Science.gov

Sample records for affect plant responses

  1. Plant surface wax affects parasitoid's response to host footprints

    NASA Astrophysics Data System (ADS)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  2. Modulation of Ethylene Responses Affects Plant Salt-Stress Responses1[OA

    PubMed Central

    Cao, Wan-Hong; Liu, Jun; He, Xin-Jian; Mu, Rui-Ling; Zhou, Hua-Lin; Chen, Shou-Yi; Zhang, Jin-Song

    2007-01-01

    Ethylene signaling plays important roles in multiple aspects of plant growth and development. Its functions in abiotic stress responses remain largely unknown. Here, we report that alteration of ethylene signaling affected plant salt-stress responses. A type II ethylene receptor homolog gene NTHK1 (Nicotiana tabacum histidine kinase 1) from tobacco (N. tabacum) conferred salt sensitivity in NTHK1-transgenic Arabidopsis (Arabidopsis thaliana) plants as judged from the phenotypic change, the relative electrolyte leakage, and the relative root growth under salt stress. Ethylene precursor 1-aminocyclopropane-1-carboxylic acid suppressed the salt-sensitive phenotype. Analysis of Arabidopsis ethylene receptor gain-of-function mutants further suggests that receptor function may lead to salt-sensitive responses. Mutation of EIN2, a central component in ethylene signaling, also results in salt sensitivity, suggesting that EIN2-mediated signaling is beneficial for plant salt tolerance. Overexpression of the NTHK1 gene or the receptor gain-of-function activated expression of salt-responsive genes AtERF4 and Cor6.6. In addition, the transgene NTHK1 mRNA was accumulated under salt stress, suggesting a posttranscriptional regulatory mechanism. These findings imply that ethylene signaling may be required for plant salt tolerance. PMID:17189334

  3. Dynamic Response of Large Wind Power Plant Affected by Diverse Conditions at Individual Turbines

    SciTech Connect

    Elizondo, Marcelo A.; Lu, Shuai; Lin, Guang; Wang, Shaobu

    2014-07-31

    Diverse operating conditions at individual wind turbine generators (WTG) within wind power plants (WPPs) can affect the WPP dynamic response to system faults. For example, individual WTGs can experience diverse terminal voltage and power output caused by different wind direction and speed, affecting the response of protection and control limiters. In this paper, we present a study to investigate the dynamic response of a detailed WPP model under diverse power outputs of its individual WTGs. Wake effect is considered as the reason for diverse power outputs. The diverse WTG power output is evaluated in a test system where a large 168-machine test WPP is connected to the IEEE-39-bus system. The power output from each WTG is derived from a wake effect model that uses realistic statistical data for incoming wind speed and direction. The results show that diverse WTG output due to wake effect can affect the WPP dynamic response activating specialized control in some turbines. In addition, transient stability is affected by exhibiting uncertainty in critical clearing time calculation.

  4. Plant-bacteria bioremediation agents affect the response of plant bioindicators independent of 2-chlorobenzoic acid degradation

    SciTech Connect

    Siciliano, S.D.; Germida, J.J.

    1995-12-31

    Plants are known to degrade toxicants in soil and are potentially useful bioremediation agents. The authors developed plant-bacteria associations (e.g., Meadow brome [Bromus riparius] and Pseudomonas aeruginosa strain R75) that degrade 2-chlorobenzoic acid (2CBA) in soil, and assessed their success using Slender wheatgrass (Agropyron trachycaulum) germination as a bioindicator of 2CBA levels. Gas chromatography was used to chemically assess 2CBA levels. Specific plant-bacteria bioremediation treatments decreased soil 2CBA levels by 17 to 52%, but bioindicator response did not correspond to chemical analysis. Contaminated and uncontaminated soil was subjected to bioremediation treatments. After 42 days, uncontaminated soil was collected and amended to various 2CBA levels. This soil and the remediated soil were analyzed by the plant bioindicator and gas chromatography. Bioremediation treatments altered germination of Slender wheatgrass in both contaminated and noncontaminated soils to a similar extent. These treatments decreased the toxicity of 2CBA to Slender wheatgrass in both contaminated and noncontaminated soils to a similar extent. These treatments decreased the toxicity of 2CBA to Slender wheatgrass at low 2CBA levels, but increased the toxicity of 2CBA at high 2CBA levels. For example, germination in soil subjected to the Meadow brome and R75 treatment was increased by ca. 30% at 50 mg kg{sup {minus}1} 2CBA, but decreased by ca. 50% at 150 mg kg{sup {minus}1} 2CBA. The results indicate that specific plant-bacteria bioremediation treatments affect plant bioindicator response independent of 2CBA degradation, and may confound efforts to determine the toxicity of 2CBA in soil.

  5. Light Influences How the Fungal Toxin Deoxynivalenol Affects Plant Cell Death and Defense Responses

    PubMed Central

    Ansari, Khairul I.; Doyle, Siamsa M.; Kacprzyk, Joanna; Khan, Mojibur R.; Walter, Stephanie; Brennan, Josephine M.; Arunachalam, Chanemouga Soundharam; McCabe, Paul F.; Doohan, Fiona M.

    2014-01-01

    The Fusarium mycotoxin deoxynivalenol (DON) can cause cell death in wheat (Triticum aestivum), but can also reduce the level of cell death caused by heat shock in Arabidopsis (Arabidopsis thaliana) cell cultures. We show that 10 μg mL−1 DON does not cause cell death in Arabidopsis cell cultures, and its ability to retard heat-induced cell death is light dependent. Under dark conditions, it actually promoted heat-induced cell death. Wheat cultivars differ in their ability to resist this toxin, and we investigated if the ability of wheat to mount defense responses was light dependent. We found no evidence that light affected the transcription of defense genes in DON-treated roots of seedlings of two wheat cultivars, namely cultivar CM82036 that is resistant to DON-induced bleaching of spikelet tissue and cultivar Remus that is not. However, DON treatment of roots led to genotype-dependent and light-enhanced defense transcript accumulation in coleoptiles. Wheat transcripts encoding a phenylalanine ammonia lyase (PAL) gene (previously associated with Fusarium resistance), non-expressor of pathogenesis-related genes-1 (NPR1) and a class III plant peroxidase (POX) were DON-upregulated in coleoptiles of wheat cultivar CM82036 but not of cultivar Remus, and DON-upregulation of these transcripts in cultivar CM82036 was light enhanced. Light and genotype-dependent differences in the DON/DON derivative content of coleoptiles were also observed. These results, coupled with previous findings regarding the effect of DON on plants, show that light either directly or indirectly influences the plant defense responses to DON. PMID:24561479

  6. Light influences how the fungal toxin deoxynivalenol affects plant cell death and defense responses.

    PubMed

    Ansari, Khairul I; Doyle, Siamsa M; Kacprzyk, Joanna; Khan, Mojibur R; Walter, Stephanie; Brennan, Josephine M; Arunachalam, Chanemouga Soundharam; McCabe, Paul F; Doohan, Fiona M

    2014-02-01

    The Fusarium mycotoxin deoxynivalenol (DON) can cause cell death in wheat (Triticum aestivum), but can also reduce the level of cell death caused by heat shock in Arabidopsis (Arabidopsis thaliana) cell cultures. We show that 10 μg mL(-1) DON does not cause cell death in Arabidopsis cell cultures, and its ability to retard heat-induced cell death is light dependent. Under dark conditions, it actually promoted heat-induced cell death. Wheat cultivars differ in their ability to resist this toxin, and we investigated if the ability of wheat to mount defense responses was light dependent. We found no evidence that light affected the transcription of defense genes in DON-treated roots of seedlings of two wheat cultivars, namely cultivar CM82036 that is resistant to DON-induced bleaching of spikelet tissue and cultivar Remus that is not. However, DON treatment of roots led to genotype-dependent and light-enhanced defense transcript accumulation in coleoptiles. Wheat transcripts encoding a phenylalanine ammonia lyase (PAL) gene (previously associated with Fusarium resistance), non-expressor of pathogenesis-related genes-1 (NPR1) and a class III plant peroxidase (POX) were DON-upregulated in coleoptiles of wheat cultivar CM82036 but not of cultivar Remus, and DON-upregulation of these transcripts in cultivar CM82036 was light enhanced. Light and genotype-dependent differences in the DON/DON derivative content of coleoptiles were also observed. These results, coupled with previous findings regarding the effect of DON on plants, show that light either directly or indirectly influences the plant defense responses to DON. PMID:24561479

  7. Does nitrate co-pollution affect biological responses of an aquatic plant to two common herbicides?

    PubMed

    Nuttens, A; Chatellier, S; Devin, S; Guignard, C; Lenouvel, A; Gross, E M

    2016-08-01

    Aquatic systems in agricultural landscapes are subjected to multiple stressors, among them pesticide and nitrate run-off, but effects of both together have rarely been studied. We investigated possible stress-specific and interaction effects using the new OECD test organism, Myriophyllum spicatum, a widespread aquatic plant. In a fully factorial design, we used two widely applied herbicides, isoproturon and mesosulfuron-methyl, in concentration-response curves at two nitrate levels (219.63 and 878.52mg N-NO3). We applied different endpoints reflecting plant performance such as growth, pigment content, content in phenolic compounds, and plant stoichiometry. Relative growth rates based on length (RGR-L) were affected strongly by both herbicides, while effects on relative growth rate based on dry weight (RGR-DW) were apparent for isoproturon but hardly visible for mesosulfuron-methyl due to an increase in dry matter content. The higher nitrate level further reduced growth rates, specifically with mesosulfuron-methyl. Effects were visible between 50 and 500μgL(-1) for isoproturon and 0.5-5μgL(-1) for mesosulfuron-methyl, with some differences between endpoints. The two herbicides had opposite effects on chlorophyll, carotenoid and nitrogen contents in plants, with values increasing with increasing concentrations of isoproturon and decreasing for mesosulfuron-methyl. Herbicides and nitrate level exhibited distinct effects on the content in phenolic compounds, with higher nitrate levels reducing total phenolic compounds in controls and with isoproturon, but not with mesosulfuron-methyl. Increasing concentrations of mesosulfuron-methyl lead to a decline of total phenolic compounds, while isoproturon had little effect. Contents of carbon, nitrogen and phosphorus changed depending on the stressor combination. We observed higher phosphorus levels in plants exposed to certain concentrations of herbicides, potentially indicating a metabolic response. The C:N molar ratio

  8. Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation.

    PubMed

    Astolfi, S; Zuchi, S; Neumann, G; Cesco, S; Sanità di Toppi, L; Pinton, R

    2012-02-01

    Both Fe deficiency and Cd exposure induce rapid changes in the S nutritional requirement of plants. The aim of this work was to characterize the strategies adopted by plants to cope with both Fe deficiency (release of phytosiderophores) and Cd contamination [production of glutathione (GSH) and phytochelatins] when grown under conditions of limited S supply. Experiments were performed in hydroponics, using barley plants grown under S sufficiency (1.2 mM sulphate) and S deficiency (0 mM sulphate), with or without Fe(III)-EDTA at 0.08 mM for 11 d and subsequently exposed to 0.05 mM Cd for 24 h or 72 h. In S-sufficient plants, Fe deficiency enhanced both root and shoot Cd concentrations and increased GSH and phytochelatin levels. In S-deficient plants, Fe starvation caused a slight increase in Cd concentration, but this change was accompanied neither by an increase in GSH nor by an accumulation of phytochelatins. Release of phytosiderophores, only detectable in Fe-deficient plants, was strongly decreased by S deficiency and further reduced after Cd treatment. In roots Cd exposure increased the expression of the high affinity sulphate transporter gene (HvST1) regardless of the S supply, and the expression of the Fe deficiency-responsive genes, HvYS1 and HvIDS2, irrespective of Fe supply. In conclusion, adequate S availability is necessary to cope with Fe deficiency and Cd toxicity in barley plants. Moreover, it appears that in Fe-deficient plants grown in the presence of Cd with limited S supply, sulphur may be preferentially employed in the pathway for biosynthesis of phytosiderophores, rather than for phytochelatin production. PMID:22090437

  9. A Novel Role for Arabidopsis CBL1 in Affecting Plant Responses to Glucose and Gibberellin during Germination and Seedling Development

    PubMed Central

    Li, Zhi-Yong; Xu, Zhao-Shi; Chen, Yang; He, Guang-Yuan; Yang, Guang-Xiao; Chen, Ming; Li, Lian-Cheng; Ma, You-Zhi

    2013-01-01

    Glucose and phytohormones such as abscisic acid (ABA), ethylene, and gibberellin (GA) coordinately regulate germination and seedling development. However, there is still inadequate evidence to link their molecular roles in affecting plant responses. Calcium acts as a second messenger in a diverse range of signal transduction pathways. As calcium sensors unique to plants, calcineurin B-like (CBL) proteins are well known to modulate abiotic stress responses. In this study, it was found that CBL1 was induced by glucose in Arabidopsis. Loss-of-function mutant cbl1 exhibited hypersensitivity to glucose and paclobutrazol, a GA biosynthetic inhibitor. Several sugar-responsive and GA biosynthetic gene expressions were altered in the cbl1 mutant. CBL1 protein physically interacted with AKINβ1, the regulatory β subunit of the SnRK1 complex which has a central role in sugar signaling. Our results indicate a novel role for CBL1 in modulating responses to glucose and GA signals. PMID:23437128

  10. Identification of viral and phytoplasmal agents responsible for diseases affecting plants of Gaillardia Foug. in Lithuania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gaillardia plants exhibiting symptoms characteristic of viral and phytoplasmal diseases were collected at botanical gardens and floriculture farms in Lithuania. Cucumber mosaic virus was isolated from diseased plants exhibiting symptoms characterized stunting, color breaking and malformation of flo...

  11. Corn Response as Affected by Planting Distance from the Center of Strip-Till Fertilized Rows

    PubMed Central

    Adee, Eric; Hansel, Fernando D.; Ruiz Diaz, Dorivar A.; Janssen, Keith

    2016-01-01

    Strip-till has been used at a large scale in east central Kansas as an alternative to earlier planting dates under a no-till system. To determine the effects of planting corn (Zea mays) under previously established strip-tilled fertilized rows, experiments were conducted on an Osage silty clay loam soil in 2006 and 2008 and on a Woodson silt loam soil in 2009, 2010, and 2011 using three different planting distances from the strip-tilled fertilized rows (0, 10, 20, and 38 cm) with a strip-till operation performed between 1 and 73 days before planting. The depth of the strip-till fertilizer application was 13–15 cm below the soil surface. Corn that was planted 10 cm from the fertilized row showed greater early season growth, higher plant population, and grain yield. Planting 20 and 38 cm from the center of the fertilized rows showed none of the benefits that are typically associated with strip-tillage system. Enough time should be allowed between the strip-till operation and planting to reach satisfactory soil conditions (e.g., moist and firm seedbed). Our results suggest that the best location for planting strip-tilled fertilized corn vary depending on soil and climatic conditions as well as the time between fertilizer application with the strip-till operation and planting. With fewer number of days, planting directly on the center of fertilized strip-till resulted in decreased plant population and lower grain yield. However, the greatest yield benefit across different planting conditions was attained when planting within 10 cm of the strip. PMID:27588024

  12. Corn Response as Affected by Planting Distance from the Center of Strip-Till Fertilized Rows.

    PubMed

    Adee, Eric; Hansel, Fernando D; Ruiz Diaz, Dorivar A; Janssen, Keith

    2016-01-01

    Strip-till has been used at a large scale in east central Kansas as an alternative to earlier planting dates under a no-till system. To determine the effects of planting corn (Zea mays) under previously established strip-tilled fertilized rows, experiments were conducted on an Osage silty clay loam soil in 2006 and 2008 and on a Woodson silt loam soil in 2009, 2010, and 2011 using three different planting distances from the strip-tilled fertilized rows (0, 10, 20, and 38 cm) with a strip-till operation performed between 1 and 73 days before planting. The depth of the strip-till fertilizer application was 13-15 cm below the soil surface. Corn that was planted 10 cm from the fertilized row showed greater early season growth, higher plant population, and grain yield. Planting 20 and 38 cm from the center of the fertilized rows showed none of the benefits that are typically associated with strip-tillage system. Enough time should be allowed between the strip-till operation and planting to reach satisfactory soil conditions (e.g., moist and firm seedbed). Our results suggest that the best location for planting strip-tilled fertilized corn vary depending on soil and climatic conditions as well as the time between fertilizer application with the strip-till operation and planting. With fewer number of days, planting directly on the center of fertilized strip-till resulted in decreased plant population and lower grain yield. However, the greatest yield benefit across different planting conditions was attained when planting within 10 cm of the strip. PMID:27588024

  13. Elevated CO2 affects plant responses to variation in boron availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of elevated CO2 on N relations are well studied, but effects on other nutrients, especially micronutrients, are not. We investigated effects of elevated CO2 on response to variation in boron (B) availability in three unrelated species: geranium (Pelargonium x hortorum), barley (Hordeum vulga...

  14. Responses of plants to simulated saline drift as affected by species and conditions of exposure.

    PubMed

    McCune, D C; Silberman, D H

    1991-01-01

    In exposures to simulated saline drift generated from a 0.6% (w/w) chloride (Cl)-solution, under controlled environmental conditions, the median effective doses for the occurrence of any salt-induced foliar injury (expressed as microgCl cm(-2) deposited in six hours) were: 2.9 for Canada hemlock (Tsuga canadensis [L.] Carr.); 10.3 for white flowering dogwood (Cornus florida L.); 43.5 for potato (Solanum tubersum L. cv Superior); 44.2 for northern red oak (Quercus rubra L.); 65.1 for sweet corn (Zea mays L. cv Golden Cross Bantam); and, 123 for bush bean (Phaseolus vulgaris L. cv Pinto). Response of bean was a function of total deposition and independent of its rate with multiple (one per day) 6-h exposures but not with exposures less than 6 h where toxicity (per mass of Cl) increased with an increase in the rate of deposition. Toxicity of particles increased with an increase in the concentration of Cl in the solution (1.6 or 5.0% w/w) from which they were generated with bush bean but not with hemlock. Post-exposure periods that cycled between 50 and 855% relative humidity (RH) produced a greater incidence of salt-induced foliar injury than did a regime of constant 85% RH. PMID:15092146

  15. Affective responses to dance.

    PubMed

    Christensen, Julia F; Pollick, Frank E; Lambrechts, Anna; Gomila, Antoni

    2016-07-01

    The objective of the present work was the characterization of mechanisms by which affective experiences are elicited in observers when watching dance movements. A total of 203 dance stimuli from a normed stimuli library were used in a series of independent experiments. The following measures were obtained: (i) subjective measures of 97 dance-naïve participants' affective responses (Likert scale ratings, interviews); and (ii) objective measures of the physical parameters of the stimuli (motion energy, luminance), and of the movements represented in the stimuli (roundedness, impressiveness). Results showed that (i) participants' ratings of felt and perceived affect differed, (ii) felt and perceived valence but not arousal ratings correlated with physical parameters of the stimuli (motion energy and luminance), (iii) roundedness in posture shape was related to the experience of more positive emotion than edgy shapes (1 of 3 assessed rounded shapes showed a clear effect on positiveness ratings while a second reached trend level significance), (iv) more impressive movements resulted in more positive affective responses, (v) dance triggered affective experiences through the imagery and autobiographical memories it elicited in some people, and (vi) the physical parameters of the video stimuli correlated only weakly and negatively with the aesthetics ratings of beauty, liking and interest. The novelty of the present approach was twofold; (i) the assessment of multiple affect-inducing mechanisms, and (ii) the use of one single normed stimulus set. The results from this approach lend support to both previous and present findings. Results are discussed with regards to current literature in the field of empirical aesthetics and affective neuroscience. PMID:27235953

  16. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis.

    PubMed

    Magnin-Robert, Maryline; Le Bourse, Doriane; Markham, Jonathan; Dorey, Stéphan; Clément, Christophe; Baillieul, Fabienne; Dhondt-Cordelier, Sandrine

    2015-11-01

    Sphingolipids are emerging as second messengers in programmed cell death and plant defense mechanisms. However, their role in plant defense is far from being understood, especially against necrotrophic pathogens. Sphingolipidomics and plant defense responses during pathogenic infection were evaluated in the mutant of long-chain base phosphate (LCB-P) lyase, encoded by the dihydrosphingosine-1-phosphate lyase1 (AtDPL1) gene and regulating long-chain base/LCB-P homeostasis. Atdpl1 mutants exhibit tolerance to the necrotrophic fungus Botrytis cinerea but susceptibility to the hemibiotrophic bacterium Pseudomonas syringae pv tomato (Pst). Here, a direct comparison of sphingolipid profiles in Arabidopsis (Arabidopsis thaliana) during infection with pathogens differing in lifestyles is described. In contrast to long-chain bases (dihydrosphingosine [d18:0] and 4,8-sphingadienine [d18:2]), hydroxyceramide and LCB-P (phytosphingosine-1-phosphate [t18:0-P] and 4-hydroxy-8-sphingenine-1-phosphate [t18:1-P]) levels are higher in Atdpl1-1 than in wild-type plants in response to B. cinerea. Following Pst infection, t18:0-P accumulates more strongly in Atdpl1-1 than in wild-type plants. Moreover, d18:0 and t18:0-P appear as key players in Pst- and B. cinerea-induced cell death and reactive oxygen species accumulation. Salicylic acid levels are similar in both types of plants, independent of the pathogen. In addition, salicylic acid-dependent gene expression is similar in both types of B. cinerea-infected plants but is repressed in Atdpl1-1 after treatment with Pst. Infection with both pathogens triggers higher jasmonic acid, jasmonoyl-isoleucine accumulation, and jasmonic acid-dependent gene expression in Atdpl1-1 mutants. Our results demonstrate that sphingolipids play an important role in plant defense, especially toward necrotrophic pathogens, and highlight a novel connection between the jasmonate signaling pathway, cell death, and sphingolipids. PMID:26378098

  17. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis1[OPEN

    PubMed Central

    Magnin-Robert, Maryline; Le Bourse, Doriane; Markham, Jonathan; Dorey, Stéphan; Clément, Christophe; Baillieul, Fabienne; Dhondt-Cordelier, Sandrine

    2015-01-01

    Sphingolipids are emerging as second messengers in programmed cell death and plant defense mechanisms. However, their role in plant defense is far from being understood, especially against necrotrophic pathogens. Sphingolipidomics and plant defense responses during pathogenic infection were evaluated in the mutant of long-chain base phosphate (LCB-P) lyase, encoded by the dihydrosphingosine-1-phosphate lyase1 (AtDPL1) gene and regulating long-chain base/LCB-P homeostasis. Atdpl1 mutants exhibit tolerance to the necrotrophic fungus Botrytis cinerea but susceptibility to the hemibiotrophic bacterium Pseudomonas syringae pv tomato (Pst). Here, a direct comparison of sphingolipid profiles in Arabidopsis (Arabidopsis thaliana) during infection with pathogens differing in lifestyles is described. In contrast to long-chain bases (dihydrosphingosine [d18:0] and 4,8-sphingadienine [d18:2]), hydroxyceramide and LCB-P (phytosphingosine-1-phosphate [t18:0-P] and 4-hydroxy-8-sphingenine-1-phosphate [t18:1-P]) levels are higher in Atdpl1-1 than in wild-type plants in response to B. cinerea. Following Pst infection, t18:0-P accumulates more strongly in Atdpl1-1 than in wild-type plants. Moreover, d18:0 and t18:0-P appear as key players in Pst- and B. cinerea-induced cell death and reactive oxygen species accumulation. Salicylic acid levels are similar in both types of plants, independent of the pathogen. In addition, salicylic acid-dependent gene expression is similar in both types of B. cinerea-infected plants but is repressed in Atdpl1-1 after treatment with Pst. Infection with both pathogens triggers higher jasmonic acid, jasmonoyl-isoleucine accumulation, and jasmonic acid-dependent gene expression in Atdpl1-1 mutants. Our results demonstrate that sphingolipids play an important role in plant defense, especially toward necrotrophic pathogens, and highlight a novel connection between the jasmonate signaling pathway, cell death, and sphingolipids. PMID:26378098

  18. Soil microbial abundance, activity and diversity response in two different altitude-adapted plant communities affected by wildfire in Sierra Nevada National Park (Granada, Spain)

    NASA Astrophysics Data System (ADS)

    Bárcenas-Moreno, Gema; Zavala, Lorena; Jordan, Antonio; Bååth, Erland; Mataix-Beneyto, Jorge

    2013-04-01

    Plant communities can play an important role in fire severity and post-fire ecosystem recovery due to their role as combustible and different plant-soil microorganisms interactions. Possible differences induced by plant and microorganisms response after fire could affect the general ecosystem short and long-term response and its sustainability. The main objective of this work was the evaluation of the effect of wildfire on soil microbial abundance, activity and diversity in two different plant communities associated to different altitudes in Sierra Nevada National Park (Granada, Spain). Samples were collected in two areas located on the Sierra Nevada Mountain between 1700 and 2000 m above sea level which were affected by a large wildfire in 2005. Two samplings were carried out 8 and 20 months after fire and samples were collected in both burned and unburned (control) zones in each plant community area. Area A is located at 1700m and it is formed by Quercus rotundifolia forest while area B is located at 2000 m altitude and is composed of alpine vegetation formed by creeping bearing shrubs. Microbial biomass measured by Fumigation-Extraction method followed the same trend in both areas showing slight and no significant differences between burned and unburned area during the study period while viable and cultivable bacteria abundance were markedly higher in fire affected samples than in the control ones in both samplings. Viable and cultivable filamentous fungi had different behavior depending of plant vegetation community studied showing no differences between burned and unburned area in area A while was significantly higher in burned samples than in the control ones in area B. Microbial activity monitoring with soil microbial respiration appears to had been affected immediately after fire since microbial respiration was lower in burned samples from area A than in unburned one only 8 months after fire and no significant differences were observed between burned and

  19. Unconscious Affective Responses to Food.

    PubMed

    Sato, Wataru; Sawada, Reiko; Kubota, Yasutaka; Toichi, Motomi; Fushiki, Tohru

    2016-01-01

    Affective or hedonic responses to food are crucial for humans, both advantageously (e.g., enhancing survival) and disadvantageously (e.g., promoting overeating and lifestyle-related disease). Although previous psychological studies have reported evidence of unconscious cognitive and behavioral processing related to food, it remains unknown whether affective reactions to food can be triggered unconsciously and its relationship with daily eating behaviors. We investigated these issues by using the subliminal affective priming paradigm. Photographs of food or corresponding mosaic images were presented in the peripheral visual field for 33 ms. Target photos of faces with emotionally neutral expressions were then presented, and participants rated their preferences for the faces. Eating behaviors were also assessed using questionnaires. The food images, relative to the mosaics, increased participants' preference for subsequent target faces. Furthermore, the difference in the preference induced by food versus mosaic images was positively correlated with the tendency to engage in external eating. These results suggest that unconscious affective reactions are elicited by the sight of food and that these responses contribute to daily eating behaviors related to overeating. PMID:27501443

  20. Unconscious Affective Responses to Food

    PubMed Central

    Sato, Wataru; Sawada, Reiko; Kubota, Yasutaka; Toichi, Motomi; Fushiki, Tohru

    2016-01-01

    Affective or hedonic responses to food are crucial for humans, both advantageously (e.g., enhancing survival) and disadvantageously (e.g., promoting overeating and lifestyle-related disease). Although previous psychological studies have reported evidence of unconscious cognitive and behavioral processing related to food, it remains unknown whether affective reactions to food can be triggered unconsciously and its relationship with daily eating behaviors. We investigated these issues by using the subliminal affective priming paradigm. Photographs of food or corresponding mosaic images were presented in the peripheral visual field for 33 ms. Target photos of faces with emotionally neutral expressions were then presented, and participants rated their preferences for the faces. Eating behaviors were also assessed using questionnaires. The food images, relative to the mosaics, increased participants’ preference for subsequent target faces. Furthermore, the difference in the preference induced by food versus mosaic images was positively correlated with the tendency to engage in external eating. These results suggest that unconscious affective reactions are elicited by the sight of food and that these responses contribute to daily eating behaviors related to overeating. PMID:27501443

  1. Identification of detoxification pathways in plants that are regulated in response to treatment with organic compounds isolated from oil sands process-affected water.

    PubMed

    Widdup, Ellen E; Chatfield-Reed, Kate; Henry, Darren; Chua, Gordon; Samuel, Marcus A; Muench, Douglas G

    2015-11-01

    Bitumen mining in the Athabasca oil sands region of northern Alberta results in the accumulation of large volumes of oil sands process-affected water (OSPW). The acid-extractable organic (AEO) fraction of OSPW contains a variety of compounds, including naphthenic acids, aromatics, and sulfur- and nitrogen-containing compounds that are toxic to aquatic and terrestrial organisms. We have studied the effect of AEO treatment on the transcriptome of root and shoot tissues in seedlings of the model plant, Arabidopsis thaliana. Several genes encoding enzymes involved in the xenobiotic detoxification pathway were upregulated, including cytochrome P450s (CYPs), UDP-dependent glycosyltransferases (UGTs), glutathione-S-transferases (GSTs), and membrane transporters. In addition, gene products involved in oxidative stress, β-oxidation, and glucosinolate degradation were also upregulated, indicating other potential mechanisms of the adaptive response to AEO exposure. These results provide insight into the pathways that plants use to detoxify the organic acid component of OSPW. Moreover, this study advances our understanding of genes that could be exploited to potentially develop phytoremediation and biosensing strategies for AEO contaminants resulting from oil sands mining. PMID:26052061

  2. Challenges to understand plant responses to wind.

    PubMed

    Onoda, Yusuke; Anten, Niels P R

    2011-07-01

    Understanding plant response to wind is complicated as this factor entails not only mechanical stress but also affects leaf microclimate. In a recent study, we found that plant responses to mechanical stress (MS) may be different and even in the opposite direction to those of wind. MS-treated Plantago major plants produced thinner more elongated leaves while those in wind did the opposite. The latter can be associated with the drying effect of wind as is further supported by data on petiole anatomy presented here. These results indicate that plant responses to wind will depend on the extent of water stress. It should also be recognized that the responses to wind may differ between different parts of a plant and between plant species. Physiological research on wind responses should thus focus on the signal sensing and transduction of both the mechanical and drought signals associated with wind, and consider both plant size and architecture. PMID:21617382

  3. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants.

    PubMed

    Zhang, Juan; Peng, Youliang; Guo, Zejian

    2008-04-01

    WRKY transcription factors have many regulatory roles in response to biotic and abiotic stresses. In this study, we isolated a rice WRKY gene (OsWRKY31) that is induced by the rice blast fungus Magnaporthe grisea and auxin. This gene encodes a polypeptide of 211 amino-acid residues and belongs to a subgroup of the rice WRKY gene family that probably originated after the divergence of monocot and dicot plants. OsWRKY31 was found to be localized to the nucleus of onion epidermis cells to transiently express OsWRKY31-eGFP fusion protein. Analysis of OsWRKY31 and its mutants fused with a Gal4 DNA-binding domain indicated that OsWRKY31 has transactivation activity in yeast. Overexpression of the OsWRKY31 gene was found to enhance resistance against infection with M. grisea, and the transgenic lines exhibited reduced lateral root formation and elongation compared with wild-type and RNAi plants. The lines with overexpression showed constitutive expression of many defense-related genes, such as PBZ1 and OsSci2, as well as early auxin-response genes, such as OsIAA4 and OsCrl1 genes. Furthermore, the plants with overexpression were less sensitive to exogenously supplied IBA, NAA and 2,4-D at high concentrations, suggesting that overexpression of the OsWRKY31 gene might alter the auxin response or transport. These results also suggest that OsWRKY31 might be a common component in the signal transduction pathways of the auxin response and the defense response in rice. PMID:18071364

  4. Oxygen Sensing via the Ethylene Response Transcription Factor RAP2.12 Affects Plant Metabolism and Performance under Both Normoxia and Hypoxia.

    PubMed

    Paul, Melanie Verena; Iyer, Srignanakshi; Amerhauser, Carmen; Lehmann, Martin; van Dongen, Joost T; Geigenberger, Peter

    2016-09-01

    Subgroup-VII-ethylene-response-factor (ERF-VII) transcription factors are involved in the regulation of hypoxic gene expression and regulated by proteasome-mediated proteolysis via the oxygen-dependent branch of the N-end-rule pathway. While research into ERF-VII mainly focused on their role to regulate anoxic gene expression, little is known on the impact of this oxygen-sensing system in regulating plant metabolism and growth. By comparing Arabidopsis (Arabidopsis thaliana) plants overexpressing N-end-rule-sensitive and insensitive forms of the ERF-VII-factor RAP2.12, we provide evidence that oxygen-dependent RAP2.12 stability regulates central metabolic processes to sustain growth, development, and anoxic resistance of plants. (1) Under normoxia, overexpression of N-end-rule-insensitive Δ13RAP2.12 led to increased activities of fermentative enzymes and increased accumulation of fermentation products, which were accompanied by decreased adenylate energy states and starch levels, and impaired plant growth and development, indicating a role of oxygen-regulated RAP2.12 degradation to prevent aerobic fermentation. (2) In Δ13RAP2.12-overexpressing plants, decreased carbohydrate reserves also led to a decrease in anoxic resistance, which was prevented by external Suc supply. (3) Overexpression of Δ13RAP2.12 led to decreased respiration rates, changes in the levels of tricarboxylic acid cycle intermediates, and accumulation of a large number of amino acids, including Ala and γ-amino butyric acid, indicating a role of oxygen-regulated RAP2.12 abundance in controlling the flux-modus of the tricarboxylic acid cycle. (4) The increase in amino acids was accompanied by increased levels of immune-regulatory metabolites. These results show that oxygen-sensing, mediating RAP2.12 degradation is indispensable to optimize metabolic performance, plant growth, and development under both normoxic and hypoxic conditions. PMID:27372243

  5. Vaccination pattern affects immunological response

    NASA Astrophysics Data System (ADS)

    Etchegoin, P. G.

    2005-08-01

    The response of the immune system to different vaccination patterns is studied with a simple model. It is argued that the history and characteristics of the pattern defines very different secondary immune responses in the case of infection. The memory function of the immune response can be set to work in very different modes depending on the pattern followed during immunizations. It is argued that the history and pattern of immunizations can be a decisive (and experimentally accessible) factor to tailor the effectiveness of a specific vaccine.

  6. Human cerebral response to animal affective vocalizations

    PubMed Central

    Belin, Pascal; Fecteau, Shirley; Charest, Ian; Nicastro, Nicholas; Hauser, Marc D; Armony, Jorge L

    2007-01-01

    It is presently unknown whether our response to affective vocalizations is specific to those generated by humans or more universal, triggered by emotionally matched vocalizations generated by other species. Here, we used functional magnetic resonance imaging in normal participants to measure cerebral activity during auditory stimulation with affectively valenced animal vocalizations, some familiar (cats) and others not (rhesus monkeys). Positively versus negatively valenced vocalizations from cats and monkeys elicited different cerebral responses despite the participants' inability to differentiate the valence of these animal vocalizations by overt behavioural responses. Moreover, the comparison with human non-speech affective vocalizations revealed a common response to the valence in orbitofrontal cortex, a key component on the limbic system. These findings suggest that the neural mechanisms involved in processing human affective vocalizations may be recruited by heterospecific affective vocalizations at an unconscious level, supporting claims of shared emotional systems across species. PMID:18077254

  7. Do transgenic plants affect rhizobacteria populations?

    PubMed Central

    Filion, Martin

    2008-01-01

    Summary Plant genetic manipulation has led to the development of genetically modified plants (GMPs) expressing various traits. Since their first commercial use in 1996, GMPs have been increasingly used, reaching a global cultivating production area of 114.3 million hectares in 2007. The rapid development of agricultural biotechnology and release of GMPs have provided many agronomic and economic benefits, but has also raised concerns over the potential impact these plants might have on the environment. Among these environmental concerns, the unintentional impact that GMPs might have on soil‐associated microbes, especially rhizosphere‐inhabiting bacteria or rhizobacteria, represents one of the least studied and understood areas. As rhizobacteria are responsible for numerous key functions including nutrient cycling and decomposition, they have been defined as good indicator organisms to assess the general impact that GMPs might have on the soil environment. This minireview summarizes the results of various experiments that have been conducted to date on the impact of GMPs on rhizobacteria. Both biological and technical parameters are discussed and an attempt is made to determine if specific rhizobacterial responses exist for the different categories of GMPs developed to date. PMID:21261867

  8. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity.

    PubMed

    Han, Qin; Wu, Fengli; Wang, Xiaonan; Qi, Hong; Shi, Liang; Ren, Ang; Liu, Qinghai; Zhao, Mingwen; Tang, Canming

    2015-04-01

    Verticillium wilt in cotton caused by Verticillium dahliae is one of the most serious plant diseases worldwide. Because no known fungicides or cotton cultivars provide sufficient protection against this pathogen, V. dahliae causes major crop yield losses. Here, an isolated cotton endophytic bacterium, designated Bacillus amyloliquefaciens 41B-1, exhibited greater than 50% biocontrol efficacy against V. dahliae in cotton plants under greenhouse conditions. Through high-performance liquid chromatography and mass analysis of the filtrate, we found that the antifungal compounds present in the strain 41B-1 culture filtrate were a series of isoforms of iturins. The purified iturins suppressed V. dahliae microsclerotial germination in the absence or presence of cotton. Treatment with the iturins induced reactive oxygen species bursts, Hog1 mitogen-activated protein kinase (MAPK) activation and defects in cell wall integrity. The oxidative stress response and high-osmolarity glycerol pathway contribute to iturins resistance in V. dahliae. In contrast, the Slt2 MAPK pathway may be involved in iturins sensitivity in this fungus. In addition to antagonism, iturins could induce plant defence responses as activators and mediate pathogen-associated molecular pattern-triggered immunity. These findings suggest that iturins may affect fungal signalling pathways and mediate plant defence responses against V. dahliae. PMID:24934960

  9. Nitrate Transport, Sensing, and Responses in Plants.

    PubMed

    O'Brien, José A; Vega, Andrea; Bouguyon, Eléonore; Krouk, Gabriel; Gojon, Alain; Coruzzi, Gloria; Gutiérrez, Rodrigo A

    2016-06-01

    Nitrogen (N) is an essential macronutrient that affects plant growth and development. N is an important component of chlorophyll, amino acids, nucleic acids, and secondary metabolites. Nitrate is one of the most abundant N sources in the soil. Because nitrate and other N nutrients are often limiting, plants have developed sophisticated mechanisms to ensure adequate supply of nutrients in a variable environment. Nitrate is absorbed in the root and mobilized to other organs by nitrate transporters. Nitrate sensing activates signaling pathways that impinge upon molecular, metabolic, physiological, and developmental responses locally and at the whole plant level. With the advent of genomics technologies and genetic tools, important advances in our understanding of nitrate and other N nutrient responses have been achieved in the past decade. Furthermore, techniques that take advantage of natural polymorphisms present in divergent individuals from a single species have been essential in uncovering new components. However, there are still gaps in our understanding of how nitrate signaling affects biological processes in plants. Moreover, we still lack an integrated view of how all the regulatory factors identified interact or crosstalk to orchestrate the myriad N responses plants typically exhibit. In this review, we provide an updated overview of mechanisms by which nitrate is sensed and transported throughout the plant. We discuss signaling components and how nitrate sensing crosstalks with hormonal pathways for developmental responses locally and globally in the plant. Understanding how nitrate impacts on plant metabolism, physiology, and growth and development in plants is key to improving crops for sustainable agriculture. PMID:27212387

  10. Plant Responses to Nanoparticle Stress

    PubMed Central

    Hossain, Zahed; Mustafa, Ghazala; Komatsu, Setsuko

    2015-01-01

    With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs) contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress. PMID:26561803

  11. PLANT RESPONSE TO AIR POLLUTION

    EPA Science Inventory

    Air pollutants have a negative impact on plant growth, primarily through interfering with resource accumulation. ince leaves are in close contact with the atmosphere, many air pollutants, such as O3 and NOx, affect the metabolic function of the leaves and interfere with net carbo...

  12. Plant Responses to Rarified Atmospheres

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.; Fowler, Philip A.; Wheeler, Raymond M.

    2000-01-01

    Reduced atmospheric pressures will likely be used to minimize mass and engineering requirements for plant growth habitats used in extraterrestrial applications. This report provides a brief survey of key literature related to responses of plants to atmospheric variables and a broad rationale for designing minimal atmospheres for future plant growth structures on the Martian surface. The literature and recent work suggest that atmospheric pressure limits for normal plant function are likely to be 10 kPa or perhaps slightly lower. At Kennedy Space Center, a chamber with high vacuum capability was used to design and begin construction of a system for testing plant responses to reduced pressure atmospheres. A test rack with lighting provided by 3, high-pressure sodium vapor lamps was built to conduct measurements of short-term plant responses. Initial experiments with lettuce showed that a pressure of 10 kPa resulted in a 6.1-fold increase in the rate of water loss compared to water loss at ambient pressure (101 kPa).

