparing the theoretical results with the experimental ones obtained from a prototype and a satisfactory agreement has been found. In the second part of the work the authors study the working condition of the desalination plant connected with a solar system. Finally the unsteady performance of the multiflash desalination plant is also predicted by using another computer program, based on a ''Montecarlo'' simulation algorithm for the generation of the atmospheric conditions. This code simulates the working conditions of the plant in a given period of time by computing all the relevant parameters.

  17. Performance of solar multiflash desalination plants

    NASA Astrophysics Data System (ADS)

    Ruggiero, U.; Ciciolla, C.; Fabiano, M.; Fortunato, B.

    A theoretical model is presented for calculating the steady and unsteady performance of a solar desalinization plant. A Monte Carlo method is used to generate the atmospheric parameters, and a once-through multi-flash desalinization plant is considered, using data from a 100 C operating temperature prototype plant. Energy and mass balances are formulated for the generic stage, a heat balance is defined for the brine heater stage, and a total heat transfer coefficient is calculated for all system stages. Focusing solar collectors are considered for the power source, and an approximation is employed to predict the solar input for a specific time of day. Short and long term thermal losses are analyzed, together with the cost of the water produced. Increases in oil costs are projected to be necessary to make solar powered desalinization plants preferable over conventional plants.

  18. Engineering performance monitoring: Sustained contributions to plant performance improvement

    SciTech Connect

    Bebko, J.J. )

    1992-01-01

    With the aim of achieving excellence in an engineering department that makes both individual project-by-project contributions to plant performance improvement and sustained overall contributions to plant performance, the Niagara Mohawk Nuclear Engineering Department went back to the basics of running a business and established an Engineering Performance Monitoring System. This system focused on the unique products and services of the department and their cost, schedule, and quality parameters. The goals were to provide the best possible service to customers and the generation department and to be one of the best engineering departments in the industry.

  19. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect

    Samuel S. Tam

    2002-05-01

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the

  20. Soil microbes and plant invasions—how soil-borne pathogens regulate plant populations and affect plant invasions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic plant invaders are a major global threat to biodiversity and ecosystem function. Here I present multiple lines of evidence suggesting that soil microbial communities affect the population growth rates of Prunus serotina in its native range and affect its invasiveness abroad. Research often ...

  1. Performance processes within affect-related performance zones: a multi-modal investigation of golf performance.

    PubMed

    van der Lei, Harry; Tenenbaum, Gershon

    2012-12-01

    Individual affect-related performance zones (IAPZs) method utilizing Kamata et al. (J Sport Exerc Psychol 24:189-208, 2002) probabilistic model of determining the individual zone of optimal functioning was utilized as idiosyncratic affective patterns during golf performance. To do so, three male golfers of a varsity golf team were observed during three rounds of golf competition. The investigation implemented a multi-modal assessment approach in which the probabilistic relationship between affective states and both, performance process and performance outcome, measures were determined. More specifically, introspective (i.e., verbal reports) and objective (heart rate and respiration rate) measures of arousal were incorporated to examine the relationships between arousal states and both, process components (i.e., routine consistency, timing), and outcome scores related to golf performance. Results revealed distinguishable and idiosyncratic IAPZs associated with physiological and introspective measures for each golfer. The associations between the IAPZs and decision-making or swing/stroke execution were strong and unique for each golfer. Results are elaborated using cognitive and affect-related concepts, and applications for practitioners are provided. PMID:22562463

  2. Mathematics Anxiety and the Affective Drop in Performance

    ERIC Educational Resources Information Center

    Ashcraft, Mark H.; Moore, Alex M.

    2009-01-01

    The authors provide a brief review of the history and assessment of math anxiety, its relationship to personal and educational consequences, and its important impact on measures of performance. Overall, math anxiety causes an "affective drop," a decline in performance when math is performed under timed, high-stakes conditions, both in laboratory…

  3. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect

    Sheldon Kramer

    2003-09-01

    This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for

  4. Perfectionism, Performance, and State Positive Affect and Negative Affect after a Classroom Test

    ERIC Educational Resources Information Center

    Flett, Gordon L.; Blankstein, Kirk R.; Hewitt, Paul L.

    2009-01-01

    The current study examined the associations among trait dimensions of perfectionism, test performance, and levels of positive and negative affect after taking a test. A sample of 92 female university students completed the Multidimensional Perfectionism Scale one week prior to an actual class test. Measures of positive affect and negative affect…

  5. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    SciTech Connect

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  6. Inoculation of Transgenic Resistant Potato by Phytophthora infestans Affects Host Plant Choice of a Generalist Moth.

    PubMed

    Abreha, Kibrom B; Alexandersson, Erik; Vossen, Jack H; Anderson, Peter; Andreasson, Erik

    2015-01-01

    Pathogen attack and the plant's response to this attack affect herbivore oviposition preference and larval performance. Introduction of major resistance genes against Phytophthora infestans (Rpi-genes), the cause of the devastating late blight disease, from wild Solanum species into potato changes the plant-pathogen interaction dynamics completely, but little is known about the effects on non-target organisms. Thus, we examined the effect of P. infestans itself and introduction of an Rpi-gene into the crop on host plant preference of the generalist insect herbivore, Spodoptera littoralis (Lepidoptera: Noctuidae). In two choice bioassays, S. littoralis preferred to oviposit on P. infestans-inoculated plants of both the susceptible potato (cv. Desiree) and an isogenic resistant clone (A01-22: cv. Desiree transformed with Rpi-blb1), when compared to uninoculated plants of the same genotype. Both cv. Desiree and clone A01-22 were equally preferred for oviposition by S. littoralis when uninoculated plants were used, while cv. Desiree received more eggs compared to the resistant clone when both were inoculated with the pathogen. No significant difference in larval and pupal weight was found between S. littoralis larvae reared on leaves of the susceptible potato plants inoculated or uninoculated with P. infestans. Thus, the herbivore's host plant preference in this system was not directly associated with larval performance. The results indicate that the Rpi-blb1 based resistance in itself does not influence insect behavior, but that herbivore oviposition preference is affected by a change in the plant-microbe interaction. PMID:26053171

  7. Advanced operator training: Principles of plant performance

    SciTech Connect

    Not Available

    1984-01-01

    This text has been developed for control room operators and supervisors to aid them in better understanding the operation of the integrated fossil-fuel power plant. The knowledge gained from this text will improve the operator's ability to optimize thermal efficiency and maintain equipment reliability, thereby furthering the operator's overall capabilities. This five-module text is designed to improve the expertise of the control room operator in the field of heat rate improvement, a major area of importance during times of rising fuel costs. Each module covers and builds on specific areas. Module one discusses the basic principles of thermodynamics, energy and its application in a power plant, and the use of steam tables. Module two examines energy flow in a power plant while considering the plant as an ''energy conversion factory.'' Module three explains energy losses throughout the plant, concentrating on the following areas: the boiler, the turbine-generator, and the regenerative feedwater system. Module four describes operator-controllable losses, including case studies of ''typical'' performance problems and recommendations of corrective actions. The fifth module describes integrated controls needed for plant operation. Proportional, integral, and derivative type controls, along with the ''three elements of control'' used for the steam drum level, are all presented in this final module.

  8. Factors Affecting Performance of Undergraduate Students in Construction Related Disciplines

    ERIC Educational Resources Information Center

    Olatunji, Samuel Olusola; Aghimien, Douglas Omoregie; Oke, Ayodeji Emmanuel; Olushola, Emmanuel

    2016-01-01

    Academic performance of students in Nigerian institutions has been of much concern to all and sundry hence the need to assess the factors affecting performance of undergraduate students in construction related discipline in Nigeria. A survey design was employed with questionnaires administered on students in the department of Quantity Surveying,…

  9. Focus of Attention Affects Performance of Motor Skills in Music

    ERIC Educational Resources Information Center

    Duke, Robert A.; Cash, Carla Davis; Allen, Sarah E.

    2011-01-01

    To test the extent to which learners performing a simple keyboard passage would be affected by directing their focus of attention to different aspects of their movements, 16 music majors performed a brief keyboard passage under each of four focus conditions arranged in a counterbalanced design--a total of 64 experimental sessions. As they…

  10. Study of how sash movement affects performance of fume hoods

    SciTech Connect

    Hardwick, T.

    1997-12-31

    This study was conducted to determine how sash movements affect the performance of fume hoods. The performance of two fume hoods was studied as the sashes were moved from closed to open position at speeds of 2 ft/s, 1.5 ft/s, and 1 ft/s. The tests were conducted with fume hoods operated at both constant volume and variable air volume. The tests indicate that sash movements can disturb airflow patterns at the face of the hood and potentially affect the performance of the hood. The effect of the sash movement varied with hood type and speed of sash movement. The faster sash movements of 2 ft/s and 1.5 ft/s had a greater effect on the performance of the hoods than the slower movement of 1 ft/s. Constant-volume hoods and variable-air-volume hoods were both affected by sash movements. Constant-volume hoods set to a full open face velocity of 60 ft/min were more susceptible to the sash movement than at 100 ft/min full open face velocity. The performance of variable-air-volume hoods is affected not only by sash movement speed but also by the response time of the controller. The drop in face velocity that occurs when the sash is moved is determined by the speed of the VAV controller. The required response time for containment depends on the fume hood design and the speed of the sash movement.

  11. Economy Affects Students' Academic Performance as Well as Spending Decisions

    ERIC Educational Resources Information Center

    Sander, Libby

    2012-01-01

    Like many Americans caught up in the economic downturn, college students are worried about money. Now research indicates that financial worries may affect their academic performance. The author presents the results of this year's National Survey of Student Engagement. The survey reveals that more than a third of seniors and more than a quarter of…

  12. Cognitive, Affective, and Behavioral Determinants of Performance: A Process Model.

    ERIC Educational Resources Information Center

    Dorfman, Peter W.; Stephan, Walter G.

    Literature from organizational and social psychology has suggested that three types of factors influence performance, i.e., cognitive, affective and behavioral. A model was developed to test a set of propositions concerning the relationship between the three kinds of factors, and included attributions, expectancies, general emotional responses to…

  13. Principals' Perception regarding Factors Affecting the Performance of Teachers

    ERIC Educational Resources Information Center

    Akram, Muhammad Javaid; Raza, Syed Ahmad; Khaleeq, Abdur Rehman; Atika, Samrana

    2011-01-01

    This study investigated the perception of principals on how the factors of subject mastery, teaching methodology, personal characteristics, and attitude toward students affect the performance of teachers at higher secondary level in the Punjab. All principals of higher secondary level in the Punjab were part of the population of the study. From…

  14. Factors Affecting Performance in an Introductory Sociology Course

    ERIC Educational Resources Information Center

    Kwenda, Maxwell

    2011-01-01

    This study examines factors affecting students' performances in an Introductory Sociology course over five semesters. Employing simple and ordered logit regression models, the author explains final grades by focusing on individual demographic and educational characteristics that students bring into the classroom. The results show that a student's…

  15. Sibsize, Family Environment, Cognitive Performance, and Affective Characteristics

    ERIC Educational Resources Information Center

    Marjoribanks, Kevin

    1976-01-01

    Incorporates measures of family environment (parent-child interaction) into research methodology to study the effects of sibsize (family size and birth order) on a child's cognitive performance and affective behavior. Provides tentative support for the confluence model of sibsize influences on children's behaviors. (RL)

  16. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production

    PubMed Central

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role. PMID:26217252

  17. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production.

    PubMed

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role. PMID:26217252

  18. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance.

    PubMed

    Grettenberger, Ian M; Tooker, John F

    2016-09-01

    Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems. PMID:27170329

  19. Reassessment of selected factors affecting siting of Nuclear Power Plants

    SciTech Connect

    Davis, R.E.; Hanson, A.L.; Mubayi, V.; Nourbakhsh, H.P.

    1997-02-01

    Brookhaven National Laboratory has performed a series of probabilistic consequence assessment calculations for nuclear reactor siting. This study takes into account recent insights into severe accident source terms and examines consequences in a risk based format consistent with the quantitative health objectives (QHOs) of the NRC`s Safety Goal Policy. Simplified severe accident source terms developed in this study are based on the risk insights of NUREG-1150. The results of the study indicate that both the quantity of radioactivity released in a severe accident as well as the likelihood of a release are lower than those predicted in earlier studies. The accident risks using the simplified source terms are examined at a series of generic plant sites, that vary in population distribution, meteorological conditions, and exclusion area boundary distances. Sensitivity calculations are performed to evaluate the effects of emergency protective action assumptions on the risk of prompt fatality and latent cancers fatality, and population relocation. The study finds that based on the new source terms the prompt and latent fatality risks at all generic sites meet the QHOs of the NRC`s Safety Goal Policy by margins ranging from one to more than three orders of magnitude. 4 refs., 17 figs., 24 tabs.

  20. Socially triggered negative affect impairs performance in simple cognitive tasks.

    PubMed

    Böttcher, Svenja; Dreisbach, Gesine

    2014-03-01

    The aim of this research was to investigate the influence of a social-evaluative context on simple cognitive tasks. While another person present in the room evaluated photographs of beautiful women or landscapes by beauty/attractiveness, female participants had to perform a combination of digit-categorization and spatial-compatibility task. There, before every trial, one of the women or landscape pictures was presented. Results showed selective performance impairments: the numerical distance effects increased on trials that followed women pictures but only, if another person concurrently evaluated these women pictures. In a second experiment, using the affective priming paradigm, the authors show that female pictures have a more negative connotation when they are concurrently evaluated by another person (social-evaluative context) than when they are not evaluated (neutral context). Together, these results suggest that the social-evaluative context triggers mild negative affective reactions to women pictures which then impair performance in an unrelated task. PMID:23423348

  1. STRESS ETHYLENE EVOLUTION: A MEASURE OF OZONE AFFECTS ON PLANTS

    EPA Science Inventory

    To determine if ethylene evolution by plants is correlated with the ozone stress, a range of plants species and cultivars was exposed to varying ozone concentrations. Following exposure, the plants were encapsulated in plastic bags and incubated for up to 22h. The stress-induced ...

  2. Dioecy, more than monoecy, affects plant spatial genetic structure: the case study of Ficus

    PubMed Central

    Nazareno, Alison G; Alzate-Marin, Ana L; Pereira, Rodrigo Augusto S

    2013-01-01

    In this analysis, we attempt to understand how monoecy and dioecy drive spatial genetic structure (SGS) in plant populations. For this purpose, plants of the genus Ficus were used as a comparative model due to their particular characteristics, including high species diversity, variation in life histories, and sexual systems. One of the main issues we assessed is whether dioecious fig tree populations are more spatially genetically structured than monoecious populations. Using the Sp statistic, which allows for quantitative comparisons among different studies, we compared the extent of SGS between monoecious and dioecious Ficus species. To broaden our conclusions we used published data on an additional 27 monoecious and dioecious plant species. Furthermore, genetic diversity analyses were performed for two monoecious Ficus species using 12 microsatellite markers in order to strengthen our conclusions about SGS. Our results show that dioecy, more than monoecy, significantly contributes to SGS in plant populations. On average, the estimate of Sp was six times higher for dioecious Ficus species than monoecious Ficus species and it was two times higher in dioecious than monoecious plant species. Considering these results, we emphasize that the long-distance pollen dispersal mechanism in monoecious Ficus species seems to be the dominant factor in determining weak spatial genetic structure, high levels of genetic diversity, and lack of inbreeding. Although Ficus constitute a model species to study SGS, a more general comparison encompassing a wider range of plants is required in order to better understand how sexual systems affect genetic structure. PMID:24223285

  3. Condenser performance recovery in nuclear power plants

    SciTech Connect

    Saxon, G. Jr.; Putman, R.E.

    1996-12-31

    Fouling of the tubes in the main condenser can have a significant impact on nuclear plant performance. Recent experiences suggest that the effects of fouling have been underestimated and that the results of an effective tube cleaning can be measured in improved unit capacity. In particular two nuclear power plants have reported recovery of 20 and 25 MW respectively. While the types of deposition often vary as they did in these two cases, the deposit elements were accurately identified, the deposits` impact on heat transfer was evaluated and an effective cleaning methodology was developed for successful deposit removal. These experiences have prompted the development of a number of diagnostic monitoring and inspection methods which can be utilized in the field or in the laboratory; to detect, identify and quantify the presence of fouling and its impact on heat transfer, to determine the relative effectiveness of a cleaning method and to evaluate condenser performance as related to MW capacity for both single and multiple compartment condensers.

  4. Affective imagery and acceptance of replacing nuclear power plants.

    PubMed

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed. PMID:21977961

  5. Factors Affecting Polymer Electrolyte Fuel Cells Performance and Reproducibility

    SciTech Connect

    Moller-Holst S.

    1998-11-01

    Development of fuel cells is often based on small-scale laboratory studies. Due to limited time and budgets, a minimum number of cells are usually prepared and tested, thus, conclusions about improved performance are often drawn from studies of a few cells. Generally, statistics showing the significance of an effect are seldom reported. In this work a simple PEM fuel cell electrode optimization experiment is used as an example to illustrate the importance of statistical evaluation of factors affecting cell performance. The use of fractional factorial design of experiments to reduce the number of cells that have to be studied is also addressed.

  6. Gasification Plant Cost and Performance Optimization

    SciTech Connect

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power

  7. Factors Affecting Location Decisions of Food Processing Plants

    NASA Astrophysics Data System (ADS)

    Turhan, Sule; Canan Ozbag, Basak; Cetin, Bahattin

    The main aim of this study is to examine the determinants of location choices for food processing plants using the results of 59 personal surveys. The 61.3% of the food processing plants that were interviewed are small scale plants, 9.1% are large scale plants and 29.6% are medium scale plants. Sixteen of the firms process vegetables, 12 process poultry, 12 process dairy and 9 process seafood products. Business climate factors are divided into six categories (market, infrastructure, raw material, labor, personal and environmental) and 17 specific location factors are considered. The survey responses are analyzed by types of raw materials processed and by plant size. 43.7, 55.3 and 42.2% of the respondents cited categories of Market, Raw Material and Infrastructure respectively as important, while 44.3, 50.7 and 74.4% of the respondents cited, labor, personal and environmental regulation categories of as not important. Thus survey findings indicate that plant location choices are mainly driven by market, raw material and infra structural factors. Environmental factors such as environmental regulations and permissions are relatively insignificant.

  8. Factors affecting plant growth in membrane nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.

    1990-01-01

    The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.

  9. Plant toxins that affect nicotinic acetylcholine receptors: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants produce wide variety of chemical compounds termed secondary metabolites that are not involved in basic metabolism, photosynthesis or reproduction. These compounds are used as flavors, fragrances, insecticides, dyes, hallucinogens, nutritional supplements, poisons, and pharmaceutical agents. ...

  10. A novel family of small proteins that affect plant development

    SciTech Connect

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  11. Does Question Structure Affect Exam Performance in the Geosciences?

    NASA Astrophysics Data System (ADS)

    Day, E. A.; D'Arcy, M. K.; Craig, L.; Streule, M. J.; Passmore, E.; Irving, J. C. E.

    2015-12-01

    The jump to university level exams can be challenging for some students, often resulting in poor marks, which may be detrimental to their confidence and ultimately affect their overall degree class. Previous studies have found that question structure can have a strong impact on the performance of students in college level exams (see Gibson et al., 2015, for a discussion of its impact on physics undergraduates). Here, we investigate the effect of question structure on the exam results of geology and geophysics undergraduate students. Specifically, we analyse the performance of students in questions that have a 'scaffolded' framework and compare them to their performance in open-ended questions and coursework. We also investigate if observed differences in exam performance are correlated with the educational background and gender of students, amongst other factors. It is important for all students to be able to access their degree courses, no matter what their backgrounds may be. Broadening participation in the geosciences relies on removing systematic barriers to achievement. Therefore we recommend that exams are either structured with scaffolding in questions at lower levels, or students are explicitly prepared for this transition. We also recommend that longitudinal studies of exam performance are conducted within individual departments, and this work outlines one approach to analysing performance data.

  12. Fuel breaks affect nonnative species abundance in Californian plant communities

    USGS Publications Warehouse

    Merriam, K.E.; Keeley, J.E.; Beyers, J.L.

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment programs throughout the United States to reduce the threat of wildland fire. Our study included 24 fuel breaks located across the State of California. We found that nonnative plant abundance was over 200% higher on fuel breaks than in adjacent wildland areas. Relative nonnative cover was greater on fuel breaks constructed by bulldozers (28%) than on fuel breaks constructed by other methods (7%). Canopy cover, litter cover, and duff depth also were significantly lower on fuel breaks constructed by bulldozers, and these fuel breaks had significantly more exposed bare ground than other types of fuel breaks. There was a significant decline in relative nonnative cover with increasing distance from the fuel break, particularly in areas that had experienced more numerous fires during the past 50 years, and in areas that had been grazed. These data suggest that fuel breaks could provide establishment sites for nonnative plants, and that nonnatives may invade surrounding areas, especially after disturbances such as fire or grazing. Fuel break construction and maintenance methods that leave some overstory canopy and minimize exposure of bare ground may be less likely to promote nonnative plants. ?? 2006 by the Ecological Society of America.

  13. Rhizosphere microbiome assemblage is affected by plant development

    PubMed Central

    Chaparro, Jacqueline M; Badri, Dayakar V; Vivanco, Jorge M

    2014-01-01

    There is a concerted understanding of the ability of root exudates to influence the structure of rhizosphere microbial communities. However, our knowledge of the connection between plant development, root exudation and microbiome assemblage is limited. Here, we analyzed the structure of the rhizospheric bacterial community associated with Arabidopsis at four time points corresponding to distinct stages of plant development: seedling, vegetative, bolting and flowering. Overall, there were no significant differences in bacterial community structure, but we observed that the microbial community at the seedling stage was distinct from the other developmental time points. At a closer level, phylum such as Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and specific genera within those phyla followed distinct patterns associated with plant development and root exudation. These results suggested that the plant can select a subset of microbes at different stages of development, presumably for specific functions. Accordingly, metatranscriptomics analysis of the rhizosphere microbiome revealed that 81 unique transcripts were significantly (P<0.05) expressed at different stages of plant development. For instance, genes involved in streptomycin synthesis were significantly induced at bolting and flowering stages, presumably for disease suppression. We surmise that plants secrete blends of compounds and specific phytochemicals in the root exudates that are differentially produced at distinct stages of development to help orchestrate rhizosphere microbiome assemblage. PMID:24196324

  14. Plant surface wax affects parasitoid's response to host footprints

    NASA Astrophysics Data System (ADS)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  15. A GAS-EXCHANGE SYSTEM FOR ASSESSING PLANT PERFORMANCE IN RESPONSE TO ENVIRONMENTAL STRESS

    EPA Science Inventory

    Anthropogenic stresses are increasingly common as environmental factors affecting the performance of plants in both natural and agro-ecosystems. There is a need to determine how these stresses may influence vital physiological processes in plants. This report documents the design...

  16. 30 CFR 827.12 - Coal preparation plants: Performance standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal preparation plants: Performance standards...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.12 Coal preparation plants..., modification, reclamation, and removal activities at coal preparation plants shall comply with the...

  17. 30 CFR 827.12 - Coal preparation plants: Performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal preparation plants: Performance standards...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.12 Coal preparation plants..., modification, reclamation, and removal activities at coal preparation plants shall comply with the...

  18. 30 CFR 827.12 - Coal preparation plants: Performance standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal preparation plants: Performance standards...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.12 Coal preparation plants..., modification, reclamation, and removal activities at coal preparation plants shall comply with the...

  19. 30 CFR 827.12 - Coal preparation plants: Performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal preparation plants: Performance standards...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.12 Coal preparation plants..., modification, reclamation, and removal activities at coal preparation plants shall comply with the...

  20. 30 CFR 827.12 - Coal preparation plants: Performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal preparation plants: Performance standards...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.12 Coal preparation plants..., modification, reclamation, and removal activities at coal preparation plants shall comply with the...

  1. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model

    PubMed Central

    Sarlikioti, V.; de Visser, P. H. B.; Buck-Sorlin, G. H.; Marcelis, L. F. M.

    2011-01-01

    Background and Aims Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a range of different plant architectural characteristics was tested for two different seasons in order to find the optimal architecture with respect to light absorption and photosynthesis. Methods Simulations were performed with an FSPM of a greenhouse-grown tomato crop. Sensitivity analyses were carried out for leaf elevation angle, leaf phyllotaxis, leaflet angle, leaf shape, leaflet arrangement and internode length. From the results of this analysis two possible ideotypes were proposed. Four different vertical light distributions were also tested, while light absorption cumulated over the whole canopy was kept the same. Key Results Photosynthesis was augmented by 6 % in winter and reduced by 7 % in summer, when light absorption in the top part of the canopy was increased by 25 %, while not changing light absorption of the canopy as a whole. The measured plant structure was already optimal with respect to leaf elevation angle, leaflet angle and leaflet arrangement for both light absorption and photosynthesis while phyllotaxis had no effect. Increasing the length : width ratio of leaves by 1·5 or increasing internode length from 7 cm to 12 cm led to an increase of 6–10 % for light absorption and photosynthesis. Conclusions At high light intensities (summer) deeper penetration of light in the canopy improves crop photosynthesis, but not at low light intensities (winter). In particular, internode length and leaf shape affect the vertical distribution of light in the canopy. A new plant ideotype with more spacious canopy architecture due to long internodes and long and narrow leaves led to an increase in crop photosynthesis of up to 10 %. PMID:21865217

  2. Can small shifts in circadian phase affect performance?

    PubMed Central

    Burgess, Helen J.; Legasto, Carlo S.; Fogg, Louis F.; Smith, Mark R.

    2012-01-01

    Small shifts in circadian timing occur frequently as a result of daylight saving time or later weekend sleep. These subtle shifts in circadian phase have been shown to influence subjective sleepiness, but it remains unclear if they can significantly affect performance. In a retrospective analysis we examined performance on the Psychomotor Vigilance Test before bedtime and after wake time in 11 healthy adults on fixed sleep schedules based on their habitual sleep times. The dim light melatonin onset, a marker of circadian timing, was measured on two occasions. An average 1.1 hour shift away from a proposed optimal circadian phase angle (6 hours between melatonin onset and midpoint of sleep) significantly slowed mean, median and fastest 10% reaction times before bedtime and after wake time (p<0.05). These results add to previous reports that suggest that humans may be sensitive to commonly occurring small shifts in circadian timing. PMID:22695081

  3. Cadmium content of plants as affected by soil cadmium concentration

    SciTech Connect

    Lehoczky, E.; Szabados, I.; Marth, P.

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With the same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.

  4. Plant extracts affect in vitro rumen microbial fermentation.

    PubMed

    Busquet, M; Calsamiglia, S; Ferret, A; Kamel, C

    2006-02-01

    Different doses of 12 plant extracts and 6 secondary plant metabolites were incubated for 24 h in diluted ruminal fluid with a 50:50 forage:concentrate diet. Treatments were: control (no additive), plant extracts (anise oil, cade oil, capsicum oil, cinnamon oil, clove bud oil, dill oil, fenugreek, garlic oil, ginger oil, oregano oil, tea tree oil, and yucca), and secondary plant metabolites (anethol, benzyl salicylate, carvacrol, carvone, cinnamaldehyde, and eugenol). Each treatment was supplied at 3, 30, 300, and 3,000 mg/L of culture fluid. At 3,000 mg/L, most treatments decreased total volatile fatty acid concentration, but cade oil, capsicum oil, dill oil, fenugreek, ginger oil, and yucca had no effect. Different doses of anethol, anise oil, carvone, and tea tree oil decreased the proportion of acetate and propionate, which suggests that these compounds may not be nutritionally beneficial to dairy cattle. Garlic oil (300 and 3,000 mg/L) and benzyl salicylate (300 and 3,000 mg/L) reduced acetate and increased propionate and butyrate proportions, suggesting that methane production was inhibited. At 3,000 mg/L, capsicum oil, carvacrol, carvone, cinnamaldehyde, cinnamon oil, clove bud oil, eugenol, fenugreek, and oregano oil resulted in a 30 to 50% reduction in ammonia N concentration. Careful selection and combination of these extracts may allow the manipulation of rumen microbial fermentation. PMID:16428643

  5. Maximizing plant density affects broccoli yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased demand for fresh market bunch broccoli (Brassica oleracea L. var. italica) has led to increased production along the United States east coast. Maximizing broccoli yields is a primary concern for quickly expanding southeastern commercial markets. This broccoli plant density study was carr...

  6. Power plant performance monitoring and improvement. Volume 3. Power plant performance instrumentation systems

    SciTech Connect

    Crim, H.G.; Westcott, J.C.; de Mello, R.W.; Brandon, R.E.; Parkinson, D.W.; Czuba, J.S.

    1986-02-01

    PEPCO's Morgantown Unit 2 and the PJM system control center are serving as the test facilities for this project. This first phase of the project utilizes currently (or soon to be) available instrumentation for monitoring and analyzing plant and system performance on a continuous basis. The overall approach is to demonstrate in one facility all sensors, monitoring devices, and necessary computer hardware and software for on-line performance monitoring and dispatch purposes. Significant developments include turbine packing leakage measurement, condenser back-pressure measurement, power cycle testing, and studies of the application of advanced instrumentation to system dispatch.

  7. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities

    PubMed Central

    2013-01-01

    Background Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms’ specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Results Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms

  8. Students' Interest in Surgery Affects Laparoscopic Practicing Performance

    PubMed Central

    Mao Wu, Sheng; Kuei Chien, Wen; Sheng Huang, Chen; Cheng Lin, Wei; Chun Chang, Yin

    2016-01-01

    Background and Objective: Earlier exposure to laparoscopic techniques is thought to be beneficial for medical students. Reports have demonstrated that practice improves performance in laparoscopies. In this study, we intended to evaluate whether medical students' interest in surgery is affected by the amount of practice and the performance on a laparoscopic simulator. Methods: A laparoscopic simulation curriculum was introduced at Taipei Medical University, Wan-Fang Medical Center. Study participants included 36 sixth-year and 14 seventh-year students who were divided according to whether they had indicated an interest (group A) or not (group B) in surgery. The students had twice-a-week practice sessions for 2 weeks. They underwent baseline measurement (BM) before training and posttraining measurement (PTM). Self-guided practice on the simulator was allowed. The learning outcomes were assessed comparing the BM and PTM scores by using the interquartile range (IQR) test. We also tested the correlation between total score and number of self-guided practice sessions. Results: All study participants showed improvement. No differences were observed between BM and PTM scores and between 6th- and 7th-year medical students. Significant differences were found in PTM scores between groups A and B (P < .001). Analysis of variance with a post hoc test for different groups revealed that the PTMs were significantly higher for both the 6th- and 7th-year medical students in group A than for those in group B (P < .001). Total performance scores were improved with a higher number of self-guided practice sessions. Linear regression analysis demonstrated a significant correlation between the number of self-guided practice sessions and total performance score (P < .001). Conclusion: Those clerks and interns interested in surgery who had more sessions for self-guided practice, displayed more improvement than those not interested in surgery did. Improvement in performance correlated

  9. Lithium-oxygen batteries-Limiting factors that affect performance

    NASA Astrophysics Data System (ADS)

    Padbury, Richard; Zhang, Xiangwu

    2011-05-01

    Lithium-oxygen batteries have recently received attention due to their extremely high theoretical energy densities, which far exceed that of any other existing energy storage technology. The significantly larger theoretical energy density of the lithium-oxygen batteries is due to the use of a pure lithium metal anode and the fact that the cathode oxidant, oxygen, is stored externally since it can be readily obtained from the surrounding air. Before the lithium-oxygen batteries can be realized as high performance, commercially viable products, there are still many challenges to overcome, from designing their cathode structure, to optimizing their electrolyte compositions and elucidating the complex chemical reactions that occur during charge and discharge. The scientific obstacles that are related to the performance of the lithium-oxygen batteries open up an exciting opportunity for researchers from many different backgrounds to utilize their unique knowledge and skills to bridge the knowledge gaps that exist in current research projects. This article is a summary of the most significant limiting factors that affect the performance of the lithium-oxygen batteries from the perspective of the authors. The article indicates the relationships that form between various limiting factors and highlights the complex yet captivating nature of the research within this field.

  10. Early warning indicators for monitoring nuclear plant performance

    SciTech Connect

    Acosta, R.J.

    1997-12-01

    Florida Power & Light Company`s (FP&L`s) Nuclear Division has developed a set of early warning indicators that are used to provide precursor indications of future plant performance. These indicators are monitored by management and safety committees to enable early detection of negative performance so that corrective actions may be taken prior to experiencing a significant decline in plant performance.

  11. Volatile Exchange between Undamaged Plants - a New Mechanism Affecting Insect Orientation in Intercropping

    PubMed Central

    Ninkovic, Velemir; Dahlin, Iris; Vucetic, Andja; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben

    2013-01-01

    Changes in plant volatile emission can be induced by exposure to volatiles from neighbouring insect-attacked plants. However, plants are also exposed to volatiles from unattacked neighbours, and the consequences of this have not been explored. We investigated whether volatile exchange between undamaged plants affects volatile emission and plant-insect interaction. Consistently greater quantities of two terpenoids were found in the headspace of potato previously exposed to volatiles from undamaged onion plants identified by mass spectrometry. Using live plants and synthetic blends mimicking exposed and unexposed potato, we tested the olfactory response of winged aphids, Myzus persicae. The altered potato volatile profile deterred aphids in laboratory experiments. Further, we show that growing potato together with onion in the field reduces the abundance of winged, host-seeking aphids. Our study broadens the ecological significance of the phenomenon; volatiles carry not only information on whether or not neighbouring plants are under attack, but also information on the emitter plants themselves. In this way responding plants could obtain information on whether the neighbouring plant is a competitive threat and can accordingly adjust their growth towards it. We interpret this as a response in the process of adaptation towards neighbouring plants. Furthermore, these physiological changes in the responding plants have significant ecological impact, as behaviour of aphids was affected. Since herbivore host plants are potentially under constant exposure to these volatiles, our study has major implications for the understanding of how mechanisms within plant communities affect insects. This knowledge could be used to improve plant protection and increase scientific understanding of communication between plants and its impact on other organisms. PMID:23922710

  12. Irrelevant events affect voters' evaluations of government performance

    PubMed Central

    Healy, Andrew J.; Malhotra, Neil; Mo, Cecilia Hyunjung

    2010-01-01

    Does information irrelevant to government performance affect voting behavior? If so, how does this help us understand the mechanisms underlying voters’ retrospective assessments of candidates’ performance in office? To precisely test for the effects of irrelevant information, we explore the electoral impact of local college football games just before an election, irrelevant events that government has nothing to do with and for which no government response would be expected. We find that a win in the 10 d before Election Day causes the incumbent to receive an additional 1.61 percentage points of the vote in Senate, gubernatorial, and presidential elections, with the effect being larger for teams with stronger fan support. In addition to conducting placebo tests based on postelection games, we demonstrate these effects by using the betting market's estimate of a team's probability of winning the game before it occurs to isolate the surprise component of game outcomes. We corroborate these aggregate-level results with a survey that we conducted during the 2009 NCAA men's college basketball tournament, where we find that surprising wins and losses affect presidential approval. An experiment embedded within the survey also indicates that personal well-being may influence voting decisions on a subconscious level. We find that making people more aware of the reasons for their current state of mind reduces the effect that irrelevant events have on their opinions. These findings underscore the subtle power of irrelevant events in shaping important real-world decisions and suggest ways in which decision making can be improved. PMID:20615955

  13. Irrelevant events affect voters' evaluations of government performance.

    PubMed

    Healy, Andrew J; Malhotra, Neil; Mo, Cecilia Hyunjung

    2010-07-20

    Does information irrelevant to government performance affect voting behavior? If so, how does this help us understand the mechanisms underlying voters' retrospective assessments of candidates' performance in office? To precisely test for the effects of irrelevant information, we explore the electoral impact of local college football games just before an election, irrelevant events that government has nothing to do with and for which no government response would be expected. We find that a win in the 10 d before Election Day causes the incumbent to receive an additional 1.61 percentage points of the vote in Senate, gubernatorial, and presidential elections, with the effect being larger for teams with stronger fan support. In addition to conducting placebo tests based on postelection games, we demonstrate these effects by using the betting market's estimate of a team's probability of winning the game before it occurs to isolate the surprise component of game outcomes. We corroborate these aggregate-level results with a survey that we conducted during the 2009 NCAA men's college basketball tournament, where we find that surprising wins and losses affect presidential approval. An experiment embedded within the survey also indicates that personal well-being may influence voting decisions on a subconscious level. We find that making people more aware of the reasons for their current state of mind reduces the effect that irrelevant events have on their opinions. These findings underscore the subtle power of irrelevant events in shaping important real-world decisions and suggest ways in which decision making can be improved. PMID:20615955

  14. Factors Affecting Exercise Test Performance in Patients After Liver Transplantation

    PubMed Central

    Kotarska, Katarzyna; Wunsch, Ewa; Jodko, Lukasz; Raszeja-Wyszomirska, Joanna; Bania, Izabela; Lawniczak, Malgorzata; Bogdanos, Dimitrios; Kornacewicz-Jach, Zdzislawa; Milkiewicz, Piotr

    2016-01-01

    Background Cardiovascular diseases are a leading cause of morbidity and mortality in solid organ transplant recipients. In addition, low physical activity is a risk factor for cardiac and cerebrovascular complications. Objectives This study examined potential relationships between physical activity, health-related quality of life (HRQoL), risk factors for cardiovascular disease, and an exercise test in liver-graft recipients. Patients and Methods A total of 107 participants (62 men/45 women) who had received a liver transplantation (LT) at least 6 months previously were evaluated. Physical activity was assessed using three different questionnaires, while HRQoL was assessed using the medical outcomes study short form (SF)-36 questionnaire, and health behaviors were evaluated using the health behavior inventory (HBI). The exercise test was performed in a standard manner. Results Seven participants (6.5%) had a positive exercise test, and these individuals were older than those who had a negative exercise test (P = 0.04). A significant association between a negative exercise test and a higher level of physical activity was shown by the Seven-day physical activity recall questionnaire. In addition, HRQoL was improved in various domains of the SF-36 in participants who had a negative exercise test. No correlations between physical activity, the exercise test and healthy behaviors, as assessed via the HBI were observed. Conclusions Exercise test performance was affected by lower quality of life and lower physical activity after LT. With the exception of hypertension, well known factors that affect the risk of coronary artery disease had no effect on the exercise test results. PMID:27226801

  15. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-05-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities.

  16. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    PubMed

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-01-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities. PMID:24811826

  17. Solanum malacoxylon: a toxic plant which affects animal calcium metabolism.

    PubMed

    Boland, R L

    1988-12-01

    The "enteque seco" is a disease of calcinosis, i.e., pathological deposition of calcium phosphate in soft tissues, which occurs in grazing cattle in Argentina and is of considerable economic importance. The ingestion of leaves of Solanum malacoxylon has been identified as the cause of the disease. Hypercalcemia and/or hyperphosphatemia and mineralization of the cardiovascular and pulmonary systems are usually seen in bovines or experimental animals exposed to this plant. The symptoms of the disease resemble those of vitamin D intoxication. In agreement with these observations, a glycoside derivative of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D in animals, has been identified as the toxic principle of S. malacoxylon. Glycoside conjugates of its precursors, 25-hydroxyvitamin D3 and vitamin D3, may also be present. Recent studies indicate that the plant factor is modified in the rumen of bovines through cleavage of the glycosidic linkage and further conversion of the released 1,25(OH)2D3 to a more polar metabolite, possibly 1,24,25-trihydroxyvitamin D3. Excess free 1,25(OH)2D3 may alter extracellular and intracellular Ca homeostasis in intoxicated animals through a receptor-mediated mechanism and activation of membrane Ca channels. In addition, 1,24,25(OH)3D3 may potentiate the effects of 1,25(OH)2D3 on intestinal Ca transport. PMID:3077267

  18. Habitats as Complex Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation?

    PubMed Central

    Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2014-01-01

    Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. PMID:24416354

  19. The eccentricity effect: target eccentricity affects performance on conjunction searches.

    PubMed

    Carrasco, M; Evert, D L; Chang, I; Katz, S M

    1995-11-01

    The serial pattern found for conjunction visual-search tasks has been attributed to covert attentional shifts, even though the possible contributions of target location have not been considered. To investigate the effect of target location on orientation x color conjunction searches, the target's duration and its position in the display were manipulated. The display was present either until observers responded (Experiment 1), for 104 msec (Experiment 2), or for 62 msec (Experiment 3). Target eccentricity critically affected performance: A pronounced eccentricity effect was very similar for all three experiments; as eccentricity increased, reaction times and errors increased gradually. Furthermore, the set-size effect became more pronounced as target eccentricity increased, and the extent of the eccentricity effect increased for larger set sizes. In addition, according to stepwise regressions, target eccentricity as well as its interaction with set size were good predictors of performance. We suggest that these findings could be explained by spatial-resolution and lateral-inhibition factors. The serial self-terminating hypothesis for orientation x color conjunction searches was evaluated and rejected. We compared the eccentricity effect as well as the extent of the orientation asymmetry in these three conjunction experiments with those found in feature experiments (Carrasco & Katz, 1992). The roles of eye movements, spatial resolution, and covert attention in the eccentricity effect, as well as their implications, are discussed. PMID:8539099

  20. Distraction affects the performance of obstacle avoidance during walking.

    PubMed

    Weerdesteyn, V; Schillings, A M; van Galen, G P; Duysens, J

    2003-03-01

    In this study, dual-task interference in obstacle-avoidance tasks during human walking was examined. Ten healthy young adults participated in the experiment. While they were walking on a treadmill, an obstacle suddenly fell on the treadmill in front of their left leg during either midswing, early stance, or late stance of the ipsilateral leg. Participants were instructed to avoid the obstacle, both as a single task and while they were concurrently performing a cognitive secondary task (dual task). Rates of failure, avoidance strategy, and a number of kinematic parameters were studied under both task conditions. When only a short response time was available, rates of failure on the avoidance task were larger during the dual task than during the single task. Smaller crossing swing velocities were found during the dual task as compared with those observed in the single task. The difference in crossing swing velocities was attributable to increased stiffness of the crossing swing limb. The results of the present study indicated that divided attention affects young and healthy individuals' obstacle-avoidance performance during walking. PMID:12724099

  1. Outcomes in cochlear implantation: variables affecting performance in adults and children.

    PubMed

    Cosetti, Maura K; Waltzman, Susan B

    2012-02-01

    This article highlights variables that affect cochlear implant performance, emerging factors warranting consideration, and variables shown not to affect performance. Research on the outcomes following cochlear implantation has identified a wide spectrum of variables known to affect pos0timplantation performance. These variables relate to the device itself as well as individual patient characteristics. Factors believed to affect spiral ganglion cell survival and function have been shown to influence postoperative performance. Binaural hearing affects performance. Social and educational factors also affect postoperative performance. Novel variables capable of affecting performance continue to emerge with increased understanding of auditory pathway development and neural plasticity. PMID:22115688

  2. A Fungal Endosymbiont Affects Host Plant Recruitment Through Seed- and Litter-mediated Mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. Many grass species are associated with maternally transmitted fungal endophytes. Increasing evidence shows that endophytes enhance host plant success under varied conditions, yet studies have rarely considered alternative mechanisms whereby these mutualistic symbionts may affect regeneration from...

  3. Fundamentals of power plant performance for utility engineers

    SciTech Connect

    Not Available

    1984-01-01

    This three-volume, looseleaf text reviews power plant components and their operation from a performance perspective and presents the basics of performance testing. It provides the background to develop performance monitoring programs that improve component performance and provide operators with performance feedback and maintenance planning information.

  4. Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit.

    PubMed

    Hoffmann, Anna M; Noga, Georg; Hunsche, Mauricio

    2015-03-01

    We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m(-2) s(-1)) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations. PMID:25626402

  5. Oligosaccharides Affect Performance and Gut Development of Broiler Chickens

    PubMed Central

    Ao, Z.; Choct, M.

    2013-01-01

    The effects of oligosaccharide supplementation on the growth performance, flock uniformity and GIT development of broiler chickens were investigated. Four diets, one negative control, one positive control supplemented with zinc-bacitracin, and two test diets supplemented with mannoligosaccharide (MOS) and fructooligosaccharide (FOS), were used for the experiment. Birds given MOS or FOS had improved body weight (BW) and feed efficiency (FCR), compared to those fed the negative control diet during the 35-d trial period. The effect on FCR became less apparent when the birds got older. FOS and MOS supplementation reduced the pancreas weight as a percentage of BW, with an effect similar to that of the antibiotic, at 35 d of age. Birds given MOS tended to have a heavier bursa (p = 0.164) and lower spleen/bursa weight ratio (p = 0.102) at 35 d of age. MOS and Zn-bacitracin showed a clear improvement on flock uniformity, compared to FOS. The mortality rate was not affected by FOS or MOS. PMID:25049713

  6. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    PubMed

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. PMID:26147312

  7. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  8. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  9. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  10. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  11. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  12. Nitrogen and water affect direct and indirect plant systemic induced defense in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the affects of nitrogen levels and water availability on the ability of cotton plants to deter feeding by Spodoptera exigua larvae through induction of anti-feedant chemicals by the cotton plant, and to attract the biological control agent, Micropitis crociepes through induction of chemica...

  13. Proteomic analysis reveals suppression of bark chitinases and proteinase inhibitors in citrus plants affected by the citrus sudden death disease.

    PubMed

    Cantú, M D; Mariano, A G; Palma, M S; Carrilho, E; Wulff, N A

    2008-10-01

    Citrus sudden death (CSD) is a disease of unknown etiology that greatly affects sweet oranges grafted on Rangpur lime rootstock, the most important rootstock in Brazilian citriculture. We performed a proteomic analysis to generate information related to this plant pathogen interaction. Protein profiles from healthy, CSD-affected and CSD-tolerant stem barks, were generated using two-dimensional gel electrophoresis. The protein spots were well distributed over a pI range of 3.26 to 9.97 and a molecular weight (MW) range from 7.1 to 120 kDa. The patterns of expressed proteins on 2-DE gels made it possible to distinguish healthy barks from CSD-affected barks. Protein spots with MW around 30 kDa and pI values ranging from 4.5 to 5.2 were down-regulated in the CSD-affected root-stock bark. This set of protein spots was identified as chitinases. Another set of proteins, ranging in pI from 6.1 to 9.6 with an MW of about 20 kDa, were also suppressed in CSD-affected rootstock bark; these were identified as miraculin-like proteins, potential trypsin inhibitors. Down-regulation of chitinases and proteinase inhibitors in CSD-affected plants is relevant since chitinases are well-known pathogenesis-related protein, and their activity against plant pathogens is largely accepted. PMID:18943454

  14. Interaction Between Optical and Neural Factors Affecting Visual Performance

    NASA Astrophysics Data System (ADS)

    Sabesan, Ramkumar

    The human eye suffers from higher order aberrations, in addition to conventional spherical and cylindrical refractive errors. Advanced optical techniques have been devised to correct them in order to achieve superior retinal image quality. However, vision is not completely defined by the optical quality of the eye, but also depends on how the image quality is processed by the neural system. In particular, how neural processing is affected by the past visual experience with optical blur has remained largely unexplored. The objective of this thesis was to investigate the interaction of optical and neural factors affecting vision. To achieve this goal, pathological keratoconic eyes were chosen as the ideal population to study since they are severely afflicted by degraded retinal image quality due to higher order aberrations and their neural system has been exposed to that habitually for a long period of time. Firstly, we have developed advanced customized ophthalmic lenses for correcting the higher order aberration of keratoconic eyes and demonstrated their feasibility in providing substantial visual benefit over conventional corrective methodologies. However, the achieved visual benefit was significantly smaller than that predicted optically. To better understand this, the second goal of the thesis was set to investigate if the neural system optimizes its underlying mechanisms in response to the long-term visual experience with large magnitudes of higher order aberrations. This study was facilitated by a large-stroke adaptive optics vision simulator, enabling us to access the neural factors in the visual system by manipulating the limit imposed by the optics of the eye. Using this instrument, we have performed a series of experiments to establish that habitual exposure to optical blur leads to an alteration in neural processing thereby alleviating the visual impact of degraded retinal image quality, referred to as neural compensation. However, it was also found that

  15. Widespread seed limitation affects plant density but not population trajectory in the invasive plant Centaurea solstitialis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In some plant populations, the availability of seeds strongly regulates recruitment. However, a scarcity of germination microsites, granivory or density dependent mortality can reduce the number of plants that germinate or survive to flowering. The relative strength of these controls is unknown for ...

  16. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission.

    PubMed

    Vucetic, Andja; Dahlin, Iris; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben; Ninkovic, Velemir

    2014-01-01

    Volatile interactions between unattacked plants can lead to changes in their volatile emissions. Exposure of potato plants to onion plant volatiles results in increased emission of 2 terpenoids, (E)-nerolidol and TMTT. We investigated whether this is detectable by the ladybird Coccinella septempunctata. The odor of onion-exposed potato was significantly more attractive to ladybirds than that of unexposed potato. Further, a synthetic blend mimicking the volatile profile of onion-exposed potato was more attractive than a blend mimicking that of unexposed potato. When presented individually, TMTT was attractive to ladybirds whereas (E)-nerolidol was repellent. Volatile exchange between unattacked plants and consequent increased attractiveness for ladybirds may be a mechanism that contributes to the increased abundance of natural enemies in complex plant habitats. PMID:25763628

  17. Climate warming affects biological invasions by shifting interactions of plants and herbivores.

    PubMed

    Lu, Xinmin; Siemann, Evan; Shao, Xu; Wei, Hui; Ding, Jianqing

    2013-08-01

    Plants and herbivorous insects can each be dramatically affected by temperature. Climate warming may impact plant invasion success directly but also indirectly through changes in their natural enemies. To date, however, there are no tests of how climate warming shifts the interactions among invasive plants and their natural enemies to affect invasion success. Field surveys covering the full latitudinal range of invasive Alternanthera philoxeroides in China showed that a beetle introduced for biocontrol was rare or absent at higher latitudes. In contrast, plant cover and mass increased with latitude. In a 2-year field experiment near the northern limit of beetle distribution, we found the beetle sustained populations across years under elevated temperature, dramatically decreasing A. philoxeroides growth, but it failed to overwinter in ambient temperature. Together, these results suggest that warming will allow the natural enemy to expand its range, potentially benefiting biocontrol in regions that are currently too cold for the natural enemy. However, the invader may also expand its range further north in response to warming. In such cases where plants tolerate cold better than their natural enemies, the geographical gap between plant and herbivorous insect ranges may not disappear but will shift to higher latitudes, leading to a new zone of enemy release. Therefore, warming will not only affect plant invasions directly but also drive either enemy release or increase that will result in contrasting effects on invasive plants. The findings are also critical for future management of invasive species under climate change. PMID:23640751

  18. Elevated atmospheric carbon dioxide concentration affects interactions between Spodoptera exigua (Lepidoptera: Noctuidae) larvae and two host plant species outdoors

    SciTech Connect

    Caulfield, F.; Bunce, J.A. )

    1994-08-01

    Beet armyworm, Spodoptera exigua (Huebner), larvae were placed on sugarbeet (Beta vulgaris L.) and pigweed (Amaranthus hybridus L.) plants in outdoor chambers in which the plants were growing at either the ambient ([approximately] 350 [mu]l liter[sup [minus]1]) or ambient plus 350 [mu]l liter[sup [minus]1] ([approximately] 700 [mu]l liter[sup [minus]1]) carbon dioxide concentration. A series of experiments was performed to determine if larvae reduced plant growth differently at the two carbon dioxide concentrations in either species and if the insect growth or survival differed with carbon dioxide concentration. Leaf nitrogen, water, starch, and soluble carbohydrate contents were measured to assess carbon dioxide concentration effects on leaf quality. Insect feeding significantly reduced plant growth in sugarbeet plants at 350 [mu]l liter[sup [minus]1] but not at 700 [mu]l liter[sup [minus]1] nor in pigweed at either carbon dioxide concentration. Larval survival was greater on sugarbeet plants at the elevated carbon dioxide concentration. Increased survival occurred only if the insects were at the elevated carbon dioxide concentration and consumed leaf material grown at the elevated concentration. Leaf quality was only marginally affected by growth at elevated carbon dioxide concentration in these experiments. The results indicate that in designing experiments to predict effects of elevated atmospheric carbon dioxide concentrations on plant-insect interactions, both plants and insects should be exposed to the experimental carbon dioxide concentrations, as well as to as realistic environmental conditions as possible.