  13. Affective responsiveness, betrayal, and childhood abuse.

    PubMed

    Reichmann-Decker, Aimee; DePrince, Anne P; McIntosh, Daniel N

    2009-01-01

    Several trauma-specific and emotion theories suggest that alterations in children's typical affective responses may serve an attachment function in the context of abuse by a caregiver or close other. For example, inhibiting negative emotional responses or expressions might help the child preserve a relationship with an abusive caregiver. Past research in this area has relied on self-report methods to discover links between affective responsiveness and caregiver abuse. Extending this literature, the current study used facial electromyography to assess affective responsiveness with 2 measures: mimicry of emotional facial expressions and affective modulation of startle. We predicted that women who reported childhood abuse by close others would show alterations in affective responsiveness relative to their peers. We tested 100 undergraduate women who reported histories of (a) childhood sexual or physical abuse by someone close, such as a parent (high-betrayal); (b) childhood abuse by someone not close (low-betrayal); or (c) no abuse in childhood (no-abuse). Especially when viewing women's emotional expressions, the high-betrayal group showed more mimicry of happy and less mimicry of angry faces relative to women who reported no- or low-betrayal abuse, who showed the opposite pattern. Furthermore, women who reported high-betrayal abuse showed less affective modulation of startle during pictures depicting men threatening women than did the other two groups. Findings suggest that, as predicted by betrayal trauma theory, women who have experienced high-betrayal abuse show alterations in automatic emotional processes consistent with caregiving-maintenance goals in an abusive environment. PMID:19585337

  14. Arousal and Affective Responses to Writing Styles.

    ERIC Educational Resources Information Center

    Donohew, Lewis

    1981-01-01

    Measured the physiological and affective responses to three factors of newswriting style: narrative vs. traditional; direct quotations vs. paraphrased statements; and active vs. passive verbs and adjectives. (Mass suicides in Guyana were used as stimulus news stories.) Narrative style, direct quotations, and active verbs and adjectives produced…

  15. Between-Population Outbreeding Affects Plant Defence

    PubMed Central

    Leimu, Roosa; Fischer, Markus

    2010-01-01

    Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies. PMID:20838662

  16. Interpreting Plant Responses to Clinostating

    PubMed Central

    Salisbury, Frank B.; Wheeler, Raymond M.

    1981-01-01

    The severe epinasty and other symptoms developed by clinostated leafy plants could be responses to gravity compensation and/or the mechanical stresses of leaf flopping. Epinasty in cocklebur (Xanthium strumarium L.), tomato (Lycopersicon esculentum Mill.), and castor bean (Ricinus communis L.) is delayed by inhibitors of ethylene synthesis and action (aminoethoxyvinylglycine and Ag+), confirming the role of ethylene in clinostat epinasty. To test the possibility that clinostat mechanical stresses (leaf flopping) cause ethylene production and, thus, epinasty, vertical plants were stressed with constant, gentle, horizontal, or vertical shaking or with a quick, back-and-forth rotation (twisting). Clinostat leaf flopping was closely approximated but with a minimum of gravity compensation, by turning plants so their stems were horizontal, rotating them quickly about the stem axis, and then returning them to the vertical, repeating the treatment every four minutes (clinostat rotation time). None of these mechanical stresses produced significant epinasties, but vigorous hand-shaking (120 seconds per day) generated minor epinasties, as did Ag+ applied daily (concentrations high enough to cause leaf browning). Plants gently inverted every 20 minutes developed epinasty at about the same rate and to about the same extent as clinostated plants, but plants inverted every 20 minutes and immediately returned to the upright position did not become epinastic. It is concluded that clinostat epinasty is probably caused by disturbances in the gravity perception mechanism, rather than by leaf flopping. Images PMID:16661735

  17. Herbicide drift affects plant and arthropod communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field edges, old fields, and other semi-natural habitats in agricultural landscapes support diverse plant communities that help sustain pollinators, predators, and other beneficial arthropods. These plant and arthropod communities may be at persistent ecotoxicological risk from herbicides applied to...

  18. Plant Hormones: How They Affect Root Formation.

    ERIC Educational Resources Information Center

    Reinhard, Diana Hereda

    This science study aid, produced by the U.S. Department of Agriculture, includes a series of plant rooting activities for secondary science classes. The material in the pamphlet is written for students and includes background information on plant hormones, a vocabulary list, and five learning activities. Objectives, needed materials, and…

  19. Human freezing in response to affective films.

    PubMed

    Hagenaars, Muriel A; Roelofs, Karin; Stins, John F

    2014-01-01

    Human freezing has been objectively assessed using a passive picture viewing paradigm as an analog for threat. These results should be replicated for other stimuli in order to determine their stability and generalizability. Affective films are used frequently to elicit affective responses, but it is unknown whether they also elicit freezing-like defense responses. To test whether this is the case, 50 participants watched neutral, pleasant and unpleasant film fragments while standing on a stabilometric platform and wearing a polar band to assess heart rate. Freezing-like responses (indicated by overall reduced body sway and heart rate deceleration) were observed for the unpleasant film only. The unpleasant film also elicited early reduced body sway (1-2 s after stimulus onset). Heart rate and body sway were correlated during the unpleasant film only. The results suggest that ecologically valid stimuli like films are adequate stimuli in evoking defense responses. The results also underscore the importance of including time courses in human experimental research on defense reactions in order to delineate different stages in the defense response. PMID:23805855

  20. Plant responses to water stress

    PubMed Central

    Kar, Rup Kumar

    2011-01-01

    Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. PMID:22057331

  1. Predicting plant responses to mycorrhizal: integrating evolutionary history and plant traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of mycorrhizae to most individual plant species is unknown, and responses to mycorrhizal fungi are known to vary among plant species. This complicates interpreting the extent that mycorrhizae affect plant populations, communities, and ecosystems and contributes to their underutilizat...

  2. Osmolyte cooperation affects turgor dynamics in plants.

    PubMed

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-01-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes. PMID:27445173

  3. Osmolyte cooperation affects turgor dynamics in plants

    PubMed Central

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-01-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes. PMID:27445173

  4. Osmolyte cooperation affects turgor dynamics in plants

    NASA Astrophysics Data System (ADS)

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-07-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes.

  5. Psychophysiological Response Patterns to Affective Film Stimuli

    PubMed Central

    Bos, Marieke G. N.; Jentgens, Pia; Beckers, Tom; Kindt, Merel

    2013-01-01

    Psychophysiological research on emotion utilizes various physiological response measures to index activation of the defense system. Here we tested 1) whether acoustic startle reflex (ASR), skin conductance response (SCR) and heart rate (HR) elicited by highly arousing stimuli specifically reflect a defensive state and 2) the relation between resting heart rate variability (HRV) and affective responding. In a within-subject design, participants viewed film clips with a positive, negative and neutral content. In contrast to SCR and HR, we show that ASR differentiated between negative, neutral and positive states and can therefore be considered as a reliable index of activation of the defense system. Furthermore, resting HRV was associated with affect-modulated characteristics of ASR, but not with SCR or HR. Interestingly, individuals with low-HRV showed less differentiation in ASR between affective states. We discuss the important value of ASR in psychophysiological research on emotion and speculate on HRV as a potential biological marker for demarcating adaptive from maladaptive responding. PMID:23646134

  6. Agroforestry planting design affects loblolly pine growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of plantation design on resource utilization has not been adequately investigated in agroforestry plantations. An experiment was conducted near Booneville, AR on a silt loam soil with a fragipan. Loblolly pine trees were planted in 1994 in an east-west row orientation in three designs: ...

  7. Antagonists' impact on enzymatic response in wilt infected cotton plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of PR-proteins possess enzymatic activity. As such, these proteins maybe indicators of defensive response of plants. Thus, we have conducted a comparative analysis of beta-1,3-glucanase, peroxidase and xylanase activity in cotton plants to determine how these enzymes are affected by the pat...

  8. Volatile Exchange between Undamaged Plants - a New Mechanism Affecting Insect Orientation in Intercropping

    PubMed Central

    Ninkovic, Velemir; Dahlin, Iris; Vucetic, Andja; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben

    2013-01-01

    Changes in plant volatile emission can be induced by exposure to volatiles from neighbouring insect-attacked plants. However, plants are also exposed to volatiles from unattacked neighbours, and the consequences of this have not been explored. We investigated whether volatile exchange between undamaged plants affects volatile emission and plant-insect interaction. Consistently greater quantities of two terpenoids were found in the headspace of potato previously exposed to volatiles from undamaged onion plants identified by mass spectrometry. Using live plants and synthetic blends mimicking exposed and unexposed potato, we tested the olfactory response of winged aphids, Myzus persicae. The altered potato volatile profile deterred aphids in laboratory experiments. Further, we show that growing potato together with onion in the field reduces the abundance of winged, host-seeking aphids. Our study broadens the ecological significance of the phenomenon; volatiles carry not only information on whether or not neighbouring plants are under attack, but also information on the emitter plants themselves. In this way responding plants could obtain information on whether the neighbouring plant is a competitive threat and can accordingly adjust their growth towards it. We interpret this as a response in the process of adaptation towards neighbouring plants. Furthermore, these physiological changes in the responding plants have significant ecological impact, as behaviour of aphids was affected. Since herbivore host plants are potentially under constant exposure to these volatiles, our study has major implications for the understanding of how mechanisms within plant communities affect insects. This knowledge could be used to improve plant protection and increase scientific understanding of communication between plants and its impact on other organisms. PMID:23922710

  9. Phenotypic plasticity of plant response to herbivore eggs: effects on resistance to caterpillars and plant development.

    PubMed

    Pashalidou, Foteini G; Lucas-Barbosa, Dani; van Loon, Joop J A; Dicke, Marcel; Fatouros, Nina E

    2013-03-01

    Herbivory induces direct resistance responses in plants that negatively affect subsequently colonizing herbivores. Moreover, eggs of herbivorous insects can also activate plant resistance, which in some cases prevents hatching larvae from feeding. Until now, plant-mediated effects of eggs on subsequent herbivory, and the specificity of such responses, have remained poorly understood. We studied the specificity and effects of plant resistance induced by herbivore egg deposition against lepidopteran larvae of species with different dietary breadths, feeding on a wild annual plant, the crucifer Brassica nigra. We examined whether this plant-mediated response affects the growth of caterpillars of a specialist (Pieris brassicae) that feeds on B. nigra leaves and flowers, and a generalist (Mamestra brassicae) that rarely attacks this wild crucifer. We measured growth rates of neonate larvae to the end of their second instar after the larvae had hatched on plants exposed to eggs vs. plants without eggs, under laboratory and semi-field conditions. Moreover, we studied the effects of egg deposition by the two herbivore species on plant height and flowering rate before and after larval hatching. Larvae of both herbivore species that developed on plants previously infested with eggs of the specialist butterfly P. brassicae gained less mass compared with larvae that developed on egg-free plants. Plants exposed to butterfly eggs showed accelerated plant growth and flowering compared to egg-free plants. Egg deposition by the generalist moth M. brassicae, in contrast, had no effect on subsequent performance by either herbivore species, or on plant development. Our results demonstrate that B. nigra plants respond differently to eggs of two herbivore species in terms of plant development and induced resistance to caterpillar attack. For this annual crucifer, the retardation of caterpillar growth in response to deposition of eggs by P. brassicae in combination with enhanced growth

  10. Mental Imagery Affects Subsequent Automatic Defense Responses

    PubMed Central

    Hagenaars, Muriel A.; Mesbah, Rahele; Cremers, Henk

    2015-01-01

    Automatic defense responses promote survival and appropriate action under threat. They have also been associated with the development of threat-related psychiatric syndromes. Targeting such automatic responses during threat may be useful in populations with frequent threat exposure. Here, two experiments explored whether mental imagery as a pre-trauma manipulation could influence fear bradycardia (a core characteristic of freezing) during subsequent analog trauma (affective picture viewing). Image-based interventions have proven successful in the treatment of threat-related disorders and are easily applicable. In Experiment 1, 43 healthy participants were randomly assigned to an imagery script condition. Participants executed a passive viewing task with blocks of neutral, pleasant, and unpleasant pictures after listening to an auditory script that was either related (with a positive or a negative outcome) or unrelated to the unpleasant pictures from the passive viewing task. Heart rate was assessed during script listening and during passive viewing. Imagining negative related scripts resulted in greater bradycardia (neutral-unpleasant contrast) than imagining positive scripts, especially unrelated. This effect was replicated in Experiment 2 (n = 51), again in the neutral-unpleasant contrast. An extra no-script condition showed that bradycardia was not induced by the negative-related script, but rather that a positive script attenuated bradycardia. These preliminary results might indicate reduced vigilance after unrelated positive events. Future research should replicate these findings using a larger sample. Either way, the findings show that highly automatic defense behavior can be influenced by relatively simple mental imagery manipulations. PMID:26089801

  11. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. PMID:25871977

  12. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, Elliot M.; Chang, Caren; Bleecker, Anthony B.

    1998-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  13. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1997-11-18

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

  14. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, Elliott M.; Chang, Caren; Bleecker, Anthony B.

    1997-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  15. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1998-10-20

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 67 figs.

  16. Nutrient enrichment affects the mechanical resistance of aquatic plants.

    PubMed

    Lamberti-Raverot, Barbara; Puijalon, Sara

    2012-10-01

    For many plant species, nutrient availability induces important anatomical responses, particularly the production of low-density tissues to the detriment of supporting tissues. Due to the contrasting biomechanical properties of plant tissues, these anatomical responses may induce important modifications in the biomechanical properties of plant organs. The aim of this study was to determine the effects of nutrient enrichment on the anatomical traits of two freshwater plant species and its consequences on plant biomechanical performance. Two plant species were grown under controlled conditions in low versus high nutrient levels. The anatomical and biomechanical traits of the plant stems were measured. Both species produced tissues with lower densities under nutrient-rich conditions, accompanied by modifications in the structure of the aerenchyma for one species. As expected, nutrient enrichment also led to important modifications in the biomechanical properties of the stem for both species. In particular, mechanical resistance (breaking force and strength) and stiffness of stems were significantly reduced under nutrient rich conditions. The production of weaker stem tissues as a result of nutrient enrichment may increase the risk of plants to mechanical failure, thus challenging plant maintenance in mechanically stressful or disturbed habitats. PMID:23028018

  17. Molecular Analysis of Plant Defense Responses to Plant Pathogens

    PubMed Central

    Lindgren, P. B.; Jakobek, J. L.; Smith, J. A.

    1992-01-01

    A number of inducible plant responses are believed to contribute to disease resistance. These responses include the hypersensitive reaction, phytoalexin synthesis, and the production of chitinase, glucanase, and hydroxyproline-rich glycoproteins. Because of the coordinate induction of these responses, it has been difficult to determine whether they are functional defense responses, and if they are, how they specifically contribute to disease resistance. Recent developments in molecular biology have provided experimental techniques that will reveal the specific contribution of each response to disease resistance. In this paper, we describe a strategy to determine if the hypersensitive reaction is a functional plant defense mechanism. PMID:19283005

  18. Phytochrome B affects responsiveness to gibberellins in Arabidopsis.

    PubMed Central

    Reed, J W; Foster, K R; Morgan, P W; Chory, J

    1996-01-01

    Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. Arabidopsis thaliana seedlings lacking one of the phytochromes, phyB, have elongated hypocotyls and other tissues, suggesting that they may have an alteration in hormone physiology. We have studied the possibility that phyB mutations affect seedling gibberellin (GA) perception and metabolism by testing the responsiveness of wild-type and phyB seedlings to exogenous GAs. The phyB mutant elongates more than the wild type in response to the same exogenous concentrations of GA3 or GA4, showing that the mutation causes an increase in responsiveness to GAs. Among GAs that we were able to detect, we found no significant difference in endogenous levels between wild-type and phyB mutant seedlings. However, GA4 levels were below our limit of detectability, and the concentration of that active GA could have varied between wild-type and phyB mutant seedlings. These results suggest that, although GAs are required for hypocotyl cell elongation, phyB does not act primarily by changing total seedling GA levels but rather by decreasing seedling responsiveness to GAs. PMID:8819329

  19. Plant responses to tropospheric ozone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric ozone is the second most abundant air pollutant and an important component of the global climate change. Over five decades of research on the phytotoxicity of ozone in model plants systems, crop plants and forest trees have provided some insight into the physiological, biochemical and m...

  20. Molecular mechanisms of the plant heat stress response

    SciTech Connect

    Qu, Ai-Li; Ding, Yan-Fei; Jiang, Qiong; Zhu, Cheng

    2013-03-08

    Highlights: ► This review elaborates the response networks of heat stress in plants. ► It elaborates proteins responding to heat stress in special physiological period. ► The proteins and pathways have formed a basic network of the heat stress response. ► Achievements of the various technologies are also combined. -- Abstract: High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.

  1. Plant responses to carbon dioxide

    SciTech Connect

    Murray, D.R.

    1995-05-01

    The average atmospheric concentration of CO{sub 2} will probably double before the end of next century. Many of the consequences for plant growth can and should be determined now. In this review the effects of [CO{sub 2}] on a variety of plant processes are summarized: stomatal opening and closing; stomatal density; respiration; root morphogenesis; and flowering. The effects of growth under elevated [CO{sub 2}] on crop yield and seed composition are also discussed. Adverse effects on the composition of C{sub 3} cereal grains are clearly indicated. 91 refs., 2 tabs.

  2. Corridors affect plants, animals, and their interactions in fragmented landscapes.

    SciTech Connect

    Tewksbury, Joshua, J.; Levey, Douglas, J.; Haddad, Nick, M.; Sargent, Sarah; Orrock, John, L.; Weldon, Aimee; Danielson, Brent, J.; Brinkerhoff, Jory; Damschen, Ellen, I.; Townsend, Patricia

    2002-10-01

    Tewksbury, J.J., D.J. Levey, N.M. Haddad, S. Sargent, J.L. Orrock, A. Weldon, B.J. Danielson, J. Brinkerhoff, E.I. Damschen, and P. Townsend. 2002. Corridors affect plants, animals, and their interactions in fragmented landscapes. PNAS 99(20):12923-12926. Among the most popular strategies for maintaining populations of both plants and animals in fragmented landscapes is to connect isolated patches with thin strips of habitat, called corridors. Corridors are thought to increase the exchange of individuals between habitat patches, promoting genetic exchange and reducing population fluctuations. Empirical studies addressing the effects of corridors have either been small in scale or have ignored confounding effects of increased habitat area created by the presence of a corridor. These methodological difficulties, coupled with a paucity of studies examining the effects of corridors on plants and plant-animal interactions, have sparked debate over the purported value of corridors in conservation planning. We report results of a large-scale experiment that directly address this debate. We demonstrate that corridors not only increase the exchange of animals between patches, but also facilitate two key plant-animal interactions: pollination and seed dispersal. Our results show that the beneficial effects of corridors extend beyond the area they add, and suggest that increased plant and animal movement through corridors will have positive impacts on plant populations and community interactions in fragmented landscapes.

  3. Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids.

    PubMed

    Weldegergis, Berhane T; Zhu, Feng; Poelman, Erik H; Dicke, Marcel

    2015-03-01

    One of the main abiotic stresses that strongly affects plant survival and the primary cause of crop loss around the world is drought. Drought stress leads to sequential morphological, physiological, biochemical and molecular changes that can have severe effects on plant growth, development and productivity. As a consequence of these changes, the interaction between plants and insects can be altered. Using cultivated Brassica oleracea plants, the parasitoid Microplitis mediator and its herbivorous host Mamestra brassicae, we studied the effect of drought stress on (1) the emission of plant volatile organic compounds (VOCs), (2) plant hormone titres, (3) preference and performance of the herbivore, and (4) preference of the parasitoid. Higher levels of jasmonic acid (JA) and abscisic acid (ABA) were recorded in response to herbivory, but no significant differences were observed for salicylic acid (SA) and indole-3-acetic acid (IAA). Drought significantly impacted SA level and showed a significant interactive effect with herbivory for IAA levels. A total of 55 VOCs were recorded and the difference among the treatments was influenced largely by herbivory, where the emission rate of fatty acid-derived volatiles, nitriles and (E)-4,8-dimethylnona-1,3,7-triene [(E)-DMNT] was enhanced. Mamestra brassicae moths preferred to lay eggs on drought-stressed over control plants; their offspring performed similarly on plants of both treatments. VOCs due to drought did not affect the choice of M. mediator parasitoids. Overall, our study reveals an influence of drought on plant chemistry and insect-plant interactions. PMID:25370387

  4. Genetic and epigenetic control of plant heat responses

    PubMed Central

    Liu, Junzhong; Feng, Lili; Li, Jianming; He, Zuhua

    2015-01-01

    Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22–27°C), high temperature (27–30°C) and extremely high temperature (37–42°C, also known as heat stress) for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of circadian clock and plant immunity by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damages. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed. PMID:25964789

  5. Climate warming affects biological invasions by shifting interactions of plants and herbivores.

    PubMed

    Lu, Xinmin; Siemann, Evan; Shao, Xu; Wei, Hui; Ding, Jianqing

    2013-08-01

    Plants and herbivorous insects can each be dramatically affected by temperature. Climate warming may impact plant invasion success directly but also indirectly through changes in their natural enemies. To date, however, there are no tests of how climate warming shifts the interactions among invasive plants and their natural enemies to affect invasion success. Field surveys covering the full latitudinal range of invasive Alternanthera philoxeroides in China showed that a beetle introduced for biocontrol was rare or absent at higher latitudes. In contrast, plant cover and mass increased with latitude. In a 2-year field experiment near the northern limit of beetle distribution, we found the beetle sustained populations across years under elevated temperature, dramatically decreasing A. philoxeroides growth, but it failed to overwinter in ambient temperature. Together, these results suggest that warming will allow the natural enemy to expand its range, potentially benefiting biocontrol in regions that are currently too cold for the natural enemy. However, the invader may also expand its range further north in response to warming. In such cases where plants tolerate cold better than their natural enemies, the geographical gap between plant and herbivorous insect ranges may not disappear but will shift to higher latitudes, leading to a new zone of enemy release. Therefore, warming will not only affect plant invasions directly but also drive either enemy release or increase that will result in contrasting effects on invasive plants. The findings are also critical for future management of invasive species under climate change. PMID:23640751

  6. Factors Affecting Location Decisions of Food Processing Plants

    NASA Astrophysics Data System (ADS)

    Turhan, Sule; Canan Ozbag, Basak; Cetin, Bahattin

    The main aim of this study is to examine the determinants of location choices for food processing plants using the results of 59 personal surveys. The 61.3% of the food processing plants that were interviewed are small scale plants, 9.1% are large scale plants and 29.6% are medium scale plants. Sixteen of the firms process vegetables, 12 process poultry, 12 process dairy and 9 process seafood products. Business climate factors are divided into six categories (market, infrastructure, raw material, labor, personal and environmental) and 17 specific location factors are considered. The survey responses are analyzed by types of raw materials processed and by plant size. 43.7, 55.3 and 42.2% of the respondents cited categories of Market, Raw Material and Infrastructure respectively as important, while 44.3, 50.7 and 74.4% of the respondents cited, labor, personal and environmental regulation categories of as not important. Thus survey findings indicate that plant location choices are mainly driven by market, raw material and infra structural factors. Environmental factors such as environmental regulations and permissions are relatively insignificant.

  7. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability. PMID:25883357

  8. Plant response to solar ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.

    1981-01-01

    Plant reactions and mechanisms of reaction to solar UV radiation are reviewed, along with characteristics of plants which enhance UV tolerance. Wavelength regions to which proteins are particularly sensitive are examined and the possibility of synergistic effects from photoreactions to multiple wavelengths is considered, along with available evidence of nonadditive plant spectral responses to UV radiation. Decreases in atmospheric ozone content are explored in terms of UV wavelengths which would increase with the ozone decreases, particularly for UV-B, which depresses photosynthesis and would increase 1% with a 16% reduction of stratospheric ozone. Higher elevations are projected to display effects of increased UV incident flux first, and global distributions of UV increases due to atmospheric inhomogeneity and water surface clarity are examined. Finally, the response of plant nucleic acids, DNA, chlorophyll to enhanced UV are described, along with repair, avoidance, and optical mechanisms which aid plant survival

  9. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling

    PubMed Central

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M.; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  10. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.

    PubMed

    Fatouros, Nina E; Lucas-Barbosa, Dani; Weldegergis, Berhane T; Pashalidou, Foteini G; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Gols, Rieta; Huigens, Martinus E

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  11. Role of ethylene in responses of plants to nitrogen availability

    PubMed Central

    Khan, M. I. R.; Trivellini, Alice; Fatma, Mehar; Masood, Asim; Francini, Alessandra; Iqbal, Noushina; Ferrante, Antonio; Khan, Nafees A.

    2015-01-01

    Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest. PMID:26579172

  12. Considering Affective Responses towards Environments for Enhancing Location Based Services

    NASA Astrophysics Data System (ADS)

    Huang, H.; Gartner, G.; Klettner, S.; Schmidt, M.

    2014-04-01

    A number of studies in the field of environmental psychology show that humans perceive and evaluate their surroundings affectively. Some places are experienced as unsafe, while some others as attractive and interesting. Experiences from daily life show that many of our daily behaviours and decision-making are often influenced by this kind of affective responses towards environments. Location based services (LBS) are often designed to assist and support people's behaviours and decision-making in space. In order to provide services with high usefulness (usability and utility), LBS should consider these kinds of affective responses towards environments. This paper reports on the results of a research project, which studies how people's affective responses towards environments can be modelled and acquired, as well as how LBS can benefit by considering these affective responses. As one of the most popular LBS applications, mobile pedestrian navigation systems are used as an example for illustration.

  13. Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill) Fluoranthene mists negatively affected tomato plants.

    PubMed

    Oguntimehin, Ilemobayo; Eissa, Fawzy; Sakugawa, Hiroshi

    2010-02-01

    Cherry tomato plants (Lycopersicon esculentum Mill) were sprayed with fluoranthene and mixture of fluoranthene and mannitol solutions for 30d. The exposure was carried out in growth chambers in field conditions, and the air was filtered through charcoal filters to remove atmospheric contaminants. Plants were sprayed with 10microM fluoranthene as mist until they reached the fruiting stage, and the eco-physiological parameters were measured to determine the effects of the treatments. We measured CO(2) uptake and water vapour exchange, chlorophyll fluorescence, leaf pigment contents, visual symptoms and biomass allocation. Fluoranthene which was deposited as mist onto leaves negatively affected both growth and the quality of tomato plants, while other treatments did not. The photosynthetic rate measured at saturated irradiance was approximately 37% lower in fluoranthene-treated plants compared with the control group. Other variables, such as stomata conductance, the photochemical efficiency of PSII in the dark, Chl a, Chl b, and the total chlorophyll contents of the tomato leaves were significantly reduced in the fluoranthene-treated plants. Tomato plants treated with fluoranthene showed severe visible injury symptoms on the foliage during the exposure period. Mannitol (a reactive oxygen scavenger) mitigated effects of fluoranthene; thus, reactive oxygen species generated through fluoranthene may be responsible for the damaged tomato plants. It is possible for fluoranthene to decrease the aesthetic and hence the economic value of this valuable crop plant. PMID:20006894

  14. Affective responses to qigong: a pilot study of regular practitioners.

    PubMed

    Johansson, Mattias; Hassmén, Peter

    2013-04-01

    Single sessions of Qigong have been associated with increased positive affect/emotional benefits. In the present study the aim was to refine the present understanding by using newly developed research methodologies. Therefore, affective reactions were studied in a group performing Qigong through pre-, during, and post-assessments using a modified version of the short Swedish Core Affect Scale complemented with open-ended questions. Affect was measured on a group and individual level. The results showed a shift during Qigong toward increased pleasant activated and deactivated affect in the group of 46 women who regularly practice Qigong. Inter-individual responses displayed positive affective responses, which also increased as the bout proceeded for the majority of practitioners. Acknowledging some limitations, these findings have practical implications for the enhancement of positive affect and subjective well-being. PMID:23561864

  15. Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels

    PubMed Central

    Fatouros, Nina E.; Lucas-Barbosa, Dani; Weldegergis, Berhane T.; Pashalidou, Foteini G.; van Loon, Joop J. A.; Dicke, Marcel; Harvey, Jeffrey A.; Gols, Rieta; Huigens, Martinus E.

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  16. Ethylene and plant responses to phosphate deficiency

    PubMed Central

    Song, Li; Liu, Dong

    2015-01-01

    Phosphorus is an essential macronutrient for plant growth and development. Phosphate (Pi), the major form of phosphorus that plants take up through roots, however, is limited in most soils. To cope with Pi deficiency, plants activate an array of adaptive responses to reprioritize internal Pi use and enhance external Pi acquisition. These responses are modulated by sophisticated regulatory networks through both local and systemic signaling, but the signaling mechanisms are poorly understood. Early studies suggested that the phytohormone ethylene plays a key role in Pi deficiency-induced remodeling of root system architecture. Recently, ethylene was also shown to be involved in the regulation of other signature responses of plants to Pi deficiency. In this article, we review how researchers have used pharmacological and genetic approaches to dissect the roles of ethylene in regulating Pi deficiency-induced developmental and physiological changes. The interactions between ethylene and other signaling molecules, such as sucrose, auxin, and microRNA399, in the control of plant Pi responses are also examined. Finally, we provide a perspective for the future research in this field. PMID:26483813

  17. Cellular Mechanisms of Gravitropic Response in Higher Plants

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei; Smolikova, Galina; Pozhvanov, Gregory; Suslov, Dmitry

    The evolutionary success of land plants in adaptation to the vectorial environmental factors was based mainly on the development of polarity systems. In result, normal plant ontogenesis is based on the positional information. Polarity is a tool by which the developing plant organs and tissues are mapped and the specific three-dimensional structure of the organism is created. It is due to their polar organization plants are able to orient themselves relative to the gravity vector and different vectorial cues, and to respond adequately to various stimuli. Gravitation is one of the most important polarized environmental factor that guides the development of plant organisms in space. Every plant can "estimate" its position relative to the gravity vector and correct it, if necessary, by means of polarized growth. The direction and the magnitude of gravitational stimulus are constant during the whole plant ontogenesis. The key plant response to the action of gravity is gravitropism, i.e. the directed growth of organs with respect to the gravity vector. This response is a very convenient model to study the mechanisms of plant orientation in space. The present report is focused on the main cellular mechanisms responsible for graviropic bending in higher plants. These mechanisms and structures include electric polarization of plant cells, Ca ({2+) }gradients, cytoskeleton, G-proteins, phosphoinositides and the machinery responsible for asymmetric auxin distribution. Those mechanisms tightly interact demonstrating some hierarchy and multiple feedbacks. The Ca (2+) gradients provide the primary physiological basis of polarity in plant cells. Calcium ions influence on the bioelectric potentials, the organization of actin cytoskeleton, the activity of Ca (2+) -binding proteins and Ca (2+) -dependent protein kinases. Protein kinases modulate transcription factors activity thereby regulating the gene expression and switching the developmental programs. Actin cytoskeleton affects

  18. Soil microbes and plant invasions—how soil-borne pathogens regulate plant populations and affect plant invasions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic plant invaders are a major global threat to biodiversity and ecosystem function. Here I present multiple lines of evidence suggesting that soil microbial communities affect the population growth rates of Prunus serotina in its native range and affect its invasiveness abroad. Research often ...

  19. Flexible resource allocation during plant defense responses

    PubMed Central

    Schultz, Jack C.; Appel, Heidi M.; Ferrieri, Abigail P.; Arnold, Thomas M.

    2013-01-01

    Plants are organisms composed of modules connected by xylem and phloem transport streams. Attack by both insects and pathogens elicits sometimes rapid defense responses in the attacked module. We have also known for some time that proteins are often reallocated away from pathogen-infected tissues, while the same infection sites may draw carbohydrates to them. This has been interpreted as a tug of war in which the plant withdraws critical resources to block microbial growth while the microbes attempt to acquire more resources. Sink-source regulated transport among modules of critical resources, particularly carbon and nitrogen, is also altered in response to attack. Insects and jasmonate can increase local sink strength, drawing carbohydrates that support defense production. Shortly after attack, carbohydrates may also be drawn to the root. The rate and direction of movement of photosynthate or signals in phloem in response to attack is subject to constraints that include branching, degree of connection among tissues, distance between sources and sinks, proximity, strength, and number of competing sinks, and phloem loading/unloading regulators. Movement of materials (e.g., amino acids, signals) to or from attack sites in xylem is less well understood but is partly driven by transpiration. The root is an influential sink and may regulate sink-source interactions and transport above and below ground as well as between the plant and the rhizosphere and nearby, connected plants. Research on resource translocation in response to pathogens or herbivores has focused on biochemical mechanisms; whole-plant research is needed to determine which, if any, of these plant behaviors actually influence plant fitness. PMID:23986767

  20. Assessing Affective Learning Using a Student Response System

    ERIC Educational Resources Information Center

    Rimland, Emily

    2013-01-01

    Affective learning relates to students' attitudes, emotions, and feelings. This study focuses on measuring affective learning during library instruction by using a student response system. Participants were undergraduate students who received course-related library instruction for a research assignment. Students rated their confidence levels…

  1. Comparison of physiological responses to affect eliciting pictures and music.

    PubMed

    Kim, Jongwan; Wedell, Douglas H

    2016-03-01

    Recent investigations of the neural correlates of affect elicited from different modalities have found both modality-general and modality-specific representations (Chikazoe et al., 2014). The implications for how physiological responses to affect differ across stimulus modalities have not been fully investigated. This study examined similarities and differences between physiological signatures of affect derived from two different modes of presentation: visual pictures and auditory music sampled from an affective space defined by valence and arousal. Electromyography recordings for the zygomaticus major (EMGZ) and corrugator supercilii (EMGC) were measured along with heart rate and skin conductance level (SCL). Multidimensional scaling was used to visualize relationships from physiological and behavioral responses, and the observed relationships were statistically evaluated using multivariate and univariate analyses. Results for physiological measures demonstrated that valence was represented in the same general way across modalities, primarily reflected in EMGC responses. Arousal, however, was represented in a modality-specific manner, with SCL and EMGZ sensitive to music-based arousal but not picture-based arousal. Stimulus modality itself was predicted from EMGC. Thus, physiological responses to valence were similar across modalities but physiological responses to arousal differed across modalities. These results support the utility of testing for affective markers across modalities within the same experimental setting to reveal how physiological responses are linked to either affect, stimulus modality or both. PMID:26752207

  2. Plant Immune Responses: Aphids Strike Back.

    PubMed

    Reymond, Philippe; Calandra, Thierry

    2015-07-20

    To survive and complete their life cycle, herbivorous insects face the difficult challenge of coping with the arsenal of plant defences. A new study reports that aphids secrete evolutionarily conserved cytokines in their saliva to suppress host immune responses. PMID:26196486

  3. Responses of wetland plants to effluents in water and sediment

    SciTech Connect

    Walsh, G.E.; Weber, D.E.; Nguyen, M.T.; Esry, L.K.

    1991-01-01

    Responses of two wetland vascular plants, Echinochloa crusgalli and Sesbania macrocarpa, exposed to effluents from a coke plant, a pulp mill, a wastewater treatment plant, and the herbicide, hexazinone, were measured in three types of tests: seed germination and early growth, seedling survival and growth in hydroponic culture, and seedling survival and growth in sand and synthetic sediments with clay, silt, and sand, 3, 5, 7.5, or 10% organic contents. There was no effect of effluents or herbicide on germination and survival was affected only by the herbicide. When compared to controls, growth rates were reduced significantly in all tests except for E. crusgalli exposed to effluent from a wastewater treatment plant. There, the effluent stimulated growth in sediments. Increasing concentrations of organic matter in sediments had little effect on toxicity of effluents, but did cause reduced effects of hexazinone.

  4. Abiotic stress responses in plant roots: a proteomics perspective

    PubMed Central

    Ghosh, Dipanjana; Xu, Jian

    2014-01-01

    Abiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics. This review summarizes comparative proteomic studies conducted with roots of various plant species subjected to different abiotic stresses especially drought, salinity, flood, and cold. The main purpose of this article is to highlight and classify the protein level changes in abiotic stress response pathways specifically in plant roots. Shared as well as stressor-specific proteome signatures and adaptive mechanism(s) are simultaneously described. Such a comprehensive account will facilitate the design of genetic engineering strategies that enable the development of broad-spectrum abiotic stress-tolerant crops. PMID:24478786

  5. How Do Observer's Responses Affect Visual Long-Term Memory?

    ERIC Educational Resources Information Center

    Makovski, Tal; Jiang, Yuhong V.; Swallow, Khena M.

    2013-01-01

    How does responding to an object affect explicit memory for visual information? The close theoretical relationship between action and perception suggests that items that require a response should be better remembered than items that require no response. However, conclusive evidence for this claim is lacking, as semantic coherence, category size,…

  6. Protease Inhibitors Do Not Affect Antibody Responses to Pneumococcal Vaccination.

    PubMed

    De La Rosa, Indhira; Munjal, Iona M; Rodriguez-Barradas, Maria; Yu, Xiaoying; Pirofski, Liise-Anne; Mendoza, Daniel

    2016-06-01

    HIV(+) subjects on optimal antiretroviral therapy have persistently impaired antibody responses to pneumococcal vaccination. We explored the possibility that this effect may be due to HIV protease inhibitors (PIs). We found that in humans and mice, PIs do not affect antibody production in response to pneumococcal vaccination. PMID:27074938

  7. Growth and photosynthetic responses of wheat plants grown in space

    NASA Technical Reports Server (NTRS)

    Tripathy, B. C.; Brown, C. S.; Levine, H. G.; Krikorian, A. D.

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  8. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  9. Light accelerates plant responses to warming.

    PubMed

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; De Schrijver, An; Coomes, David A; Hermy, Martin; Vangansbeke, Pieter; Verheyen, Kris

    2015-01-01

    Competition for light has profound effects on plant performance in virtually all terrestrial ecosystems. Nowhere is this more evident than in forests, where trees create environmental heterogeneity that shapes the dynamics of forest-floor communities(1-3). Observational evidence suggests that biotic responses to both anthropogenic global warming and nitrogen pollution may be attenuated by the shading effects of trees and shrubs(4-9). Here we show experimentally that tree shade is slowing down changes in below-canopy communities due to warming. We manipulated levels of photosynthetically active radiation, temperature and nitrogen, alone and in combination, in a temperate forest understorey over a 3-year period, and monitored the composition of the understorey community. Light addition, but not nitrogen enrichment, accelerated directional plant community responses to warming, increasing the dominance of warmth-preferring taxa over cold-tolerant plants (a process described as thermophilization(6,10-12)). Tall, competitive plants took greatest advantage of the combination of elevated temperature and light. Warming of the forest floor did not result in strong community thermophilization unless light was also increased. Our findings suggest that the maintenance of locally closed canopy conditions could reduce, at least temporarily, warming-induced changes in forest floor plant communities. PMID:27250675

  10. Plant Responses to High Frequency Electromagnetic Fields.

    PubMed

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  11. Inoculation of Transgenic Resistant Potato by Phytophthora infestans Affects Host Plant Choice of a Generalist Moth.

    PubMed

    Abreha, Kibrom B; Alexandersson, Erik; Vossen, Jack H; Anderson, Peter; Andreasson, Erik

    2015-01-01

    Pathogen attack and the plant's response to this attack affect herbivore oviposition preference and larval performance. Introduction of major resistance genes against Phytophthora infestans (Rpi-genes), the cause of the devastating late blight disease, from wild Solanum species into potato changes the plant-pathogen interaction dynamics completely, but little is known about the effects on non-target organisms. Thus, we examined the effect of P. infestans itself and introduction of an Rpi-gene into the crop on host plant preference of the generalist insect herbivore, Spodoptera littoralis (Lepidoptera: Noctuidae). In two choice bioassays, S. littoralis preferred to oviposit on P. infestans-inoculated plants of both the susceptible potato (cv. Desiree) and an isogenic resistant clone (A01-22: cv. Desiree transformed with Rpi-blb1), when compared to uninoculated plants of the same genotype. Both cv. Desiree and clone A01-22 were equally preferred for oviposition by S. littoralis when uninoculated plants were used, while cv. Desiree received more eggs compared to the resistant clone when both were inoculated with the pathogen. No significant difference in larval and pupal weight was found between S. littoralis larvae reared on leaves of the susceptible potato plants inoculated or uninoculated with P. infestans. Thus, the herbivore's host plant preference in this system was not directly associated with larval performance. The results indicate that the Rpi-blb1 based resistance in itself does not influence insect behavior, but that herbivore oviposition preference is affected by a change in the plant-microbe interaction. PMID:26053171

  12. Urban Plantings: 'Living Laboratories' for Climate Change Response.

    PubMed

    Farrell, Claire; Szota, Christopher; Arndt, Stefan K

    2015-10-01

    Urban plantings are not only valuable resources for understanding 'urban plant physiology' but are 'living laboratories' for understanding plant response to climate change. Therefore, we encourage researchers who currently work in natural ecosystems to consider how urban plantings could enhance their research into plant physiological responses to a changing climate. PMID:26440428

  13. Does a decade of elevated [CO2] affect a desert perennial plant community?

    PubMed

    Newingham, Beth A; Vanier, Cheryl H; Kelly, Lauren J; Charlet, Therese N; Smith, Stanley D

    2014-01-01

    Understanding the effects of elevated [CO2 ] on plant community structure is crucial to predicting ecosystem responses to global change. Early predictions suggested that productivity in deserts would increase via enhanced water-use efficiency under elevated [CO2], but the response of intact arid plant communities to elevated [CO2 ] is largely unknown. We measured changes in perennial plant community characteristics (cover, species richness and diversity) after 10 yr of elevated [CO2] exposure in an intact Mojave Desert community at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Contrary to expectations, total cover, species richness, and diversity were not affected by elevated [CO2]. Over the course of the experiment, elevated [CO2] had no effect on changes in cover of the evergreen C3 shrub, Larrea tridentata; alleviated decreases in cover of the C4 bunchgrass, Pleuraphis rigida; and slightly reduced the cover of C3 drought-deciduous shrubs. Thus, we generally found no effect of elevated [CO2] on plant communities in this arid ecosystem. Extended drought, slow plant growth rates, and highly episodic germination and recruitment of new individuals explain the lack of strong perennial plant community shifts after a decade of elevated [CO2]. PMID:24117700

  14. The Impact of Experience on Affective Responses during Action Observation

    PubMed Central

    Kirsch, Louise P.; Snagg, Arielle; Heerey, Erin

    2016-01-01

    Perceiving others in action elicits affective and aesthetic responses in observers. The present study investigates the extent to which these responses relate to an observer’s general experience with observed movements. Facial electromyographic (EMG) responses were recorded in experienced dancers and non-dancers as they watched short videos of movements performed by professional ballet dancers. Responses were recorded from the corrugator supercilii (CS) and zygomaticus major (ZM) muscles, both of which show engagement during the observation of affect-evoking stimuli. In the first part of the experiment, participants passively watched the videos while EMG data were recorded. In the second part, they explicitly rated how much they liked each movement. Results revealed a relationship between explicit affective judgments of the movements and facial muscle activation only among those participants who were experienced with the movements. Specifically, CS activity was higher for disliked movements and ZM activity was higher for liked movements among dancers but not among non-dancers. The relationship between explicit liking ratings and EMG data in experienced observers suggests that facial muscles subtly echo affective judgments even when viewing actions that are not intentionally emotional in nature, thus underscoring the potential of EMG as a method to examine subtle shifts in implicit affective responses during action observation. PMID:27149106

  15. The Impact of Experience on Affective Responses during Action Observation.

    PubMed

    Kirsch, Louise P; Snagg, Arielle; Heerey, Erin; Cross, Emily S

    2016-01-01

    Perceiving others in action elicits affective and aesthetic responses in observers. The present study investigates the extent to which these responses relate to an observer's general experience with observed movements. Facial electromyographic (EMG) responses were recorded in experienced dancers and non-dancers as they watched short videos of movements performed by professional ballet dancers. Responses were recorded from the corrugator supercilii (CS) and zygomaticus major (ZM) muscles, both of which show engagement during the observation of affect-evoking stimuli. In the first part of the experiment, participants passively watched the videos while EMG data were recorded. In the second part, they explicitly rated how much they liked each movement. Results revealed a relationship between explicit affective judgments of the movements and facial muscle activation only among those participants who were experienced with the movements. Specifically, CS activity was higher for disliked movements and ZM activity was higher for liked movements among dancers but not among non-dancers. The relationship between explicit liking ratings and EMG data in experienced observers suggests that facial muscles subtly echo affective judgments even when viewing actions that are not intentionally emotional in nature, thus underscoring the potential of EMG as a method to examine subtle shifts in implicit affective responses during action observation. PMID:27149106

  16. Image-Word Pairing-Congruity Effect on Affective Responses

    NASA Astrophysics Data System (ADS)

    Sanabria Z., Jorge C.; Cho, Youngil; Sambai, Ami; Yamanaka, Toshimasa

    The present study explores the effects of familiarity on affective responses (pleasure and arousal) to Japanese ad elements, based on the schema incongruity theory. Print ads showing natural scenes (landscapes) were used to create the stimuli (images and words). An empirical study was conducted to measure subjects' affective responses to image-word combinations that varied in terms of incongruity. The level of incongruity was based on familiarity levels, and was statistically determined by a variable called ‘pairing-congruity status’. The tested hypothesis proposed that even highly familiar image-word combinations, when combined incongruously, would elicit strong affective responses. Subjects assessed the stimuli using bipolar scales. The study was effective in tracing interactions between familiarity, pleasure and arousal, although the incongruous image-word combinations did not elicit the predicted strong effects on pleasure and arousal. The results suggest a need for further research incorporating kansei (i.e., creativity) into the process of stimuli selection.

  17. The electrical response of plants under radiation

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Xi, Wenze; Feng, David J. Y.; Choa, Fow-Sen

    2014-05-01

    Plant electricity was discovered about 100 years ago. Until recent two decades, researchers started to notice that the electricity play a key role for plant's communications and defense. Recently, we have demonstrated a wound-generated electrical signal, up to a few hundred mV, can be produced and propagate through the whole plant. As plants defense reactions the wound signal will activate genes and induce subsequent molecular biology responses. In this study, we further investigate the electrical response of plants when they are under nuclear radiation. We discovered nuclear radiation could produce internal voltage gradient in living trees, resulting in measureable voltage and current signals. The results was measured by attaching one of electrodes to a lower branch, close to the roots and attaching the other one to an upper branch. During irradiating, trees were set up at 1-meter far from a NIST-certified 241AmBe neutron source (30 mCi). It will produce a neutron field of about 13 mrem/h, corresponding to an actual absorbed dose of ~ 1 mrad/h by assuming the tissue is primarily water content. Once the radioactive source is pulled up from a shielded container below the tree, the system potential starts to drop and in about 6-7 hours it drops down to -220mV, eventually stabilizing at around -250mV after 10 hours of radiation. We have further observed plant electricity changes caused by x-ray, gamma-ray, and beta-ray radiations. After the sources were removed, the terminal voltage recovered and eventually returned to the original value.

  18. Sucrose and invertases, a part of the plant defense response to the biotic stresses

    PubMed Central

    Tauzin, Alexandra S.; Giardina, Thierry

    2014-01-01

    Sucrose is the main form of assimilated carbon which is produced during photosynthesis and then transported from source to sink tissues via the phloem. This disaccharide is known to have important roles as signaling molecule and it is involved in many metabolic processes in plants. Essential for plant growth and development, sucrose is engaged in plant defense by activating plant immune responses against pathogens. During infection, pathogens reallocate the plant sugars for their own needs forcing the plants to modify their sugar content and triggering their defense responses. Among enzymes that hydrolyze sucrose and alter carbohydrate partitioning, invertases have been reported to be affected during plant-pathogen interactions. Recent highlights on the role of invertases in the establishment of plant defense responses suggest a more complex regulation of sugar signaling in plant-pathogen interaction. PMID:25002866

  19. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention. PMID:26904076

  20. Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure

    SciTech Connect

    Whitham, T.G.; Martinsen, G.D.; Keim, P.; Floate, K.D.; Dungey, H.S. |; Potts, B.M.

    1999-03-01

    Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

  1. Small RNAs regulate plant responses to filamentous pathogens.

    PubMed

    Kuan, Tung; Zhai, Yi; Ma, Wenbo

    2016-08-01

    Small RNAs are central players of RNA silencing in eukaryotes. These short RNA molecules (20-25 nucleotides in length) repress target gene expression based on sequence complementarity. While small RNAs are well-known for their essential function in regulating growth and development, recent research has revealed that they also influence plant immunity. Extensive changes in small RNA accumulation have been observed during infection. This review focuses on specific small RNA changes that are involved in plant responses to filamentous eukaryotic pathogens including fungi and oomycetes. We describe how changes in small RNA accumulation influence plant immunity and summarize the cellular processes affected by these small RNAs. In particular, we discuss secondary small interfering RNAs that directly modulate the expression of defense-related genes. PMID:27208726

  2. Gender Differences in Cognitive and Affective Responses to Sexual Coercion

    ERIC Educational Resources Information Center

    Byers, E. Sandra; Glenn, Shannon A.

    2012-01-01

    This study examined gender differences in responses to sexual coercive experiences in mixed-sex (male-female) relationships. Participants were 112 women and 28 men who had experienced sexual coercion and completed measures of cognitive (attributions to self, attributions to the coercer, internal attributions) and affective (guilt, shame)…

  3. Factors Affecting Educational Innovation with in Class Electronic Response Systems

    ERIC Educational Resources Information Center

    Freeman, Mark; Bell, Amani; Comerton-Forde, Carole; Pickering, Joanne; Blayney, Paul

    2007-01-01

    This paper reports the use of Rogers' diffusion of innovation perspective to understand the factors affecting educational innovation decisions, specifically in regard to in class electronic response systems. Despite decreasing costs and four decades of research showing strong student support, academic adoption is limited. Using data collected from…

  4. STRESS ETHYLENE EVOLUTION: A MEASURE OF OZONE AFFECTS ON PLANTS

    EPA Science Inventory

    To determine if ethylene evolution by plants is correlated with the ozone stress, a range of plants species and cultivars was exposed to varying ozone concentrations. Following exposure, the plants were encapsulated in plastic bags and incubated for up to 22h. The stress-induced ...

  5. Hormone-controlled UV-B responses in plants.

    PubMed

    Vanhaelewyn, Lucas; Prinsen, Els; Van Der Straeten, Dominique; Vandenbussche, Filip

    2016-08-01

    Ultraviolet B (UV-B) light is a portion of solar radiation that has significant effects on the development and metabolism of plants. Effects of UV-B on plants can be classified into photomorphogenic effects and stress effects. These effects largely rely on the control of, and interactions with, hormonal pathways. The fairly recent discovery of the UV-B-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) allowed evaluation of the role of downstream hormones, leading to the identification of connections with auxin and gibberellin. Moreover, a substantial overlap between UVR8 and phytochrome responses has been shown, suggesting that part of the responses caused by UVR8 are under PHYTOCHROME INTERACTING FACTOR control. UV-B effects can also be independent of UVR8, and affect different hormonal pathways. UV-B affects hormonal pathways in various ways: photochemically, affecting biosynthesis, transport, and/or signaling. This review concludes that the effects of UV-B on hormonal regulation can be roughly divided in two: inhibition of growth-promoting hormones; and the enhancement of environmental stress-induced defense hormones. PMID:27401912

  6. Electroantennogram and behavioral responses of Cotesia plutellae to plant volatiles.

    PubMed

    Yang, Guang; Zhang, You-Nan; Gurr, Geoff M; Vasseur, Liette; You, Min-Sheng

    2016-04-01

    Plant volatiles have been demonstrated to play an important role in regulating the behavior of Cotesia plutellae, a major larval parasitoid of the diamondback moth (DBM), Plutella xylostella, but little is currently known about the function of each volatile and their mixtures. We selected 13 volatiles of the DBM host plant, a cruciferous vegetable, to study the electroantennogram (EAG) and behavioral responses of C. plutellae. EAG responses to each of the compounds generally increased with concentration. Strong EAG responses were to 100 μL/mL of trans-2-hexenal, benzaldehyde, nonanal and cis-3-hexenol, and 10 μL/mL of trans-2-hexenal and benzaldehyde with the strongest response provoked by trans-2-hexenal at 100 μL/mL. In the Y-tube olfactometer, C. plutellae, was significantly attracted by 1 μL/mL of trans-2-hexenal and benzaldehyde. β-caryophyllene, cis-3-hexenol or trans-2-hexenal significantly attracted C. plutellae at 10 μL/mL, while nonanal, benzyl alcohol, cis-3-hexenol or benzyl cyanide at 100 μL/mL significantly attracted C. plutellae. Trans-2-hexenal significantly repelled C. plutellae at 100 μL/mL. EAG of C. plutellae showed strong responses to all mixtures made of five various compounds with mixtures 3 (trans-2-hexenal, benzaldehyde, nonanal, cis-3-hexenol, benzyl cyanide, farnesene, eucalyptol) and 4 (trans-2-hexenal, benzaldehyde, benzyl alcohol, (R)-(+)-limonene, β-ionone, farnesene, eucalyptol) significantly attracting C. plutellae. These findings demonstrate that the behavior of C. plutellae can be affected either by individual compounds or mixtures of plant volatiles, suggesting a potential of using plant volatiles to improve the efficiency of this parasitoid for biocontrol of P. xylostella. PMID:26711914

  7. Daytime and nighttime wind differentially affects hydraulic properties and thigmomorphogenic response of poplar saplings.

    PubMed

    Huang, Ping; Wan, Xianchong; Lieffers, Victor J

    2016-05-01

    This study tested how wind in daytime and nighttime affects hydraulic properties and thigmomorphogenic response of poplar saplings. It shows that wind in daytime interrupted water balance of poplar plants by aggravating cavitation in the stem xylem under high xylem tension in the daytime, reducing water potential in midday and hence reducing gas exchange, including stomatal conductance and CO2 assimilation. The wind blowing in daytime significantly reduced plant growth, including height, diameter, leaf size, leaf area, root and whole biomass, whereas wind blowing in nighttime only caused a reduction in radial and height growth at the early stage compared with the control but decreased height:diameter ratios. In summary, the interaction between wind loading and xylem tension exerted a negative impact on water balance, gas exchanges and growth of poplar plants, and wind in nighttime caused only a small thigmomorphogenic response. PMID:26541407

  8. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578

  9. Affective response to a set of new musical stimuli.

    PubMed

    Hill, W Trey; Palmer, Jack A

    2010-04-01

    Recently, a novel set of musical stimuli was developed in an attempt to bring more rigor to a paradigm which often falls under scientific scrutiny. Although these musical clips were validated in terms of recognition for emotion, valence, and arousal, the clips were not specifically tested for their ability to elicit certain affective responses. The present study examined self-reported "elation" among 82 participants after listening to one of two types of the musical clips; 47 listened to happy music and 35 listened to sad music. Individuals who listened to happy music reported significantly higher "elation" than individuals who listened to the sad music. These results support the idea that music can elicit certain affective state responses. PMID:20524563

  10. Effects of picture content and intensity on affective physiological response

    PubMed Central

    BERNAT, EDWARD; PATRICK, CHRISTOPHER J.; BENNING, STEPHEN D.; TELLEGEN, AUKE

    2008-01-01

    This study evaluated the effects of affective intensity and thematic content of foreground photographic stimuli on various physiological response systems. This was accomplished by assessing responses to pictures that varied systematically in these parameters. Along with overall effects of picture valence reported in previous work, we found effects of thematic content (i.e., specific nature of objects/events depicted) for all measures except heart rate. In addition, we found that the magnitude of startle blink, skin conductance, and corrugator muscle reactions increased with increasing affective intensity of pictures. Additionally, for these three measures, intensity effects also interacted with effects of picture content. These results indicate that stimulus parameters of intensity and thematic content exert separate—and in some cases interactive—modulatory effects on physiological reactions to emotional pictures. PMID:16629689

  11. Affective imagery and acceptance of replacing nuclear power plants.

    PubMed

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed. PMID:21977961

  12. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants

    PubMed Central

    Phukan, Ujjal J.; Jeena, Gajendra S.; Shukla, Rakesh K.

    2016-01-01

    Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary adaptation of developmental, physiological, and biochemical parameters give advantage over a single window of stress but not multiple. On the other hand transcription factors like WRKY can regulate diverse responses through a complicated network of genes. So molecular orchestration of WRKYs in plant may provide the most anticipated outcome of simultaneous multiple responses. Activation or repression through W-box and W-box like sequences is regulated at transcriptional, translational, and domain level. Because of the tight regulation involved in specific recognition and binding of WRKYs to downstream promoters, they have become promising candidate for crop improvement. Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face the paradox of having several beneficial affects but with some unwanted traits. These overexpression-associated undesirable phenotypes need to be identified and removed for proper growth, development and yeild. Taken together, we have highlighted the diverse regulation and multiple stress response of WRKYs in plants along with the future prospects in this field of research. PMID:27375634

  13. The classical pink-eyed dilution mutation affects angiogenic responsiveness.

    PubMed

    Rogers, Michael S; Boyartchuk, Victor; Rohan, Richard M; Birsner, Amy E; Dietrich, William F; D'Amato, Robert J

    2012-01-01

    Angiogenesis is the process by which new blood vessels are formed from existing vessels. Mammalian populations, including humans and mice, harbor genetic variations that alter angiogenesis. Angiogenesis-regulating gene variants can result in increased susceptibility to multiple angiogenesis-dependent diseases in humans. Our efforts to dissect the complexity of the genetic diversity that regulates angiogenesis have used laboratory animals due to the availability of genome sequence for many species and the ability to perform high volume controlled breeding. Using the murine corneal micropocket assay, we have observed more than ten-fold difference in angiogenic responsiveness among various mouse strains. This degree of difference is observed with either bFGF or VEGF induced corneal neovascularization. Ongoing mapping studies have identified multiple loci that affect angiogenic responsiveness in several mouse models. In this study, we used F2 intercrosses between C57BL/6J and the 129 substrains 129P1/ReJ and 129P3/J, as well as the SJL/J strain, where we have identified new QTLs that affect angiogenic responsiveness. In the case of AngFq5, on chromosome 7, congenic animals were used to confirm the existence of this locus and subcongenic animals, combined with a haplotype-based mapping approach that identified the pink-eyed dilution mutation as a candidate polymorphism to explain AngFq5. The ability of mutations in the pink-eyed dilution gene to affect angiogenic response was demonstrated using the p-J allele at the same locus. Using this allele, we demonstrate that pink-eyed dilution mutations in Oca2 can affect both bFGF and VEGF-induced corneal angiogenesis. PMID:22615734

  14. Eukaryotic release factor 1-2 affects Arabidopsis responses to glucose and phytohormones during germination and early seedling development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Germination and early seedling development are coordinately regulated by glucose and phytohormones such as ABA, GA and ethylene. However, the molecules that affect plant responses to glucose and phytohormones remain to be fully elucidated. Eukaryotic release factor 1 (eRF1) is responsible for recogn...

  15. Plant community response to landscape connectivity and patch shape.

    SciTech Connect

    Damschen, Ellen I.

    2005-07-01

    importance of within-patch edge effects because corridors increase the amount of edge relative to core habitat in a given patch. I provide evidence that corridors increase plant diversity through a combination of connectivity, drift-fence, and edge effects that can be largely predicted from plant dispersal modes. Biotically dispersed plant species (e.g., by birds and mammals) were most affected by connectivity effects, while passively-dispersed species (e.g., by wind or gravity) were most affected by drift-fence effects. Resource managers should consider these differential responses relative to their conservation goals for particular species or communities. In a related experiment, I tested for effects of habitat edges on plant performance, which are known to have impacts on abiotic conditions and biotic interactions. Edge effects have been especially well documented for forest-dwelling species along edges created by clearing or disturbing the surrounding habitat, but edge effects for historically open-habitat species along edges of forests have been virtually ignored. This is the case for many native herbaceous species in the southeastern United States that once existed in historically open longleaf pine forests but are now restricted to openings in modern densely planted pine forests. I tested empirically for edge effects of open habitat species by planting nine species of native longleaf pine forest herbs (three grasses, two asters, and four legumes) in equal densities at six distances (0, 6, 12, 25, 50, and 100 m) from an edge of a dense forest into an adjacent opening. I measured plant growth and flowering as well as available light and soil conditions. Using multivariate analysis of variance (MANOVA), I determined that plant growth and flowering were both significantly affected by the distance to the open habitat edge. Responses for individual species differed, in that some species performed best near the edge while others performed worst. Incident photosynthetically

  16. Plant Virus Differentially Alters the Plant's Defense Response to Its Closely Related Vectors

    PubMed Central

    Shi, Xiaobin; Pan, Huipeng; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Liu, Yang; Fang, Yong; Chen, Gong; Gao, Xiwu; Zhang, Youjun

    2013-01-01

    Background The whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is one of the most widely distributed agricultural pests. In recent years, B. tabaci Q has invaded China, and Q has displaced B in many areas now. In a number of regions of the world, invasion by B and/or Q has been followed by outbreaks of tomato yellow leaf curl virus (TYLCV). Our previous study showed TYLCV directly and indirectly modified the feeding behavior of B. tabaci in favor of Q rather than B. Methodology/Principal Findings In this study, we quantified the salicylic acid (SA) titers and relative gene expression of SA in tomato leaves that were infested with viruliferous or non-viruliferous B and Q. We also measured the impacts of exogenous SA on the performance of B and Q, including the effects on ovary development. SA titer was always higher in leaves that were infested with viruliferous B than with viruliferous Q, whereas the SA titer did not differ between leaves infested with non-viruliferous B and Q. The relative gene expression of SA signaling was increased by feeding of viruliferous B but was not increased by feeding of viruliferous Q. The life history traits of B and Q were adversely affected on SA-treated plants. On SA-treated plants, both B and Q had lower fecundity, shorter longevity, longer developmental time and lower survival rate than on untreated plants. Compared with whiteflies feeding on control plants, those feeding on SA-treated plants had fewer oocytes and slower ovary development. On SA-treated plants, viruliferous B had fewer oocytes than viruliferous Q. Conclusions/Significance These results indicate that TYLCV tends to induce SA-regulated plant defense against B but SA-regulated plant defense against Q was reduced. In other words, Q may have a mutualistic relationship with TYLCV that results in the reduction of the plant's defense response. PMID:24391779

  17. Plant defence responses in oilseed rape MINELESS plants after attack by the cabbage moth Mamestra brassicae

    PubMed Central

    Ahuja, Ishita; van Dam, Nicole Marie; Winge, Per; Trælnes, Marianne; Heydarova, Aysel; Rohloff, Jens; Langaas, Mette; Bones, Atle Magnar

    2015-01-01

    The Brassicaceae family is characterized by a unique defence mechanism known as the ‘glucosinolate–myrosinase’ system. When insect herbivores attack plant tissues, glucosinolates are hydrolysed by the enzyme myrosinase (EC 3.2.1.147) into a variety of degradation products, which can deter further herbivory. This process has been described as ‘the mustard oil bomb’. Additionally, insect damage induces the production of glucosinolates, myrosinase, and other defences. Brassica napus seeds have been genetically modified to remove myrosinase-containing myrosin cells. These plants are termed MINELESS because they lack myrosin cells, the so-called toxic mustard oil mines. Here, we examined the interaction between B. napus wild-type and MINELESS plants and the larvae of the cabbage moth Mamestra brassicae. No-choice feeding experiments showed that M. brassicae larvae gained less weight and showed stunted growth when feeding on MINELESS plants compared to feeding on wild-type plants. M. brassicae feeding didn’t affect myrosinase activity in MINELESS plants, but did reduce it in wild-type seedlings. M. brassicae feeding increased the levels of indol-3-yl-methyl, 1-methoxy-indol-3-yl-methyl, and total glucosinolates in both wild-type and MINELESS seedlings. M. brassicae feeding affected the levels of glucosinolate hydrolysis products in both wild-type and MINELESS plants. Transcriptional analysis showed that 494 and 159 genes were differentially regulated after M. brassicae feeding on wild-type and MINELESS seedlings, respectively. Taken together, the outcomes are very interesting in terms of analysing the role of myrosin cells and the glucosinolate–myrosinase defence system in response to a generalist cabbage moth, suggesting that similar studies with other generalist or specialist insect herbivores, including above- and below-ground herbivores, would be useful. PMID:25563968

  18. Plant defence responses in oilseed rape MINELESS plants after attack by the cabbage moth Mamestra brassicae.

    PubMed

    Ahuja, Ishita; van Dam, Nicole Marie; Winge, Per; Trælnes, Marianne; Heydarova, Aysel; Rohloff, Jens; Langaas, Mette; Bones, Atle Magnar

    2015-02-01

    The Brassicaceae family is characterized by a unique defence mechanism known as the 'glucosinolate-myrosinase' system. When insect herbivores attack plant tissues, glucosinolates are hydrolysed by the enzyme myrosinase (EC 3.2.1.147) into a variety of degradation products, which can deter further herbivory. This process has been described as 'the mustard oil bomb'. Additionally, insect damage induces the production of glucosinolates, myrosinase, and other defences. Brassica napus seeds have been genetically modified to remove myrosinase-containing myrosin cells. These plants are termed MINELESS because they lack myrosin cells, the so-called toxic mustard oil mines. Here, we examined the interaction between B. napus wild-type and MINELESS plants and the larvae of the cabbage moth Mamestra brassicae. No-choice feeding experiments showed that M. brassicae larvae gained less weight and showed stunted growth when feeding on MINELESS plants compared to feeding on wild-type plants. M. brassicae feeding didn't affect myrosinase activity in MINELESS plants, but did reduce it in wild-type seedlings. M. brassicae feeding increased the levels of indol-3-yl-methyl, 1-methoxy-indol-3-yl-methyl, and total glucosinolates in both wild-type and MINELESS seedlings. M. brassicae feeding affected the levels of glucosinolate hydrolysis products in both wild-type and MINELESS plants. Transcriptional analysis showed that 494 and 159 genes were differentially regulated after M. brassicae feeding on wild-type and MINELESS seedlings, respectively. Taken together, the outcomes are very interesting in terms of analysing the role of myrosin cells and the glucosinolate-myrosinase defence system in response to a generalist cabbage moth, suggesting that similar studies with other generalist or specialist insect herbivores, including above- and below-ground herbivores, would be useful. PMID:25563968

  19. Reinforcement Sensitivity Underlying Treatment-Seeking Smokers’ Affect, Smoking Reinforcement Motives, and Affective Responses

    PubMed Central

    Cui, Yong; Robinson, Jason D.; Engelmann, Jeffrey M.; Lam, Cho Y.; Minnix, Jennifer A.; Karam-Hage, Maher; Wetter, David W.; Dani, John A.; Kosten, Thomas R.; Cinciripini, Paul M.

    2014-01-01

    Nicotine dependence has been suggested to be related to reinforcement sensitivity, which encompasses behavioral predispositions either to avoid aversive (behavioral inhibition) or to approach appetitive (behavioral activation) stimuli. Reinforcement sensitivity may shape motives for nicotine use and offer potential targets for personalized smoking cessation therapy. However, little is known regarding how reinforcement sensitivity is related to motivational processes implicated in the maintenance of smoking. Additionally, women and men differ in reinforcement sensitivity, and such difference may cause distinct relationships between reinforcement sensitivity and motivational processes for female and male smokers. In this study, we characterized reinforcement sensitivity in relation to affect, smoking-related reinforcement motives, and affective responses, using self-report and psychophysiological measures, in over 200 smokers before treating them. The Behavioral Inhibition/Activation Scales (BIS/BAS; Carver & White, 1994) was used to measure reinforcement sensitivity. In female and male smokers, BIS was similarly associated with negative affect and negative reinforcement of smoking. But positive affect was positively associated with BAS Drive scores in male smokers, and this association was reversed in female smokers. BIS was positively associated with corrugator electromyographic reactivity towards negative stimuli and left frontal electroencephalogram alpha asymmetry. Female and male smokers showed similar relationships for these physiological measures. These findings suggest that reinforcement sensitivity underpins important motivational processes (e.g., affect), and gender is a moderating factor for these relationships. Future personalized smoking intervention, particularly among more dependent treatment-seeking smokers, may experiment to target individual differences in reinforcement sensitivity. PMID:25621416

  20. Facial EMG as an Index of Affective Response to Nicotine

    PubMed Central

    Robinson, Jason D.; Cinciripini, Paul M.; Carter, Brian L.; Lam, Cho Y.; Wetter, David W.

    2016-01-01

    Negative affect reduction has been postulated to be a key feature of cigarette smoking. In the present study, facial electromyography (EMG), heart rate (HR), and skin conductance (SCR) were used to evaluate the affective significance of acute nicotine administration and overnight withdrawal. Smokers (n=115) attended four 90-min laboratory assessment sessions scheduled approximately three days apart. The four sessions provided a complete crossing of two pre-laboratory deprivation conditions (12-hour deprived vs. nondeprived) with two drug conditions (nicotine vs. placebo nasal spray). During each session, smokers viewed affective slides while facial EMG, HR, and SCR were recorded. Results indicated that for women, nicotine nasal spray resulted in lower corrugator EMG activity during both smoking-deprived and nondeprived sessions, compared to placebo. However, nondeprived women also showed an increase in zygomaticus EMG when given nicotine compared to placebo spray, while smoking-deprived women demonstrated a decrease in the zygomaticus response to nicotine compared to placebo. With men, nicotine also appeared to lower corrugator during deprivation, but not nondeprivation, compared to placebo spray, though the contrast only approached significance. With zygomaticus EMG, nicotine spray decreased men’s zygomaticus responding during nondeprivation but not during deprivation, compared to placebo spray. The HR results reflected the stimulatory properties of the drug rather than nicotine’s affective properties, while SCR was unresponsive to our experimental manipulations. The corrugator EMG results support negative reinforcement models of smoking that postulate that acute nicotine use reduces withdrawal-driven negative affect. PMID:17696686

  1. Recent Advances in Plant Early Signaling in Response to Herbivory

    PubMed Central

    Arimura, Gen-Ichiro; Ozawa, Rika; Maffei, Massimo E.

    2011-01-01

    Plants are frequently attacked by herbivores and pathogens and therefore have acquired constitutive and induced defenses during the course of their evolution. Here we review recent progress in the study of the early signal transduction pathways in host plants in response to herbivory. The sophisticated signaling network for plant defense responses is elicited and driven by both herbivore-induced factors (e.g., elicitors, effectors, and wounding) and plant signaling (e.g., phytohormone and plant volatiles) in response to arthropod factors. We describe significant findings, illuminating the scenario by providing broad insights into plant signaling involved in several arthropod-host interactions. PMID:21747702

  2. Transcriptional responses of Arabidopsis thaliana plants to As (V) stress

    PubMed Central

    Abercrombie, Jason M; Halfhill, Matthew D; Ranjan, Priya; Rao, Murali R; Saxton, Arnold M; Yuan, Joshua S; Stewart, C Neal

    2008-01-01

    Background Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V)] and phosphate (Pi). Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V) stress. Results Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases) play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD) (at2g28190), Cu/Zn SOD (at1g08830), as well as an SOD copper chaperone (at1g12520). On the other hand, Fe SODs were strongly repressed in response to As (V) stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. Conclusion Microarray data suggest that As (V) induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V) as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research. PMID:18684332

  3. Plant Cell Adaptive Responses to Microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    simulated microgravity and temperature elevation have different effects on the small HSP genes belonging to subfamilies with different subcellular localization: cytosol/nucleus - PsHSP17.1-СІІ and PsHSP18.1-СІ, cloroplasts - PsHSP26.2-Cl, endoplasmatic reticulum - PsHSP22.7-ER and mitochondria - PsHSP22.9-M: unlike high temperature, clinorotation does not cause denaturation of cell proteins, that confirms the sHSP chaperone function. Dynamics of investigated gene expression in pea seedlings growing 5 days after seed germination under clinorotation was similar to that in the stationary control. Similar patterns in dynamics of sHSP gene expression in the stationary control and under clinorotation may be one of mechanisms providing plant adaptation to simulated microgravity. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in cell organelle functional load. Thus, next certain changes in the structure and function of plant cells may be considered as adaptive: 1) an increase in the unsaturated fatty acid content in the plasmalemma, 2) rearrangements of organelle ultrastructure and an increase in their functional load, 3) an increase in cortical F-actin under destabilization of tubulin microtubules, 4) the level of gene expression and synthesis of heat shock proteins, 5) alterations of the enzyme and antioxidant system activity. The dynamics of these patterns demonstrated that the adaptation occurs on the principle of self-regulating systems in the limits of physiological norm reaction. The very importance of changed expression of genes involved in different cellular processes, especially HSP genes, in cell adaptation to altered gravity is discussed.

  4. Factors affecting plant growth in membrane nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.

    1990-01-01

    The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.

  5. Plant response to gravity: towards a biosystems view of root gravitropism

    NASA Astrophysics Data System (ADS)

    Palme, Klaus; Volkmann, Dieter; Bennett, Malcolm J.; Gausepohl, Heinrich

    2005-10-01

    Plants are sessile organisms that originated and evolved in Earth's environment. They monitor a wide range of disparate external and internal signals and compute appropriate developmental responses. How do plant cells process these myriad signals into an appropriate response? How do they integrate these signals to reach a finely balanced decision on how to grow, how to determine the direction of growth and how to develop their organs to exploit the environment? As plant responses are generally irreversible growth responses, their signalling systems must compute each developmental decision with extreme care. One stimulus to which plants are continuously exposed is the gravity vector. Gravity affects adaptive growth responses that reorient organs towards light and nutrient resources. The MAP team was established by ESA to study in the model plant Arabidopsis thaliana the role of the hormone auxin in gravity-mediated growth control. Another goal was to dissect gravity perception and gravity signal transduction pathways.

  6. Colorimetric Method for Identifying Plant Essential Oil Components That Affect Biofilm Formation and Structure

    PubMed Central

    Niu, C.; Gilbert, E. S.

    2004-01-01

    The specific biofilm formation (SBF) assay, a technique based on crystal violet staining, was developed to locate plant essential oils and their components that affect biofilm formation. SBF analysis determined that cinnamon, cassia, and citronella oils differentially affected growth-normalized biofilm formation by Escherichia coli. Examination of the corresponding essential oil principal components by the SBF assay revealed that cinnamaldehyde decreased biofilm formation compared to biofilms grown in Luria-Bertani broth, eugenol did not result in a change, and citronellol increased the SBF. To evaluate these results, two microscopy-based assays were employed. First, confocal laser scanning microscopy (CLSM) was used to examine E. coli biofilms cultivated in flow cells, which were quantitatively analyzed by COMSTAT, an image analysis program. The overall trend for five parameters that characterize biofilm development corroborated the findings of the SBF assay. Second, the results of an assay measuring growth-normalized adhesion by direct microscopy concurred with the results of the SBF assay and CLSM imaging. Viability staining indicated that there was reduced toxicity of the essential oil components to cells in biofilms compared to the toxicity to planktonic cells but revealed morphological damage to E. coli after cinnamaldehyde exposure. Cinnamaldehyde also inhibited the swimming motility of E. coli. SBF analysis of three Pseudomonas species exposed to cinnamaldehyde, eugenol, or citronellol revealed diverse responses. The SBF assay could be useful as an initial step for finding plant essential oils and their components that affect biofilm formation and structure. PMID:15574886

  7. The unfolded protein response affects readthrough of premature termination codons

    PubMed Central

    Oren, Yifat S; McClure, Michelle L; Rowe, Steven M; Sorscher, Eric J; Bester, Assaf C; Manor, Miriam; Kerem, Eitan; Rivlin, Joseph; Zahdeh, Fouad; Mann, Matthias; Geiger, Tamar; Kerem, Batsheva

    2014-01-01

    One-third of monogenic inherited diseases result from premature termination codons (PTCs). Readthrough of in-frame PTCs enables synthesis of full-length functional proteins. However, extended variability in the response to readthrough treatment is found among patients, which correlates with the level of nonsense transcripts. Here, we aimed to reveal cellular pathways affecting this inter-patient variability. We show that activation of the unfolded protein response (UPR) governs the response to readthrough treatment by regulating the levels of transcripts carrying PTCs. Quantitative proteomic analyses showed substantial differences in UPR activation between patients carrying PTCs, correlating with their response. We further found a significant inverse correlation between the UPR and nonsense-mediated mRNA decay (NMD), suggesting a feedback loop between these homeostatic pathways. We uncovered and characterized the mechanism underlying this NMD-UPR feedback loop, which augments both UPR activation and NMD attenuation. Importantly, this feedback loop enhances the response to readthrough treatment, highlighting its clinical importance. Altogether, our study demonstrates the importance of the UPR and its regulatory network for genetic diseases caused by PTCs and for cell homeostasis under normal conditions. PMID:24705877

  8. Plant toxins that affect nicotinic acetylcholine receptors: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants produce wide variety of chemical compounds termed secondary metabolites that are not involved in basic metabolism, photosynthesis or reproduction. These compounds are used as flavors, fragrances, insecticides, dyes, hallucinogens, nutritional supplements, poisons, and pharmaceutical agents. ...

  9. A novel family of small proteins that affect plant development

    SciTech Connect

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  10. Burkholderia cenocepacia Lipopolysaccharide Modification and Flagellin Glycosylation Affect Virulence but Not Innate Immune Recognition in Plants

    PubMed Central

    Khodai-Kalaki, Maryam; Andrade, Angel; Fathy Mohamed, Yasmine

    2015-01-01

    ABSTRACT Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that “virulence” depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipopolysaccharide (LPS) with 4-amino-4-deoxy-l-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabidopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection. PMID:26045541

  11. Host plant affects the sexual attractiveness of the female white-spotted longicorn beetle, Anoplophora malasiaca.

    PubMed

    Yasui, Hiroe; Fujiwara-Tsujii, Nao

    2016-01-01

    Anoplophora malasiaca (Coleoptera: Cerambycidae) is a serious pest that destroys various landscape and crop trees in Japan. We evaluated the precopulatory responses of three different A. malasiaca populations collected from mandarin orange, willow and blueberry trees. Most of the males accepted mates from within the same host plant population as well as females from the willow and blueberry populations. However, significant number of males from the blueberry and willow populations rejected females from the mandarin orange population immediately after touching them with their antennae. Because all three of the female populations produced contact sex pheromones on their elytra, the females of the mandarin orange population were predicted to possess extra chemicals that repelled the males of the other two populations. β-Elemene was identified as a key component that was only found in mandarin orange-fed females and induced a rejection response in willow-fed males. Our results represent the first example of a female-acquired repellent against conspecific males of different host plant populations, indicating that the host plant greatly affects the female's sexual attractiveness. PMID:27412452

  12. Host plant affects the sexual attractiveness of the female white-spotted longicorn beetle, Anoplophora malasiaca

    PubMed Central

    Yasui, Hiroe; Fujiwara-Tsujii, Nao

    2016-01-01

    Anoplophora malasiaca (Coleoptera: Cerambycidae) is a serious pest that destroys various landscape and crop trees in Japan. We evaluated the precopulatory responses of three different A. malasiaca populations collected from mandarin orange, willow and blueberry trees. Most of the males accepted mates from within the same host plant population as well as females from the willow and blueberry populations. However, significant number of males from the blueberry and willow populations rejected females from the mandarin orange population immediately after touching them with their antennae. Because all three of the female populations produced contact sex pheromones on their elytra, the females of the mandarin orange population were predicted to possess extra chemicals that repelled the males of the other two populations. β-Elemene was identified as a key component that was only found in mandarin orange-fed females and induced a rejection response in willow-fed males. Our results represent the first example of a female-acquired repellent against conspecific males of different host plant populations, indicating that the host plant greatly affects the female’s sexual attractiveness. PMID:27412452

  13. Fuel breaks affect nonnative species abundance in Californian plant communities

    USGS Publications Warehouse

    Merriam, K.E.; Keeley, J.E.; Beyers, J.L.

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment programs throughout the United States to reduce the threat of wildland fire. Our study included 24 fuel breaks located across the State of California. We found that nonnative plant abundance was over 200% higher on fuel breaks than in adjacent wildland areas. Relative nonnative cover was greater on fuel breaks constructed by bulldozers (28%) than on fuel breaks constructed by other methods (7%). Canopy cover, litter cover, and duff depth also were significantly lower on fuel breaks constructed by bulldozers, and these fuel breaks had significantly more exposed bare ground than other types of fuel breaks. There was a significant decline in relative nonnative cover with increasing distance from the fuel break, particularly in areas that had experienced more numerous fires during the past 50 years, and in areas that had been grazed. These data suggest that fuel breaks could provide establishment sites for nonnative plants, and that nonnatives may invade surrounding areas, especially after disturbances such as fire or grazing. Fuel break construction and maintenance methods that leave some overstory canopy and minimize exposure of bare ground may be less likely to promote nonnative plants. ?? 2006 by the Ecological Society of America.