  19. Glycogen catabolism, but not its biosynthesis, affects virulence of Fusarium oxysporum on the plant host.

    PubMed

    Corral-Ramos, Cristina; Roncero, M Isabel G

    2015-04-01

    The role of glycogen metabolism was investigated in the fungal pathogen Fusarium oxysporum. Targeted inactivation was performed of genes responsible for glycogen biosynthesis: gnn1 encoding glycogenin, gls1 encoding glycogen synthase, and gbe1 encoding glycogen branching enzyme. Moreover genes involved in glycogen catabolism were deleted: gph1 encoding glycogen phosphorylase and gdb1 encoding glycogen de-branching enzyme. Glycogen reserves increased steadily during growth of the wild type strain in axenic cultures, to reach up to 1500μg glucose equivalents mg(-1) protein after 14 days. Glycogen accumulation was abolished in mutants lacking biosynthesis genes, whereas it increased by 20-40% or 80%, respectively, in the single and double mutants affected in catabolic genes. Transcript levels of glycogen metabolism genes during tomato plant infection peaked at four days post inoculation, similar to the results observed during axenic culture. Significant differences were observed between gdb mutants and the wild type strain for vegetative hyphal fusion ability. The single mutants defective in glycogen metabolism showed similar levels of virulence in the invertebrate animal model Galleria mellonella. Interestingly, the deletion of gdb1 reduced virulence on the plant host up to 40% compared to the wild type in single and in double mutant backgrounds, whereas the other mutants showed the virulence at the wild-type level. PMID:25865793

  20. Population-related variation in plant defense more strongly affects survival of an herbivore than its solitary parasitoid wasp.

    PubMed

    Harvey, Jeffrey A; Gols, Rieta

    2011-10-01

    The performance of natural enemies, such as parasitoid wasps, is affected by differences in the quality of the host's diet, frequently mediated by species or population-related differences in plant allelochemistry. Here, we compared survival, development time, and body mass in a generalist herbivore, the cabbage moth, Mamestra brassicae, and its solitary endoparasitoid, Microplitis mediator, when reared on two cultivated (CYR and STH) and three wild (KIM, OH, and WIN) populations of cabbage, Brassica oleracea. Plants either were undamaged or induced by feeding of larvae of the cabbage butterfly, Pieris rapae. Development and biomass of M. brassicae and Mi. mediator were similar on both cultivated and one wild cabbage population (KIM), intermediate on the OH population, and significantly lower on the WIN population. Moreover, development was prolonged and biomass was reduced on herbivore-induced plants. However, only the survival of parasitized hosts (and not that of healthy larvae) was affected by induction. Analysis of glucosinolates in leaves of the cabbages revealed higher levels in the wild populations than cultivars, with the highest concentrations in WIN plants. Multivariate statistics revealed a negative correlation between insect performance and total levels of glucosinolates (GS) and levels of 3-butenyl GS. However, GS chemistry could not explain the reduced performance on induced plants since only indole GS concentrations increased in response to herbivory, which did not affect insect performance based on multivariate statistics. This result suggests that, in addition to aliphatic GS, other non-GS chemicals are responsible for the decline in insect performance, and that these chemicals affect the parasitoid more strongly than the host. Remarkably, when developing on WIN plants, the survival of Mi. mediator to adult eclosion was much higher than in its host, M. brassicae. This may be due to the fact that hosts parasitized by Mi. mediator pass through fewer

  1. Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill) Fluoranthene mists negatively affected tomato plants.

    PubMed

    Oguntimehin, Ilemobayo; Eissa, Fawzy; Sakugawa, Hiroshi

    2010-02-01

    Cherry tomato plants (Lycopersicon esculentum Mill) were sprayed with fluoranthene and mixture of fluoranthene and mannitol solutions for 30d. The exposure was carried out in growth chambers in field conditions, and the air was filtered through charcoal filters to remove atmospheric contaminants. Plants were sprayed with 10microM fluoranthene as mist until they reached the fruiting stage, and the eco-physiological parameters were measured to determine the effects of the treatments. We measured CO(2) uptake and water vapour exchange, chlorophyll fluorescence, leaf pigment contents, visual symptoms and biomass allocation. Fluoranthene which was deposited as mist onto leaves negatively affected both growth and the quality of tomato plants, while other treatments did not. The photosynthetic rate measured at saturated irradiance was approximately 37% lower in fluoranthene-treated plants compared with the control group. Other variables, such as stomata conductance, the photochemical efficiency of PSII in the dark, Chl a, Chl b, and the total chlorophyll contents of the tomato leaves were significantly reduced in the fluoranthene-treated plants. Tomato plants treated with fluoranthene showed severe visible injury symptoms on the foliage during the exposure period. Mannitol (a reactive oxygen scavenger) mitigated effects of fluoranthene; thus, reactive oxygen species generated through fluoranthene may be responsible for the damaged tomato plants. It is possible for fluoranthene to decrease the aesthetic and hence the economic value of this valuable crop plant. PMID:20006894

  2. Performance of the Carrisa 6-MW photovoltaic power plant

    SciTech Connect

    Shushnar, G.J.; Caldwell, J.H.; Hoff, T.E.

    1986-01-01

    Photovoltaic (PV) power generation for the electric utility industry will soon become a commercial reality in the United States. Arco Solar's Carrisa 6.4-MWp (dc at standard test conditions (STC)) PV Power Plant is the world's largest. As such, the lessons to be learned from its performance are significant. The energy output of the plant for 1 yr has been analyzed and compared to plant performance predictions. This comparison required a prediction of insolation, ambient temperature, and wind speed. The results of the study indicate the performance of a PV power plant is highly predictable. In addition, this power plant has been highly reliable with a high capacity factor. Pacific Gas and Electric (PG and E), the utility that purchases Carrisa's energy, has reported capacity factors exceeding 65% when PG and E's hourly load is 85% or greater than their system peak load.

  3. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth.

    PubMed

    Besseau, Sébastien; Hoffmann, Laurent; Geoffroy, Pierrette; Lapierre, Catherine; Pollet, Brigitte; Legrand, Michel

    2007-01-01

    In Arabidopsis thaliana, silencing of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT), a lignin biosynthetic gene, results in a strong reduction of plant growth. We show that, in HCT-silenced plants, lignin synthesis repression leads to the redirection of the metabolic flux into flavonoids through chalcone synthase activity. Several flavonol glycosides and acylated anthocyanin were shown to accumulate in higher amounts in silenced plants. By contrast, sinapoylmalate levels were barely affected, suggesting that the synthesis of that phenylpropanoid compound might be HCT-independent. The growth phenotype of HCT-silenced plants was shown to be controlled by light and to depend on chalcone synthase expression. Histochemical analysis of silenced stem tissues demonstrated altered tracheary elements. The level of plant growth reduction of HCT-deficient plants was correlated with the inhibition of auxin transport. Suppression of flavonoid accumulation by chalcone synthase repression in HCT-deficient plants restored normal auxin transport and wild-type plant growth. By contrast, the lignin structure of the plants simultaneously repressed for HCT and chalcone synthase remained as severely altered as in HCT-silenced plants, with a large predominance of nonmethoxylated H units. These data demonstrate that the reduced size phenotype of HCT-silenced plants is not due to the alteration of lignin synthesis but to flavonoid accumulation. PMID:17237352

  4. Experiences in optimizing water treatment plant performance

    SciTech Connect

    Hess, A.F.; Huntley, G.

    1996-11-01

    The South Central Connecticut Regional Water Authority (RWA) provides an average of 55 million gallons per day (mgd) to approximately 380,000 people in 12 municipalities in the Greater New Haven area of Connecticut. About 80 percent of the water is supplied from three surface water treatment plants and the other 20 percent comes from five wellfields. The surface water supply system includes 9 reservoirs with a total capacity of about 16 billion gallons. The Authority owns and controls approximately 40% of the 67 square miles of the watershed for these reservoirs. The source water quality is consistent and generally very good. A summary of average water for selected parameters which impact the treatability of the supplies is presented in Table 1.

  5. Selective Pressure along a Latitudinal Gradient Affects Subindividual Variation in Plants

    PubMed Central

    Sobral, Mar; Guitián, José; Guitián, Pablo; Larrinaga, Asier R.

    2013-01-01

    Individual plants produce repeated structures such as leaves, flowers or fruits, which, although belonging to the same genotype, are not phenotypically identical. Such subindividual variation reflects the potential of individual genotypes to vary with micro-environmental conditions. Furthermore, variation in organ traits imposes costs to foraging animals such as time, energy and increased predation risk. Therefore, animals that interact with plants may respond to this variation and affect plant fitness. Thus, phenotypic variation within an individual plant could be, in part, an adaptive trait. Here we investigated this idea and we found that subindividual variation of fruit size of Crataegus monogyna, in different populations throughout the latitudinal gradient in Europe, was explained at some extent by the selective pressures exerted by seed-dispersing birds. These findings support the hypothesis that within-individual variation in plants is an adaptive trait selected by interacting animals which may have important implications for plant evolution. PMID:24069297

  6. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands. PMID:27164912

  7. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    PubMed Central

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  8. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci.

    PubMed

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles-especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  9. An Analysis of Team Composition as It Affects Simulation Performance.

    ERIC Educational Resources Information Center

    Krishnakumar, Parameswar; Chisholm, Thomas Alexander

    This study investigated the extent to which sex composition and average team academic achievement of student simulation teams affect team effectiveness. Seventy-four students in two sections of a marketing principles class were divided into 20 teams to test their decision-making skills. For 10 weeks, each team operated a simulated supermarket…

  10. Deviation from niche optima affects the nature of plant-plant interactions along a soil acidity gradient.

    PubMed

    He, Lei; Cheng, Lulu; Hu, Liangliang; Tang, Jianjun; Chen, Xin

    2016-01-01

    There is increasing recognition of the importance of niche optima in the shift of plant-plant interactions along environmental stress gradients. Here, we investigate whether deviation from niche optima would affect the outcome of plant-plant interactions along a soil acidity gradient (pH = 3.1, 4.1, 5.5 and 6.1) in a pot experiment. We used the acid-tolerant species Lespedeza formosa Koehne as the neighbouring plant and the acid-tolerant species Indigofera pseudotinctoria Mats. or acid-sensitive species Medicago sativa L. as the target plants. Biomass was used to determine the optimal pH and to calculate the relative interaction index (RII). We found that the relationships between RII and the deviation of soil pH from the target's optimal pH were linear for both target species. Both targets were increasingly promoted by the neighbour as pH values deviated from their optima; neighbours benefitted target plants by promoting soil symbiotic arbuscular mycorrhizal fungi, increasing soil organic matter or reducing soil exchangeable aluminium. Our results suggest that the shape of the curve describing the relationship between soil pH and facilitation/competition depends on the soil pH optima of the particular species. PMID:26740568

  11. Plant Fertilization Interacts with Life History: Variation in Stoichiometry and Performance in Nettle-Feeding Butterflies

    PubMed Central

    Audusseau, Hélène; Kolb, Gundula; Janz, Niklas

    2015-01-01

    Variation in food stoichiometry affects individual performance and population dynamics, but it is also likely that species with different life histories should differ in their sensitivity to food stoichiometry. To address this question, we investigated the ability of the three nettle-feeding butterflies (Aglais urticae, Polygonia c-album, and Aglais io) to respond adaptively to induced variation in plant stoichiometry in terms of larval performance. We hypothesized that variation in larval performance between plant fertilization treatments should be functionally linked to species differences in host plant specificity. We found species-specific differences in larval performance between plant fertilization treatments that could not be explained by nutrient limitation. We showed a clear evidence of a positive correlation between food stoichiometry and development time to pupal stage and pupal mass in A. urticae. The other two species showed a more complex response. Our results partly supported our prediction that host plant specificity affects larval sensitivity to food stoichiometry. However, we suggest that most of the differences observed may instead be explained by differences in voltinism (number of generations per year). We believe that the potential of some species to respond adaptively to variation in plant nutrient content needs further attention in the face of increased eutrophication due to nutrient leakage from human activities. PMID:25932628

  12. [Plant growth with limited water]. Performance report

    SciTech Connect

    Not Available

    1992-10-01

    When water is in short supply, soybean stem growth is inhibited by a physical limitation followed in a few hours by metabolic changes that reduce the extensibility of the cell walls. The extensibility then becomes the main limitation. With time, there is a modest recovery in extensibility along with an accumulation of a 28kD protein in the walls of the growth-affected cells. A 3lkD protein that was 80% similar in amino acid sequence also was present but did not accumulate in the walls of the stem cells. In the stem, growth was inhibited and the mRNA for the 28kD protein increased in response to water deprivation but the mRNA for the 3 1 kD protein did not. The roots continued to grow and the mRNA for the 28kD protein did not accumulate but the mRNA for the 3lkD protein did. Thus, there was a tissuespecific response of gene expression that correlated with the contrasting growth response to low water potential in the same seedlings. Further work using immunogold labeling, fluorescence labeling, and western blotting gave evidence that the 28kD protein is located in the cell wall as well as several compartments in the cytoplasm. Preliminary experiments indicate that the 28kD protein is a phosphatase.

  13. Factors Affecting the Performance of Public Schools in Lebanon

    ERIC Educational Resources Information Center

    Mattar, Dorine M.

    2012-01-01

    By sampling extreme cases (five high-performing schools and five low-performing ones), the researcher revealed the differences in the teachers' motivation (Mattar, 2010) as well as the extent to which Principals adopted the instructional leadership style (Mattar, 2012) in the two sets of schools. Here, she looked for additional issues, within the…

  14. Learners' Metalinguistic and Affective Performance in Blogging to Write

    ERIC Educational Resources Information Center

    Chen, Ping-Ju

    2016-01-01

    The documentation of the benefits of blog use in foreign language education has proliferated since 2006. In the field of blogging to write, most studies focus on learners' linguistic performance and perceptions. To provide an analysis of learners' writing performance by using blogs, in addition to the often-researched areas, this study examines…

  15. Young Children's Knowledge About Effects of Affect on Performance.

    ERIC Educational Resources Information Center

    Pierce, Jean W.

    1985-01-01

    Addresses the issue of whether preschoolers are aware of the connection between their emotions, their performance on a task of eye-hand coordination, and their evaluation of the task and their performance. Results indicate a developmental trend that children's predictions conform more to mood congruity theory as they grow older. (Author/DST)

  16. Improved plant performance through evaporative steam condensing

    SciTech Connect

    Hutton, D.

    1998-07-01

    Combining an open cooling tower and a steam condenser into one common unit is a proven technology with many advantages in power generation application, including reduced first cost of equipment, reduced parasitic energy consumption, simplified design, reduced maintenance, and simplified water treatment, Performance of the steam turbine benefits from the direct approach to wet bulb temperature, and operating flexibility and reliability improve compared to a system with a cooling tower and surface condenser. System comparisons and case histories will be presented to substantiate improved systems economies.

  17. Does nitrate co-pollution affect biological responses of an aquatic plant to two common herbicides?

    PubMed

    Nuttens, A; Chatellier, S; Devin, S; Guignard, C; Lenouvel, A; Gross, E M

    2016-08-01

    Aquatic systems in agricultural landscapes are subjected to multiple stressors, among them pesticide and nitrate run-off, but effects of both together have rarely been studied. We investigated possible stress-specific and interaction effects using the new OECD test organism, Myriophyllum spicatum, a widespread aquatic plant. In a fully factorial design, we used two widely applied herbicides, isoproturon and mesosulfuron-methyl, in concentration-response curves at two nitrate levels (219.63 and 878.52mg N-NO3). We applied different endpoints reflecting plant performance such as growth, pigment content, content in phenolic compounds, and plant stoichiometry. Relative growth rates based on length (RGR-L) were affected strongly by both herbicides, while effects on relative growth rate based on dry weight (RGR-DW) were apparent for isoproturon but hardly visible for mesosulfuron-methyl due to an increase in dry matter content. The higher nitrate level further reduced growth rates, specifically with mesosulfuron-methyl. Effects were visible between 50 and 500μgL(-1) for isoproturon and 0.5-5μgL(-1) for mesosulfuron-methyl, with some differences between endpoints. The two herbicides had opposite effects on chlorophyll, carotenoid and nitrogen contents in plants, with values increasing with increasing concentrations of isoproturon and decreasing for mesosulfuron-methyl. Herbicides and nitrate level exhibited distinct effects on the content in phenolic compounds, with higher nitrate levels reducing total phenolic compounds in controls and with isoproturon, but not with mesosulfuron-methyl. Increasing concentrations of mesosulfuron-methyl lead to a decline of total phenolic compounds, while isoproturon had little effect. Contents of carbon, nitrogen and phosphorus changed depending on the stressor combination. We observed higher phosphorus levels in plants exposed to certain concentrations of herbicides, potentially indicating a metabolic response. The C:N molar ratio

  18. Planting geometry and plant population affect dryland maize grain yield and harvest index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water for dryland grain production in the Texas panhandle is limited. Agronomic practices such as reduction in plant population or change in sowing time may help increase maize (Zea mays L.) yield potential. Tiller formation under dryland conditions leads to more vegetative growth and reduced yield....

  19. Simulation study of the dynamic performance of a MRC plant with refrigerant charged or leaked

    NASA Astrophysics Data System (ADS)

    Sun, Heng; Shu, Dan; Jiang, Zhihua

    2012-01-01

    The running condition of a MRC plant is affected by the charge or leakage of the refrigerant. It is significant for the design and operation of the plant. A new model which is established based on the process simulation, mass conservation and characteristics of the system was employed to study the dynamic performance in these cases. The results show that the light composition mainly affects the pressure and the heavy composition affects the liquid level of vessel more obviously. This is due to the fact that the light composition mainly stays in the vapor phase and the heavies stay in the liquid phase mostly. The case when leakages occur at different location was also studied. The results can provide useful information for the adjustment of mixture refrigerant and operation of a MRC plant.

  20. Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill.

    PubMed

    Murillo, J M; Marañón, T; Cabrera, F; López, R

    1999-12-01

    The collapse of a pyrite-mining, tailing dam on 25 April 1998 contaminated approximately 2000 ha of croplands along the Agrio and Guadiamar river valleys in southern Spain. This paper reports the accumulation of chemical elements in soil and in two crops--sunflower and sorghum--affected by the spill. Total concentrations of As, Bi, Cd, Cu, Mn, Pb, Sb, Tl and Zn in spill-affected soils were greater than in adjacent, unaffected soils. Leaves of spill-affected crop plants had higher nutrient (K, Ca and Mg for sunflower and N and K for sorghum) concentrations than controls, indicating a 'fertilising' effect caused by the sludge. Seeds of spill-affected sunflower plants did accumulate more As, Cd, Cu and Zn than controls, but values were below toxic levels. Leaves of sorghum plants accumulated more As, Bi, Cd, Mn, Pb, Tl and Zn than controls, but these values were also below toxic levels for livestock consumption. In general, none of the heavy metals studied in both crops reached either phytotoxic or toxic levels for humans or livestock. Nevertheless, a continuous monitoring of heavy metal accumulation in soil and plants must be established in the spill-affected area. PMID:10635586

  1. Growth in body size affects rotational performance in women's gymnastics.

    PubMed

    Ackland, Timothy; Elliott, Bruce; Richards, Joanne

    2003-07-01

    National and state representative female gymnasts (n = 37), aged initially between 10 and 12 years, completed a mixed longitudinal study over 3.3 years, to investigate the effect of body size on gymnastic performance. Subjects were tested at four-monthly intervals on a battery of measures including structural growth, strength and gymnastic performance. The group were divided into 'high growers' and 'low growers' based on height (> 18 cm or < 14 cm/37 months, respectively) and body mass (> 15 kg or < 12 kg/37 months, respectively) for comparative purposes. Development of gymnastic performance was assessed through generic skills (front and back rotations, a twisting jump and a V-sit action) and a vertical jump for maximum height. The results show that the smaller gymnast, with a high strength to mass ratio, has greater potential for performing skills involving whole-body rotations. Larger gymnasts, while able to produce more power and greater angular momentum, could not match the performance of the smaller ones. The magnitude of growth experienced by the gymnast over this period has a varying effect on performance. While some activities were greatly influenced by rapid increases in whole-body moment of inertia (e.g. back rotation), performance on others like the front rotation and vertical jump, appeared partly immune to the physical and mechanical changes associated with growth. PMID:14737925

  2. MSR performance enhancements and modifications at St. Lucie Power Plant

    SciTech Connect

    Rubano, V.F.; Ugelow, A.G. ); Menocal, A.G. )

    1989-01-01

    The St. Lucie Power Plant provides an excellent historical prospective on various moisture separator/reheater improvements. Between the two essentially identical units there is a total of 14 years of operating experience with various moisture separator/reheater configurations, with a combination of four different heat transfer surfaces and three moisture removal configurations. Through various modifications and enhancements, the performance and the reliability of the moisture separator/reheaters at the St. Lucie Power Plant and consequently the overall plant performance has been improved. This improvement has taken place over several years and involves changes in both the heat transfer and moisture removal areas. This paper provides an overview of the history and description of moisture separator/reheater modifications at the St. Lucie Power Plant with the resulting performance improvements.

  3. Ontogenetic shifts in plant interactions vary with environmental severity and affect population structure.

    PubMed

    le Roux, Peter C; Shaw, Justine D; Chown, Steven L

    2013-10-01

    Environmental conditions and plant size may both alter the outcome of inter-specific plant-plant interactions, with seedlings generally facilitated more strongly than larger individuals in stressful habitats. However, the combined impact of plant size and environmental severity on interactions is poorly understood. Here, we tested explicitly for the first time the hypothesis that ontogenetic shifts in interactions are delayed under increasingly severe conditions by examining the interaction between a grass, Agrostis magellanica, and a cushion plant, Azorella selago, along two severity gradients. The impact of A. selago on A. magellanica abundance, but not reproductive effort, was related to A. magellanica size, with a trend for delayed shifts towards more negative interactions under greater environmental severity. Intermediate-sized individuals were most strongly facilitated, leading to differences in the size-class distribution of A. magellanica on the soil and on A. selago. The A. magellanica size-class distribution was more strongly affected by A. selago than by environmental severity, demonstrating that the plant-plant interaction impacts A. magellanica population structure more strongly than habitat conditions. As ontogenetic shifts in plant-plant interactions cannot be assumed to be constant across severity gradients and may impact species population structure, studies examining the outcome of interactions need to consider the potential for size- or age-related variation in competition and facilitation. PMID:23738758

  4. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling

    PubMed Central

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M.; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  5. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.

    PubMed

    Fatouros, Nina E; Lucas-Barbosa, Dani; Weldegergis, Berhane T; Pashalidou, Foteini G; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Gols, Rieta; Huigens, Martinus E

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  6. Wintering performance and how it affects carcass quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental variation undoubtedly can have the most significant impact on livestock performance in forage based production systems. Fluctuations in temperature and precipitation influence herbage production and quality, maintenance requirements and intake. Producers of “forage system” products h...

  7. Factors affecting intrauterine contraceptive device performance. I. Endometrial cavity length.

    PubMed

    Hasson, H M; Berger, G S; Edelman, D A

    1976-12-15

    The relationship of endometrial cavity length to intrauterine contraceptive device (IUD) performance was evaluated in 319 patients wearing three types of devices. The rate of events, defined as pregnancy, expulsion, or medical removal, increased significantly when the length of the IUD was equal to, exceeded, or was shorter by two or more centimeters than the length of the endometrial cavity. Total uterine length was found to be a less accurate prognostic indicator of IUD performance than endometrial cavity length alone. PMID:998687

  8. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses.

    PubMed

    Wang, Zhenyu; Zhao, Xiuyang; Wang, Bing; Liu, Erlong; Chen, Ni; Zhang, Wei; Liu, Heng

    2016-04-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. PMID:26923071

  9. Individual plant examination program: Perspectives on reactor safety and plant performance. Part 6, appendices A, B, and C

    SciTech Connect

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events (including internal flooding, but excluding internal fire). The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, reviewed the WE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. In particular, these results are assessed in relation to the design and operational characteristics of the various reactor and containment types, and by comparing the IPEs to probabilistic risk assessment characteristics. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants.

  10. When children affect parents: Children's academic performance and parental investment.

    PubMed

    Yurk Quadlin, Natasha

    2015-07-01

    Sociologists have extensively documented the ways that parent resources predict children's achievement. However, less is known about whether and how children's academic performance shapes parental investment behaviors. I use data from the Early Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K) and longitudinal fixed effects models to examine how changes in teacher assessments are related to changes in the conferral of various parent resources. Overall, I find that the relationship between achievement and investment varies based on the directionality in children's achievement and the type of resource at hand. Children whose performance improves receive a broad range of enrichment resources, while declines in performance are met with corrective educational resources. Results are largely consistent whether language or math assessments are used to predict investment, and also among children whose achievement does not change over time. I discuss these patterns, along with implications for the use of parent resources in education and family research. PMID:26004488

  11. Corn Response as Affected by Planting Distance from the Center of Strip-Till Fertilized Rows

    PubMed Central

    Adee, Eric; Hansel, Fernando D.; Ruiz Diaz, Dorivar A.; Janssen, Keith

    2016-01-01

    Strip-till has been used at a large scale in east central Kansas as an alternative to earlier planting dates under a no-till system. To determine the effects of planting corn (Zea mays) under previously established strip-tilled fertilized rows, experiments were conducted on an Osage silty clay loam soil in 2006 and 2008 and on a Woodson silt loam soil in 2009, 2010, and 2011 using three different planting distances from the strip-tilled fertilized rows (0, 10, 20, and 38 cm) with a strip-till operation performed between 1 and 73 days before planting. The depth of the strip-till fertilizer application was 13–15 cm below the soil surface. Corn that was planted 10 cm from the fertilized row showed greater early season growth, higher plant population, and grain yield. Planting 20 and 38 cm from the center of the fertilized rows showed none of the benefits that are typically associated with strip-tillage system. Enough time should be allowed between the strip-till operation and planting to reach satisfactory soil conditions (e.g., moist and firm seedbed). Our results suggest that the best location for planting strip-tilled fertilized corn vary depending on soil and climatic conditions as well as the time between fertilizer application with the strip-till operation and planting. With fewer number of days, planting directly on the center of fertilized strip-till resulted in decreased plant population and lower grain yield. However, the greatest yield benefit across different planting conditions was attained when planting within 10 cm of the strip. PMID:27588024

  12. Corn Response as Affected by Planting Distance from the Center of Strip-Till Fertilized Rows.

    PubMed

    Adee, Eric; Hansel, Fernando D; Ruiz Diaz, Dorivar A; Janssen, Keith

    2016-01-01

    Strip-till has been used at a large scale in east central Kansas as an alternative to earlier planting dates under a no-till system. To determine the effects of planting corn (Zea mays) under previously established strip-tilled fertilized rows, experiments were conducted on an Osage silty clay loam soil in 2006 and 2008 and on a Woodson silt loam soil in 2009, 2010, and 2011 using three different planting distances from the strip-tilled fertilized rows (0, 10, 20, and 38 cm) with a strip-till operation performed between 1 and 73 days before planting. The depth of the strip-till fertilizer application was 13-15 cm below the soil surface. Corn that was planted 10 cm from the fertilized row showed greater early season growth, higher plant population, and grain yield. Planting 20 and 38 cm from the center of the fertilized rows showed none of the benefits that are typically associated with strip-tillage system. Enough time should be allowed between the strip-till operation and planting to reach satisfactory soil conditions (e.g., moist and firm seedbed). Our results suggest that the best location for planting strip-tilled fertilized corn vary depending on soil and climatic conditions as well as the time between fertilizer application with the strip-till operation and planting. With fewer number of days, planting directly on the center of fertilized strip-till resulted in decreased plant population and lower grain yield. However, the greatest yield benefit across different planting conditions was attained when planting within 10 cm of the strip. PMID:27588024

  13. The presence of Bt-transgenic oilseed rape in wild mustard populations affects plant growth.

    PubMed

    Liu, Yongbo; Stewart, C Neal; Li, Junsheng; Huang, Hai; Zhang, Xitao

    2015-12-01

    The adventitious presence of transgenic plants in wild plant populations is of ecological and regulatory concern, but the consequences of adventitious presence are not well understood. Here, we introduced Bacillus thuringiensis Cry1Ac (Bt)-transgenic oilseed rape (Bt OSR, Brassica napus) with various frequencies into wild mustard (Brassica juncea) populations. We sought to better understand the adventitious presence of this transgenic insecticidal crop in a wild-relative plant population. We assessed the factors of competition, resource availability and diamondback moth (Plutella xylostella) infestation on plant population dynamics. As expected, Bt OSR performed better than wild mustard in mixed populations under herbivore attack in habitats with enough resources, whereas wild mustard had higher fitness when Bt OSR was rarer in habitats with limited resources. Results suggest that the presence of insect-resistant transgenic plants could decrease the growth of wild mustard and Bt OSR plants and their populations, especially under high herbivore pressure. PMID:26338267

  14. Performance limitations for networked control systems with plant uncertainty

    NASA Astrophysics Data System (ADS)

    Chi, Ming; Guan, Zhi-Hong; Cheng, Xin-Ming; Yuan, Fu-Shun

    2016-04-01

    There has recently been significant interest in performance study for networked control systems with communication constraints. But the existing work mainly assumes that the plant has an exact model. The goal of this paper is to investigate the optimal tracking performance for networked control system in the presence of plant uncertainty. The plant under consideration is assumed to be non-minimum phase and unstable, while the two-parameter controller is employed and the integral square criterion is adopted to measure the tracking error. And we formulate the uncertainty by utilising stochastic embedding. The explicit expression of the tracking performance has been obtained. The results show that the network communication noise and the model uncertainty, as well as the unstable poles and non-minimum phase zeros, can worsen the tracking performance.

  15. How Motivation Affects Academic Performance: A Structural Equation Modelling Analysis

    ERIC Educational Resources Information Center

    Kusurkar, R. A.; Ten Cate, Th. J.; Vos, C. M. P.; Westers, P.; Croiset, G.

    2013-01-01

    Few studies in medical education have studied effect of quality of motivation on performance. Self-Determination Theory based on quality of motivation differentiates between Autonomous Motivation (AM) that originates within an individual and Controlled Motivation (CM) that originates from external sources. To determine whether Relative Autonomous…

  16. Factors Affecting School District Performance Scores in Louisiana

    ERIC Educational Resources Information Center

    Harrison, Ronnie

    2010-01-01

    The purpose of this study was to investigate the relationship between District Performance Scores (DPS) in Louisiana and (a) socio-economic status of students, (b) academic achievement using average ACT scores, (c) percentage of certified teachers, (d) district class size, (e) per pupil expenditure, and (f) percentage of minority students in…

  17. Does Participative Decision Making Affect Lecturer Performance in Higher Education?

    ERIC Educational Resources Information Center

    Sukirno, D. S.; Siengthai, Sununta

    2011-01-01

    Purpose: The relationship between participation and job performance has captured the interest of not only business researchers but also education researchers. However, the topic has not gained significant attention in the educational management research arena. The purpose of this paper is to empirically examine the impact of participation in…

  18. Teacher Dispositions Affecting Self-Esteem and Student Performance

    ERIC Educational Resources Information Center

    Helm, Carroll

    2007-01-01

    Research supports several factors related to student success. Darling-Hammond (2000) indicated that the quality of teachers, as measured by whether the teachers were fully certified and had a major in their teaching field, was related to student performance. Measures of teacher preparation and certification were the strongest predictors of student…

  19. Early Teacher Expectations Disproportionately Affect Poor Children's High School Performance

    ERIC Educational Resources Information Center

    Sorhagen, Nicole S.

    2013-01-01

    This research used prospective longitudinal data to examine the associations between first-grade teachers' over- and underestimation of their students' math abilities, basic reading abilities, and language skills and the students' high school academic performance, with special attention to the subject area and moderating effects of student…

  20. Social Process Variables Affecting Reading Performance in Delayed Readers.

    ERIC Educational Resources Information Center

    Lorton, Mary; Kukuk, Cristopher

    A study was conducted to determine the relationship between fourteen social process variables (relating to perinatal events, early language patterns, parental/home environment, and child behavior patterns) and the reading performance of retarded readers. The subjects were 180 children, aged seven through fifteen, randomly selected from among…

  1. Plant Dependence on Rhizobia for Nitrogen Influences Induced Plant Defenses and Herbivore Performance

    PubMed Central

    Dean, Jennifer M.; Mescher, Mark C.; De Moraes, Consuelo M.

    2014-01-01

    Symbiotic rhizobia induce many changes in legumes that could affect aboveground interactions with herbivores. We explored how changing the intensity of Bradyrhizobium japonicum, as modulated by soil nitrogen (N) levels, influenced the interaction between soybean (Glycine max) and herbivores of different feeding guilds. When we employed a range of fertilizer applications to manipulate soil N, plants primarily dependent on rhizobia for N exhibited increased root nodulation and higher levels of foliar ureides than plants given N fertilizer; yet all treatments maintained similar total N levels. Soybean podworm (Helicoverpa zea) larvae grew best on plants with the highest levels of rhizobia but, somewhat surprisingly, preferred to feed on high-N-fertilized plants when given a choice. Induction of the defense signaling compound jasmonic acid (JA) by H. zea feeding damage was highest in plants primarily dependent on rhizobia. Differences in rhizobial dependency on soybean did not appear to affect interactions with the phloem-feeding soybean aphid (Aphis glycines). Overall, our results suggest that rhizobia association can affect plant nutritional quality and the induction of defense signaling pathways and that these effects may influence herbivore feeding preferences and performance—though such effects may vary considerably for different classes of herbivores. PMID:24451132

  2. Salinity and Alkaline pH in Irrigation Water Affect Marigold Plants: II. Mineral Ion Relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scarcity of water of good quality for landscape irrigation is of outmost importance in arid and semiarid regions due to the competition with urban population. This is forcing the use of degraded waters with high levels of salinity and high pH, which may affect plant establishment and growth. The o...

  3. Poisonous plants affecting the central nervous system of horses in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poisoning by Indigofera pascuori was recently reported in horses in the state of Roraima. It causes chronic signs of sleepiness, unsteady gait, severe ataxia, and progressive weight loss. Some animals are blind. Young horses are more affected than adults. After the end of plant consumption the anima...

  4. Cotyledon damage affects seed number through final plant size in the annual grassland species Medicago lupulina

    PubMed Central

    Zhang, Shiting; Zhao, Chuan; Lamb, Eric G.

    2011-01-01

    Background and Aims The effects of cotyledon damage on seedling growth and survival are relatively well established, but little is known about the effects on aspects of plant fitness such as seed number and size. Here the direct and indirect mechanisms linking cotyledon damage and plant fitness in the annual species Medicago lupulina are examined. Methods Growth and reproductive traits, including mature plant size, time to first flowering, flower number, seed number and individual seed mass were monitored in M. lupulina plants when zero, one or two cotyledons were removed at 7 d old. Structural equation modelling (SEM) was used to examine the mechanisms linking cotyledon damage to seed number and seed mass. Key Results Cotyledon damage reduced seed number but not individual seed mass. The primary mechanism was a reduction in plant biomass with cotyledon damage that in turn reduced seed number primarily through a reduction in flower numbers. Although cotyledon damage delayed flower initiation, it had little effect on seed number. Individual seed mass was not affected by cotyledon removal, but there was a trade-off between seed number and seed mass. Conclusions It is shown how a network of indirect mechanisms link damage to cotyledons and fitness in M. lupulina. Cotyledon damage had strong direct effects on both plant size and flowering phenology, but an analysis of the causal relationships among plant traits and fitness components showed that a reduction in plant size associated with cotyledon damage was an important mechanism influencing fitness. PMID:21196450

  5. Relative abundance of an invasive alien plant affects insect-flower interaction networks in Ireland

    NASA Astrophysics Data System (ADS)

    Stout, Jane C.; Casey, Leanne M.

    2014-02-01

    Invasive alien flowering plants may affect native plant pollinator interactions and have knock on impacts on populations of native plants and animals. The magnitude of these impacts, however, may be modified by the relative abundance of the invasive plant and the number of flowers it presents.We tested this by examining the structure of insect-flower interaction networks in six sites with increasing levels of invasion by Rhododendron ponticum in Ireland.Neither flower-visiting insect abundance, species richness nor diversity were related to R. ponticum flower abundance, but the composition of insect communities was. The total number of flowers in a site increased with the relative abundance of R. ponticum flowers but the number of co-flowering native plant species in these sites was low (<6), making interaction networks relatively small.As a result, changes in interaction network properties (connectance, interaction evenness and network level specialisation), which correlated with R. ponticum flower abundance, were a result of the small network size rather than due to changes in the resilience of networks.Overall, we conclude that the impacts of invasive alien plants on native plant-pollinator interactions are not only species specific, but site specific, according to the abundance of flowers produced by both the invasive and the native plants.

  6. Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels

    PubMed Central

    Fatouros, Nina E.; Lucas-Barbosa, Dani; Weldegergis, Berhane T.; Pashalidou, Foteini G.; van Loon, Joop J. A.; Dicke, Marcel; Harvey, Jeffrey A.; Gols, Rieta; Huigens, Martinus E.

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  7. Survey of integrated gasification combined cycle power plant performance estimates

    NASA Astrophysics Data System (ADS)

    Larson, J. W.

    1980-03-01

    The idea of a combined cycle power plant integrated with a coal gasification process has attracted broad interest in recent years. This interest is based on unique attributes of this concept which include potentially low pollutant emissions, low heat rate and competitive economics as compared to conventional steam plants with stack gas scrubbing. Results from a survey of technical literature containing performance and economic predictions have been compiled for comparison and evaluation of this new technique. These performance and economic results indicate good promise for near-term commercialization of an integrated gasification combined cycle power plant using current gas turbine firing temperatures. Also, these data show that advancements in turbine firing temperature are expected to provide sufficiently favorable economics for the concept to penetrate the market now held by conventional steam power plants.

  8. Scales affect performance of Monarch butterfly forewings in autorotational flight

    NASA Astrophysics Data System (ADS)

    Demko, Anya; Lang, Amy

    2012-11-01

    Butterfly wings are characterized by rows of scales (approximately 100 microns in length) that create a shingle-like pattern of cavities over the entire surface. It is hypothesized that these cavities influence the airflow around the wing and increase aerodynamic performance. A forewing of the Monarch butterfly (Danus plexippus) naturally undergoes autorotational flight in the laminar regime. Autorotational flight is an accurate representation of insect flight because the rotation induces a velocity gradient similar to that found over a flapping wing. Drop test flights of 22 forewings before and after scale removal were recorded with a high-speed camera and flight behavior was quantified. It was found that removing the scales increased the descent speed and decreased the descent factor, a measure of aerodynamic efficacy, suggesting that scales increased the performance of the forewings. Funded by NSF REU Grant 1062611.

  9. Luminance controlled pupil size affects Landolt C task performance. Revision

    SciTech Connect

    Berman, S.M.; Fein, G.; Jewett, D.L.; Ashford, F.

    1993-02-01

    Subjects judged the orientation of a 2 min. gap Landolt C located at a distance of 2.4 m. The stimuli were presented in central vision on a CRT, at low to medium contrast. The effects of varying the spectrum and luminance of surround lighting were assessed on both pupil size (measured using infrared pupillometry during task performance) and task accuracy. The task display was protected from the surround lighting, so that its luminance and contrast could be varied independently of the changes in the surround lighting. Indirect surround illumination was provided by either two illuminants of very different scotopic spectral content but with the same photopic luminance (Experiments 1 and 3), or by using the same illuminant at two different luminance levels (Experiment 2). In Experiment 3, the effect of changing surround spectrum was compared to the effect of varying task background luminance between 12 cd/m{sup 2} and 73 cd/m{sup 2}. In all experiments, scotopically enhanced surround lighting produced pupil areas which were reduced by almost 50% in comparison with surround lighting with relatively less scotopic luminance. Concomitantly there was improvement in Landolt C task performance with the scotopically enhanced surround lighting at all contrast and luminance levels. In these experiments, smaller pupil sizes were associated with significantly better visual-task performance in spite of lower task retinal illuminance when compared to the condition with larger pupils. These results suggest that changes in surround spectrum can compensate for the effect on task performance of a reduction in task luminance and supports the hypothesis that lighting energy savings could accrue in the workplace by shifting lamp spectra to obtain greater scotopic efficacy.

  10. Luminance controlled pupil size affects Landolt C task performance

    SciTech Connect

    Berman, S.M. ); Fein, G. ); Jewett, D.L.; Ashford, F. )

    1993-02-01

    Subjects judged the orientation of a 2 min. gap Landolt C located at a distance of 2.4 m. The stimuli were presented in central vision on a CRT, at low to medium contrast. The effects of varying the spectrum and luminance of surround lighting were assessed on both pupil size (measured using infrared pupillometry during task performance) and task accuracy. The task display was protected from the surround lighting, so that its luminance and contrast could be varied independently of the changes in the surround lighting. Indirect surround illumination was provided by either two illuminants of very different scotopic spectral content but with the same photopic luminance (Experiments 1 and 3), or by using the same illuminant at two different luminance levels (Experiment 2). In Experiment 3, the effect of changing surround spectrum was compared to the effect of varying task background luminance between 12 cd/m[sup 2] and 73 cd/m[sup 2]. In all experiments, scotopically enhanced surround lighting produced pupil areas which were reduced by almost 50% in comparison with surround lighting with relatively less scotopic luminance. Concomitantly there was improvement in Landolt C task performance with the scotopically enhanced surround lighting at all contrast and luminance levels. In these experiments, smaller pupil sizes were associated with significantly better visual-task performance in spite of lower task retinal illuminance when compared to the condition with larger pupils. These results suggest that changes in surround spectrum can compensate for the effect on task performance of a reduction in task luminance and supports the hypothesis that lighting energy savings could accrue in the workplace by shifting lamp spectra to obtain greater scotopic efficacy.

  11. Factors That Affect Academic Performance Among Pharmacy Students

    PubMed Central

    Sansgiry, Sujit S.; Bhosle, Monali; Sail, Kavita

    2006-01-01

    Objective The objective of this study was to examine factors such as academic competence, test competence, time management, strategic studying, and test anxiety, and identify whether these factors could distinguish differences among students, based on academic performance and enrollment in the experiential program. Methods A cross-sectional study design utilizing questionnaires measuring previously validated constructs was used to evaluate the effect of these factors on students with low and high cumulative grade point averages (GPAs). Pharmacy students (N = 198) enrolled at the University of Houston participated in the study. Results Academic performance was significantly associated with factors such as academic competence and test competence. Students with a cumulative GPA of 3.0 or greater significantly differed in their level of test competence than those with a GPA of less than 3.0. Students enrolled in their experiential year differed from students enrolled in their second year of curriculum on factors such as test anxiety, academic competence, test competence, and time management skills. Conclusion Test competence was an important factor to distinguish students with low vs. high academic performance. Factors such as academic competence, test competence, test anxiety and time management improve as students' progress in their experiential year. PMID:17149433

  12. Dynamic performance of fossil-fueled power plants

    SciTech Connect

    Armor, A.F.; Bennett, W.E.; Di Domenico, P.N.; Shor, S.W.W.; Smith, L.P.

    1982-10-01

    Dynamic simulation is a valuable tool for optimizing the design and operation of steam electric power plants, especially those that change load or shut down frequently. However, its use has been limited because it has required experienced modeling specialists. An easy-to-use modeling system has therefore been developed under Electric Power Research Institute sponsorship. It has been tested by simulating transients performed on Boston Edison Company's Mystic Unit 7, a 550-MW oil-fired plant, with good agreement between the simulations and the recorded plant transients.

  13. Positive affective tone and team performance: The moderating role of collective emotional skills.

    PubMed

    Collins, Amy L; Jordan, Peter J; Lawrence, Sandra A; Troth, Ashlea C

    2016-01-01

    Research on affect as a group-level phenomenon has shown that over time, individual members within a group become highly similar in their affect (i.e., members experience and display similar emotions and moods), and often become similar enough that the aggregation of individuals' affect can meaningfully represent the "affective tone" of the group. It is generally assumed that a more positive affective tone will lead to better team performance. We challenge the conclusion that positive affective tone is always good for team performance, suggesting that the relationship between positive affective tone and team performance is subject to moderating influences. Across two studies, we demonstrate that the self-reported collective emotional skills of team members play a crucial role in determining whether positive affective tone is beneficial or detrimental to team performance. Implications for theory and practice are discussed. PMID:26208085

  14. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass.

    PubMed

    Munier-Lamy, C; Deneux-Mustin, S; Mustin, C; Merlet, D; Berthelin, J; Leyval, C

    2007-01-01

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil. PMID:17544553

  15. How Do Earthworms, Soil Texture and Plant Composition Affect Infiltration along an Experimental Plant Diversity Gradient in Grassland?

    PubMed Central

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W.; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Background Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. Methodology/Principal Findings We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Conclusions/Significance Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications. PMID:24918943

  16. Characterization of titanium dioxide: Factors affecting photocatalytic performance

    SciTech Connect

    Presley, R.W.

    1995-06-01

    Titanium dioxide is being evaluated as a photocatalyst in the destruction of contaminants in aqueous waste streams. Commercial samples of TiO{sub 2} powder have been obtained for base line studies of the photocatalytic destruction of salicylic acid standards. These commercial samples have been prepared by flame hydrolysis and aerosol or spray pyrolysis. Additional samples of TiO{sub 2} have been prepared in house by precipitation from TiCl{sub 4} in aqueous solution, some with the addition of dopants. X-ray powder diffraction data analysis indicates the predominate phase of these commercial and prepared powders to be anatase. A minor amount of the rutile crystalline phase of TiO{sub 2} was observed at various levels in some of these catalysts. The broadness of the x-ray diffraction bands varied among the samples analyzed and indicated the primary particle size to be within the 500 to 1,000 angstrom range with the product produced in house having the smallest crystallite size. Experiments were then performed to assess the photocatalytic performance of these various types of catalyst in the destruction of 30 ppm salicylic acid in deionized water.

  17. Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems

    PubMed Central

    Junker, Astrid; Muraya, Moses M.; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Klukas, Christian; Melchinger, Albrecht E.; Meyer, Rhonda C.; Riewe, David; Altmann, Thomas

    2015-01-01

    Detailed and standardized protocols for plant cultivation in environmentally controlled conditions are an essential prerequisite to conduct reproducible experiments with precisely defined treatments. Setting up appropriate and well defined experimental procedures is thus crucial for the generation of solid evidence and indispensable for successful plant research. Non-invasive and high throughput (HT) phenotyping technologies offer the opportunity to monitor and quantify performance dynamics of several hundreds of plants at a time. Compared to small scale plant cultivations, HT systems have much higher demands, from a conceptual and a logistic point of view, on experimental design, as well as the actual plant cultivation conditions, and the image analysis and statistical methods for data evaluation. Furthermore, cultivation conditions need to be designed that elicit plant performance characteristics corresponding to those under natural conditions. This manuscript describes critical steps in the optimization of procedures for HT plant phenotyping systems. Starting with the model plant Arabidopsis, HT-compatible methods were tested, and optimized with regard to growth substrate, soil coverage, watering regime, experimental design (considering environmental inhomogeneities) in automated plant cultivation and imaging systems. As revealed by metabolite profiling, plant movement did not affect the plants' physiological status. Based on these results, procedures for maize HT cultivation and monitoring were established. Variation of maize vegetative growth in the HT phenotyping system did match well with that observed in the field. The presented results outline important issues to be considered in the design of HT phenotyping experiments for model and crop plants. It thereby provides guidelines for the setup of HT experimental procedures, which are required for the generation of reliable and reproducible data of phenotypic variation for a broad range of applications. PMID

  18. Radiation protection performance indicators at the Nuclear Power Plant Krsko.

    PubMed

    Janzekovic, Helena

    2006-06-01

    Nuclear power plant safety performance indicators are developed "by nuclear operating organisations to monitor their own performance and progress, to set their own challenging goals for improvement, and to gain additional perspective on performance relative to that of other plants". In addition, performance indicators are widely used by regulatory authorities although the use is not harmonised. Two basic performance indicators related to good radiation protection practice are collective radiation exposure and volume of low-level radioactive waste. In 2000, Nuclear Power Plant Krsko, a Westinghouse pressurised water reactor with electrical output 700 MW, finished an extensive modernisation including the replacement of both steam generators. While the annual volume of low-level radioactive waste does not show a specific trend related to modernisation, the annual collective dose reached maximum, i.e. 2.60 man Sv, and dropped to 1.13 man Sv in 2001. During the replacement of the steam generators in 2000, the dose associated with this activity was 1.48 man Sv. The annual doses in 2002 and 2003 were 0.53 and 0.80 man Sv, respectively, nearing thus the goal set by the US Institute of Nuclear Power Operators, which is 0.65 man Sv. Therefore, inasmuch as collective dose as the radiation protection performance indicator are concerned, the modernisation of the Krsko nuclear power plant was a success. PMID:16832974

  19. Factors affecting the performance of large-aperture microphone arrays.

    PubMed

    Silverman, Harvey F; Patterson, William R; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m x 8 m x 3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment. PMID:12051434

  20. Factors affecting the performance of large-aperture microphone arrays

    NASA Astrophysics Data System (ADS)

    Silverman, Harvey F.; Patterson, William R.; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m×8 m×3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  1. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals. PMID:26079739

  2. Nuclear power plant control room operators' performance research

    SciTech Connect

    Gray, L.H.; Haas, P.M.