  14. Rhizosphere microbiome assemblage is affected by plant development

    PubMed Central

    Chaparro, Jacqueline M; Badri, Dayakar V; Vivanco, Jorge M

    2014-01-01

    There is a concerted understanding of the ability of root exudates to influence the structure of rhizosphere microbial communities. However, our knowledge of the connection between plant development, root exudation and microbiome assemblage is limited. Here, we analyzed the structure of the rhizospheric bacterial community associated with Arabidopsis at four time points corresponding to distinct stages of plant development: seedling, vegetative, bolting and flowering. Overall, there were no significant differences in bacterial community structure, but we observed that the microbial community at the seedling stage was distinct from the other developmental time points. At a closer level, phylum such as Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and specific genera within those phyla followed distinct patterns associated with plant development and root exudation. These results suggested that the plant can select a subset of microbes at different stages of development, presumably for specific functions. Accordingly, metatranscriptomics analysis of the rhizosphere microbiome revealed that 81 unique transcripts were significantly (P<0.05) expressed at different stages of plant development. For instance, genes involved in streptomycin synthesis were significantly induced at bolting and flowering stages, presumably for disease suppression. We surmise that plants secrete blends of compounds and specific phytochemicals in the root exudates that are differentially produced at distinct stages of development to help orchestrate rhizosphere microbiome assemblage. PMID:24196324

  15. Hydrostatic factors affect the gravity responses of algae and roots

    NASA Technical Reports Server (NTRS)

    Staves, Mark P.; Wayne, Randy; Leopold, A. C.

    1991-01-01

    The hypothesis of Wayne et al. (1990) that plant cells perceive gravity by sensing a pressure differential between the top and the bottom of the cell was tested by subjecting rice roots and cells of Caracean algae to external solutions of various densities. It was found that increasing the density of the external medium had a profound effect on the polar ratio (PR, the ratio between velocities of the downwardly and upwardly streaming cytoplasm) of the Caracean algae cells. When these cells were placed in solutions of denser compound, the PR decreased to less than 1, as the density of the external medium became higher than that of the cell; thus, the normal gravity-induced polarity was reversed, indicating that the osmotic pressure of the medium affects the cell's ability to respond to gravity. In rice roots, an increase of the density of the solution inhibited the rate of gravitropism. These results agree with predictions of a hydrostatic model for graviperception.

  16. The Development of an Emotional Response to Literature Measure: The Affective Response to Literature Survey

    ERIC Educational Resources Information Center

    Fischer, Ronald G.; Fischer, Jerome M.

    2006-01-01

    Based on theories of emotional intelligence, adult education, psychology of reading, and emotions and literature, this study was designed to develop and validate the Affective Response to Literature Survey (ARLS), a psychological instrument used to measure an emotional response to literature. Initially, 27 items were generated by a review of…

  17. Regression analysis of technical parameters affecting nuclear power plant performances

    SciTech Connect

    Ghazy, R.; Ricotti, M. E.; Trueco, P.

    2012-07-01

    Since the 80's many studies have been conducted in order to explicate good and bad performances of commercial nuclear power plants (NPPs), but yet no defined correlation has been found out to be totally representative of plant operational experience. In early works, data availability and the number of operating power stations were both limited; therefore, results showed that specific technical characteristics of NPPs were supposed to be the main causal factors for successful plant operation. Although these aspects keep on assuming a significant role, later studies and observations showed that other factors concerning management and organization of the plant could instead be predominant comparing utilities operational and economic results. Utility quality, in a word, can be used to summarize all the managerial and operational aspects that seem to be effective in determining plant performance. In this paper operational data of a consistent sample of commercial nuclear power stations, out of the total 433 operating NPPs, are analyzed, mainly focusing on the last decade operational experience. The sample consists of PWR and BWR technology, operated by utilities located in different countries, including U.S. (Japan)) (France)) (Germany)) and Finland. Multivariate regression is performed using Unit Capability Factor (UCF) as the dependent variable; this factor reflects indeed the effectiveness of plant programs and practices in maximizing the available electrical generation and consequently provides an overall indication of how well plants are operated and maintained. Aspects that may not be real causal factors but which can have a consistent impact on the UCF, as technology design, supplier, size and age, are included in the analysis as independent variables. (authors)

  18. Ozone Differentially Affects Perception of Plant Volatiles in Western Honey Bees.

    PubMed

    Dötterl, Stefan; Vater, Marina; Rupp, Thomas; Held, Andreas

    2016-06-01

    Floral scents play a key role in mediating plant-pollinator interactions. Volatile organic compounds (VOCs) emitted by flowers are used by flower visitors as olfactory cues to locate flowers, both from a distance and at close range. More recently it has been demonstrated that reactive molecules such as ozone can modify or degrade VOCs, and this may impair the communication between plants and their pollinators. However, it is not known whether such reactive molecules also may affect the olfactory system of pollinators, and thus not only influence signal transmission but perception of the signal. In this study, we used electroantennographic measurements to determine the effect of increased levels of ozone on antennal responses in western honey bees (Apis mellifera L.). Linalool and 2-phenylethanol, both known to be involved in location of flowers by the bees, and (Z)-3-hexenyl acetate, a widespread green leaf volatile also detected by bees, were used. The results showed that ozone affected antennal responses to the different substances differently. Ozone decreased antennal responses to (Z)-3-hexenyl acetate, whereas responses to linalool and 2-phenylethanol were not influenced by ozone. Overall, the study does not provide evidence that pollination by honey bees is impaired by damage in the olfactory system of the bees caused by increased levels of ozone, at least when linalool and 2-phenylethanol are the attractive signals. However, the results also suggest that ozone can change the overall perception of an odor blend. This might have negative effects in pollination systems and other organismic interactions mediated by specific ratios of compounds. PMID:27344162

  19. Expressive suppression and neural responsiveness to nonverbal affective cues.

    PubMed

    Petrican, Raluca; Rosenbaum, R Shayna; Grady, Cheryl

    2015-10-01

    Optimal social functioning occasionally requires concealment of one's emotions in order to meet one's immediate goals and environmental demands. However, because emotions serve an important communicative function, their habitual suppression disrupts the flow of social exchanges and, thus, incurs significant interpersonal costs. Evidence is accruing that the disruption in social interactions, linked to habitual expressive suppression use, stems not only from intrapersonal, but also from interpersonal causes, since the suppressors' restricted affective displays reportedly inhibit their interlocutors' emotionally expressive behaviors. However, expressive suppression use is not known to lead to clinically significant social impairments. One explanation may be that over the lifespan, individuals who habitually suppress their emotions come to compensate for their interlocutors' restrained expressive behaviors by developing an increased sensitivity to nonverbal affective cues. To probe this issue, the present study used functional magnetic resonance imaging (fMRI) to scan healthy older women while they viewed silent videos of a male social target displaying nonverbal emotional behavior, together with a brief verbal description of the accompanying context, and then judged the target's affect. As predicted, perceivers who reported greater habitual use of expressive suppression showed increased neural processing of nonverbal affective cues. This effect appeared to be coordinated in a top-down manner via cognitive control. Greater neural processing of nonverbal cues among perceivers who habitually suppress their emotions was linked to increased ventral striatum activity, suggestive of increased reward value/personal relevance ascribed to emotionally expressive nonverbal behaviors. These findings thus provide neural evidence broadly consistent with the hypothesized link between habitual use of expressive suppression and compensatory development of increased responsiveness to

  20. Cadmium content of plants as affected by soil cadmium concentration

    SciTech Connect

    Lehoczky, E.; Szabados, I.; Marth, P.

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With the same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.

  1. How neighbor canopy architecture affects target plant performance

    SciTech Connect

    Tremmel, D.C.; Bazzaz, F.A. )

    1993-10-01

    Plant competition occurs through the negative effects that individual plants have on resource availability to neighboring individuals. Therefore competition experiments need to examine how different species change resource availability to their neighbors, and how different species respond to these changes-allocationally, architecturally, and physiologically-through time. In a greenhouse study we used a model system of annuals to examine how canopies of species having differing morphologies differed in their architectures and light-interception abilities, and how different species performed when grown in these canopies. Abutilon theophrasti, Datura stramonium, and Polygonum pensylvanicum were grown as [open quotes]targets[close quotes]. Plants were grown in pots, with one target plant and four neighbor plants. Detailed measurements of neighbor canopy structure and target plant canopy architecture were made at five harvests. Species with different morphologies showed large differences in canopy structure, particularly when grass and forb species were compared. Setaria, a grass, had a more open canopy than the other species (all forbs), and was a consistently weak competitor. Overall, however, the relative effects of different neighbors on target biomass varied with target species. Target biomass was poorly correlated with neighbor biomass and leaf area, but was highly correlated with a measure of target light-interception ability that took into account both target leaf deployment and neighbor light interception. Despite clear differences among neighbor species in canopy structure and effect on light penetration, the results suggest no broad generalizations about the effects of different species as neighbors. Knowledge of morphological, physiological, and life history characteristics of both the target and neighbor species may be necessary to explain the results of their competition. 53 refs., 4 figs., 4 tabs.

  2. Electrophysiological Responses to Affective Stimuli in Neglectful Mothers

    PubMed Central

    León, Inmaculada; Rodrigo, María José; Quiñones, Ileana; Hernández, Juan Andrés; Lage, Agustín; Padrón, Iván; Bobes, María Antonieta

    2014-01-01

    Results illustrating an atypical neural processing in the early and late differentiation of infant faces have been obtained with neglectful mothers. The present study explores whether a different pattern of response is observed when using non-infant affective pictures. We examined the event-related evoked potentials and induced delta, theta and alpha activity in 14 neglectful mothers and 14 control mothers elicited while categorizing positive, negative and neutral pictures from the International Affective Picture System. Self-reports of anhedonia and empathy were also recorded. Early posterior negativity, P200 and late positive potential components were modulated by the emotional content of pictures in both groups. However, the LPP waveform had a more delayed and more attenuated maximum in neglectful mothers than in control mothers. Oscillatory responses indicated lower power increases for neglectful mothers than for control mothers in delta (1–4 Hz), theta (4–8 Hz) and lower alpha (8–10 Hz) bands at frontal sites, and a more consistent increase for neglectful mothers in theta and lower alpha bands at occipital sites, especially for negative pictures. These findings help us to better understand the limits of emotional insensitivity in neglectful mothers. PMID:24498200

  3. Affective responsiveness is influenced by intake of oral contraceptives.

    PubMed

    Radke, Sina; Derntl, Birgit

    2016-06-01

    Despite the widespread use of oral contraceptive pills (OCs), little is known about their impact on psychological processes and emotional competencies. Recent data indicate impaired emotion recognition in OC users compared to naturally cycling females. Building upon these findings, the current study investigated the influence of OC use on three components of empathy, i.e., emotion recognition, perspective-taking, and affective responsiveness. We compared naturally cycling women to two groups of OC users, one being tested in their pill-free week and one in the phase of active intake. Whereas groups did not differ in emotion recognition and perspective-taking, an effect of pill phase was evident for affective responsiveness: Females currently taking the pill showed better performance than those in their pill-free week. These processing advantages complement previous findings on menstrual cycle effects and thereby suggest an association with changes in endogenous and exogenous reproductive hormones. The current study highlights the need for future research to shed more light on the neuroendocrine alterations accompanying OC intake. PMID:27039036

  4. Early hormonal changes affect the catabolic response to trauma.

    PubMed Central

    Bessey, P Q; Lowe, K A

    1993-01-01

    OBJECTIVE: The authors sought to determine how temporary insulin suppression might alter the catabolic effects of cortisol, glucagon, and epinephrine. SUMMARY BACKGROUND DATA: The metabolic responses to injury include hypermetabolism, accelerated net skeletal muscle protein breakdown, glucose intolerance, and insulin resistance. These alterations are associated with increased stress hormone concentrations. Insulin elaboration is usually suppressed immediately after an injury but is abundant later during convalescence. An infusion of hydrocortisone, glucagon, and epinephrine increases both stress hormone concentrations and insulin levels. It induces many of the metabolic alterations seen in critically ill patients, but it does not affect net muscle breakdown. METHODS: Seven healthy adults received a stress hormone infusion for 3 days in two separate studies. During one study they, also received an infusion of the somatostatin analogue, octreotide (0.005 micrograms/kg/min), to suppress insulin elaboration for the first 24 hours. During the other study (control), insulin was permitted to rise unchecked. RESULTS: Stress hormone concentrations, hypermetabolism (+/- 20% above basal), and leukocytosis were similar during both study periods. When insulin elaboration was temporarily suppressed, whole-body nitrogen loss was increased during the first 48 hours, and the efflux of amino acids from the forearm after 72 hours of infusion was 60% greater than the control level. CONCLUSIONS: Temporary insulin suppression during physiologic increases in stress hormone concentrations amplified whole-body nitrogen loss and led to the development of accelerated net skeletal muscle protein breakdown. Early hormonal changes after an injury may affect the development of later catabolic responses. PMID:8215639

  5. Testing Whether and When Abstract Symmetric Patterns Produce Affective Responses

    PubMed Central

    Bertamini, Marco; Makin, Alexis; Pecchinenda, Anna

    2013-01-01

    Symmetry has a central role in visual art, it is often linked to beauty, and observers can detect it efficiently in the lab. We studied what kind of fast and automatic responses are generated by visual presentation of symmetrical patterns. Specifically, we tested whether a brief presentation of novel symmetrical patterns engenders positive affect using a priming paradigm. The abstract patterns were used as primes in a pattern-word interference task. To ensure that familiarity was not a factor, no pattern and no word was ever repeated within each experiment. The task was to classify words that were selected to have either positive or negative valence. We tested irregular patterns, patterns containing vertical and horizontal reflectional symmetry, and patterns containing a 90 deg rotation. In a series of 7 experiments we found that the effect of affective congruence was present for both types of regularity but only when observers had to classify the regularity of the pattern after responding to the word. The findings show that processing abstract symmetrical shapes or random pattern can engender positive or negative affect as long as the regularity of the pattern is a feature that observers have to attend to and classify. PMID:23840892

  6. Do competitors modulate rare plant response to precipitation change?

    USGS Publications Warehouse

    Levine, J.M.; Kathryn, Mceachern A.; Cowan, C.

    2010-01-01

    Ecologists increasingly suspect that climate change will directly impact species physiology, demography, and phenology, but also indirectly affect these measures via changes to the surrounding community. Unfortunately, few studies examine both the direct and indirect pathways of impact. Doing so is important because altered competitive pressures can reduce or magnify the direct responses of a focal species to climate change. Here, we examine the effects of changing rainfall on three rare annual plant species in the presence and absence of competition on the California Channel Islands. We used rain-out shelters and hand watering to exclude and augment early, late, and season-long rainfall, spanning the wide range of precipitation change forecast for the region. In the absence of competition, droughts reduced the population growth rates of two of three focal annuals, while increased rainfall was only sometimes beneficial, As compared to the focal species, the dominant competitors were more sensitive to the precipitation treatments, benefiting from increased season-long precipitation and harmed by droughts. Importantly, the response of two of three competitors to the precipitation treatments tended to be positively correlated with those of the focal annuals. Although this leads to the expectation that increased competition will counter the direct benefits of favorable conditions, such indirect effects of precipitation change proved weak to nonexistent in our experiment. Competitors had little influence on the precipitation response of two focal species, due to their low sensitivity to competition and highly variable precipitation responses. Competition did affect how our third focal species responded to precipitation change, but this effect only approached significance, and whether it truly resulted from competitor response to precipitation change was unclear. Our work suggests that even when competitors respond to climate change, these responses may have little

  7. Plant extracts affect in vitro rumen microbial fermentation.

    PubMed

    Busquet, M; Calsamiglia, S; Ferret, A; Kamel, C

    2006-02-01

    Different doses of 12 plant extracts and 6 secondary plant metabolites were incubated for 24 h in diluted ruminal fluid with a 50:50 forage:concentrate diet. Treatments were: control (no additive), plant extracts (anise oil, cade oil, capsicum oil, cinnamon oil, clove bud oil, dill oil, fenugreek, garlic oil, ginger oil, oregano oil, tea tree oil, and yucca), and secondary plant metabolites (anethol, benzyl salicylate, carvacrol, carvone, cinnamaldehyde, and eugenol). Each treatment was supplied at 3, 30, 300, and 3,000 mg/L of culture fluid. At 3,000 mg/L, most treatments decreased total volatile fatty acid concentration, but cade oil, capsicum oil, dill oil, fenugreek, ginger oil, and yucca had no effect. Different doses of anethol, anise oil, carvone, and tea tree oil decreased the proportion of acetate and propionate, which suggests that these compounds may not be nutritionally beneficial to dairy cattle. Garlic oil (300 and 3,000 mg/L) and benzyl salicylate (300 and 3,000 mg/L) reduced acetate and increased propionate and butyrate proportions, suggesting that methane production was inhibited. At 3,000 mg/L, capsicum oil, carvacrol, carvone, cinnamaldehyde, cinnamon oil, clove bud oil, eugenol, fenugreek, and oregano oil resulted in a 30 to 50% reduction in ammonia N concentration. Careful selection and combination of these extracts may allow the manipulation of rumen microbial fermentation. PMID:16428643

  8. Maximizing plant density affects broccoli yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased demand for fresh market bunch broccoli (Brassica oleracea L. var. italica) has led to increased production along the United States east coast. Maximizing broccoli yields is a primary concern for quickly expanding southeastern commercial markets. This broccoli plant density study was carr...

  9. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    PubMed

    Rivas-Ubach, Albert; Hódar, José A; Sardans, Jordi; Kyle, Jennifer E; Kim, Young-Mo; Oravec, Michal; Urban, Otmar; Guenther, Alex; Peñuelas, Josep

    2016-07-01

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but also the entire metabolome. Metabolomes are the final products of genotypes and are constrained by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from three closely related Pinus species with distant coevolutionary histories with the caterpillar of the processionary moth respond similarly to its attack. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of terpenes were in the attacked trees supporting the hypothesis that herbivores avoid plant individuals with higher concentrations. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution. PMID:27386082

  10. Phosphoinositide-signaling is one component of a robust plant defense response.

    PubMed

    Hung, Chiu-Yueh; Aspesi, Peter; Hunter, Melissa R; Lomax, Aaron W; Perera, Imara Y

    2014-01-01

    The phosphoinositide pathway and inositol-1,4,5-triphosphate (InsP3) have been implicated in plant responses to many abiotic stresses; however, their role in response to biotic stress is not well characterized. In the current study, we show that both basal defense and systemic acquired resistance responses are affected in transgenic plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase) which have greatly reduced InsP3 levels. Flagellin induced Ca(2+)-release as well as the expressions of some flg22 responsive genes were attenuated in the InsP 5-ptase plants. Furthermore, the InsP 5-ptase plants were more susceptible to virulent and avirulent strains of Pseudomonas syringae pv. tomato (Pst) DC3000. The InsP 5-ptase plants had lower basal salicylic acid (SA) levels and the induction of SAR in systemic leaves was reduced and delayed. Reciprocal exudate experiments showed that although the InsP 5-ptase plants produced equally effective molecules that could trigger PR-1 gene expression in wild type plants, exudates collected from either wild type or InsP 5-ptase plants triggered less PR-1 gene expression in InsP 5-ptase plants. Additionally, expression profiles indicated that several defense genes including PR-1, PR-2, PR-5, and AIG1 were basally down regulated in the InsP 5-ptase plants compared with wild type. Upon pathogen attack, expression of these genes was either not induced or showed delayed induction in systemic leaves. Our study shows that phosphoinositide signaling is one component of the plant defense network and is involved in both basal and systemic responses. The dampening of InsP3-mediated signaling affects Ca(2+) release, modulates defense gene expression and compromises plant defense responses. PMID:24966862

  11. Phosphoinositide-signaling is one component of a robust plant defense response

    PubMed Central

    Hung, Chiu-Yueh; Aspesi Jr, Peter; Hunter, Melissa R.; Lomax, Aaron W.; Perera, Imara Y.

    2014-01-01

    The phosphoinositide pathway and inositol-1,4,5-triphosphate (InsP3) have been implicated in plant responses to many abiotic stresses; however, their role in response to biotic stress is not well characterized. In the current study, we show that both basal defense and systemic acquired resistance responses are affected in transgenic plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase) which have greatly reduced InsP3 levels. Flagellin induced Ca2+-release as well as the expressions of some flg22 responsive genes were attenuated in the InsP 5-ptase plants. Furthermore, the InsP 5-ptase plants were more susceptible to virulent and avirulent strains of Pseudomonas syringae pv. tomato (Pst) DC3000. The InsP 5-ptase plants had lower basal salicylic acid (SA) levels and the induction of SAR in systemic leaves was reduced and delayed. Reciprocal exudate experiments showed that although the InsP 5-ptase plants produced equally effective molecules that could trigger PR-1 gene expression in wild type plants, exudates collected from either wild type or InsP 5-ptase plants triggered less PR-1 gene expression in InsP 5-ptase plants. Additionally, expression profiles indicated that several defense genes including PR-1, PR-2, PR-5, and AIG1 were basally down regulated in the InsP 5-ptase plants compared with wild type. Upon pathogen attack, expression of these genes was either not induced or showed delayed induction in systemic leaves. Our study shows that phosphoinositide signaling is one component of the plant defense network and is involved in both basal and systemic responses. The dampening of InsP3-mediated signaling affects Ca2+ release, modulates defense gene expression and compromises plant defense responses. PMID:24966862

  12. Plant systemic induced responses mediate interactions between root parasitic nematodes and aboveground herbivorous insects

    PubMed Central

    Wondafrash, Mesfin; Van Dam, Nicole M.; Tytgat, Tom O. G.

    2013-01-01

    Insects and nematodes are the most diverse and abundant groups of multicellular animals feeding on plants on either side of the soil–air interface. Several herbivore-induced responses are systemic, and hence can influence the preference and performance of organisms in other plant organs. Recent studies show that plants mediate interactions between belowground plant parasitic nematodes (PPNs) and aboveground herbivorous insects. Based on the knowledge of plant responses to pathogens, we review the emerging insights on plant systemic responses against root-feeding nematodes and shoot-feeding insects. We discuss the potential mechanisms of plant-mediated indirect interactions between both groups of organisms and point to gaps in our knowledge. Root-feeding nematodes can positively or negatively affect shoot herbivorous insects, and vice versa. The outcomes of the interactions between these spatially separated herbivore communities appear to be influenced by the feeding strategy of the nematodes and the insects, as well as by host plant susceptibility to both herbivores. The potential mechanisms for these interactions include systemic induced plant defense, interference with the translocation and dynamics of locally induced secondary metabolites, and reallocation of plant nutritional reserves. During evolution, PPNs as well as herbivorous insects have acquired effectors that modify plant defense responses and resource allocation patterns to their advantage. However, it is also known that plants under herbivore attack change the allocation of their resources, e.g., for compensatory growth responses, which may affect the performance of other organisms feeding on the plant. Studying the chemical and molecular basis of these interactions will reveal the molecular mechanisms that are involved. Moreover, it will lead to a better understanding of the ecological relevance of aboveground–belowground interactions, as well as support the development of sustainable pest

  13. Plant systemic induced responses mediate interactions between root parasitic nematodes and aboveground herbivorous insects.

    PubMed

    Wondafrash, Mesfin; Van Dam, Nicole M; Tytgat, Tom O G

    2013-01-01

    Insects and nematodes are the most diverse and abundant groups of multicellular animals feeding on plants on either side of the soil-air interface. Several herbivore-induced responses are systemic, and hence can influence the preference and performance of organisms in other plant organs. Recent studies show that plants mediate interactions between belowground plant parasitic nematodes (PPNs) and aboveground herbivorous insects. Based on the knowledge of plant responses to pathogens, we review the emerging insights on plant systemic responses against root-feeding nematodes and shoot-feeding insects. We discuss the potential mechanisms of plant-mediated indirect interactions between both groups of organisms and point to gaps in our knowledge. Root-feeding nematodes can positively or negatively affect shoot herbivorous insects, and vice versa. The outcomes of the interactions between these spatially separated herbivore communities appear to be influenced by the feeding strategy of the nematodes and the insects, as well as by host plant susceptibility to both herbivores. The potential mechanisms for these interactions include systemic induced plant defense, interference with the translocation and dynamics of locally induced secondary metabolites, and reallocation of plant nutritional reserves. During evolution, PPNs as well as herbivorous insects have acquired effectors that modify plant defense responses and resource allocation patterns to their advantage. However, it is also known that plants under herbivore attack change the allocation of their resources, e.g., for compensatory growth responses, which may affect the performance of other organisms feeding on the plant. Studying the chemical and molecular basis of these interactions will reveal the molecular mechanisms that are involved. Moreover, it will lead to a better understanding of the ecological relevance of aboveground-belowground interactions, as well as support the development of sustainable pest management

  14. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities

    PubMed Central

    2013-01-01

    Background Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms’ specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Results Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms

  15. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    PubMed Central

    Zhou, Lin; Xu, Hui; Mischke, Sue; Meinhardt, Lyndel W; Zhang, Dapeng; Zhu, Xujun; Li, Xinghui; Fang, Wanping

    2014-01-01

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant under drought stress is essential to develop drought-tolerant tea genotypes, along with crop management practices that can mitigate drought stress. The objective of the present investigation is evaluation of effects of exogenous ABA on the leaf proteome in tea plant exposed to drought stress. Leaf protein patterns of tea plants under simulated drought stress [(polyethylene glycol (PEG)-treated] and exogenous ABA treatment were analyzed in a time-course experiment using two-dimensional electrophoresis (2-DE), followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Among the 72 protein spots identified by MALDI-TOF MS, 16 proteins were downregulated and two were upregulated by exogenous ABA. The upregulated proteins have roles in glycolysis and photosystem II stabilization. Twenty-one protein spots were responsive to drought stress and most participate in carbohydrate and nitrogen metabolism, control of reactive oxygen species (ROS), defense, signaling or nucleic acid metabolism. The combined treatments of exogenous ABA and drought showed upregulation of 10 protein spots at 12 h and upregulation of 11 proteins at 72 h after initiation of drought stress. The results support the importance of the role that ABA plays in the tea plant during drought stress, by improving protein transport, carbon metabolism and expression of resistance proteins. PMID:27076915

  16. Mutagenesis during plant responses to UVB radiation.

    PubMed

    Holá, M; Vágnerová, R; Angelis, K J

    2015-08-01

    We tested an idea that induced mutagenesis due to unrepaired DNA lesions, here the UV photoproducts, underlies the impact of UVB irradiation on plant phenotype. For this purpose we used protonemal culture of the moss Physcomitrella patens with 50% of apical cells, which mimics actively growing tissue, the most vulnerable stage for the induction of mutations. We measured the UVB mutation rate of various moss lines with defects in DNA repair (pplig4, ppku70, pprad50, ppmre11), and in selected clones resistant to 2-Fluoroadenine, which were mutated in the adenosine phosphotrasferase gene (APT), we analysed induced mutations by sequencing. In parallel we followed DNA break repair and removal of cyclobutane pyrimidine dimers with a half-life τ = 4 h 14 min determined by comet assay combined with UV dimer specific T4 endonuclease V. We show that UVB induces massive, sequence specific, error-prone bypass repair that is responsible for a high mutation rate owing to relatively slow, though error-free, removal of photoproducts by nucleotide excision repair (NER). PMID:25542779

  17. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    PubMed

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. PMID:27317970

  18. Soil biota can change after exotic plant invasion: Does this affect ecosystem processes?

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Sherrod, S.K.; Moldenke, A.

    2005-01-01

    Invasion of the exotic annual grass Bromus tectorum into stands of the native perennial grass Hilaria jamesii significantly reduced the abundance of soil biota, especially microarthropods and nematodes. Effects of invasion on active and total bacterial and fungal biomass were variable, although populations generally increased after 50+ years of invasion. The invasion of Bromus also resulted in a decrease in richness and a species shift in plants, microarthropods, fungi, and nematodes. However, despite the depauperate soil fauna at the invaded sites, no effects were seen on cellulose decomposition rates, nitrogen mineralization rates, or vascular plant growth. When Hilaria was planted into soils from not-invaded, recently invaded, and historically invaded sites (all currently or once dominated by Hilaria), germination and survivorship were not affected. In contrast, aboveground Hilaria biomass was significantly greater in recently invaded soils than in the other two soils. We attributed the Hilaria response to differences in soil nutrients present before the invasion, especially soil nitrogen, phosphorus, and potassium, as these nutrients were elevated in the soils that produced the greatest Hilaria biomass. Our data suggest that it is not soil biotic richness per se that determines soil process rates or plant productivity, but instead that either (1) the presence of a few critical soil food web taxa can keep ecosystem function high, (2) nutrient loss is very slow in this ecosystem, and/or (3) these processes are microbially driven. However, the presence of Bromus may reduce key soil nutrients over time and thus may eventually suppress native plant success. ?? 2005 by the Ecological Society of America.

  19. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  20. The odor of a plant metabolite affects life history traits in dietary restricted adult olive flies

    PubMed Central

    Gerofotis, Christos D.; Ioannou, Charalampos S.; Nakas, Christos T.; Papadopoulos, Nikos T.

    2016-01-01

    Food quality shapes life history traits either directly or through response of individuals to additional environmental factors, such as chemical cues. Plant extracts used as food additives modulate key life history traits; however little is known regarding such effects for olfactory chemical cues. Exploiting an interesting experimental system that involves the olive fly (Bactrocera oleae) and the plant metabolite α-pinene we asked whether exposure of adults to this compound modulates adult longevity and female reproduction in similar manner in a stressful – dietary (protein) restricted (DR) and in a relaxed- full diet (FD) feeding environment. Accordingly, we exposed males and females to the aroma of α-pinene and measured lifespan and age-specific fecundity in the above two dietary contexts. Our results demonstrate that exposure to α-pinene increased longevity in males and fecundity in females only under dietary restricted conditions. In relaxed food conditions, females exposed to α-pinene shifted high egg-laying towards younger ages compared to non-exposed ones. This is the first report demonstrating that a plant compound affects key life history traits of adult olive flies through olfaction. These effects are sex-specific and more pronounced in dietary restricted adults. Possible underlying mechanisms and the ecological significance are discussed. PMID:27339862

  1. The odor of a plant metabolite affects life history traits in dietary restricted adult olive flies.

    PubMed

    Gerofotis, Christos D; Ioannou, Charalampos S; Nakas, Christos T; Papadopoulos, Nikos T

    2016-01-01

    Food quality shapes life history traits either directly or through response of individuals to additional environmental factors, such as chemical cues. Plant extracts used as food additives modulate key life history traits; however little is known regarding such effects for olfactory chemical cues. Exploiting an interesting experimental system that involves the olive fly (Bactrocera oleae) and the plant metabolite α-pinene we asked whether exposure of adults to this compound modulates adult longevity and female reproduction in similar manner in a stressful - dietary (protein) restricted (DR) and in a relaxed- full diet (FD) feeding environment. Accordingly, we exposed males and females to the aroma of α-pinene and measured lifespan and age-specific fecundity in the above two dietary contexts. Our results demonstrate that exposure to α-pinene increased longevity in males and fecundity in females only under dietary restricted conditions. In relaxed food conditions, females exposed to α-pinene shifted high egg-laying towards younger ages compared to non-exposed ones. This is the first report demonstrating that a plant compound affects key life history traits of adult olive flies through olfaction. These effects are sex-specific and more pronounced in dietary restricted adults. Possible underlying mechanisms and the ecological significance are discussed. PMID:27339862

  2. "Cold training" affects rat liver responses to continuous cold exposure.

    PubMed

    Venditti, Paola; Napolitano, Gaetana; Barone, Daniela; Di Meo, Sergio

    2016-04-01

    Continuous exposure of homeothermic animals to low environmental temperatures elicits physiological adaptations necessary for animal survival, which are associated to higher generation of pro-oxidants in thermogenic tissues. It is not known whether intermittent cold exposure (cold training) is able to affect tissue responses to continuous cold exposure. Therefore, we investigated whether rat liver responses to continuous cold exposure of 2 days are modified by cold training (1h daily for 5 days per week for 3 consecutive weeks). Continuous cold increased liver oxidative metabolism by increasing tissue content of mitochondrial proteins and mitochondrial aerobic capacity. Cold training did not affect such parameters, but attenuated or prevented the changes elicited by continuous cold exposure. Two-day cold exposure increased lipid hydroperoxide and protein-bound carbonyl levels in homogenates and mitochondria, whereas cold training decreased such effects although it decreased only homogenate protein damage in control rats. The activities of the antioxidant enzymes GPX and GR and H2O2 production were increased by continuous cold exposure. Despite the increase in GPX and GR activities, livers from cold-exposed rats showed increased susceptibility to in vitro oxidative challenge. Such cold effects were decreased by cold training, which in control rats reduced only H2O2 production and susceptibility to stress. The changes of PGC-1, NRF-1, and NRF-2 expression levels were consistent with those induced by cold exposure and cold training in mitochondrial protein content and antioxidant enzyme activities. However, the mechanisms by which cold training attenuates the effects of the continuous cold exposure remain to be elucidated. PMID:26808664

  3. RESPONSES OF WETLAND PLANTS TO EFFLUENTS IN WATER & SEDIMENT

    EPA Science Inventory

    Responses of two wetland vascular plants, Echinochloa crusgalli and Sesbania macrocarpa, exposed to effluents from a coke plant, a pulp mill, a wastewater treatment plant, and the herbicide, hexazinone, were measured in three types of tests: seed germination and early growth, see...

  4. Genotype by environment interaction for plant density response in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased adaptation to high plant density has been an important factor in improvements in grain yield in maize. Despite extensive public literature on variation in plant density response among maize varieties, almost no public information is available on environmental effects on plant density respo...

  5. Agroecology: Implications for plant response to climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural ecosystems (agroecosystems) represent the balance between the physiological responses of plants and plant canopies and the energy exchanges. Rising temperature and increasing CO2 coupled with an increase in variability of precipitation will create a complex set of interactions on plant ...

  6. Solanum malacoxylon: a toxic plant which affects animal calcium metabolism.

    PubMed

    Boland, R L

    1988-12-01

    The "enteque seco" is a disease of calcinosis, i.e., pathological deposition of calcium phosphate in soft tissues, which occurs in grazing cattle in Argentina and is of considerable economic importance. The ingestion of leaves of Solanum malacoxylon has been identified as the cause of the disease. Hypercalcemia and/or hyperphosphatemia and mineralization of the cardiovascular and pulmonary systems are usually seen in bovines or experimental animals exposed to this plant. The symptoms of the disease resemble those of vitamin D intoxication. In agreement with these observations, a glycoside derivative of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D in animals, has been identified as the toxic principle of S. malacoxylon. Glycoside conjugates of its precursors, 25-hydroxyvitamin D3 and vitamin D3, may also be present. Recent studies indicate that the plant factor is modified in the rumen of bovines through cleavage of the glycosidic linkage and further conversion of the released 1,25(OH)2D3 to a more polar metabolite, possibly 1,24,25-trihydroxyvitamin D3. Excess free 1,25(OH)2D3 may alter extracellular and intracellular Ca homeostasis in intoxicated animals through a receptor-mediated mechanism and activation of membrane Ca channels. In addition, 1,24,25(OH)3D3 may potentiate the effects of 1,25(OH)2D3 on intestinal Ca transport. PMID:3077267

  7. Plant Response to Differential Soil Water Content and Salinity

    NASA Astrophysics Data System (ADS)

    Moradi, A. B.; Dara, A.; Kamai, T.; Ngo, A.; Walker, R.; Hopmans, J. W.

    2011-12-01

    Root-zone soil water content is extremely dynamic, governed by complex and coupled processes such as root uptake, irrigation, evaporation, and leaching. Root uptake of water and nutrients is influenced by these conditions and the processes involved. Plant roots are living and functioning in a dynamic environment that is subjected to extreme changes over relatively short time and small distances. In order to better manage our agricultural resources and cope with increasing constraints of water limitation, environmental concerns and climate change, it is vital to understand plants responses to these changes in their environment. We grew chick pea (Cicer arietinum) plants, in boxes of 30 x 25 x 1 cm dimensions filled with fine sand. Layers of coarse sand (1.5 cm thick) were embedded in the fine-sand media to divide the root growth environment into sections that were hydraulically disconnected from each other. This way, each section could be independently treated with differential levels of water and salinity. The root growth and distribution in the soil was monitored on daily bases using neutron radiography. Daily water uptake was measured by weighing the containers. Changes of soil water content in each section of the containers were calculated from the neutron radiographs. Plants that part of their root system was stressed with drought or salinity showed no change in their daily water uptake rate. The roots in the stressed sections stayed turgid during the stress period and looked healthy in the neutron images. However the uptake rate was severely affected when the soil in the non-stressed section started to dry. The plants were then fully irrigated with water and the water uptake rate recovered to its initial rate shortly after irrigation. The neutron radiographs clearly illustrated the shrinkage and recovery of the roots under stress and the subsequent relief. This cycle was repeated a few times and the same trend could be reproduced. Our results show that plants

  8. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    PubMed

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere. PMID:25181478

  9. Agrobacterium tumefaciens responses to plant-derived signaling molecules

    PubMed Central

    Subramoni, Sujatha; Nathoo, Naeem; Klimov, Eugene; Yuan, Ze-Chun

    2014-01-01

    As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium–plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perceives plant-derived signals to activate its virulence genes, which are responsible for transferring and integrating its Transferred DNA (T-DNA) from its Tumor-inducing (Ti) plasmid into the plant nucleus. The expression of T-DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA), cytokinin (CK), and opines. IAA and CK stimulate plant growth, resulting in tumor formation. Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its quorum sensing (QS) to further promote virulence and opine metabolism. Intriguingly, Agrobacterium also recognizes plant-derived signals including γ-amino butyric acid and salicylic acid (SA) to activate quorum quenching that reduces the level of QS signals, thereby avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium hijacks plant-derived signals including SA, IAA, and ethylene to down-regulate its virulence genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays) also inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of Agrobacterium to major plant-derived signals that impact Agrobacterium–plant interactions. PMID:25071805

  10. Habitats as Complex Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation?

    PubMed Central

    Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2014-01-01

    Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. PMID:24416354

  11. Pretreatment with nitrogen dioxide modifies plant response to ozone

    NASA Astrophysics Data System (ADS)

    Runeckles, V. C.; Palmer, K.

    Plant growth inhibition by ozone is significantly affected by previous exposure to nitrogen dioxide. Experiments on the early growth of four crop species showed that daily pretreatment with NO 2 (0.08-0.10 ppm for 3 h) immediately prior to exposure to O 3 (0.08-0.10 ppm for 6 h) increased the inhibition of radish and wheat growth, decreased the inhibition of bush bean growth, but had no effect on the growth of mint. The magnitudes of the interactive effects indicate that in regions where relatively high concentrations of O 3 are produced by photochemical processes, for example, downwind from urban centres, assessments of the impact of O 3 on vegetation based on knowledge of response to O 3 alone may be seriously flawed.

  12. Physical Effort Affects Heatstroke Thermoregulatory Response and Mortality in Rats.

    PubMed

    Geng, Yan; Peng, Na; Liu, Ya-Nan; Li, Xing-Gui; Li, Bing-Lin; Peng, Li-Qiong; Ma, Qiang; Su, Lei

    2015-08-01

    Animals suffering from heatstroke (HS) after physical effort may have different heat-related core temperature (Tc) responses compared with passive HS. In the present study, conscious and unrestrained rats were exposed to ambient temperature (Ta) of 39.5°C ± 0.2°C with or without running (run-heated or rest-heated, respectively) until HS onset, which was defined as the systolic blood pressure starting to drop. In comparison with rest-heated rats, run-heated rats had a significantly shorter latency of HS onset. Physical effort did not have significant influence on hyperthermia severity (43.3°C ± 0.2°C at rest-heated, and 43.4°C ± 0.2°C at run-heated), but it could significantly decrease the thermal load to develop HS (315.1°C ± 37.3°C·min for rest-heated, and 133.5 ± 21.4 °C·min for run-heated). Working component during heat exposure may contribute to a decreased survival rate of HS (46.9% at rest-heated and 31.3% at run-heated). Impaired heat dissipation during recovery may be responsible for relative poor survival of run-heated rats. In both groups, survival was affected by Tc at HS onset and thermal area. Hypothermia (Tc <35°C) developed after HS onset, with no significant difference in Tc,min between the rest-heated and run-heated groups. These thermoregulatory responses to HS after physical effort may provide insight into HS pathophysiology. PMID:26009815

  13. Inflight exercise affects stand test responses after space flight

    NASA Technical Reports Server (NTRS)

    Lee, S. M.; Moore, A. D. Jr; Fritsch-Yelle, J. M.; Greenisen, M. C.; Schneider, S. M.

    1999-01-01

    PURPOSE: The purpose of this study was to determine whether exercise performed by Space Shuttle crew members during short-duration space flights (9-16 d) affects the heart rate (HR) and blood pressure (BP) responses to standing within 2-4 h of landing. METHODS: Thirty crew members performed self-selected inflight exercise and maintained exercise logs to monitor their exercise intensity and duration. Two subjects participated in this investigation during two different flights. A 10-min stand test, preceded by at least 6 min of quiet supine rest, was completed 10-15 d before launch (PRE) and within 4 h of landing (POST). Based upon their inflight exercise records, subjects were grouped as either high (HIex: > or = 3 times/week, HR > or = 70% HRmax, > or = 20 min/session, N = 11), medium (MEDex: > or = 3 times/week, HR < 70% HRmax, > or = 20 min/session, N = 10), or low (LOex: < or = 3 times/week, HR and duration variable, N = 11) exercisers. HR and BP responses to standing were compared between groups (ANOVA, P < or = 0.05). RESULTS: There were no PRE differences between the groups in supine or standing HR and BP. Although POST supine HR was similar to PRE, all groups had an increased standing HR compared with PRE. The increase in HR upon standing was significantly greater after flight in the LOex group (36 +/- 5 bpm) compared with HIex or MEDex groups (25 +/- 1 bpm; 22 +/- 2 bpm). Similarly, the decrease in pulse pressure (PP) from supine to standing was unchanged after space flight in the MEDex and HIex groups but was significantly greater in the LOex group (PRE: -9 +/- 3; POST: -19 +/- 4 mm Hg). CONCLUSIONS: Thus, moderate to high levels of inflight exercise attenuated HR and PP responses to standing after space flight.

  14. Boron deficiency in woody plants: various responses and tolerance mechanisms

    PubMed Central

    Wang, Nannan; Yang, Chengquan; Pan, Zhiyong; Liu, Yongzhong; Peng, Shu’ang

    2015-01-01

    Boron (B) is an essential microelement for higher plants, and its deficiency is widespread around the world and constrains the productivity of both agriculture and forestry. In the last two decades, numerous studies on model or herbaceous plants have contributed greatly to our understanding of the complex network of B-deficiency responses and mechanisms for tolerance. In woody plants, however, fewer studies have been conducted and they have not well been recently synthesized or related to the findings on model species on B transporters. Trees have a larger body size, longer lifespan and more B reserves than do herbaceous plants, indicating that woody species might undergo long-term or mild B deficiency more commonly and that regulation of B reserves helps trees cope with B deficiency. In addition, the highly heterozygous genetic background of tree species suggests that they may have more complex mechanisms of response and tolerance to B deficiency than do model plants. Boron-deficient trees usually exhibit two key visible symptoms: depression of growing points (root tip, bud, flower, and young leaf) and deformity of organs (root, shoot, leaf, and fruit). These symptoms may be ascribed to B functioning in the cell wall and membrane, and particularly to damage to vascular tissues and the suppression of both B and water transport. Boron deficiency also affects metabolic processes such as decreased leaf photosynthesis, and increased lignin and phenol content in trees. These negative effects will influence the quality and quantity of wood, fruit and other agricultural products. Boron efficiency probably originates from a combined effect of three processes: B uptake, B translocation and retranslocation, and B utilization. Root morphology and mycorrhiza can affect the B uptake efficiency of trees. During B translocation from the root to shoot, differences in B concentration between root cell sap and xylem exudate, as well as water use efficiency, may play key roles in

  15. Boron deficiency in woody plants: various responses and tolerance mechanisms.

    PubMed

    Wang, Nannan; Yang, Chengquan; Pan, Zhiyong; Liu, Yongzhong; Peng, Shu'ang

    2015-01-01

    Boron (B) is an essential microelement for higher plants, and its deficiency is widespread around the world and constrains the productivity of both agriculture and forestry. In the last two decades, numerous studies on model or herbaceous plants have contributed greatly to our understanding of the complex network of B-deficiency responses and mechanisms for tolerance. In woody plants, however, fewer studies have been conducted and they have not well been recently synthesized or related to the findings on model species on B transporters. Trees have a larger body size, longer lifespan and more B reserves than do herbaceous plants, indicating that woody species might undergo long-term or mild B deficiency more commonly and that regulation of B reserves helps trees cope with B deficiency. In addition, the highly heterozygous genetic background of tree species suggests that they may have more complex mechanisms of response and tolerance to B deficiency than do model plants. Boron-deficient trees usually exhibit two key visible symptoms: depression of growing points (root tip, bud, flower, and young leaf) and deformity of organs (root, shoot, leaf, and fruit). These symptoms may be ascribed to B functioning in the cell wall and membrane, and particularly to damage to vascular tissues and the suppression of both B and water transport. Boron deficiency also affects metabolic processes such as decreased leaf photosynthesis, and increased lignin and phenol content in trees. These negative effects will influence the quality and quantity of wood, fruit and other agricultural products. Boron efficiency probably originates from a combined effect of three processes: B uptake, B translocation and retranslocation, and B utilization. Root morphology and mycorrhiza can affect the B uptake efficiency of trees. During B translocation from the root to shoot, differences in B concentration between root cell sap and xylem exudate, as well as water use efficiency, may play key roles in

  16. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2012-01-17

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  17. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2013-10-15

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  18. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory.

    PubMed

    Nguyen, Duy; Rieu, Ivo; Mariani, Celestina; van Dam, Nicole M

    2016-08-01

    Adaptive plant responses to specific abiotic stresses or biotic agents are fine-tuned by a network of hormonal signaling cascades, including abscisic acid (ABA), ethylene, jasmonic acid (JA) and salicylic acid. Moreover, hormonal cross-talk modulates plant responses to abiotic stresses and defenses against insect herbivores when they occur simultaneously. How such interactions affect plant responses under multiple stresses, however, is less understood, even though this may frequently occur in natural environments. Here, we review our current knowledge on how hormonal signaling regulates abiotic stress responses and defenses against insects, and discuss the few recent studies that attempted to dissect hormonal interactions occurring under simultaneous abiotic stress and herbivory. Based on this we hypothesize that drought stress enhances insect resistance due to synergistic interactions between JA and ABA signaling. Responses to flooding or waterlogging involve ethylene signaling, which likely reduces plant resistance to chewing herbivores due to its negative cross-talk with JA. However, the outcome of interactions between biotic and abiotic stress signaling is often plant and/or insect species-dependent and cannot simply be predicted based on general knowledge on the involvement of signaling pathways in single stress responses. More experimental data on non-model plant and insect species are needed to reveal general patterns and better understand the molecular mechanisms allowing plants to optimize their responses in complex environments. PMID:27095445

  19. A Fungal Endosymbiont Affects Host Plant Recruitment Through Seed- and Litter-mediated Mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. Many grass species are associated with maternally transmitted fungal endophytes. Increasing evidence shows that endophytes enhance host plant success under varied conditions, yet studies have rarely considered alternative mechanisms whereby these mutualistic symbionts may affect regeneration from...

  20. Reassessment of selected factors affecting siting of Nuclear Power Plants

    SciTech Connect

    Davis, R.E.; Hanson, A.L.; Mubayi, V.; Nourbakhsh, H.P.

    1997-02-01

    Brookhaven National Laboratory has performed a series of probabilistic consequence assessment calculations for nuclear reactor siting. This study takes into account recent insights into severe accident source terms and examines consequences in a risk based format consistent with the quantitative health objectives (QHOs) of the NRC`s Safety Goal Policy. Simplified severe accident source terms developed in this study are based on the risk insights of NUREG-1150. The results of the study indicate that both the quantity of radioactivity released in a severe accident as well as the likelihood of a release are lower than those predicted in earlier studies. The accident risks using the simplified source terms are examined at a series of generic plant sites, that vary in population distribution, meteorological conditions, and exclusion area boundary distances. Sensitivity calculations are performed to evaluate the effects of emergency protective action assumptions on the risk of prompt fatality and latent cancers fatality, and population relocation. The study finds that based on the new source terms the prompt and latent fatality risks at all generic sites meet the QHOs of the NRC`s Safety Goal Policy by margins ranging from one to more than three orders of magnitude. 4 refs., 17 figs., 24 tabs.

  1. Delayed light emission and fluorescence responses of plants to chilling

    SciTech Connect

    Abbott, J.A.; Campbell, T.A.; Massie, D.R. . Agricultural Research Service)

    1994-01-01

    Delayed light emission (DLE) of chlorophyll has the same excitation and emission spectra as chlorophyll fluorescence and was formerly called delayed fluorescence. DLE has a much longer time response than true chlorophyll fluorescence and is detectable for times ranging from milliseconds to many minutes. DLE is induced by back reactions of the photosynthetic pathway and therefore requires functional chloroplasts. It is detectable only in the dark following light excitation, yields very low energy, and decays very rapidly. DLE repetitively excited over time, which they term refreshed DLE (RDLE), shows a shoulder and broad peak in the measurements, indicating participation of at least two energy pools. DLE is altered by physiological stresses that affect chloroplasts or photosynthesis, and as illustration, plant species known to be very susceptible or very tolerant to chilling were exposed to chilling temperatures for varying times. RDLE at 0.3 s (the initial shoulder on the curves) rose in response to chilling damage in the susceptible species. The major RDLE peak was greatly inhibited in the susceptible species and showed only small changes in the tolerant species. Fluorescence measurements made on the chilling-tolerant species indicated similar responses and similar coefficients of determination were derived. These results indicate that measurement of precisely timed delayed light emission or of refreshed delayed light emission at a less precisely controlled time can be used to detect chilling stress.

  2. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    PubMed

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. PMID:26147312

  3. Responses of Two Invasive Plants Under Various Microclimate Conditions in the Seoul Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Song, Uhram; Mun, Saeromi; Ho, Chang-Hoi; Lee, Eun Ju

    2012-06-01

    The possible consequences of global warming on plant communities and ecosystems have wide-ranging ramifications. We examined how environmental change affects plant growth as a function of the variations in the microclimate along an urban-suburban climate gradient for two allergy-inducing, invasive plants, Humulus japonicus and Ambrosia artemisiifolia var. elatior. The environmental factors and plant growth responses were measured at two urban sites (Gangbuk and Seongbuk) and two suburban sites (Goyang and Incheon) around Seoul, South Korea. The mean temperatures and CO2 concentrations differed significantly between the urban (14.8 °C and 439 ppm CO2) and suburban (13.0 °C and 427 ppm CO2) sites. The soil moisture and nitrogen contents of the suburban sites were higher than those at the urban sites, especially for the Goyang site. The two invasive plants showed significantly higher biomasses and nitrogen contents at the two urban sites. We conducted experiments in a greenhouse to confirm the responses of the plants to increased temperatures, and we found consistently higher growth rates under conditions of higher temperatures. Because we controlled the other factors, the better performance of the two invasive plants appears to be primarily attributable to their responses to temperature. Our study demonstrates that even small temperature changes in the environment can confer significant competitive advantages to invasive species. As habitats become urbanized and warmer, these invasive plants should be able to displace native species, which will adversely affect people living in these areas.

  4. Responses of two invasive plants under various microclimate conditions in the Seoul metropolitan region.

    PubMed

    Song, Uhram; Mun, Saeromi; Ho, Chang-Hoi; Lee, Eun Ju

    2012-06-01

    The possible consequences of global warming on plant communities and ecosystems have wide-ranging ramifications. We examined how environmental change affects plant growth as a function of the variations in the microclimate along an urban-suburban climate gradient for two allergy-inducing, invasive plants, Humulus japonicus and Ambrosia artemisiifolia var. elatior. The environmental factors and plant growth responses were measured at two urban sites (Gangbuk and Seongbuk) and two suburban sites (Goyang and Incheon) around Seoul, South Korea. The mean temperatures and CO(2) concentrations differed significantly between the urban (14.8 °C and 439 ppm CO(2)) and suburban (13.0 °C and 427 ppm CO(2)) sites. The soil moisture and nitrogen contents of the suburban sites were higher than those at the urban sites, especially for the Goyang site. The two invasive plants showed significantly higher biomasses and nitrogen contents at the two urban sites. We conducted experiments in a greenhouse to confirm the responses of the plants to increased temperatures, and we found consistently higher growth rates under conditions of higher temperatures. Because we controlled the other factors, the better performance of the two invasive plants appears to be primarily attributable to their responses to temperature. Our study demonstrates that even small temperature changes in the environment can confer significant competitive advantages to invasive species. As habitats become urbanized and warmer, these invasive plants should be able to displace native species, which will adversely affect people living in these areas. PMID:22484518

  5. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  6. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  7. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  8. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  9. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  10. Nitrogen and water affect direct and indirect plant systemic induced defense in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the affects of nitrogen levels and water availability on the ability of cotton plants to deter feeding by Spodoptera exigua larvae through induction of anti-feedant chemicals by the cotton plant, and to attract the biological control agent, Micropitis crociepes through induction of chemica...

  11. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance.

    PubMed

    Murrell, Ebony G; Cullen, Eileen M

    2014-10-01

    Few studies compare how different soil fertilization practices affect plant mineral content and insect performance in organic systems. This study examined: 1) The European corn borer, Ostrinia nubilalis (Hübner), larval response on corn (Zea mays L.) grown in field soils with different soil management histories; and 2) resilience of these plants to O. nubilalis herbivory. Treatments included: 1) standard organic--organically managed soil fertilized with dairy manure and 2 yr of alfalfa (Medicago sativa L.) in the rotation; 2) basic cation saturation ratio--organically managed soil fertilized with dairy manure and alfalfa nitrogen credits, plus addition of gypsum (CaSO4·2H2O) according to the soil balance hypothesis; and 3) conventional--conventionally managed soil fertilized with synthetic fertilizers. Corn plants were reared to maturity in a greenhouse, and then infested with 0-40 O. nubilalis larvae for 17 d. O. nubilalis exhibited negative competitive response to increasing larval densities. Mean development time was significantly faster for larvae consuming basic cation saturation ratio plants than those on standard organic plants, with intermediate development time on conventional plants. Neither total yield (number of kernels) nor proportion kernels damaged differed among soil fertility treatments. Soil nutrients differed significantly in S and in Ca:Mg and Ca:K ratios, but principal components analysis of plant tissue samples taken before O. nubilalis infestation showed that S, Fe, and Cu contributed most to differences in plant nutrient profiles among soil fertility treatments. Results demonstrate that different fertilization regimens can significantly affect insect performance within the context of organic systems, but the effects in this study were relatively minor compared with effects of intraspecific competition. PMID:25203485

  12. Caspases in plants: metacaspase gene family in plant stress responses.

    PubMed

    Fagundes, David; Bohn, Bianca; Cabreira, Caroline; Leipelt, Fábio; Dias, Nathalia; Bodanese-Zanettini, Maria H; Cagliari, Alexandro

    2015-11-01

    Programmed cell death (PCD) is an ordered cell suicide that removes unwanted or damaged cells, playing a role in defense to environmental stresses and pathogen invasion. PCD is component of the life cycle of plants, occurring throughout development from embryogenesis to the death. Metacaspases are cysteine proteases present in plants, fungi, and protists. In certain plant-pathogen interactions, the PCD seems to be mediated by metacaspases. We adopted a comparative genomic approach to identify genes coding for the metacaspases in Viridiplantae. We observed that the metacaspase was divided into types I and II, based on their protein structure. The type I has a metacaspase domain at the C-terminus region, presenting or not a zinc finger motif in the N-terminus region and a prodomain rich in proline. Metacaspase type II does not feature the prodomain and the zinc finger, but has a linker between caspase-like catalytic domains of 20 kDa (p20) and 10 kDa (p10). A high conservation was observed in the zinc finger domain (type I proteins) and in p20 and p10 subunits (types I and II proteins). The phylogeny showed that the metacaspases are divided into three principal groups: type I with and without zinc finger domain and type II metacaspases. The algae and moss are presented as outgroup, suggesting that these three classes of metacaspases originated in the early stages of Viridiplantae, being the absence of the zinc finger domain the ancient condition. The study of metacaspase can clarify their assignment and involvement in plant PCD mechanisms. PMID:26277721

  13. The Influence of Familiarity on Affective Responses to Natural Scenes

    NASA Astrophysics Data System (ADS)

    Sanabria Z., Jorge C.; Cho, Youngil; Yamanaka, Toshimasa

    This kansei study explored how familiarity with image-word combinations influences affective states. Stimuli were obtained from Japanese print advertisements (ads), and consisted of images (e.g., natural-scene backgrounds) and their corresponding headlines (advertising copy). Initially, a group of subjects evaluated their level of familiarity with images and headlines independently, and stimuli were filtered based on the results. In the main experiment, a different group of subjects rated their pleasure and arousal to, and familiarity with, image-headline combinations. The Self-Assessment Manikin (SAM) scale was used to evaluate pleasure and arousal, and a bipolar scale was used to evaluate familiarity. The results showed a high correlation between familiarity and pleasure, but low correlation between familiarity and arousal. The characteristics of the stimuli, and their effect on the variables of pleasure, arousal and familiarity, were explored through ANOVA. It is suggested that, in the case of natural-scene ads, familiarity with image-headline combinations may increase the pleasure response to the ads, and that certain components in the images (e.g., water) may increase arousal levels.

  14. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses.

    PubMed

    Wang, Zhenyu; Zhao, Xiuyang; Wang, Bing; Liu, Erlong; Chen, Ni; Zhang, Wei; Liu, Heng

    2016-04-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. PMID:26923071

  15. Mycorrhizal response trades off with plant growth rate and increases with plant successional status.

    PubMed

    Koziol, Liz; Bever, James D

    2015-07-01

    Early-successional plant species invest in rapid growth and reproduction in contrast to slow growing late-successional species. We test the consistency of "trade-offs between plant life history and responsiveness on arbuscular mycorrhizal fungi. We selected four very early-, seven early-, 11 middle-, and eight late-successional plant species from six different families and functional groups and grew them with and without a mixed fungal inoculum and compared root architecture, mycorrhizal responsiveness, and plant growth rate. Our results indicate mycorrhizal responsiveness increases with plant successional stage and that this effect explains more variation in mycorrhizal response than is explained by phylogenetic relatedness. The mycorrhizal responsiveness of individual plant species was positively correlated with mycorrhizal root infection and negatively correlated with average plant mass and the number of root tips per unit mass, indicating that both plant growth rate and root architecture trade off with investment in mycorrhizal mutualisms. Because late-successional plants are very responsive to mycorrhizal fungi, our results suggest that fungal community dynamics may be an important driver of plant succession. PMID:26378299

  16. The response of an egg parasitoid to substrate-borne semiochemicals is affected by previous experience

    PubMed Central

    Peri, Ezio; Salerno, Gianandrea; Slimani, Takoua; Frati, Francesca; Conti, Eric; Colazza, Stefano; Cusumano, Antonino

    2016-01-01

    Animals can adjust their behaviour according to previous experience gained during foraging. In parasitoids, experience plays a key role in host location, a hierarchical process in which air-borne and substrate-borne semiochemicals are used to find hosts. In nature, chemical traces deposited by herbivore hosts when walking on the plant are adsorbed by leaf surfaces and perceived as substrate-borne semiochemicals by parasitoids. Chemical traces left on cabbage leaves by adults of the harlequin bug (Murgantia histrionica) induce an innate arrestment response in the egg parasitoid Trissolcus brochymenae characterized by an intense searching behaviour on host-contaminated areas. Here we investigated whether the T. brochymenae response to host walking traces left on leaf surfaces is affected by previous experience in the context of parasitoid foraging behaviour. We found that: 1) an unrewarded experience (successive encounters with host-contaminated areas without successful oviposition) decreased the intensity of the parasitoid response; 2) a rewarded experience (successful oviposition) acted as a reinforcing stimulus; 3) the elapsed time between two consecutive unrewarded events affected the parasitoid response in a host-gender specific manner. The ecological role of these results to the host location process of egg parasitoids is discussed. PMID:27250870

  17. The response of an egg parasitoid to substrate-borne semiochemicals is affected by previous experience.

    PubMed

    Peri, Ezio; Salerno, Gianandrea; Slimani, Takoua; Frati, Francesca; Conti, Eric; Colazza, Stefano; Cusumano, Antonino

    2016-01-01

    Animals can adjust their behaviour according to previous experience gained during foraging. In parasitoids, experience plays a key role in host location, a hierarchical process in which air-borne and substrate-borne semiochemicals are used to find hosts. In nature, chemical traces deposited by herbivore hosts when walking on the plant are adsorbed by leaf surfaces and perceived as substrate-borne semiochemicals by parasitoids. Chemical traces left on cabbage leaves by adults of the harlequin bug (Murgantia histrionica) induce an innate arrestment response in the egg parasitoid Trissolcus brochymenae characterized by an intense searching behaviour on host-contaminated areas. Here we investigated whether the T. brochymenae response to host walking traces left on leaf surfaces is affected by previous experience in the context of parasitoid foraging behaviour. We found that: 1) an unrewarded experience (successive encounters with host-contaminated areas without successful oviposition) decreased the intensity of the parasitoid response; 2) a rewarded experience (successful oviposition) acted as a reinforcing stimulus; 3) the elapsed time between two consecutive unrewarded events affected the parasitoid response in a host-gender specific manner. The ecological role of these results to the host location process of egg parasitoids is discussed. PMID:27250870

  18. Enzyme Action in the Regulation of Plant Hormone Responses*

    PubMed Central

    Westfall, Corey S.; Muehler, Ashley M.; Jez, Joseph M.

    2013-01-01

    Plants synthesize a chemically diverse range of hormones that regulate growth, development, and responses to environmental stresses. The major classes of plant hormones are specialized metabolites with exquisitely tailored perception and signaling systems, but equally important are the enzymes that control the dose and exposure to the bioactive forms of these molecules. Here, we review new insights into the role of enzyme families, including the SABATH methyltransferases, the methylesterases, the GH3 acyl acid-amido synthetases, and the hormone peptidyl hydrolases, in controlling the biosynthesis and modifications of plant hormones and how these enzymes contribute to the network of chemical signals responsible for plant growth, development, and environmental adaptation. PMID:23709222

  19. Glycogen catabolism, but not its biosynthesis, affects virulence of Fusarium oxysporum on the plant host.

    PubMed

    Corral-Ramos, Cristina; Roncero, M Isabel G

    2015-04-01

    The role of glycogen metabolism was investigated in the fungal pathogen Fusarium oxysporum. Targeted inactivation was performed of genes responsible for glycogen biosynthesis: gnn1 encoding glycogenin, gls1 encoding glycogen synthase, and gbe1 encoding glycogen branching enzyme. Moreover genes involved in glycogen catabolism were deleted: gph1 encoding glycogen phosphorylase and gdb1 encoding glycogen de-branching enzyme. Glycogen reserves increased steadily during growth of the wild type strain in axenic cultures, to reach up to 1500μg glucose equivalents mg(-1) protein after 14 days. Glycogen accumulation was abolished in mutants lacking biosynthesis genes, whereas it increased by 20-40% or 80%, respectively, in the single and double mutants affected in catabolic genes. Transcript levels of glycogen metabolism genes during tomato plant infection peaked at four days post inoculation, similar to the results observed during axenic culture. Significant differences were observed between gdb mutants and the wild type strain for vegetative hyphal fusion ability. The single mutants defective in glycogen metabolism showed similar levels of virulence in the invertebrate animal model Galleria mellonella. Interestingly, the deletion of gdb1 reduced virulence on the plant host up to 40% compared to the wild type in single and in double mutant backgrounds, whereas the other mutants showed the virulence at the wild-type level. PMID:25865793

  20. Lipid signalling in plant responses to abiotic stress.

    PubMed

    Hou, Quancan; Ufer, Guido; Bartels, Dorothea

    2016-05-01

    Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades. PMID:26510494

  1. Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit* #

    PubMed Central

    Cheng, Lin; Sun, Rong-rong; Wang, Fei-yan; Peng, Zhen; Kong, Fu-ling; Wu, Jian; Cao, Jia-shu; Lu, Gang

    2012-01-01

    Objective: High temperature adversely affects quality and yield of tomato fruit. Polyamine can alleviate heat injury in plants. This study is aimed to investigate the effects of polyamine and high temperature on transcriptional profiles in ripening tomato fruit. Methods: An Affymetrix tomato microarray was used to evaluate changes in gene expression in response to exogenous spermidine (Spd, 1 mmol/L) and high temperature (33/27 °C) treatments in tomato fruits at mature green stage. Results: Of the 10 101 tomato probe sets represented on the array, 127 loci were differentially expressed in high temperature-treated fruits, compared with those under normal conditions, functionally characterized by their involvement in signal transduction, defense responses, oxidation reduction, and hormone responses. However, only 34 genes were up-regulated in Spd-treated fruits as compared with non-treated fruits, which were involved in primary metabolism, signal transduction, hormone responses, transcription factors, and stress responses. Meanwhile, 55 genes involved in energy metabolism, cell wall metabolism, and photosynthesis were down-regulated in Spd-treated fruits. Conclusions: Our results demonstrated that Spd might play an important role in regulation of tomato fruit response to high temperature during ripening stage. PMID:22467370

  2. Memory of plant communications for priming anti-herbivore responses

    PubMed Central

    Ali, Mohamed; Sugimoto, Koichi; Ramadan, Abdelaziz; Arimura, Gen-ichiro

    2013-01-01

    The emission of a specific blend of volatiles in response to Mythimna separata (herbivore-induced plant volatiles, HIPVs) plays a great ecological role by priming neighbouring plants. Maize plants placed downwind of infested, conspecific plants showed reduced larval development not only immediately after exposure to HIPVs but also when receiver plants were tested after a time lag of up to 5 days, compared to those exposed to volatiles from uninfested plants and tested after the same time lag. The molecular basis of this plant memory was, in part, the similarly recalled expression of a Bowman-Birk type trypsin inhibitor (TI) gene, in a jasmonic acid induction-independent manner. Moreover, in the promoter region of TI, a suite of methylation sites was found to be demethylated by the HIPV treatment. These findings provide an innovative mechanism for the epigenetic basis of the memory of HIPV-mediated habituation for plant defence. PMID:23695148

  3. Antioxidant responses of wheat plants under stress

    PubMed Central

    Caverzan, Andréia; Casassola, Alice; Brammer, Sandra Patussi

    2016-01-01

    Abstract Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals. PMID:27007891

  4. Antioxidant responses of wheat plants under stress.

    PubMed

    Caverzan, Andréia; Casassola, Alice; Brammer, Sandra Patussi

    2016-03-01

    Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals. PMID:27007891

  5. Antioxidant responses in soybean and alfalfa plants grown in DDTs contaminated soils: Useful variables for selecting plants for soil phytoremediation?

    PubMed

    Mitton, Francesca M; Ribas Ferreira, Josencler L; Gonzalez, Mariana; Miglioranza, Karina S B; Monserrat, José M

    2016-06-01

    Phytoremediation is a low-cost alternative technology based on the use of plants to remove pollutants from the environment. Persistent organic pollutants such as DDTs with a long half-life in soils are attractive candidates for remediation. This study aimed to determine the potential of antioxidant response use in the evaluation of plants' tolerance for selecting species in phytoremediation purposes. Alfalfa and soybean plants were grown in DDT contaminated soils. After 60days, growth, protein content, antioxidant capacity, GST activity, concentration of proteic and non-proteic thiol groups, chlorophyll content and carotenoid content were measured in plant tissues. Results showed no effect on alfalfa or soybean photosynthetic pigments but different responses in the protein content, antioxidant capacity, GST activity and thiol groups on roots, stems and leaves, indicating that DDTs affected both species. Soybean showed higher susceptibility than alfalfa plants due to the lower antioxidant capacity and GST activity in leaves, in spite of having the lowest DDT accumulation. This study provides new insights into the role of oxidative stress as an important component of the plant's response to DDT exposure. PMID:27155479

  6. Adolescent responses toward a new technology: first associations, information seeking and affective responses to ecogenomics.

    PubMed

    Bos, Mark J W; Koolstra, Cees M; Willems, Jaap T J M

    2009-03-01

    This paper reports on an exploratory study among adolescents (N = 752) who were introduced to the emerging technology of ecogenomics for the first time. An online survey focused on their associations with the term ecogenomics, their planned information seeking behaviors if they were to acquire information about the new technology, and their first affective responses toward ecogenomics after having read some introductory information about it. Adolescents were found to associate ecogenomics most frequently with economy. Although the Internet was the most popular medium to be used in their planned information seeking behaviors, books and science communication professionals were judged as the most trustworthy information sources. After having read the introductory information about ecogenomics most adolescents reported positive affective responses toward the new technology. PMID:19579687

  7. Differential behavioral responses of two plant-parasitic nematodes to biogenic amines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hatching and infective juvenile (J2) behavior in two species of plant-parasitic nematodes, Heterodera glycines and Meloidogyne incognita, were affected by in vitro treatment with the biogenic amines dopamine, octopamine, and serotonin. While the overall responses of each species to amine exposures w...

  8. Widespread seed limitation affects plant density but not population trajectory in the invasive plant Centaurea solstitialis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In some plant populations, the availability of seeds strongly regulates recruitment. However, a scarcity of germination microsites, granivory or density dependent mortality can reduce the number of plants that germinate or survive to flowering. The relative strength of these controls is unknown for ...

  9. Pain Catastrophising Affects Cortical Responses to Viewing Pain in Others

    PubMed Central

    Fallon, Nicholas

    2015-01-01

    Pain catastrophising is an exaggerated cognitive attitude implemented during pain or when thinking about pain. Catastrophising was previously associated with increased pain severity, emotional distress and disability in chronic pain patients, and is also a contributing factor in the development of neuropathic pain. To investigate the neural basis of how pain catastrophising affects pain observed in others, we acquired EEG data in groups of participants with high (High-Cat) or low (Low-Cat) pain catastrophising scores during viewing of pain scenes and graphically matched pictures not depicting imminent pain. The High-Cat group attributed greater pain to both pain and non-pain pictures. Source dipole analysis of event-related potentials during picture viewing revealed activations in the left (PHGL) and right (PHGR) paraphippocampal gyri, rostral anterior (rACC) and posterior cingulate (PCC) cortices. The late source activity (600–1100 ms) in PHGL and PCC was augmented in High-Cat, relative to Low-Cat, participants. Conversely, greater source activity was observed in the Low-Cat group during the mid-latency window (280–450 ms) in the rACC and PCC. Low-Cat subjects demonstrated a significantly stronger correlation between source activity in PCC and pain and arousal ratings in the long latency window, relative to high pain catastrophisers. Results suggest augmented activation of limbic cortex and higher order pain processing cortical regions during the late processing period in high pain catastrophisers viewing both types of pictures. This pattern of cortical activations is consistent with the distorted and magnified cognitive appraisal of pain threats in high pain catastrophisers. In contrast, high pain catastrophising individuals exhibit a diminished response during the mid-latency period when attentional and top-down resources are ascribed to observed pain. PMID:26186545

  10. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission.

    PubMed

    Vucetic, Andja; Dahlin, Iris; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben; Ninkovic, Velemir

    2014-01-01

    Volatile interactions between unattacked plants can lead to changes in their volatile emissions. Exposure of potato plants to onion plant volatiles results in increased emission of 2 terpenoids, (E)-nerolidol and TMTT. We investigated whether this is detectable by the ladybird Coccinella septempunctata. The odor of onion-exposed potato was significantly more attractive to ladybirds than that of unexposed potato. Further, a synthetic blend mimicking the volatile profile of onion-exposed potato was more attractive than a blend mimicking that of unexposed potato. When presented individually, TMTT was attractive to ladybirds whereas (E)-nerolidol was repellent. Volatile exchange between unattacked plants and consequent increased attractiveness for ladybirds may be a mechanism that contributes to the increased abundance of natural enemies in complex plant habitats. PMID:25763628

  11. Plant response to elevated C02

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide (CO2) has two unique properties; physically it absorbs in the infrared (heat) portion of the spectrum, and plays a role in maintaining global surface temperatures; secondly, it is the source of carbon for plant photosynthesis and growth. Recent, rapid anthropogenic increases in CO2 h...

  12. Plant growth responses to polypropylene--biocontainers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of bio-fillers incorporated into polypropylene (PP) on the growth of plants was evaluated. Biocontainers were created by injection molding of PP with 25-40% by weight of Osage orange tree, Paulownia tree, coffee tree wood or dried distillers grain and 5% by weight of maleated polypropy...

  13. Opposing plant community responses to warming with and without herbivores

    PubMed Central

    Post, Eric; Pedersen, Christian

    2008-01-01

    If controls over primary productivity and plant community composition are mainly environmental, as opposed to biological, then global change may result in large-scale alterations in ecosystem structure and function. This view appears to be favored among investigations of plant biomass and community responses to experimental and observed warming. In far northern and arctic ecosystems, such studies predict increasing dominance of woody shrubs with future warming and emphasize the carbon (C)-sequestration potential and consequent atmospheric feedback potential of such responses. In contrast to previous studies, we incorporated natural herbivory by muskoxen and caribou into a 5-year experimental investigation of arctic plant community response to warming. In accordance with other studies, warming increased total community biomass by promoting growth of deciduous shrubs (dwarf birch and gray willow). However, muskoxen and caribou reduced total community biomass response, and responses of birch and willow, to warming by 19%, 46%, and 11%, respectively. Furthermore, under warming alone, the plant community shifted after 5 years away from graminoid-dominated toward dwarf birch-dominated. In contrast, where herbivores grazed, plant community composition on warmed plots did not differ from that on ambient plots after 5 years. These results highlight the potentially important and overlooked influences of vertebrate herbivores on plant community response to warming and emphasize that conservation and management of large herbivores may be an important component of mitigating ecosystem response to climate change. PMID:18719116

  14. Are karrikins involved in plant abiotic stress responses?

    PubMed

    Li, Weiqiang; Tran, Lam-Son Phan

    2015-09-01

    Recent reports have shown that strigolactones play a positive role in plant responses to drought and salt stress through MAX2 (More Axillary Growth 2). Increasing evidence suggests that MAX2 is also involved in karrikin signaling, raising the question whether karrikins play any role in plant adaptation to abiotic stresses. PMID:26255855

  15. Emerging Roles of Strigolactones in Plant Responses to Stress and Development.

    PubMed

    Pandey, Amita; Sharma, Manisha; Pandey, Girdhar K

    2016-01-01

    Our environment constantly undergoes changes either natural or manmade affecting growth and development of all the organisms including plants. Plants are sessile in nature and therefore to counter environmental changes such as light, temperature, nutrient and water availability, pathogen, and many others; plants have evolved intricate signaling mechanisms, composed of multiple components including several plant hormones. Research conducted in the last decade has placed Strigolactones (SLs) in the growing list of plant hormones involved in coping with environmental changes. SLs are carotenoid derivatives functioning as both endogenous and exogenous signaling molecules in response to various environmental cues. Initially, SLs were discovered as compounds that are harmful to plants due to their role as stimulants in seed germination of parasitic plants, a more beneficial role in plant growth and development was uncovered much later. SLs are required for maintaining plant architecture by regulating shoot and root growth in response to various external stimuli including arbuscular mycorrhizal fungi, light, nutrients, and temperature. Moreover, a role for SLs has also been recognized during various abiotic and biotic stress conditions making them suitable target for generating genetically engineered crop plants with improved yield. This review discusses the biosynthesis of SLs and their regulatory and physiological roles in various stress conditions. Understanding of detailed signaling mechanisms of SLs will be an important factor for designing genetically modified crops for overcoming the problem of crop loss under stressful conditions. PMID:27092155

  16. Emerging Roles of Strigolactones in Plant Responses to Stress and Development

    PubMed Central

    Pandey, Amita; Sharma, Manisha; Pandey, Girdhar K.

    2016-01-01

    Our environment constantly undergoes changes either natural or manmade affecting growth and development of all the organisms including plants. Plants are sessile in nature and therefore to counter environmental changes such as light, temperature, nutrient and water availability, pathogen, and many others; plants have evolved intricate signaling mechanisms, composed of multiple components including several plant hormones. Research conducted in the last decade has placed Strigolactones (SLs) in the growing list of plant hormones involved in coping with environmental changes. SLs are carotenoid derivatives functioning as both endogenous and exogenous signaling molecules in response to various environmental cues. Initially, SLs were discovered as compounds that are harmful to plants due to their role as stimulants in seed germination of parasitic plants, a more beneficial role in plant growth and development was uncovered much later. SLs are required for maintaining plant architecture by regulating shoot and root growth in response to various external stimuli including arbuscular mycorrhizal fungi, light, nutrients, and temperature. Moreover, a role for SLs has also been recognized during various abiotic and biotic stress conditions making them suitable target for generating genetically engineered crop plants with improved yield. This review discusses the biosynthesis of SLs and their regulatory and physiological roles in various stress conditions. Understanding of detailed signaling mechanisms of SLs will be an important factor for designing genetically modified crops for overcoming the problem of crop loss under stressful conditions. PMID:27092155

  17. Plant adaptation to low atmospheric pressures: potential molecular responses

    NASA Technical Reports Server (NTRS)

    Ferl, Robert J.; Schuerger, Andrew C.; Paul, Anna-Lisa; Gurley, William B.; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  18. Toward Martian agriculture: responses of plants to hypobaria

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.; Barta, Daniel J.; Wheeler, Raymond M.

    2002-01-01

    The recent surge of interest in human missions to Mars has also generated considerable interest in the responses of plants to hypobaria (reduced atmospheric pressure), particularly among those in the advanced life support community. Potential for in situ resource utilization, challenges in meeting engineering constraints for mass and energy, the prospect of using lightweight plant growth structures on Mars, and the minimal literature on plant responses to low pressure all suggest much needed research in this area. However, the limited literature on hypobaria combined with previous findings on plant responses to atmospheric composition and established principles of mass transfer of gases suggest that some plants will be capable of tolerating and growing at pressures below 20 kPa; and for other species, perhaps as low as 5-10 kPa. In addition, normal and perhaps enhanced growth of many plants will likely occur at reduced partial pressures of oxygen (e.g., 5 kPa). Growth of plants at such low and partial pressures indicates the feasibility of cultivating plants in lightweight, transparent "greenhouses" on the surface of Mars or in other extraterrestrial or extreme environment locations. There are numerous, accessible terrestrial analogs for moderately low pressure ranges, but not for very low and extremely low atmospheric pressures. Research pertaining to very low pressures has been historically restricted to the use of vacuum chambers. Future research prospects, approaches, and priorities for plant growth experiments at low pressure are considered and discussed as they apply to prospects for Martian agriculture.

  19. Global response patterns of terrestrial plant species to nitrogen addition.

    PubMed

    Xia, Jianyang; Wan, Shiqiang

    2008-07-01

    Better understanding of the responses of terrestrial plant species under global nitrogen (N) enrichment is critical for projection of changes in structure, functioning, and service of terrestrial ecosystems. Here, a meta-analysis of data from 304 studies was carried out to reveal the general response patterns of terrestrial plant species to the addition of N. Across 456 terrestrial plant species included in the analysis, biomass and N concentration were increased by 53.6 and 28.5%, respectively, under N enrichment. However, the N responses were dependent upon plant functional types, with significantly greater biomass increases in herbaceous than in woody species. Stimulation of plant biomass by the addition of N was enhanced when other resources were improved. In addition, the N responses of terrestrial plants decreased with increasing latitude and increased with annual precipitation. Dependence of the N responses of terrestrial plants on biological realms, functional types, tissues, other resources, and climatic factors revealed in this study can help to explain changes in species composition, diversity, community structure and ecosystem functioning under global N enrichment. These findings are critical in improving model simulation and projection of terrestrial carbon sequestration and its feedbacks to global climate change, especially when progressive N limitation is taken into consideration. PMID:19086179

  20. Population-related variation in plant defense more strongly affects survival of an herbivore than its solitary parasitoid wasp.

    PubMed

    Harvey, Jeffrey A; Gols, Rieta

    2011-10-01

    The performance of natural enemies, such as parasitoid wasps, is affected by differences in the quality of the host's diet, frequently mediated by species or population-related differences in plant allelochemistry. Here, we compared survival, development time, and body mass in a generalist herbivore, the cabbage moth, Mamestra brassicae, and its solitary endoparasitoid, Microplitis mediator, when reared on two cultivated (CYR and STH) and three wild (KIM, OH, and WIN) populations of cabbage, Brassica oleracea. Plants either were undamaged or induced by feeding of larvae of the cabbage butterfly, Pieris rapae. Development and biomass of M. brassicae and Mi. mediator were similar on both cultivated and one wild cabbage population (KIM), intermediate on the OH population, and significantly lower on the WIN population. Moreover, development was prolonged and biomass was reduced on herbivore-induced plants. However, only the survival of parasitized hosts (and not that of healthy larvae) was affected by induction. Analysis of glucosinolates in leaves of the cabbages revealed higher levels in the wild populations than cultivars, with the highest concentrations in WIN plants. Multivariate statistics revealed a negative correlation between insect performance and total levels of glucosinolates (GS) and levels of 3-butenyl GS. However, GS chemistry could not explain the reduced performance on induced plants since only indole GS concentrations increased in response to herbivory, which did not affect insect performance based on multivariate statistics. This result suggests that, in addition to aliphatic GS, other non-GS chemicals are responsible for the decline in insect performance, and that these chemicals affect the parasitoid more strongly than the host. Remarkably, when developing on WIN plants, the survival of Mi. mediator to adult eclosion was much higher than in its host, M. brassicae. This may be due to the fact that hosts parasitized by Mi. mediator pass through fewer

  1. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field.