    1984-01-01

    A research program is being conducted to provide information on the performance of nuclear power plant control room operators when responding to abnormal/emergency events in the plants and in full-scope training simulators. The initial impetus for this program was the need for data to assess proposed design criteria for the choice of manual versus automatic action for accomplishing safety-related functions during design basis accidents. The program also included studies of training simulator capabilities, of procedures and data for specifying and verifying simulator performance, and of methods and applications of task analysis.

  3. What are the Historical and Future Impacts of Temperature Variability on Thermoelectric Power Plant Performance?

    NASA Astrophysics Data System (ADS)

    Henry, C.; Pratson, L.

    2015-12-01

    Current literature hypothesize that climate change-driven temperature increases will negatively affect the power production capacity of thermoelectric power plants, which currently produce ~88% of electricity used in the United States. This impact can occur through 1) warm cooling water that reduces the quantity of heat removed from the once-through (open-loop) steam system, 2) increased air temperature and/or humidity that decrease the amount of heat absorption in cooling towers/ponds of wet-recirculating (closed-loop) plants, and 3) environmental protection regulations that impose restrictions on both cooling water withdrawal volume and temperature of discharge. However, despite the widespread consensus that temperature and power generation are negatively related, different models yield a range of results and the magnitude of effects is uncertain. In this study, we test current literature's model predictions using historical data by assembling and analyzing a database of relevant parameters from distinct sources. We examine how daily and seasonal changes in cooling water, ambient air, and wet bulb temperatures have historically impacted coal and natural gas power plants in the U.S., focusing on 39 plants over a period up to 14 years. This allows us to assess how future changes in temperatures may affect generation. Our results suggest that water and ambient air temperatures have a lower impact on thermoelectric plant performance than previously predicted. Moreover, we find that recirculating power plants are more resilient to temperature variability than are once-through plants.

  4. Jasmonate-dependent plant defense restricts thrips performance and preference

    PubMed Central

    Abe, Hiroshi; Shimoda, Takeshi; Ohnishi, Jun; Kugimiya, Soichi; Narusaka, Mari; Seo, Shigemi; Narusaka, Yoshihiro; Tsuda, Shinya; Kobayashi, Masatomo

    2009-01-01

    Background The western flower thrips (Frankliniella occidentalis [Pergande]) is one of the most important insect herbivores of cultivated plants. However, no pesticide provides complete control of this species, and insecticide resistance has emerged around the world. We previously reported the important role of jasmonate (JA) in the plant's immediate response to thrips feeding by using an Arabidopsis leaf disc system. In this study, as the first step toward practical use of JA in thrips control, we analyzed the effect of JA-regulated Arabidopsis defense at the whole plant level on thrips behavior and life cycle at the population level over an extended period. We also studied the effectiveness of JA-regulated plant defense on thrips damage in Chinese cabbage (Brassica rapa subsp. pekinensis). Results Thrips oviposited more on Arabidopsis JA-insensitive coi1-1 mutants than on WT plants, and the population density of the following thrips generation increased on coi1-1 mutants. Moreover, thrips preferred coi1-1 mutants more than WT plants. Application of JA to WT plants before thrips attack decreased the thrips population. To analyze these important functions of JA in a brassica crop plant, we analyzed the expression of marker genes for JA response in B. rapa. Thrips feeding induced expression of these marker genes and significantly increased the JA content in B. rapa. Application of JA to B. rapa enhanced plant resistance to thrips, restricted oviposition, and reduced the population density of the following generation. Conclusion Our results indicate that the JA-regulated plant defense restricts thrips performance and preference, and plays an important role in the resistance of Arabidopsis and B. rapa to thrips damage. PMID:19635132

  5. Noise Affects Performance on the Montreal Cognitive Assessment.

    PubMed

    Dupuis, Kate; Marchuk, Veronica; Pichora-Fuller, M Kathleen

    2016-09-01

    We investigated the effect of background noise on performance on the Montreal Cognitive Assessment (MoCA). Two groups of older adults (one with clinically normal hearing, one with hearing loss) and a younger adult group with clinically normal hearing were administered two versions of the MoCA under headphones in low and high levels of background noise. Intensity levels used to present the test were customized based on the hearing abilities of participants with hearing loss to yield a uniform level of difficulty across listeners in the high-level noise condition. Both older groups had poorer MoCA scores in noise than the younger group. Importantly, all participants had poorer MoCA scores in the high-noise (M = 22.7/30) compared to the low-noise condition (M = 25.7/30, p < .001). Results suggest that background noise in the test environment should be considered when cognitive tests are conducted and results interpreted, especially when testing older adults. PMID:27345572

  6. Plant sterols: factors affecting their efficacy and safety as functional food ingredients

    PubMed Central

    Berger, Alvin; Jones, Peter JH; Abumweis, Suhad S

    2004-01-01

    Plant sterols are naturally occurring molecules that humanity has evolved with. Herein, we have critically evaluated recent literature pertaining to the myriad of factors affecting efficacy and safety of plant sterols in free and esterified forms. We conclude that properly solubilized 4-desmetyl plant sterols, in ester or free form, in reasonable doses (0.8–1.0 g of equivalents per day) and in various vehicles including natural sources, and as part of a healthy diet and lifestyle, are important dietary components for lowering low density lipoprotein (LDL) cholesterol and maintaining good heart health. In addition to their cholesterol lowering properties, plant sterols possess anti-cancer, anti-inflammatory, anti-atherogenicity, and anti-oxidation activities, and should thus be of clinical importance, even for those individuals without elevated LDL cholesterol. The carotenoid lowering effect of plant sterols should be corrected by increasing intake of food that is rich in carotenoids. In pregnant and lactating women and children, further study is needed to verify the dose required to decrease blood cholesterol without affecting fat-soluble vitamins and carotenoid status. PMID:15070410

  7. Performance of a second-generation PFB pilot plant combustor

    SciTech Connect

    Conn, R.; Van Hook, J.; Robertson, A.; Bonk, D.

    1995-07-01

    Second-generation pressurized fluidized bed combustion (PFBC) plants promise higher efficiency with lower costs of electricity and lower stack emissions. With a conventional reheat steam cycle and a 3% sulfur Pittsburgh No. 8 coal, a 45% efficiency (HHV of coal basis) and a cost of electricity 20% lower than that of a pulverized-coal-fired plant with stack gas scrubbing are being projected. This advanced plant concept incorporates three major steps: carbonization, circulating fluidized bed combustion and topping combustion. Foster Wheeler Development Corporation has constructed and operated a second-generation PFB pilot plant at the Foster Wheeler research facility (the John Blizard Research Center) in Livingston, New Jersey. Results of the pilot plant combustor portion of the test program supporting the development of this new type of plant are presented. The fuels evaluated in this test program included several char-sorbent residues produced in a pressurized carbonizer pilot plant and their parent coals. The data confirmed the viability of the PFB combustor concept in terms of both combustion and emissions performance.

  8. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    PubMed

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  9. Plant-bacteria bioremediation agents affect the response of plant bioindicators independent of 2-chlorobenzoic acid degradation

    SciTech Connect

    Siciliano, S.D.; Germida, J.J.

    1995-12-31

    Plants are known to degrade toxicants in soil and are potentially useful bioremediation agents. The authors developed plant-bacteria associations (e.g., Meadow brome [Bromus riparius] and Pseudomonas aeruginosa strain R75) that degrade 2-chlorobenzoic acid (2CBA) in soil, and assessed their success using Slender wheatgrass (Agropyron trachycaulum) germination as a bioindicator of 2CBA levels. Gas chromatography was used to chemically assess 2CBA levels. Specific plant-bacteria bioremediation treatments decreased soil 2CBA levels by 17 to 52%, but bioindicator response did not correspond to chemical analysis. Contaminated and uncontaminated soil was subjected to bioremediation treatments. After 42 days, uncontaminated soil was collected and amended to various 2CBA levels. This soil and the remediated soil were analyzed by the plant bioindicator and gas chromatography. Bioremediation treatments altered germination of Slender wheatgrass in both contaminated and noncontaminated soils to a similar extent. These treatments decreased the toxicity of 2CBA to Slender wheatgrass in both contaminated and noncontaminated soils to a similar extent. These treatments decreased the toxicity of 2CBA to Slender wheatgrass at low 2CBA levels, but increased the toxicity of 2CBA at high 2CBA levels. For example, germination in soil subjected to the Meadow brome and R75 treatment was increased by ca. 30% at 50 mg kg{sup {minus}1} 2CBA, but decreased by ca. 50% at 150 mg kg{sup {minus}1} 2CBA. The results indicate that specific plant-bacteria bioremediation treatments affect plant bioindicator response independent of 2CBA degradation, and may confound efforts to determine the toxicity of 2CBA in soil.

  10. Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.)

    PubMed Central

    Wu, Qi; Li, Dayong; Li, Dejun; Liu, Xue; Zhao, Xianfeng; Li, Xiaobing; Li, Shigui; Zhu, Lihuang

    2015-01-01

    Dof (DNA binding with one finger) proteins, a class of plant-specific transcription factors, are involved in plant growth and developmental processes and stress responses. However, their biological functions remain to be elucidated, especially in rice (Oryza sativa L.). Previously, we have reported that OsDof12 can promote rice flowering under long-day conditions. Here, we further investigated the other important agronomical traits of the transgenic plants overexpressing OsDof12 and found that overexpressing OsDof12 could lead to reduced plant height, erected leaf, shortened leaf blade, and smaller panicle resulted from decreased primary and secondary branches number. These results implied that OsDof12 is involved in rice plant architecture formation. Furthermore, we performed a series of Brassinosteroid (BR)-responsive tests and found that overexpression of OsDof12 could also result in BR hyposensitivity. Of note, in WT plants the expression of OsDof12 was found up-regulated by BR treatment while in OsDof12 overexpression plants two positive BR signaling regulators, OsBRI1 and OsBZR1, were significantly down-regulated, indicating that OsDof12 may act as a negative BR regulator in rice. Taken together, our results suggested that overexpression of OsDof12 could lead to altered plant architecture by suppressing BR signaling. Thus, OsDof12 might be used as a new potential genetic regulator for future rice molecular breeding. PMID:26500670

  11. Decoupling factors affecting plant diversity and cover on extensive green roofs.

    PubMed

    MacIvor, J Scott; Margolis, Liat; Puncher, Curtis L; Carver Matthews, Benjamin J

    2013-11-30

    Supplemental irrigation systems are often specified on green roofs to ensure plant cover and growth, both important components of green roof performance and aesthetics. Properties of the growing media environment too can alter the assemblage of plant species able to thrive. In this study we determine how plant cover, above ground biomass and species diversity are influenced by irrigation and growing media. Grass and forb vegetative cover and biomass were significantly greater in organic based growing media but there was no effect of supplemental irrigation, with two warm season grasses dominating in those treatments receiving no supplemental irrigation. On the other hand, plant diversity declined without irrigation in organic media, and having no irrigation in inorganic growing media resulted in almost a complete loss of cover. Sedum biomass was less in inorganic growing media treatments and species dominance shifted when growing media organic content increased. Our results demonstrate that supplemental irrigation is required to maintain plant diversity on an extensive green roof, but not necessarily plant cover or biomass. These results provide evidence that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought. PMID:24100190

  12. Work practices, fatigue, and nuclear power plant safety performance.

    PubMed

    Baker, K; Olson, J; Morisseau, D

    1994-06-01

    This paper focuses on work practices that may contribute to fatigue-induced performance decrements in the commercial nuclear power industry. Specifically, the amount of overtime worked by operations, technical, and maintenance personnel and the 12-h operator shift schedule are studied. Although overtime for all three job categories was fairly high at a number of plants, the analyses detected a clear statistical relationship only between operations overtime and plant safety performance. The results for the 12-h operator shift schedule were ambiguous. Although the 12-h operator shift schedule was correlated with operator error, it was not significantly related to the other five safety indicators. This research suggests that at least one of the existing work practices--the amount of operator overtime worked at some plants--represents a safety concern in this industry; however, further research is required before any definitive conclusions can be drawn. PMID:8070790

  13. Does a decade of elevated [CO2] affect a desert perennial plant community?

    PubMed

    Newingham, Beth A; Vanier, Cheryl H; Kelly, Lauren J; Charlet, Therese N; Smith, Stanley D

    2014-01-01

    Understanding the effects of elevated [CO2 ] on plant community structure is crucial to predicting ecosystem responses to global change. Early predictions suggested that productivity in deserts would increase via enhanced water-use efficiency under elevated [CO2], but the response of intact arid plant communities to elevated [CO2 ] is largely unknown. We measured changes in perennial plant community characteristics (cover, species richness and diversity) after 10 yr of elevated [CO2] exposure in an intact Mojave Desert community at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Contrary to expectations, total cover, species richness, and diversity were not affected by elevated [CO2]. Over the course of the experiment, elevated [CO2] had no effect on changes in cover of the evergreen C3 shrub, Larrea tridentata; alleviated decreases in cover of the C4 bunchgrass, Pleuraphis rigida; and slightly reduced the cover of C3 drought-deciduous shrubs. Thus, we generally found no effect of elevated [CO2] on plant communities in this arid ecosystem. Extended drought, slow plant growth rates, and highly episodic germination and recruitment of new individuals explain the lack of strong perennial plant community shifts after a decade of elevated [CO2]. PMID:24117700

  14. Plant Quantity Affects Development and Survival of a Gregarious Insect Herbivore and Its Endoparasitoid Wasp

    PubMed Central

    Fei, Minghui; Gols, Rieta; Zhu, Feng; Harvey, Jeffrey A.

    2016-01-01

    Virtually all studies of plant-herbivore-natural enemy interactions focus on plant quality as the major constraint on development and survival. However, for many gregarious feeding insect herbivores that feed on small or ephemeral plants, the quantity of resources is much more limiting, yet this area has received virtually no attention. Here, in both lab and semi-field experiments using tents containing variably sized clusters of food plants, we studied the effects of periodic food deprivation in a tri-trophic system where quantitative constraints are profoundly important on insect performance. The large cabbage white Pieris brassicae, is a specialist herbivore of relatively small wild brassicaceous plants that grow in variable densities, with black mustard (Brassica nigra) being one of the most important. Larvae of P. brassicae are in turn attacked by a specialist endoparasitoid wasp, Cotesia glomerata. Increasing the length of food deprivation of newly molted final instar caterpillars significantly decreased herbivore and parasitoid survival and biomass, but shortened their development time. Moreover, the ability of caterpillars to recover when provided with food again was correlated with the length of the food deprivation period. In outdoor tents with natural vegetation, we created conditions similar to those faced by P. brassicae in nature by manipulating plant density. Low densities of B. nigra lead to potential starvation of P. brassicae broods and their parasitoids, replicating nutritional conditions of the lab experiments. The ability of both unparasitized and parasitized caterpillars to find corner plants was similar but decreased with central plant density. Survival of both the herbivore and parasitoid increased with plant density and was higher for unparasitized than for parasitized caterpillars. Our results, in comparison with previous studies, reveal that quantitative constraints are far more important that qualitative constraints on the performance of

  15. Plant Quantity Affects Development and Survival of a Gregarious Insect Herbivore and Its Endoparasitoid Wasp.

    PubMed

    Fei, Minghui; Gols, Rieta; Zhu, Feng; Harvey, Jeffrey A

    2016-01-01

    Virtually all studies of plant-herbivore-natural enemy interactions focus on plant quality as the major constraint on development and survival. However, for many gregarious feeding insect herbivores that feed on small or ephemeral plants, the quantity of resources is much more limiting, yet this area has received virtually no attention. Here, in both lab and semi-field experiments using tents containing variably sized clusters of food plants, we studied the effects of periodic food deprivation in a tri-trophic system where quantitative constraints are profoundly important on insect performance. The large cabbage white Pieris brassicae, is a specialist herbivore of relatively small wild brassicaceous plants that grow in variable densities, with black mustard (Brassica nigra) being one of the most important. Larvae of P. brassicae are in turn attacked by a specialist endoparasitoid wasp, Cotesia glomerata. Increasing the length of food deprivation of newly molted final instar caterpillars significantly decreased herbivore and parasitoid survival and biomass, but shortened their development time. Moreover, the ability of caterpillars to recover when provided with food again was correlated with the length of the food deprivation period. In outdoor tents with natural vegetation, we created conditions similar to those faced by P. brassicae in nature by manipulating plant density. Low densities of B. nigra lead to potential starvation of P. brassicae broods and their parasitoids, replicating nutritional conditions of the lab experiments. The ability of both unparasitized and parasitized caterpillars to find corner plants was similar but decreased with central plant density. Survival of both the herbivore and parasitoid increased with plant density and was higher for unparasitized than for parasitized caterpillars. Our results, in comparison with previous studies, reveal that quantitative constraints are far more important that qualitative constraints on the performance of

  16. WHY COMT-DEFICIENT PLANTS HAVE POOR PULPING PERFORMANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic plants that have reduced lignin content, or structurally or compositionally modified lignins, have been studied in order to identify traits with excellent pulping performance. COMT is an enzyme in the monolignol pathway crucial to the synthesis of sinapyl alcohol, one of the two major mon...

  17. Affective Responses to an Aerobic Dance Class: The Impact of Perceived Performance.

    ERIC Educational Resources Information Center

    Bartholomew, John B.; Miller, Bridget M.

    2002-01-01

    Tested the mastery hypothesis as an explanation for the affective benefits of acute exercise. Undergraduate women from a self-selected aerobic dance class rated their exercise performance following class. Affect questionnaires were completed before and at 5 and 20 minutes after the class. Results showed an overall improvement in affect following…

  18. Individual plant examination program: Perspectives on reactor safety and plant performance. Parts 2--5: Final report; Volume 2

    SciTech Connect

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC`s overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively.

  19. Individual plant examination program: Perspectives on reactor safety and plant performance. Part 1: Final summary report; Volume 1

    SciTech Connect

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC`s overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively.

  20. Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure

    SciTech Connect

    Whitham, T.G.; Martinsen, G.D.; Keim, P.; Floate, K.D.; Dungey, H.S. |; Potts, B.M.

    1999-03-01

    Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

  1. Factors Affecting the Distribution Pattern of Wild Plants with Extremely Small Populations in Hainan Island, China

    PubMed Central

    Chen, Yukai; Yang, Xiaobo; Yang, Qi; Li, Donghai; Long, Wenxing; Luo, Wenqi

    2014-01-01

    Understanding which factors affect the distribution pattern of extremely small populations is essential to the protection and propagation of rare and endangered plant species. In this study, we established 108 plots covering the entire Hainan Island, and measured the appearance frequency and species richness of plant species with extremely small populations, as well as the ecological environments and human disturbances during 2012–2013. We explored how the ecological environments and human activities affected the distribution pattern of these extremely small populations. Results showed that the extremely small populations underwent human disturbances and threats, and they were often found in fragmental habitats. The leading factors changing the appearance frequency of extremely small populations differed among plant species, and the direct factors making them susceptible to extinction were human disturbances. The peak richness of extremely small populations always occurred at the medium level across environmental gradients, and their species richness always decreased with increasing human disturbances. However, the appearance frequencies of three orchid species increased with the increasing human disturbances. Our study thus indicate that knowledge on how the external factors, such as the ecological environment, land use type, roads, human activity, etc., affect the distribution of the extremely small populations should be taken for the better protecting them in the future. PMID:24830683

  2. Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China.

    PubMed

    Chen, Yukai; Yang, Xiaobo; Yang, Qi; Li, Donghai; Long, Wenxing; Luo, Wenqi

    2014-01-01

    Understanding which factors affect the distribution pattern of extremely small populations is essential to the protection and propagation of rare and endangered plant species. In this study, we established 108 plots covering the entire Hainan Island, and measured the appearance frequency and species richness of plant species with extremely small populations, as well as the ecological environments and human disturbances during 2012-2013. We explored how the ecological environments and human activities affected the distribution pattern of these extremely small populations. Results showed that the extremely small populations underwent human disturbances and threats, and they were often found in fragmental habitats. The leading factors changing the appearance frequency of extremely small populations differed among plant species, and the direct factors making them susceptible to extinction were human disturbances. The peak richness of extremely small populations always occurred at the medium level across environmental gradients, and their species richness always decreased with increasing human disturbances. However, the appearance frequencies of three orchid species increased with the increasing human disturbances. Our study thus indicate that knowledge on how the external factors, such as the ecological environment, land use type, roads, human activity, etc., affect the distribution of the extremely small populations should be taken for the better protecting them in the future. PMID:24830683

  3. An Analysis of Factors That Affect the Educational Performance of Agricultural Students

    ERIC Educational Resources Information Center

    Greenway, Gina

    2012-01-01

    Many factors contribute to student achievement. This study focuses on three areas: how students learn, how student personality type affects performance, and how course format affects performance outcomes. The analysis sought to improve understanding of the direction and magnitude with which each of these factors impacts student success. Improved…

  4. Performance evaluation of fiber optic components in nuclear plant environments

    SciTech Connect

    Hastings, M.C.; Miller, D.W.; James, R.W.

    1996-03-01

    Over the past several years, the Electric Power Research Institute (EPRI) has funded several projects to evaluate the performance of commercially available fiber optic cables, connective devices, light sources, and light detectors under environmental conditions representative of normal and abnormal nuclear power plant operating conditions. Future projects are planned to evaluate commercially available fiber optic sensors and to install and evaluate performance of instrument loops comprised of fiber optic components in operating nuclear power plant applications. The objective of this research is to assess the viability of fiber optic components for replacement and upgrade of nuclear power plant instrument systems. Fiber optic instrument channels offer many potential advantages: commercial availability of parts and technical support, small physical size and weight, immunity to electromagnetic interference, relatively low power requirements, and high bandwidth capabilities. As existing nuclear power plants continue to replace and upgrade I&C systems, fiber optics will offer a low-cost alternative technology which also provides additional information processing capabilities. Results to date indicate that fiber optics are a viable technology for many nuclear applications, both inside and outside of containments. This work is funded and manage& under the Operations & Maintenance Cost Control research target of EPRI`s Nuclear Power Group. The work is being performed by faculty and students in the Mechanical and Nuclear Engineering Departments and the staff of the Nuclear Reactor Laboratory of the Ohio State University.

  5. Modulation of Ethylene Responses Affects Plant Salt-Stress Responses1[OA

    PubMed Central

    Cao, Wan-Hong; Liu, Jun; He, Xin-Jian; Mu, Rui-Ling; Zhou, Hua-Lin; Chen, Shou-Yi; Zhang, Jin-Song

    2007-01-01

    Ethylene signaling plays important roles in multiple aspects of plant growth and development. Its functions in abiotic stress responses remain largely unknown. Here, we report that alteration of ethylene signaling affected plant salt-stress responses. A type II ethylene receptor homolog gene NTHK1 (Nicotiana tabacum histidine kinase 1) from tobacco (N. tabacum) conferred salt sensitivity in NTHK1-transgenic Arabidopsis (Arabidopsis thaliana) plants as judged from the phenotypic change, the relative electrolyte leakage, and the relative root growth under salt stress. Ethylene precursor 1-aminocyclopropane-1-carboxylic acid suppressed the salt-sensitive phenotype. Analysis of Arabidopsis ethylene receptor gain-of-function mutants further suggests that receptor function may lead to salt-sensitive responses. Mutation of EIN2, a central component in ethylene signaling, also results in salt sensitivity, suggesting that EIN2-mediated signaling is beneficial for plant salt tolerance. Overexpression of the NTHK1 gene or the receptor gain-of-function activated expression of salt-responsive genes AtERF4 and Cor6.6. In addition, the transgene NTHK1 mRNA was accumulated under salt stress, suggesting a posttranscriptional regulatory mechanism. These findings imply that ethylene signaling may be required for plant salt tolerance. PMID:17189334

  6. Responses to formal performance appraisal feedback: the role of negative affectivity.

    PubMed

    Lam, Simon S K; Yik, Michelle S M; Schaubroeck, John

    2002-02-01

    This study examined the effects of performance appraisal feedback on job and organizational attitudes of tellers (N = 329) in a large international bank. Negative affectivity moderated the link between favorable appraisal feedback and job attitudes. Among the higher rated performers, attitudes were improved 1 month after being notified of favorable appraisal results (Time 2). Improved attitudes persisted 6 months after the performance appraisal (Time 3) among tellers with low negative affectivity but not among those with high negative affectivity. Among the lower rated performers, mean levels of attitudes did not change significantly during the study. PMID:11924542

  7. The differential influences of positive affect, random reward, and performance-contingent reward on cognitive control.

    PubMed

    Fröber, Kerstin; Dreisbach, Gesine

    2014-06-01

    Growing evidence suggests that positive affect and reward have differential effects on cognitive control. So far, however, these effects have never been studied together. Here, the authors present one behavioral study investigating the influences of positive affect and reward (contingent and noncontingent) on proactive control. A modified version of the AX-continuous performance task, which has repeatedly been shown to be sensitive to reward and affect manipulations, was used. In a first phase, two experimental groups received either neutral or positive affective pictures before every trial. In a second phase, the two halves of a given affect group additionally received, respectively, performance-contingent or random rewards. The results replicated the typical affect effect, in terms of reduced proactive control under positive as compared to neutral affect. Also, the typical reward effects associated with increased proactive control were replicated. Most interestingly, performance-contingent reward counteracted the positive affect effect, whereas random reward mirrored that effect. In sum, this study provides first evidence that performance-contingent reward, on the one hand, and positive affect and performance-noncontingent reward, on the other hand, have oppositional effects on cognitive control: Only performance-contingent reward showed a motivational effect in terms of a strategy shift toward increased proactive control, whereas positive affect alone and performance-noncontingent reward reduced proactive control. Moreover, the integrative design of this study revealed the vulnerability of positive affect effects to motivational manipulations. The results are discussed with respect to current neuroscientific theories of the effects of dopamine on affect, reward, and cognitive control. PMID:24659000

  8. Can corn plants inoculated with arbuscular mycorrhiza fungi affect soil clay assemblage?

    NASA Astrophysics Data System (ADS)

    Adamo, P.; Cozzolino, V.; Di Meo, V.; Velde, B.

    2012-04-01

    Plants can extract K from exchangeable and non-exchangeable sites in the soil clay mineral structures. The latter, known as fixed K, is usually seen as an illite layer, i.e. an anhydrous K layer that forms a 1.0 nm structural layer unit as seen by X-ray diffraction. Nutrient availability can be enhanced in the root zone by arbuscular mycorrhiza fungi. In this study, the effects of non-inoculated and Glomus intraradices inoculated corn plant growth under different experimental conditions on soil K-bearing clay minerals were identified. The soil, a Vertic Xerofluvent, was planted in corn in a 2008-2010 randomized field experiment. Bulk and rhizosphere soil sampling was carried out from May to September 2010 from fertilized plots (N200P90K160 and N200P0K160) with and without plants. According to XRD analysis, three major K-bearing minerals were present in soil: smectite-rich mixed layer mineral, illite-rich mixed layer mineral and illite. Results at 40DAS indicate extraction of K from clay minerals by plant uptake, whereas at 130DAS much of the nutrient seems to be returned to the soil. There is an apparent difference between bulk and rhizophere clays. The XRD patterns are not unequivocally affected by Glomus inoculation. There are observable changes in clay mineralogy in fallow unfertilized compared with fertilized soil. In the studied soil, the illite rich mixed-layer minerals seem to be the source of K absorbed by plants, while illite acts as sink of K released from the plant-microorganisms system at the end of the growing season and as source for the following crop.

  9. CLIMATE CONDITIONS AFFECTING THE WITHIN-PLANT SPREAD OF BROAD MITES ON AZALEA.

    PubMed

    Mechant, E; Pauwels, E; Gobin, B

    2014-01-01

    The broad mite Polyphagotarsonemus latus (Banks) is considered a major pest in potted azalea, Flanders' flagship ornamental crop of Rhododendron simsii hybrids. In addition to severe economic damage, the broad mite is dreaded for its increasing resistance to acaricides. Due to restrictions in the use of broad spectrum acaricides, Belgian azalea growers are left with only three compounds, belonging to two mode of action groups and restricted in their number of applications, for broad mite control: abamectin, milbemectin and pyrethrin. Although P. latus can be controlled with predatory mites, the high cost of this system makes it (not yet) feasible for integration into standard azalea pest management systems. Hence, a maximum efficacy of treatments with available compounds is essential. Because abamectin, milbemectin and pyrethrin are contact acaricides with limited trans laminar flow, only broad mites located on shoot tips of azalea plants will be controlled after spraying. Consequently, the efficacy of chemical treatments is influenced by the location and spread of P. latus on the plant. Unfortunately, little is known on broad mites' within-plant spread or how it is affected by climatic conditions like temperature and relative humidity. Therefore, experiments were set up to verify whether climate conditions have an effect on the location and migration of broad mites on azalea. Broad mite infected azalea plants were placed in standard growth chambers under different temperature (T:2.5-25°C) and relative humidity (RH:55-80%) treatments. Within-plant spread was determined by counting mites on the shoot tips and inner leaves of azalea plants. Results indicate that temperature and relative humidity have no significant effect on the within-plant spread of P. latus. To formulate recommendations for optimal spray conditions to maximize the efficacy of broad mite control with acaricides, further experiments on the effect of light intensity and rain are scheduled. PMID

  10. Identifying Affective Domains That Correlate and Predict Mathematics Performance in High-Performing Students in Singapore

    ERIC Educational Resources Information Center

    Lim, Siew Yee; Chapman, Elaine

    2015-01-01

    Past studies have shown that distinct yet highly correlated sub-constructs of three broad mathematics affective variables: (a) motivation, (b) attitudes and (c) anxiety, have varying degree of correlation with mathematics achievement. The sub-constructs of these three affective constructs are as follows: (a) (i) amotivation, (ii) external…

  11. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status.

    PubMed

    Verslues, Paul E; Agarwal, Manu; Katiyar-Agarwal, Surekha; Zhu, Jianhua; Zhu, Jian-Kang

    2006-02-01

    The abiotic stresses of drought, salinity and freezing are linked by the fact that they all decrease the availability of water to plant cells. This decreased availability of water is quantified as a decrease in water potential. Plants resist low water potential and related stresses by modifying water uptake and loss to avoid low water potential, accumulating solutes and modifying the properties of cell walls to avoid the dehydration induced by low water potential and using protective proteins and mechanisms to tolerate reduced water content by preventing or repairing cell damage. Salt stress also alters plant ion homeostasis, and under many conditions this may be the predominant factor affecting plant performance. Our emphasis is on experiments that quantify resistance to realistic and reproducible low water potential (drought), salt and freezing stresses while being suitable for genetic studies where a large number of lines must be analyzed. Detailed protocols for the use of polyethylene glycol-infused agar plates to impose low water potential stress, assay of salt tolerance based on root elongation, quantification of freezing tolerance and the use of electrolyte leakage experiments to quantify cellular damage induced by freezing and low water potential are also presented. PMID:16441347

  12. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    SciTech Connect

    Madron, F.; Papuga, J.; Pliska, J.

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation are

  13. Solar power plant performance evaluation: simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  14. Preference and performance in plant-herbivore interactions across latitude--a study in U.S. Atlantic salt marshes.

    PubMed

    Ho, Chuan-Kai; Pennings, Steven C

    2013-01-01

    High-latitude plants are often more palatable to herbivores than low-latitude conspecifics. Does increased plant palatability lead to better herbivore performance? Our field and laboratory work investigated (A) whether high-latitude plants have traits indicating that they should be higher-quality foods for herbivores; (B) whether geographic differences in plant quality are more important than local adaptation of herbivores. We studied 3 plant species and 6 invertebrate herbivores in U.S. Atlantic Coast. Past studies had shown high-latitude individuals of these plants are more palatable than low-latitude conspecifics. We documented plant traits and herbivore performance (body size) in the field across latitude. We collected individuals from different latitudes for factorial (plant region x herbivore region) laboratory experiments, examining how herbivore performance was affected by plant region, herbivore region, and their interaction (i.e., local adaptation). Field surveys suggested high-latitude plants were likely of higher quality to herbivores. Leaf nitrogen content in all plant species increased toward high latitudes, consistent with lower leaf C/N and higher leaf chlorophyll content at high latitudes. Furthermore, leaf toughness decreased toward higher latitudes in 1 species. The body size of 4 herbivore species increased with latitude, consistent with high-latitude leaves being of higher quality, while 2 grasshopper species showed the opposite pattern, likely due to life-history constraints. In the laboratory, high-latitude plants supported better performance in 4 herbivore species (marginal in the 5th). The geographic region where herbivores were collected affected herbivore performance in all 6 species; however, the pattern was mixed, indicating a lack of local adaptation by herbivores to plants from their own geographic region. Our results suggest that more-palatable plants at high latitudes support better herbivore growth. Given that geographic origin of

  15. Drying and Storage Methods Affect Cyfluthrin Concentrations in Exposed Plant Samples.

    PubMed

    Moore, M T; Kröger, R; Locke, M A

    2016-08-01

    Standard procedures do not exist for drying and storage of plant samples prior to chemical analyses. Since immediate analysis is not always possible, current research examined which plant drying and storage method yielded the highest cyfluthrin recovery rates compared to traditional mechanical freeze-drying methods. Fifteen mesocosms were planted with rice. Cyfluthrin (5 mg L(-1)) was amended into the water column of individual mesocosms. 48 h later, plant material in the water column was collected from each mesocosm. Control (mechanical freeze drying) recovery was significantly greater (p < 0.001) than all 14 combinations of drying and storage. Significant differences also existed between all 14 different combinations. Greatest cyfluthrin recoveries in non-control plants were from the freezer-greenhouse-freezer drying and storage method. Results offer evidence for the efficient plant drying and storage methods prior to cyfluthrin analysis. Future studies should perform comparable analyses on various pesticide classes to determine possible relationships. PMID:27225509

  16. Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation.

    PubMed

    Astolfi, S; Zuchi, S; Neumann, G; Cesco, S; Sanità di Toppi, L; Pinton, R

    2012-02-01

    Both Fe deficiency and Cd exposure induce rapid changes in the S nutritional requirement of plants. The aim of this work was to characterize the strategies adopted by plants to cope with both Fe deficiency (release of phytosiderophores) and Cd contamination [production of glutathione (GSH) and phytochelatins] when grown under conditions of limited S supply. Experiments were performed in hydroponics, using barley plants grown under S sufficiency (1.2 mM sulphate) and S deficiency (0 mM sulphate), with or without Fe(III)-EDTA at 0.08 mM for 11 d and subsequently exposed to 0.05 mM Cd for 24 h or 72 h. In S-sufficient plants, Fe deficiency enhanced both root and shoot Cd concentrations and increased GSH and phytochelatin levels. In S-deficient plants, Fe starvation caused a slight increase in Cd concentration, but this change was accompanied neither by an increase in GSH nor by an accumulation of phytochelatins. Release of phytosiderophores, only detectable in Fe-deficient plants, was strongly decreased by S deficiency and further reduced after Cd treatment. In roots Cd exposure increased the expression of the high affinity sulphate transporter gene (HvST1) regardless of the S supply, and the expression of the Fe deficiency-responsive genes, HvYS1 and HvIDS2, irrespective of Fe supply. In conclusion, adequate S availability is necessary to cope with Fe deficiency and Cd toxicity in barley plants. Moreover, it appears that in Fe-deficient plants grown in the presence of Cd with limited S supply, sulphur may be preferentially employed in the pathway for biosynthesis of phytosiderophores, rather than for phytochelatin production. PMID:22090437

  17. Consuming functional foods enriched with plant sterol or stanol esters for 85 weeks does not affect neurocognitive functioning or mood in statin-treated hypercholesterolemic individuals.

    PubMed

    Schiepers, Olga J G; de Groot, Renate H M; van Boxtel, Martin P J; Jolles, Jelle; de Jong, Ariënne; Lütjohann, Dieter; Plat, Jogchum; Mensink, Ronald P

    2009-07-01

    Recent animal and human studies have shown that plant sterols and stanols, which are used as functional food ingredients to lower increased LDL cholesterol concentrations, pass the blood-brain barrier. Whether this affects neurocognitive functioning and mental well-being in humans has, to our knowledge, never been investigated. The aim of the present study was therefore to examine the effects of long-term plant sterol or stanol consumption on neurocognitive functioning and mood in a randomized, double-blind, placebo-controlled dietary intervention trial. To this end, hypercholesterolemic individuals, aged 43-69 y, receiving stable statin treatment were randomly assigned to an 85-wk supplementation with margarines enriched with plant sterol esters (2.5 g/d), plant stanol esters (2.5 g/d), or placebo. At baseline and at the end of the intervention period, all participants underwent a cognitive assessment. In addition, subjective cognitive functioning and mood were assessed by means of questionnaires (Cognitive Failure Questionnaire and depression subscale of the Symptom Checklist 90, respectively). Long-term supplementation with plant sterol or stanol esters did not affect cognitive performance (memory, simple information processing speed, complex information processing speed, Letter-Digit Substitution test performance), subjective cognitive functioning, or mood. In conclusion, the present results indicate that long-term use of plant sterols or stanols at recommended intakes of 2.5 g/d does not affect neurocognitive functioning or mood in hypercholesterolemic individuals receiving statin treatment. PMID:19458031

  18. Resilient Plant Monitoring System: Design, Analysis, and Performance Evaluation

    SciTech Connect

    Humberto E. Garcia; Wen-Chiao Lin; Semyon M. Meerkov; Maruthi T. Ravichandran

    2013-12-01

    Resilient monitoring systems are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools, and the performance of the overall system is evaluated using simulations. The measure of resiliency of the resulting system is evaluated using Kullback Leibler divergence, and is shown to be sufficiently high in all scenarios considered.

  19. Barbarea vulgaris Glucosinolate Phenotypes Differentially Affect Performance and Preference of Two Different Species of Lepidopteran Herbivores

    PubMed Central

    Vet, Louise E. M.; van der Putten, Wim H.; van Dam, Nicole M.

    2008-01-01

    The composition of secondary metabolites and the nutritional value of a plant both determine herbivore preference and performance. The genetically determined glucosinolate pattern of Barbarea vulgaris can be dominated by either glucobarbarin (BAR-type) or by gluconasturtiin (NAS-type). Because of the structural differences, these glucosinolates may have different effects on herbivores. We compared the two Barbarea chemotypes with regards to the preference and performance of two lepidopteran herbivores, using Mamestra brassicae as a generalist and Pieris rapae as a specialist. The generalist and specialist herbivores did not prefer either chemotype for oviposition. However, larvae of the generalist M. brassicae preferred to feed and performed best on NAS-type plants. On NAS-type plants, 100% of the M. brassicae larvae survived while growing exponentially, whereas on BAR-type plants, M. brassicae larvae showed little growth and a mortality of 37.5%. In contrast to M. brassicae, the larval preference and performance of the specialist P. rapae was unaffected by plant chemotype. Total levels of glucosinolates, water soluble sugars, and amino acids of B. vulgaris could not explain the poor preference and performance of M. brassicae on BAR-type plants. Our results suggest that difference in glucosinolate chemical structure is responsible for the differential effects of the B. vulgaris chemotypes on the generalist herbivore. Electronic supplementary material The online version of this article (doi:10.1007/s10886-007-9424-9) contains supplementary material, which is available to authorized users. PMID:18213497

  20. Regenerative Life Support Systems (RLSS) test bed performance - Characterization of plant performance in a controlled atmosphere

    NASA Technical Reports Server (NTRS)

    Edeen, Marybeth; Henninger, Donald

    1991-01-01

    By growing higher plants for food, lunar and Martian manned habitats will not only reduce resupply requirements but obtain CO2 removal and both oxygen-production and water-reclamation requirements. Plants have been grown in the RLSS at NASA-Johnson in order to quantitatively evaluate plant CO2 accumulation, O2 generation, evapotranspiration, trace-contaminant generation, and biomass productivity. Attention is presently given to test conditions and anomalies in these RLSS trials; areas where performance must be improved have been identified.

  1. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen.

    PubMed

    Cárcamo, Héctor A; Herle, Carolyn E; Lupwayi, Newton Z

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  2. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen

    PubMed Central

    Cárcamo, Héctor A.; Herle, Carolyn E.; Lupwayi, Newton Z.

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  3. Colorimetric Method for Identifying Plant Essential Oil Components That Affect Biofilm Formation and Structure

    PubMed Central

    Niu, C.; Gilbert, E. S.

    2004-01-01

    The specific biofilm formation (SBF) assay, a technique based on crystal violet staining, was developed to locate plant essential oils and their components that affect biofilm formation. SBF analysis determined that cinnamon, cassia, and citronella oils differentially affected growth-normalized biofilm formation by Escherichia coli. Examination of the corresponding essential oil principal components by the SBF assay revealed that cinnamaldehyde decreased biofilm formation compared to biofilms grown in Luria-Bertani broth, eugenol did not result in a change, and citronellol increased the SBF. To evaluate these results, two microscopy-based assays were employed. First, confocal laser scanning microscopy (CLSM) was used to examine E. coli biofilms cultivated in flow cells, which were quantitatively analyzed by COMSTAT, an image analysis program. The overall trend for five parameters that characterize biofilm development corroborated the findings of the SBF assay. Second, the results of an assay measuring growth-normalized adhesion by direct microscopy concurred with the results of the SBF assay and CLSM imaging. Viability staining indicated that there was reduced toxicity of the essential oil components to cells in biofilms compared to the toxicity to planktonic cells but revealed morphological damage to E. coli after cinnamaldehyde exposure. Cinnamaldehyde also inhibited the swimming motility of E. coli. SBF analysis of three Pseudomonas species exposed to cinnamaldehyde, eugenol, or citronellol revealed diverse responses. The SBF assay could be useful as an initial step for finding plant essential oils and their components that affect biofilm formation and structure. PMID:15574886

  4. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    PubMed

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities. PMID:26481794

  5. Daily fluctuations in positive affect positively co-vary with working memory performance.

    PubMed

    Brose, Annette; Lövdén, Martin; Schmiedek, Florian

    2014-02-01

    Positive affect is related to cognitive performance in multiple ways. It is associated with motivational aspects of performance, affective states capture attention, and information processing modes are a function of affect. In this study, we examined whether these links are relevant within individuals across time when they experience minor ups and downs of positive affect and work on cognitive tasks in the laboratory on a day-to-day basis. Using a microlongitudinal design, 101 younger adults (20-31 years of age) worked on 3 working memory tasks on about 100 occasions. Every day, they also reported on their momentary affect and their motivation to work on the tasks. In 2 of the 3 tasks, performance was enhanced on days when positive affect was above average. This performance enhancement was also associated with more motivation. Importantly, increases in task performance on days with above-average positive affect were mainly unrelated to variations in negative affect. This study's results are in line with between-person findings suggesting that high levels of well-being are associated with successful outcomes. They imply that success on cognitively demanding tasks is more likely on days when feeling happier. PMID:24364855

  6. Initial Assessment of Sulfur-Iodine Process Safety Issues and How They May Affect Pilot Plant Design and Operation

    SciTech Connect

    Robert S. Cherry

    2006-09-01

    The sulfur-iodine process to make hydrogen by the thermochemical splitting of water is under active development as part of a U.S. Department of Energy program. An integrated lab scale system is currently being designed and built. The next planned stage of development is a pilot plant with a thermal input of about 500 kW, equivalent to about 30,000 standard liters per hour of hydrogen production. The sulfur-iodine process contains a variety of hazards, including temperatures up to 850 ºC and hazardous chemical species including SO2, H2SO4, HI, I2, and of course H2. The siting and design of a pilot plant must consider these and other hazards. This report presents an initial analysis of the hazards that might affect pilot plant design and should be considered in the initial planning. The general hazards that have been identified include reactivity, flammability, toxicity, pressure, electrical hazards, and industrial hazards such as lifting and rotating equipment. Personnel exposure to these hazards could occur during normal operations, which includes not only running the process at the design conditions but also initial inventory loading, heatup, startup, shutdown, and system flushing before equipment maintenance. Because of the complexity and severity of the process, these ancillary operations are expected to be performed frequently. In addition, personnel could be exposed to the hazards during various abnormal situations which could include unplanned phase changes of liquids or solids, leaks of process fluids or cooling water into other process streams, unintentional introducion of foreign species into the process, and unexpected side reactions. Design of a pilot plant will also be affected by various codes and regulations such as the International Building Code, the International Fire Code, various National Fire Protection Association Codes, and the Emergency Planning and Community Right-to-Know Act.

  7. Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana

    PubMed Central

    2014-01-01

    Fungal volatile organic compounds (VOCs) play important ecophysiological roles in mediating inter-kingdom signaling with arthropods but less is known about their interactions with plants. In this study, Arabidopsis thaliana was used as a model in order to test the physiological effects of 23 common vapor-phase fungal VOCs that included alcohols, aldehydes, ketones, and other chemical classes. After exposure to a shared atmosphere with the 23 individual VOCs for 72 hrs, seeds were assayed for rate of germination and seedling formation; vegetative plants were assayed for fresh weight and chlorophyll concentration. All but five of the VOCs tested (1-decene, 2-n-heptylfuran, nonanal, geosmin and -limonene) had a significant effect in inhibiting either germination, seedling formation or both. Seedling formation was entirely inhibited by exposure to 1-octen-3-one, 2-ethylhexanal, 3-methylbutanal, and butanal. As assayed by a combination of fresh weight and chlorophyll concentration, 2-ethylhexanal had a negative impact on two-week-old vegetative plants. Three other compounds (1-octen-3-ol, 2-ethylhexanal, and 2-heptylfuran) decreased fresh weight alone. Most of the VOCs tested did not change the fresh weight or chlorophyll concentration of vegetative plants. In summary, when tested as single compounds, fungal VOCs affected A. thaliana in positive, negative or neutral ways. PMID:25045602

  8. Different Degrees of Plant Invasion Significantly Affect the Richness of the Soil Fungal Community

    PubMed Central

    Si, Chuncan; Liu, Xueyan; Wang, Congyan; Wang, Lei; Dai, Zhicong; Qi, Shanshan; Du, Daolin

    2013-01-01

    Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process. PMID:24392015

  9. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578

  10. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    PubMed

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production. PMID:17803646

  11. Measuring, managing and maximizing performance of mineral processing plants

    SciTech Connect

    Bascur, O.A.; Kennedy, J.P.

    1995-12-31

    The implementation of continuous quality improvement is the confluence of Total Quality Management, People Empowerment, Performance Indicators and Information Engineering. The supporting information technologies allow a mineral processor to narrow the gap between management business objectives and the process control level. One of the most important contributors is the user friendliness and flexibility of the personal computer in a client/server environment. This synergistic combination when used for real time performance monitoring translates into production cost savings, improved communications and enhanced decision support. Other savings come from reduced time to collect data and perform tedious calculations, act quickly with fresh new data, generate and validate data to be used by others. This paper presents an integrated view of plant management. The selection of the proper tools for continuous quality improvement are described. The process of selecting critical performance monitoring indices for improved plant performance are discussed. The importance of a well balanced technological improvement, personnel empowerment, total quality management and organizational assets are stressed.

  12. A hyperparasite affects the population dynamics of a wild plant pathogen

    PubMed Central

    Tollenaere, C; Pernechele, B; Mäkinen, H S; Parratt, S R; Németh, M Z; Kovács, G M; Kiss, L; Tack, A J M; Laine, A-L

    2014-01-01

    Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of the Åland archipelago (southwest Finland). Regionally, the pathogen persists through a balance of extinctions and colonizations, yet factors affecting extinction rates remain poorly understood. Mycoparasites of the genus Ampelomyces appear as good candidates for testing the role of a hyperparasite, i.e. a parasite of other parasites, in the regulation of their fungal hosts' population dynamics. For this purpose, we first designed a quantitative PCR assay for detection of Ampelomyces spp. in field-collected samples. This newly developed molecular test was then applied to a large-scale sampling within the Åland archipelago, revealing that Ampelomyces is a widespread hyperparasite in this system, with high variability in prevalence among populations. We found that the hyperparasite was more common on leaves where multiple powdery mildew strains coexist, a pattern that may be attributed to differential exposure. Moreover, the prevalence of Ampelomyces at the plant level negatively affected the overwinter survival of its fungal host. We conclude that this hyperparasite may likely impact on its host population dynamics and argue for increased focus on the role of hyperparasites in disease dynamics. PMID:25204419

  13. A hyperparasite affects the population dynamics of a wild plant pathogen.

    PubMed

    Tollenaere, C; Pernechele, B; Mäkinen, H S; Parratt, S R; Németh, M Z; Kovács, G M; Kiss, L; Tack, A J M; Laine, A-L

    2014-12-01

    Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of the Åland archipelago (southwest Finland). Regionally, the pathogen persists through a balance of extinctions and colonizations, yet factors affecting extinction rates remain poorly understood. Mycoparasites of the genus Ampelomyces appear as good candidates for testing the role of a hyperparasite, i.e. a parasite of other parasites, in the regulation of their fungal hosts' population dynamics. For this purpose, we first designed a quantitative PCR assay for detection of Ampelomyces spp. in field-collected samples. This newly developed molecular test was then applied to a large-scale sampling within the Åland archipelago, revealing that Ampelomyces is a widespread hyperparasite in this system, with high variability in prevalence among populations. We found that the hyperparasite was more common on leaves where multiple powdery mildew strains coexist, a pattern that may be attributed to differential exposure. Moreover, the prevalence of Ampelomyces at the plant level negatively affected the overwinter survival of its fungal host. We conclude that this hyperparasite may likely impact on its host population dynamics and argue for increased focus on the role of hyperparasites in disease dynamics. PMID:25204419

  14. Does medical students’ clinical performance affect their actual performance during medical internship?

    PubMed Central

    Han, Eui-Ryoung; Chung, Eun-Kyung

    2016-01-01

    INTRODUCTION This study examines the relationship between the clinical performance of medical students and their performance as doctors during their internships. METHODS This retrospective study involved 63 applicants of a residency programme conducted at Chonnam National University Hospital, South Korea, in November 2012. We compared the performance of the applicants during their internship with their clinical performance during their fourth year of medical school. The performance of the applicants as interns was periodically evaluated by the faculty of each department, while their clinical performance as fourth-year medical students was assessed using the Clinical Performance Examination (CPX) and the Objective Structured Clinical Examination (OSCE). RESULTS The performance of the applicants as interns was positively correlated with their clinical performance as fourth-year medical students, as measured by the CPX and OSCE. The performance of the applicants as interns was moderately correlated with the patient-physician interaction items addressing communication and interpersonal skills in the CPX. CONCLUSION The clinical performance of medical students during their fourth year in medical school was related to their performance as medical interns. Medical students should be trained to develop good clinical skills through actual encounters with patients or simulated encounters using manikins, to enable them to become more competent doctors. PMID:26768172

  15. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    SciTech Connect

    Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross; Spielman, Zachary Alexander; Hill, Rachael Ann; LeBlanc, Katya Lee

    2015-11-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  16. Spectral quality affects disease development of three pathogens on hydroponically grown plants

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the

  17. Using a False Biofeedback Methodology to Explore Relationships between Learners' Affect, Metacognition, and Performance

    ERIC Educational Resources Information Center

    Strain, Amber Chauncey; Azevedo, Roger; D'Mello, Sidney K.

    2013-01-01

    We used a false-biofeedback methodology to manipulate physiological arousal in order to induce affective states that would influence learners' metacognitive judgments and learning performance. False-biofeedback is a method used to induce physiological arousal (and resultant affective states) by presenting learners with audio stimuli of false heart…

  18. Performance-Based Occupational Affective Behavior Analysis (OABA). Implementation and Supporting Research.

    ERIC Educational Resources Information Center

    Pucel, David J.; And Others

    This document contains two sections: implementation of the performance-based Occupational Affective Behavior Analysis (OABA), and supporting research. Section 1 presents OABA, an analytic procedure designed to identify those affective behaviors important to success in an occupation, and gives directions on how to implement the procedure. The…

  19. Investigating Learner Affective Performance in Web-Based Learning by Using Entrepreneurship as a Metaphor

    ERIC Educational Resources Information Center

    Liu, Ming-Chou; Chi, Ming-Hsiao

    2012-01-01

    In the era of the Internet, factors which influence effective learning in a Web-based learning environment are well worth exploring. In addition to knowledge acquisition and skills training, affect is also an important factor, since successful learning requires excellent affective performance. Thus this study focuses on learners' affective…

  20. To branch out or stay focused? Affective shifts differentially predict organizational citizenship behavior and task performance.

    PubMed

    Yang, Liu-Qin; Simon, Lauren S; Wang, Lei; Zheng, Xiaoming

    2016-06-01

    We draw from personality systems interaction (PSI) theory (Kuhl, 2000) and regulatory focus theory (Higgins, 1997) to examine how dynamic positive and negative affective processes interact to predict both task and contextual performance. Using a twice-daily diary design over the course of a 3-week period, results from multilevel regression analysis revealed that distinct patterns of change in positive and negative affect optimally predicted contextual and task performance among a sample of 71 employees at a medium-sized technology company. Specifically, within persons, increases (upshifts) in positive affect over the course of a workday better predicted the subsequent day's organizational citizenship behavior (OCB) when such increases were coupled with decreases (downshifts) in negative affect. The optimal pattern of change in positive and negative affect differed, however, in predicting task performance. That is, upshifts in positive affect over the course of the workday better predicted the subsequent day's task performance when such upshifts were accompanied by upshifts in negative affect. The contribution of our findings to PSI theory and the broader affective and motivation regulation literatures, along with practical implications, are discussed. (PsycINFO Database Record PMID:26882443

  1. Psychological Factor Affecting English Speaking Performance for the English Learners in Indonesia

    ERIC Educational Resources Information Center

    Haidara, Youssouf

    2016-01-01

    In every learning situation or environment, human psychology plays a significant role. English speaking is a language skill that is highly affected by human psychology. This research aimed at describing the psychological factor that affects negatively the English speaking performance for the English learners in Indonesia. A descriptive qualitative…

  2. Affect, Curiosity, and Socialization-Related Learning: A Path Analysis of Antecedents to Job Performance.

    ERIC Educational Resources Information Center

    Reio, Thomas G.; Callahan, Jamie L.

    Affect, curiosity, and socialization-relation were explored as potential mediators of the relationship between both state and trait affect and job performance. The cross-sectional sample consisted of 81 women and 152 men between the ages of 17 and 50 or older. The typical participant was a male Caucasian under the age of 40 with some college…

  3. Job Satisfaction and Performance: The Moderating Effects of Value Attainment and Affective Disposition.

    ERIC Educational Resources Information Center

    Hochwarter, Wayne A.; Perrewe, Pamela L.; Ferris, Gerald R.; Brymer, Robert A.

    1999-01-01

    A study of 270 hotel managers found that the strongest positive relationship between job satisfaction and performance occurred when high attainment of values associated with work was coupled with high-positive or low-negative affective disposition. (SK)

  4. Soil biota can change after exotic plant invasion: Does this affect ecosystem processes?

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Sherrod, S.K.; Moldenke, A.

    2005-01-01

    Invasion of the exotic annual grass Bromus tectorum into stands of the native perennial grass Hilaria jamesii significantly reduced the abundance of soil biota, especially microarthropods and nematodes. Effects of invasion on active and total bacterial and fungal biomass were variable, although populations generally increased after 50+ years of invasion. The invasion of Bromus also resulted in a decrease in richness and a species shift in plants, microarthropods, fungi, and nematodes. However, despite the depauperate soil fauna at the invaded sites, no effects were seen on cellulose decomposition rates, nitrogen mineralization rates, or vascular plant growth. When Hilaria was planted into soils from not-invaded, recently invaded, and historically invaded sites (all currently or once dominated by Hilaria), germination and survivorship were not affected. In contrast, aboveground Hilaria biomass was significantly greater in recently invaded soils than in the other two soils. We attributed the Hilaria response to differences in soil nutrients present before the invasion, especially soil nitrogen, phosphorus, and potassium, as these nutrients were elevated in the soils that produced the greatest Hilaria biomass. Our data suggest that it is not soil biotic richness per se that determines soil process rates or plant productivity, but instead that either (1) the presence of a few critical soil food web taxa can keep ecosystem function high, (2) nutrient loss is very slow in this ecosystem, and/or (3) these processes are microbially driven. However, the presence of Bromus may reduce key soil nutrients over time and thus may eventually suppress native plant success. ?? 2005 by the Ecological Society of America.

  5. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  6. Dynamic Response of Large Wind Power Plant Affected by Diverse Conditions at Individual Turbines

    SciTech Connect

    Elizondo, Marcelo A.; Lu, Shuai; Lin, Guang; Wang, Shaobu

    2014-07-31

    Diverse operating conditions at individual wind turbine generators (WTG) within wind power plants (WPPs) can affect the WPP dynamic response to system faults. For example, individual WTGs can experience diverse terminal voltage and power output caused by different wind direction and speed, affecting the response of protection and control limiters. In this paper, we present a study to investigate the dynamic response of a detailed WPP model under diverse power outputs of its individual WTGs. Wake effect is considered as the reason for diverse power outputs. The diverse WTG power output is evaluated in a test system where a large 168-machine test WPP is connected to the IEEE-39-bus system. The power output from each WTG is derived from a wake effect model that uses realistic statistical data for incoming wind speed and direction. The results show that diverse WTG output due to wake effect can affect the WPP dynamic response activating specialized control in some turbines. In addition, transient stability is affected by exhibiting uncertainty in critical clearing time calculation.

  7. Clonal Integration Enhances the Performance of a Clonal Plant Species under Soil Alkalinity Stress

    PubMed Central

    Sun, Juanjuan; Chen, Jishan; Zhang, Yingjun

    2015-01-01

    Clonal plants have been shown to successfully survive in stressful environments, including salinity stress, drought and depleted nutrients through clonal integration between original and subsequent ramets. However, relatively little is known about whether clonal integration can enhance the performance of clonal plants under alkalinity stress. We investigated the effect of clonal integration on the performance of a typical rhizomatous clonal plant, Leymus chinensis, using a factorial experimental design with four levels of alkalinity and two levels of rhizome connection treatments, connected (allowing integration) and severed (preventing integration). Clonal integration was estimated by comparing physiological and biomass features between the rhizome-connected and rhizome-severed treatments. We found that rhizome-connected treatment increased the biomass, height and leaf water potential of subsequent ramets at highly alkalinity treatments but did not affect them at low alkalinity treatments. However, rhizome-connected treatment decreased the root biomass of subsequent ramets and did not influence the photosynthetic rates of subsequent ramets. The biomass of original ramets was reduced by rhizome-connected treatment at the highest alkalinity level. These results suggest that clonal integration can increase the performance of clonal plants under alkalinity stress. Rhizome-connected plants showed dramatically increased survival of buds with negative effects on root weight, indicating that clonal integration influenced the resource allocation pattern of clonal plants. A cost-benefit analysis based on biomass measures showed that original and subsequent ramets significantly benefited from clonal integration in highly alkalinity stress, indicating that clonal integration is an important adaptive strategy by which clonal plants could survive in local alkalinity soil. PMID:25790352

  8. Subjective cognitive complaints, affective distress, and objective cognitive performance in Persian Gulf War veterans.

    PubMed

    Binder, L M; Storzbach, D; Anger, W K; Campbell, K A; Rohlman, D S; of the Portland Environmental, O M; Center, H R

    1999-08-01

    We examined subjective cognitive complaints, affective distress, and cognitive performance in Persian Gulf veterans who reported illness and cognitive complaints. We predicted a stronger relationship between subjective cognitive complaints and affective distress than between subjective cognitive complaints and objective cognitive performance. This prediction was confirmed in a sample of 100 veterans. The results suggest that cognitive impairment should not be diagnosed in this population without objective confirmation with cognitive testing. PMID:14590580

  9. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  10. The Effect of Nitrogen Deposition on Plant Performance and Community Structure: Is It Life Stage Specific?

    PubMed

    Tulloss, Elise M; Cadenasso, Mary L

    2016-01-01

    Nitrogen (N) deposition is a key global change factor that is increasing and affecting the structure and function of many ecosystems. To determine the influence of N deposition on specific systems, however, it is crucial to understand the temporal and spatial patterns of deposition as well as the response to that deposition. Response of the receiving plant communities may depend on the life stage-specific performance of individual species. We focus on the California oak savanna because N deposition to this system is complex-characterized by hotspots on the landscape and seasonal pulses. In a greenhouse experiment, we investigated the relative influence of N deposition on plant performance during early growth, peak biomass, and senescent life stages across different soil types, light, and community compositions. To represent the community we used three grass species-a native, naturalized exotic, and invasive exotic. At early growth and peak biomass stages performance was measured as height, and shoot and root biomass, and at the senescent stage as seed production. Simulated N deposition 1) increased shoot biomass and height of the native and, even more so, the naturalized exotic during early growth, 2) positively affected root biomass in all species during peak biomass, and 3) had no influence on seed production at the senescent stage. Alone, N deposition was not a strong driver of plant performance; however, small differences in performance among species in response to N deposition could affect community composition in future years. In particular, if there is a pulse of N deposition during the early growth stage, the naturalized exotic may have a competitive advantage that could result in its spread. Including spatial and temporal heterogeneity in a complex, manipulative experiment provides a clearer picture of not only where N management efforts should be targeted on the landscape, but also when. PMID:27253718

  11. The Effect of Nitrogen Deposition on Plant Performance and Community Structure: Is It Life Stage Specific?

    PubMed Central

    2016-01-01

    Nitrogen (N) deposition is a key global change factor that is increasing and affecting the structure and function of many ecosystems. To determine the influence of N deposition on specific systems, however, it is crucial to understand the temporal and spatial patterns of deposition as well as the response to that deposition. Response of the receiving plant communities may depend on the life stage-specific performance of individual species. We focus on the California oak savanna because N deposition to this system is complex—characterized by hotspots on the landscape and seasonal pulses. In a greenhouse experiment, we investigated the relative influence of N deposition on plant performance during early growth, peak biomass, and senescent life stages across different soil types, light, and community compositions. To represent the community we used three grass species—a native, naturalized exotic, and invasive exotic. At early growth and peak biomass stages performance was measured as height, and shoot and root biomass, and at the senescent stage as seed production. Simulated N deposition 1) increased shoot biomass and height of the native and, even more so, the naturalized exotic during early growth, 2) positively affected root biomass in all species during peak biomass, and 3) had no influence on seed production at the senescent stage. Alone, N deposition was not a strong driver of plant performance; however, small differences in performance among species in response to N deposition could affect community composition in future years. In particular, if there is a pulse of N deposition during the early growth stage, the naturalized exotic may have a competitive advantage that could result in its spread. Including spatial and temporal heterogeneity in a complex, manipulative experiment provides a clearer picture of not only where N management efforts should be targeted on the landscape, but also when. PMID:27253718

  12. Manipulation of Host Quality and Defense by a Plant Virus Improves Performance of Whitefly Vectors.

    PubMed

    Su, Qi; Preisser, Evan L; Zhou, Xiao Mao; Xie, Wen; Liu, Bai Ming; Wang, Shao Li; Wu, Qing Jun; Zhang, You Jun

    2015-02-01

    Pathogen-mediated interactions between insect vectors and their host plants can affect herbivore fitness and the epidemiology of plant diseases. While the role of plant quality and defense in mediating these tripartite interactions has been recognized, there are many ecologically and economically important cases where the nature of the interaction has yet to be characterized. The Bemisia tabaci (Gennadius) cryptic species Mediterranean (MED) is an important vector of tomato yellow leaf curl virus (TYLCV), and performs better on virus-infected tomato than on uninfected controls. We assessed the impact of TYLCV infection on plant quality and defense, and the direct impact of TYLCV infection on MED feeding. We found that although TYLCV infection has a minimal direct impact on MED, the virus alters the nutritional content of leaf tissue and phloem sap in a manner beneficial to MED. TYLCV infection also suppresses herbivore-induced production of plant defensive enzymes and callose deposition. The strongly positive net effect on TYLCV on MED is consistent with previously reported patterns of whitefly behavior and performance, and provides a foundation for further exploration of the molecular mechanisms responsible for these effects and the evolutionary processes that shape them. PMID:26470098

  13. Performance analysis of an OTEC plant and a desalination plant using an integrated hybrid cycle

    SciTech Connect

    Uehara, Haruo; Miyara, Akio; Ikegami, Yasuyuki; Nakaoka, Tsutomu

    1996-05-01

    A performance analysis of an OTEC plant using an integrated hybrid cycle (I-H OTEC Cycle) has been conducted. The I-H OTEC cycle is a combination of a closed-cycle OTEC plant and a spray flash desalination plant. In an I-H OTEC cycle, warm sea water evaporates the liquid ammonia in the OTEC evaporator, then enters the flash chamber and evaporates itself. The evaporated steam enters the desalination condenser and is condensed by the cold sea water passed through the OTEC condenser. The optimization of the I-H OTEC cycle is analyzed by the method of steepest descent. The total heat transfer area of heat exchangers per net power is used as an objective function. Numerical results are reported for a 10 MW I-H OTEC cycle with plate-type heat exchangers and ammonia as working fluid. The results are compared with those of a joint hybrid OTEC cycle (J-H OTEC Cycle).

  14. Preliminary assessment of Fort Hood solar cogeneration plant performance

    SciTech Connect

    Ator, J.

    1981-04-01

    An analysis has been performed to enable a preliminary assessment of the performance that can be expected of a solar thermal cogeneration system designed to serve a selected group of buildings at Fort Hood, Texas. A central receiver system utilizing a molten salts mixture as the receiver coolant, heat transfer fluid, and storage medium is assumed. The system is to supply a large share of the space heating, air conditioning, domestic hot water, and electricity needs of a 20-building Troop Housing Complex. Principal energy loads are graphed and tabulated, and the principal electric parasitic loads are tabulated and the methodology by which they are estimated is reviewed. The plant model and the performance calculations are discussed. Annual energy displacement results are given. (LEW)

  15. The odor of a plant metabolite affects life history traits in dietary restricted adult olive flies

    PubMed Central

    Gerofotis, Christos D.; Ioannou, Charalampos S.; Nakas, Christos T.; Papadopoulos, Nikos T.

    2016-01-01

    Food quality shapes life history traits either directly or through response of individuals to additional environmental factors, such as chemical cues. Plant extracts used as food additives modulate key life history traits; however little is known regarding such effects for olfactory chemical cues. Exploiting an interesting experimental system that involves the olive fly (Bactrocera oleae) and the plant metabolite α-pinene we asked whether exposure of adults to this compound modulates adult longevity and female reproduction in similar manner in a stressful – dietary (protein) restricted (DR) and in a relaxed- full diet (FD) feeding environment. Accordingly, we exposed males and females to the aroma of α-pinene and measured lifespan and age-specific fecundity in the above two dietary contexts. Our results demonstrate that exposure to α-pinene increased longevity in males and fecundity in females only under dietary restricted conditions. In relaxed food conditions, females exposed to α-pinene shifted high egg-laying towards younger ages compared to non-exposed ones. This is the first report demonstrating that a plant compound affects key life history traits of adult olive flies through olfaction. These effects are sex-specific and more pronounced in dietary restricted adults. Possible underlying mechanisms and the ecological significance are discussed. PMID:27339862

  16. Burkholderia cenocepacia Lipopolysaccharide Modification and Flagellin Glycosylation Affect Virulence but Not Innate Immune Recognition in Plants

    PubMed Central

    Khodai-Kalaki, Maryam; Andrade, Angel; Fathy Mohamed, Yasmine

    2015-01-01

    ABSTRACT Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that “virulence” depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipopolysaccharide (LPS) with 4-amino-4-deoxy-l-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabidopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection. PMID:26045541

  17. The odor of a plant metabolite affects life history traits in dietary restricted adult olive flies.

    PubMed

    Gerofotis, Christos D; Ioannou, Charalampos S; Nakas, Christos T; Papadopoulos, Nikos T

    2016-01-01

    Food quality shapes life history traits either directly or through response of individuals to additional environmental factors, such as chemical cues. Plant extracts used as food additives modulate key life history traits; however little is known regarding such effects for olfactory chemical cues. Exploiting an interesting experimental system that involves the olive fly (Bactrocera oleae) and the plant metabolite α-pinene we asked whether exposure of adults to this compound modulates adult longevity and female reproduction in similar manner in a stressful - dietary (protein) restricted (DR) and in a relaxed- full diet (FD) feeding environment. Accordingly, we exposed males and females to the aroma of α-pinene and measured lifespan and age-specific fecundity in the above two dietary contexts. Our results demonstrate that exposure to α-pinene increased longevity in males and fecundity in females only under dietary restricted conditions. In relaxed food conditions, females exposed to α-pinene shifted high egg-laying towards younger ages compared to non-exposed ones. This is the first report demonstrating that a plant compound affects key life history traits of adult olive flies through olfaction. These effects are sex-specific and more pronounced in dietary restricted adults. Possible underlying mechanisms and the ecological significance are discussed. PMID:27339862

  18. Host plant affects the sexual attractiveness of the female white-spotted longicorn beetle, Anoplophora malasiaca.

    PubMed

    Yasui, Hiroe; Fujiwara-Tsujii, Nao

    2016-01-01

    Anoplophora malasiaca (Coleoptera: Cerambycidae) is a serious pest that destroys various landscape and crop trees in Japan. We evaluated the precopulatory responses of three different A. malasiaca populations collected from mandarin orange, willow and blueberry trees. Most of the males accepted mates from within the same host plant population as well as females from the willow and blueberry populations. However, significant number of males from the blueberry and willow populations rejected females from the mandarin orange population immediately after touching them with their antennae. Because all three of the female populations produced contact sex pheromones on their elytra, the females of the mandarin orange population were predicted to possess extra chemicals that repelled the males of the other two populations. β-Elemene was identified as a key component that was only found in mandarin orange-fed females and induced a rejection response in willow-fed males. Our results represent the first example of a female-acquired repellent against conspecific males of different host plant populations, indicating that the host plant greatly affects the female's sexual attractiveness. PMID:27412452

  19. Host plant affects the sexual attractiveness of the female white-spotted longicorn beetle, Anoplophora malasiaca

    PubMed Central

    Yasui, Hiroe; Fujiwara-Tsujii, Nao

    2016-01-01

    Anoplophora malasiaca (Coleoptera: Cerambycidae) is a serious pest that destroys various landscape and crop trees in Japan. We evaluated the precopulatory responses of three different A. malasiaca populations collected from mandarin orange, willow and blueberry trees. Most of the males accepted mates from within the same host plant population as well as females from the willow and blueberry populations. However, significant number of males from the blueberry and willow populations rejected females from the mandarin orange population immediately after touching them with their antennae. Because all three of the female populations produced contact sex pheromones on their elytra, the females of the mandarin orange population were predicted to possess extra chemicals that repelled the males of the other two populations. β-Elemene was identified as a key component that was only found in mandarin orange-fed females and induced a rejection response in willow-fed males. Our results represent the first example of a female-acquired repellent against conspecific males of different host plant populations, indicating that the host plant greatly affects the female’s sexual attractiveness. PMID:27412452

  20. Does Plant Biomass Manipulation in Static Chambers Affect Nitrous Oxide Emissions from Soils?

    PubMed

    Collier, Sarah M; Dean, Andrew P; Oates, Lawrence G; Ruark, Matthew D; Jackson, Randall D

    2016-03-01

    One of the most widespread approaches for measurement of greenhouse gas emissions from soils involves the use of static chambers. This method is relatively inexpensive, is easily replicated, and is ideally suited to plot-based experimental systems. Among its limitations is the loss of detection sensitivity with increasing chamber height, which creates challenges for deployment in systems including tall vegetation. It is not always possible to avoid inclusion of plants within chambers or to extend chamber height to fully accommodate plant growth. Thus, in many systems, such as perennial forages and biomass crops, plants growing within static chambers must either be trimmed or folded during lid closure. Currently, data on how different types of biomass manipulation affect measured results is limited. Here, we compare the effects of cutting vs. folding of biomass on nitrous oxide measurements in switchgrass ( L.) and alfalfa ( L.) systems. We report only limited evidence of treatment effects during discrete sampling events and little basis for concern that effects may intensify over time as biomass manipulation is repeatedly imposed. However, nonsignificant treatment effects that were consistently present amounted to significant overall trends in three out of the four systems studied. Such minor disparities in flux could amount to considerable quantities over time, suggesting that caution should be exercised when comparing cumulative emission values from studies using different biomass manipulation strategies. PMID:27065424

  1. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    PubMed

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills. PMID:22665301

  2. Shell coal gasification plant (SCGP-1) environmental performance results

    SciTech Connect

    Bush, W.V.; Baker, D.C.; Tijm, P.J.A. )

    1991-07-01

    Environmental studies in slip-stream process development units at SCGP-1, Shell's advanced coal gasification demonstration plant, located near Houston, Texas, have demonstrated that the gas and water effluents from the Shell Coal Gasification Process (SCGP) are environmentally benign on a broad slate of coals. This report presents the results of those environmental studies. It contains two major subjects, which describe, respectively, the experiments on gas treating and the experiments on water treating. Gas treatment focused on the performance of aqueous methyldiethanolamine (MDEA) and sulfinol-M. 8 refs., 24 figs., 13 tabs.

  3. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    PubMed Central

    Zhou, Lin; Xu, Hui; Mischke, Sue; Meinhardt, Lyndel W; Zhang, Dapeng; Zhu, Xujun; Li, Xinghui; Fang, Wanping

    2014-01-01

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant under drought stress is essential to develop drought-tolerant tea genotypes, along with crop management practices that can mitigate drought stress. The objective of the present investigation is evaluation of effects of exogenous ABA on the leaf proteome in tea plant exposed to drought stress. Leaf protein patterns of tea plants under simulated drought stress [(polyethylene glycol (PEG)-treated] and exogenous ABA treatment were analyzed in a time-course experiment using two-dimensional electrophoresis (2-DE), followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Among the 72 protein spots identified by MALDI-TOF MS, 16 proteins were downregulated and two were upregulated by exogenous ABA. The upregulated proteins have roles in glycolysis and photosystem II stabilization. Twenty-one protein spots were responsive to drought stress and most participate in carbohydrate and nitrogen metabolism, control of reactive oxygen species (ROS), defense, signaling or nucleic acid metabolism. The combined treatments of exogenous ABA and drought showed upregulation of 10 protein spots at 12 h and upregulation of 11 proteins at 72 h after initiation of drought stress. The results support the importance of the role that ABA plays in the tea plant during drought stress, by improving protein transport, carbon metabolism and expression of resistance proteins. PMID:27076915

  4. Performance Assessment in CTE: Focusing on the Cognitive, Psychomotor ...and Affective Domains

    ERIC Educational Resources Information Center

    Washer, Bart; Cochran, Lori

    2012-01-01

    When a student is performing in the psychomotor domain, the authors believe the student is also performing in the cognitive domain (sequencing steps, evaluating the situation) and in the affective domain (appreciating a job well done, quality control, safety). As Dabney Doty, former instructor at the University of Central Missouri, stated, "There…

  5. The Developmental Dynamics of Children's Academic Performance and Mothers' Homework-Related Affect and Practices

    ERIC Educational Resources Information Center

    Silinskas, Gintautas; Kiuru, Noona; Aunola, Kaisa; Lerkkanen, Marja-Kristiina; Nurmi, Jari-Erik

    2015-01-01

    This study investigated the longitudinal associations between children's academic performance and their mothers' affect, practices, and perceptions of their children in homework situations. The children's (n = 2,261) performance in reading and math was tested in Grade 1 and Grade 4, and the mothers (n = 1,476) filled out questionnaires on their…

  6. Centrality and Charisma: Comparing How Leader Networks "and" Attributions Affect Team Performance

    ERIC Educational Resources Information Center

    Balkundi, Prasad; Kilduff, Martin; Harrison, David A.

    2011-01-01

    When leaders interact in teams with their subordinates, they build social capital that can have positive effects on team performance. Does this social capital affect team performance because subordinates come to see the leader as charismatic? We answered this question by examining 2 models. First, we tested the charisma-to-centrality model…

  7. Some Factors That Affecting the Performance of Mathematics Teachers in Junior High School in Medan

    ERIC Educational Resources Information Center

    Manullang, Martua; Rajagukguk, Waminton

    2016-01-01

    Some Factor's That Affecting The Mathematic Teacher Performance For Junior High School In Medan. This research will examine the effect of direct and indirect of the Organizational Knowledge towards the achievement motivation, decision making, organizational commitment, the performance of mathematics teacher. The research method is a method of…

  8. The developmental dynamics of children's academic performance and mothers' homework-related affect and practices.

    PubMed

    Silinskas, Gintautas; Kiuru, Noona; Aunola, Kaisa; Lerkkanen, Marja-Kristiina; Nurmi, Jari-Erik

    2015-04-01

    This study investigated the longitudinal associations between children's academic performance and their mothers' affect, practices, and perceptions of their children in homework situations. The children's (n = 2,261) performance in reading and math was tested in Grade 1 and Grade 4, and the mothers (n = 1,476) filled out questionnaires on their affect, practices, and perceptions while their children were in Grades 2, 3, and 4. The results showed, first, that the more help in homework the mothers reported, the slower was the development of their children's academic performance from Grade 1 to Grade 4. This negative association was true especially if mothers perceived their children not to be able to work autonomously. Second, children's good academic performance in Grade 1 predicted mothers' perception of child's ability to be autonomous and positive affect in homework situations later on, whereas poor performance predicted mothers' negative affect, help, and monitoring. Finally, mothers' negative affect mediated the association between children's poor performance, maternal practices, and perceptions of their children. PMID:25798959

  9. Plant material as bioaccumulator of arsenic in soils affected by mining activities

    NASA Astrophysics Data System (ADS)

    Martínez-López, Salvadora; Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen

    2010-05-01

    fraction (oxidaizable medium extraction procedure). Arsenic concentration in leaves was positively correlated with the arsenic extracted by HCl, with the oxidizable-organic matter and sulfides fraction and with the arsenic extracted by Mehra-Jackson extraction. According to our results, As is accumulated in the leaves of the plants and is linked with iron oxides of these soils affected by mining activities.

  10. Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli.

    PubMed

    Wojnicz, Dorota; Kucharska, Alicja Z; Sokół-Łętowska, Anna; Kicia, Marta; Tichaczek-Goska, Dorota

    2012-12-01

    Medicinal plants are an important source for the therapeutic remedies of various diseases including urinary tract infections. This prompted us to perform research in this area. We decided to focus on medicinal plants species used in urinary tract infections prevention. The aim of our study was to determine the influence of Betula pendula, Equisetum arvense, Herniaria glabra, Galium odoratum, Urtica dioica, and Vaccinium vitis-idaea extracts on bacterial survival and virulence factors involved in tissue colonization and biofilm formation of the uropathogenic Escherichia coli rods. Qualitative and quantitative analysis of plant extracts were performed. Antimicrobial assay relied on the estimation of the colony forming unit number. Hydrophobicity of cells was established by salt aggregation test. Using motility agar, the ability of bacteria to move was examined. The erythrocyte hemagglutination test was used for fimbriae P screening. Curli expression was determined using YESCA agar supplemented with congo red. Quantification of biofilm formation was carried out using a microtiter plate assay and a spectrophotometric method. The results of the study indicate significant differences between investigated extracts in their antimicrobial activities. The extracts of H. glabra and V. vitis-idaea showed the highest growth-inhibitory effects (p < 0.05). Surface hydrophobicity of autoaggregating E. coli strain changed after exposure to all plant extracts, except V. vitis-idaea (p > 0.05). The B. pendula and U. dioica extracts significantly reduced the motility of the E. coli rods (p < 0.05). All the extracts exhibited the anti-biofilm activity. PMID:22915095

  11. 30 CFR 827.13 - Coal preparation plants: Interim performance standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants...

  12. 30 CFR 827.13 - Coal preparation plants: Interim performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants...

  13. 30 CFR 827.13 - Coal preparation plants: Interim performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants...

  14. 30 CFR 827.13 - Coal preparation plants: Interim performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants...

  15. 30 CFR 827.13 - Coal preparation plants: Interim performance standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants...

  16. Artificial elevation of glutathione affects symptom development in ZYMV-infected Cucurbita pepo L. plants.

    PubMed

    Zechmann, B; Zellnig, G; Urbanek-Krajnc, A; Müller, M

    2007-01-01

    Styrian oil pumpkin seedlings (Cucurbita pepo L. subsp. pepo var. styriaca GREB: .) were treated for 48 h with 1 mM OTC (L-2-oxothiazolidine-4-carboxylic acid) in order to artificially increase cellular glutathione content. They were inoculated with zucchini yellow mosaic virus (ZYMV) 10 days later. The effects of OTC treatment and ZYMV infection on glutathione levels were examined at the subcellular level by immunogold labeling of glutathione using a transmission electron microscope (TEM). These effects were further tested at the whole-tissue level by high performance liquid chromatography (HPLC). Such tests were carried out a) on roots, cotyledons and the first true leaves immediately after OTC treatment in order to analyze to which extent OTC increases glutathione levels in different cell compartments as well as in the whole organ; and b) in older and younger leaves and in roots three weeks after ZYMV inoculation in order to study how possible effects of OTC on symptom development would correlate with glutathione levels at the subcellular level and in the whole organ. Immunocytological and biochemical investigations revealed that, 48 h after OTC treatment, glutathione content had increased in all investigated organs, up to 144% in peroxisomes of cotyledons. Three weeks after ZYMV inoculation, glutathione labeling density had significantly increased within intact cells of infected leaves, up to 124% in the cytosol of younger leaves. Roots showed decreased amounts of glutathione in the TEM. Biochemical studies revealed that OTC treatment resulted in 41 and 51% higher glutathione content in older and younger ZYMV-infected leaves, respectively, in comparison to untreated and ZYMV-infected plants. Evaluation of symptom development at this point revealed that all untreated ZYMV-infected plants had symptoms, whereas only 42% of OTC-treated ZYMV-infected plants showed signs of symptoms. Quantification of ZYMV particles revealed that all organs of OTC-treated and ZYMV

  17. Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae).

    PubMed

    Feng, Yi; Wratten, Steve; Sandhu, Harpinder; Keller, Michael

    2015-01-01

    The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats. PMID

  18. Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae)

    PubMed Central

    Feng, Yi; Wratten, Steve; Sandhu, Harpinder; Keller, Michael

    2015-01-01

    The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats. PMID

  19. Size, but not experience, affects the ontogeny of constriction performance in ball pythons (Python regius).

    PubMed

    Penning, David A; Dartez, Schuyler F

    2016-03-01

    Constriction is a prey-immobilization technique used by many snakes and is hypothesized to have been important to the evolution and diversification of snakes. However, very few studies have examined the factors that affect constriction performance. We investigated constriction performance in ball pythons (Python regius) by evaluating how peak constriction pressure is affected by snake size, sex, and experience. In one experiment, we tested the ontogenetic scaling of constriction performance and found that snake diameter was the only significant factor determining peak constriction pressure. The number of loops applied in a coil and its interaction with snake diameter did not significantly affect constriction performance. Constriction performance in ball pythons scaled differently than in other snakes that have been studied, and medium to large ball pythons are capable of exerting significantly higher pressures than those shown to cause circulatory arrest in prey. In a second experiment, we tested the effects of experience on constriction performance in hatchling ball pythons over 10 feeding events. By allowing snakes in one test group to gain constriction experience, and manually feeding snakes under sedation in another test group, we showed that experience did not affect constriction performance. During their final (10th) feedings, all pythons constricted similarly and with sufficiently high pressures to kill prey rapidly. At the end of the 10 feeding trials, snakes that were allowed to constrict were significantly smaller than their non-constricting counterparts. J. Exp. Zool. 9999A:XX-XX, 2016. © 2016 Wiley Periodicals, Inc. PMID:26847931

  20. Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape?

    PubMed

    Wäschke, Nicole; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2015-09-01

    Anthropogenic land use may shape vegetation composition and affect trophic interactions by altering concentrations of host plant metabolites. Here, we investigated the hypotheses that: (1) plant N and defensive secondary metabolite contents of the herb Plantago lanceolata are affected by land use intensity (LUI) and the surrounding vegetation composition (=plant species richness and P. lanceolata density), and that (2) changes in plant chemistry affect abundances of the herbivorous weevils Mecinus pascuorum and Mecinus labilis, as well as their larval parasitoid Mesopolobus incultus, in the field. We determined plant species richness, P. lanceolata density, and abundances of the herbivores and the parasitoid in 77 grassland plots differing in LUI index in three regions across Germany. We also measured the N and secondary metabolite [the iridoid glycosides (IGs) aucubin and catalpol] contents of P. lanceolata leaves. Mixed-model analysis revealed that: (1) concentrations of leaf IGs were positively correlated with plant species richness; leaf N content was positively correlated with the LUI index. Furthermore: (2) herbivore abundance was not related to IG concentrations, but correlated negatively with leaf N content. Parasitoid abundance correlated positively only with host abundance over the three regions. Structural equation models revealed a positive impact of IG concentrations on parasitoid abundance in one region. We conclude that changes in plant chemistry due to land use and/or vegetation composition may affect higher trophic levels and that the manifestation of these effects may depend on local biotic or abiotic features of the landscape. PMID:25986560

  1. Unpreferred plants affect patch choice and spatial distribution of European brown hares

    NASA Astrophysics Data System (ADS)

    Kuijper, D. P. J.; Bakker, J. P.

    2008-11-01

    Many herbivore species prefer to forage on patches of intermediate biomass. Plant quality and forage efficiency are predicted to decrease with increasing plant standing crop which explains the lower preference of the herbivore. However, often is ignored that on the long-term, plant species composition is predicted to change with increasing plant standing crop. The amount of low-quality, unpreferred food plants increases with increasing plant standing crop. In the present study the effects of unpreferred plants on patch choice and distribution of European brown hare in a salt-marsh system were studied. In one experiment, unpreferred plants were removed from plots. In the second experiment, plots were planted with different densities of an unpreferred artificial plant. Removal of unpreferred plants increased hare-grazing pressure more than fivefold compared to unmanipulated plots. Planting of unpreferred plants reduced hare-grazing pressure, with a significant reduction of grazing already occurring at low unpreferred plant density. Spatial distribution of hares within this salt-marsh system was related to spatial arrangement of unpreferred plants. Hare-grazing intensity decreased strongly with increasing abundance of unpreferred plants despite a high abundance of principal food plants. The results of this study indicate that plant species replacement is an important factor determining patch choice and spatial distribution of hares next to changing plant quality. Increasing abundance of unpreferred plant species can strengthen the decreasing patch quality with increasing standing crop and can decrease grazing intensity when preferred food plants are still abundantly present.

  2. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-06-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

  3. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-09-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  4. Ozone Differentially Affects Perception of Plant Volatiles in Western Honey Bees.

    PubMed

    Dötterl, Stefan; Vater, Marina; Rupp, Thomas; Held, Andreas

    2016-06-01

    Floral scents play a key role in mediating plant-pollinator interactions. Volatile organic compounds (VOCs) emitted by flowers are used by flower visitors as olfactory cues to locate flowers, both from a distance and at close range. More recently it has been demonstrated that reactive molecules such as ozone can modify or degrade VOCs, and this may impair the communication between plants and their pollinators. However, it is not known whether such reactive molecules also may affect the olfactory system of pollinators, and thus not only influence signal transmission but perception of the signal. In this study, we used electroantennographic measurements to determine the effect of increased levels of ozone on antennal responses in western honey bees (Apis mellifera L.). Linalool and 2-phenylethanol, both known to be involved in location of flowers by the bees, and (Z)-3-hexenyl acetate, a widespread green leaf volatile also detected by bees, were used. The results showed that ozone affected antennal responses to the different substances differently. Ozone decreased antennal responses to (Z)-3-hexenyl acetate, whereas responses to linalool and 2-phenylethanol were not influenced by ozone. Overall, the study does not provide evidence that pollination by honey bees is impaired by damage in the olfactory system of the bees caused by increased levels of ozone, at least when linalool and 2-phenylethanol are the attractive signals. However, the results also suggest that ozone can change the overall perception of an odor blend. This might have negative effects in pollination systems and other organismic interactions mediated by specific ratios of compounds. PMID:27344162

  5. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process

    PubMed Central

    Jia, Yuying; Yao, Xingdong; Zhao, Mingzhe; Zhao, Qiang; Du, Yanli; Yu, Cuimei; Xie, Futi

    2015-01-01

    The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert) with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman), which showed a relatively weak susceptibility. Gibberellin (GA) levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA). Higher zeatin riboside (ZR) content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA) content, polyphenol oxidase (PPO) and peroxidase (POD) activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively. PMID:26262617

  6. Maternal affection moderates the impact of psychological control on a child's mathematical performance.

    PubMed

    Aunola, Kaisa; Nurmi, Jari-Erik

    2004-11-01

    This study investigated the extent to which mothers' psychological control predicts their children's mathematical performance during the children's transition from preschool to primary school over and above the impact of maternal affection and behavioral control. Also investigated was the extent to which maternal affection and behavioral control moderate the impact of mothers' psychological control. Children 5-6 years old at baseline (N=196) were followed up 6 times to measure their performance in mathematics over a 3-year period from preschool to 2nd grade. Mothers were asked to fill in a questionnaire measuring their parenting styles once every year over the 3-year period. A high level of psychological control exercised by mothers predicted their children's slow progress in mathematics. However, this impact was particularly evident among those children whose mothers reported a high level of affection. No evidence was found that children's mathematical performance had any effect on their mothers' parenting styles. PMID:15535751

  7. Ecological context and metapopulation dynamics affect sex-ratio variation among dioecious plant populations

    PubMed Central

    Field, David L.; Pickup, Melinda; Barrett, Spencer C. H.

    2013-01-01

    Background and Aims Populations of dioecious flowering plants commonly exhibit heterogeneity in sex ratios and deviations from the equilibrium expectation of equal numbers of females and males. Yet the role of ecological and demographic factors in contributing towards biased sex ratios is currently not well understood. Methods Species-level studies from the literature were analysed to investigate ecological correlates of among-population sex-ratio variation and metapopulation models and empirical data were used to explore the influence of demography and non-equilibrium conditions on flowering sex ratios. Key Results The survey revealed significant among-population heterogeneity in sex ratios and this was related to the degree of sampling effort. For some species, sex-ratio bias was associated with the proportion of non-reproductive individuals, with greater male bias in populations with a lower proportion of individuals that were flowering. Male-biased ratios were also found at higher altitudes and latitudes, and in more xeric sites. Simulations and empirical data indicated that clonal species exhibited greater heterogeneity in sex ratios than non-clonal species as a result of their slower approach to equilibrium. The simulations also indicated the importance of interactions between reproductive mode and founder effects, with greater departures from equilibrium in clonal populations with fewer founding individuals. Conclusions The results indicate that sex-based differences in costs of reproduction and non-equilibrium conditions can each play important roles in affecting flowering sex ratios in populations of dioecious plants. PMID:23444124

  8. Light Influences How the Fungal Toxin Deoxynivalenol Affects Plant Cell Death and Defense Responses

    PubMed Central

    Ansari, Khairul I.; Doyle, Siamsa M.; Kacprzyk, Joanna; Khan, Mojibur R.; Walter, Stephanie; Brennan, Josephine M.; Arunachalam, Chanemouga Soundharam; McCabe, Paul F.; Doohan, Fiona M.

    2014-01-01

    The Fusarium mycotoxin deoxynivalenol (DON) can cause cell death in wheat (Triticum aestivum), but can also reduce the level of cell death caused by heat shock in Arabidopsis (Arabidopsis thaliana) cell cultures. We show that 10 μg mL−1 DON does not cause cell death in Arabidopsis cell cultures, and its ability to retard heat-induced cell death is light dependent. Under dark conditions, it actually promoted heat-induced cell death. Wheat cultivars differ in their ability to resist this toxin, and we investigated if the ability of wheat to mount defense responses was light dependent. We found no evidence that light affected the transcription of defense genes in DON-treated roots of seedlings of two wheat cultivars, namely cultivar CM82036 that is resistant to DON-induced bleaching of spikelet tissue and cultivar Remus that is not. However, DON treatment of roots led to genotype-dependent and light-enhanced defense transcript accumulation in coleoptiles. Wheat transcripts encoding a phenylalanine ammonia lyase (PAL) gene (previously associated with Fusarium resistance), non-expressor of pathogenesis-related genes-1 (NPR1) and a class III plant peroxidase (POX) were DON-upregulated in coleoptiles of wheat cultivar CM82036 but not of cultivar Remus, and DON-upregulation of these transcripts in cultivar CM82036 was light enhanced. Light and genotype-dependent differences in the DON/DON derivative content of coleoptiles were also observed. These results, coupled with previous findings regarding the effect of DON on plants, show that light either directly or indirectly influences the plant defense responses to DON. PMID:24561479

  9. Light influences how the fungal toxin deoxynivalenol affects plant cell death and defense responses.

    PubMed

    Ansari, Khairul I; Doyle, Siamsa M; Kacprzyk, Joanna; Khan, Mojibur R; Walter, Stephanie; Brennan, Josephine M; Arunachalam, Chanemouga Soundharam; McCabe, Paul F; Doohan, Fiona M

    2014-02-01

    The Fusarium mycotoxin deoxynivalenol (DON) can cause cell death in wheat (Triticum aestivum), but can also reduce the level of cell death caused by heat shock in Arabidopsis (Arabidopsis thaliana) cell cultures. We show that 10 μg mL(-1) DON does not cause cell death in Arabidopsis cell cultures, and its ability to retard heat-induced cell death is light dependent. Under dark conditions, it actually promoted heat-induced cell death. Wheat cultivars differ in their ability to resist this toxin, and we investigated if the ability of wheat to mount defense responses was light dependent. We found no evidence that light affected the transcription of defense genes in DON-treated roots of seedlings of two wheat cultivars, namely cultivar CM82036 that is resistant to DON-induced bleaching of spikelet tissue and cultivar Remus that is not. However, DON treatment of roots led to genotype-dependent and light-enhanced defense transcript accumulation in coleoptiles. Wheat transcripts encoding a phenylalanine ammonia lyase (PAL) gene (previously associated with Fusarium resistance), non-expressor of pathogenesis-related genes-1 (NPR1) and a class III plant peroxidase (POX) were DON-upregulated in coleoptiles of wheat cultivar CM82036 but not of cultivar Remus, and DON-upregulation of these transcripts in cultivar CM82036 was light enhanced. Light and genotype-dependent differences in the DON/DON derivative content of coleoptiles were also observed. These results, coupled with previous findings regarding the effect of DON on plants, show that light either directly or indirectly influences the plant defense responses to DON. PMID:24561479

  10. A review of published quantitative experimental studies on factors affecting laboratory fume hood performance.

    PubMed

    Ahn, Kwangseog; Woskie, Susan; DiBerardinis, Louis; Ellenbecker, Michael

    2008-11-01

    This study attempted to identify the important factors that affect the performance of a laboratory fume hood and the relationship between the factors and hood performance under various conditions by analyzing and generalizing the results from other studies that quantitatively investigated fume hood performance. A literature search identified 43 studies that were published from 1966 to 2006. For each of those studies, information on the type of test methods used, the factors investigated, and the findings were recorded and summarized. Among the 43 quantitative experimental studies, 21 comparable studies were selected, and then a meta-analysis of the comparable studies was conducted. The exposure concentration variable from the resulting 617 independent test conditions was dichotomized into acceptable or unacceptable using the control level of 0.1 ppm tracer gas. Regression analysis using Cox proportional hazards models provided hood failure ratios for potential exposure determinants. The variables that were found to be statistically significant were the presence of a mannequin/human subject, the distance between a source and breathing zone, and the height of sash opening. In summary, performance of laboratory fume hoods was affected mainly by the presence of a mannequin/human subject, distance between a source and breathing zone, and height of sash opening. Presence of a mannequin/human subject in front of the hood adversely affects hood performance. Worker exposures to air contaminants can be greatly reduced by increasing the distance between the contaminant source and breathing zone and by reducing the height of sash opening. Many other factors can also affect hood performance. Checking face velocity by itself is unlikely to be sufficient in evaluating hood performance properly. An evaluation of the performance of a laboratory fume hood should be performed with a human subject or a mannequin in front of the hood and should address the effects of the activities

  11. Do seed mass and family affect germination and juvenile performance in Knautia arvensis? A study using failure-time methods

    NASA Astrophysics Data System (ADS)

    Vange, Vibekke; Heuch, Ivar; Vandvik, Vigdis

    2004-05-01

    Germination and seedling establishment are vulnerable stages in the plant life cycle. We investigated how seed mass and family (progeny origin) affect germination and juvenile performance in the grassland herb Knautia arvensis. Seeds were produced by cross-pollination by hand. The fate of 15 individually weighed seeds from each of 15 plants was followed during a 3-month growth chamber experiment. Progeny origin affected germination, both through seed mass and as an independent factor. Two groups of progenies could be distinguished by having rapid or delayed germination. The two groups had similar mean seed masses, but a positive relationship between seed mass and germination rate could be established only among the rapidly germinating progenies. These biologically relevant patterns were revealed because timing of germination was taken into account in the analyses, not only frequencies. Time-to-event data were analysed with failure-time methods, which gave more stable estimates for the relation between germination and seed mass than the commonly applied logistic regression. Progeny origin and seed mass exerted less impact on later characters like juvenile survival, juvenile biomass, and rosette number. These characters were not affected by the timing of germination under the competition-free study conditions. The decrease in the effect of progeny origin from the seed and germination to the juvenile stages suggests that parental effects other than those contributing to the offspring genotype strongly influenced the offspring phenotype at the earliest life stages. Further, the division of progeny germination patterns into two fairly distinct groups indicates that there was a genetic basis for the variation in stratification requirements among parental plants. Field studies are needed to elucidate effects of different timing of germination in the seasonal grasslands that K. arvensis inhabits.

  12. Parental age affects somatic mutation rates in the progeny of flowering plants.

    PubMed

    Singh, Amit Kumar; Bashir, Tufail; Sailer, Christian; Gurumoorthy, Viswanathan; Ramakrishnan, Anantha Maharasi; Dhanapal, Shanmuhapreya; Grossniklaus, Ueli; Baskar, Ramamurthy

    2015-05-01

    In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes. PMID:25810093

  13. Plant-derived decapeptide OSIP108 interferes with Candida albicans biofilm formation without affecting cell viability.

    PubMed

    Delattin, Nicolas; De Brucker, Katrijn; Craik, David J; Cheneval, Olivier; Fröhlich, Mirjam; Veber, Matija; Girandon, Lenart; Davis, Talya R; Weeks, Anne E; Kumamoto, Carol A; Cos, Paul; Coenye, Tom; De Coninck, Barbara; Cammue, Bruno P A; Thevissen, Karin

    2014-05-01

    We previously identified a decapeptide from the model plant Arabidopsis thaliana, OSIP108, which is induced upon fungal pathogen infection. In this study, we demonstrated that OSIP108 interferes with biofilm formation of the fungal pathogen Candida albicans without affecting the viability or growth of C. albicans cells. OSIP108 displayed no cytotoxicity against various human cell lines. Furthermore, OSIP108 enhanced the activity of the antifungal agents amphotericin B and caspofungin in vitro and in vivo in a Caenorhabditis elegans-C. albicans biofilm infection model. These data point to the potential use of OSIP108 in combination therapy with conventional antifungal agents. In a first attempt to unravel its mode of action, we screened a library of 137 homozygous C. albicans mutants, affected in genes encoding cell wall proteins or transcription factors important for biofilm formation, for altered OSIP108 sensitivity. We identified 9 OSIP108-tolerant C. albicans mutants that were defective in either components important for cell wall integrity or the yeast-to-hypha transition. In line with these findings, we demonstrated that OSIP108 activates the C. albicans cell wall integrity pathway and that its antibiofilm activity can be blocked by compounds inhibiting the yeast-to-hypha transition. Furthermore, we found that OSIP108 is predominantly localized at the C. albicans cell surface. These data point to interference of OSIP108 with cell wall-related processes of C. albicans, resulting in impaired biofilm formation. PMID:24566179

  14. Parental Age Affects Somatic Mutation Rates in the Progeny of Flowering Plants1

    PubMed Central

    Singh, Amit Kumar; Bashir, Tufail; Sailer, Christian; Gurumoorthy, Viswanathan; Ramakrishnan, Anantha Maharasi; Dhanapal, Shanmuhapreya; Grossniklaus, Ueli; Baskar, Ramamurthy

    2015-01-01

    In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes. PMID:25810093

  15. On the role of positive and negative affectivity in job performance: a meta-analytic investigation.

    PubMed

    Kaplan, Seth; Bradley, Jill C; Luchman, Joseph N; Haynes, Douglas

    2009-01-01

    Although interest regarding the role of dispositional affect in job behaviors has surged in recent years, the true magnitude of affectivity's influence remains unknown. To address this issue, the authors conducted a qualitative and quantitative review of the relationships between positive and negative affectivity (PA and NA, respectively) and various performance dimensions. A series of meta-analyses based on 57 primary studies indicated that PA and NA predicted task performance in the hypothesized directions and that the relationships were strongest for subjectively rated versus objectively rated performance. In addition, PA was related to organizational citizenship behaviors but not withdrawal behaviors, and NA was related to organizational citizenship behaviors, withdrawal behaviors, counterproductive work behaviors, and occupational injury. Mediational analyses revealed that affect operated through different mechanisms in influencing the various performance dimensions. Regression analyses documented that PA and NA uniquely predicted task performance but that extraversion and neuroticism did not, when the four were considered simultaneously. Discussion focuses on the theoretical and practical implications of these findings. (PsycINFO Database Record (c) 2009 APA, all rights reserved). PMID:19186902

  16. Malaysian and Singaporean students' affective characteristics and mathematics performance: evidence from PISA 2012.

    PubMed

    Thien, Lei Mee; Ong, Mei Yean

    2015-01-01

    This paper attempts to identify the extent to which the affective characteristics of Malaysian and Singaporean students' attainment compared to the OECD average in Programme for International Student Assessment (PISA) 2012, and examine the influence of students' affective characteristics, gender, and their socioeconomic status on mathematics performance at both student and school levels. Sample consisted of 5197 and 5546 15-year-old Malaysian and Singaporean students. Data were analysed using hierarchical linear modelling approach with HLM 7.0 software. Results showed that the Index of economic, social, and cultural status (ESCS), mathematics self-efficacy, and mathematics anxiety have significant effects on mathematics performance in Malaysia and Singapore at the student level. Proportion of boys at the school level has no significant effects on mathematics performance for both Malaysian and Singaporean students. ESCS mean at the school level has positive and significant effects on mathematics performance in Malaysia, but not in Singapore. Limitations, implications, and future studies were discussed. PMID:26543698

  17. Impact of fMRI Scanner Noise on Affective State and Attentional Performance

    PubMed Central

    Jacob, Shawna N.; Shear, Paula K.; Norris, Matthew; Smith, Matthew; Osterhage, Jeff; Strakowski, Stephen M.; Cerullo, Michael; Fleck, David E.; Lee, Jing-Huei; Eliassen, James C.