    PubMed

    Roux, Fabrice; Mary-Huard, Tristan; Barillot, Elise; Wenes, Estelle; Botran, Lucy; Durand, Stéphanie; Villoutreix, Romain; Martin-Magniette, Marie-Laure; Camilleri, Christine; Budar, Françoise

    2016-03-29

    Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits inArabidopsis thaliana To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics ofA. thaliana. PMID:26979961

  2. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field

    PubMed Central

    Roux, Fabrice; Mary-Huard, Tristan; Barillot, Elise; Wenes, Estelle; Botran, Lucy; Durand, Stéphanie; Villoutreix, Romain; Martin-Magniette, Marie-Laure; Camilleri, Christine; Budar, Françoise

    2016-01-01

    Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits in Arabidopsis thaliana. To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics of A. thaliana. PMID:26979961

  3. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth.

    PubMed

    Besseau, Sébastien; Hoffmann, Laurent; Geoffroy, Pierrette; Lapierre, Catherine; Pollet, Brigitte; Legrand, Michel

    2007-01-01

    In Arabidopsis thaliana, silencing of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT), a lignin biosynthetic gene, results in a strong reduction of plant growth. We show that, in HCT-silenced plants, lignin synthesis repression leads to the redirection of the metabolic flux into flavonoids through chalcone synthase activity. Several flavonol glycosides and acylated anthocyanin were shown to accumulate in higher amounts in silenced plants. By contrast, sinapoylmalate levels were barely affected, suggesting that the synthesis of that phenylpropanoid compound might be HCT-independent. The growth phenotype of HCT-silenced plants was shown to be controlled by light and to depend on chalcone synthase expression. Histochemical analysis of silenced stem tissues demonstrated altered tracheary elements. The level of plant growth reduction of HCT-deficient plants was correlated with the inhibition of auxin transport. Suppression of flavonoid accumulation by chalcone synthase repression in HCT-deficient plants restored normal auxin transport and wild-type plant growth. By contrast, the lignin structure of the plants simultaneously repressed for HCT and chalcone synthase remained as severely altered as in HCT-silenced plants, with a large predominance of nonmethoxylated H units. These data demonstrate that the reduced size phenotype of HCT-silenced plants is not due to the alteration of lignin synthesis but to flavonoid accumulation. PMID:17237352

  4. Time-Varying Affective Response for Humanoid Robots

    NASA Astrophysics Data System (ADS)

    Moshkina, Lilia; Arkin, Ronald C.; Lee, Jamee K.; Jung, Hyunryong

    This paper describes the design of a complex time-varying affective architecture. It is an expansion of the TAME architecture (traits, attitudes, moods, and emotions) as applied to humanoid robotics. It particular it is intended to promote effective human-robot interaction by conveying the robot’s affective state to the user in an easy-to-interpret manner.

  5. Giraffe browsing in response to plant traits

    NASA Astrophysics Data System (ADS)

    Mahenya, Obeid; Ndjamba, Johannes Kambinda; Mathisen, Karen Marie; Skarpe, Christina

    2016-08-01

    Intake rates by large herbivores are governed by among other things plant traits. We used Masai giraffe (Giraffa camelopardalis tippelskirchi Matschie) as study animals, testing whether they as very large browsers would follow the Jarman-Bell principle and maximize intake rate while tolerating low forage quality. We worked in Arusha National Park, Tanzania. We investigated how intake rate was determined by bite mass and bite rate, and show that bite mass and bite rate were determined by plant characteristics, governed by inherent plant traits, plant traits acquired from previous years' browsing, and season. We predicted that; (1) bite mass would be larger in trees without spines than with (2) bite mass would be larger in the wet season than in the dry, (3) bite rate would be higher in spinescent trees than in non-spinescent, (4) bite rate and/or bite mass would increase with previous years' browsing, (5) bite mass, bite rate or browsing time per tree would be highest for high trees with large, although still available canopies. Visual observations were used to collect data on tree attributes, number of bites taken and time of browsing. Sample size was 132 observed giraffe. We found that bite mass was larger in spineless than in spinescent trees and was larger in the wet season than in the dry. Bite rate, but not bite mass, increased with increasing browsing in previous years and was highest on two to three meter high trees and in spinescent trees. Intake rate followed bite mass more than bite rate and was higher in spineless than in spinescent trees, higher in the wet season than in the dry, and tended to increase with tree height. Giraffe did not prioritize the highest intake rate, but browsed much on Acacias giving a high quality diet but a low intake rate.

  6. Affective responses in tamarins elicited by species-specific music.

    PubMed

    Snowdon, Charles T; Teie, David

    2010-02-23

    Theories of music evolution agree that human music has an affective influence on listeners. Tests of non-humans provided little evidence of preferences for human music. However, prosodic features of speech ('motherese') influence affective behaviour of non-verbal infants as well as domestic animals, suggesting that features of music can influence the behaviour of non-human species. We incorporated acoustical characteristics of tamarin affiliation vocalizations and tamarin threat vocalizations into corresponding pieces of music. We compared music composed for tamarins with that composed for humans. Tamarins were generally indifferent to playbacks of human music, but responded with increased arousal to tamarin threat vocalization based music, and with decreased activity and increased calm behaviour to tamarin affective vocalization based music. Affective components in human music may have evolutionary origins in the structure of calls of non-human animals. In addition, animal signals may have evolved to manage the behaviour of listeners by influencing their affective state. PMID:19726444

  7. Scaling plant nitrogen use and uptake efficiencies in response to nutrient addition in peatlands

    SciTech Connect

    Iversen, Colleen M; Bridgham, Scott; Kellogg, Laurie E.

    2010-01-01

    Nitrogen (N) is the primary growth-limiting nutrient in many terrestrial ecosystems, and therefore plant production per unit N taken up (i.e., N use efficiency, NUE) is a fundamentally important component of ecosystem function. Nitrogen use efficiency comprises two components: N productivity (AN, plant production per peak biomass N content) and the mean residence time of N in plant biomass (MRTN). We utilized a five-year fertilization experiment to examine the manner in which increases in N and phosphorus (P) availability affected plant NUE at multiple biological scales (i.e., from leaf to community level). We fertilized a natural gradient of nutrient-limited peatland ecosystems in the Upper Peninsula of Michigan, USA, with 6 g Nm2yr1, 2 g Pm2yr1, or a combination of N and P. Our objectives were to determine how changes in carbon and N allocation within a plant to leaf and woody tissue and changes in species composition within a community, both above- and belowground, would affect (1) NUE; (2) the adaptive trade-off between the components of NUE; (3) the efficiency with which plants acquired N from the soil (N uptake efficiency); and (4) plant community production per unit soil N availability (N response efficiency, NRE). As expected, N and P addition generally increased aboveground production and N uptake. In particular, P availability strongly affected the way in which plants took up and used N. Nitrogen use efficiency response to nutrient addition was not straightforward. Nitrogen use efficiency differed between leaf and woody tissue, among species, and across the ombrotrophic minerotrophic gradient because plants and communities were adapted to maximize either AN or MRTN, but not both concurrently. Increased N availability strongly decreased plant and community N uptake efficiency, while increased P availability increased N uptake efficiency, particularly in a nitrogen-fixing shrub. Nitrogen uptake efficiency was more important in controlling overall plant

  8. Selective Pressure along a Latitudinal Gradient Affects Subindividual Variation in Plants

    PubMed Central

    Sobral, Mar; Guitián, José; Guitián, Pablo; Larrinaga, Asier R.

    2013-01-01

    Individual plants produce repeated structures such as leaves, flowers or fruits, which, although belonging to the same genotype, are not phenotypically identical. Such subindividual variation reflects the potential of individual genotypes to vary with micro-environmental conditions. Furthermore, variation in organ traits imposes costs to foraging animals such as time, energy and increased predation risk. Therefore, animals that interact with plants may respond to this variation and affect plant fitness. Thus, phenotypic variation within an individual plant could be, in part, an adaptive trait. Here we investigated this idea and we found that subindividual variation of fruit size of Crataegus monogyna, in different populations throughout the latitudinal gradient in Europe, was explained at some extent by the selective pressures exerted by seed-dispersing birds. These findings support the hypothesis that within-individual variation in plants is an adaptive trait selected by interacting animals which may have important implications for plant evolution. PMID:24069297

  9. The Critical Role of Potassium in Plant Stress Response

    PubMed Central

    Wang, Min; Zheng, Qingsong; Shen, Qirong; Guo, Shiwei

    2013-01-01

    Agricultural production continues to be constrained by a number of biotic and abiotic factors that can reduce crop yield quantity and quality. Potassium (K) is an essential nutrient that affects most of the biochemical and physiological processes that influence plant growth and metabolism. It also contributes to the survival of plants exposed to various biotic and abiotic stresses. The following review focuses on the emerging role of K in defending against a number of biotic and abiotic stresses, including diseases, pests, drought, salinity, cold and frost and waterlogging. The availability of K and its effects on plant growth, anatomy, morphology and plant metabolism are discussed. The physiological and molecular mechanisms of K function in plant stress resistance are reviewed. This article also evaluates the potential for improving plant stress resistance by modifying K fertilizer inputs and highlights the future needs for research about the role of K in agriculture. PMID:23549270

  10. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands. PMID:27164912

  11. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    PubMed Central

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  12. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci.

    PubMed

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles-especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  13. Brain response to affective pictures in the chimpanzee.

    PubMed

    Hirata, Satoshi; Matsuda, Goh; Ueno, Ari; Fukushima, Hirokata; Fuwa, Koki; Sugama, Keiko; Kusunoki, Kiyo; Tomonaga, Masaki; Hiraki, Kazuo; Hasegawa, Toshikazu

    2013-01-01

    Advancement of non-invasive brain imaging techniques has allowed us to examine details of neural activities involved in affective processing in humans; however, no comparative data are available for chimpanzees, the closest living relatives of humans. In the present study, we measured event-related brain potentials in a fully awake adult chimpanzee as she looked at affective and neutral pictures. The results revealed a differential brain potential appearing 210 ms after presentation of an affective picture, a pattern similar to that in humans. This suggests that at least a part of the affective process is similar between humans and chimpanzees. The results have implications for the evolutionary foundations of emotional phenomena, such as emotional contagion and empathy. PMID:23439389

  14. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    PubMed

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions. PMID:26926999

  15. Protein Contribution to Plant Salinity Response and Tolerance Acquisition

    PubMed Central

    Kosová, Klára; Prášil, Ilja T.; Vítámvás, Pavel

    2013-01-01

    The review is focused on plant proteome response to salinity with respect to physiological aspects of plant salt stress response. The attention is paid to both osmotic and ionic effects of salinity stress on plants with respect to several protein functional groups. Therefore, the role of individual proteins involved in signalling, changes in gene expression, protein biosynthesis and degradation and the resulting changes in protein relative abundance in proteins involved in energy metabolism, redox metabolism, stressand defence-related proteins, osmolyte metabolism, phytohormone, lipid and secondary metabolism, mechanical stress-related proteins as well as protein posttranslational modifications are discussed. Differences between salt-sensitive (glycophytes) and salt-tolerant (halophytes) plants are analysed with respect to differential salinity tolerance. In conclusion, contribution of proteomic studies to understanding plant salinity tolerance is summarised and discussed. PMID:23531537

  16. Aging affects the cardiovascular responses to cold stress in humans

    PubMed Central

    Hess, Kari L.; Wilson, Thad E.; Sauder, Charity L.; Gao, Zhaohui; Ray, Chester A.

    2009-01-01

    Cardiovascular-related mortality peaks during cold winter months, particularly in older adults. Acute physiological responses, such as increases in blood pressure, in response to cold exposure may contribute to these associations. To determine whether the blood pressure-raising effect (pressor response) of non-internal body temperature-reducing cold stress is greater with age, we measured physiological responses to 20 min of superficial skin cooling, via water-perfused suit, in 12 younger [25 ± 1 (SE) yr old] and 12 older (65 ± 2 yr old) adults. We found that superficial skin cooling elicited an increase in blood pressure from resting levels (pressor response; P < 0.05) in younger and older adults. However, the magnitude of this pressor response (systolic and mean blood pressure) was more than twofold higher in older adults (P < 0.05 vs. younger adults). The magnitude of the pressor response was similar at peripheral (brachial) and central (estimated in the aorta) measurement sites. Regression analysis revealed that aortic pulse wave velocity, a measure of central arterial stiffness obtained before cooling, was the best predictor of the increased pressor response to superficial skin cooling in older adults, explaining ∼63% of its variability. These results indicate that there is a greater pressor response to non-internal body temperature-reducing cold stress with age in humans that may be mediated by increased levels of central arterial stiffness. PMID:19679742

  17. Plant transcriptomics and responses to environmental stress: an overview.

    PubMed

    Imadi, Sameen Ruqia; Kazi, Alvina Gul; Ahanger, Mohammad Abass; Gucel, Salih; Ahmad, Parvaiz

    2015-09-01

    Different stresses include nutrient deficiency, pathogen attack, exposure to toxic chemicals etc. Transcriptomic studies have been mainly applied to only a few plant species including the model plant, Arabidopsis thaliana. These studies have provided valuable insights into the genetic networks of plant stress responses. Transcriptomics applied to cash crops including barley, rice, sugarcane, wheat and maize have further helped in understanding physiological and molecular responses in terms of genome sequence, gene regulation, gene differentiation, posttranscriptional modifications and gene splicing. On the other hand, comparative transcriptomics has provided more information about plant's response to diverse stresses. Thus, transcriptomics, together with other biotechnological approaches helps in development of stress tolerance in crops against the climate change. PMID:26440096

  18. Deviation from niche optima affects the nature of plant-plant interactions along a soil acidity gradient.

    PubMed

    He, Lei; Cheng, Lulu; Hu, Liangliang; Tang, Jianjun; Chen, Xin

    2016-01-01

    There is increasing recognition of the importance of niche optima in the shift of plant-plant interactions along environmental stress gradients. Here, we investigate whether deviation from niche optima would affect the outcome of plant-plant interactions along a soil acidity gradient (pH = 3.1, 4.1, 5.5 and 6.1) in a pot experiment. We used the acid-tolerant species Lespedeza formosa Koehne as the neighbouring plant and the acid-tolerant species Indigofera pseudotinctoria Mats. or acid-sensitive species Medicago sativa L. as the target plants. Biomass was used to determine the optimal pH and to calculate the relative interaction index (RII). We found that the relationships between RII and the deviation of soil pH from the target's optimal pH were linear for both target species. Both targets were increasingly promoted by the neighbour as pH values deviated from their optima; neighbours benefitted target plants by promoting soil symbiotic arbuscular mycorrhizal fungi, increasing soil organic matter or reducing soil exchangeable aluminium. Our results suggest that the shape of the curve describing the relationship between soil pH and facilitation/competition depends on the soil pH optima of the particular species. PMID:26740568

  19. Responses to Positive Affect Predict Mood Symptoms in Children under Conditions of Stress: A Prospective Study

    ERIC Educational Resources Information Center

    Bijttebier, Patricia; Raes, Filip; Vasey, Michael W.; Feldman, Gregory C.

    2012-01-01

    Rumination to negative affect has been linked to the onset and maintenance of mood disorders in adults as well as children. Responses to positive affect have received far less attention thus far. A few recent studies in adults suggest that responses to positive affect are involved in the development of both depressive and hypomanic symptoms, but…

  20. Radish (Raphanus sativus) seed size affects germination response to coumarin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibition of seed germination by an allelochemical is generally greater in small seeds than in large seeds. Studies reporting these results used a large number of plant species that varied in seed size, which might have introduced differences in germination characteristics or various parameter...

  1. Enzymatic response of cotton plants to the pathogen, Verticillium dahliae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen infection initiates a set of local and systemic responses in plants. These responses include local oxidative burst, which may lead to death of infected cells, and changes of cell walls composition in neighbouring tissues, and de novo synthesis of antimicrobial compounds (phytoalexins) and P...

  2. The Role of Canonical and Noncanonical Pre-mRNA Splicing in Plant Stress Responses

    PubMed Central

    Dubrovina, A. S.; Kiselev, K. V.; Zhuravlev, Yu. N.

    2013-01-01

    Plants are sessile organisms capable of adapting to various environmental constraints, such as high or low temperatures, drought, soil salinity, or pathogen attack. To survive the unfavorable conditions, plants actively employ pre-mRNA splicing as a mechanism to regulate expression of stress-responsive genes and reprogram intracellular regulatory networks. There is a growing evidence that various stresses strongly affect the frequency and diversity of alternative splicing events in the stress-responsive genes and lead to an increased accumulation of mRNAs containing premature stop codons, which in turn have an impact on plant stress response. A number of studies revealed that some mRNAs involved in plant stress response are spliced counter to the traditional conception of alternative splicing. Such noncanonical mRNA splicing events include trans-splicing, intraexonic deletions, or variations affecting multiple exons and often require short direct repeats to occur. The noncanonical alternative splicing, along with common splicing events, targets the spliced transcripts to degradation through nonsense-mediated mRNA decay or leads to translation of truncated proteins. Investigation of the diversity, biological consequences, and mechanisms of the canonical and noncanonical alternative splicing events will help one to identify those transcripts which are promising for using in genetic engineering and selection of stress-tolerant plants. PMID:23509698

  3. Planting geometry and plant population affect dryland maize grain yield and harvest index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water for dryland grain production in the Texas panhandle is limited. Agronomic practices such as reduction in plant population or change in sowing time may help increase maize (Zea mays L.) yield potential. Tiller formation under dryland conditions leads to more vegetative growth and reduced yield....

  4. A model of plant canopy polarization response

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.

    1980-01-01

    Sensors to remotely measure the linear polarization of ground scenes have been proposed for the Multispectral Resource Sampler (MRS), a satellite sensor system proposed to complement the Thematic Mapper. At present justification for a sensor on MRS to measure scene polarization is limited. This paper discusses a model for the amount of linearly polarized light reflected by the shiny leaves of such crops as wheat, corn, and sorghum. The theory demonstrates that, potentially, measurements of the linearly polarized light from a crop canopy may be used as an additional feature to discriminate between crops. Examination of the model suggests that, potentially, satellite polarization measurements may be used to monitor crop development stage, leaf water content, leaf area index, hail damage, and certain plant diseases. The model adds to the understanding of the potential information content of scene polarization measurements acquired by future satellite sensor systems such as MRS.

  5. Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill.

    PubMed

    Murillo, J M; Marañón, T; Cabrera, F; López, R

    1999-12-01

    The collapse of a pyrite-mining, tailing dam on 25 April 1998 contaminated approximately 2000 ha of croplands along the Agrio and Guadiamar river valleys in southern Spain. This paper reports the accumulation of chemical elements in soil and in two crops--sunflower and sorghum--affected by the spill. Total concentrations of As, Bi, Cd, Cu, Mn, Pb, Sb, Tl and Zn in spill-affected soils were greater than in adjacent, unaffected soils. Leaves of spill-affected crop plants had higher nutrient (K, Ca and Mg for sunflower and N and K for sorghum) concentrations than controls, indicating a 'fertilising' effect caused by the sludge. Seeds of spill-affected sunflower plants did accumulate more As, Cd, Cu and Zn than controls, but values were below toxic levels. Leaves of sorghum plants accumulated more As, Bi, Cd, Mn, Pb, Tl and Zn than controls, but these values were also below toxic levels for livestock consumption. In general, none of the heavy metals studied in both crops reached either phytotoxic or toxic levels for humans or livestock. Nevertheless, a continuous monitoring of heavy metal accumulation in soil and plants must be established in the spill-affected area. PMID:10635586

  6. Savannah River Plant emergency response: Environmental transport and assessment

    SciTech Connect

    Addis, R.P.

    1988-01-01

    The ability to evaluate rapidly the possible consequences of inadvertent releases of hazardous pollutants to the environment is vital for the safe operation of most industrial plants. The Savannah River Plant has developed an emergency response system which integrates environmental observations and computer predictions to provide relevant, reliable, and timely information to decision makers. Experience has shown that the interdependence of all components of an emergency response system requires that the system must be well integrated and coordinated. Research and development is an integral component of the Emergency Response Program. It is designed to increase knowledge of environmental transport and diffusion, and to develop technologies to improve the emergency response system. This paper describes the SRP emergency response system, discusses the importance of reliability through system integration, and indicates the role played by research and development in maintaining a vital emergency response system. 10 refs., 7 figs.

  7. Factors affecting response of surface waters to acidic deposition

    SciTech Connect

    Turner, R.S.; Johnson, D.W.; Elwood, J.W.; Van Winkle, W.; Clapp, R.B.; Reuss, J.O.

    1986-04-01

    Knowledge of watershed hydrology and of the biogeochemical reactions and elemental pools and fluxes occurring in watersheds can be used to classify the response of watersheds and surface waters to acidic deposition. A conceptual mosel is presented for classifying watersheds into those for which (1) surface water chemistry will change rapidly with deposition quality (direct response) (2) surface water chemistry will change only slowly over time (delayed response), and (3) surface water chemistry will not change significantly, even with continued acidic deposition (capacity-protected). Techniques and data available for classification of all watersheds in a region into these categories are discussed.

  8. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra.

    PubMed

    Khaling, Eliezer; Papazian, Stefano; Poelman, Erik H; Holopainen, Jarmo K; Albrectsen, Benedicte R; Blande, James D

    2015-04-01

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools. PMID:25645061

  9. Ontogenetic shifts in plant interactions vary with environmental severity and affect population structure.

    PubMed

    le Roux, Peter C; Shaw, Justine D; Chown, Steven L

    2013-10-01

    Environmental conditions and plant size may both alter the outcome of inter-specific plant-plant interactions, with seedlings generally facilitated more strongly than larger individuals in stressful habitats. However, the combined impact of plant size and environmental severity on interactions is poorly understood. Here, we tested explicitly for the first time the hypothesis that ontogenetic shifts in interactions are delayed under increasingly severe conditions by examining the interaction between a grass, Agrostis magellanica, and a cushion plant, Azorella selago, along two severity gradients. The impact of A. selago on A. magellanica abundance, but not reproductive effort, was related to A. magellanica size, with a trend for delayed shifts towards more negative interactions under greater environmental severity. Intermediate-sized individuals were most strongly facilitated, leading to differences in the size-class distribution of A. magellanica on the soil and on A. selago. The A. magellanica size-class distribution was more strongly affected by A. selago than by environmental severity, demonstrating that the plant-plant interaction impacts A. magellanica population structure more strongly than habitat conditions. As ontogenetic shifts in plant-plant interactions cannot be assumed to be constant across severity gradients and may impact species population structure, studies examining the outcome of interactions need to consider the potential for size- or age-related variation in competition and facilitation. PMID:23738758

  10. Plant adaptation to dynamically changing environment: the shade avoidance response.

    PubMed

    Ruberti, I; Sessa, G; Ciolfi, A; Possenti, M; Carabelli, M; Morelli, G

    2012-01-01

    The success of competitive interactions between plants determines the chance of survival of individuals and eventually of whole plant species. Shade-tolerant plants have adapted their photosynthesis to function optimally under low-light conditions. These plants are therefore capable of long-term survival under a canopy shade. In contrast, shade-avoiding plants adapt their growth to perceive maximum sunlight and therefore rapidly dominate gaps in a canopy. Daylight contains roughly equal proportions of red and far-red light, but within vegetation that ratio is lowered as a result of red absorption by photosynthetic pigments. This light quality change is perceived through the phytochrome system as an unambiguous signal of the proximity of neighbors resulting in a suite of developmental responses (termed the shade avoidance response) that, when successful, result in the overgrowth of those neighbors. Shoot elongation induced by low red/far-red light may confer high relative fitness in natural dense communities. However, since elongation is often achieved at the expense of leaf and root growth, shade avoidance may lead to reduction in crop plant productivity. Over the past decade, major progresses have been achieved in the understanding of the molecular basis of shade avoidance. However, uncovering the mechanisms underpinning plant response and adaptation to changes in the ratio of red to far-red light is key to design new strategies to precise modulate shade avoidance in time and space without impairing the overall crop ability to compete for light. PMID:21888962

  11. EEG Responses to Auditory Stimuli for Automatic Affect Recognition

    PubMed Central

    Hettich, Dirk T.; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  12. A Study of the Affective Responses Elicited by Occupational Stimuli

    ERIC Educational Resources Information Center

    Schoon, Craig G.

    1976-01-01

    The semantic differential was used to assess the properties of affect elicited by occupational stimuli. Vocationally committed men studying medicine, business, and engineering responded to a semantic differential containing occupational concepts. Results show a semantic space for all three groups composed of three orthogonal dimensions of affect…

  13. EEG Responses to Auditory Stimuli for Automatic Affect Recognition.

    PubMed

    Hettich, Dirk T; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  14. GRP-3 and KAPP, encoding interactors of WAK1, negatively affect defense responses induced by oligogalacturonides and local response to wounding.

    PubMed

    Gramegna, Giovanna; Modesti, Vanessa; Savatin, Daniel V; Sicilia, Francesca; Cervone, Felice; De Lorenzo, Giulia

    2016-04-01

    Conserved microbe-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) act as danger signals to activate the plant immune response. These molecules are recognized by surface receptors that are referred to as pattern recognition receptors. Oligogalacturonides (OGs), DAMPs released from the plant cell wall homogalacturonan, have also been proposed to act as local signals in the response to wounding. The Arabidopsis Wall-Associated Kinase 1 (WAK1), a receptor of OGs, has been described to form a complex with a cytoplasmic plasma membrane-localized kinase-associated protein phosphatase (KAPP) and a glycine-rich protein (GRP-3) that we find localized mainly in the cell wall and, in a small part, on the plasma membrane. By using Arabidopsis plants overexpressing WAK1, and both grp-3 and kapp null insertional mutant and overexpressing plants, we demonstrate a positive function of WAK1 and a negative function of GRP-3 and KAPP in the OG-triggered expression of defence genes and the production of an oxidative burst. The three proteins also affect the local response to wounding and the basal resistance against the necrotrophic pathogen Botrytis cinerea. GRP-3 and KAPP are likely to function in the phasing out of the plant immune response. PMID:26748394

  15. GRP-3 and KAPP, encoding interactors of WAK1, negatively affect defense responses induced by oligogalacturonides and local response to wounding

    PubMed Central

    Gramegna, Giovanna; Modesti, Vanessa; Savatin, Daniel V.; Sicilia, Francesca; Cervone, Felice; De Lorenzo, Giulia

    2016-01-01

    Conserved microbe-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) act as danger signals to activate the plant immune response. These molecules are recognized by surface receptors that are referred to as pattern recognition receptors. Oligogalacturonides (OGs), DAMPs released from the plant cell wall homogalacturonan, have also been proposed to act as local signals in the response to wounding. The Arabidopsis Wall-Associated Kinase 1 (WAK1), a receptor of OGs, has been described to form a complex with a cytoplasmic plasma membrane-localized kinase-associated protein phosphatase (KAPP) and a glycine-rich protein (GRP-3) that we find localized mainly in the cell wall and, in a small part, on the plasma membrane. By using Arabidopsis plants overexpressing WAK1, and both grp-3 and kapp null insertional mutant and overexpressing plants, we demonstrate a positive function of WAK1 and a negative function of GRP-3 and KAPP in the OG-triggered expression of defence genes and the production of an oxidative burst. The three proteins also affect the local response to wounding and the basal resistance against the necrotrophic pathogen Botrytis cinerea. GRP-3 and KAPP are likely to function in the phasing out of the plant immune response. PMID:26748394

  16. Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.)

    PubMed Central

    Wu, Qi; Li, Dayong; Li, Dejun; Liu, Xue; Zhao, Xianfeng; Li, Xiaobing; Li, Shigui; Zhu, Lihuang

    2015-01-01

    Dof (DNA binding with one finger) proteins, a class of plant-specific transcription factors, are involved in plant growth and developmental processes and stress responses. However, their biological functions remain to be elucidated, especially in rice (Oryza sativa L.). Previously, we have reported that OsDof12 can promote rice flowering under long-day conditions. Here, we further investigated the other important agronomical traits of the transgenic plants overexpressing OsDof12 and found that overexpressing OsDof12 could lead to reduced plant height, erected leaf, shortened leaf blade, and smaller panicle resulted from decreased primary and secondary branches number. These results implied that OsDof12 is involved in rice plant architecture formation. Furthermore, we performed a series of Brassinosteroid (BR)-responsive tests and found that overexpression of OsDof12 could also result in BR hyposensitivity. Of note, in WT plants the expression of OsDof12 was found up-regulated by BR treatment while in OsDof12 overexpression plants two positive BR signaling regulators, OsBRI1 and OsBZR1, were significantly down-regulated, indicating that OsDof12 may act as a negative BR regulator in rice. Taken together, our results suggested that overexpression of OsDof12 could lead to altered plant architecture by suppressing BR signaling. Thus, OsDof12 might be used as a new potential genetic regulator for future rice molecular breeding. PMID:26500670

  17. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    PubMed Central

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  18. Plant response to climate change varies with topography, interactions with neighbors, and ecotype.

    PubMed

    Liancourt, Pierre; Spence, Laura A; Song, Daniel S; Lkhagva, Ariuntsetseg; Sharkhuu, Anarmaa; Boldgiv, Bazartseren; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B

    2013-02-01

    Predicting the future of any given species represents an unprecedented challenge in light of the many environmental and biological factors that affect organismal performance and that also interact with drivers of global change. In a three-year experiment set in the Mongolian steppe, we examined the response of the common grass Festuca lenensis to manipulated temperature and water while controlling for topographic variation, plant-plant interactions, and ecotypic differentiation. Plant survival and growth responses to a warmer, drier climate varied within the landscape. Response to simulated increased precipitation occurred only in the absence of neighbors, demonstrating that plant-plant interactions can supersede the effects of climate change. F. lenensis also showed evidence of local adaptation in populations that were only 300 m apart. Individuals from the steep and dry upper slope showed a higher stress/drought tolerance, whereas those from the more productive lower slope showed a higher biomass production and a greater ability to cope with competition. Moreover, the response of this species to increased precipitation was ecotype specific, with water addition benefiting only the least stress-tolerant ecotype from the lower slope origin. This multifaceted approach illustrates the importance of placing climate change experiments within a realistic ecological and evolutionary framework. Existing sources of variation impacting plant performance may buffer or obscure climate change effects. PMID:23691663

  19. The Role of Demand Response in Reducing Water-Related Power Plant Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Brinkman, G.; Zhou, E.; O'Connell, M.; Newmark, R. L.; Miara, A.; Cohen, S. M.

    2015-12-01

    The electric sector depends on readily available water supplies for reliable and efficient operation. Elevated water temperatures or low water levels can trigger regulatory or plant-level decisions to curtail power generation, which can affect system cost and reliability. In the past decade, dozens of power plants in the U.S. have curtailed generation due to water temperatures and water shortages. Curtailments occur during the summer, when temperatures are highest and there is greatest demand for electricity. Climate change could alter the availability and temperature of water resources, exacerbating these issues. Constructing alternative cooling systems to address vulnerabilities can be capital intensive and can also affect power plant efficiencies. Demand response programs are being implemented by electric system planners and operators to reduce and shift electricity demands from peak usage periods to other times of the day. Demand response programs can also play a role in reducing water-related power sector vulnerabilities during summer months. Traditionally, production cost modeling and demand response analyses do not include water resources. In this effort, we integrate an electricity production cost modeling framework with water-related impacts on power plants in a test system to evaluate the impacts of demand response measures on power system costs and reliability. Specifically, we i) quantify the cost and reliability implications of incorporating water resources into production cost modeling, ii) evaluate the impacts of demand response measures on reducing system costs and vulnerabilities, and iii) consider sensitivity analyses with cooling systems to highlight a range of potential benefits of demand response measures. Impacts from climate change on power plant performance and water resources are discussed. Results provide key insights to policymakers and practitioners for reducing water-related power plant vulnerabilities via lower cost methods.

  20. Gender affects sympathetic and hemodynamic response to postural stress

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Hogeman, C. S.; Khan, M.; Kimmerly, D. S.; Sinoway, L. I.

    2001-01-01

    We tested the hypothesis that differences in sympathetic reflex responses to head-up tilt (HUT) between males (n = 9) and females (n = 8) were associated with decrements in postural vasomotor responses in women. Muscle sympathetic nerve activity (MSNA; microneurography), heart rate, stroke volume (SV; Doppler), and blood pressure (Finapres) were measured during a progressive HUT protocol (5 min at each of supine, 20 degrees, 40 degrees, and 60 degrees ). MSNA and hemodynamic responses were also measured during the cold pressor test (CPT) to examine nonbaroreflex neurovascular control. SV was normalized to body surface area (SV(i)) to calculate the index of cardiac output (Q(i)), and total peripheral resistance (TPR). During HUT, heart rate increased more in females versus males (P < 0.001) and SV(i) and Q(i) decreased similarly in both groups. Mean arterial pressure (MAP) increased to a lesser extent in females versus males in the HUT (P < 0.01) but increases in TPR during HUT were similar. MSNA burst frequency was lower in females versus males in supine (P < 0.03) but increased similarly during HUT. Average amplitude/burst increased in 60 degrees HUT for males but not females. Both males and females demonstrated an increase in MAP as well as MSNA burst frequency, mean burst amplitude, and total MSNA during the CPT. However, compared with females, males demonstrated a greater neural response (DeltaTotal MSNA) due to a larger increase in mean burst amplitude (P < 0.05). Therefore, these data point to gender-specific autonomic responses to cardiovascular stress. The different MSNA response to postural stress between genders may contribute importantly to decrements in blood pressure control during HUT in females.

  1. Salinity and Alkaline pH in Irrigation Water Affect Marigold Plants: II. Mineral Ion Relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scarcity of water of good quality for landscape irrigation is of outmost importance in arid and semiarid regions due to the competition with urban population. This is forcing the use of degraded waters with high levels of salinity and high pH, which may affect plant establishment and growth. The o...

  2. Poisonous plants affecting the central nervous system of horses in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poisoning by Indigofera pascuori was recently reported in horses in the state of Roraima. It causes chronic signs of sleepiness, unsteady gait, severe ataxia, and progressive weight loss. Some animals are blind. Young horses are more affected than adults. After the end of plant consumption the anima...

  3. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    PubMed

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear

  4. Cotyledon damage affects seed number through final plant size in the annual grassland species Medicago lupulina

    PubMed Central

    Zhang, Shiting; Zhao, Chuan; Lamb, Eric G.

    2011-01-01

    Background and Aims The effects of cotyledon damage on seedling growth and survival are relatively well established, but little is known about the effects on aspects of plant fitness such as seed number and size. Here the direct and indirect mechanisms linking cotyledon damage and plant fitness in the annual species Medicago lupulina are examined. Methods Growth and reproductive traits, including mature plant size, time to first flowering, flower number, seed number and individual seed mass were monitored in M. lupulina plants when zero, one or two cotyledons were removed at 7 d old. Structural equation modelling (SEM) was used to examine the mechanisms linking cotyledon damage to seed number and seed mass. Key Results Cotyledon damage reduced seed number but not individual seed mass. The primary mechanism was a reduction in plant biomass with cotyledon damage that in turn reduced seed number primarily through a reduction in flower numbers. Although cotyledon damage delayed flower initiation, it had little effect on seed number. Individual seed mass was not affected by cotyledon removal, but there was a trade-off between seed number and seed mass. Conclusions It is shown how a network of indirect mechanisms link damage to cotyledons and fitness in M. lupulina. Cotyledon damage had strong direct effects on both plant size and flowering phenology, but an analysis of the causal relationships among plant traits and fitness components showed that a reduction in plant size associated with cotyledon damage was an important mechanism influencing fitness. PMID:21196450

  5. Relative abundance of an invasive alien plant affects insect-flower interaction networks in Ireland

    NASA Astrophysics Data System (ADS)

    Stout, Jane C.; Casey, Leanne M.

    2014-02-01

    Invasive alien flowering plants may affect native plant pollinator interactions and have knock on impacts on populations of native plants and animals. The magnitude of these impacts, however, may be modified by the relative abundance of the invasive plant and the number of flowers it presents.We tested this by examining the structure of insect-flower interaction networks in six sites with increasing levels of invasion by Rhododendron ponticum in Ireland.Neither flower-visiting insect abundance, species richness nor diversity were related to R. ponticum flower abundance, but the composition of insect communities was. The total number of flowers in a site increased with the relative abundance of R. ponticum flowers but the number of co-flowering native plant species in these sites was low (<6), making interaction networks relatively small.As a result, changes in interaction network properties (connectance, interaction evenness and network level specialisation), which correlated with R. ponticum flower abundance, were a result of the small network size rather than due to changes in the resilience of networks.Overall, we conclude that the impacts of invasive alien plants on native plant-pollinator interactions are not only species specific, but site specific, according to the abundance of flowers produced by both the invasive and the native plants.

  6. Living with Smartphones: Does Completion Device Affect Survey Responses?

    ERIC Educational Resources Information Center

    Lambert, Amber D.; Miller, Angie L.

    2015-01-01

    With the growing reliance on tablets and smartphones for internet access, understanding the effects of completion device on online survey responses becomes increasing important. This study uses data from the Strategic National Arts Alumni Project, a multi-institution online alumni survey designed to obtain knowledge of arts education, to explore…

  7. Factors Affecting Women's Response Choices to Dating and Social Situations

    ERIC Educational Resources Information Center

    Yeater, Elizabeth A.; Viken, Richard J.

    2010-01-01

    This study evaluated the effects of a sexual victimization history, trait disinhibition, alcohol use history, number of lifetime sexual partners, and the contextual features of dating and social events (i.e., sexual activity and alcohol use) on women's response choices to a set of vignettes describing diverse social situations. A total of 170…

  8. Processing Time Shifts Affects the Execution of Motor Responses

    ERIC Educational Resources Information Center

    Sell, Andrea J.; Kaschak, Michael P.

    2011-01-01

    We explore whether time shifts in text comprehension are represented spatially. Participants read sentences involving past or future events and made sensibility judgment responses in one of two ways: (1) moving toward or away from their body and (2) pressing the toward or away buttons without moving. Previous work suggests that spatial…

  9. Traumatic Experience in Infancy: How Responses to Stress Affect Development

    ERIC Educational Resources Information Center

    Witten, Molly Romer

    2010-01-01

    Responses to traumatic stress during the earliest years of life can change quickly and can be difficult to identify because of the young child's rapid rate of development. The symptoms of traumatic stress will depend on the child's developmental level and individual coping styles, as well as the quality and nature of the child's most important…

  10. ROS Regulation During Abiotic Stress Responses in Crop Plants

    PubMed Central

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•-), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed. PMID:26697045

  11. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  12. Epigenetic Regulation in Plant Responses to the Environment

    PubMed Central

    Baulcombe, David C.; Dean, Caroline

    2014-01-01

    In this article, we review environmentally mediated epigenetic regulation in plants using two case histories. One of these, vernalization, mediates adaptation of plants to different environments and it exemplifies processes that are reset in each generation. The other, virus-induced silencing, involves transgenerationally inherited epigenetic modifications. Heritable epigenetic marks may result in heritable phenotypic variation, influencing fitness, and so be subject to natural selection. However, unlike genetic inheritance, the epigenetic modifications show instability and are influenced by the environment. These two case histories are then compared with other phenomena in plant biology that are likely to represent epigenetic regulation in response to the environment. PMID:25183832

  13. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    PubMed

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. PMID:26307440

  14. Cold-responsive gene regulation during cold acclimation in plants.

    PubMed

    Lissarre, Mickael; Ohta, Masaru; Sato, Aiko; Miura, Kenji

    2010-08-01

    Regulation of the transcriptome is necessary for plants to acquire cold tolerance, and cold induces several genes via a cold signaling pathway. The transcription factors CBF/DREB1 (C-repeat binding factor/dehydration responsive element binding1) and ICE1 (inducer of CBF expression1) have important roles in the regulation of cold-responsive gene expression. ICE1 is post-translationally regulated by ubiquitylation-mediated proteolysis and sumoylation. This mini-review highlights some recent studies on plant cold signaling. The relationships among cold signaling, salicylic acid accumulation and stomatal development are also discussed. PMID:20699657

  15. Atmospheric CO2 level affects plants' carbon use efficiency: insights from a 13C labeling experiment on sunflower stands

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoying; Schäufele, Rudi; Schnyder, Hans

    2015-04-01

    The increase of atmospheric CO2 concentration has been shown to stimulate plant photosynthesis and (to a lesser extent) growth, thereby acting as a possible sink for the additional atmospheric CO2. However, this effect is dependent on the efficiency with which plants convert atmospheric carbon into biomass carbon, since a considerable proportion of assimilated carbon is returned to the atmosphere via plant respiration. As a core parameter for carbon cycling, carbon use efficiency of plants (CUE, the ratio of net primary production to gross primary production) quantifies the proportion of assimilated carbon that is incorporated into plant biomass. CUE has rarely been assessed based on measurements of complete carbon balance, due to methodological difficulties in measuring respiration rate of plants in light. Moreover, foliar respiration is known to be inhibited in light, thus foliar respiration rate is generally lower in light than in dark. However, this phenomenon, termed as inhibition of respiration in light (IRL), has rarely been assessed at the stand-scale and been incorporated into the calculation of CUE. Therefore, how CUE responses to atmospheric CO2 levels is still not clear. We studied CUE of sunflower stands grown at sub-ambient CO2 level (200 μmol mol-1) and elevated CO2 level (1000 μmol mol-1) using mesocosm-scale gas exchange facilities which enabled continuous measurements of 13CO2/12CO2 exchange. Appling steady-state 13C labeling, fluxes of respiration and photosynthesis in light were separated, and tracer kinetic in respiration was analyzed. This study provides the first data on CUE at a mesocosm-level including respiration in light in different CO2 environments. We found that CUE of sunflower was lower at an elevated CO2 level than at a sub-ambient CO2 level; and the ignorance of IRL lead to erroneous estimations of CUE. Variation in CUE at atmospheric CO2 levels was attributed to several mechanisms. In this study, CO2 enrichment i) affected the

  16. How Do Earthworms, Soil Texture and Plant Composition Affect Infiltration along an Experimental Plant Diversity Gradient in Grassland?