    2015-01-01

    Introduction Previous research has shown that performance on cognitive tasks administered in the scanner can be altered by the scanner environment. There are no previous studies that have investigated the impact of scanner noise using a well-validated measure of affective change. The goal of this study was to determine whether performance on an affective attentional task or emotional response to the task would change in the presence of distracting acoustic noise, such as that encountered in an MRI environment. Method Thirty-four young adults with no self-reported history of neurologic disorder or mental illness completed three blocks of the affective Posner task outside of the scanner. The task was meant to induce frustration through monetary contingencies and rigged feedback. Participants completed a self-assessment manikin at the end of each block to rate their mood, arousal level, and sense of dominance. During the task, half of the participants heard noise (recorded from a 4T MRI system), and half heard no noise. Results The affective Posner task led to significant reductions in mood and increases in arousal in healthy participants. The presence of scanner noise did not impact task performance; however, individuals in the noise group did report significantly poorer mood throughout the task. Conclusions The results of the present study suggest that the acoustic qualities of MRI enhance frustration effects on an affective attentional task and that scanner noise may influence mood during similar fMRI tasks. PMID:26059389

  18. Oral impacts affecting daily performance in a low dental disease Thai population.

    PubMed

    Adulyanon, S; Vourapukjaru, J; Sheiham, A

    1996-12-01

    The aim of the study was to measure incidence of oral impacts on daily performances and their related features in a low dental disease population. 501 people aged 35-44 years in 16 rural villages in Ban Phang district, Khon Kaen, Thailand, were interviewed about oral impacts on nine physical, psychological and social aspects of performance during the past 6 months, and then had an oral examination. The clinical and behavioural data showed that the sample had low caries (DMFT = 2.7) and a low utilization of dental services. 73.6% of all subjects had at least one daily performance affected by an oral impact. The highest incidence of performances affected were Eating (49.7%), Emotional stability (46.5%) and Smiling (26.1%). Eating, Emotional stability and Cleaning teeth performances had a high frequency or long duration of impacts, but a low severity. The low frequency performances; Physical activities, Major role activity and Sleeping were rated as high severity. Pain and discomfort were mainly perceived as the causes of impacts (40.1%) for almost every performance except Smiling. Toothache was the major causal oral condition (32.7%) of almost all aspects of performance. It was concluded that this low caries people have as high an incidence of oral impacts as industrialized, high dental disease populations. Frequency and severity presented the paradoxical effect on different performances and should both be taken into account for overall estimation of impacts. PMID:9007354

  19. Population rules can apply to individual plants and affect their architecture: an evaluation on the cushion plant Mulinum spinosum (Apiaceae)

    PubMed Central

    Puntieri, Javier G.; Damascos, María A.; Llancaqueo, Yanina; Svriz, Maya

    2010-01-01

    Background and aims Plants are regarded as populations of modules such as axes and growth units (GUs, i.e. seasonally produced axis segments). Due to their dense arrays of GUs, cushion plants may resemble crowded plant populations in the way the number of components (GUs in plants, individuals in populations) relates to their individual sizes. Methodology The morphological differentiation of GUs and its relationship with biomass accumulation and plant size were studied for the cushion subshrub Mulinum spinosum (Apiaceae), a widespread species in dry areas of Patagonia. In 2009, GUs were sampled from one-quarter of each of 24 adult plants. Within- and between-plant variations in GU length, diameter, number of nodes and biomass were analysed and related to whole-plant size. Principal results Each year, an M. spinosum cushion develops flowering GUs and vegetative GUs. Flowering GUs are larger, twice as numerous and contain two to four times more dry mass (excluding reproductive structures) than vegetative GUs. The hemispherical area of the cushions was positively correlated with the biomass of last-year GUs. The biomass of flowering GUs was negatively correlated with the density of GUs. Mulinum spinosum plants exhibited a notable differentiation between flowering and vegetative GUs, but their axes, i.e. the sequences of GUs, were not differentiated throughout the plants. Flowering GUs comprised a major proportion of each plant's photosynthetic tissues. Conclusions A decrease in the size of flowering GUs and in their number relative to the total number of GUs per plant, parallel to an increase in GU density, is predicted as M. spinosum plants age over years. The assimilative role of vegetative GUs is expected to increase in summer because of their less exposed position in the cushion. These GUs would therefore gain more from warm and dry conditions than flowering GUs. PMID:22476077

  20. Alpha suppression following performance errors is correlated with depression, affect, and coping behaviors.

    PubMed

    Compton, Rebecca J; Hofheimer, Julia; Kazinka, Rebecca; Levinson, Amanda; Zheutlin, Amanda

    2013-10-01

    This study tested the hypothesis that enhanced neural arousal in response to performance errors would predict poor affect and coping behaviors in everyday life. Participants were preselected as either low-depressed (LD) or high-depressed (HD) based on a screening questionnaire, and they then completed a laboratory Stroop task while EEG was recorded, followed by a 2-week period of daily reports of affect and coping behaviors. The EEG measure of arousal response to errors was the degree of error-related alpha suppression (ERAS) in the intertrial interval, that is the reduction in alpha power following errors compared with correct responses. ERAS was relatively heightened at frontal sites for the HD versus the LD group, and frontal ERAS predicted lower positive affect, higher negative affect, and less adaptive coping behaviors in the daily reports. Together, the results imply that heightened arousal following mistakes is associated with suboptimal emotion and coping with stressors. PMID:23731439

  1. ULTRAFINE CARBON PARTICLE (UFCP) INHALATION AFFECTS CARDIOVASCULAR PERFORMANCE IN HYPERTENSIVE RATS (SHR)

    EPA Science Inventory

    Inhaled UfCP affect cardiovascular performance in healthy rats (Harder et al. Inhal Toxicol 2005; 17:29-42) without apparent pulmonary damage. To assess whether geriatric cardiovascular compromised rats are more susceptible to UfCP effects, male adult (6months) and geriatric (13m...

  2. Internal Challenges Affecting Academic Performance of Student-Athletes in Ghanaian Public Universities

    ERIC Educational Resources Information Center

    Apaak, Daniel; Sarpong, Emmanuel Osei

    2015-01-01

    This paper examined internal challenges affecting academic performance of student-athletes in Ghanaian public universities, using a descriptive survey research design. Proportionate random sampling technique was employed to select Three Hundred and Thirty-Two (332) respondents for the study. The instrument used in gathering data for the study was…

  3. Factors Affecting Business Students' Performance: The Case of Students in United Arab Emirates

    ERIC Educational Resources Information Center

    Harb, Nasri; El-Shaarawi, Ahmed

    2007-01-01

    In this study, the authors found that the most important factor that affected student performance was their competence in speaking English. The sample was a group of 864 business and economics students in United Arab Emirates. The authors used regression analysis for the study. The results of the study showed that students who participated in…

  4. Students Perceptions on Factors That Affect Their Academic Performance: The Case of Great Zimbabwe University (GZU)

    ERIC Educational Resources Information Center

    Mapuranga, Barbra; Musingafi, Maxwell C. C.; Zebron, Shupikai

    2015-01-01

    Some educators argue that entry standards are the most important determinants of successful completion of a university programme; others maintain that non-academic factors must also be considered. In this study we sought to investigate open and distance learning students' perceptions of the factors affecting academic performance and successful…

  5. Study of Core Competency Elements and Factors Affecting Performance Efficiency of Government Teachers in Northeastern Thailand

    ERIC Educational Resources Information Center

    Chansirisira, Pacharawit

    2012-01-01

    The research aimed to investigate the core competency elements and the factors affecting the performance efficiency of the civil service teachers in the northeastern region, Thailand. The research procedure consisted of two steps. In the first step, the data were collected using a questionnaire with the reliability (Cronbach's Alpha) of 0.90. The…

  6. Factors Affecting University Entrants' Performance in High-Stakes Tests: A Multiple Regression Analysis

    ERIC Educational Resources Information Center

    Uy, Chin; Manalo, Ronaldo A.; Cabauatan, Ronaldo R.

    2015-01-01

    In the Philippines, students seeking admission to a university are usually required to meet certain entrance requirements, including passing the entrance examinations with questions on IQ and English, mathematics, and science. This paper aims to determine the factors that affect the performance of entrants into business programmes in high-stakes…

  7. Antecedent Factors Affecting Academic Performance of Graduate Students at the Nairobi Evangelical Graduate School of Theology

    ERIC Educational Resources Information Center

    Mbogo, Rosemary Wahu

    2016-01-01

    This paper reports the findings of a Master's level thesis work that was done in 1997 to assess the antecedent factors affecting the academic performance of graduate students at the Nairobi Evangelical School of Theology (N.E.G.S.T.), which is currently Africa International University (AIU). The paper reviews the effect of lack of finance on…

  8. Alkaloid Quantities in Endophyte-Infected Tall Fescue are Affected by the Plant-Fungus Combination and Environment.

    PubMed

    Helander, M; Phillips, T; Faeth, S H; Bush, L P; McCulley, R; Saloniemi, I; Saikkonen, K

    2016-02-01

    Many grass species are symbiotic with systemic, vertically-transmitted, asymptomatic Epichloë endophytic fungi. These fungi often produce alkaloids that defend the host against herbivores. We studied how environmental variables affect alkaloids in endophyte-infected tall fescue (Schedonorus phoenix) from three Northern European wild origins and the widely planted US cultivar 'Kentucky-31' (KY31). The plants were grown in identical common garden experiments in Finland and Kentucky for two growing seasons. Plants were left as controls (C) or given water (W), nutrient (N) or water and nutrient (WN) treatments. For 8-10 replications of each plant origin and treatment combination in both experiments, we analyzed ergot alkaloids, lysergic acid, and lolines. In Finland, tall fescue plants produced 50 % more ergot alkaloids compared to plants of the same origin and treatments in Kentucky. Origin of the plants affected the ergot alkaloid concentration at both study sites: the wild origin plants produced 2-4 times more ergot alkaloids than KY31, but the ergot alkaloid concentration of KY31 plants was the same at both locations. Overall lysergic acid content was 60 % higher in plants grown in Kentucky than in those grown in Finland. Nutrient treatments (N, WN) significantly increased ergot alkaloid concentrations in plants from Finland but not in plants from Kentucky. These results suggest that the success of KY31 in US is not due to selection for high ergot alkaloid production but rather other traits associated with the endophyte. In addition, the environmental effects causing variation in alkaloid production of grass-endophyte combinations should be taken into account when using endophyte-infected grasses agriculturally. PMID:26815170

  9. Factors that affect the hydraulic performance of raingardens: implications for design and maintenance.

    PubMed

    Virahsawmy, Harry K; Stewardson, Michael J; Vietz, Geoff; Fletcher, Tim D

    2014-01-01

    Raingardens are becoming an increasingly popular technology for urban stormwater treatment. However, their hydraulic performance is known to reduce due to clogging from deposition of fine-grained sediments on the surface. This impacts on their capacity to treat urban runoff. It has been recently hypothesised that plants can help to mitigate the effect of surface clogging on infiltration. A conceptual model is therefore presented to better understand key processes, including those associated with plant cover, which influences surface infiltration mechanisms. Based on this understanding, a field evaluation was carried out to test the hypothesis that plants increase the infiltration rate, and to investigate factors that influence the deposition of fine-grained sediments within raingardens. The results show that infiltration rates around plants are statistically higher than bare areas, irrespective of the degree of surface clogging. This suggests that preferential flow pathways exist around plants. Sediment deposition processes are also influenced by design elements of raingardens such as the inlet configuration. These findings have implications for the design and maintenance of raingardens, in particular the design of the inlet configuration, as well as maintenance of the filter media surface layer and vegetation. PMID:24622546

  10. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri.

    PubMed

    Muehe, E Marie; Weigold, Pascal; Adaktylou, Irini J; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas; Behrens, Sebastian

    2015-03-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  11. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  12. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.

    PubMed

    Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D

    2015-10-15

    Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection. PMID:26150068

  13. Mathematics performance and the role played by affective and background factors peter grootenboer and brian hemmings

    NASA Astrophysics Data System (ADS)

    Grootenboer, Peter; Hemmings, Brian

    2007-12-01

    In this article, we report on a study examining those factors which contribute to the mathematics performance of a sample of children aged between 8 and 13 years. The study was designed specifically to consider the potency of a number of mathematical affective factors, as well as background characteristics (viz., gender, ethnicity, and socioeconomic status), on children's mathematics performance. Data were collected by surveying the children and drawing on performance ratings from their teachers. A correlation analysis revealed that the relationships between the respective dispositional and background variables with mathematics performance were significant and in the direction as predicted. Moreover, the findings from a logistic regression showed that a combination of these variables was able to appropriately classify students who either were below-average or above-average mathematics performers. We pay particular attention to the influence of certain dispositions with respect to mathematics performance and conclude by detailing the implications of the study for teachers and researchers.

  14. Performance analysis and optimization of power plants with gas turbines

    NASA Astrophysics Data System (ADS)

    Besharati-Givi, Maryam

    The gas turbine is one of the most important applications for power generation. The purpose of this research is performance analysis and optimization of power plants by using different design systems at different operation conditions. In this research, accurate efficiency calculation and finding optimum values of efficiency for design of chiller inlet cooling and blade cooled gas turbine are investigated. This research shows how it is possible to find the optimum design for different operation conditions, like ambient temperature, relative humidity, turbine inlet temperature, and compressor pressure ratio. The simulated designs include the chiller, with varied COP and fogging cooling for a compressor. In addition, the overall thermal efficiency is improved by adding some design systems like reheat and regenerative heating. The other goal of this research focuses on the blade-cooled gas turbine for higher turbine inlet temperature, and consequently, higher efficiency. New film cooling equations, along with changing film cooling effectiveness for optimum cooling air requirement at the first-stage blades, and an internal and trailing edge cooling for the second stage, are innovated for optimal efficiency calculation. This research sets the groundwork for using the optimum value of efficiency calculation, while using inlet cooling and blade cooling designs. In the final step, the designed systems in the gas cycles are combined with a steam cycle for performance improvement.

  15. Can plant phloem properties affect the link between ecosystem assimilation and respiration?

    NASA Astrophysics Data System (ADS)

    Mencuccini, M.; Hölttä, T.; Sevanto, S.; Nikinmaa, E.

    2012-04-01

    Phloem transport of carbohydrates in plants under field conditions is currently not well understood. This is largely the result of the lack of techniques suitable for measuring phloem physiological properties continuously under field conditions. This lack of knowledge is currently hampering our efforts to link ecosystem-level processes of carbon fixation, allocation and use, especially belowground. On theoretical grounds, the properties of the transport pathway from canopy to roots must be important in affecting the link between carbon assimilation and respiration, but it is unclear whether their effect is partially or entirely masked by processes occurring in other parts of the ecosystem. One can also predict the characteristic time scales over which these effects should occur and, as consequence, predict whether the transfer of turgor and osmotic signals from the site of carbon assimilation to the sites of carbon use are likely to control respiration. We will present two sources of evidence suggesting that the properties of the phloem transport system may affect processes that are dependent on the supply of carbon substrate, such as root or soil respiration. Firstly, we will summarize the results of a literature survey on soil and ecosystem respiration where the speed of transfer of photosynthetic sugars from the plant canopy to the soil surface was determined. Estimates of the transfer speed could be grouped according to whether the study employed isotopic or canopy soil flux-based techniques. These two groups provided very different estimates of transfer times likely because transport of sucrose molecules, and pressure-concentration waves, in phloem differed. Secondly, we will argue that simultaneous measurements of bark and xylem diameters provide a novel tool to determine the continuous variations of phloem turgor in vivo in the field. We will present a model that interprets these changes in xylem and live bark diameters and present data testing the model

  16. The Gastropod Menace: Slugs on Brassica Plants Affect Caterpillar Survival through Consumption and Interference with Parasitoid Attraction.

    PubMed

    Desurmont, Gaylord A; Zemanova, Miriam A; Turlings, Ted C J

    2016-03-01

    Terrestrial molluscs and insect herbivores play a major role as plant consumers in a number of ecosystems, but their direct and indirect interactions have hardly been explored. The omnivorous nature of slugs makes them potential disrupters of predator-prey relationships, as a direct threat to small insects and through indirect, plant-mediated effects. Here, we examined the effects of the presence of two species of slugs, Arion rufus (native) and A. vulgaris (invasive) on the survivorship of young Pieris brassicae caterpillars when feeding on Brassica rapa plants, and on plant attractiveness to the main natural enemy of P. brassicae, the parasitoid Cotesia glomerata. In two separate predation experiments, caterpillar mortality was significantly higher on plants co-infested with A. rufus or A. vulgaris. Moreover, caterpillar mortality correlated positively with slug mass and leaf consumption by A. vulgaris. At the third trophic level, plants infested with slugs and plants co-infested with slugs and caterpillars were far less attractive to parasitoids than plants damaged by caterpillars only, independently of slug species. Chemical analyses confirmed that volatile emissions, which provide foraging cues for parasitoids, were strongly reduced in co-infested plants. Our study shows that the presence of slugs has the potential to affect insect populations, directly via consumptive effects, and indirectly via changes in plant volatiles that result in a reduced attraction of natural enemies. The fitness cost for P. brassicae imposed by increased mortality in presence of slugs may be counterbalanced by the benefit of escaping its parasitoids. PMID:27002323

  17. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    PubMed

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear

  18. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    PubMed Central

    2008-01-01

    Background The Wuschel related homeobox (WOX) family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG) using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most likely by preventing premature

  19. How do land management practices affect net ecosystem CO2 exchange of an invasive plant infestation?

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Detto, M.; Runkle, B.; Kelly, M.; Baldocchi, D. D.

    2009-12-01

    Ecosystem gas and energy exchanges of invasive plant infestations under different land management practices have been subject of few studies and thus little is known. Our goal is to characterize seasonal changes in net ecosystem CO2 exchange (NEE) through the processes of photosynthesis (GEP) and ecosystem respiration (Reco) of a grassland used as pasture yet infested by perennial pepperweed (Lepidium latifolium) in California’s Sacramento-San Joaquin River Delta. We analyze eddy-covariance supported by environmental and canopy-scale hyperspectral reflectance measurements acquired in 2007-2009. Our study covers three summer drought periods with slightly different land management practices. Over the study period the site was subject to year-round grazing, and in 2008 the site was additionally mowed. Specific questions we address are a) how does pepperweed flowering affect GEP, b) does a mowing event affect NEE mainly through GEP or Reco, and c) can the combined effects of phenology and mowing on pepperweed NEE potentially be tracked using routinely applied remote sensing techniques? Preliminary results indicate that pepperweed flowering drastically decreases photosynthetic CO2 uptake due to shading by the dense arrangement of white flowers at the canopy top, causing the infestation to be almost CO2 neutral. In contrast, mowing causes the infestation to act as moderate net CO2 sink, mainly due to increased CO2 uptake during regrowth. We demonstrate that spectral regions other than commonly-used red and near-infrared might be more promising for pepperweed monitoring because of its spectral uniqueness during the flowering phase. Our results have important implications for land-use land-cover (LULC) change studies when biological invasions and their management alter ecosystem structure and functioning but not necessarily the respective LULC class.

  20. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field.

    PubMed

    Roux, Fabrice; Mary-Huard, Tristan; Barillot, Elise; Wenes, Estelle; Botran, Lucy; Durand, Stéphanie; Villoutreix, Romain; Martin-Magniette, Marie-Laure; Camilleri, Christine; Budar, Françoise

    2016-03-29

    Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits inArabidopsis thaliana To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics ofA. thaliana. PMID:26979961

  1. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field

    PubMed Central

    Roux, Fabrice; Mary-Huard, Tristan; Barillot, Elise; Wenes, Estelle; Botran, Lucy; Durand, Stéphanie; Villoutreix, Romain; Martin-Magniette, Marie-Laure; Camilleri, Christine; Budar, Françoise

    2016-01-01

    Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits in Arabidopsis thaliana. To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics of A. thaliana. PMID:26979961

  2. Universal and culture-specific factors in the recognition and performance of musical affect expressions.

    PubMed

    Laukka, Petri; Eerola, Tuomas; Thingujam, Nutankumar S; Yamasaki, Teruo; Beller, Grégory

    2013-06-01

    We present a cross-cultural study on the performance and perception of affective expression in music. Professional bowed-string musicians from different musical traditions (Swedish folk music, Hindustani classical music, Japanese traditional music, and Western classical music) were instructed to perform short pieces of music to convey 11 emotions and related states to listeners. All musical stimuli were judged by Swedish, Indian, and Japanese participants in a balanced design, and a variety of acoustic and musical cues were extracted. Results first showed that the musicians' expressive intentions could be recognized with accuracy above chance both within and across musical cultures, but communication was, in general, more accurate for culturally familiar versus unfamiliar music, and for basic emotions versus nonbasic affective states. We further used a lens-model approach to describe the relations between the strategies that musicians use to convey various expressions and listeners' perceptions of the affective content of the music. Many acoustic and musical cues were similarly correlated with both the musicians' expressive intentions and the listeners' affective judgments across musical cultures, but the match between musicians' and listeners' uses of cues was better in within-cultural versus cross-cultural conditions. We conclude that affective expression in music may depend on a combination of universal and culture-specific factors. PMID:23398579

  3. Neuropsychological performance and affective temperaments in Euthymic patients with bipolar disorder type II.

    PubMed

    Romero, Ester; Holtzman, Jessica N; Tannenhaus, Lucila; Monchablon, Romina; Rago, Carlo Mario; Lolich, Maria; Vázquez, Gustavo H

    2016-04-30

    Affective temperament has been suggested as a potential mediator of the effect between genetic predisposition and neurocognitive functioning. As such, this report seeks to assess the extent of the correlation between affective temperament and cognitive function in a group of bipolar II subjects. 46 bipolar II outpatients [mean age 41.4 years (SD 18.2); female 58.9%] and 46 healthy controls [mean age 35.1 years (SD 18); female 56.5%] were evaluated with regard to their demographic and clinical characteristics, affective temperament, and neurocognitive performance. Crude bivariate correlation analyses and multiple linear regression models were constructed between five affective temperament subscales and eight neurocognitive domains. Significant correlations were identified in bipolar patients between hyperthymic temperament and verbal memory and premorbid IQ; cyclothymic temperament and attention; and irritable temperament, attention, and verbal fluency. In adjusting for potential confounders of the relationship between temperament and cognitive function, the strongest mediating factors among the euthymic bipolar patients were found to be residual manic and depressive symptoms. It is therefore concluded that affective temperaments may partially influence the neurocognitive performance of both healthy controls and euthymic patients with bipolar disorder type II in several specific domains. PMID:27086230

  4. A Quality Improvement Study on Avoidable Stressors and Countermeasures Affecting Surgical Motor Performance and Learning

    PubMed Central

    Conrad, Claudius; Konuk, Yusuf; Werner, Paul D.; Cao, Caroline G.; Warshaw, Andrew L.; Rattner, David W.; Stangenberg, Lars; Ott, Harald C.; Jones, Daniel B.; Miller, Diane L; Gee, Denise W.

    2012-01-01

    OBJECTIVE To explore how the two most important components of surgical performance - speed and accuracy - are influenced by different forms of stress and what the impact of music on these factors is. SUMMARY BACKGROUND DATA Based on a recently published pilot study on surgical experts, we designed an experiment examining the effects of auditory stress, mental stress, and music on surgical performance and learning, and then correlated the data psychometric measures to the role of music in a novice surgeon’s life. METHODS 31 surgeons were recruited for a crossover study. Surgeons were randomized to four simple standardized tasks to be performed on the Surgical SIM VR laparoscopic simulator, allowing exact tracking of speed and accuracy. Tasks were performed under a variety of conditions, including silence, dichotic music (auditory stress), defined classical music (auditory relaxation), and mental loading (mental arithmetic tasks). Tasks were performed twice to test for memory consolidation and to accommodate for baseline variability. Performance was correlated to the Brief Musical Experience Questionnaire (MEQ). RESULTS Mental loading influences performance with respect to accuracy, speed, and recall more negatively than does auditory stress. Defined classical music might lead to minimally worse performance initially, but leads to significantly improved memory consolidation. Furthermore, psychologic testing of the volunteers suggests that surgeons with greater musical commitment, measured by the MEQ, perform worse under the mental loading condition. CONCLUSION Mental distraction and auditory stress negatively affect specific components of surgical learning and performance. If used appropriately, classical music may positively affect surgical memory consolidation. It also may be possible to predict surgeons’ performance and learning under stress through psychological tests on the role of music in a surgeon’s life. Further investigation is necessary to determine

  5. How sleep deprivation affects psychological variables related to college students' cognitive performance.

    PubMed

    Pilcher, J J; Walters, A S

    1997-11-01

    The effects of sleep deprivation on cognitive performance psychological variables related to cognitive performance were studied in 44 college students. Participants completed the Watson-Glaser Critical Thinking Appraisal after either 24 hours of sleep deprivation or approximately 8 hours of sleep. After completing the cognitive task, the participants completed 2 questionnaires, one assessing self-reported effort, concentration, and estimated performance, the other assessing off-task cognitions. As expected, sleep-deprived participants performed significantly worse than the nondeprived participants on the cognitive task. However, the sleep-deprived participants rated their concentration and effort higher than the nondeprived participants did. In addition, the sleep-deprived participants rated their estimated performance significantly higher than the nondeprived participants did. The findings indicate that college students are not aware of the extent to which sleep deprivation negatively affects their ability to complete cognitive tasks. PMID:9394089

  6. Gender Differences in Introductory University Physics Performance: The Influence of High School Physics Preparation and Affect

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra

    2006-12-01

    The attrition of females studying physics after high school has been a continuing concern for the physics education community. If females are well prepared, feel confident, and do well in introductory college physics, they may be inclined to study physics further. This quantitative study uses HLM to identify factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that predict female and male performance in introductory college physics. The study includes controls for student demographic and academic background characteristics, and the final dataset consists of 1973 surveys from 54 introductory college physics classes. The results highlight high school physics and affective experiences that differentially predict female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believe that high school physics would help in university physics. There were also experiences that similarly predict female and male performance. The results paint a dynamic picture of the factors from high school physics and the affective domain that influence the future physics performance of females and males. The implication is that there are many aspects to the teaching of physics in high school that, although widely used and thought to be effective, need reform in their implementation in order to be fully beneficial to females and/or males in college.

  7. Incorporating long-term climate change in performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect

    Swift, P.N.; Baker, B.L.; Economy, K.; Garner, J.W.; Helton, J.C.; Rudeen, D.K.

    1994-03-01

    The United States Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico for the disposal of transuranic wastes generated by defense programs. Applicable regulations (40 CFR 191) require the DOE to evaluate disposal-system performance for 10,000 yr. Climatic changes may affect performance by altering groundwater flow. Paleoclimatic data from southeastern New Mexico and the surrounding area indicate that the wettest and coolest Quaternary climate at the site can be represented by that at the last glacial maximum, when mean annual precipitation was approximately twice that of the present. The hottest and driest climates have been similar to that of the present. The regularity of global glacial cycles during the late Pleistocene confirms that the climate of the last glacial maximum is suitable for use as a cooler and wetter bound for variability during the next 10,000 yr. Climate variability is incorporated into groundwater-flow modeling for WIPP PA by causing hydraulic head in a portion of the model-domain boundary to rise to the ground surface with hypothetical increases in precipitation during the next 10,000 yr. Variability in modeled disposal-system performance introduced by allowing had values to vary over this range is insignificant compared to variability resulting from other causes, including incomplete understanding of transport processes. Preliminary performance assessments suggest that climate variability will not affect regulatory compliance.

  8. Incorporating long-term climate change in performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect

    Swift, P.N.; Baker, B.L.; Economy, K.; Garner, J.W.; Helton, J.C.; Rudeen, D.K.

    1993-09-18

    The United States Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico for the disposal of transuranic wastes generated by defense programs. Applicable regulations (40 CFR 191) require the DOE to evaluate disposal-system performance for 10,000 yr. Climatic changes may affect performance by altering groundwater flow. Paleoclimatic data from southeastern New Mexico and the surrounding area indicate that the wettest and coolest Quaternary climate at the site can be represented by that at the last glacial maximum, when mean annual precipitation was approximately twice that of the present. The hottest and driest climates have been similar to that of the present. The regularity of global glacial cycles during the late Pleistocene confirms that the climate of the last glacial maximum is suitable for use as a cooler and wetter bound for variability during the next 10,000 yr. Climate variability is incorporated into groundwater-flow modeling for WIPP PA by causing hydraulic head in a portion of the model-domain boundary to rise to the ground surface with hypothetical increases in precipitation during the next 10,000 yr. Variability in modeled disposal-system performance introduced by allowing head values to vary over this range is insignificant compared to variability resulting from other causes, including incomplete understanding of transport processes. Preliminary performance assessments suggest that climate variability will not affect regulatory compliance.

  9. Performance of small water treatment plants: The case study of Mutshedzi Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Makungo, R.; Odiyo, J. O.; Tshidzumba, N.

    The performance of small water treatment plants (SWTPs) was evaluated using Mutshedzi WTP as a case study. The majority of SWTPs in South Africa (SA) that supply water to rural villages face problems of cost recovery, water wastages, limited size and semi-skilled labour. The raw and final water quality analyses and their compliance were used to assess the performance of the Mutshedzi WTP. Electrical conductivity (EC), pН and turbidity were measured in the field using a portable multimeter and a turbidity meter respectively. Atomic Absorption Spectrometry and Ion Chromatography were used to analyse metals and non-metals respectively. The results were compared with the Department of Water Affairs (DWA) guidelines for domestic use. The turbidity levels partially exceeded the recommended guidelines for domestic water use of 1 NTU. The concentrations of chemical parameters in final water were within the DWA guidelines for domestic water use except for fluoride, which exceeded the maximum allowable guideline of 1.5 mg/L in August 2009. Mutshedzi WTP had computed compliance for raw and final water analyses ranging from 79% to 93% and 86% to 93% throughout the sampling period, respectively. The results from earlier studies showed that the microbiological quality of final water in Mutshedzi WTP complied with the recommended guidelines, eliminating the slight chance of adverse aesthetic effects and infectious disease transmission associated with the turbidity values between 1 and 5 NTU. The study concluded that Mutshedzi WTP, though moving towards compliance, is still not producing adequate quality of water. Other studies also indicated that the quantity of water produced from Mutshedzi WTP was inadequate. The findings of the study indicate that lack of monitoring of quantity of water supplied to each village, dosage of treatment chemicals, the treatment capacity of the WTP and monitoring the quality of water treated are some of the factors that limit the performance of

  10. Human resources management and firm performance: The differential role of managerial affective and continuance commitment.

    PubMed

    Gong, Yaping; Law, Kenneth S; Chang, Song; Xin, Katherine R

    2009-01-01

    In this study, the authors developed a dual-concern (i.e., maintenance and performance) model of human resources (HR) management. The authors identified commonly examined HR practices that apply to the middle manager level and classified them into the maintenance- and performance-oriented HR subsystems. The authors found support for the 2-factor model on the basis of responses from 2,148 managers from 463 firms operating in China. Regression results indicate that the performance-oriented HR subsystems had a positive relationship with firm performance and that the relationship was mediated by middle managers' affective commitment to the firm. The maintenance-oriented HR subsystems had a positive relationship with middle managers' continuance commitment but not with their affective commitment and firm performance. This study contributes to the understanding of how HR practices relate to firm performance and offers an improved test of the argument that valuable and firm-specific HR provide a source of competitive advantage. (PsycINFO Database Record (c) 2009 APA, all rights reserved). PMID:19186911

  11. Centrality and charisma: comparing how leader networks and attributions affect team performance.

    PubMed

    Balkundi, Prasad; Kilduff, Martin; Harrison, David A

    2011-11-01

    When leaders interact in teams with their subordinates, they build social capital that can have positive effects on team performance. Does this social capital affect team performance because subordinates come to see the leader as charismatic? We answered this question by examining 2 models. First, we tested the charisma-to-centrality model according to which the leader's charisma facilitates the occupation of a central position in the informal advice network. From this central position, the leader positively influences team performance. Second, we examined the centrality-to-charisma model according to which charisma is attributed to those leaders who are socially active in terms of giving and receiving advice. Attributed charisma facilitates increased team performance. We tested these 2 models in 2 different studies. In the first study, based on time-separated, multisource data emanating from members of 56 work teams, we found support for the centrality-to-charisma model. Formal leaders who were central within team advice networks were seen as charismatic by subordinates, and this charisma was associated with high team performance. To clarify how leader network centrality affected the emergence of charismatic leadership, we designed Study 2 in which, for 79 student teams, we measured leader networking activity and leader charisma at 2 different points in time and related these variables to team performance measured at a third point in time. On the basis of this temporally separated data set, we again found support for the centrality-to-charisma model. PMID:21895351

  12. Identification of viral and phytoplasmal agents responsible for diseases affecting plants of Gaillardia Foug. in Lithuania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gaillardia plants exhibiting symptoms characteristic of viral and phytoplasmal diseases were collected at botanical gardens and floriculture farms in Lithuania. Cucumber mosaic virus was isolated from diseased plants exhibiting symptoms characterized stunting, color breaking and malformation of flo...

  13. METHODS FOR IMPROVEMENT OF TRICKLING FILTER PLANT PERFORMANCE. PART II. CHEMICAL ADDITION

    EPA Science Inventory

    An experimental program to explore potential methods for removing phosphorus and generally enhancing trickling filter plant performance was conducted at the Mason Farm Wastewater Treatment Plant, Chapel Hill, North Carolina. Preliminary investigations included jar testing with se...

  14. Origin matters: diversity affects the performance of alien invasive species but not of native species.

    PubMed

    Sun, Yan; Müller-Schärer, Heinz; Maron, John L; Schaffner, Urs

    2015-06-01

    At local scales, it has often been found that invasibility decreases with increasing resident plant diversity. However, whether resident community diversity similarly resists invasion by alien versus native species is seldom studied. We examined this issue by invading constructed native plant assemblages that varied in species and functional richness with invasive alien or native Asteraceae species. Assemblages were also invaded with spotted knapweed, Centaurea stoebe, a native European aster that has been previously used in diversity-invasibility experiments in North America. We also conducted a field survey to explore the generality of the patterns generated from our experimental study. Both experimental and observational work revealed that increasing diversity reduced the performance of alien but not native invaders. Centaurea stoebe invading its native community performed poorly regardless of resident diversity, whereas in a parallel, previously published study conducted in North America, C. stoebe easily invaded low-diversity but not high-diversity assemblages. Our results suggest that diversity is an attribute of resident communities that makes them more or less susceptible to invasion by novel invasive alien but not native plant species. PMID:25996858

  15. The 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect

    Anderson, D.R.; Jow, H.N.; Marietta, M.G.; Chu, M.S.Y.; Shephard, L.E.; Helton, J.C.; Basabilvazo, G.

    1998-07-01

    The Waste Isolation Pilot Plant (WIPP) is under development by the US Department of Energy (DOE) for the geologic disposal of transuranic (TRU) waste that has been generated at government defense installations in the United States. The WIPP is located in an area of low population density in southeastern New Mexico. Waste disposal will take place in excavated chambers in a bedded salt formation approximately 655 m below the land surface. This presentation describes a performance assessment (PA) carried out at Sandia National Laboratories (SNL) to support the Compliance Certification Application (CCA) made by the DOE to the US Environmental Protection Agency (EPA) in October, 1996, for the certification of the WIPP for the disposal of TRU waste. Based on the CCA supported by the PA described in this presentation, the EPA has issued a preliminary decision to certify the WIPP for the disposal of TRU waste. At present (April 1998), it appears likely that the WIPP will be in operation by the end of 1998.

  16. Does the inclusion of protease inhibitors in the insemination extender affect rabbit reproductive performance?

    PubMed

    Casares-Crespo, L; Vicente, J S; Talaván, A M; Viudes-de-Castro, M P

    2016-03-15

    The bioavailability of buserelin acetate when added to the seminal dose appears to be determined by the activity of the existing aminopeptidases. Thus, the addition of aminopeptidase inhibitors to rabbit semen extenders could be a solution to decrease the hormone degradation. This study was conducted to evaluate the effect of the protease activity inhibition on rabbit semen quality parameters and reproductive performance after artificial insemination. Seminal quality was not affected by the incubation with protease inhibitors, being the values of motility, viability, and acrosome integrity not significantly different between the protease inhibitors and the control group. In addition, seminal plasma aminopeptidase activity was inhibited in a 55.1% by the protease inhibitors. On the other hand, regarding the effect of protease inhibitors on reproductive performance, our results showed that the presence of protease inhibitors affected the prolificacy rate (9.2 ± 0.26 and 9.3 ± 0.23 vs. 8.2 ± 0.22 total born per litter for negative control, positive control, and aminopeptidase inhibitors group, respectively; P < 0.05), having this group one kit less per delivery. We conclude that the addition of a wide variety of protease inhibitors in the rabbit semen extender negatively affects prolificacy rate. Therefore, the development of new extenders with specific aminopeptidase inhibitors would be one of the strategies to increase the bioavailability of GnRH analogues without affecting the litter size. PMID:26639641

  17. Using representations in geometry: a model of students' cognitive and affective performance

    NASA Astrophysics Data System (ADS)

    Panaoura, Areti

    2014-05-01

    Self-efficacy beliefs in mathematics, as a dimension of the affective domain, are related with students' performance on solving tasks and mainly on overcoming cognitive obstacles. The present study investigated the interrelations of cognitive performance on geometry and young students' self-efficacy beliefs about using representations for solving geometrical tasks. The emphasis was on confirming a theoretical model for the primary-school and secondary-school students and identifying the differences and similarities for the two ages. A quantitative study was developed and data were collected from 1086 students in Grades 5-8. Confirmatory factor analysis affirmed the existence of a coherent model of affective dimensions about the use of representations for understanding the geometrical concepts, which becomes more stable across the educational levels.

  18. Seed germination of medicinal plant, fennel (Foeniculum vulgare Mill), as affected by different priming techniques.

    PubMed

    Tahaei, Amirreza; Soleymani, Ali; Shams, Majid

    2016-09-01

    Reduced seed germination is among the most important factors adversely affecting crop stand and subsequent plant growth. Fennel (Foeniculum vulgare Mill) is an important medicinal plant with poor seed germination rate, occasionally. It is accordingly pertinent to find methods which can enhance fennel seed germination and remove the barriers of dormancy breaking. The present experiments studied the effects of two different priming (cold moist stratification and osmopriming) and 14 dormancy breaking techniques (hormonal, osmopriming, biopriming, chemical priming, and hydropriming) on the seed germination and seedling growth of two different fennel genotypes under growth chamber conditions. In the first and second experiment, the priming techniques including the time lengths of cold moist stratification (0, 15, 30, and 45 days) and the concentrations of polyethylene glycol 6000 (PEG6000, osmopriming at -0.99, -1.35, and -2.33 MPa) were used as the main plots. However, in both experiments, the dormancy breaking techniques and fennel genotypes were factorially combined and used as the subplots. Different seed- and seedling-related parameters including germination (%), plumule, radicle and seedling length, average germination time, rate and homogeneity of germination, and seed vigor index were determined. Both priming techniques were efficient on the enhancement of seed germination and seedling growth. Among the dormancy breaking techniques, Aminol Forte (biopriming), kadostim (biopriming), benzyl adenine + kinetin (biopriming), distilled water (hydropriming), gibberellin + kinetin (hormonal priming), and benzyl adenine + kinetin + gibberellin (biopriming) were the most effective ones. The related concentrations were equal to 100 mg/l, 10(-5) M, and 0.4 %. The fennel genotypes reacted significantly different under priming conditions. It is possible to enhance seed germination and seedling growth of fennel using priming and dormancy breaking

  19. Bisphenol A does not affect memory performance in adult male rats.

    PubMed

    Kuwahara, Rika; Kawaguchi, Shinichiro; Kohara, Yumi; Jojima, Takeshi; Yamashita, Kimihiro

    2014-04-01

    Bisphenol A (BPA) is an estrogenic endocrine disruptor used for producing polycarbonate plastics and epoxy resins. This study investigated the effects of oral BPA administration on memory performance, general activity, and emotionality in adult male Sprague Dawley rats using a battery of behavioral tests, including an appetite-motivated maze test (MAZE test) used to assess spatial memory performance. In addition, in order to confirm the effects of BPA on spatial memory performance, we examined whether intrahippocampal injection of BPA affects spatial memory consolidation. In the MAZE test, although oral BPA administration at 10 mg/kg significantly altered the number of entries into the incorrect area compared to those of vehicle-treated rats, male rats given BPA through either oral administration or intrahippocampal injection failed to show significant differences in latencies to reach the reward. Also, oral BPA administration did not affect fear-motivated memory performance in the step-through passive avoidance test. Oral BPA administration at 0.05 mg/kg, the lowest dose used in this study, was correlated with a decrease in locomotor activity in the open-field test, whereas oral administration at 10 mg/kg, the highest dose used in this study, was correlated with a light anxiolytic effect in the elevated plus-maze test. The present study suggests that BPA in adulthood has little effect on spatial memory performance in male rats. PMID:24326521

  20. Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl

    USGS Publications Warehouse

    Bridges, C.M.

    1997-01-01

    General activity and swimming performance (i.e., sprint speed and distance) of plains leopard frog tadpoles (Rana blairi) were examined after acute exposure to three sublethal concentrations of carbaryl (3.5, 5.0, and 7.2 mg/L). Both swimming performance and spontaneous swimming activity are important for carrying out life history functions (e.g., growth and development) and for escaping from predators. Measured tadpole activity diminished by nearly 90% at 3.5 mg/L carbaryl and completely ceased at 7.2 mg/L. Sprint speed and sprint distance also decreased significantly following exposure. Carbaryl affected both swimming performance and activity after just 24 h, suggesting that 24 h may be an adequate length of exposure to determine behavioral effects on tadpoles. Slight recovery of activity levels was noted at 24 and 48 h post-exposure; no recovery of swimming performance was observed. Reduction in activity and swimming performance may result in increased predation rates and, because activity is closely associated with feeding, may result in slowed growth leading to a failure to emerge before pond drying or an indirect reduction in adult fitness. Acute exposure to sublethal toxicants such as carbaryl may not only affect immediate survival of tadpoles but also impact critical life history functions and generate changes at the local population level.

  1. Individual differences in cognition, affect, and performance: Behavioral, neuroimaging, and molecular genetic approaches

    PubMed Central

    Parasuraman, Raja; Jiang, Yang

    2012-01-01

    We describe the use of behavioral, neuroimaging, and genetic methods to examine individual differences in cognition and affect, guided by three criteria: (1) relevance to human performance in work and everyday settings; (2) interactions between working memory, decision-making, and affective processing; and (3) examination of individual differences. The results of behavioral, functional MRI (fMRI), event-related potential (ERP), and molecular genetic studies show that analyses at the group level often mask important findings associated with sub-groups of individuals. Dopaminergic/noradrenergic genes influencing prefrontal cortex activity contribute to inter-individual variation in working memory and decision behavior, including performance in complex simulations of military decision-making. The interactive influences of individual differences in anxiety, sensation seeking, and boredom susceptibility on evaluative decision-making can be systematically described using ERP and fMRI methods. We conclude that a multi-modal neuroergonomic approach to examining brain function (using both neuroimaging and molecular genetics) can be usefully applied to understanding individual differences in cognition and affect and has implications for human performance at work. PMID:21569853

  2. How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands

    USGS Publications Warehouse

    Stohlgren, T.J.; Schell, L.D.; Vanden, Heuvel B.

    1999-01-01

    (adjacent and distant 1000-m2 plots) in the same vegetation type overlapped just 48.6 ?? 3.6%, and the ungrazed plots and distant grazed plots overlapped 49.4 ?? 3.6%. Differences in vegetation and soils between grazed and ungrazed sites were minimal in most cases, but soil characteristics and elevation were strongly correlated with native and exotic plant diversity in the study region. For the 78 1000-m2 plots, 59.4% of the variance in total species richness was explained by percentage of silt (coefficient = 0.647, t = 5.107, P < 0.001), elevation (coefficient = 0.012, t = 5.084, P < 0.001), and total foliar cover (coefficient = 0.110, t = 2.104, P < 0.039). Only 12.8% of the variance in exotic species cover (log10cover) was explained by percentage of clay (coefficient = -0.011, t = -2.878, P < 0.005), native species richness (coefficient = -0.011, t = -2.156, P < 0.034), and log10N (coefficient = 2.827, t = 1.860, P < 0.067). Native species cover and exotic species richness and frequency were also significantly positively correlated with percentage of soil N at the 1000-m2 plot scale. Our research led to five broad generalizations about current levels of grazing in these Rocky Mountain grasslands: (1) grazing probably has little effect on native species richness at landscape scales; (2) grazing probably has little effect on the accelerated spread of most exotic plant species at landscape scales; (3) grazing affects local plant species and life-form composition and cover, but spatial variation is considerable; (4) soil characteristics, climate, and disturbances may have a greater effect on plant species diversity than do current levels of grazing; and (5) few plant species show consistent, directional responses to grazing or cessation of grazing.

  3. The impact of global warming on floral traits that affect the selfing rate in a high-altitude plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in the abiotic environment, as those expected under global warming, can influence plant mating systems through changes in floral traits that affect selfing. Herkogamy (spatial separation of male and female functions within a flower), dichogamy (temporal separation) and total flower number af...

  4. Factors Affecting Distribution of Estrogenicity in the Influents, Effluents, and Biosolids of Canadian Wastewater Treatment Plants.

    PubMed

    Shieh, Ben H H; Louie, Alvin; Law, Francis C P

    2016-05-01

    Canadian wastewater treatment plants (WWTPs) release significant amounts of estrogenic chemicals to nearby surface waters. Environmental estrogens have been implicated as the causative agents of many developmental and reproductive problems in animals, including fish. The goals of this study were to assess the estrogenic activity in the influents, effluents, and biosolids of thirteen Canadian WWTPs using the yeast estrogen screen (YES) bioassay and to investigate whether factors, such as wastewater treatment method, sample storage, extraction efficiency, population, and summer/winter temperature had any effects on the distribution of estrogenicity in the WWTPs. Results of the study showed that estrogenicity from the influent to the effluent decreased in seven WWTPs, increased in two WWTPs, and did not change in four WWTPs during the winter. Estrogenic concentrations generally decreased in the order of biosolids > influents > effluents and ranged from 1.57 to 24.6, 1.25E-02 to 3.84E-01, and 9.46E-03 to 3.90E-01 ng estradiol equivalents/g or ml, respectively. The estrogenicity in the final effluents, but not those in the influents and biosolids, was significantly higher in the summer than the winter. Among the WWTP treatment methods, advanced, biological nutrient removal appeared to be the most effective method to remove estrogenic chemicals from wastewaters in Canada. Our studies help to identify factors or mechanisms that affect the distribution of estrogenicity in WWTPs, providing a better understanding on the discharges of estrogenic chemicals from WWTPs. PMID:26433808

  5. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    PubMed

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed. PMID:21533611

  6. Plant Products Affect Growth and Digestive Efficiency of Cultured Florida Pompano (Trachinotus carolinus) Fed Compounded Diets

    PubMed Central

    Lech, Gregory P.; Reigh, Robert C.

    2012-01-01

    Costs of compounded diets containing fish meal as a primary protein source can be expected to rise as fish meal prices increase in response to static supply and growing demand. Alternatives to fish meal are needed to reduce production costs in many aquaculture enterprises. Some plant proteins are potential replacements for fish meal because of their amino acid composition, lower cost and wide availability. In this study, we measured utilization of soybean meal (SBM) and soy protein concentrate (SPC) by Florida pompano fed compounded diets, to determine the efficacy of these products as fish meal replacements. We also calculated apparent digestibility coefficients (ADCs) for canola meal (CM), corn gluten meal (CGM), and distillers dried grains with solubles (DDGS), following typical methods for digestibility trials. Juvenile Florida pompano were fed fish-meal-free diets containing graded levels of SBM and SPC, and weight gain was compared to a control diet that contained SBM, SPC, and fish meal. Fish fed diets that contained 25–30 percent SBM in combination with 43–39 percent SPC had weight gain equivalent to fish fed the control diet with fish meal, while weight gain of fish fed other soy combinations was significantly less than that of the control group. Apparent crude protein digestibility of CGM was significantly higher than that of DDGS but not significantly different from CM. Apparent energy digestibility of DDGS was significantly lower than CGM but significantly higher than CM. Findings suggested that composition of the reference diet used in a digestibility trial affects the values of calculated ADCs, in addition to the chemical and physical attributes of the test ingredient. PMID:22536344

  7. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Einsiedl, Florian; Radke, Michael; Maloszewski, Piotr

    2010-09-01

    The occurrence of two pharmaceuticals, ibuprofen and diclofenac, in a vulnerable karst groundwater system was investigated. The hydrogeology of the karst system was identified by collecting 3H samples in groundwater over 27 years and by performing tracer tests. The isotopes and tracer data were interpreted by mathematical modeling to estimate the mean transit time of water and to characterize the hydrogeological flow paths in the groundwater system. By this approach, a mean 3H transit time of 4.6 years for the fissured-porous karst aquifer was determined, whereas the fast flowing water in the conduit system showed a mean transit time of days. Both pharmaceuticals which infiltrated along sinkholes and small streams into the karst system were detected in concentrations of up to approximately 1 μg/L in effluent water of the wastewater treatment plants. Diclofenac was present in most samples collected from four springs discharging the karst groundwater to the rivers Altmühl and Anlauter in concentrations between 3.6 and 15.4 ng/L. In contrast, ibuprofen was rarely detected in groundwater. The results of this study suggest that both pharmaceuticals move into the fractured system of the karst system and go into storage. Thus dilution processes are the dominant control on the concentrations of both pharmaceuticals in the fractured system, whereas biodegradation is likely less important.

  8. Improved Dynamic Modeling of the Cascade Distillation Subsystem and Analysis of Factors Affecting Its Performance

    NASA Technical Reports Server (NTRS)

    Perry, Bruce A.; Anderson, Molly S.

    2015-01-01

    The Cascade Distillation Subsystem (CDS) is a rotary multistage distiller being developed to serve as the primary processor for wastewater recovery during long-duration space missions. The CDS could be integrated with a system similar to the International Space Station Water Processor Assembly to form a complete water recovery system for future missions. A preliminary chemical process simulation was previously developed using Aspen Custom Modeler® (ACM), but it could not simulate thermal startup and lacked detailed analysis of several key internal processes, including heat transfer between stages. This paper describes modifications to the ACM simulation of the CDS that improve its capabilities and the accuracy of its predictions. Notably, the modified version can be used to model thermal startup and predicts the total energy consumption of the CDS. The simulation has been validated for both NaC1 solution and pretreated urine feeds and no longer requires retuning when operating parameters change. The simulation was also used to predict how internal processes and operating conditions of the CDS affect its performance. In particular, it is shown that the coefficient of performance of the thermoelectric heat pump used to provide heating and cooling for the CDS is the largest factor in determining CDS efficiency. Intrastage heat transfer affects CDS performance indirectly through effects on the coefficient of performance.

  9. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake.

    PubMed

    Vandecasteele, Bart; Sinicco, Tania; D'Hose, Tommy; Vanden Nest, Thijs; Mondini, Claudio

    2016-03-01

    We investigated the use of biochar (10% on a dry weight basis) to improve the composting process and/or the compost quality by adding it to either the feedstock mixture or the mature compost. The addition of biochar to the feedstocks was essayed in a full scale trial using a mixture of green waste and the organic fraction of municipal solid waste. Addition of biochar to mature compost was performed in a medium scale experiment. The use of biochar, even in small amounts, changed the composting process and the properties of the end products. However these effects depended on the time of application. We observed a faster decomposition in the bio-oxidative phase and lower greenhouse gas emissions when biochar was added at the beginning of the composting process, and a reduction in readily available P when biochar was applied during compost storage. Biochar as a means to increase the C content of the compost was only effective during compost storage. The P fertilizer replacement value of the compost with and without biochar was tested in a plant trial with annual ryegrass. While there was a clear effect on readily available P concentrations in the compost, adding biochar to the feedstock or the compost did not affect the P fertilizer replacement value. PMID:26708650

  10. Pulverizer tramp iron problems affect coal switching at Union Electric`s Labadie Plant

    SciTech Connect

    Fife, P.A.; Mahr, D.

    1997-07-01

    Union Electric`s Labadie Plant, is a 2400 MWe (4 x 600) coal-fired power generating plant. It is located 35 miles west of St. Louis. The four units were commissioned between 1970 and 1973. Major plant equipment is summarized. Coal is delivered via unit-trains and stacked by two tower style, radial stackers. The plant annually consumes approximately six million tons of coal. In 1981, a coal blending system was retrofitted to the plant. This system features a traveling stacker on an elevated berm and rotary plow reclaimers. The coal blending system feeds all four units. Bins weigh feeders, and belt scales precisely control blending proportions. The blending system has served the plant, increasing fuel flexibility in the types and blends of coal that can be used.

  11. Performance Assessment of Flashed Steam Geothermal Power Plant

    SciTech Connect

    Alt, Theodore E.

    1980-12-01

    Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor is the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.

  12. Do symbiotic microbes have a role in plant evolution, performance and response to stress?

    PubMed Central

    Lucero, Mary E; Reyes-Vera, Isaac; Havstad, Kris M

    2008-01-01

    Vascular plants have been considered as autonomous organisms especially when their performance has been interpreted at the genome and cellular level. In reality, vascular plants provide a unique ecological niche for diverse communities of cryptic symbiotic microbes which often contribute multiple benefits, such as enhanced photosynthetic efficiency, nutrient and water use and tolerance to abiotic and biotic stress. These benefits are similar to improvements sought by plant scientists working to develop ecologically sustainable crops for food, fiber and biofuels. Native desert plants include a community of indigenous endosymbiotic fungi that are structural components with cells, tissues, cell cultures and regenerated plants. These fungi regulate plant growth and development and contribute genes and natural products that enable plants to adapt to changing environments. A method developed for transferring these endophytes from cell cultures to non-host plants promises to be a revolutionary approach for the development of novel plant germplasm and has application in the field of plant biotechnology. PMID:19513202

  13. Simulated climate-vegetation interaction in semi-arid regions affected by plant diversity

    NASA Astrophysics Data System (ADS)

    Claussen, M.; Bathiany, S.; Brovkin, V.; Kleinen, T.

    2013-11-01

    The end of the African Humid Period between 6,000 and 4,000 years ago was associated with large changes in precipitation and vegetation cover. Sediment records from Lake Yoa, Chad, show a gradual decline in precipitation and fluctuation in vegetation over this interval, and have been suggested to demonstrate a weak interaction between climate and vegetation. However, interpretation of these data has neglected the potential effects of plant diversity on the stability of the climate-vegetation system. Here we use a conceptual model that represents plant diversity in terms of moisture requirement. Some of the plant types simulated are sensitive to changes in precipitation, which alone would lead to an unstable system with the possibility of abrupt changes. Other plants are more resilient, resulting in a stable system that changes gradually. We demonstrate that plant diversity tends to attenuate the instability of the interaction between climate and sensitive plant types, whereas it reduces the stability of the interaction between climate and less-sensitive plant types. Hence, despite large sensitivities of individual plant types to precipitation, a gradual decline in precipitation and shift in mean vegetation cover can occur. However, we suggest that the system could become unstable if some plant types were removed or introduced, leading to an abrupt regime shift.

  14. Light conditions affect sexual performance in a lekking tephritid fruit fly.

    PubMed

    Díaz-Fleischer, Francisco; Arredondo, José

    2011-08-01

    Sensory systems are very susceptible to early environment experience. Mating success depends on the transmission of information from the signaller to the receiver, which means that sensory biases caused by developmental environment are likely to affect sexual selection. We investigated the impact of the developmental visual environment (light spectrum) on male copulation behaviour and female preference in the lekking tephritid Anastrepha ludens. We reared flies in four different light spectrum conditions - red light, blue light, shaded light and darkness - during their first 16 days after emerging from pupae. We found that the light environment experienced during early adulthood affected mating frequency and, in some cases, the latency to copulate, but not copulation duration. Males exposed to any of the three light treatments (red, blue or shaded light) were more frequently chosen as mating partners than dark-reared males. Flies reared under dark conditions exhibited the lowest mating performance out of any of the rearing environments. Under field cage conditions, a slight assortative mating between blue- and red-light-reared flies was detected. Additionally, females reared in blue light and darkness mated less compared with females reared in red and shaded light. Our data demonstrate that male mating behaviour is flexible in response to light environment. The findings suggest that light spectrum only weakly affects the direction of sexual selection by female choice; however, dark rearing environments deeply affect mating success. PMID:21753054

  15. Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis.

    PubMed

    Doubková, Pavla; Sudová, Radka

    2014-04-01

    Serpentine soils have naturally elevated concentrations of certain heavy metals, including nickel. This study addressed the role of plant origin (serpentine vs. non-serpentine) and symbiosis with arbuscular mycorrhizal fungi (AMF) in plant Ni tolerance. A semi-hydroponic experiment involving three levels of Ni and serpentine and non-serpentine AMF isolates and populations of a model plant species (Knautia arvensis) revealed considerable negative effects of elevated Ni availability on both plant and fungal performance. Plant growth response to Ni was independent of edaphic origin; however, higher Ni tolerance of serpentine plants was indicated by a smaller decline in the concentrations of photosynthetic pigments and restricted root-to-shoot Ni translocation. Serpentine plants also retained relatively more Mg in their roots, resulting in a higher shoot Ca/Mg ratio. AMF inoculation, especially with the non-serpentine isolate, further aggravated Ni toxicity to host plants. Therefore, AMF do not appear to be involved in Ni tolerance of serpentine K. arvensis plants. PMID:24136374

  16. How Explicit and Implicit Test Instructions in an Implicit Learning Task Affect Performance

    PubMed Central

    Witt, Arnaud; Puspitawati, Ira; Vinter, Annie

    2013-01-01

    Typically developing children aged 5 to 8 years were exposed to artificial grammar learning. Following an implicit exposure phase, half of the participants received neutral instructions at test while the other half received instructions making a direct, explicit reference to the training phase. We first aimed to assess whether implicit learning operated in the two test conditions. We then evaluated the differential impact of age on learning performances as a function of test instructions. The results showed that performance did not vary as a function of age in the implicit instructions condition, while age effects emerged when explicit instructions were employed at test. However, performance was affected differently by age and the instructions given at test, depending on whether the implicit learning of short or long units was assessed. These results suggest that the claim that the implicit learning process is independent of age needs to be revised. PMID:23326409

  17. Assessment of Habitat Suitability Is Affected by Plant-Soil Feedback: Comparison of Field and Garden Experiment

    PubMed Central

    Hemrová, Lucie; Knappová, Jana; Münzbergová, Zuzana

    2016-01-01

    Background Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities) are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern. Aims and Methods In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment. Key Results In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly

  18. PERFORMANCE OF TRICKLING FILTER PLANTS: RELIABILITY, STABILITY, VARIABILITY

    EPA Science Inventory

    Effluent quality variability from trickling filters was examined in this study by statistically analyzing daily effluent BOD5 and suspended solids data from 11 treatment plants. Summary statistics (mean, standard deviation, etc.) were examined to determine the general characteris...

  19. Soil moisture variations affect short-term plant-microbial competition for ammonium, glycine, and glutamate

    PubMed Central

    Månsson, Katarina F; Olsson, Magnus O; Falkengren-Grerup, Ursula; Bengtsson, Göran

    2014-01-01

    We tested whether the presence of plant roots would impair the uptake of ammonium (), glycine, and glutamate by microorganisms in a deciduous forest soil exposed to constant or variable moisture in a short-term (24-h) experiment. The uptake of 15NH4 and dual labeled amino acids by the grass Festuca gigantea L. and soil microorganisms was determined in planted and unplanted soils maintained at 60% WHC (water holding capacity) or subject to drying and rewetting. The experiment used a design by which competition was tested in soils that were primed by plant roots to the same extent in the planted and unplanted treatments. Festuca gigantea had no effect on microbial N uptake in the constant moist soil, but its presence doubled the microbial uptake in the dried and rewetted soil compared with the constant moist. The drying and rewetting reduced by half or more the uptake by F. gigantea, despite more than 60% increase in the soil concentration of . At the same time, the amino acid and -N became equally valued in the plant uptake, suggesting that plants used amino acids to compensate for the lower acquisition. Our results demonstrate the flexibility in plant-microbial use of different N sources in response to soil moisture fluctuations and emphasize the importance of including transient soil conditions in experiments on resource competition between plants and soil microorganisms. Competition between plants and microorganisms for N is demonstrated by a combination of removal of one of the potential competitors, the plant, and subsequent observations of the uptake of N in the organisms in soils that differ only in the physical presence and absence of the plant during a short assay. Those conditions are necessary to unequivocally test for competition. PMID:24772283

  20. Retention of OsNMD3 in the cytoplasm disturbs protein synthesis efficiency and affects plant development in rice.

    PubMed

    Shi, Yanyun; Liu, Xiangling; Li, Rui; Gao, Yaping; Xu, Zuopeng; Zhang, Baocai; Zhou, Yihua

    2014-07-01

    The ribosome is the basic machinery for translation, and biogenesis of ribosomes involves many coordinated events. However, knowledge about ribosomal dynamics in higher plants is very limited. This study chose a highly conserved trans-factor, the 60S ribosomal subunit nuclear export adaptor NMD3, to characterize the mechanism of ribosome biogenesis in the monocot plant Oryza sativa (rice). O. sativa NMD3 (OsNMD3) shares all the common motifs and shuttles between the nucleus and cytoplasm via CRM1/XPO1. A dominant negative form of OsNMD3 with a truncated nuclear localization sequence (OsNMD3(ΔNLS)) was retained in the cytoplasm, consequently interfering with the release of OsNMD3 from pre-60S particles and disturbing the assembly of ribosome subunits. Analyses of the transactivation activity and cellulose biosynthesis level revealed low protein synthesis efficiency in the transgenic plants compared with the wild-type plants. Pharmaceutical treatments demonstrated structural alterations in ribosomes in the transgenic plants. Moreover, global expression profiles of the wild-type and transgenic plants were investigated using the Illumina RNA sequencing approach. These expression profiles suggested that overexpression of OsNMD3(ΔNLS) affected ribosome biogenesis and certain basic pathways, leading to pleiotropic abnormalities in plant growth. Taken together, these results strongly suggest that OsNMD3 is important for ribosome assembly and the maintenance of normal protein synthesis efficiency. PMID:24723395

  1. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.

    PubMed

    Li, Fengcheng; Zhang, Mingliang; Guo, Kai; Hu, Zhen; Zhang, Ran; Feng, Yongqing; Yi, Xiaoyan; Zou, Weihua; Wang, Lingqiang; Wu, Changyin; Tian, Jinshan; Lu, Tiegang; Xie, Guosheng; Peng, Liangcai

    2015-05-01

    Rice is a major food crop with enormous biomass residue for biofuels. As plant cell wall recalcitrance basically decides a costly biomass process, genetic modification of plant cell walls has been regarded as a promising solution. However, due to structural complexity and functional diversity of plant cell walls, it becomes essential to identify the key factors of cell wall modifications that could not much alter plant growth, but cause an enhancement in biomass enzymatic digestibility. To address this issue, we performed systems biology analyses of a total of 36 distinct cell wall mutants of rice. As a result, cellulose crystallinity (CrI) was examined to be the key factor that negatively determines either the biomass enzymatic saccharification upon various chemical pretreatments or the plant lodging resistance, an integrated agronomic trait in plant growth and grain production. Notably, hemicellulosic arabinose (Ara) was detected to be the major factor that negatively affects cellulose CrI probably through its interlinking with β-1,4-glucans. In addition, lignin and G monomer also exhibited the positive impact on biomass digestion and lodging resistance. Further characterization of two elite mutants, Osfc17 and Osfc30, showing normal plant growth and high biomass enzymatic digestion in situ and in vitro, revealed the multiple GH9B candidate genes for reducing cellulose CrI and XAT genes for increasing hemicellulosic Ara level. Hence, the results have suggested the potential cell wall modifications for enhancing both biomass enzymatic digestibility and plant lodging resistance by synchronically overexpressing GH9B and XAT genes in rice. PMID:25418842

  2. Distractions, distractions: does instant messaging affect college students' performance on a concurrent reading comprehension task?

    PubMed

    Fox, Annie Beth; Rosen, Jonathan; Crawford, Mary

    2009-02-01

    Instant messaging (IM) has become one of the most popular forms of computer-mediated communication (CMC) and is especially prevalent on college campuses. Previous research suggests that IM users often multitask while conversing online. To date, no one has yet examined the cognitive effect of concurrent IM use. Participants in the present study (N = 69) completed a reading comprehension task uninterrupted or while concurrently holding an IM conversation. Participants who IMed while performing the reading task took significantly longer to complete the task, indicating that concurrent IM use negatively affects efficiency. Concurrent IM use did not affect reading comprehension scores. Additional analyses revealed that the more time participants reported spending on IM, the lower their reading comprehension scores. Finally, we found that the more time participants reported spending on IM, the lower their self-reported GPA. Implications and future directions are discussed. PMID:19006461

  3. Category fluency performance in patients with schizophrenia and bipolar disorder: The influence of affective categories.

    PubMed

    Rossell, Susan L

    2006-02-28

    Semantic fluency (SF) and phonological fluency (PF) were examined in large groups of schizophrenia patients, bipolar patients and controls. As well as standard SF categories (animals and food), fluency to two affective categories, happy and fear was measured, i.e. participants were asked to produce as many words as they could that resulted in or are associated with fear or happiness. Schizophrenia patients showed SF and PF deficits. Bipolar patients showed PF deficits. Thus, PF is argued to be a good cognitive marker in both disorders. Severity of delusions was related to SF performance in all patients. The patient groups showed different patterns on the affective categories compared to controls: the bipolar patients were better and produced more words, especially to the happiness category, and the schizophrenia patients were impaired and produced less words. The results suggest an interesting interaction between psychotic illnesses, fluency and emotion. PMID:16376054

  4. Gender differences in introductory university physics performance: The influence of high school physics preparation and affect

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra Sana

    The attrition of females studying physics after high school is a concern to the science education community. Most undergraduate science programs require introductory physics coursework. Thus, success in introductory physics is necessary for students to progress to higher levels of science study. Success also influences attitudes; if females are well-prepared, feel confident, and do well in introductory physics, they may be inclined to study physics further. This quantitative study using multilevel modeling focused on determining factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that influenced female and male performance in introductory university physics. The study controlled for some university/course level characteristics as well as student demographic and academic background characteristics. The data consisted of 1973 surveys from 54 introductory physics courses within 35 universities across the US. The results highlight high school physics and affective experiences that differentially influenced female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects, cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believed that high school physics would help in university physics. There were also experiences that had a similar influence on female and male performance. Positively related to performance were: covering fewer topics for longer periods of time, the history of physics as a recurring topic, physics-related videos, and test/quiz questions that involved calculations and/or were drawn from standardized tests. Negatively related to performance were: student-designed projects, reading/discussing labs the day before performing them, microcomputer based laboratories, discussion after demonstrations, and family

  5. Study of parameters affecting the performance of solar desiccant cooling systems

    NASA Astrophysics Data System (ADS)

    Pesaran, A. A.; Hoo, E. A.

    1993-01-01

    The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65 to 160 C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

  6. Salt tolerance and stress level affect plant biomass-density relationships and neighbor effects

    NASA Astrophysics Data System (ADS)

    Yu, Zhenxing; Chen, Wenwen; Zhang, Qian; Yang, Haishui; Tang, Jianjun; Weiner, Jacob; Chen, Xin

    2014-07-01

    It has been shown that plant biomass-density relationships are altered under extreme or stressed conditions. We do not know whether variation in biomass-density relationships is a direct result of stress tolerance or occurs via changes in plant-plant interactions. Here, we evaluated biomass-density relationships and neighbor effects in six plant species that differ in salt tolerance in a salt marsh, and conducted a literature review of biomass-density relationship under higher and lower stress levels. Our field study showed that both neighbor effects and the exponent of the biomass-density relationship (α) varied among plant species with different degrees of salt tolerance. There was a positive relationship between neighbor effects (measured as relative interaction index) and α-value among the tested species. The literature review showed that α and its variation increased under higher stress. Our results indicate that plant species with different salinity tolerance differ in the direction and strength of neighbor effects, resulting in variation in biomass-density relationships. Our results support the hypothesis that differences in biomass-density relationships among species are not due to differences in stress tolerance alone, they are mediated by changes in plant-plant interactions.

  7. Are herbage yield and yield stability affected by plant species diversity in sown pasture mixtures?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A tenet of plant biodiversity theory in grasslands is that increased diversity contributes to the stability of ecosystems. In managed grasslands, such as pastures, greater stability of herbage production as a result of increased plant species diversity would be beneficial. In this study, I combined ...

  8. Timing of examinations affects school performance differently in early and late chronotypes.

    PubMed

    van der Vinne, Vincent; Zerbini, Giulia; Siersema, Anne; Pieper, Amy; Merrow, Martha; Hut, Roelof A; Roenneberg, Till; Kantermann, Thomas

    2015-02-01

    Circadian clocks of adolescents typically run late-including sleep times-yet adolescents generally are expected at school early in the morning. Due to this mismatch between internal (circadian) and external (social) times, adolescents suffer from chronic sleep deficiency, which, in turn, affects academic performance negatively. This constellation affects students' future career prospects. Our study correlates chronotype and examination performance. In total, 4734 grades were collected from 741 Dutch high school students (ages 11-18 years) who had completed the Munich ChronoType Questionnaire to estimate their internal time. Overall, the lowest grades were obtained by students who were very late chronotypes (MSFsc > 5.31 h) or slept very short on schooldays (SDw < 7.03 h). The effect of chronotype on examination performance depended on the time of day that examinations were taken. Opposed to late types, early chronotypes obtained significantly higher grades during the early (0815-0945 h) and late (1000-1215 h) morning. This group difference in grades disappeared in the early afternoon (1245-1500 h). Late types also obtained lower grades than early types when tested at the same internal time (hours after MSFsc), which may reflect general attention and learning disadvantages of late chronotypes during the early morning. Our results support delaying high school starting times as well as scheduling examinations in the early afternoon to avoid discrimination of late chronotypes and to give all high school students equal academic opportunities. PMID:25537752

  9. Swimming performance of hatchling green turtles is affected by incubation temperature

    NASA Astrophysics Data System (ADS)

    Burgess, Elizabeth A.; Booth, David T.; Lanyon, Janet M.

    2006-08-01

    In an experiment repeated for two separate years, incubation temperature was found to affect the body size and swimming performance of hatchling green turtles ( Chelonia mydas). In the first year, hatchlings from eggs incubated at 26°C were larger in size than hatchlings from 28 and 30°C, whilst in the second year hatchlings from 25.5°C were similar in size to hatchings from 30°C. Clutch of origin influenced the size of hatchlings at all incubation temperatures even when differences in egg size were taken into account. In laboratory measurements of swimming performance, in seawater at 28°C, hatchlings from eggs incubated at 25.5 and 26°C had a lower stroke rate frequency and lower force output than hatchlings from 28 and 30°C. These differences appeared to be caused by the muscles of hatchlings from cooler temperatures fatiguing at a faster rate. Clutch of origin did not influence swimming performance. This finding that hatchling males incubated at lower temperature had reduced swimming ability may affect their survival whilst running the gauntlet of predators in shallow near-shore waters, prior to reaching the relative safety of the open sea.

  10. Effects of drought-affected corn and nonstarch polysaccharide enzyme inclusion on nursery pig growth performance.

    PubMed

    Jones, C K; Frantz, E L; Bingham, A C; Bergstrom, J R; DeRouchey, J M; Patience, J F

    2015-04-01

    The effectiveness of carbohydrase enzymes has been inconsistent in corn-based swine diets; however, the increased substrate of nonstarch polysaccharides in drought-affected corn may provide an economic model for enzyme inclusion, but this has not been evaluated. A total of 360 barrows (PIC 1050 × 337, initially 5.85 kg BW) were used to determine the effects of drought-affected corn inclusion with or without supplementation of commercial carbohydrases on growth performance and nutrient digestibility of nursery pigs. Initially, 34 corn samples were collected to find representatives of normal and drought-affected corn. The lot selected to represent the normal corn had a test weight of 719.4 kg/m3, 15.0% moisture, and 4.2% xylan. The lot selected to represent drought-affected corn had a test weight of 698.8 kg/m3, 14.3% moisture, and 4.7% xylan. After a 10-d acclimation period postweaning, nursery pigs were randomly allotted to 1 of 8 dietary treatments in a completely randomized design. Treatments were arranged in a 2 × 4 factorial with main effects of corn (normal vs. drought affected) and enzyme inclusion (none vs. 100 mg/kg Enzyme A vs. 250 mg/kg Enzyme B vs. 100 mg/kg Enzyme A + 250 mg/kg Enzyme B). Both enzymes were included blends of β-glucanase, cellulose, and xylanase (Enzyme A) or hemicellulase and pectinases (Enzyme B). Pigs were fed treatment diets from d 10 to 35 postweaning in 2 phases. Feed and fecal samples were collected on d 30 postweaning to determine apparent total tract digestibility of nutrients. The nutrient concentrations of normal and drought-affected corn were similar, which resulted in few treatment or main effects differences of corn type or enzyme inclusion. No interactions were observed (P > 0.10) between corn source and enzyme inclusion. Overall (d 10 to 35), treatments had no effect on ADG or ADFI, but enzyme A inclusion tended to improve (P < 0.10; 0.74 vs. 0.69) G:F, which was primarily driven by the improved feed efficiency (0

  11. Is the Performance of a Specialist Herbivore Affected by Female Choices and the Adaptability of the Offspring?

    PubMed Central

    Galdino, Tarcísio Visintin da Silva; Picanço, Marcelo Coutinho; Ferreira, Dalton Oliveira; Silva, Geverson Aelton Resende; de Souza, Thadeu Carlos; Silva, Gerson Adriano

    2015-01-01

    The performance of herbivorous insects is related to the locations of defenses and nutrients found in the different plant organs on which they feed. In this context, the females of herbivorous insect species select certain parts of the plant where their offspring can develop well. In addition, their offspring can adapt to plant defenses. A system where these ecological relationships can be studied occurs in the specialist herbivore, Tuta absoluta, on tomato plants. In our experiments we evaluated: (i) the performance of the herbivore T. absoluta in relation to the tomato plant parts on which their offspring had fed, (ii) the spatial distribution of the insect stages on the plant canopy and (iii) the larval resistance to starvation and their walking speed at different instar stages. We found that the T. absoluta females preferred to lay their eggs in the tomato plant parts where their offspring had greater chances of success. We verified that the T. absoluta females laid their eggs on both sides of the leaves to better exploit resources. We also observed that the older larvae (3rd and 4th instars) moved to the most nutritious parts of the plant, thus increasing their performance. The T. absoluta females and offspring (larvae) were capable of identifying plant sites where their chances of better performance were higher. Additionally, their offspring (larvae) spread across the plant to better exploit the available plant nutrients. These behavioral strategies of T. absoluta facilitate improvement in their performance after acquiring better resources, which help reduce their mortality by preventing the stimulation of plant defense compounds and the action of natural enemies. PMID:26600074

  12. Evaluating the Performance of Volunteers in Mapping Invasive Plants in Public Conservation Lands

    NASA Astrophysics Data System (ADS)

    Jordan, Rebecca C.; Brooks, Wesley R.; Howe, David V.; Ehrenfeld, Joan G.

    2012-02-01

    Citizen science programs are touted as useful tools for engaging the public in science and for collecting important data for scientists and resource managers. To accomplish the latter, it must be shown that data collected by volunteers is sufficiently accurate and reliable. We engaged 119 volunteers over three years to map and estimate abundance of invasive plants in New York and New Jersey parklands. We tested their accuracy via collected pressed samples and by subsampling their transect points. We also compared the performances of volunteers and botanical experts. Our results support the notion that volunteer participation can enhance the data generated by scientists alone. We found that the quality of data collected might be affected by the environment in which the data are collected. We suggest that giving consideration to how people learn can not only help to achieve educational goals but can also help to produce more data to be used in scientific study.

  13. Evaluating the performance of volunteers in mapping invasive plants in public conservation lands.

    PubMed

    Jordan, Rebecca C; Brooks, Wesley R; Howe, David V; Ehrenfeld, Joan G

    2012-02-01

    Citizen science programs are touted as useful tools for engaging the public in science and for collecting important data for scientists and resource managers. To accomplish the latter, it must be shown that data collected by volunteers is sufficiently accurate and reliable. We engaged 119 volunteers over three years to map and estimate abundance of invasive plants in New York and New Jersey parklands. We tested their accuracy via collected pressed samples and by subsampling their transect points. We also compared the performances of volunteers and botanical experts. Our results support the notion that volunteer participation can enhance the data generated by scientists alone. We found that the quality of data collected might be affected by the environment in which the data are collected. We suggest that giving consideration to how people learn can not only help to achieve educational goals but can also help to produce more data to be used in scientific study. PMID:22134737

  14. Evaluation of solar thermal power plants using economic and performance simulations

    NASA Technical Reports Server (NTRS)

    El-Gabawali, N.

    1980-01-01

    An energy cost analysis is presented for central receiver power plants with thermal storage and point focusing power plants with electrical storage. The present approach is based on optimizing the size of the plant to give the minimum energy cost (in mills/kWe hr) of an annual plant energy production. The optimization is done by considering the trade-off between the collector field size and the storage capacity for a given engine size. The energy cost is determined by the plant cost and performance. The performance is estimated by simulating the behavior of the plant under typical weather conditions. Plant capital and operational costs are estimated based on the size and performance of different components. This methodology is translated into computer programs for automatic and consistent evaluation.

  15. Drought induced changes of plant belowground carbon allocation affect soil microbial community function in a subalpine meadow

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Bahn, M.; Fritz, K.; Hasibeder, R.; Richter, A.

    2012-12-01

    There is growing evidence that climate extremes may affect ecosystem carbon dynamics more strongly than gradual changes in temperatures or precipitation. Climate projections suggest more frequent heat waves accompanied by extreme drought periods in many parts of Europe, including the Alps. Drought is considered to decrease plant C uptake and turnover, which may in turn decrease belowground C allocation and potentially has significant consequences for microbial community composition and functioning. However, information on effects of drought on C dynamics at the plant-soil interface in real ecosystems is still scarce. Our study aimed at understanding how summer drought affects soil microbial community composition and the uptake of recently assimilated plant C by different microbial groups in grassland. We hypothesized that under drought 1) the microbial community shifts, fungi being less affected than bacteria, 2) plants decrease belowground C allocation, which further reduces C transfer to soil microbes and 3) the combined effects of belowground C allocation, reduced soil C transport due to reduced soil moisture and shift in microbial communities cause an accumulation of extractable organic C in the soil. Our study was conducted as part of a rain-exclusion experiment in a subalpine meadow in the Austrian Central Alps. After eight weeks of rain exclusion we pulse labelled drought and control plots with 13CO2 and traced C in plant biomass, extractable organic C (EOC) and soil microbial communities using phospholipid fatty acids (PLFA). Drought induced a shift of the microbial community composition: gram-positive bacteria became more dominant, whereas gram-negative bacteria were not affected by drought. Also the relative abundance of fungal biomass was not affected by drought. While total microbial biomass (as estimated by total microbial PLFA content) increased during drought, less 13C was taken up. This reduction was pronounced for bacterial biomarkers. It reflects

  16. Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue.

    PubMed

    Millet, Guillaume Y; Muthalib, Makii; Jubeau, Marc; Laursen, Paul B; Nosaka, Kazunori

    2012-04-01

    To test the hypothesis that hypoxia centrally affects performance independently of afferent feedback and peripheral fatigue, we conducted two experiments under complete vascular occlusion of the exercising muscle under different systemic O(2) environmental conditions. In experiment 1, 12 subjects performed repeated submaximal isometric contractions of the elbow flexor to exhaustion (RCTE) with inspired O(2) fraction fixed at 9% (severe hypoxia, SevHyp), 14% (moderate hypoxia, ModHyp), 21% (normoxia, Norm), or 30% (hyperoxia, Hyper). The number of contractions (performance), muscle (biceps brachii), and prefrontal near-infrared spectroscopy (NIRS) parameters and high-frequency paired-pulse (PS100) evoked responses to electrical muscle stimulation were monitored. In experiment 2, 10 subjects performed another RCTE in SevHyp and Norm conditions in which the number of contractions, biceps brachii electromyography responses to electrical nerve stimulation (M wave), and transcranial magnetic stimulation responses (motor-evoked potentials, MEP, and cortical silent period, CSP) were recorded. Performance during RCTE was significantly reduced by 10-15% in SevHyp (arterial O(2) saturation, SpO(2) = ∼75%) compared with ModHyp (SpO(2) = ∼90%) or Norm/Hyper (SpO(2) > 97%). Performance reduction in SevHyp occurred despite similar 1) metabolic (muscle NIRS parameters) and functional (changes in PS100 and M wave) muscle states and 2) MEP and CSP responses, suggesting comparable corticospinal excitability and spinal and cortical inhibition between SevHyp and Norm. It is concluded that, in SevHyp, performance and central drive can be altered independently of afferent feedback and peripheral fatigue. It is concluded that submaximal performance in SevHyp is partly reduced by a mechanism related directly to brain oxygenation. PMID:22323647

  17. Performance level affects the dietary supplement intake of both individual and team sports athletes.

    PubMed

    Giannopoulou, Ifigenia; Noutsos, Kostantinos; Apostolidis, Nikolaos; Bayios, Ioannis; Nassis, George P

    2013-01-01

    Dietary supplement (DS) intake is high in elite level athletes, however few studies have investigated the impact that the performance level of the athletes has on supplementation intake in individual and team sports. The purpose of the study was to determine and compare the DS intake among individual and team sport athletes of various performance levels. A total of 2845 participants (athletes: 2783, controls: 62) between the ages of 11 and 44 years old participated in the study. A 3-page questionnaire was developed to assess the intake of DS. Athletes were categorized based on participation in individual (n = 775) and team sports (n = 2008). To assess the effect of performance level in supplementation intake, athletes were categorized based on training volume, participation in the national team, and winning at least one medal in provincial, national, international or Olympic games. Overall, 37% of all athletes of various performance levels reported taking at least one DS in the last month. A higher prevalence of DS intake was reported in individual (44%) compared to team sport athletes (35%) (p < 0.001). Athletes of high performance level reported greater DS intake compared to lower performance athletes. Males reported a significantly greater prevalence of DS intake compared to females. The most popular supplement reported was amino acid preparation with the main reason of supplementation being endurance improvements. In conclusion, performance level and type of sport appear to impact the DS practices of male and female athletes. These findings should be validated in other populations. Key points37% of Mediterranean athletes of various sports and levels have reported taking dietary supplements.The performance level of the athletes affects the dietary supplementation intake.Athletes in individual sports appear to have a higher DS intake compared to team sport athletes.Male athletes appear to take more dietary supplements compared to female athletes. PMID:24149744

  18. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions

    PubMed Central

    Ton, Jurriaan; Brandenburg, Anna; Karlen, Danielle; Zopfi, Jakob; Turlings, Ted C. J.

    2014-01-01

    Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community. PMID:24127750

  19. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions.

    PubMed

    D'Alessandro, Marco; Erb, Matthias; Ton, Jurriaan; Brandenburg, Anna; Karlen, Danielle; Zopfi, Jakob; Turlings, Ted C J

    2014-04-01

    Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community. PMID:24127750

  20. 40 CFR Table 3 to Subpart Mmmmm of... - Performance Test Requirements for New or Reconstructed Flame Lamination Affected Sources

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or Reconstructed Flame Lamination Affected Sources 3 Table 3 to Subpart MMMMM of Part 63 Protection... Lamination Affected Sources As stated in § 63.8800, you must comply with the requirements for performance tests for new or reconstructed flame lamination affected sources in the following table using...

  1. The Functional Effect of Teacher Positive and Neutral Affect on Task Performance of Students with Significant Disabilities

    ERIC Educational Resources Information Center

    Park, Sungho; Singer, George H. S.; Gibson, Mary

    2005-01-01

    The study uses an alternating treatment design to evaluate the functional effect of teacher's affect on students' task performance. Tradition in special education holds that teachers should engage students using positive and enthusiastic affect for task presentations and praise. To test this assumption, we compared two affective conditions. Three…

  2. (Controls of the plant endomembrane-secretory pathway): Performance report

    SciTech Connect

    Not Available

    1987-01-01

    This project has been directed towards an understanding of the cellular and molecular mechanisms by which higher plants control the composition of the plasma membrane, through analysis of the biosynthesis, modification and targeting of plasma membrane proteins and glycoproteins. We have undertaken an identification of molecular markers both for the plasma membrane and for the biosynthetic processes, and the development of techniques for the isolation of conditional-lethal mutants defective at defined stages within the endomembrane-secretory pathway responsible for the biosynthesis, modification and targeting of plasma membrane proteins and glycoproteins. For the identification of molecular markers for the plasma membrane, monoclonal antibodies directed against epitopes present at the plant cell surface have been developed. Novel molecular markers for the plant plasma membrane and for the endomembrane-secretory pathway have been sought. Methods for the analysis of beta-glucuronidase in higher plants have been developed. These technologies have involved the use of flow cytometry and fluorescence-activated cell sorting. In addition, we have been investigating the feasibility of expression of animal plasma membrane marker proteins in plants, specifically the VSV G-protein. 5 refs., 6 figs.

  3. Plant Trait Assembly Affects Superiority of Grazer's Foraging Strategies in Species-Rich Grasslands

    PubMed Central

    Mládek, Jan; Mládková, Pavla; Hejcmanová, Pavla; Dvorský, Miroslav; Pavlu, Vilém; De Bello, Francesco; Duchoslav, Martin; Hejcman, Michal; Pakeman, Robin J.

    2013-01-01

    Background Current plant – herbivore interaction models and experiments with mammalian herbivores grazing plant monocultures show the superiority of a maximizing forage quality strategy (MFQ) over a maximizing intake strategy (MI). However, there is a lack of evidence whether grazers comply with the model predictions under field conditions. Methodology/Findings We assessed diet selection of sheep (Ovis aries) using plant functional traits in productive mesic vs. low-productivity dry species-rich grasslands dominated by resource-exploitative vs. resource-conservative species respectively. Each grassland type was studied in two replicates for two years. We investigated the first grazing cycle in a set of 288 plots with a diameter of 30 cm, i.e. the size of sheep feeding station. In mesic grasslands, high plot defoliation was associated with community weighted means of leaf traits referring to high forage quality, i.e. low leaf dry matter content (LDMC) and high specific leaf area (SLA), with a high proportion of legumes and the most with high community weighted mean of forage indicator value. In contrast in dry grasslands, high community weighted mean of canopy height, an estimate of forage quantity, was the best predictor of plot defoliation. Similar differences in selection on forage quality vs. quantity were detected within plots. Sheep selected plants with higher forage indicator values than the plot specific community weighted mean of forage indicator value in mesic grasslands whereas taller plants were selected in dry grasslands. However, at this scale sheep avoided legumes and plants with higher SLA, preferred plants with higher LDMC while grazing plants with higher forage indicator values in mesic grasslands. Conclusions Our findings indicate that MFQ appears superior over MI only in habitats with a predominance of resource-exploitative species. Furthermore, plant functional traits (LDMC, SLA, nitrogen fixer) seem to be helpful correlates of forage quality

  4. Thermal tolerance affects mutualist attendance in an ant-plant protection mutualism

    PubMed Central

    Fitzpatrick, Ginny; Lanan, Michele C.; Bronstein, Judith L.

    2014-01-01

    Mutualism is an often-complex interaction among multiple species, each of which may respond differently to abiotic conditions. The effects of temperature on the formation, dissolution, and success of these and other species interactions remain poorly understood. We studied the thermal ecology of the mutualism between the cactus Ferocactus wislizeni and its ant defenders (Forelius pruinosus, Crematogaster opuntiae, Solenopsis aurea, and Solenopsis xyloni) in the Sonoran Desert, USA. The ants are attracted to extrafloral nectar produced by the plants and in exchange protect the plants from herbivores; there is a hierarchy of mutualist effectiveness based on aggression toward herbivores. We determined the relationship between temperature and ant activity on plants, the thermal tolerance of each ant species, and ant activity in relation to the thermal environment of plants. Temperature played a role in determining which species interact as mutualists. Three of the four ant species abandoned the plants during the hottest part of the day (up to 40°C), returning when surface temperature began to decrease in the afternoon. The least effective ant mutualist, F. pruinosus, had a significantly higher critical thermal maximum than the other three species, was active across the entire range of plant surface temperatures observed (13.8-57.0°C), and visited plants that reached the highest temperatures. F. pruinosus occupied some plants full-time and invaded plants occupied by more dominant species when those species were thermally excluded. Combining data on thermal tolerance and mutualist effectiveness provides a potentially powerful tool for predicting the effects of temperature on mutualisms and mutualistic species. PMID:25012597

  5. Thermal tolerance affects mutualist attendance in an ant-plant protection mutualism.

    PubMed

    Fitzpatrick, Ginny; Lanan, Michele C; Bronstein, Judith L

    2014-09-01

    Mutualism is an often complex interaction among multiple species, each of which may respond differently to abiotic conditions. The effects of temperature on the formation, dissolution, and success of these and other species interactions remain poorly understood. We studied the thermal ecology of the mutualism between the cactus Ferocactus wislizeni and its ant defenders (Forelius pruinosus, Crematogaster opuntiae, Solenopsis aurea, and Solenopsis xyloni) in the Sonoran Desert, USA. The ants are attracted to extrafloral nectar produced by the plants and, in exchange, protect the plants from herbivores; there is a hierarchy of mutualist effectiveness based on aggression toward herbivores. We determined the relationship between temperature and ant activity on plants, the thermal tolerance of each ant species, and ant activity in relation to the thermal environment of plants. Temperature played a role in determining which species interact as mutualists. Three of the four ant species abandoned the plants during the hottest part of the day (up to 40 °C), returning when surface temperature began to decrease in the afternoon. The least effective ant mutualist, F. pruinosus, had a significantly higher critical thermal maximum than the other three species, was active across the entire range of plant surface temperatures observed (13.8-57.0 °C), and visited plants that reached the highest temperatures. F. pruinosus occupied some plants full-time and invaded plants occupied by more dominant species when those species were thermally excluded. Combining data on thermal tolerance and mutualist effectiveness provides a potentially powerful tool for predicting the effects of temperature on mutualisms and mutualistic species. PMID:25012597

  6. Performance calculations for 200-1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.

    1981-01-01

    The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.

  7. How Does the Driver’s Perception Reaction Time Affect the Performances of Crash Surrogate Measures?

    PubMed Central

    Kuang, Yan; Qu, Xiaobo; Weng, Jinxian; Etemad-Shahidi, Amir

    2015-01-01

    With the merit on representing traffic conflict through examining the crash mechanism and causality proactively, crash surrogate measures have long been proposed and applied to evaluate the traffic safety. However, the driver’s Perception-Reaction Time (PRT), an important variable in crash mechanism, has not been considered widely into surrogate measures. In this regard, it is important to know how the PRT affects the performances of surrogate indicators. To this end, three widely used surrogate measures are firstly modified by involving the PRT into their crash mechanisms. Then, in order to examine the difference caused by the PRT, a comparative study is carried out on a freeway section of the Pacific Motorway, Australia. This result suggests that the surrogate indicators’ performances in representing rear-end crash risks are improved with the incorporating of the PRT for the investigated section. PMID:26398416

  8. 48 CFR 245.603-70 - Contractor performance of plant clearance duties.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... plant clearance duties. 245.603-70 Section 245.603-70 Federal Acquisition Regulations System DEFENSE..., Redistribution, and Disposal of Contractor Inventory 245.603-70 Contractor performance of plant clearance duties... activity approval and contractor concurrence, authorize selected contractors to perform certain...

  9. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    PubMed

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473

  10. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields

    PubMed Central

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473

  11. Individual Differences in School Mathematics Performance and Feelings of Difficulty: The Effects of Cognitive Ability, Affect, Age, and Gender.

    ERIC Educational Resources Information Center

    Efklides, Anastasia; Papadaki, Maria; Papantoniou, Georgia; Kiosseoglou, Gregoris

    1999-01-01

    Explores possible individual differences effects on school mathematics performance and feelings of difficulty (FOD) of 243 subjects, ages 13 to 15 years. Considers cognitive ability, affect, age, and gender. Finds that ability directly influenced performance whereas both ability and affect influenced FOD. Discusses the results. (CMK)

  12. Cognition-Based and Affect-Based Trust as Mediators of Leader Behavior Influences on Team Performance

    ERIC Educational Resources Information Center

    Schaubroeck, John; Lam, Simon S. K.; Peng, Ann Chunyan

    2011-01-01

    We develop a model in which cognitive and affective trust in the leader mediate the relationship between leader behavior and team psychological states that, in turn, drive team performance. The model is tested on a sample of 191 financial services teams in Hong Kong and the U.S. Servant leadership influenced team performance through affect-based…

  13. Regulation of Expansin Gene Expression Affects Growth and Development in Transgenic Rice Plants

    PubMed Central

    Choi, Dongsu; Lee, Yi; Cho, Hyung-Taeg; Kende, Hans

    2003-01-01

    To investigate the in vivo functions of expansins, we generated transgenic rice plants that express sense and antisense constructs of the expansin gene OsEXP4. In adult plants with constitutive OsEXP4 expression, 12% of overexpressors were taller and 88% were shorter than the average control plants, and most overexpressors developed at least two additional leaves. Antisense plants were shorter and flowered earlier than the average control plants. In transgenic plants with inducible OsEXP4 expression, we observed a close correlation between OsEXP4 protein levels and seedling growth. Coleoptile and mesocotyl length increased by up to 31 and 97%, respectively, in overexpressors, whereas in antisense seedlings, they decreased by up to 28 and 43%, respectively. The change in seedling growth resulted from corresponding changes in cell size, which in turn appeared to be a function of altered cell wall extensibility. Our results support the hypothesis that expansins are involved in enhancing growth by mediating cell wall loosening. PMID:12782731

  14. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection.

    PubMed

    De La Fuente, Leonardo; Parker, Jennifer K; Oliver, Jonathan E; Granger, Shea; Brannen, Phillip M; van Santen, Edzard; Cobine, Paul A

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547

  15. Ambient temperature: a factor affecting performance and physiological response of broiler chickens

    NASA Astrophysics Data System (ADS)

    Donkoh, A.

    1989-12-01

    An experiment was conducted to elucidate the influence of four constant ambient temperatures (20°, 25°, 30° and 35°C) on the performance and physiological reactions of male commercial broiler chicks from 3 to 7 weeks of age. A 12 h light-dark cycle was operated, while relative humidity and air circulation were not controlled. Exposure of broiler chickens to the 20°, 25°, 30° and 35°C treatments showed highly significant ( P<0.0001) depression in growth rate, food intake and efficiency of food utilization, and a significant increase in water consumption for the 30° and 35°C groups. Mortality was, however, not affected by the temperature treatments. Changes in physiological status, such as increased rectal temperatures, decreased concentration of red blood cells, haemoglobin, haematocrit, and total plasma protein were observed in birds housed in the higher temperature (30° and 35°C) environments. Moreover, in these broiler chickens, there was an increased blood glucose concentration and a decreased thyroid gland weight. These results indicate that continuous exposure of broiler chickens to high ambient temperatures markedly affects their performance and physiological response.

  16. NREL Software Models Performance of Wind Plants (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    This NREL Highlight is being developed for the 2015 February Alliance S&T Meeting, and describes NREL's Simulator for Offshore Wind Farm Applications (SOWFA) software in collaboration with Norway-based Statoil, to optimize layouts and controls of wind plants arrays.

  17. Cytokinin primes plant responses to wounding and reduces insect performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report a potential role of endogenous cytokinin supply in priming plant defense against herbivory. Cytokinin priming significantly reduced weight gain by insect larvae. Unlike previously described priming by volatile compounds, priming by cytokinin did not overcome vascular restrictions on system...

  18. Method of optimizing performance of Rankine cycle power plants

    DOEpatents

    Pope, William L.; Pines, Howard S.; Doyle, Padraic A.; Silvester, Lenard F.

    1982-01-01

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  19. Flight Performance of a Jet Power Plant. III; operating characteristics of a jet power plant as a function of altitude

    NASA Technical Reports Server (NTRS)

    Weinig, F.

    1951-01-01

    The performance of a jet power plant consisting of a compressor and a turbine is determined by the characteristic curves of these component parts and is controllable by the characteristics of the compressor and the turbine i n relation t o each other. The normal. output, overload, and throttled load of the Jet power plant are obtained on the basis of assumed straight-line characteristics.

  20. Red Color Light at Different Intensities Affects the Performance, Behavioral Activities and Welfare of Broilers.

    PubMed

    Senaratna, D; Samarakone, T S; Gunawardena, W W D A

    2016-07-01

    Red light (RL) marked higher weight gain (WG) and preference of broilers compared to other light colors. This study aimed to investigate how different intensities of RL affect the performance, behavior and welfare of broilers. RL treatments were T1 = high intensity (320 lux), T2 = medium intensity (20 lux); T3 = dim intensity (5 lux), T4 = control/white light at (20 lux) provided on 20L:4D schedule and T5 = negative control; 12 hours dark: 12 hours day light. Cobb strain broilers were used in a Complete Randomize Design with 6 replicates. WG, water/feed intake, feed conversion ratio (FCR), mortality, behavior and welfare were assessed. At 35 d, significantly (p<0.05) highest body weight (2,147.06 g±99) was recorded by T3. Lowest body weight (1,640.55 g±56) and FCR (1.34) were recorded by T5. Skin weight was the only carcass parameter showed a significant (p<0.05) influence giving the highest (56.2 g) and the lowest (12.6 g) values for T5 and T1 respectively. Reduced welfare status indicated by significantly (p<0.05) higher foot pad lesions, hock burns and breast blisters was found under T3, due to reduced expression of behavior. Highest walking (2.08%±1%) was performed under T1 in the evening during 29 to 35 days. Highest dust bathing (3.01%±2%) was performed in the morning during 22 to 28 days and highest bird interaction (BI) (4.87%±4%) was observed in the evening by T5 during 14 to 21 days. Light intensity×day session×age interaction was significantly (p<0.05) affected walking, dust bathing and BI. Light intensity significantly (p<0.05) affected certain behaviors such as lying, eating, drinking, standing, walking, preening while lying, wing/leg stretching, sleeping, dozing, BI, vocalization, idling. In conclusion, birds essentially required provision of light in the night for better performance. Exposed to 5 lux contributed to higher WG, potentially indicating compromised welfare status. Further researches are suggested to investigate RL intensity based

  1. Red Color Light at Different Intensities Affects the Performance, Behavioral Activities and Welfare of Broilers

    PubMed Central

    Senaratna, D.; Samarakone, T. S.; Gunawardena, W. W. D. A.