    PubMed Central

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W.; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Background Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. Methodology/Principal Findings We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Conclusions/Significance Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications. PMID:24918943

  17. Factors affecting the remotely sensed response of coniferous forest plantations

    SciTech Connect

    Danson, F.M. ); Curran, P.J. )

    1993-01-01

    Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response of a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation.

  18. Crop and medicinal plants proteomics in response to salt stress

    PubMed Central

    Aghaei, Keyvan; Komatsu, Setsuko

    2013-01-01

    Increasing of world population marks a serious need to create new crop cultivars and medicinal plants with high growth and production at any environmental situations. Among the environmental unfavorable conditions, salinity is the most widespread in the world. Crop production and growth severely decreases under salt stress; however, some crop cultivars show significant tolerance against the negative effects of salinity. Among salt stress responses of crops, proteomic responses play a pivotal role in their ability to cope with it and have become the main center of notification. Many physiological responses are detectable in terms of protein increase and decrease even before physiological responses take place. Thus proteomic approach makes a short cut in the way of inferring how crops response to salt stress. Nowadays many salt-responsive proteins such as heat shock proteins, pathogen-related proteins, protein kinases, ascorbate peroxidase, osmotin, ornithine decarboxylase, and some transcription factors, have been detected in some major crops which are thought to give them the ability of withstanding against salt stress. Proteomic analysis of medicinal plants also revealed that alkaloid biosynthesis related proteins such as tryptophan synthase, codeinone reductase, strictosidine synthase, and 12-oxophytodienoate reductase might have major role in production of secondary metabolites. In this review we are comparing some different or similar proteomic responses of several crops and medicinal plants to salt stress and discuss about the future prospects. PMID:23386857

  19. Crop and medicinal plants proteomics in response to salt stress.

    PubMed

    Aghaei, Keyvan; Komatsu, Setsuko

    2013-01-01

    Increasing of world population marks a serious need to create new crop cultivars and medicinal plants with high growth and production at any environmental situations. Among the environmental unfavorable conditions, salinity is the most widespread in the world. Crop production and growth severely decreases under salt stress; however, some crop cultivars show significant tolerance against the negative effects of salinity. Among salt stress responses of crops, proteomic responses play a pivotal role in their ability to cope with it and have become the main center of notification. Many physiological responses are detectable in terms of protein increase and decrease even before physiological responses take place. Thus proteomic approach makes a short cut in the way of inferring how crops response to salt stress. Nowadays many salt-responsive proteins such as heat shock proteins, pathogen-related proteins, protein kinases, ascorbate peroxidase, osmotin, ornithine decarboxylase, and some transcription factors, have been detected in some major crops which are thought to give them the ability of withstanding against salt stress. Proteomic analysis of medicinal plants also revealed that alkaloid biosynthesis related proteins such as tryptophan synthase, codeinone reductase, strictosidine synthase, and 12-oxophytodienoate reductase might have major role in production of secondary metabolites. In this review we are comparing some different or similar proteomic responses of several crops and medicinal plants to salt stress and discuss about the future prospects. PMID:23386857

  20. Ionic signaling in plant responses to gravity and touch

    NASA Technical Reports Server (NTRS)

    Fasano, Jeremiah M.; Massa, Gioia D.; Gilroy, Simon

    2002-01-01

    Touch and gravity are two of the many stimuli that plants must integrate to generate an appropriate growth response. Due to the mechanical nature of both of these signals, shared signal transduction elements could well form the basis of the cross-talk between these two sensory systems. However, touch stimulation must elicit signaling events across the plasma membrane whereas gravity sensing is thought to represent transformation of an internal force, amyloplast sedimentation, to signal transduction events. In addition, factors such as turgor pressure and presence of the cell wall may also place unique constraints on these plant mechanosensory systems. Even so, the candidate signal transduction elements in both plant touch and gravity sensing, changes in Ca2+, pH and membrane potential, do mirror the known ionic basis of signaling in animal mechanosensory cells. Distinct spatial and temporal signatures of Ca2+ ions may encode information about the different mechanosignaling stimuli. Signals such as Ca2+ waves or action potentials may also rapidly transfer information perceived in one cell throughout a tissue or organ leading to the systemic reactions characteristic of plant touch and gravity responses. Longer-term growth responses are likely sustained via changes in gene expression and asymmetries in compounds such as inositol-1,4,5-triphosphate (IP3) and calmodulin. Thus, it seems likely that plant mechanoperception involves both spatial and temporal encoding of information at all levels, from the cell to the whole plant. Defining this patterning will be a critical step towards understanding how plants integrate information from multiple mechanical stimuli to an appropriate growth response.

  1. Plant responses to Agrobacterium tumefaciens and crown gall development

    PubMed Central

    Gohlke, Jochen; Deeken, Rosalia

    2014-01-01

    Agrobacterium tumefaciens causes crown gall disease on various plant species by introducing its T-DNA into the genome. Therefore, Agrobacterium has been extensively studied both as a pathogen and an important biotechnological tool. The infection process involves the transfer of T-DNA and virulence proteins into the plant cell. At that time the gene expression patterns of host plants differ depending on the Agrobacterium strain, plant species and cell-type used. Later on, integration of the T-DNA into the plant host genome, expression of the encoded oncogenes, and increase in phytohormone levels induce a fundamental reprogramming of the transformed cells. This results in their proliferation and finally formation of plant tumors. The process of reprogramming is accompanied by altered gene expression, morphology and metabolism. In addition to changes in the transcriptome and metabolome, further genome-wide (“omic”) approaches have recently deepened our understanding of the genetic and epigenetic basis of crown gall tumor formation. This review summarizes the current knowledge about plant responses in the course of tumor development. Special emphasis is placed on the connection between epigenetic, transcriptomic, metabolomic, and morphological changes in the developing tumor. These changes not only result in abnormally proliferating host cells with a heterotrophic and transport-dependent metabolism, but also cause differentiation and serve as mechanisms to balance pathogen defense and adapt to abiotic stress conditions, thereby allowing the coexistence of the crown gall and host plant. PMID:24795740

  2. Soil moisture variations affect short-term plant-microbial competition for ammonium, glycine, and glutamate

    PubMed Central

    Månsson, Katarina F; Olsson, Magnus O; Falkengren-Grerup, Ursula; Bengtsson, Göran

    2014-01-01

    We tested whether the presence of plant roots would impair the uptake of ammonium (), glycine, and glutamate by microorganisms in a deciduous forest soil exposed to constant or variable moisture in a short-term (24-h) experiment. The uptake of 15NH4 and dual labeled amino acids by the grass Festuca gigantea L. and soil microorganisms was determined in planted and unplanted soils maintained at 60% WHC (water holding capacity) or subject to drying and rewetting. The experiment used a design by which competition was tested in soils that were primed by plant roots to the same extent in the planted and unplanted treatments. Festuca gigantea had no effect on microbial N uptake in the constant moist soil, but its presence doubled the microbial uptake in the dried and rewetted soil compared with the constant moist. The drying and rewetting reduced by half or more the uptake by F. gigantea, despite more than 60% increase in the soil concentration of . At the same time, the amino acid and -N became equally valued in the plant uptake, suggesting that plants used amino acids to compensate for the lower acquisition. Our results demonstrate the flexibility in plant-microbial use of different N sources in response to soil moisture fluctuations and emphasize the importance of including transient soil conditions in experiments on resource competition between plants and soil microorganisms. Competition between plants and microorganisms for N is demonstrated by a combination of removal of one of the potential competitors, the plant, and subsequent observations of the uptake of N in the organisms in soils that differ only in the physical presence and absence of the plant during a short assay. Those conditions are necessary to unequivocally test for competition. PMID:24772283

  3. Landscape fragmentation affects responses of avian communities to climate change.

    PubMed

    Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O

    2015-08-01

    Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change

  4. Affective responses across psychiatric disorders-A dimensional approach.

    PubMed

    Hägele, Claudia; Friedel, Eva; Schlagenhauf, Florian; Sterzer, Philipp; Beck, Anne; Bermpohl, Felix; Stoy, Meline; Held-Poschardt, Dada; Wittmann, André; Ströhle, Andreas; Heinz, Andreas

    2016-06-01

    Studying psychiatric disorders across nosological boundaries aims at a better understanding of mental disorders by identifying comprehensive signatures of core symptoms. Here, we studied neurobiological correlates of emotion processing in several major psychiatric disorders. We assessed differences between diagnostic groups, and investigated whether there is a psychopathological correlate of emotion processing that transcends disorder categories. 135 patient with psychiatric disorders (alcohol dependence, n=29; schizophrenia, n=37; major depressive disorder (MDD), n=25; acute manic episode of bipolar disorder, n=12; panic disorder, n=12, attention deficit/hyperactivity disorder (ADHD), n=20) and healthy controls (n=40) underwent an functional magnetic resonance imaging (fMRI) experiment with affectively positive, aversive and neutral pictures from the International Affective Picture System (IAPS). Between-group differences were assessed with full-factorial ANOVAs, with age, gender and smoking habits as covariates. Self-ratings of depressed mood and anxiety were correlated with activation clusters showing significant stimulus-evoked fMRI activation. Furthermore, we examined functional connectivity with the amygdala as seed region during the processing of aversive pictures. During the presentation of pleasant stimuli, we observed across all subjects significant activation of the ventromedial prefrontal cortex (vmPFC), bilateral middle temporal gyrus and right precuneus, while a significant activation of the left amygdala and the bilateral middle temporal gyrus was found during the presentation of aversive stimuli. We did neither find any significant interaction with diagnostic group, nor any correlation with depression and anxiety scores at the activated clusters or with amygdala connectivity. Positive and aversive IAPS-stimuli were consistently processed in limbic and prefrontal brain areas, irrespective of diagnostic category. A dimensional correlate of these

  5. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals. PMID:26079739

  6. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects

    PubMed Central

    Shao, Hongbo; Wang, Hongyan; Tang, Xiaoli

    2015-01-01

    Abiotic stresses adversely affect plant growth and agricultural productivity. According to the current climate prediction models, crop plants will face a greater number of environmental stresses, which are likely to occur simultaneously in the future. So it is very urgent to breed broad-spectrum tolerant crops in order to meet an increasing demand for food productivity due to global population increase. As one of the largest families of transcription factors (TFs) in plants, NAC TFs play vital roles in regulating plant growth and development processes including abiotic stress responses. Lots of studies indicated that many stress-responsive NAC TFs had been used to improve stress tolerance in crop plants by genetic engineering. In this review, the recent progress in NAC TFs was summarized, and the potential utilization of NAC TFs in breeding abiotic stress tolerant transgenic crops was also be discussed. In view of the complexity of field conditions and the specificity in multiple stress responses, we suggest that the NAC TFs commonly induced by multiple stresses should be promising candidates to produce plants with enhanced multiple stress tolerance. Furthermore, the field evaluation of transgenic crops harboring NAC genes, as well as the suitable promoters for minimizing the negative effects caused by over-expressing some NAC genes, should be considered. PMID:26579152

  7. fNIRS detects temporal lobe response to affective touch.

    PubMed

    Bennett, Randi H; Bolling, Danielle Z; Anderson, Laura C; Pelphrey, Kevin A; Kaiser, Martha D

    2014-04-01

    Touch plays a crucial role in social-emotional development. Slow, gentle touch applied to hairy skin is processed by C-tactile (CT) nerve fibers. Furthermore, 'social brain' regions, such as the posterior superior temporal sulcus (pSTS) have been shown to process CT-targeted touch. Research on the development of these neural mechanisms is scant, yet such knowledge may inform our understanding of the critical role of touch in development and its dysfunction in disorders involving sensory issues, such as autism. The aim of this study was to validate the ability of functional near-infrared spectroscopy (fNIRS), an imaging technique well-suited for use with infants, to measure temporal lobe responses to CT-targeted touch. Healthy adults received brushing to the right forearm (CT) and palm (non-CT) separately, in a block design procedure. We found significant activation in right pSTS and dorsolateral prefrontal cortex to arm > palm touch. In addition, individual differences in autistic traits were related to the magnitude of peak activation within pSTS. These findings demonstrate that fNIRS can detect brain responses to CT-targeted touch and lay the foundation for future work with infant populations that will characterize the development of brain mechanisms for processing CT-targeted touch in typical and atypical populations. PMID:23327935

  8. fNIRS detects temporal lobe response to affective touch

    PubMed Central

    Bennett, Randi H.; Bolling, Danielle Z.; Anderson, Laura C.; Pelphrey, Kevin A.

    2014-01-01

    Touch plays a crucial role in social–emotional development. Slow, gentle touch applied to hairy skin is processed by C-tactile (CT) nerve fibers. Furthermore, ‘social brain’ regions, such as the posterior superior temporal sulcus (pSTS) have been shown to process CT-targeted touch. Research on the development of these neural mechanisms is scant, yet such knowledge may inform our understanding of the critical role of touch in development and its dysfunction in disorders involving sensory issues, such as autism. The aim of this study was to validate the ability of functional near-infrared spectroscopy (fNIRS), an imaging technique well-suited for use with infants, to measure temporal lobe responses to CT-targeted touch. Healthy adults received brushing to the right forearm (CT) and palm (non-CT) separately, in a block design procedure. We found significant activation in right pSTS and dorsolateral prefrontal cortex to arm > palm touch. In addition, individual differences in autistic traits were related to the magnitude of peak activation within pSTS. These findings demonstrate that fNIRS can detect brain responses to CT-targeted touch and lay the foundation for future work with infant populations that will characterize the development of brain mechanisms for processing CT-targeted touch in typical and atypical populations. PMID:23327935

  9. Acute caffeine administration affects zebrafish response to a robotic stimulus.

    PubMed

    Ladu, Fabrizio; Mwaffo, Violet; Li, Jasmine; Macrì, Simone; Porfiri, Maurizio

    2015-08-01

    Zebrafish has been recently proposed as a valid animal model to investigate the fundamental mechanisms regulating emotional behavior and evaluate the modulatory effects exerted by psychoactive compounds. In this study, we propose a novel methodological framework based on robotics and information theory to investigate the behavioral response of zebrafish exposed to acute caffeine treatment. In a binary preference test, we studied the response of caffeine-treated zebrafish to a replica of a shoal of conspecifics moving in the tank. A purely data-driven information theoretic approach was used to infer the influence of the replica on zebrafish behavior as a function of caffeine concentration. Our results demonstrate that acute caffeine administration modulates both the average speed and the interaction with the replica. Specifically, zebrafish exposed to elevated doses of caffeine show reduced locomotion and increased sensitivity to the motion of the replica. The methodology developed in this study may complement traditional experimental paradigms developed in the field of behavioral pharmacology. PMID:25907748

  10. Plant sterols: factors affecting their efficacy and safety as functional food ingredients

    PubMed Central

    Berger, Alvin; Jones, Peter JH; Abumweis, Suhad S

    2004-01-01

    Plant sterols are naturally occurring molecules that humanity has evolved with. Herein, we have critically evaluated recent literature pertaining to the myriad of factors affecting efficacy and safety of plant sterols in free and esterified forms. We conclude that properly solubilized 4-desmetyl plant sterols, in ester or free form, in reasonable doses (0.8–1.0 g of equivalents per day) and in various vehicles including natural sources, and as part of a healthy diet and lifestyle, are important dietary components for lowering low density lipoprotein (LDL) cholesterol and maintaining good heart health. In addition to their cholesterol lowering properties, plant sterols possess anti-cancer, anti-inflammatory, anti-atherogenicity, and anti-oxidation activities, and should thus be of clinical importance, even for those individuals without elevated LDL cholesterol. The carotenoid lowering effect of plant sterols should be corrected by increasing intake of food that is rich in carotenoids. In pregnant and lactating women and children, further study is needed to verify the dose required to decrease blood cholesterol without affecting fat-soluble vitamins and carotenoid status. PMID:15070410

  11. Morphological Characteristics of Maize Canopy Development as Affected by Increased Plant Density

    PubMed Central

    Song, Youhong; Rui, Yukui; Bedane, Guta; Li, Jincai

    2016-01-01

    Improving crop productivity through higher plant density requires a detailed understanding of organ development in response to increased interplant competition. The objective of this paper is thus to investigate the characteristics of organ development under increased interplant competition. A field experiment was conducted to investigate organ development across 4 maize plant densities i.e. 2, 6, 12 and 20 plants m–2 (referred to PD2, PD6, PD12 and PD20 respectively). In response to increased interplant competition, lengths of both laminae and sheaths increased in lower phytomers, but decreased in upper phytomers. Sheath extension appeared to be less sensitive to increased interplant competition than lamina extension. Extension of laminae and internodes responded to increased plant density as soon as onset of mild interplant competition, but did not respond any further to severe competition. Both lamina width and internode diameter were reduced due to a smaller growth rate in response to increased plant density. Overall, this study identified that organ expansion rate can be taken as the key morphological factor to determine the degree of interplant competition. PMID:27129101

  12. The Role of Ethylene in Plant Responses to K(+) Deficiency.

    PubMed

    Schachtman, Daniel P

    2015-01-01

    Potassium is an essential macronutrient that is involved in regulating turgor, in driving plant growth, and in modulating enzyme activation. The changes in root morphology, root function, as well as cellular and molecular responses to low potassium conditions have been studied in the model plant Arabidopsis and in other plant species. In Arabidopsis ethylene plays a key role in roots in the transduction of the low potassium signal, which results in altered root function and growth. The first clues regarding the role of ethylene were detected through transcriptional profiling experiments showing changes in the expression of genes related to ethylene biosynthesis. Later it was shown that ethylene plays a foundational early role in the many responses observed in Arabidopsis. One of the most striking findings is the link between ethylene and reactive oxygen species (ROS) production, which is part of the signal transduction pathway in K(+) deprived plants. This mini-review will summarize what is known about the role ethylene plays in response to low potassium in Arabidopsis and other plant species. PMID:26734048

  13. The Role of Ethylene in Plant Responses to K+ Deficiency

    PubMed Central

    Schachtman, Daniel P.

    2015-01-01

    Potassium is an essential macronutrient that is involved in regulating turgor, in driving plant growth, and in modulating enzyme activation. The changes in root morphology, root function, as well as cellular and molecular responses to low potassium conditions have been studied in the model plant Arabidopsis and in other plant species. In Arabidopsis ethylene plays a key role in roots in the transduction of the low potassium signal, which results in altered root function and growth. The first clues regarding the role of ethylene were detected through transcriptional profiling experiments showing changes in the expression of genes related to ethylene biosynthesis. Later it was shown that ethylene plays a foundational early role in the many responses observed in Arabidopsis. One of the most striking findings is the link between ethylene and reactive oxygen species (ROS) production, which is part of the signal transduction pathway in K+ deprived plants. This mini-review will summarize what is known about the role ethylene plays in response to low potassium in Arabidopsis and other plant species. PMID:26734048

  14. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection.

    PubMed

    De La Fuente, Leonardo; Parker, Jennifer K; Oliver, Jonathan E; Granger, Shea; Brannen, Phillip M; van Santen, Edzard; Cobine, Paul A

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547

  15. Host plant defense signaling in response to a coevolved herbivore combats introduced herbivore attack

    PubMed Central

    Woodard, Anastasia M; Ervin, Gary N; Marsico, Travis D

    2012-01-01

    Defense-free space resulting from coevolutionarily naïve host plants recently has been implicated as a factor facilitating invasion success of some insect species. Host plants, however, may not be entirely defenseless against novel herbivore threats. Volatile chemical-mediated defense signaling, which allows plants to mount specific, rapid, and intense responses, may play a role in systems experiencing novel threats. Here we investigate defense responses of host plants to a native and exotic herbivore and show that (1) host plants defend more effectively against the coevolved herbivore, (2) plants can be induced to defend against a newly-associated herbivore when in proximity to plants actively defending against the coevolved species, and (3) these defenses affect larval performance. These findings highlight the importance of coevolved herbivore-specific defenses and suggest that naïveté or defense limitations can be overcome via defense signaling. Determining how these findings apply across various host–herbivore systems is critical to understand mechanisms of successful herbivore invasion. PMID:22837849

  16. Hydro-Responsive Curling of the Resurrection Plant Selaginella lepidophylla

    PubMed Central

    Rafsanjani, Ahmad; Brulé, Véronique; Western, Tamara L.; Pasini, Damiano

    2015-01-01

    The spirally arranged stems of the spikemoss Selaginella lepidophylla, an ancient resurrection plant, compactly curl into a nest-ball shape upon dehydration. Due to its spiral phyllotaxy, older outer stems on the plant interlace and envelope the younger inner stems forming the plant centre. Stem curling is a morphological mechanism that limits photoinhibitory and thermal damages the plant might experience in arid environments. Here, we investigate the distinct conformational changes of outer and inner stems of S. lepidophylla triggered by dehydration. Outer stems bend into circular rings in a relatively short period of desiccation, whereas inner stems curl slowly into spirals due to hydro-actuated strain gradient along their length. This arrangement eases both the tight packing of the plant during desiccation and its fast opening upon rehydration. The insights gained from this work shed light on the hydro-responsive movements in plants and might contribute to the development of deployable structures with remarkable shape transformations in response to environmental stimuli. PMID:25623361

  17. Hydro-Responsive Curling of the Resurrection Plant Selaginella lepidophylla

    NASA Astrophysics Data System (ADS)

    Rafsanjani, Ahmad; Brulé, Véronique; Western, Tamara L.; Pasini, Damiano

    2015-01-01

    The spirally arranged stems of the spikemoss Selaginella lepidophylla, an ancient resurrection plant, compactly curl into a nest-ball shape upon dehydration. Due to its spiral phyllotaxy, older outer stems on the plant interlace and envelope the younger inner stems forming the plant centre. Stem curling is a morphological mechanism that limits photoinhibitory and thermal damages the plant might experience in arid environments. Here, we investigate the distinct conformational changes of outer and inner stems of S. lepidophylla triggered by dehydration. Outer stems bend into circular rings in a relatively short period of desiccation, whereas inner stems curl slowly into spirals due to hydro-actuated strain gradient along their length. This arrangement eases both the tight packing of the plant during desiccation and its fast opening upon rehydration. The insights gained from this work shed light on the hydro-responsive movements in plants and might contribute to the development of deployable structures with remarkable shape transformations in response to environmental stimuli.

  18. Hydro-responsive curling of the resurrection plant Selaginella lepidophylla.

    PubMed

    Rafsanjani, Ahmad; Brulé, Véronique; Western, Tamara L; Pasini, Damiano

    2015-01-01

    The spirally arranged stems of the spikemoss Selaginella lepidophylla, an ancient resurrection plant, compactly curl into a nest-ball shape upon dehydration. Due to its spiral phyllotaxy, older outer stems on the plant interlace and envelope the younger inner stems forming the plant centre. Stem curling is a morphological mechanism that limits photoinhibitory and thermal damages the plant might experience in arid environments. Here, we investigate the distinct conformational changes of outer and inner stems of S. lepidophylla triggered by dehydration. Outer stems bend into circular rings in a relatively short period of desiccation, whereas inner stems curl slowly into spirals due to hydro-actuated strain gradient along their length. This arrangement eases both the tight packing of the plant during desiccation and its fast opening upon rehydration. The insights gained from this work shed light on the hydro-responsive movements in plants and might contribute to the development of deployable structures with remarkable shape transformations in response to environmental stimuli. PMID:25623361

  19. Tropospheric ozone and plants: absorption, responses, and consequences.

    PubMed

    Cho, Kyoungwon; Tiwari, Supriya; Agrawal, S B; Torres, N L; Agrawal, Madhoolika; Sarkar, Abhijit; Shibato, Junko; Agrawal, Ganesh K; Kubo, Akihiro; Rakwal, Randeep

    2011-01-01

    Ozone is now considered to be the second most important gaseous pollutant in our environment. The phytotoxic potential of O₃ was first observed on grape foliage by B.L. Richards and coworkers in 1958 (Richards et al. 1958). To date, unsustainable resource utilization has turned this secondary pollutant into a major component of global climate change and a prime threat to agricultural production. The projected levels to which O₃ will increase are critically alarming and have become a major issue of concern for agriculturalists, biologists, environmentalists and others plants are soft targets for O₃. Ozone enters plants through stomata, where it disolves in the apoplastic fluid. O₃ has several potential effects on plants: direct reaction with cell membranes; conversion into ROS and H₂O₂ (which alters cellular function by causing cell death); induction of premature senescence; and induction of and up- or down-regulation of responsive components such as genes , proteins and metabolites. In this review we attempt to present an overview picture of plant O₃ interactions. We summarize the vast number of available reports on plant responses to O₃ at the morphological, physiological, cellular, biochemical levels, and address effects on crop yield, and on genes, proteins and metabolites. it is now clear that the machinery of photosynthesis, thereby decreasing the economic yield of most plants and inducing a common morphological symptom, called the "foliar injury". The "foliar injury" symptoms can be authentically utilized for biomonitoring of O₃ under natural conditions. Elevated O₃ stress has been convincingly demonstrated to trigger an antioxidative defense system in plants. The past several years have seen the development and application of high-throughput omics technologies (transcriptomics, proteomics, and metabolomics) that are capable of identifying and prolifiling the O₃-responsive components in model and nonmodel plants. Such studies have been

  20. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    PubMed

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  1. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    PubMed

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. PMID:26876016

  2. Effects of light on the gravitropic response in plants.

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Suzuki, G.; Ohgishi, M.; Saji, K.; Okada, K.

    Plants show changing of growth pattern responding to the environmental stimuli to adapt themselves to the environment. Our research purpose is to elucidate the function of genes participating in light-induced change of growth and movement in plants. By isolation and analyses of mutants showing defects in light-induced responses in model plants, Arabidopsis thaliana, genes involved in the response are identified. Previous studies reported that the negative gravitropic response in hypocotyl of Arabidopsis is suppressed by red light irradiation. We isolated a red-light hypersensitive mutant, flabby, which shows a random-hypocotyl bending by red light irradiation. The FLABBY gene encodes a protein, which is involved in the auxin transport in hypocotyls. On the other hand, our recent analysis showed that cryptochromes also induce a blue-light dependent, random-hypocotyl bending in the phototropins-defective mutants. Now we are studying on the genetic interactions between FLABBY and photoreceptors (phytochromes, cryptochromes, and phototropins). We discuss the effects of light on the gravitropic response in plants.

  3. Sugarcane Genotype Response to Flooding soon after Planting and Ratooning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research has shown that rapidly growing sugarcane (Saccharum spp.) tolerates short-duration flooding well during the summer in Florida. However, little is known about the flood response of recently planted or recently ratooned sugarcane. The purpose of this study was to test the yields of two sugarc...

  4. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  5. The good, the bad and the flexible: plant interactions with pollinators and herbivores over space and time are moderated by plant compensatory responses

    PubMed Central

    Lay, C. R.; Linhart, Y. B.; Diggle, P. K.

    2011-01-01

    Background and Aims Plants are sessile organisms that face selection by both herbivores and pollinators. Herbivores and pollinators may select on the same traits and/or mediate each others' effects. Erysimum capitatum (Brassicaceae) is a widespread and variable plant species with generalized pollination that is attacked by a number of herbivores. The following questions were addressed. (a) Are pollinators and herbivores attracted by similar plant traits? (b) Does herbivory affect pollinator preferences? (c) Do pollinators and/or herbivores affect fitness and select on plant traits? (d) Do plant compensatory responses affect the outcome of interactions among plants, pollinators and herbivores? (e) Do interactions among E. capitatum and its pollinators and herbivores differ among sites and years? Methods In 2005 and 2006, observational and experimental studies were combined in four populations at different elevations to examine selection by pollinators and herbivores on floral traits of E. capitatum. Key Results Pollinator and herbivore assemblages varied spatially and temporally, as did their effects on plant fitness and selection. Both pollinators and herbivores preferred plants with more flowers, and herbivory sometimes reduced pollinator visitation. Pollinators did not select on plant traits in any year or population and E. capitatum was not pollen limited; however, supplemental pollen resulted in altered plant resource allocation. Herbivores reduced fitness and selected for plant traits in some populations, and these effects were mediated by plant compensatory responses. Conclusions Individuals of Erysimum capitatum are visited by diverse groups of pollinators and herbivores that shift in abundance and importance in time and space. Compensatory reproductive mechanisms mediate interactions with both pollinators and herbivores and may allow E. capitatum to succeed in this complex selective environment. PMID:21724655

  6. Phosphorus source alters host plant response to ectomycorrhizal diversity.

    PubMed

    Baxter, James W; Dighton, John

    2005-11-01

    We examined the influence of phosphorus source and availability on host plant (Pinus rigida) response to ectomycorrhizal diversity under contrasting P conditions. An ectomycorrhizal richness gradient was established with equimolar P supplied as either inorganic phosphate or organic inositol hexaphosphate. We measured growth and N and P uptake of individual P. rigida seedlings inoculated with one, two, or four species of ectomycorrhizal fungi simultaneously and without mycorrhizas in axenic culture. Whereas colonization of P. rigida by individual species of ectomycorrhizal fungi decreased with increasing fungal richness, colonization of all species combined increased. Plant biomass and N content increased across the ectomycorrhizal richness gradient in the organic but not the inorganic P treatment. Plants grown under organic P conditions had higher N concentration than those grown under inorganic P conditions, but there was no effect of richness. Phosphorus content of plants grown in the organic P treatment increased with increasing ectomycorrhizal richness, but there was no response in the inorganic P treatment. Phosphorus concentration was higher in plants grown at the four-species richness level in the organic P treatment, but there was no effect of diversity under inorganic P conditions. Overall, few ectomycorrhizal composition effects were found on plant growth or nutrient status. Phosphatase activities of individual ectomycorrhizal fungi differed under organic P conditions, but there was no difference in total root system phosphatase expression between the inorganic or organic P treatments or across richness levels. Our results provide evidence that plant response to ectomycorrhizal diversity is dependent on the source and availability of P. PMID:15809869

  7. Plant Products Affect Growth and Digestive Efficiency of Cultured Florida Pompano (Trachinotus carolinus) Fed Compounded Diets

    PubMed Central

    Lech, Gregory P.; Reigh, Robert C.

    2012-01-01

    Costs of compounded diets containing fish meal as a primary protein source can be expected to rise as fish meal prices increase in response to static supply and growing demand. Alternatives to fish meal are needed to reduce production costs in many aquaculture enterprises. Some plant proteins are potential replacements for fish meal because of their amino acid composition, lower cost and wide availability. In this study, we measured utilization of soybean meal (SBM) and soy protein concentrate (SPC) by Florida pompano fed compounded diets, to determine the efficacy of these products as fish meal replacements. We also calculated apparent digestibility coefficients (ADCs) for canola meal (CM), corn gluten meal (CGM), and distillers dried grains with solubles (DDGS), following typical methods for digestibility trials. Juvenile Florida pompano were fed fish-meal-free diets containing graded levels of SBM and SPC, and weight gain was compared to a control diet that contained SBM, SPC, and fish meal. Fish fed diets that contained 25–30 percent SBM in combination with 43–39 percent SPC had weight gain equivalent to fish fed the control diet with fish meal, while weight gain of fish fed other soy combinations was significantly less than that of the control group. Apparent crude protein digestibility of CGM was significantly higher than that of DDGS but not significantly different from CM. Apparent energy digestibility of DDGS was significantly lower than CGM but significantly higher than CM. Findings suggested that composition of the reference diet used in a digestibility trial affects the values of calculated ADCs, in addition to the chemical and physical attributes of the test ingredient. PMID:22536344

  8. Does thalidomide affect IL-2 response and production?

    PubMed

    Fernandez, L P; Schlegel, P G; Baker, J; Chen, Y; Chao, N J

    1995-08-01

    The exact mechanism of immunosuppression by thalidomide is poorly understood. A common denominator in the pathogenesis of graft-vs.-host disease, graft rejection, reactional lepromatous leprosy, and autoimmune disorders modulated by thalidomide is the activation of T lymphocytes culminating in the synthesis of interleukin-2 (IL-2), the expression of high-affinity IL-2 receptors, and the induction of proliferation. We investigated the effect of thalidomide on the production of IL-2 by the human leukemia cell line Jurkat through induction of IL-2 gene enhancer activity and through the presence of IL-2 in supernatants. beta-galactosidase activity, encoded by a reporter lac z construct and controlled by a transcription factor in thalidomide-treated PMA- and ionomycin-stimulated Jurkat cells, was similar (97 +/- 1.33%; p > 0.1) to non-thalidomide-treated controls at all drug concentrations tested. IL-2 enhancer-driven beta-galactose activity of thalidomide-treated and stimulated cells was also similar to that of untreated controls (p > 0.2). The IL-2 production of activated nontransfected Jurkat cells was gauged by using the IL-2-dependent cell line HT-2 as a readout and by ELISA. Jurkat cells were subcloned by limiting dilution. Bulk cultures and three subclones (J.5.2.5., J.5.2.9., and J.5.3.8.) were assayed at 6, 12, and 24 hours after PHA/PMA-induced stimulation. No inhibitory effect on the IL-2 production by thalidomide could be detected at any of the drug concentrations tested (5-30 micrograms/mL), whereas 10 to 100 ng/mL of cyclosporine inhibited the IL-2 production by 95 to 100%. In addition, we observed neither inhibition of IL-2-dependent proliferation of HT-2 nor inhibition of PHA-induced proliferation of peripheral mononuclear cells by thalidomide at all drug concentrations used (5-30 micrograms/mL). These results do not support the possibility of a modulatory effect on the immune response by thalidomide via IL-2 production and IL-2 response. PMID:7635184

  9. Oxidative burst: an early plant response to pathogen infection.

    PubMed Central

    Wojtaszek, P

    1997-01-01

    As plants are confined to the place where they grow, they have to develop a broad range of defence responses to cope with pathogenic infections. The oxidative burst, a rapid, transient, production of huge amounts of reactive oxygen species (ROS), is one of the earliest observable aspects of a plant's defence strategy. First this Review describes the chemistry of ROS (superoxide radical, hydrogen peroxide and hydroxyl radical). Secondly, the role of ROS in defence responses is demonstrated, and some important issues are considered, such as: (1) which of the ROS is a major building element of the oxidative burst; (2) the spatial and temporal regulation of the oxidative burst; and (3) differences in the plant's responses to biotic and abiotic elicitation. Thirdly, the relationships between the oxidative burst and other plant defence responses are indicated. These include: (1) an oxygen consumption, (2) the production of phytoalexins, (3) systemic acquired resistance, (4) immobilization of plant cell wall proteins, (5) changes in membrane permeability and ion fluxes and (6) a putative role in hypersensitive cell death. Wherever possible, the comparisons with models applicable to animal systems are presented. Finally, the question of the origin of ROS in the oxidative burst is considered, and two major hypotheses, (1) the action of NADPH oxidase system analogous to that of animal phagocytes, and (2) the pH-dependent generation of hydrogen peroxide by a cell wall peroxidase, are presented. On the basis of this material, a third 'unifying' hypothesis is presented, where transient changes in the pH of the cell wall compartment are indicated as a core phenomenon in evoking ROS production. Additionally, a germin/oxalate oxidase system which generates H2O2 in response to pathogenic infection is also described. PMID:9148737

  10. Dioecy, more than monoecy, affects plant spatial genetic structure: the case study of Ficus

    PubMed Central

    Nazareno, Alison G; Alzate-Marin, Ana L; Pereira, Rodrigo Augusto S

    2013-01-01

    In this analysis, we attempt to understand how monoecy and dioecy drive spatial genetic structure (SGS) in plant populations. For this purpose, plants of the genus Ficus were used as a comparative model due to their particular characteristics, including high species diversity, variation in life histories, and sexual systems. One of the main issues we assessed is whether dioecious fig tree populations are more spatially genetically structured than monoecious populations. Using the Sp statistic, which allows for quantitative comparisons among different studies, we compared the extent of SGS between monoecious and dioecious Ficus species. To broaden our conclusions we used published data on an additional 27 monoecious and dioecious plant species. Furthermore, genetic diversity analyses were performed for two monoecious Ficus species using 12 microsatellite markers in order to strengthen our conclusions about SGS. Our results show that dioecy, more than monoecy, significantly contributes to SGS in plant populations. On average, the estimate of Sp was six times higher for dioecious Ficus species than monoecious Ficus species and it was two times higher in dioecious than monoecious plant species. Considering these results, we emphasize that the long-distance pollen dispersal mechanism in monoecious Ficus species seems to be the dominant factor in determining weak spatial genetic structure, high levels of genetic diversity, and lack of inbreeding. Although Ficus constitute a model species to study SGS, a more general comparison encompassing a wider range of plants is required in order to better understand how sexual systems affect genetic structure. PMID:24223285

  11. Mice Lacking Serotonin 2C Receptors Have increased Affective Responses to Aversive Stimuli

    PubMed Central

    Bonasera, Stephen J.; Schenk, A. Katrin; Luxenberg, Evan J.; Wang, Xidao; Basbaum, Allan; Tecott, Laurence H.

    2015-01-01

    Although central serotonergic systems are known to influence responses to noxious stimuli, mechanisms underlying serotonergic modulation of pain responses are unclear. We proposed that serotonin 2C receptors (5-HT2CRs), which are expressed within brain regions implicated in sensory and affective responses to pain, contribute to the serotonergic modulation of pain responses. In mice constitutively lacking 5-HT2CRs (2CKO mice) we found normal baseline sensory responses to noxious thermal, mechanical and chemical stimuli. In contrast, 2CKO mice exhibited a selective enhancement of affect-related ultrasonic afterdischarge vocalizations in response to footshock. Enhanced affect-related responses to noxious stimuli were also exhibited by 2CKO mice in a fear-sensitized startle assay. The extent to which a brief series of unconditioned footshocks produced enhancement of acoustic startle responses was markedly increased in 2CKO mice. As mesolimbic dopamine pathways influence affective responses to noxious stimuli, and these pathways are disinhibited in 2CKO mice, we examined the sensitivity of footshock-induced enhancement of startle to dopamine receptor blockade. Systemic administration of the dopamine D2/D3 receptor antagonist raclopride selectively reduced footshock-induced enhancement of startle without influencing baseline acoustic startle responses. We propose that 5-HT2CRs regulate affective behavioral responses to unconditioned aversive stimuli through mechanisms involving the disinhibition of ascending dopaminergic pathways. PMID:26630489

  12. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants.

    PubMed

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  13. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants

    PubMed Central

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  14. Seeing red: affect modulation and chromatic color responses on the Rorschach.

    PubMed

    Malone, Johanna C; Stein, Michelle B; Slavin-Mulford, Jenelle; Bello, Iruma; Sinclair, S Justin; Blais, Mark A

    2013-01-01

    Psychoanalytic theories suggest that color perception on the Rorschach relates to affective modulation. However, this idea has minimal empirical support. Using a clinical sample, the authors explored the cognitive and clinical correlates of Rorschach color determinants and differences among four affective modulation subtypes: Controlled, Balanced, Under-Controlled, and Flooded. Subtypes were differentiated by measures of affective regulation, reality testing/confusion, and personality traits. Initial support for the relationship of chromatic color response styles and affective modulation was found. PMID:23428172

  15. Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids?