    2016-01-01

    Red light (RL) marked higher weight gain (WG) and preference of broilers compared to other light colors. This study aimed to investigate how different intensities of RL affect the performance, behavior and welfare of broilers. RL treatments were T1 = high intensity (320 lux), T2 = medium intensity (20 lux); T3 = dim intensity (5 lux), T4 = control/white light at (20 lux) provided on 20L:4D schedule and T5 = negative control; 12 hours dark: 12 hours day light. Cobb strain broilers were used in a Complete Randomize Design with 6 replicates. WG, water/feed intake, feed conversion ratio (FCR), mortality, behavior and welfare were assessed. At 35 d, significantly (p<0.05) highest body weight (2,147.06 g±99) was recorded by T3. Lowest body weight (1,640.55 g±56) and FCR (1.34) were recorded by T5. Skin weight was the only carcass parameter showed a significant (p<0.05) influence giving the highest (56.2 g) and the lowest (12.6 g) values for T5 and T1 respectively. Reduced welfare status indicated by significantly (p<0.05) higher foot pad lesions, hock burns and breast blisters was found under T3, due to reduced expression of behavior. Highest walking (2.08%±1%) was performed under T1 in the evening during 29 to 35 days. Highest dust bathing (3.01%±2%) was performed in the morning during 22 to 28 days and highest bird interaction (BI) (4.87%±4%) was observed in the evening by T5 during 14 to 21 days. Light intensity×day session×age interaction was significantly (p<0.05) affected walking, dust bathing and BI. Light intensity significantly (p<0.05) affected certain behaviors such as lying, eating, drinking, standing, walking, preening while lying, wing/leg stretching, sleeping, dozing, BI, vocalization, idling. In conclusion, birds essentially required provision of light in the night for better performance. Exposed to 5 lux contributed to higher WG, potentially indicating compromised welfare status. Further researches are suggested to investigate RL intensity based

  2. Indian Bt Cotton Varieties Do Not Affect the Performance of Cotton Aphids

    PubMed Central

    Lawo, Nora C.; Wäckers, Felix L.; Romeis, Jörg

    2009-01-01

    Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt) are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number of predators and parasitoids and their honeydew is an important energy source for several arthropods. To explore possible indirect effects of Bt crops we here examined the impact of Bt cotton on aphids and their honeydew. In climate chambers we assessed the performance of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae) when grown on three Indian Bt (Cry1Ac) cotton varieties (MECH 12, MECH 162, MECH 184) and their non-transformed near isolines. Furthermore, we examined whether aphids pick up the Bt protein and analyzed the sugar composition of aphid honeydew to evaluate its suitability for honeydew-feeders. Plant transformation did not have any influence on aphid performance. However, some variation was observed among the three cotton varieties which might partly be explained by the variation in trichome density. None of the aphid samples contained Bt protein. As a consequence, natural enemies that feed on aphids are not exposed to the Cry protein. A significant difference in the sugar composition of aphid honeydew was detected among cotton varieties as well as between transformed and non-transformed plants. However, it is questionable if this variation is of ecological relevance, especially as honeydew is not the only sugar source parasitoids feed on in cotton fields. Our study allows the conclusion that Bt cotton poses a negligible risk for aphid antagonists and that aphids should remain under natural control in Bt cotton fields. PMID:19279684

  3. Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels.

    PubMed

    He, Lei; Yang, Haishui; Yu, Zhenxing; Tang, Jianjun; Xu, Ligen; Chen, Xin

    2014-10-01

    Arbuscular mycorrhizal fungi (AMF) are important components of soil microbial communities, and play important role in plant growth. However, the effects of AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) on host plant under various heavy metal levels are not clear. Here we conducted a meta-analysis to compare symbiotic relationship between AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) and host plant functional groups (herbs vs. trees, and non-legumes vs. legumes) at three heavy metal levels. In the meta-analysis, we calculate the effect size (ln(RR)) by taking the natural logarithm of the response ratio of inoculated to non-inoculated shoot biomass from each study. We found that the effect size of Glomeraceae increased, but the effect size of non-Glomeraceae decreased under high level of heavy metal compared to low level. According to the effect size, both Glomeraceae and non-Glomeraceae promoted host plant growth, but had different effects under various heavy metal levels. Glomeraceae provided more benefit to host plants than non-Glomeraceae did under heavy metal condition, while non-Glomeraceae provided more benefit to host plants than Glomeraceae did under no heavy metal. AMF phylogenetic groups also differed in promoting plant functional groups under various heavy metal levels. Interacting with Glomeraceae, herbs and legumes grew better than trees and non-legumes did under high heavy metal level, while trees and legumes grew better than herbs and non-legumes did under medium heavy metal level. Interacting with non-Glomeraceae, herbs and legumes grew better than trees and non-legumes did under no heavy metal. We suggested that the combination of legume with Glomeraceae could be a useful way in the remediation of heavy metal polluted environment. PMID:25288547

  4. Roads in northern hardwood forests affect adjacent plant communities and soil chemistry in proportion to the maintained roadside area.

    PubMed

    Neher, Deborah A; Asmussen, David; Lovell, Sarah Taylor

    2013-04-01

    The spatial extent of the transported materials from three road types was studied in forest soil and vegetative communities in Vermont. Hypotheses were two-fold: 1) soil chemical concentrations above background environment would reflect traffic volume and road type (highway>2-lane paved>gravel), and 2) plant communities close to the road and near roads with greater traffic will be disturbance-tolerant and adept at colonization. Soil samples were gathered from 12 randomly identified transects for each of three road types classified as "highway," "two-lane paved," and "gravel." Using GIS mapping, transects were constructed perpendicular to the road, and samples were gathered at the shoulder, ditch, backslope, 10 m from the edge of the forest, and 50 m from road center. Sample locations were analyzed for a suite of soil elements and parameters, as well as percent area coverage by plant species. The main effects from roads depended on the construction modifications required for a roadway (i.e., vegetation clearing and topography modification). The cleared area defined the type of plant community and the distance that road pollutants travel. Secondarily, road presence affected soil chemistry. Metal concentrations (e.g., Pb, Cd, Cu, and Zn) correlated positively with road type. Proximity to all road types made the soils more alkaline (pH 7.7) relative to the acidic soil of the adjacent native forest (pH 5.6). Roadside microtopography had marked effects on the composition of plant communities based on the direction of water flow. Ditch areas supported wetland plant species, greater soil moisture and sulfur content, while plant communities closer to the road were characteristic of drier upland zones. The area beyond the edge of the forest did not appear to be affected chemically or physically by any of the road types, possibly due to the dense vegetation that typically develops outside of the managed right-of-way. PMID:23435063

  5. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    PubMed

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. PMID:27317970

  6. Least costly closed-loop performance diagnosis and plant re-identification

    NASA Astrophysics Data System (ADS)

    Mesbah, A.; Bombois, X.; Forgione, M.; Hjalmarsson, H.; Van den Hof, P. M. J.

    2015-11-01

    The inherent time-varying nature of dynamics in chemical processes often limits the lifetime performance of model-based control systems, as the plant and disturbance dynamics change over time. A critical step in the maintenance of model-based controllers is distinguishing control-relevant plant changes from variations in disturbance characteristics. In this paper, prediction error identification is used to evaluate a hypothesis test that detects if the performance drop arises from control-relevant plant changes. The decision rule is assessed by verifying whether an identified model of the true plant lies outside the set of all plant models that lead to adequate closed-loop performance. A unified experiment design framework is presented in the least costly context (i.e., least intrusion of nominal plant operation) to address the problem of input signal design for performance diagnosis and plant re-identification when the performance drop is due to plant changes. The application of the presented performance diagnosis approach to a (nonlinear) chemical reactor demonstrates the effectiveness of the approach in detecting the cause of an observed closed-loop performance drop based on the designed least costly diagnosis experiment.

  7. Microbial composition in a deep saline aquifer in the North German Basin -microbiologically induced corrosion and mineral precipitation affecting geothermal plant operation and the effects of plant downtime

    NASA Astrophysics Data System (ADS)

    Lerm, Stephanie; Westphal, Anke; Miethling-Graff, Rona; Alawi, Mashal; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2013-04-01

    The microbial composition in fluids of a deep saline geothermal used aquifer in the North German Basin was characterized over a period of five years. The genetic fingerprinting techniques PCR-SSCP and PCR-DGGE revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of Bacteria and sulfate reducing bacteria (SRB) in cold fluids compared to warm fluids. Predominating SRB in the cold well probably accounted for corrosion damage to the submersible well pump, and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to a lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favoured growth of hydrogenotrophic SRB. Plant downtime significantly influenced the microbial biocenosis in fluids. Samples taken after plant restart gave indications about the processes occurring downhole during those phases. High DNA concentrations in fluids at the beginning of the restart process with a decreasing trend over time indicated a higher abundance of microbes during plant downtime compared to regular plant operation. It is likely that a gradual drop in temperature as well as stagnant conditions favoured the growth of microbes and maturation of biofilms at the casing and in pores of the reservoir rock in the near wellbore area. Furthermore, it became obvious that the microorganisms were more associated to particles then free-living. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability. Those processes may favourably occur during plant downtime due to enhanced

  8. How do soil texture, plant community composition and earthworms affected the infiltration rate in a grassland plant diversity experiment depending on season?

    NASA Astrophysics Data System (ADS)

    Fischer, Christine; Britta, Merkel; Nico, Eisenhauer; Christiane, Roscher; Sabine, Attinger; Stefan, Scheu; Anke, Hildebrandt

    2013-04-01

    Background and aims: In this study we analyzed the influences of plant community characteristics, soil texture and earthworm presence on infiltration rates on a managed grassland plant diversity experiment assessing the role of biotic and abiotic factors on soil hydrology. Methods: We measured infiltration using a hood infiltrometer in subplots with ambient and reduced earthworm density (earthworm extraction) nested in plots of different plant species richness (1, 4, and 16), plant functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) in early summer (June) and autumn (September, October) 2011. Results: The presence of certain plant functional groups such as grasses and legumes influenced infiltration rates and this effect enhanced during the growing season. Infiltration was significantly higher in plots containing legumes than in plots without, and it was significantly lower in the presence of grasses than in their absence. In early summer, earthworm presence and biomass increased the infiltration rates, independently of plant species richness. In October, plant species richness only affected infiltration rates in reduced earthworm plots. At the end of the growing season earthworm populations were negatively influenced by grasses and positively by legumes. In September, infiltration rates were positive related to the proportion of finer grains. The correlation disappears when removing all plots containing legumes from the sample. For all measurements the infiltration rates decreases from early summer to autumn at the matric potentials at pressure zero and -0.02 m, but not for smaller macropores at matric potentials -0.04 and -0.06m. Conclusions: Considering infiltration rates as ecosystem function, this function will largely depend on the ecosystem composition and season, not on biodiversity per se. Our results indicate that biotic factors are of overriding influence for shaping infiltration rates mainly for larger macropores

  9. Measures of GCM Performance as Functions of Model Parameters Affecting Clouds and Radiation

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Mu, Q.; Sen, M.; Stoffa, P.

    2002-05-01

    This abstract is one of three related presentations at this meeting dealing with several issues surrounding optimal parameter and uncertainty estimation of model predictions of climate. Uncertainty in model predictions of climate depends in part on the uncertainty produced by model approximations or parameterizations of unresolved physics. Evaluating these uncertainties is computationally expensive because one needs to evaluate how arbitrary choices for any given combination of model parameters affects model performance. Because the computational effort grows exponentially with the number of parameters being investigated, it is important to choose parameters carefully. Evaluating whether a parameter is worth investigating depends on two considerations: 1) does reasonable choices of parameter values produce a large range in model response relative to observational uncertainty? and 2) does the model response depend non-linearly on various combinations of model parameters? We have decided to narrow our attention to selecting parameters that affect clouds and radiation, as it is likely that these parameters will dominate uncertainties in model predictions of future climate. We present preliminary results of ~20 to 30 AMIPII style climate model integrations using NCAR's CCM3.10 that show model performance as functions of individual parameters controlling 1) critical relative humidity for cloud formation (RHMIN), and 2) boundary layer critical Richardson number (RICR). We also explore various definitions of model performance that include some or all observational data sources (surface air temperature and pressure, meridional and zonal winds, clouds, long and short-wave cloud forcings, etc...) and evaluate in a few select cases whether the model's response depends non-linearly on the parameter values we have selected.

  10. Different Factors Affecting Short Circuit Behavior of a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Samaan, Nader A.; Gevorgian, Vahan; Li, Jun; Pasupulati, Subbaiah

    2013-01-31

    A wind power plant consists of a large number of turbines interconnected by underground cable. A pad-mount transformer at each turbine steps up the voltage from generating voltage (690 V) to a medium voltage (34.5 kV). All turbines in the plant are connected to the substation transformer where the voltage is stepped up to the transmission level. An important aspect of wind power plant (WPP) impact studies is to evaluate the short-circuit (SC) current contribution of the plant into the transmission network under different fault conditions. This task can be challenging to protection engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short circuit behavior of a wind power plant for different types of faults. The impact of wind turbine types, the transformer configuration, and the reactive compensation capacitor will be investigated. The voltage response at different buses will be observed. Finally, the SC line currents will be presented along with its symmetrical components.

  11. Different Factors Affecting Short Circuit Behavior of a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Samaan, Nader A.; Gevorgian, Vahan; Li, Jun; Pasupulati, Subbaiah

    2010-12-21

    A wind power plant consists of a large number of turbines interconnected by underground cable. A pad-mount transformer at each turbine steps up the voltage from generating voltage (690 V) to a medium voltage (34.5 kV). All turbines in the plant are connected to the substation transformer where the voltage is stepped up to the transmission level. An important aspect of wind power plant (WPP) impact studies is to evaluate the short-circuit (SC) current contribution of the plant into the transmission network under different fault conditions. This task can be challenging to protection engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short circuit behavior of a wind power plant for different types of faults. The impact of wind turbine types, the transformer configuration, and the reactive compensation capacitor will be investigated. The voltage response at different buses will be observed. Finally, the SC line currents will be presented along with its symmetrical components.

  12. Do postfire mulching treatments affect plant community recovery in California coastal sage scrub lands?

    PubMed

    McCullough, Sarah A; Endress, Bryan A

    2012-01-01

    In recent years, the use of postfire mulch treatments to stabilize slopes and reduce soil erosion in shrubland ecosystems has increased; however, the potential effects on plant recovery have not been examined. To evaluate the effects of mulching treatments on postfire plant recovery in southern California coastal sage scrub, we conducted a field experiment with three experimental treatments, consisting of two hydromulch products and an erosion control blanket, plus a control treatment. The area burned in 2007, and treatments were applied to six plot blocks before the 2008 growing season. Treatment effects on plant community recovery were analyzed with a mixed effects ANOVA analysis using a univariate repeated measures approach. Absolute plant cover increased from 13 to 90% by the end of the second growing season, and the mean relative cover of exotic species was 32%. The two hydromulch treatments had no effect on any plant community recovery response variable measured. For the erosion control blanket treatment, the amount of bare ground cover at the end of the second growing season was significantly lower (P = 0.01), and greater shrub height was observed (P < 0.01). We conclude that postfire mulch treatments did not provide either a major benefit or negative impact to coastal sage scrub recovery on the study area. PMID:22042409

  13. Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases.

    PubMed

    Carter, Laura J; Williams, Mike; Böttcher, Christine; Kookana, Rai S

    2015-10-20

    The detection of a range of active pharmaceutical ingredients (APIs) in the soil environment has led to a number of publications demonstrating uptake by crops, however very few studies have explored the potential for impacts on plant development as a result of API uptake. This study investigated the effect of carbamazepine and verapamil (0.005-10 mg/kg) on a range of plant responses in zucchini (Cucurbita pepo). Uptake increased in a dose-dependent manner, with maximum leaf concentrations of 821.9 and 2.2 mg/kg for carbamazepine and verapamil, respectively. Increased carbamazepine uptake by zucchini resulted in a decrease in above (<60%) and below (<30%) ground biomass compared to the controls (p < 0.05). At soil concentrations >4 mg/kg the mature leaves suffered from burnt edges and white spots as well as a reduction in photosynthetic pigments but no such effects were seen for verapamil. For both APIs, further investigations revealed significant differences in the concentrations of selected plant hormones (auxins, cytokinins, abscisic acid and jasmonates), and in the nutrient composition of the leaves in comparison to the controls (p < 0.05). This is some of the first research to demonstrate that the exposure of plants to APIs is likely to cause impacts on plant development with unknown implications. PMID:26418514

  14. Morphological Characteristics of Maize Canopy Development as Affected by Increased Plant Density

    PubMed Central

    Song, Youhong; Rui, Yukui; Bedane, Guta; Li, Jincai

    2016-01-01

    Improving crop productivity through higher plant density requires a detailed understanding of organ development in response to increased interplant competition. The objective of this paper is thus to investigate the characteristics of organ development under increased interplant competition. A field experiment was conducted to investigate organ development across 4 maize plant densities i.e. 2, 6, 12 and 20 plants m–2 (referred to PD2, PD6, PD12 and PD20 respectively). In response to increased interplant competition, lengths of both laminae and sheaths increased in lower phytomers, but decreased in upper phytomers. Sheath extension appeared to be less sensitive to increased interplant competition than lamina extension. Extension of laminae and internodes responded to increased plant density as soon as onset of mild interplant competition, but did not respond any further to severe competition. Both lamina width and internode diameter were reduced due to a smaller growth rate in response to increased plant density. Overall, this study identified that organ expansion rate can be taken as the key morphological factor to determine the degree of interplant competition. PMID:27129101

  15. Performance evaluation of a full-scale coke oven wastewater treatment plant in an integrated steel plant.

    PubMed

    Kumar, M Suresh; Vaidya, A N; Shivaraman, N; Bal, A S

    2003-01-01

    Wastewater generated during coke-oven gas cleaning operations in the integrated steel plant contains phenol, cyanide, thiocyanate, and also oil and grease. Although the activated sludge process is widely practiced for biological treatment of coke-oven wastewater, it was observed during the evaluation of performance of full scale coke-oven wastewater treatment plant that oil contamination and poor sludge settleability had resulted in poor maintenance of the activated sludge process. Keeping these aspects in view, treatability studies were conducted and an alternative treatment process is proposed. With these corrective measures the coke-oven wastewater treatment plant will give desired performance. In this paper we present results of the performance evaluation, data on treatability studies and alternative treatment process scheme. PMID:14723281

  16. MHD channel performance for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Swallom, D. W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation.

  17. How do increasing background concentrations of tropospheric ozone affect peatland plant growth and carbon gas exchange?

    NASA Astrophysics Data System (ADS)

    Williamson, Jennifer L.; Mills, Gina; Hayes, Felicity; Jones, Timothy; Freeman, Chris

    2016-02-01

    In this study we have demonstrated that plants originating from upland peat bogs are sensitive to increasing background concentrations of ozone. Peatland mesocosms from an upland peat bog in North Wales, UK were exposed to eight levels of elevated background ozone in solardomes for 4 months from May to August, with 24 h mean ozone concentrations ranging from 16 to 94 ppb and cumulative AOT024hr ranging from 45.98 ppm h to 259.63 ppm h. Our results show that plant senescence increased with increasing exposure to ozone, although there was no significant effect of increasing ozone on plant biomass. Assessments of carbon dioxide and methane fluxes from the mesocosms suggests that there was no change in carbon dioxide fluxes over the 4 month exposure period but that methane fluxes increased as cumulative ozone exposure increased to a maximum AOT 024hr of approximately 120 ppm h and then decreased as cumulative ozone exposure increased further.

  18. Performance and risks of advanced pulverized-coal plants

    SciTech Connect

    Nalbandian, H.

    2009-07-01

    This article is based on an in-depth report of the same title published by the IEA Clean Coal Centre, CCC/135 (see Coal Abstracts entry Sep 2008 00535). It discusses the commercial, developmental and future status of pulverized fuel power plants including subcritical supercritical and ultra supercritical systems of pulverized coal combustion, the most widely used technology in coal-fired power generation. 1 fig., 1 tab.

  19. Agave salmiana Plant Communities in Central Mexico as Affected by Commercial Use

    NASA Astrophysics Data System (ADS)

    Martínez Salvador, Martin; Mata-González, Ricardo; Morales Nieto, Carlos; Valdez-Cepeda, Ricardo

    2012-01-01

    Agave salmiana is a native plant species harvested for the commercial production of mezcal ( Agave spirits) in the highlands of central Mexico. The objective of this study was to identify vegetation changes in natural communities where A. salmiana has been differentially harvested for commercial purposes. Three plant community categories were identified in the state of Zacatecas based on their history of A. salmiana utilization: short (less than 10 years of use), moderate (about 25 years), and long (60 or more years). Species cover, composition, and density were evaluated in field surveys by use category. A gradient of vegetation structure of the communities parallels the duration of A. salmiana use. A. salmiana density was greatest (3,125 plants ha-1) in the short-use areas and less (892 plants ha-1) in the moderate-use areas, associated with markedly greater density of shrubs (200%) and Opuntia spp. (50%) in moderate-use areas. The main shrubs were Larrea tridentata, Mimosa biuncifera, Jatropha dioica and Buddleia scordioides while the main Opuntia species were Opuntia leucotricha and Opuntia robusta. A. salmiana density was least (652 plants ha-1) in the long-use areas where shrubs were less abundant but Opuntia spp. density was 25% higher than in moderate-use areas. We suggest that shrubs may increase with moderate use creating an intermediate successional stage that facilitates the establishment of Opuntia spp. Long-term Agave use is generating new plant communities dominated by Opuntia spp. (nopaleras) as a replacement of the original communities dominated by A. salmiana (magueyeras).

  20. Plant species diversity affects soil-atmosphere fluxes of methane and nitrous oxide.

    PubMed

    Niklaus, Pascal A; Le Roux, Xavier; Poly, Franck; Buchmann, Nina; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Barnard, Romain L

    2016-07-01

    Plant diversity effects on ecosystem functioning can potentially interact with global climate by altering fluxes of the radiatively active trace gases nitrous oxide (N2O) and methane (CH4). We studied the effects of grassland species richness (1-16) in combination with application of fertilizer (nitrogen:phosphorus:potassium = 100:43.6:83 kg ha(-1) a(-1)) on N2O and CH4 fluxes in a long-term field experiment. Soil N2O emissions, measured over 2 years using static chambers, decreased with species richness unless fertilizer was added. N2O emissions increased with fertilization and the fraction of legumes in plant communities. Soil CH4 uptake, a process driven by methanotrophic bacteria, decreased with plant species numbers, irrespective of fertilization. Using structural equation models, we related trace gas fluxes to soil moisture, soil inorganic N concentrations, nitrifying and denitrifying enzyme activity, and the abundance of ammonia oxidizers, nitrite oxidizers, and denitrifiers (quantified by real-time PCR of gene fragments amplified from microbial DNA in soil). These analyses indicated that plant species richness increased soil moisture, which in turn increased N cycling-related activities. Enhanced N cycling increased N2O emission and soil CH4 uptake, with the latter possibly caused by removal of inhibitory ammonium by nitrification. The moisture-related indirect effects were surpassed by direct, moisture-independent effects opposite in direction. Microbial gene abundances responded positively to fertilizer but not to plant species richness. The response patterns we found were statistically robust and highlight the potential of plant biodiversity to interact with climatic change through mechanisms unrelated to carbon storage and associated carbon dioxide removal. PMID:27038993

  1. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    SciTech Connect

    Ding, Shi-You

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  2. Work-family enrichment and job performance: a constructive replication of affective events theory.

    PubMed

    Carlson, Dawn; Kacmar, K Michele; Zivnuska, Suzanne; Ferguson, Merideth; Whitten, Dwayne

    2011-07-01

    Based on affective events theory (AET), we hypothesize a four-step model of the mediating mechanisms of positive mood and job satisfaction in the relationship between work-family enrichment and job performance. We test this model for both directions of enrichment (work-to-family and family-to-work). We used two samples to test the model using structural equation modeling. Results from Study 1, which included 240 full-time employees, were replicated in Study 2, which included 189 matched subordinate-supervisor dyads. For the work-to-family direction, results from both samples support our conceptual model and indicate mediation of the enrichment-performance relationship for the work-to-family direction of enrichment. For the family-to-work direction, results from the first sample support our conceptual model but results from the second sample do not. Our findings help elucidate mixed findings in the enrichment and job performance literatures and contribute to an understanding of the mechanisms linking these concepts. We conclude with a discussion of the practical and theoretical implications of our findings. PMID:21728437

  3. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    PubMed

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species. PMID:27147100

  4. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants

    PubMed Central

    El-Kereamy, Ashraf; Bi, Yong-Mei; Mahmood, Kashif; Ranathunge, Kosala; Yaish, Mahmoud W.; Nambara, Eiji; Rothstein, Steven J.

    2015-01-01

    Glutaredoxins (GRXs) are small glutathione dependent oxidoreductases that belong to the Thioredoxin (TRX) superfamily and catalyze the reduction of disulfide bonds of their substrate proteins. Plant GRXs include three different groups based on the motif sequence, namely CPYC, CGFS, and CC-type proteins. The rice CC-type proteins, OsGRX6 was identified during the screening for genes whose expression changes depending on the level of available nitrate. Overexpression of OsGRX6 in rice displayed a semi-dwarf phenotype. The OsGRX6 overexpressors contain a higher nitrogen content than the wild type, indicating that OsGRX6 plays a role in homeostatic regulation of nitrogen use. Consistent with this, OsGRX6 overexpressors displayed delayed chlorophyll degradation and senescence compared to the wild type plants. To examine if the growth defect of these transgenic lines attribute to disturbed plant hormone actions, plant hormone levels were measured. The levels of two cytokinins (CKs), 2-isopentenyladenine and trans-zeatin, and gibberellin A1 (GA1) were increased in these lines. We also found that these transgenic lines were less sensitive to exogenously applied GA, suggesting that the increase in GA1 is a result of the feedback regulation. These data suggest that OsGRX6 affects hormone signaling and nitrogen status in rice plants. PMID:26579177

  5. CO2, Temperature, and Soil Moisture Interactions Affect NDVI and Reproductive Phenology in Old-Field Plant Communities

    NASA Astrophysics Data System (ADS)

    Engel, C.; Weltzin, J.; Norby, R.

    2004-12-01

    Plant community composition and ecosystem function may be altered by global atmospheric and climate change, including increased atmospheric [CO2], temperature, and varying precipitation regimes. We are conducting an experiment at Oak Ridge National Laboratory (ORNL) utilizing open-top chambers to administer experimental treatments of elevated CO2 (+300 ppm), warming (+ 3 degrees Celsius), and varying soil moisture availability to experimental plant communities constructed of seven common old-field species, including C3 and C4 grasses, forbs, and legumes. During 2004 we monitored plant community phenology (NDVI) and plant reproductive phenology. Early in the year, NDVI was greater in wet treatment plots, and was unaffected by main effects of temperature or CO2. This result suggests that early in the season warming is insufficient to affect early canopy development. Differences in soil moisture sustained throughout the winter and into early spring may constitute an important control on early canopy greenup. Elevated CO2 alleviated detrimental effects of warming on NDVI, but only early in the season. As ambient temperatures increased, elevated temperatures negatively impacted NDVI only in the dry plots. Wetter conditions ameliorate the effects of warming on canopy greenness during the warmer seasons of the year. Warming increased rates of bolting, number of inflorescences, and time to reproductive maturity for Andropogon virginicus (a C4 bunchgrass). Solidago Canadensis (a C3 late-season forb) also produced flowers earlier in elevated temperatures. Conversely, none of the C3 grasses and forbs that bolt or flower in late spring or early summer responded to temperature or CO2. Results indicate that warming and drought may impact plant community phenology, and plant species reproductive phenology. Clearly community phenology is driven by complex interactions among temperature, water, and CO2 that change throughout the season. Our data stresses the importance of

  6. Plant invasions differentially affected by diversity and dominant species in native- and exotic-dominated grasslands.

    PubMed

    Xu, Xia; Polley, H Wayne; Hofmockel, Kirsten; Daneshgar, Pedram P; Wilsey, Brian J

    2015-12-01

    Plant invasions are an increasingly serious global concern, especially as the climate changes. Here, we explored how plant invasions differed between native- and novel exotic-dominated grasslands with experimental addition of summer precipitation in Texas in 2009. Exotic species greened up earlier than natives by an average of 18 days. This was associated with a lower invasion rate early in the growing season compared to native communities. However, invasion rate did not differ significantly between native and exotic communities across all sampling times. The predictors of invasion rate differed between native and exotic communities, with invasion being negatively influenced by species richness in natives and by dominant species in exotics. Interestingly, plant invasions matched the bimodal pattern of precipitation in Temple, Texas, and did not respond to the pulse of precipitation during the summer. Our results suggest that we will need to take different approaches in understanding of invasion between native and exotic grasslands. Moreover, with anticipated increasing variability in precipitation under global climate change, plant invasions may be constrained in their response if the precipitation pulses fall outside the normal growing period of invaders. PMID:27069615

  7. Molecular analyses of nuclear-cytoplasmic interactions affecting plant growth and yield. Final technical report

    SciTech Connect

    Newton, K.J.

    1998-11-01

    Mitochondria have a central role in the production of cellular energy. The biogenesis and functioning of mitochondria depends on the expression of both mitochondrial and nuclear genes. One approach to investigating the role of nuclear-mitochondrial cooperation in plant growth and development is to identify combinations of nuclear and mitochondrial genomes that result in altered but sublethal phenotypes. Plants that have certain maize nuclear genotypes in combination with cytoplasmic genomes from more distantly-related teosintes can exhibit incompatible phenotypes, such as reduced plant growth and yield and cytoplasmic male sterility, as well as altered mitochondrial gene expression. The characterization of these nuclear-cytoplasmic interactions was the focus of this grant. The authors were investigating the effects of two maize nuclear genes, RcmI and Mct, on mitochondrial function and gene expression. Plants with the teosinte cytoplasms and homozygous for the recessive rcm allele are small (miniature) and-slow-growing and the kernels are reduced in size. The authors mapped this locus to molecular markers on chromosome 7 and attempted to clone this locus by transposon tagging. The effects of the nuclear-cytoplasmic interaction on mitochondrial function and mitochondrial protein profiles were also studied.

  8. Mercury Concentrations in Plant Tissues as Affected by FGDG Application to Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flue Gas Desulfurization Gypsum (FGDG) is produced by reducing sulfur dioxide emissions from themo-electric coal-fired power plants. The most common practice of FGDG production may trap some of the Mercury (Hg) present in the coal that normally would escape as vapor in the stack gases. Concern for t...

  9. Plant sterol consumption frequency affects plasma lipid levels and cholesterol kinetics in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Objectives: To compare the efficacy of single versus multiple doses of plant sterols on circulating lipid level and cholesterol trafficking. Subjects/Methods: A randomized, placebo-controlled, three-phase (6 days/phase) crossover, supervised feeding trial was conducted in 19 subjects. Sub...

  10. Drying and storage methods affect cyfluthrin concentrations in exposed plant samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standard procedures exist for collection and chemical analyses of pyrethroid insecticides in environmental matrices. However, less detail is given for drying and potential storage methods of plant samples prior to analyses. Due to equipment and financial limitations, immediate sample analysis is n...

  11. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus.

    PubMed

    Li-Byarlay, Hongmei; Pittendrigh, Barry R; Murdock, Larry L

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant-insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789

  12. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal.

    PubMed

    Zhao, Feng; Rahunen, Nelli; Varcoe, John R; Roberts, Alexander J; Avignone-Rossa, Claudio; Thumser, Alfred E; Slade, Robert C T

    2009-03-15

    A microbial fuel cell (MFC) has been developed for removal of sulfur-based pollutants and can be used for simultaneous wastewater treatment and electricity generation. This fuel cell uses an activated carbon cloth+carbon fibre veil composite anode, air-breathing dual cathodes and the sulfate-reducing species Desulfovibrio desulfuricans. 1.16gdm(-3) sulfite and 0.97gdm(-3) thiosulfate were removed from the wastewater at 22 degrees C, representing sulfite and thiosulfate removal conversions of 91% and 86%, respectively. The anode potential was controlled by the concentration of sulfide in the compartment. The performance of the cathode assembly was affected by the concentration of protons in the cation-exchanging ionomer with which the electrocatalyst is co-bound at the three-phase (air, catalyst and support) boundary. PMID:19022647

  13. A cyst nematode effector binds to diverse plant proteins, increases nematode susceptibility and affects root morphology.

    PubMed

    Pogorelko, Gennady; Juvale, Parijat S; Rutter, William B; Hewezi, Tarek; Hussey, Richard; Davis, Eric L; Mitchum, Melissa G; Baum, Thomas J

    2016-08-01

    Cyst nematodes are plant-parasitic roundworms that are of significance in many cropping systems around the world. Cyst nematode infection is facilitated by effector proteins secreted from the nematode into the plant host. The cDNAs of the 25A01-like effector family are novel sequences that were isolated from the oesophageal gland cells of the soybean cyst nematode (Heterodera glycines). To aid functional characterization, we identified an orthologous member of this protein family (Hs25A01) from the closely related sugar beet cyst nematode H. schachtii, which infects Arabidopsis. Constitutive expression of the Hs25A01 CDS in Arabidopsis plants caused a small increase in root length, accompanied by up to a 22% increase in susceptibility to H. schachtii. A plant-expressed RNA interference (RNAi) construct targeting Hs25A01 transcripts in invading nematodes significantly reduced host susceptibility to H. schachtii. These data document that Hs25A01 has physiological functions in planta and a role in cyst nematode parasitism. In vivo and in vitro binding assays confirmed the specific interactions of Hs25A01 with an Arabidopsis F-box-containing protein, a chalcone synthase and the translation initiation factor eIF-2 β subunit (eIF-2bs), making these proteins probable candidates for involvement in the observed changes in plant growth and parasitism. A role of eIF-2bs in the mediation of Hs25A01 virulence function is further supported by the observation that two independent eIF-2bs Arabidopsis knock-out lines were significantly more susceptible to H. schachtii. PMID:26575318

  14. The town Crepis and the country Crepis: How does fragmentation affect a plant-pollinator interaction?

    NASA Astrophysics Data System (ADS)

    Andrieu, Emilie; Dornier, Antoine; Rouifed, Soraya; Schatz, Bertrand; Cheptou, Pierre-Olivier

    2009-01-01

    In fragmented habitats, one cause of the decrease of plant diversity and abundance is the disruption of plant-animal interactions, and in particular plant-pollinator interactions. Since habitat fragmentation acts both on pollinator behaviour and plant reproduction, its consequences for the stability of such interactions are complex. An extreme case of habitat fragmentation occurs in urbanised areas where suitable habitat (in the present study small patches around ornamental trees) is embedded in a highly unsuitable environment (concrete matrix). Based on simple experiments, we ask whether pollinators can adapt their foraging behaviour in response to the amount of available resources (flowers) in the fragments and their isolation, as predicted by the optimal foraging theory. To do so we analysed the effect of fragmentation on the behaviour of pollinators visiting Crepis sancta (L.) Bornm. (Asteraceae), which forms large populations in the countryside and patchy populations in urban environments. More precisely we studied pollinator visitation rates, capitulum visit durations, capitulum search durations and capitulum size choice. Pollinators chose larger capitula in both types of populations and their foraging behaviour differed between the two population types in three ways: (1) pollinator visits were lower in urban fragmented populations, perhaps due to the lower accessibility of urban patches; (2) capitulum visit durations were longer in urban fragmented populations, a possible compensation of energy lost during flights among patches; and (3) capitulum search durations where longer in urban fragmented populations, which may represent an increase in capitulum prospecting effort. We discuss the possible impacts of such differences for plant population functioning in the two types of populations.

  15. Motion and emotion: depression reduces psychomotor performance and alters affective movements in caregiving interactions

    PubMed Central

    Young, Katherine S.; Parsons, Christine E.; Stein, Alan; Kringelbach, Morten L.

    2015-01-01

    Background: Impaired social functioning is a well-established feature of depression. Evidence to date suggests that disrupted processing of emotional cues may constitute part of this impairment. Beyond processing of emotional cues, fluent social interactions require that people physically move in synchronized, contingent ways. Disruptions to physical movements are a diagnostic feature of depression (psychomotor disturbance) but have not previously been assessed in the context of social functioning. Here we investigated the impact of psychomotor disturbance in depression on physical responsive behavior in both an experimental and observational setting. Methods: In Experiment 1, we examined motor disturbance in depression in response to salient emotional sounds, using a laboratory-based effortful motor task. In Experiment 2, we explored whether psychomotor disturbance was apparent in real-life social interactions. Using mother-infant interactions as a model affective social situation, we compared physical behaviors of mothers with and without postnatal depression (PND). Results: We found impairments in precise, controlled psychomotor performance in adults with depression relative to healthy adults (Experiment 1). Despite this disruption, all adults showed enhanced performance following exposure to highly salient emotional cues (infant cries). Examining real-life interactions, we found differences in physical movements, namely reduced affective touching, in mothers with PND responding to their infants, compared to healthy mothers (Experiment 2). Conclusions: Together, these findings suggest that psychomotor disturbance may be an important feature of depression that can impair social functioning. Future work investigating whether improvements in physical movement in depression could have a positive impact on social interactions would be of much interest. PMID:25741255

  16. Atmospheric CO2 level affects plants' carbon use efficiency: insights from a 13C labeling experiment on sunflower stands

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoying; Schäufele, Rudi; Schnyder, Hans

    2015-04-01

    The increase of atmospheric CO2 concentration has been shown to stimulate plant photosynthesis and (to a lesser extent) growth, thereby acting as a possible sink for the additional atmospheric CO2. However, this effect is dependent on the efficiency with which plants convert atmospheric carbon into biomass carbon, since a considerable proportion of assimilated carbon is returned to the atmosphere via plant respiration. As a core parameter for carbon cycling, carbon use efficiency of plants (CUE, the ratio of net primary production to gross primary production) quantifies the proportion of assimilated carbon that is incorporated into plant biomass. CUE has rarely been assessed based on measurements of complete carbon balance, due to methodological difficulties in measuring respiration rate of plants in light. Moreover, foliar respiration is known to be inhibited in light, thus foliar respiration rate is generally lower in light than in dark. However, this phenomenon, termed as inhibition of respiration in light (IRL), has rarely been assessed at the stand-scale and been incorporated into the calculation of CUE. Therefore, how CUE responses to atmospheric CO2 levels is still not clear. We studied CUE of sunflower stands grown at sub-ambient CO2 level (200 μmol mol-1) and elevated CO2 level (1000 μmol mol-1) using mesocosm-scale gas exchange facilities which enabled continuous measurements of 13CO2/12CO2 exchange. Appling steady-state 13C labeling, fluxes of respiration and photosynthesis in light were separated, and tracer kinetic in respiration was analyzed. This study provides the first data on CUE at a mesocosm-level including respiration in light in different CO2 environments. We found that CUE of sunflower was lower at an elevated CO2 level than at a sub-ambient CO2 level; and the ignorance of IRL lead to erroneous estimations of CUE. Variation in CUE at atmospheric CO2 levels was attributed to several mechanisms. In this study, CO2 enrichment i) affected the

  17. How do radiographic techniques affect mass lesion detection performance in digital mammography?

    NASA Astrophysics Data System (ADS)

    Huda, Walter; Ogden, Kent M.; Scalzetti, Ernest M.; Dudley, Eric F.; Dance, David R.

    2004-05-01

    We investigated how the x-ray tube kV and mAs affected the detection of simulated lesions with diameters between 0.24 and 12 mm. Digital mammograms were acquired with and without mass lesions, permitting a difference image to be generated corresponding to the lesion alone. Isolated digital lesions were added at a reduced intensity to non-lesion images, and used in Four-Alternate Forced Choice (4-AFC) experiments to determine the lesion intensity that corresponded to an accuracy of 92% (I92%). Values of I92% were determined at x-ray tube output values ranging from 40 to 120 mAs, and x-ray tube voltages ranging from 24 to 32 kV. For mass lesions larger than ~0.8 mm, there was no significant change in detection peformance with changing mAs. Doubling of the x-ray tube output from 60 to 120 mAs resulted in an average change in I92% of only +3.8%, whereas the Rose model of lesion detection predicts a reduction in the experimental value of I92% of -29%. For the 0.24 mm lesion, however, reducing the x-ray beam mAs from 100 to 40 mAs reduced the average detection performance by ~60%. Contrast-detail curves for lesions with diameter >= 0.8 mm had a slope of ~+0.23, whereas the Rose model predicts a slope of -0.5. For lesions smaller than ~0.8 mm, contrast-detail slopes were all negative with the average gradient increasing with decreasing mAs value. Increasing the x-ray tube voltage from 24 to 32 kV at a constant display contrast resulted in a modest improvement in low contrast lesion detection performance of ~10%. Increasing the display window width from 2000 to 2500 reduced the average observer performance by ~6%. Our principal finding is that radiographic technique factors have little effect on detection performance for lesions larger than ~0.8 mm, but that the visibility of smaller lesions is affected by quantum mottle in qualitative agreement with the predictions of the Rose model.

  18. Personality Traits Affect Teaching Performance of Attending Physicians: Results of a Multi-Center Observational Study

    PubMed Central

    Scheepers, Renée A.; Lombarts, Kiki M. J. M. H.; van Aken, Marcel A. G.; Heineman, Maas Jan; Arah, Onyebuchi A.

    2014-01-01

    Background Worldwide, attending physicians train residents to become competent providers of patient care. To assess adequate training, attending physicians are increasingly evaluated on their teaching performance. Research suggests that personality traits affect teaching performance, consistent with studied effects of personality traits on job performance and academic performance in medicine. However, up till date, research in clinical teaching practice did not use quantitative methods and did not account for specialty differences. We empirically studied the relationship of attending physicians' personality traits with their teaching performance across surgical and non-surgical specialties. Method We conducted a survey across surgical and non-surgical specialties in eighteen medical centers in the Netherlands. Residents evaluated attending physicians' overall teaching performance, as well as the specific domains learning climate, professional attitude, communication, evaluation, and feedback, using the validated 21-item System for Evaluation of Teaching Qualities (SETQ). Attending physicians self-evaluated their personality traits on a 5-point scale using the validated 10-item Big Five Inventory (BFI), yielding the Five Factor model: extraversion, conscientiousness, neuroticism, agreeableness and openness. Results Overall, 622 (77%) attending physicians and 549 (68%) residents participated. Extraversion positively related to overall teaching performance (regression coefficient, B: 0.05, 95% CI: 0.01 to 0.10, P = 0.02). Openness was negatively associated with scores on feedback for surgical specialties only (B: −0.10, 95% CI: −0.15 to −0.05, P<0.001) and conscientiousness was positively related to evaluation of residents for non-surgical specialties only (B: 0.13, 95% CI: 0.03 to 0.22, p = 0.01). Conclusions Extraverted attending physicians were consistently evaluated as better supervisors. Surgical attending physicians who display high levels of

  19. OPERATIONAL AND COMPOSITIONAL FACTORS THAT AFFECT THE PERFORMANCE PROPERTIES OF ARP/MCU SALTSTONE GROUT

    SciTech Connect

    Reigel, M.; Edwards, T.; Pickenheim, B.

    2012-02-15

    that of the sample cured at room temperature. The hydration reactions initiated during the mixing of the premix and salt solution continue during the curing period in the vaults to produce the hardened waste form product. The heat generated from exothermic hydration reactions results in a temperature increase in the vaults that depends on the composition of the decontaminated salt solution being dispositioned, the grout formulation (mix design) and the pour frequency and volume. This heat generation is a contributing factor to the temperature increase in the vaults that leads to an increased cure temperature for the grout. This report will further investigate the impact of curing temperature on saltstone performance properties (hydraulic conductivity, Young's modulus, porosity, etc.) over a range of aluminate concentration, water to premix (w/p) ratio and weight percent fly ash in the premix processed at the SPF. The three curing temperatures selected for this study were chosen to provide data at fixed cure temperatures that represent measured temperatures in the SDF vaults. This does not represent the conditions in the vault where the temperature of the saltstone is continually changing with time. For example, it may take several days for the saltstone to reach 60 C at a given elevation. Previous results demonstrated that the rates at which a selected curing temperature is reached affect the performance properties. The approach taken in this task, a rapid increase to the curing temperature, may be conservative with respect to decreased performance. Nevertheless, the data will provide a basis from which to determine the impact of curing temperature on saltstone performance as a function of key variables. A statistical evaluation of the results for these mixes will be performed to provide the range, and associated uncertainties, of hydraulic conductivity and other properties over this factor space.

  20. Modelling Plant and Soil Nitrogen Feedbacks Affecting Forest Carbon Gain at High CO2

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Franklin, O.; Pepper, D. A.

    2007-12-01

    Short-term, direct effects of elevated atmospheric CO2 concentrations on plant carbon gain are relatively well understood. There is considerable uncertainty, however, about longer-term effects, which are influenced by various plant and ecosystem feedbacks. A key feedback in terrestrial ecosystems occurs through changes in plant carbon (C) allocation patterns. For instance, if high CO2 were to increase C allocation to roots, then plants may experience positive feedback through improved plant nutrition. A second type of feedback, associated with decomposition of soil-organic matter, may reduce soil-nutrient availability at high CO2. This paper will consider mechanistic models of both feedbacks. Effects of high CO2 on plant C allocation will be investigated using a simple model of forest net primary production (NPP) that incorporates the primary mechanisms of plant carbon and nitrogen (N) balance. The model called MATE (Model Any Terrestrial Ecosystem) includes an equation for annual C balance that depends on light- saturated photosynthetic rate and therefore on [CO2], and an equation for N balance incorporating an expression for N uptake as a function of root mass. The C-N model is applied to a Free Air CO2 Exchange (FACE) experiment at Oak Ridge National Laboratory (ORNL) in Tennessee, USA, where closed-canopy, monoculture stands of the deciduous hardwood sweetgum ( Liquidambar styraciflua) have been growing at [CO2] of 375 and 550 ppm for ten years. Features of this experiment are that the annual NPP response to elevated CO2 has averaged approximately 25% over seven years, but that annual fine-root production has almost doubled on average, with especially large increases in later years of the experiment (Norby et al. 2006). The model provides a simple graphical approach for analysing effects of elevated CO2 and N supply on leaf/root/wood C allocation and productivity. It simulates increases in NPP and fine-root production at the ORNL FACE site that are consistent

  1. Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.

    SciTech Connect

    Boyd, G.; Decision and Information Sciences

    2006-07-21

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  2. Iron Oxide and Titanium Dioxide Nanoparticle Effects on Plant Performance and Root Associated Microbes.

    PubMed

    Burke, David J; Pietrasiak, Nicole; Situ, Shu F; Abenojar, Eric C; Porche, Mya; Kraj, Pawel; Lakliang, Yutthana; Samia, Anna Cristina S

    2015-01-01

    In this study, we investigated the effect of positively and negatively charged Fe₃O₄ and TiO₂ nanoparticles (NPs) on the growth of soybean plants (Glycine max.) and their root associated soil microbes. Soybean plants were grown in a greenhouse for six weeks after application of different amounts of NPs, and plant growth and nutrient content were examined. Roots were analyzed for colonization by arbuscular mycorrhizal (AM) fungi and nodule-forming nitrogen fixing bacteria using DNA-based techniques. We found that plant growth was significantly lower with the application of TiO₂ as compared to Fe₃O₄ NPs. The leaf carbon was also marginally significant lower in plants treated with TiO₂ NPs; however, leaf phosphorus was reduced in plants treated with Fe₃O₄. We found no effects of NP type, concentration, or charge on the community structure of either rhizobia or AM fungi colonizing plant roots. However, the charge of the Fe₃O₄ NPs affected both colonization of the root system by rhizobia as well as leaf phosphorus content. Our results indicate that the type of NP can affect plant growth and nutrient content in an agriculturally important crop species, and that the charge of these particles influences the colonization of the root system by nitrogen-fixing bacteria. PMID:26445042

  3. Iron Oxide and Titanium Dioxide Nanoparticle Effects on Plant Performance and Root Associated Microbes

    PubMed Central

    Burke, David J.; Pietrasiak, Nicole; Situ, Shu F.; Abenojar, Eric C.; Porche, Mya; Kraj, Pawel; Lakliang, Yutthana; Samia, Anna Cristina S.

    2015-01-01

    In this study, we investigated the effect of positively and negatively charged Fe3O4 and TiO2 nanoparticles (NPs) on the growth of soybean plants (Glycine max.) and their root associated soil microbes. Soybean plants were grown in a greenhouse for six weeks after application of different amounts of NPs, and plant growth and nutrient content were examined. Roots were analyzed for colonization by arbuscular mycorrhizal (AM) fungi and nodule-forming nitrogen fixing bacteria using DNA-based techniques. We found that plant growth was significantly lower with the application of TiO2 as compared to Fe3O4 NPs. The leaf carbon was also marginally significant lower in plants treated with TiO2 NPs; however, leaf phosphorus was reduced in plants treated with Fe3O4. We found no effects of NP type, concentration, or charge on the community structure of either rhizobia or AM fungi colonizing plant roots. However, the charge of the Fe3O4 NPs affected both colonization of the root system by rhizobia as well as leaf phosphorus content. Our results indicate that the type of NP can affect plant growth and nutrient content in an agriculturally important crop species, and that the charge of these particles influences the colonization of the root system by nitrogen-fixing bacteria. PMID:26445042

  4. Power plant performance monitoring and improvement. Volume 1. Boiler optimization

    SciTech Connect

    Crim, H.G.

    1986-02-01

    The boiler portion of RP1681/2153 deals with the development of procedures for determining the optimum fireside operating conditions in a coal fired power plant and the development of instrumentation and monitoring systems for achieving the resulting improvements in heat rate. This annual report describes the rsults of the project for the period beginning in October, 1982. A computer code was developed which takes information on the plant and calculates heat rate as a function of parameters such as excess air and steam flow rate. Computational results obtained to date for Potomac Electric Power Company's Morgantown Unit No. 2 show that the net unit heat rate is a very sensitive function of grind size of the coal, level of excess air and exit gas temperature. The theoretical calculations suggest that by optimizing these three parameters, improvements in net unit heat rate of the order of 100 Btu/Kwh may be possible at Morgantown. An intrumentation assessment was carried out. Preparations are underway for boiler tests.

  5. Barium uptake by maize plants as affected by sewage sludge in a long-term field study.

    PubMed

    Nogueira, Thiago Assis Rodrigues; deMelo, Wanderley José; Fonseca, Ivana Machado; Marques, Marcos Omir; He, Zhenli

    2010-09-15

    A long-term experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the concentration of Ba in soil and in maize plants grown in a soil treated with sewage sludge for nine consecutive years. During 2005/2006, maize was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. Treatments consisted of: 0.0, 45.0, 90.0 and 127.5 t ha(-1) sewage sludge (dry basis). Sewage sludge application increased soil Ba concentration. Barium accumulated in the parts of maize plants were generally affected by the successive applications of sewage sludge to the soil. However, the concentration of Ba in maize grain did not exceed the critical levels of Ba for human consumption. Sewage sludge applied to soil for a long time did not affect dry matter and grain production, nevertheless had the similar effect of mineral fertilization. PMID:20579810

  6. Electroosmotic pump performance is affected by concentration polarizations of both electrodes and pump

    PubMed Central

    Suss, Matthew E.; Mani, Ali; Zangle, Thomas A.; Santiago, Juan G.

    2010-01-01

    Current methods of optimizing electroosmotic (EO) pump performance include reducing pore diameter and reducing ionic strength of the pumped electrolyte. However, these approaches each increase the fraction of total ionic current carried by diffuse electric double layer (EDL) counterions. When this fraction becomes significant, concentration polarization (CP) effects become important, and traditional EO pump models are no longer valid. We here report on the first simultaneous concentration field measurements, pH visualizations, flow rate, and voltage measurements on such systems. Together, these measurements elucidate key parameters affecting EO pump performance in the CP dominated regime. Concentration field visualizations show propagating CP enrichment and depletion fronts sourced by our pump substrate and traveling at order mm/min velocities through millimeter-scale channels connected serially to our pump. The observed propagation in millimeter-scale channels is not explained by current propagating CP models. Additionally, visualizations show that CP fronts are sourced by and propagate from the electrodes of our system, and then interact with the EO pump-generated CP zones. With pH visualizations, we directly detect that electrolyte properties vary sharply across the anode enrichment front interface. Our observations lead us to hypothesize possible mechanisms for the propagation of both pump- and electrode-sourced CP zones. Lastly, our experiments show the dynamics associated with the interaction of electrode and membrane CP fronts, and we describe the effect of these phenomena on EO pump flow rates and applied voltages under galvanostatic conditions. PMID:21516230

  7. Factors affecting the stability and performance of ipratropium bromide; fenoterol hydrobromide pressurized-metered dose inhalers.

    PubMed

    Ninbovorl, Jenjira; Sawatdee, Somchai; Srichana, Teerapol

    2013-12-01

    The aim of the study was to investigate the factors affecting the stability and performance of ipratropium bromide and fenoterol hydrobromide in a pressurized-metered dose inhaler (pMDI). A factorial design was applied to investigate the effects of three parameters (propellant, water, and ethanol) on the performance of 27 designed formulations of a solution-based pMDI. The formulations that contained a hydrofluoroalkane (HFA) propellant lower than 72% v/v and an ethanol concentration higher than 27% v/v remained as clear solutions. Nine formulations that contained the HFA propellant higher than 74% v/v precipitated. The results indicated that it was not only the HFA propellant content of the formulations that was related to the formulation instability but also ethanol content. Only six formulations from the 18 formulations, that did not precipitate, produced drug contents that were within the acceptable range (80-120%). These six formulations generated aerosols with mass median aerodynamic diameters (MMAD) of approximately 2 μm with a fine particle fraction (FPF; particle size, <6.4 μm) between 45% and 52%. The MMAD and FPF did not change significantly after 6 months of storage (P > 0.05). PMID:23975571

  8. Computer-Detected Attention Affects Foreign Language Listening but Not Reading Performance.

    PubMed

    Lee, Shu-Ping

    2016-08-01

    No quantitative study has explored the influence of attention on learning English as a foreign language (EFL). This study investigated whether computer-detected attention is associated with EFL reading and listening and reading and listening anxiety. Traditional paper-based English tests used as entrance examinations and tests of general trait anxiety, reading, listening, reading test state anxiety, and listening test state anxiety were administered in 252 Taiwan EFL college students who were divided into High Attention (Conners' Continuous Performance Test, CPT < 50) and Low Attention (CPT ≥ 50) groups. No differences were found between the two groups for traditional paper-based English tests, trait anxieties, general English reading anxiety scales, and general English listening anxiety scales. The Low Attention group had higher test state anxiety and lower listening test scores than the High Attention group, but not in reading. State anxiety during listening tests for EFL students with computer-detected low attention tendency was elevated and their EFL listening performance was affected, but those differences were not found in reading. PMID:27371638

  9. Factors affecting numerical typing performance of young adults in a hear-and-type task.

    PubMed

    Lin, Cheng-Jhe; Wu, Changxu

    2011-12-01

    Numerical hear-and-type tasks, i.e. making immediate keypresses according to verbally presented numbers, possess both practical and theoretical importance but received relatively little attention. Effects of speech rates (500-ms vs. 1000-ms interval), urgency (urgent condition: performance-based monetary incentive plus time limit vs. non-urgent condition: flat-rate compensation) and finger strategies (single vs. multi-finger typing) on typing speed and accuracy were investigated. Fast speech rate and multi-finger typing produced more errors and slower typing speed. Urgency improved typing speed but decreased accuracy. Errors were almost doubled under urgent condition, while urgency effect on speed was similar to that of speech rate. Examination of error patterns did not fully support Salthouse's (1986) speculations about error-making mechanisms. The results implied that urgency could play a more important role in error-making than task demands. Numerical keyboard design and error detection could benefit from spatial incidence of errors found in this study. STATEMENT OF RELEVANCE: This study revealed that classic speculations about error-making mechanisms in alphabetical typing do not necessarily translate to numerical typing. Factors other than external task demands such as urgency can affect typing performance to a similar or greater extent. Investigations of intrinsic error-making factors in non-traditional typing tasks are encouraged. PMID:22103724

  10. Spatial heterogeneity in light supply affects intraspecific competition of a stoloniferous clonal plant.

    PubMed

    Wang, Pu; Lei, Jing-Pin; Li, Mai-He; Yu, Fei-Hai

    2012-01-01

    Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition) or nine ramets (with intraspecific competition) of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensity) and two heterogeneous ones differing in patch size (large and small patch treatments). The total light in the two heterogeneous treatments was the same as that in the homogeneous medium light treatment. Both decreasing light intensity and intraspecific competition significantly decreased the growth (biomass, number of ramets and total stolon length) of D. indica. As compared with the homogeneous medium light treatment, the large patch treatment significantly increased the growth of D. indica without intraspecific competition. However, the growth of D. indica with competition did not differ among the homogeneous medium light, the large and the small patch treatments. Consequently, light heterogeneity significantly increased intraspecific competition intensity, as measured by the decreased log response ratio. These results suggest that spatial heterogeneity in light supply can alter intraspecific interactions of clonal plants. PMID:22720041

  11. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    PubMed

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; North, Gretchen; Visel, Axel; Partida-Martinez, Laila P; Tringe, Susannah G

    2016-01-01

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions. PMID:26467257

  12. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus

    PubMed Central

    Li-Byarlay, Hongmei; Pittendrigh, Barry R.; Murdock, Larry L.

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant–insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789

  13. Spatial Heterogeneity in Light Supply Affects Intraspecific Competition of a Stoloniferous Clonal Plant

    PubMed Central

    Wang, Pu; Lei, Jing-Pin; Li, Mai-He; Yu, Fei-Hai

    2012-01-01

    Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition) or nine ramets (with intraspecific competition) of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensity) and two heterogeneous ones differing in patch size (large and small patch treatments). The total light in the two heterogeneous treatments was the same as that in the homogeneous medium light treatment. Both decreasing light intensity and intraspecific competition significantly decreased the growth (biomass, number of ramets and total stolon length) of D. indica. As compared with the homogeneous medium light treatment, the large patch treatment significantly increased the growth of D. indica without intraspecific competition. However, the growth of D. indica with competition did not differ among the homogeneous medium light, the large and the small patch treatments. Consequently, light heterogeneity significantly increased intraspecific competition intensity, as measured by the decreased log response ratio. These results suggest that spatial heterogeneity in light supply can alter intraspecific interactions of clonal plants. PMID:22720041

  14. The community structure of endophytic bacteria in different parts of Huanglongbing-affected citrus plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The analyses methods of Pearson correlation coefficient (PCC), hierarchical cluster analysis and diversity index were used to study the relevance between citrus huanglongbing (HLB) and the endophytic bacteria in different branches and leaves as well as roots of huanglongbing (HLB)-affected citrus tr...

  15. Solubility and Plant Availability of Nutrients as Affected by Soil Drainage Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn growth is affected due to oxygen deficiency and root death in a perched water table (PWT). The study objective was to evaluate a surface application of FGD gypsum (FGDG) and glyphosate (GLY) on nutrient uptake in corn with different drainage conditions. The experiment was conducted in greenhous...

  16. Factors affecting the performance of community health workers in India: a multi-stakeholder perspective

    PubMed Central

    Sharma, Reetu; Webster, Premila; Bhattacharyya, Sanghita

    2014-01-01

    Background Community health workers (CHWs) form a vital link between the community and the health department in several countries. In India, since 2005 this role is largely being played by Accredited Social Health Activists (ASHAs), who are village-level female workers. Though ASHAs primarily work for the health department, in a model being tested in Rajasthan they support two government departments. Focusing on the ASHA in this new role as a link worker between two departments, this paper examines factors associated with her work performance from a multi-stakeholder perspective. Design The study was done in 16 villages from two administrative blocks of Udaipur district in Rajasthan. The findings are based on 63 in-depth interviews with ASHAs, their co-workers and representatives from the two departments. The interviews were conducted using interview guides. An inductive approach with open coding was used for manual data analysis. Results This study shows that an ASHA's motivation and performance are affected by a variety of factors that emerge from the complex context in which she works. These include various personal (e.g. education), professional (e.g. training, job security), and organisational (e.g. infrastructure) factors along with others that emerge from external work environment. The participants suggested various ways to address these challenges. Conclusion In order to improve the performance of ASHAs, apart from taking corrective actions at the professional and organisational front on a priority basis, it is equally essential to promote cordial work relationships amongst ASHAs and other community-level workers from the two departments. This will also have a positive impact on community health. PMID:25319596

  17. How does performance of ultrasound tissue typing affect design of prostate IMRT dose-painting protocols?

    SciTech Connect

    Zhang Pengpeng . E-mail: pz2010@columbia.edu; Osterman, K. Sunshine; Liu Tian; Li Xiang; Kessel, Jack; Wu, Leester; Schiff, Peter; Kutcher, Gerald J.

    2007-02-01

    Purpose: To investigate how the performance characteristics of ultrasound tissue typing (UTT) affect the design of a population-based prostate dose-painting protocol. Methods and Materials: The performance of UTT is evaluated using the receiver operating characteristic curve. As the imager's sensitivity increases, more tumors are detected, but the specificity worsens, causing more false-positive results. The UTT tumor map, obtained with a specific sensitivity and specificity setup, was used with the patient's CT image to guide intensity-modulated radiotherapy (IMRT) planning. The optimal escalation dose to the UTT positive region, as well as the safe dose to the negative background, was obtained by maximizing the uncomplicated control (i.e., a combination of tumor control probability and weighted normal tissue complication probability). For high- and low-risk tumors, IMRT plans guided by conventional ultrasound or UTT with a one-dimensional or two-dimensional spectrum analysis technique were compared with an IMRT plan in which the whole prostate was dose escalated. Results: For all imaging modalities, the specificity of 0.9 was chosen to reduce complications resulting from high false-positive results. If the primary tumors were low risk, the IMRT plans guided by all imaging modalities achieved high tumor control probability and reduced the normal tissue complication probability significantly compared with the plan with whole gland dose escalation. However, if the primary tumors were high risk, the accuracy of the imaging modality was critical to maintain the tumor control probability and normal tissue complication probability at acceptable levels. Conclusion: The performance characteristics of an imager have important implications in dose painting and should be considered in the design of dose-painting protocols.

  18. Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids?

    PubMed

    Pinto, Delia M; Blande, James D; Nykänen, Riikka; Dong, Wen-Xia; Nerg, Anne-Marja; Holopainen, Jarmo K

    2007-04-01

    Inducible terpenes and lipoxygenase pathway products, e.g., green-leaf volatiles (GLVs), are emitted by plants in response to herbivory. They are used by carnivorous arthropods to locate prey. These compounds are highly reactive with atmospheric pollutants. We hypothesized that elevated ozone (O(3)) may affect chemical communication between plants and natural enemies of herbivores by degrading signal compounds. In this study, we have used two tritrophic systems (Brassica oleracea-Plutella xylostella-Cotesia plutellae and Phaseolus lunatus-Tetranychus urticae-Phytoseiulus persimilis) to show that exposure of plants to moderately enhanced atmospheric O(3) levels (60 and 120 nl l(-1)) results in complete degradation of most herbivore-induced terpenes and GLVs, which is congruent with our hypothesis. However, orientation behavior of natural enemies was not disrupted by O(3) exposure in either tritrophic system. Other herbivore-induced volatiles, such as benzyl cyanide, a nitrile in cabbage, and methyl salicylate in lima bean, were not significantly reduced in reactions with O(3). We suggest that more atmospherically stable herbivore-induced volatile compounds can provide important long-distance plant-carnivore signals and may be used by natural enemies of herbivores to orientate in O(3)-polluted environments. PMID:17333375

  19. Contamination of soil, medicinal, and fodder plants with lead and cadmium present in mine-affected areas, Northern Pakistan.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Qamar, Zahir; Din, Islamud; Mahmood, Qaisar; Gul, Nayab; Huang, Qing

    2015-09-01

    This study aimed to investigate the lead (Pb) and cadmium (Cd) concentrations in the soil and plants (medicinal and fodder) grown in chromite mining-affected areas, Northern Pakistan. Soil and plant samples were collected and analyzed for Pb and Cd concentrations using atomic absorption spectrometer. Soil pollution load indices (PLIs) were greater than 2 for both Cd and Pb, indicating high level of contamination in the study area. Furthermore, Cd concentrations in the soil surrounding the mining sites exceeded the maximum allowable limit (MAL) (0.6 mg kg(-1)), while the concentrations of Pb were lower than the MAL (350 mg kg(-1)) set by State Environmental Protection Administration (SEPA) for agriculture soil. The concentrations of Cd and Pb were significantly higher (P < 0.001) in the soil of the mining-contaminated sites as compared to the reference site, which can be attributed to the dispersion of toxic heavy metals, present in the bed rocks and waste of the mines. The concentrations of Pb and Cd in majority of medicinal and fodder plant species grown in surrounding areas of mines were higher than their MALs set by World Health Organization/Food Agriculture Organization (WHO/FAO) for herbal (10 and 0.3 mg kg(-1), respectively) and edible (0.3 and 0.2 mg kg(-1), respectively) plants. The high concentrations of Cd and Pb may cause contamination of the food chain and health risk. PMID:26324064

  20. Do symbiotic microbes have a role in plant evolution, performance and response to stress?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular plants have been considered as autonomous organisms especially when their performance has been interpreted at the genome and cellular level. In reality, vascular plants provide a unique ecological niche for diverse communities of cryptic symbiotic microbes which often contribute multiple be...

  1. Phosphoric acid fuel cell power plant system performance model and computer program

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  2. EVALUATION OF OPERATION AND MAINTENANCE FACTORS LIMITING MUNICIPAL WASTEWATER TREATMENT PLANT PERFORMANCE. PHASE II

    EPA Science Inventory

    Many of the country's wastewater treatment plants do not meet design expectations and NPDES permit standards. A research project was initiated to identify, quantify and rank the causes of this poor performance by comprehensive evaluations of 50 plants in nine western states. The ...

  3. Self-Evaluation Accuracy and Satisfaction with Performance: Are there Affective Costs or Benefits of Positive Self-Evaluation Bias?

    ERIC Educational Resources Information Center

    Narciss, Susanne; Koerndle, Hermann; Dresel, Markus

    2011-01-01

    This paper examines how self-evaluation biases may influence satisfaction with performance. A review of theoretical positions suggests there are two views, both of which are supported by studies involving laboratory tasks. The first view predicts affective costs, and the second affective benefits of positive self-evaluation bias. We test the…

  4. Exogenous lactate supply affects lactate kinetics of rainbow trout, not swimming performance

    PubMed Central

    Omlin, Teye; Langevin, Karolanne

    2014-01-01

    Intense swimming causes circulatory lactate accumulation in rainbow trout because lactate disposal (Rd) is not stimulated as strongly as lactate appearance (Ra). This mismatch suggests that maximal Rd is limited by tissue capacity to metabolize lactate. This study uses exogenous lactate to investigate what constrains maximal Rd and minimal Ra. Our goals were to determine how exogenous lactate affects: 1) Ra and Rd of lactate under baseline conditions or during graded swimming, and 2) exercise performance (critical swimming speed, Ucrit) and energetics (cost of transport, COT). Results show that exogenous lactate allows swimming trout to boost maximal Rd lactate by 40% and reach impressive rates of 56 μmol·kg−1·min−1. This shows that the metabolic capacity of tissues for lactate disposal is not responsible for setting the highest Rd normally observed after intense swimming. Baseline endogenous Ra (resting in normoxic water) is not significantly reduced by exogenous lactate supply. Therefore, trout have an obligatory need to produce lactate, either as a fuel for oxidative tissues and/or from organs relying on glycolysis. Exogenous lactate does not affect Ucrit or COT, probably because it acts as a substitute for glucose and lipids rather than extra fuel. We conclude that the observed 40% increase in Rd lactate is made possible by accelerating lactate entry into oxidative tissues via monocarboxylate transporters (MCTs). This observation together with the weak expression of MCTs and the phenomenon of white muscle lactate retention show that lactate metabolism of rainbow trout is significantly constrained by transmembrane transport. PMID:25121611

  5. Hemodynamic and affective correlates assessed during performance on the Columbia card task (CCT).

    PubMed

    Holper, Lisa; Murphy, Ryan O

    2014-12-01

    The study aimed to test the potential of functional near-infrared spectroscopy (fNIRS) in combination with electrodermal activity (EDA) in a decision paradigm by means of the Columbia card task (CCT). The CCT is a dynamic decision task characterized by assessing subjects' risk-taking via eliciting voluntary stopping points in a series of incrementally increasingly risky choices. Using the combined fNIRS-EDA approach, we aim to examine the hemodynamic and affective correlates of both decision and outcome responses during performance on the CCT. Twenty healthy subjects completed the Cold and Hot CCT version while fNIRS over prefrontal cortex and EDA were recorded. Results showed that (1) in the decision phase fNIRS revealed larger total hemoglobin concentration changes [tHb] in the Cold as compared to the Hot CCT, whereas EDA revealed an opposite pattern with larger skin conductance responses (SCRs) to the Hot as compared to the Cold CCT. (2) No significant [tHb] signals or SCRs were found in the outcome phase. (3) Coherence calculations between fNIRS and EDA in the heart rate frequency showed a significant increase during the Hot as compared to the Cold CCT. Our findings designate fNIRS as suitable tool for monitoring decision-making processes. The combination of fNIRS and EDA demonstrates the potential of simultaneously assessing the interaction between hemodynamic and affective responses which can provide additional information concerning the relationship between these two physiological systems for various research areas. PMID:24242358

  6. A Novel Role for Arabidopsis CBL1 in Affecting Plant Responses to Glucose and Gibberellin during Germination and Seedling Development

    PubMed Central

    Li, Zhi-Yong; Xu, Zhao-Shi; Chen, Yang; He, Guang-Yuan; Yang, Guang-Xiao; Chen, Ming; Li, Lian-Cheng; Ma, You-Zhi

    2013-01-01

    Glucose and phytohormones such as abscisic acid (ABA), ethylene, and gibberellin (GA) coordinately regulate germination and seedling development. However, there is still inadequate evidence to link their molecular roles in affecting plant responses. Calcium acts as a second messenger in a diverse range of signal transduction pathways. As calcium sensors unique to plants, calcineurin B-like (CBL) proteins are well known to modulate abiotic stress responses. In this study, it was found that CBL1 was induced by glucose in Arabidopsis. Loss-of-function mutant cbl1 exhibited hypersensitivity to glucose and paclobutrazol, a GA biosynthetic inhibitor. Several sugar-responsive and GA biosynthetic gene expressions were altered in the cbl1 mutant. CBL1 protein physically interacted with AKINβ1, the regulatory β subunit of the SnRK1 complex which has a central role in sugar signaling. Our results indicate a novel role for CBL1 in modulating responses to glucose and GA signals. PMID:23437128

  7. Performance Diagnosis using Optical Torque Sensor for Selection of a Steam Supply Plant among Advanced Combined Cycle Power Plants

    NASA Astrophysics Data System (ADS)

    Umezawa, Shuichi

    A newly developed optical torque sensor was applied to select a steam supply plant among advanced combined cycle, i.e. ACC, power plants of the Tokyo Electric Power Company. The sensor uses laser beams focused on small stainless steel reflectors having bar-code patterns attached on the surface of the rotating shaft, and a technique of signal processing using a correlation function featuring high frequency. The plant that supplied steam was selected on the basis of diagnosis of each steam turbine performance of the plants. Heat balance program was developed to analyze steam turbine performance using data of turbine output measured by the torque sensor and data measured by existing instruments of the power station. The steam turbine that supplied steam was determined by the present method using the optical torque sensor. The accuracy of the method to determine the steam supply plant was analyzed. It was then confirmed that the accuracy was greatly improved as compared with that of existing method.

  8. Affective Factors in the Mediation of Background Effects on Cognitive Performance.

    ERIC Educational Resources Information Center

    Cuttance, Peter F.

    1980-01-01

    Academic achievement at age 16 was influenced more by achievement at age 14 than by affective variables. Affective variables included academic and occupational aspiration, parent expectations, school attitudes, sex, socioeconomic status, parents' education, and migrancy. (CP)

  9. Lignin, land plants, and fungi: Biological evolution affecting Phanerozoic oxygen balance

    SciTech Connect

    Robinson, J.M. )

    1990-07-01

    As dominance shifted from lycopsids and pteridophytes in the Paleozoic, to gymnosperms in the Mesozoic, to angiosperms in the Tertiary, plant architecture became more sparing in its use of lignin. Lignin-degrading organisms were rare or absent in the Paleozoic, but diverse and abundant in the Tertiary. Thus the terrigenous organic-carbon cycle has quickened over time, the fraction of terrestrial primary production preserved in coals and kerogens has declined, and terrestrial production has been able to increase over time without concomitant rises in atmospheric O{sub 2}.

  10. Factors Affecting the Extraction of Intact Ribonucleic Acid from Plant Tissues Containing Interfering Phenolic Compounds

    PubMed Central

    Newbury, H. John; Possingham, John V.

    1977-01-01

    Using conventional methods it is impossible to extract RNA as uncomplexed intact molecules from the leaves of grapevines (Vitis vinifera L.) and from a number of woody perennial species that contain high levels of reactive phenolic compounds. A procedure involving the use of high concentrations of the chaotropic agent sodium perchlorate prevents the binding of phenolic compounds to RNA during extraction. Analyses of the phenolics present in plant tissues used in these experiments indicate that there is a poor correlation between the total phenolic content and the complexing of RNA. However, qualitative analyses suggest that proanthocyanidins are involved in the tanning of RNA during conventional extractions. PMID:16660134

  11. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression.

    PubMed

    Vallianou, Ioanna; Hadzopoulou-Cladaras, Margarita

    2016-01-01

    The control of hyperlipidemia plays a central role in cardiovascular disease. Previously, we have shown that camphene, a constituent of mastic gum oil, lowers cholesterol and triglycerides (TG) in the plasma of hyperlipidemic rats without affecting HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. In the present study, we examine the mechanism by which camphene exerts its hypolipidemic action. We evaluated the effect of camphene on the de novo synthesis of cholesterol and TG from [14C]-acetate in HepG2 cells, along with the statin mevinolin. Camphene inhibited the biosynthesis of cholesterol in a concentration-dependent manner, and a maximal inhibition of 39% was observed at 100 μM while mevinolin nearly abolished cholesterol biosynthesis. Moreover, treatment with camphene reduced TG by 34% and increased apolipoprotein AI expression. In contrast, mevinolin increased TG by 26% and had a modest effect on apolipoprotein AI expression. To evaluate the mode of action of camphene, we examined its effects on the expression of SREBP-1, which affects TG biosynthesis and SREBP-2, which mostly affects sterol synthesis. Interestingly, camphene increased the nuclear translocation of the mature form of SREBP-1 while mevinolin was found to increase the amount of the mature form of SREBP-2. The effect of camphene is most likely regulated through SREBP-1 by affecting MTP levels in response to a decrease in the intracellular cholesterol. We propose that camphene upregulates SREBP-1 expression and MTP inhibition is likely to be a probable mechanism whereby camphene exerts its hypolipidemic effect. PMID:26784701

  12. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression

    PubMed Central

    Vallianou, Ioanna; Hadzopoulou-Cladaras, Margarita

    2016-01-01

    The control of hyperlipidemia plays a central role in cardiovascular disease. Previously, we have shown that camphene, a constituent of mastic gum oil, lowers cholesterol and triglycerides (TG) in the plasma of hyperlipidemic rats without affecting HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. In the present study, we examine the mechanism by which camphene exerts its hypolipidemic action. We evaluated the effect of camphene on the de novo synthesis of cholesterol and TG from [14C]-acetate in HepG2 cells, along with the statin mevinolin. Camphene inhibited the biosynthesis of cholesterol in a concentration-dependent manner, and a maximal inhibition of 39% was observed at 100 μM while mevinolin nearly abolished cholesterol biosynthesis. Moreover, treatment with camphene reduced TG by 34% and increased apolipoprotein AI expression. In contrast, mevinolin increased TG by 26% and had a modest effect on apolipoprotein AI expression. To evaluate the mode of action of camphene, we examined its effects on the expression of SREBP-1, which affects TG biosynthesis and SREBP-2, which mostly affects sterol synthesis. Interestingly, camphene increased the nuclear translocation of the mature form of SREBP-1 while mevinolin was found to increase the amount of the mature form of SREBP-2. The effect of camphene is most likely regulated through SREBP-1 by affecting MTP levels in response to a decrease in the intracellular cholesterol. We propose that camphene upregulates SREBP-1 expression and MTP inhibition is likely to be a probable mechanism whereby camphene exerts its hypolipidemic effect. PMID:26784701

  13. Within plant distribution of Potato Virus Y in hairy nightshade (Solanum sarrachoides): an inoculum source affecting PVY aphid transmission.

    PubMed

    Cervantes, Felix A; Alvarez, Juan M

    2011-08-01

    Potato virus Y (PVY) is vectored by several potato-colonizing and non-colonizing aphid species in a non-persistent manner and has a wide host range. It occurs naturally in several plant families. Myzus persicae and Macrosiphum euphorbiae are the most efficient potato-colonizing aphid vectors of PVY. Rhopalosiphum padi, a cereal aphid that migrates in large numbers through potato fields during the middle of the growing season, does not colonize potato plants but can transmit PVY. Hairy nightshade, Solanum sarrachoides, a prevalent annual solanaceous weed in the Pacific Northwest (PNW) of the United States, is an alternative host for PVY and a preferred host for M. persicae and M. euphorbiae. Hence, hairy nightshade plants might play an important role as an inoculum source in the epidemiology of PVY. We looked at titre accumulation and distribution of PVY(O), PVY(N:O) and PVY(NTN) in S. sarrachoides and potato after aphid inoculation with M. persicae and studied the transmission of PVY(O) and PVY(NTN), by M. persicae, M. euphorbiae and R. padi from hairy nightshade to potato plants. Virus titre at different positions on the plant was similar in S. sarrachoides and potato plants with strains PVY(O) and PVY(N:O). Titres of PVY(NTN) were similar in S. sarrachoides and potato but differences in titre were observed at different positions within the plant depending on the plant phenology. Percentage transmission of PVY(NTN) by M. persicae and M. euphorbiae was twice as high (46 and 34%, respectively) from hairy nightshade to potato than from potato to potato (20 and 14%). Percentage transmission of PVY(O) by M. persicae and M. euphorbiae was not affected by the inoculum source. No effect of the inoculum source was observed in the transmission of either PVY strain by R. padi. These results show that hairy nightshade may be an equal or better virus reservoir than potato and thus, important in the epidemiology of PVY. PMID:21601597

  14. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application.

    PubMed

    Jones, D L; Quilliam, R S

    2014-07-15

    Pyrolysis or combustion of waste wood can provide a renewable source of energy and produce byproducts which can be recycled back to land. To be sustainable requires that these byproducts pose minimal threat to the environment or human health. Frequently, reclaimed waste wood is contaminated by preservative-treated timber containing high levels of heavy metals. We investigated the effect of feedstock contamination from copper-preservative treated wood on the behaviour of pyrolysis-derived biochar and combustion-derived ash in plant-soil systems. Biochar and wood ash were applied to soil at typical agronomic rates. The presence of preservative treated timber in the feedstock increased available soil Cu; however, critical Cu guidance limits were only exceeded at high rates of feedstock contamination. Negative effects on plant growth and soil quality were only seen at high levels of biochar contamination (>50% derived from preservative-treated wood). Negative effects of wood ash contamination were apparent at lower levels of contamination (>10% derived from preservative treated wood). Complete removal of preservative treated timber from wood recycling facilities is notoriously difficult and low levels of contamination are commonplace. We conclude that low levels of contamination from Cu-treated wood should pose minimal environmental risk to biochar and ash destined for land application. PMID:24915641

  15. Nature's amazing biopolymer: basic mechanical and hydrological properties of soil affected by plant exudates

    NASA Astrophysics Data System (ADS)

    Naveed, Muhammad; Roose, Tiina; Raffan, Annette; George, Timothy; Bengough, Glyn; Brown, Lawrie; Keyes, Sam; Daly, Keith; Hallett, Paul

    2016-04-01

    Plant exudates are known to have a very large impact on soil physical properties through changes in mechanical and hydrological processes driven by long-chain polysaccharides and surface active compounds. Whilst these impacts are well known, the basic physical properties of these exudates have only been reported in a small number of studies. We present data for exudates obtained from barley roots and chia seeds, incorporating treatments examining biological decomposition of the exudates. When these exudates were added to a sandy loam soil, contact angle and drop penetration time increased exponentially with increasing exudate concentration. These wetting properties were strongly correlated with both exudate density and zero-shear viscosity, but not with exudate surface tension. Water holding capacity and water repellency of exudate mixed soil tremendously increased with exudate concentration, however they were significantly reduced on decomposition when measured after 14 days of incubation at 16C. Mechanical stability greatly increased with increasing exudate amendment to soils, which was assessed using a rheological amplitude sweep test near saturation, at -50 cm matric potential (field capacity) using indentation test, and at air-dry condition using the Brazilian test. This reflects that exudates not only attenuate plant water stress but also impart mechanical stability to the rhizosphere. These data are highly relevant to the understanding and modelling of rhizosphere development, which is the next phase of our research.

  16. Arabidopsis plants perform arithmetic division to prevent starvation at night

    PubMed Central

    Scialdone, Antonio; Mugford, Sam T; Feike, Doreen; Skeffington, Alastair; Borrill, Philippa; Graf, Alexander; Smith, Alison M; Howard, Martin

    2013-01-01

    Photosynthetic starch reserves that accumulate in Arabidopsis leaves during the day decrease approximately linearly with time at night to support metabolism and growth. We find that the rate of decrease is adjusted to accommodate variation in the time of onset of darkness and starch content, such that reserves last almost precisely until dawn. Generation of these dynamics therefore requires an arithmetic division computation between the starch content and expected time to dawn. We introduce two novel chemical kinetic models capable of implementing analog arithmetic division. Predictions from the models are successfully tested in plants perturbed by a night-time light period or by mutations in starch degradation pathways. Our experiments indicate which components of the starch degradation apparatus may be important for appropriate arithmetic division. Our results are potentially relevant for any biological system dependent on a food reserve for survival over a predictable time period. DOI: http://dx.doi.org/10.7554/eLife.00669.001 PMID:23805380

  17. Arabidopsis plants perform arithmetic division to prevent starvation at night.

    PubMed

    Scialdone, Antonio; Mugford, Sam T; Feike, Doreen; Skeffington, Alastair; Borrill, Philippa; Graf, Alexander; Smith, Alison M; Howard, Martin

    2013-01-01

    Photosynthetic starch reserves that accumulate in Arabidopsis leaves during the day decrease approximately linearly with time at night to support metabolism and growth. We find that the rate of decrease is adjusted to accommodate variation in the time of onset of darkness and starch content, such that reserves last almost precisely until dawn. Generation of these dynamics therefore requires an arithmetic division computation between the starch content and expected time to dawn. We introduce two novel chemical kinetic models capable of implementing analog arithmetic division. Predictions from the models are successfully tested in plants perturbed by a night-time light period or by mutations in starch degradation pathways. Our experiments indicate which components of the starch degradation apparatus may be important for appropriate arithmetic division. Our results are potentially relevant for any biological system dependent on a food reserve for survival over a predictable time period. DOI:http://dx.doi.org/10.7554/eLife.00669.001. PMID:23805380

  18. Simulation of centrifugal compressor transient performance for process plant applications

    SciTech Connect

    MacDougal, I.; Elder, R.L.

    1983-01-01

    The development of a theoretical model capable of simulating centrifugal compressor transient performance (including compressor surge) is detailed. Simulation results from a Fortran computer program are compared with measured compressor transient data. Good simulation of compressor transients between stable operating points, and compressor presurge flow oscillations has been obtained. General application criteria are presented for the geometric distribution of model elements within a compressor system. Model applications and future work are outlined.

  19. Laying performance and egg quality of blue-shelled layers as affected by different housing systems.

    PubMed

    Wang, X L; Zheng, J X; Ning, Z H; Qu, L J; Xu, G Y; Yang, N

    2009-07-01

    Blue-shelled eggs are gaining popularity as the consumption demand diversifies in some countries. This study was carried out to investigate the laying performance and egg quality of the blue-shelled egg layers as well as the effects of different housing systems on egg production and quality traits. One thousand pullets from Dongxiang blue-shelled layers were divided into 2 even groups and kept in different housing systems (outdoor vs. cage). Daily laying performance was recorded from 20 to 60 wk of age. External and internal egg quality traits were examined at 26, 34, 42, and 50 wk. Yolk cholesterol concentration and whole egg cholesterol content were measured at 40 wk of age. Average laying rate from 20 to 60 wk for the cage (54.7%) was significantly higher than that of outdoor layers (39.3%). Among all of the egg quality traits, only eggshell color was affected by housing system. Interaction between housing system and layer age was found in egg weight, eggshell color, eggshell ratio, yolk color, and yolk weight. Meanwhile, cholesterol concentration in yolk was 8.64 +/- 0.40 mg/g in the outdoor eggs, which was significantly lower than that of eggs from the cage birds (10.32 +/- 0.48 mg/g; P < 0.05). Whole egg cholesterol content in the outdoor eggs (125.23 +/- 6.32 mg/egg) was also significantly lower than that of eggs from the caged layers (158.01 +/- 8.62 mg/egg). The results demonstrated that blue-shelled layers have lower productivity in the outdoor system than in the cage system. Blue-shelled layers have lower egg weight, larger yolk proportion, and lower cholesterol content compared with commercial layers. In a proper marketing system, lower productivity could be balanced by a higher price for the better quality of blue-shelled eggs. PMID:19531721

  20. Performing the Bakla in The Care Divas: Crossdressing, Affective Labor, and the Glimpse of the Cosmopolitan.

    PubMed

    Tiatco, Anril Pineda

    2015-01-01

    This essay is a close reading of The Care Divas, a Filipino musical revolving around the struggle of five Filipino caregivers in Israel who also struggle with their sexual identities as bakla (Filipino homosexual). The analysis is both an affirmation and a critique of the performance. In the affirmation, the musical is argued to present a social reality that is intended for and in need of interrogation: the Filipino bakla. The musical implicitly features the bakla as a cosmopolitan. At the outset, this cosmopolitan disposition comes from the fact that the characters are migrant workers (caregivers). But more importantly, the cosmopolitan character is from a responsibility toward the other anchored within a genuine caring as implicated in the affective labor of these caregiver characters. In the critique, the essay marks some problematic limitations in the treatment of the bakla. In doing so, the musical, despite its attempt to present a social reality, is a problem play, a social drama touching social issues--realistic in approach, but the representation seems like an editorial. In the final analysis, The Care Divas is argued to seemingly fail because artists are not able to see the complexity of their chosen subject in a bigger picture. PMID:26291029

  1. Investigation of factors affecting terrestrial passive sampling device performance and uptake rates in laboratory chambers

    SciTech Connect

    Johnson, K.A.; Weisskopf, C.P.

    1995-12-31

    A rapid sampling method using passive sampling devices (PSDS) for soil contaminant characterization shows extreme promise. The use of PSDs increases ease and speed of analysis, decreases solvent usage and cost, and minimizes the transport of contaminated soils. Time and cost savings allow a high sampling frequency, providing a more thorough site characterization than traditional methods. The authors have conducted both laboratory and field studies with terrestrial PSDS. Laboratory studies demonstrated the concentration and moisture dependence of sampler uptake and provided an estimate of the optimal field sampling time for soils contaminated with polychlorinated biphenyls (PCBs). These PSDs were also used to accurately estimate PCB concentrations at hazardous waste site where concentrations ranged from 0.01 to 200 ug PCB/g soil. However, PSDs in the field had sampling rates approximately three times greater than in the laboratory. As a result several factors affecting PSD sampling rates and/or performance in laboratory chambers were evaluated. The parameters investigated were soil bulk density or compactness, chamber size and air flow. The chemicals used in these studies included two PCB congeners (52 and 153), three organochlorine pesticides (DDT, dieldrin and methoxychlor), three organophosphate pesticides (chlorpyrifos, diazinon and terbufos) and three herbicides (alachlor, atrazine and metolachlor).

  2. Microvesicle formulations used in topical drugs and cosmetics affect product efficiency, performance and allergenicity.

    PubMed

    Madsen, Jakob Torp; Andersen, Klaus Ejner

    2010-01-01

    Attempts to improve the formulations of topical products are continuing processes (ie, to increase cosmetic performance, enhance effects, and protect ingredients from degradation). The development of micro- and nanovesicular systems has led to the marketing of topical drugs and cosmetics that use these technologies. Several articles have reported improved clinical efficacy by the encapsulation of pharmaceuticals in vesicular systems, and the numbers of publications and patents are rising. Some vesicular systems may deliver the drug deeper in the skin as compared to conventional vehicles, or even make transdermal delivery more efficient for a number of drugs. Vesicular systems may also allow a more precise drug delivery to the site of action (ie, the hair follicles) and thereby minimize the applied drug concentration, reducing potential side effects. On the other hand, this may increase the risk of other side effects. Few case reports have suggested that microvesicle formulations may affect the allergenicity of topical products. This article gives an overview of the current knowledge about the topical use of microvesicular systems and the dermatoallergologic aspects. PMID:20920408

  3. Cardiovascular and affective consequences of ruminating on a performance stressor depend on mode of thought.

    PubMed

    Zoccola, Peggy M; Rabideau, Erin M; Figueroa, Wilson S; Woody, Alex

    2014-08-01

    Psychological detachment from work is important for facilitating recovery. This can be threatened by rumination, or thinking about the day's stressors. Rumination may lead to distress, fatigue and extended activation of stress-related systems, but findings are not unequivocal. Level of construal (abstract or concrete) and type of mentation (imagery or verbal thought) used during stressor-focused rumination may shape physiological and affective responses and impact recovery. This study tested whether blood pressure (BP) and anxiety responses to stressor-focused rumination differ by mentation type and construal level. Healthy undergraduates (n = 136) performed a speech stressor and then completed a rumination task in one of four randomly assigned conditions: concrete imagery, abstract imagery, concrete verbal thought or abstract verbal thought. Anxiety and continuous BP were assessed. Concrete rumination led to greater BP, whereas rumination with abstract construals led to lower BP. Furthermore, participants in the abstract conditions had greater increases in anxiety following stressor-focused rumination than in the concrete conditions. Results suggest that the immediate physiological and psychological consequences of stressor-focused rumination depend upon mode of thought. PMID:25100270

  4. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations

    PubMed Central

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A.; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-01

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. PMID:25603968

  5. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations.

    PubMed

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-01

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. PMID:25603968

  6. Nanosecond electric pulses affect a plant-specific kinesin at the plasma membrane.

    PubMed

    Kühn, Sebastian; Liu, Qiong; Eing, Christian; Frey, Wolfgang; Nick, Peter

    2013-12-01

    Electric pulses with high field strength and durations in the nanosecond range (nsPEFs) are of considerable interest for biotechnological and medical applications. However, their actual cellular site of action is still under debate--due to their extremely short rise times, nsPEFs are thought to act mainly in the cell interior rather than at the plasma membrane. On the other hand, nsPEFs can induce membrane permeability. We have revisited this issue using plant cells as a model. By mapping the cellular responses to nsPEFs of different field strength and duration in the tobacco BY-2 cell line, we could define a treatment that does not impinge on short-term viability, such that the physiological responses to the treatment can be followed. We observe, for these conditions, a mild disintegration of the cytoskeleton, impaired membrane localization of the PIN1 auxin-efflux transporter and a delayed premitotic nuclear positioning followed by a transient mitotic arrest. To address the target site of nsPEFs, we made use of the plant-specific KCH kinesin, which can assume two different states with different localization (either near the nucleus or at the cell membrane) driving different cellular functions. We show that nsPEFs reduce cell expansion in nontransformed cells but promote expansion in a line overexpressing KCH. Since cell elongation and cell widening are linked to the KCH localized at the cell membrane, the inverted response in the KCH overexpressor provides evidence for a direct action of nsPEFs, also at the cell membrane. PMID:24062185

  7. Plant Pathogenic Microbial Communication Affected by Elevated Temperature in Pectobacterium carotovorum subsp. carotovorum.

    PubMed

    Saha, N D; Chaudhary, A; Singh, S D; Singh, D; Walia, S; Das, T K

    2015-11-01

    Gram-negative plant pathogenic bacteria regulate specific gene expression in a population density-dependent manner by sensing level of Acyl-Homoserine Lactone (HSL) molecules which they produce and liberate to the environment, called Quorum Sensing (QS). The production of virulence factors (extracellular enzyme viz. cellulase, pectinase, etc.) in Pectobacterium carotovorum subsp. carotovorum (Pcc) is under strong regulation of QS. The QS signal molecule, N-(3-oxohexanoyl)-L-Homoserine Lactone (OHHL) was found as the central regulatory system for the virulence factor production in Pcc and is also under strict regulation of external environmental temperature. Under seven different incubation temperatures (24, 26, 28, 30, 33, 35, and 37 °C) in laboratory condition, highest amount of OHHL (804 violacein unit) and highest (79 %) Disease Severity Index (DSI) were measured at 33 °C. The OHHL production kinetics showed accumulation of highest concentration of OHHL at late log phase of the growth but diminution in the concentration occurred during stationary phase onwards to death phase. At higher temperature (35 and 37 °C) exposure, OHHL was not at detectable range. The effect of temperature on virulence factor production is the concomitant effect of HSL production and degradation which justifies less disease severity index in cross-inoculated tomato fruits incubated at 35 and 37 °C. The nondetection of the OHHL in the elevated temperature may because of degradation as these signal molecules are quite sensitive and prone to get degraded under different physical factors. This result provides the rationale behind the highest disease severity up to certain elevated temperature and leaves opportunities for investigation on mutation, co-evolution of superior plant pathogen with more stable HSL signals-mediated pathogenesis under global warming context. PMID:26271295

  8. ASME PTC 46 -- Acceptance test code for overall plant performance

    SciTech Connect

    Friedman, J.R.; Yost, J.G.

    1999-11-01

    ASME published PTC 46 in 1996 after five years of development. PTC 46 is the first industry standard providing explicit procedures for conducting acceptance tests to determine the overall thermal performance and output of power generating units. It is applicable to any heat cycle power generating unit. This survey paper provides an overview of PTC 46 and discusses how PTC 46 can be used for acceptance testing of new combined cycle and fossil steam power generating units. Several technical papers have been previously presented that provide more detailed information and discussion on the use of PTC 46 in acceptance testing.

  9. Power Plant Emission Reductions Using a Generation Performance Standard

    EIA Publications

    2001-01-01

    In an earlier analysis completed in response to a request received from Representative David McIntosh, Chairman of the Subcommittee on National Economic Growth, Natural Resources, and Regulatory Affairs, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides, sulfur dioxide, and carbon dioxide emissions, assuming a policy instrument patterned after the sulfur dioxide allowance program created in the Clean Air Act Amendments of 1990. This paper compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard as an instrument for reducing carbon dioxide emissions.

  10. Plant invasion phenomenon enhances reproduction performance in an endangered spider

    NASA Astrophysics Data System (ADS)

    Pétillon, Julien; Puzin, Charlène; Acou, Anthony; Outreman, Yannick

    2009-10-01

    Current models in evolutionary ecology predict life history alterations in response to habitat suitability to optimize fitness. Only few empirical studies have demonstrated how life history traits that are expected to trade off against each other differ among environments. In Europe, many salt marshes have been recently invaded by the grass Elymus athericus. Previous studies however showed higher densities of the endangered spider Arctosa fulvolineata (Araneae: Lycosidae) in invaded salt marshes compared to natural habitats, which suggests a lower habitat suitability in the latter. The aim of this study was to determine if this emerging habitat (1) affects the amount of resource acquisition and (2) alters the balance between life history traits that are expected to trade off against each other in this stenotopic salt marsh species. As suggested by theoretical studies, an optimization of fitness by increasing egg size at the cost of decreasing fecundity in unsuitable (i.e., natural) habitats was expected. Females presenting cocoon were then collected in close invaded and natural salt marsh areas within the Mont Saint-Michel Bay (France). By considering female mass as covariate, cocoon mass, number of eggs, and egg volume were compared between both habitats. Clutch mass was strongly determined by female mass in both habitats. Clutch mass was however significantly smaller in the natural habitat compared to the invaded habitat, indicating a higher resource acquisition in the latter. When correcting for female size, fecundity was additionally increased in the invaded habitat through a significant decrease in egg size. This phenotypic response can be explained by differences in habitat structure between invaded and natural habitats: the former offers a more complex litter favoring nocturnal wanderers like A. fulvolineata. The existence of such an adaptive reproduction strategy depending on habitat suitability constitutes an original case of an invasion that favors an

  11. Accumulation of N-Acetylglucosamine Oligomers in the Plant Cell Wall Affects Plant Architecture in a Dose-Dependent and Conditional Manner1[W][OPEN

    PubMed Central

    Vanholme, Bartel; Vanholme, Ruben; Turumtay, Halbay; Goeminne, Geert; Cesarino, Igor; Goubet, Florence; Morreel, Kris; Rencoret, Jorge; Bulone, Vincent; Hooijmaijers, Cortwa; De Rycke, Riet; Gheysen, Godelieve; Ralph, John; De Block, Marc; Meulewaeter, Frank; Boerjan, Wout

    2014-01-01

    To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane. PMID:24664205

  12. Affect and Managerial Performance: A Test of the Sadder-but-Wiser vs. Happier-and-Smarter Hypotheses.

    ERIC Educational Resources Information Center

    Staw, Barry M.; Barsade, Sigal G.

    1993-01-01

    Provides a comparative test of two psychological theories concerning the relationship between affect and performance. Used managerial simulations to test whether people with positive dispositions perform better or worse on both decisional and interpersonal tasks. Results support the happier-and-smarter, as opposed to the sadder-but-wiser,…

  13. From facilitation to competition: temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands.

    PubMed

    Olsen, Siri L; Töpper, Joachim P; Skarpaas, Olav; Vandvik, Vigdis; Klanderud, Kari

    2016-05-01

    Biotic interactions are often ignored in assessments of climate change impacts. However, climate-related changes in species interactions, often mediated through increased dominance of certain species or functional groups, may have important implications for how species respond to climate warming and altered precipitation patterns. We examined how a dominant plant functional group affected the population dynamics of four co-occurring forb species by experimentally removing graminoids in seminatural grasslands. Specifically, we explored how the interaction between dominants and subordinates varied with climate by replicating the removal experiment across a climate grid consisting of 12 field sites spanning broad-scale temperature and precipitation gradients in southern Norway. Biotic interactions affected population growth rates of all study species, and the net outcome of interactions between dominants and subordinates switched from facilitation to competition with increasing temperature along the temperature gradient. The impacts of competitive interactions on subordinates in the warmer sites could primarily be attributed to reduced plant survival. Whereas the response to dominant removal varied with temperature, there was no overall effect of precipitation on the balance between competition and facilitation. Our findings suggest that global warming may increase the relative importance of competitive interactions in seminatural grasslands across a wide range of precipitation levels, thereby favouring highly competitive dominant species over subordinate species. As a result, seminatural grasslands may become increasingly dependent on disturbance (i.e. traditional management such as grazing and mowing) to maintain viable populations of subordinate species and thereby biodiversity under future climates. Our study highlights the importance of population-level studies replicated under different climatic conditions for understanding the underlying mechanisms of climate

  14. Whole Genome Duplication Affects Evolvability of Flowering Time in an Autotetraploid Plant

    PubMed Central

    Martin, Sara L.; Husband, Brian C.

    2012-01-01

    Whole genome duplications have occurred recurrently throughout the evolutionary history of eukaryotes. The resulting genetic and phenotypic changes can influence physiological and ecological responses to the environment; however, the impact of genome copy number on evolvability has rarely been examined experimentally. Here, we evaluate the effect of genome duplication on the ability to respond to selection for early flowering time in lines drawn from naturally occurring diploid and autotetraploid populations of the plant Chamerion angustifolium (fireweed). We contrast this with the result of four generations of selection on synthesized neoautotetraploids, whose genic variability is similar to diploids but genome copy number is similar to autotetraploids. In addition, we examine correlated responses to selection in all three groups. Diploid and both extant tetraploid and neoautotetraploid lines responded to selection with significant reductions in time to flowering. Evolvability, measured as realized heritability, was significantly lower in extant tetraploids ( = 0.31) than diploids ( = 0.40). Neotetraploids exhibited the highest evolutionary response ( = 0.55). The rapid shift in flowering time in neotetraploids was associated with an increase in phenotypic variability across generations, but not with change in genome size or phenotypic correlations among traits. Our results suggest that whole genome duplications, without hybridization, may initially alter evolutionary rate, and that the dynamic nature of neoautopolyploids may contribute to the prevalence of polyploidy throughout eukaryotes. PMID:23028620

  15. Plant essential oils affect the toxicities of carbaryl and permethrin against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Tong, Fan; Bloomquist, Jeffrey R

    2013-07-01

    ABSTRACT Phytochemicals have been considered as alternatives for conventional pesticides because of their low mammalian toxicity and environmental safety. They usually display less potent insecticidal effects than synthetic compounds, but may express as yet unknown modes of action. In the current study, we evaluated 14 plant essential oils for their toxicities and synergistic effects with carbaryl and permethrin against fourth instars of Aedes aegypti (L.) as well as 5-7-d-old adults. Six essential oils showed significant synergistic effects with carbaryl at 10-50 mg/liter, but paradoxically all of them decreased the toxicity of permethrin against Ae. aegypti larvae. None showed toxicity or synergistic effects on Ae. aegypti adults, at doses up to 2,000 ng/ insect. The six essential oils displaying synergistic effects in Ae. aegypti larvae inhibited the in vitro activities of cytochrome P450 monooxygenases and carboxylesterases in the low milligram per liter range. The data indicated that cytochrome P450 monooxygenases and carboxylesterase were probably targets for these natural synergists. Thus, the mechanism of synergism was most likely inhibition of metabolism and not interacting target site effects. PMID:23926781

  16. Source population characteristics affect heterosis following genetic rescue of fragmented plant populations

    PubMed Central

    Pickup, M.; Field, D. L.; Rowell, D. M.; Young, A. G.

    2013-01-01

    Understanding the relative importance of heterosis and outbreeding depression over multiple generations is a key question in evolutionary biology and is essential for identifying appropriate genetic sources for population and ecosystem restoration. Here we use 2455 experimental crosses between 12 population pairs of the rare perennial plant Rutidosis leptorrhynchoides (Asteraceae) to investigate the multi-generational (F1, F2, F3) fitness outcomes of inter-population hybridization. We detected no evidence of outbreeding depression, with inter-population hybrids and backcrosses showing either similar fitness or significant heterosis for fitness components across the three generations. Variation in heterosis among population pairs was best explained by characteristics of the foreign source or home population, and was greatest when the source population was large, with high genetic diversity and low inbreeding, and the home population was small and inbred. Our results indicate that the primary consideration for maximizing progeny fitness following population augmentation or restoration is the use of seed from large, genetically diverse populations. PMID:23173202