    PubMed

    Pinto, Delia M; Blande, James D; Nykänen, Riikka; Dong, Wen-Xia; Nerg, Anne-Marja; Holopainen, Jarmo K

    2007-04-01

    Inducible terpenes and lipoxygenase pathway products, e.g., green-leaf volatiles (GLVs), are emitted by plants in response to herbivory. They are used by carnivorous arthropods to locate prey. These compounds are highly reactive with atmospheric pollutants. We hypothesized that elevated ozone (O(3)) may affect chemical communication between plants and natural enemies of herbivores by degrading signal compounds. In this study, we have used two tritrophic systems (Brassica oleracea-Plutella xylostella-Cotesia plutellae and Phaseolus lunatus-Tetranychus urticae-Phytoseiulus persimilis) to show that exposure of plants to moderately enhanced atmospheric O(3) levels (60 and 120 nl l(-1)) results in complete degradation of most herbivore-induced terpenes and GLVs, which is congruent with our hypothesis. However, orientation behavior of natural enemies was not disrupted by O(3) exposure in either tritrophic system. Other herbivore-induced volatiles, such as benzyl cyanide, a nitrile in cabbage, and methyl salicylate in lima bean, were not significantly reduced in reactions with O(3). We suggest that more atmospherically stable herbivore-induced volatile compounds can provide important long-distance plant-carnivore signals and may be used by natural enemies of herbivores to orientate in O(3)-polluted environments. PMID:17333375

  16. Plant Responses to Vegetation Proximity: A Whole Life Avoiding Shade

    PubMed Central

    Roig-Villanova, Irma; Martínez-García, Jaime F.

    2016-01-01

    In high density of vegetation, plants detect neighbors by perceiving changes in light quality through phytochrome photoreceptors. Close vegetation proximity might result in competition for resources, such as light. To face this challenge, plants have evolved two alternative strategies: to either tolerate or avoid shade. Shade-avoiding species generally adapt their development by inducing hypocotyl, stem, and petiole elongation, apical dominance and flowering, and decreasing leaf expansion and yield, a set of responses collectively known as the shade avoidance syndrome (SAS). The SAS responses have been mostly studied at the seedling stage, centered on the increase of hypocotyl elongation. After compiling the main findings about SAS responses in seedlings, this review is focused on the response to shade at adult stages of development, such as petioles of adult leaves, and the little information available on the SAS responses in reproductive tissues. We discuss these responses based on the knowledge about the molecular mechanisms and components with a role in regulating the SAS response of the hypocotyls of Arabidopsis thaliana. The transcriptional networks involved in this process, as well as the communication among the tissues that perceive the shade and the ones that respond to this stimulus will also be briefly commented. PMID:26973679

  17. Feeding Experience of Bemisia tabaci (Hemiptera: Aleyrodidae) Affects Their Performance on Different Host Plants

    PubMed Central

    Shah, M. Mostafizur Rahman; Liu, Tong-Xian

    2013-01-01

    The sweetpotato whitefly, Bemisia tabaci biotype B is extremely polyphagous with >600 species of host plants. We hypothesized that previous experience of the whitefly on a given host plant affects their host selection and performance on the plants without previous experience. We investigated the host selection for feeding and oviposition of adults and development and survival of immatures of three host-plant-experienced populations of B. tabaci, namely Bemisia-eggplant, Bemisia-tomato and Bemisia-cucumber, on their experienced host plant and each of the three other plant species (eggplant, tomato, cucumber and pepper) without previous experience. We found that the influence of previous experience of the whiteflies varied among the populations. All populations refused pepper for feeding and oviposition, whereas the Bemisia-cucumber and the Bemisia-eggplant strongly preferred cucumber. Bemisia-tomato did not show strong preference to any of the three host palnts. Development time from egg to adult eclosion varied among the populations, being shortest on eggplant, longest on pepper, and intermediate on tomato and cucumber except for the Bemisia-cucumber developed similarly on tomato and pepper. The survivorship from egg to adult eclosion of all populations was highest on eggplant (80-98%), lowest on pepper (0-20%), and intermediate on tomato and cucumber. In conclusion, the effects of previous experience of whiteflies on host selection for feeding and oviposition, development, and survivorship varied depending on host plants, and host plants play a stronger role than previous experience. Preference of feeding and oviposition by adults may not accurately reflect host suitability of immatures. These results provided important information for understanding whitefly population dynamics and dispersal among different crop systems. PMID:24146985

  18. Detection of early plant stress responses in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Behmann, Jan; Steinrücken, Jörg; Plümer, Lutz

    2014-07-01

    Early stress detection in crop plants is highly relevant, but hard to achieve. We hypothesize that close range hyperspectral imaging is able to uncover stress related processes non-destructively in the early stages which are invisible to the human eye. We propose an approach which combines unsupervised and supervised methods in order to identify several stages of progressive stress development from series of hyperspectral images. Stress of an entire plant is detected by stress response levels at pixel scale. The focus is on drought stress in barley (Hordeum vulgare). Unsupervised learning is used to separate hyperspectral signatures into clusters related to different stages of stress response and progressive senescence. Whereas all such signatures may be found in both, well watered and drought stressed plants, their respective distributions differ. Ordinal classification with Support Vector Machines (SVM) is used to quantify and visualize the distribution of progressive stages of senescence and to separate well watered from drought stressed plants. For each senescence stage a distinctive set of most relevant Vegetation Indices (VIs) is identified. The method has been applied on two experiments involving potted barley plants under well watered and drought stress conditions in a greenhouse. Drought stress is detected up to ten days earlier than using NDVI. Furthermore, it is shown that some VIs have overall relevance, while others are specific to particular senescence stages. The transferability of the method to the field is illustrated by an experiment on maize (Zea mays).

  19. Assessing Cd-induced stress from plant spectral response

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Georgiev, Georgi

    2014-10-01

    Remote sensing plays a significant role in local, regional and global monitoring of land covers. Ecological concerns worldwide determine the importance of remote sensing applications for the assessment of soil conditions, vegetation health and identification of stress-induced changes. The extensive industrial growth and intensive agricultural land-use arise the serious ecological problem of environmental pollution associated with the increasing anthropogenic pressure on the environment. Soil contamination is a reason for degradation processes and temporary or permanent decrease of the productive capacity of land. Heavy metals are among the most dangerous pollutants because of their toxicity, persistent nature, easy up-take by plants and long biological half-life. This paper takes as its focus the study of crop species spectral response to Cd pollution. Ground-based experiments were performed, using alfalfa, spring barley and pea grown in Cd contaminated soils and in different hydroponic systems under varying concentrations of the heavy metal. Cd toxicity manifested itself by inhibition of plant growth and synthesis of photosynthetic pigments. Multispectral reflectance, absorbance and transmittance, as well as red and far red fluorescence were measured and examined for their suitability to detect differences in plant condition. Statistical analysis was performed and empirical relationships were established between Cd concentration, plant growth variables and spectral response Various spectral properties proved to be indicators of plant performance and quantitative estimators of the degree of the Cd-induced stress.

  20. Factors Affecting the Distribution Pattern of Wild Plants with Extremely Small Populations in Hainan Island, China

    PubMed Central

    Chen, Yukai; Yang, Xiaobo; Yang, Qi; Li, Donghai; Long, Wenxing; Luo, Wenqi

    2014-01-01

    Understanding which factors affect the distribution pattern of extremely small populations is essential to the protection and propagation of rare and endangered plant species. In this study, we established 108 plots covering the entire Hainan Island, and measured the appearance frequency and species richness of plant species with extremely small populations, as well as the ecological environments and human disturbances during 2012–2013. We explored how the ecological environments and human activities affected the distribution pattern of these extremely small populations. Results showed that the extremely small populations underwent human disturbances and threats, and they were often found in fragmental habitats. The leading factors changing the appearance frequency of extremely small populations differed among plant species, and the direct factors making them susceptible to extinction were human disturbances. The peak richness of extremely small populations always occurred at the medium level across environmental gradients, and their species richness always decreased with increasing human disturbances. However, the appearance frequencies of three orchid species increased with the increasing human disturbances. Our study thus indicate that knowledge on how the external factors, such as the ecological environment, land use type, roads, human activity, etc., affect the distribution of the extremely small populations should be taken for the better protecting them in the future. PMID:24830683

  1. Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China.

    PubMed

    Chen, Yukai; Yang, Xiaobo; Yang, Qi; Li, Donghai; Long, Wenxing; Luo, Wenqi

    2014-01-01

    Understanding which factors affect the distribution pattern of extremely small populations is essential to the protection and propagation of rare and endangered plant species. In this study, we established 108 plots covering the entire Hainan Island, and measured the appearance frequency and species richness of plant species with extremely small populations, as well as the ecological environments and human disturbances during 2012-2013. We explored how the ecological environments and human activities affected the distribution pattern of these extremely small populations. Results showed that the extremely small populations underwent human disturbances and threats, and they were often found in fragmental habitats. The leading factors changing the appearance frequency of extremely small populations differed among plant species, and the direct factors making them susceptible to extinction were human disturbances. The peak richness of extremely small populations always occurred at the medium level across environmental gradients, and their species richness always decreased with increasing human disturbances. However, the appearance frequencies of three orchid species increased with the increasing human disturbances. Our study thus indicate that knowledge on how the external factors, such as the ecological environment, land use type, roads, human activity, etc., affect the distribution of the extremely small populations should be taken for the better protecting them in the future. PMID:24830683

  2. Signalling Network Construction for Modelling Plant Defence Response

    PubMed Central

    Miljkovic, Dragana; Stare, Tjaša; Mozetič, Igor; Podpečan, Vid; Petek, Marko; Witek, Kamil; Dermastia, Marina; Lavrač, Nada; Gruden, Kristina

    2012-01-01

    Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2) triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be utilised for

  3. Approval and disapproval: infant responsiveness to vocal affect in familiar and unfamiliar languages.

    PubMed

    Fernald, A

    1993-06-01

    In a series of 5 auditory preference experiments, 120 5-month-old infants were presented with Approval and Prohibition vocalizations in infant-directed (ID) and adult-directed (AD) English, and in ID speech in nonsense English and 3 unfamiliar languages, German, Italian, and Japanese. Dependent measures were looking-time to the side of stimulus presentation, and positive and negative facial affect. No consistent differences in looking-time were found. However, infants showed small but significant differences in facial affect in response to ID vocalizations in every language except Japanese. Infants smiled more to Approvals, and when they showed negative affect, it was more likely to occur in response to Prohibitions. Infants did not show differential affect in response to Approvals and Prohibitions in AD speech. The results indicate that young infants can discriminate affective vocal expressions in ID speech in several languages and that ID speech is more effective than AD speech in eliciting infant affect. PMID:8339687

  4. Timeless: A Large Sample Study on the Temporal Robustness of Affective Responses

    PubMed Central

    Postzich, Christopher; Blask, Katarina; Frings, Christian; Walther, Eva

    2016-01-01

    Emotion and its effects on other psychological phenomena are frequently studied by presenting emotional pictures for a short amount of time. However, the duration of exposure strongly differs across paradigms. In order to ensure the comparability of affective response elicitation across those paradigms, it is crucial to empirically validate emotional material not only with regard to the affective dimensions valence and arousal, but also with regard to varying presentation times. Despite this operational necessity for the temporal robustness of emotional material, there is only tentative empirical evidence on this issue. To close this gap, we conducted a large sample study testing for the influence of presentation time on affective response elicitation. Two hundred and forty emotional pictures were presented for either 200 or 1000 ms and were rated by 302 participants on the core affect dimensions valence and arousal. The most important finding was that affective response elicitation was comparable for 200 and 1000 ms presentation times, indicating reliable temporal robustness of affective response elicitation within the supra-liminal spectrum. Yet, a more detailed look on the data showed that presentation time impacted particularly on high arousing negative stimuli. However, because these interaction effects were exceedingly small, they must be interpreted with caution and do not endanger the main finding, namely the quite reliable temporal robustness of affective response elicitation. Results are discussed with regard to the comparability of affective response elicitation across varying paradigms. PMID:27313561

  5. The Relationship between Affective Response to Social Comparison and Academic Performance in High School

    ERIC Educational Resources Information Center

    Wehrens, Maike J. P. W.; Buunk, Abraham P.; Lubbers, Miranda J.; Dijkstra, Pieternel; Kuyper, Hans; van der Werf, Greetje P. C.

    2010-01-01

    The goal of the present study was to study the relationship between affective responses to social comparison and test scores among high school students. Our analyses showed that three types of responses to social comparison could be distinguished: an empathic, constructive, and destructive response. Whereas girls scored higher on empathic…

  6. Self-reported tolerance influences prefrontal cortex hemodynamics and affective responses.

    PubMed

    Tempest, Gavin; Parfitt, Gaynor

    2016-02-01

    The relationship between cognitive and sensory processes in the brain contributes to the regulation of affective responses (pleasure-displeasure). Exercise can be used to manipulate sensory processes (by increasing physiological demand) in order to examine the role of dispositional traits that may influence an individual's ability to cognitively regulate these responses. With the use of near infrared spectroscopy, in this study we examined the influence of self-reported tolerance upon prefrontal cortex (PFC) hemodynamics and affective responses. The hemodynamic response was measured in individuals with high or low tolerance during an incremental exercise test. Sensory manipulation was standardized against metabolic processes (ventilatory threshold [VT] and respiratory compensation point [RCP]), and affective responses were recorded. The results showed that the high-tolerance group displayed a larger hemodynamic response within the right PFC above VT (which increased above RCP). The low-tolerance group showed a larger hemodynamic response within the left PFC above VT. The high-tolerance group reported a more positive/less negative affective response above VT. These findings provide direct neurophysiological evidence of differential hemodynamic responses within the PFC that are associated with tolerance in the presence of increased physiological demands. This study supports the role of dispositional traits and previous theorizing into the underlying mechanisms (cognitive vs. sensory processes) of affective responses. PMID:26337703

  7. Eukaryotic release factor 1-2 affects Arabidopsis responses to glucose and phytohormones during germination and early seedling development

    PubMed Central

    Zhou, Xiangjun; Cooke, Peter; Li, Li

    2010-01-01

    Germination and early seedling development are coordinately regulated by glucose and phytohormones such as ABA, GA, and ethylene. However, the molecules that affect plant responses to glucose and phytohormones remain to be fully elucidated. Eukaryotic release factor 1 (eRF1) is responsible for the recognition of the stop codons in mRNAs during protein synthesis. Accumulating evidence indicates that eRF1 functions in other processes in addition to translation termination. The physiological role of eRF1-2, a member of the eRF1 family, in Arabidopsis was examined here. The eRF1-2 gene was found to be specifically induced by glucose. Arabidopsis plants overexpressing eRF1-2 were hypersensitive to glucose during germination and early seedling development. Such hypersensitivity to glucose was accompanied by a dramatic reduction of the expression of glucose-regulated genes, chlorophyll a/b binding protein and plastocyanin. The hypersensitive response was not due to the enhanced accumulation of ABA. In addition, the eRF1-2 overexpressing plants showed increased sensitivity to paclobutrazol, an inhibitor of GA biosynthesis, and exogenous GA restored their normal growth. By contrast, the loss-of-function erf1-2 mutant exhibited resistance to paclobutrazol, suggesting that eRF1-2 may exert a negative effect on the GA signalling pathway. Collectively, these data provide evidence in support of a novel role of eRF1-2 in affecting glucose and phytohormone responses in modulating plant growth and development. PMID:19939886

  8. Automatic facial responses to affective stimuli in high-functioning adults with autism spectrum disorder.

    PubMed

    Mathersul, Danielle; McDonald, Skye; Rushby, Jacqueline A

    2013-01-17

    Individuals with autism spectrum disorder (ASD) demonstrate atypical behavioural responses to affective stimuli, although the underlying mechanisms remain unclear. Investigating automatic responses to these stimuli may help elucidate these mechanisms. 18 high-functioning adults with ASDs and 18 typically developing controls viewed 54 extreme pleasant (erotica), extreme unpleasant (mutilations), and non-social neutral images from the International Affective Picture System (IAPS). Two-thirds of images received an acoustic startle probe 3s post-picture onset. Facial electromyography (EMG) activity (orbicularis, zygomaticus, corrugator), skin conductance (SCR) and cardiac responses were recorded. The adults with ASDs demonstrated typical affective startle modulation and automatic facial EMG responses but atypical autonomic (SCRs and cardiac) responses, suggesting a failure to orient to, or a deliberate effort to disconnect from, socially relevant stimuli (erotica, mutilations). These results have implications for neural systems known to underlie affective processes, including the orbitofrontal cortex and amygdala. PMID:23142408

  9. Regulation of Non-coding RNAs in Heat Stress Responses of Plants

    PubMed Central

    Zhao, Jianguo; He, Qingsong; Chen, Gang; Wang, Li; Jin, Biao

    2016-01-01

    Heat stress is an important factor limiting plant growth, development, and productivity; thus, plants have evolved special adaptive mechanisms to cope with high-temperature stress. Non-coding RNAs (ncRNAs) are a class of regulatory RNAs that play an important role in many biological processes. Recently developed advanced technologies, such as genome-wide transcriptomic analysis, have revealed that abundant ncRNAs are expressed under heat stress. Although this area of research is still in its infancy, an increasing number of several classes of regulatory ncRNA (i.e., miRNA, siRNA, and lncRNA) related to heat stress responses have been reported. In this mini-review, we discuss our current understanding of the role of ncRNAs in heat stress responses in plants, especially miRNAs, siRNAs, and their targets. For example, the miR398-CSD/CCS-HSF, miR396-WRKY6, miR159-GAMYB, and TAS1-HTT-HSF pathways regulate plant heat tolerance. We highlight the hormone/development-related miRNAs involved in heat stress, and discuss the regulatory networks of miRNA-targets. We also note that DNA methylation and alternative splicing could affect miRNA expression under heat stress, and some lncRNAs could respond to heat stress. Finally, we briefly discuss future prospects concerning the ncRNA-related mechanisms of heat stress responses in plants. PMID:27588021

  10. Regulation of Non-coding RNAs in Heat Stress Responses of Plants.

    PubMed

    Zhao, Jianguo; He, Qingsong; Chen, Gang; Wang, Li; Jin, Biao

    2016-01-01

    Heat stress is an important factor limiting plant growth, development, and productivity; thus, plants have evolved special adaptive mechanisms to cope with high-temperature stress. Non-coding RNAs (ncRNAs) are a class of regulatory RNAs that play an important role in many biological processes. Recently developed advanced technologies, such as genome-wide transcriptomic analysis, have revealed that abundant ncRNAs are expressed under heat stress. Although this area of research is still in its infancy, an increasing number of several classes of regulatory ncRNA (i.e., miRNA, siRNA, and lncRNA) related to heat stress responses have been reported. In this mini-review, we discuss our current understanding of the role of ncRNAs in heat stress responses in plants, especially miRNAs, siRNAs, and their targets. For example, the miR398-CSD/CCS-HSF, miR396-WRKY6, miR159-GAMYB, and TAS1-HTT-HSF pathways regulate plant heat tolerance. We highlight the hormone/development-related miRNAs involved in heat stress, and discuss the regulatory networks of miRNA-targets. We also note that DNA methylation and alternative splicing could affect miRNA expression under heat stress, and some lncRNAs could respond to heat stress. Finally, we briefly discuss future prospects concerning the ncRNA-related mechanisms of heat stress responses in plants. PMID:27588021

  11. Emerging Trends in Epigenetic Regulation of Nutrient Deficiency Response in Plants.

    PubMed

    Sirohi, Gunjan; Pandey, Bipin K; Deveshwar, Priyanka; Giri, Jitender

    2016-03-01

    Diverse environmental stimuli largely affect the ionic balance of soil, which have a direct effect on growth and crop yield. Details are fast emerging on the genetic/molecular regulators, at whole-genome levels, of plant responses to mineral deficiencies in model and crop plants. These genetic regulators determine the root architecture and physiological adaptations for better uptake and utilization of minerals from soil. Recent evidence also shows the potential roles of epigenetic mechanisms in gene regulation, driven by minerals imbalance. Mineral deficiency or sufficiency leads to developmental plasticity in plants for adaptation, which is preceded by a change in the pattern of gene expression. Notably, such changes at molecular levels are also influenced by altered chromatin structure and methylation patterns, or involvement of other epigenetic components. Interestingly, many of the changes induced by mineral deficiency are also inheritable in the form of epigenetic memory. Unravelling these mechanisms in response to mineral deficiency would further advance our understanding of this complex plant response. Further studies on such approaches may serve as an exciting interaction model of epigenetic and genetic regulations of mineral homeostasis in plants and designing strategies for crop improvement. PMID:26829932

  12. Heavy Metal Stress and Some Mechanisms of Plant Defense Response

    PubMed Central

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants. PMID:25688377

  13. Heavy metal stress and some mechanisms of plant defense response.

    PubMed

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants. PMID:25688377

  14. Changes in hardwood forest understory plant communities in response to European earthworm invasions.

    PubMed

    Hale, Cindy M; Frelich, Lee E; Reich, Peter B

    2006-07-01

    European earthworms are colonizing earthworm-free northern hardwood forests across North America. Leading edges of earthworm invasion provide an opportunity to investigate the response of understory plant communities to earthworm invasion and whether the species composition of the earthworm community influences that response. Four sugar maple-dominated forest sites with active earthworm invasions were identified in the Chippewa National Forest in north central Minnesota, USA. In each site, we established a 30 x 150 m sample grid that spanned a visible leading edge of earthworm invasion and sampled earthworm populations and understory vegetation over four years. Across leading edges of earthworm invasion, increasing total earthworm biomass was associated with decreasing diversity and abundance of herbaceous plants in two of four study sites, and the abundance and density of tree seedlings decreased in three of four study sites. Sample points with the most diverse earthworm species assemblage, independent of biomass, had the lowest plant diversity. Changes in understory plant community composition were most affected by increasing biomass of the earthworm species Lumbricus rubellus. Where L. rubellus was absent there was a diverse community of native herbaceous plants, but where L. rubellus biomass reached its maximum, the herbaceous-plant community was dominated by Carex pensylvanica and Arisaema triphyllum and, in some cases, was completely absent. Evidence from these forest sites suggests that earthworm invasion can lead to dramatic changes in the understory community and that the nature of these changes is influenced by the species composition of the invading earthworm community. PMID:16922315

  15. Response to enemies in the invasive plant Lythrum salicaria is genetically determined

    PubMed Central

    Joshi, Srijana; Tielbörger, Katja

    2012-01-01

    Background and Aims The enemy release hypothesis assumes that invasive plants lose their co-evolved natural enemies during introduction into the new range. This study tested, as proposed by the evolution of increased competitive ability (EICA) hypothesis, whether escape from enemies results in a decrease in defence ability in plants from the invaded range. Two straightforward aspects of the EICA are examined: (1) if invasives have lost their enemies and their defence, they should be more negatively affected by their full natural pre-invasion herbivore spectrum than their native conspecifics; and (2) the genetic basis of evolutionary change in response to enemy release in the invasive range has not been taken sufficiently into account. Methods Lythrum salicaria (purple loosestrife) from several populations in its native (Europe) and invasive range (North America) was exposed to all above-ground herbivores in replicated natural populations in the native range. The experiment was performed both with plants raised from field-collected seeds as well as with offspring of these where maternal effects were removed. Key Results Absolute and relative leaf damage was higher for introduced than for native plants. Despite having smaller height growth rate, invasive plants attained a much larger final size than natives irrespective of damage, indicating large tolerance rather than effective defence. Origin effects on response to herbivory and growth were stronger in second-generation plants, suggesting that invasive potential through enemy release has a genetic basis. Conclusions The findings support two predictions of the EICA hypothesis – a genetically determined difference between native and invasive plants in plant vigour and response to enemies – and point to the importance of experiments that control for maternal effects and include the entire spectrum of native range enemies. PMID:22492331

  16. Molecular Response of Crop Plants to Engineered Nanomaterials.

    PubMed

    Pagano, Luca; Servin, Alia D; De La Torre-Roche, Roberto; Mukherjee, Arnab; Majumdar, Sanghamitra; Hawthorne, Joseph; Marmiroli, Marta; Maestri, Elena; Marra, Robert E; Isch, Susan M; Dhankher, Om Parkash; White, Jason C; Marmiroli, Nelson

    2016-07-01

    Functional toxicology has enabled the identification of genes involved in conferring tolerance and sensitivity to engineered nanomaterial (ENM) exposure in the model plant Arabidopsis thaliana (L.) Heynh. Several genes were found to be involved in metabolic functions, stress response, transport, protein synthesis, and DNA repair. Consequently, analysis of physiological parameters, metal content (through ICP-MS quantification), and gene expression (by RT-qPCR) of A. thaliana orthologue genes were performed across different plant species of agronomic interest to highlight putative biomarkers of exposure and effect related to ENMs. This approach led to the identification of molecular markers in Solanum lycopersicum L. and Cucurbita pepo L. (tomato and zucchini) that might not only indicate exposure to ENMs (CuO, CeO2, and La2O3) but also provide mechanistic insight into response to these materials. Through Gene Ontology (GO) analysis, the target genes were mapped in complex interatomic networks representing molecular pathways, cellular components, and biological processes involved in ENM response. The transcriptional response of 38 (out of 204) candidate genes studied varied according to particle type, size, and plant species. Importantly, some of the genes studied showed potential as biomarkers of ENM exposure and effect and may be useful for risk assessment in foods and in the environment. PMID:27301997

  17. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms.

    PubMed

    Baldoni, Elena; Genga, Annamaria; Cominelli, Eleonora

    2015-01-01

    Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed. PMID:26184177

  18. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms

    PubMed Central

    Baldoni, Elena; Genga, Annamaria; Cominelli, Eleonora

    2015-01-01

    Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed. PMID:26184177

  19. Affective state and locus of control modulate the neural response to threat.

    PubMed

    Harnett, Nathaniel G; Wheelock, Muriah D; Wood, Kimberly H; Ladnier, Jordan C; Mrug, Sylvie; Knight, David C

    2015-11-01

    The ability to regulate the emotional response to threat is critical to healthy emotional function. However, the response to threat varies considerably from person-to-person. This variability may be partially explained by differences in emotional processes, such as locus of control and affective state, which vary across individuals. Although the basic neural circuitry that mediates the response to threat has been described, the impact individual differences in affective state and locus of control have on that response is not well characterized. Understanding how these factors influence the neural response to threat would provide new insight into processes that mediate emotional function. Therefore, the present study used a Pavlovian conditioning procedure to investigate the influence individual differences in locus of control, positive affect, and negative affect have on the brain and behavioral responses to predictable and unpredictable threats. Thirty-two healthy volunteers participated in a fear conditioning study in which predictable and unpredictable threats (i.e., unconditioned stimulus) were presented during functional magnetic resonance imaging (fMRI). Locus of control showed a linear relationship with learning-related ventromedial prefrontal cortex (PFC) activity such that the more external an individual's locus of control, the greater their differential response to predictable versus unpredictable threat. In addition, positive and negative affectivity showed a curvilinear relationship with dorsolateral PFC, dorsomedial PFC, and insula activity, such that those with high or low affectivity showed reduced regional activity compared to those with an intermediate level of affectivity. Further, activity within the PFC, as well as other regions including the amygdala, were linked with the peripheral emotional response as indexed by skin conductance and electromyography. The current findings demonstrate that the neural response to threat within brain regions

  20. Accumulation of N-Acetylglucosamine Oligomers in the Plant Cell Wall Affects Plant Architecture in a Dose-Dependent and Conditional Manner1[W][OPEN

    PubMed Central

    Vanholme, Bartel; Vanholme, Ruben; Turumtay, Halbay; Goeminne, Geert; Cesarino, Igor; Goubet, Florence; Morreel, Kris; Rencoret, Jorge; Bulone, Vincent; Hooijmaijers, Cortwa; De Rycke, Riet; Gheysen, Godelieve; Ralph, John; De Block, Marc; Meulewaeter, Frank; Boerjan, Wout

    2014-01-01

    To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane. PMID:24664205

  1. RAPID ASSAYS OF PLANT RESPONSES TO HERBICIDE TREATMENT

    EPA Science Inventory

    In a search for rapid responses to chemical stress, uncouplers of oxidative phosphorylation and photosynthetic inhibitors were tested on nitrite and nitrate assimilation. In addition, three herbicides--Atrazine, 2,4-D and Dinoseb--were tested for their effectiveness on affecting ...

  2. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants.

    PubMed

    Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W

    2016-06-01

    Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated. PMID:27294415

  3. Can corn plants inoculated with arbuscular mycorrhiza fungi affect soil clay assemblage?

    NASA Astrophysics Data System (ADS)

    Adamo, P.; Cozzolino, V.; Di Meo, V.; Velde, B.

    2012-04-01

    Plants can extract K from exchangeable and non-exchangeable sites in the soil clay mineral structures. The latter, known as fixed K, is usually seen as an illite layer, i.e. an anhydrous K layer that forms a 1.0 nm structural layer unit as seen by X-ray diffraction. Nutrient availability can be enhanced in the root zone by arbuscular mycorrhiza fungi. In this study, the effects of non-inoculated and Glomus intraradices inoculated corn plant growth under different experimental conditions on soil K-bearing clay minerals were identified. The soil, a Vertic Xerofluvent, was planted in corn in a 2008-2010 randomized field experiment. Bulk and rhizosphere soil sampling was carried out from May to September 2010 from fertilized plots (N200P90K160 and N200P0K160) with and without plants. According to XRD analysis, three major K-bearing minerals were present in soil: smectite-rich mixed layer mineral, illite-rich mixed layer mineral and illite. Results at 40DAS indicate extraction of K from clay minerals by plant uptake, whereas at 130DAS much of the nutrient seems to be returned to the soil. There is an apparent difference between bulk and rhizophere clays. The XRD patterns are not unequivocally affected by Glomus inoculation. There are observable changes in clay mineralogy in fallow unfertilized compared with fertilized soil. In the studied soil, the illite rich mixed-layer minerals seem to be the source of K absorbed by plants, while illite acts as sink of K released from the plant-microorganisms system at the end of the growing season and as source for the following crop.

  4. CLIMATE CONDITIONS AFFECTING THE WITHIN-PLANT SPREAD OF BROAD MITES ON AZALEA.

    PubMed

    Mechant, E; Pauwels, E; Gobin, B

    2014-01-01

    The broad mite Polyphagotarsonemus latus (Banks) is considered a major pest in potted azalea, Flanders' flagship ornamental crop of Rhododendron simsii hybrids. In addition to severe economic damage, the broad mite is dreaded for its increasing resistance to acaricides. Due to restrictions in the use of broad spectrum acaricides, Belgian azalea growers are left with only three compounds, belonging to two mode of action groups and restricted in their number of applications, for broad mite control: abamectin, milbemectin and pyrethrin. Although P. latus can be controlled with predatory mites, the high cost of this system makes it (not yet) feasible for integration into standard azalea pest management systems. Hence, a maximum efficacy of treatments with available compounds is essential. Because abamectin, milbemectin and pyrethrin are contact acaricides with limited trans laminar flow, only broad mites located on shoot tips of azalea plants will be controlled after spraying. Consequently, the efficacy of chemical treatments is influenced by the location and spread of P. latus on the plant. Unfortunately, little is known on broad mites' within-plant spread or how it is affected by climatic conditions like temperature and relative humidity. Therefore, experiments were set up to verify whether climate conditions have an effect on the location and migration of broad mites on azalea. Broad mite infected azalea plants were placed in standard growth chambers under different temperature (T:2.5-25°C) and relative humidity (RH:55-80%) treatments. Within-plant spread was determined by counting mites on the shoot tips and inner leaves of azalea plants. Results indicate that temperature and relative humidity have no significant effect on the within-plant spread of P. latus. To formulate recommendations for optimal spray conditions to maximize the efficacy of broad mite control with acaricides, further experiments on the effect of light intensity and rain are scheduled. PMID

  5. Affective Response to Physical Activity: Testing for Measurement Invariance of the Physical Activity Affect Scale across Active and Non-Active Individuals

    ERIC Educational Resources Information Center

    Carpenter, Laura C.; Tompkins, Sara Anne; Schmiege, Sarah J.; Nilsson, Renea; Bryan, Angela

    2010-01-01

    Affective responses to physical activity are assumed to play a role in exercise initiation and maintenance. The Physical Activity Affect Scale measures four dimensions of an individual's affective response to exercise. Group differences in the interpretation of scale items can impact the interpretability of mean differences, underscoring the need…

  6. A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation

    NASA Astrophysics Data System (ADS)

    Li, Fu-Rong; Peng, Shao-Lin; Chen, Bao-Ming; Hou, Yu-Ping

    2010-01-01

    Numerous studies have examined plant responses to elevated ultraviolet-B radiation at the species level. More than 140 studies conducted within the past three decades were collected for meta-analysis to generalize and examine overall responses of two main life-forms, woody plants and herbaceous plants under two supplemental UV-B levels. The analysis suggested that both life-forms would suffer an overall negative effect in total biomass under the two UV-B levels, and the reduction was 7.0-14.6% of the value at ambient UV-B radiation. Comparing the overall responses under the high supplemental UV-B level with those under the low supplemental UV-B level, woody plants showed no significant changes in any variables. As opposed to this, decreases in herbaceous plant height and specific leaf area as well as increase in herbaceous UV-B-absorbing compounds under the higher UV-B level were significantly greater than those under the lower UV-B level. With continued increases in UV-B levels, the two life-forms would show different response strategies for their different intrinsic capabilities to resist UV-B damage. Woody plants would not invest in large additional amounts of UV-B-absorbing compounds, while herbaceous plants would need to induce stronger defense mechanisms to protect themselves from the associated detrimental effects of UV-B radiation. A higher number of response variables were significantly affected by UV-B radiation for herbaceous plants than for woody plants. Most of the studied variables were not affected significantly under elevated UV-B for woody plants and exhibited very large confidence intervals. Further studies should investigate if the response to elevated UV-B radiation varies between different functional groups of woody species. To sum up, we suggest that as UV-B radiation continues to increase, grassland ecosystems should receive more attention for future vegetation management.

  7. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest

    PubMed Central

    Mo, Qifeng; Zou, Bi; Li, Yingwen; Chen, Yao; Zhang, Weixin; Mao, Rong; Ding, Yongzhen; Wang, Jun; Lu, Xiankai; Li, Xiaobo; Tang, Jianwu; Li, Zhian; Wang, Faming

    2015-01-01

    Plant N:P ratios are widely used as indices of nutrient limitation in terrestrial ecosystems, but the response of these metrics in different plant tissues to altered N and P availability and their interactions remains largely unclear. We evaluated changes in N and P concentrations, N:P ratios of new leaves (<1 yr), older leaves (>1 yr), stems and mixed fine roots of seven species after 3-years of an N and P addition experiment in a tropical forest. Nitrogen addition only increased fine root N concentrations. P addition increased P concentrations among all tissues. The N × P interaction reduced leaf and stem P concentrations, suggesting a negative effect of N addition on P concentrations under P addition. The reliability of using nutrient ratios as indices of soil nutrient availability varied with tissues: the stoichiometric metrics of stems and older leaves were more responsive indicators of changed soil nutrient availability than those of new leaves and fine roots. However, leaf N:P ratios can be a useful indicator of inter-specific variation in plant response to nutrients availability. This study suggests that older leaf is a better choice than other tissues in the assessment of soil nutrient status and predicting plant response to altered nutrients using nutrients ratios. PMID:26416169

  8. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest.

    PubMed

    Mo, Qifeng; Zou, Bi; Li, Yingwen; Chen, Yao; Zhang, Weixin; Mao, Rong; Ding, Yongzhen; Wang, Jun; Lu, Xiankai; Li, Xiaobo; Tang, Jianwu; Li, Zhian; Wang, Faming

    2015-01-01

    Plant N:P ratios are widely used as indices of nutrient limitation in terrestrial ecosystems, but the response of these metrics in different plant tissues to altered N and P availability and their interactions remains largely unclear. We evaluated changes in N and P concentrations, N:P ratios of new leaves (<1 yr), older leaves (>1 yr), stems and mixed fine roots of seven species after 3-years of an N and P addition experiment in a tropical forest. Nitrogen addition only increased fine root N concentrations. P addition increased P concentrations among all tissues. The N × P interaction reduced leaf and stem P concentrations, suggesting a negative effect of N addition on P concentrations under P addition. The reliability of using nutrient ratios as indices of soil nutrient availability varied with tissues: the stoichiometric metrics of stems and older leaves were more responsive indicators of changed soil nutrient availability than those of new leaves and fine roots. However, leaf N:P ratios can be a useful indicator of inter-specific variation in plant response to nutrients availability. This study suggests that older leaf is a better choice than other tissues in the assessment of soil nutrient status and predicting plant response to altered nutrients using nutrients ratios. PMID:26416169

  9. CO/sub 2/ and plants: The response of plants to rising levels of atmospheric carbon dioxide

    SciTech Connect

    Lemon, E.R.

    1983-01-01

    This book contains papers on the biological effects of carbon dioxide on vegetation. Topics considered include physiological responses, climatology, carbon metabolism, carbon dioxide fixation, substrates, photosynthesis, plant growth and development, plant dynamics, microbial effects, terrestrial plant communities, and aquatic plant communities.

  10. How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands

    USGS Publications Warehouse

    Stohlgren, T.J.; Schell, L.D.; Vanden, Heuvel B.

    1999-01-01

    (adjacent and distant 1000-m2 plots) in the same vegetation type overlapped just 48.6 ?? 3.6%, and the ungrazed plots and distant grazed plots overlapped 49.4 ?? 3.6%. Differences in vegetation and soils between grazed and ungrazed sites were minimal in most cases, but soil characteristics and elevation were strongly correlated with native and exotic plant diversity in the study region. For the 78 1000-m2 plots, 59.4% of the variance in total species richness was explained by percentage of silt (coefficient = 0.647, t = 5.107, P < 0.001), elevation (coefficient = 0.012, t = 5.084, P < 0.001), and total foliar cover (coefficient = 0.110, t = 2.104, P < 0.039). Only 12.8% of the variance in exotic species cover (log10cover) was explained by percentage of clay (coefficient = -0.011, t = -2.878, P < 0.005), native species richness (coefficient = -0.011, t = -2.156, P < 0.034), and log10N (coefficient = 2.827, t = 1.860, P < 0.067). Native species cover and exotic species richness and frequency were also significantly positively correlated with percentage of soil N at the 1000-m2 plot scale. Our research led to five broad generalizations about current levels of grazing in these Rocky Mountain grasslands: (1) grazing probably has little effect on native species richness at landscape scales; (2) grazing probably has little effect on the accelerated spread of most exotic plant species at landscape scales; (3) grazing affects local plant species and life-form composition and cover, but spatial variation is considerable; (4) soil characteristics, climate, and disturbances may have a greater effect on plant species diversity than do current levels of grazing; and (5) few plant species show consistent, directional responses to grazing or cessation of grazing.

  11. Ionic signaling in plant gravity and touch responses

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Fasano, Jeremiah M.; Gilroy, Simon

    2003-01-01

    Plant roots are optimized to exploit resources from the soil and as each root explores this environment it will encounter a range of biotic and abiotic stimuli to which it must respond. Therefore, each root must possess a sensory array capable of monitoring and integrating these diverse stimuli to direct the appropriate growth response. Touch and gravity represent two of the biophysical stimuli that plants must integrate. As sensing both of these signals requires mechano-transduction of biophysical forces to biochemical signaling events, it is likely that they share signal transduction elements. These common signaling components may allow for cross-talk and so integration of thigmotropic and gravitropic responses. Indeed, signal transduction events in both plant touch and gravity sensing are thought to include Ca(2+)- and pH-dependent events. Additionally, it seems clear that the systems responsible for root touch and gravity response interact to generate an integrated growth response. Thus, primary and lateral roots of Arabidopsis respond to mechanical stimuli by eliciting tropic growth that is likely part of a growth strategy employed by the root to circumvent obstacles in the soil. Also, the mechano-signaling induced by encountering an obstacle apparently down-regulates the graviperception machinery to allow this kind of avoidance response. The challenge for future research will be to define how the cellular signaling events in the root cap facilitate this signal integration and growth regulation. In addition, whether other stimuli are likewise integrated with the graviresponse via signal transduction system cross-talk is an important question that remains to be answered.

  12. Nanosecond electric pulses trigger actin responses in plant cells

    SciTech Connect

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-09-25

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  13. LTR retrotransposons, handy hitchhikers of plant regulation and stress response.

    PubMed

    Grandbastien, Marie-Angèle

    2015-04-01

    LTR retrotransposons are major components of plant genomes. They are regulated by a diverse array of external stresses and tissue culture conditions, displaying finely tuned responses to these stimuli, mostly in the form of upregulation. Second to stress conditions and tissue culture, meristems are also permissive for LTR retrotransposon expression, suggesting that a dedifferentiated cell status may represent a frequent activating condition. LTR regions are highly plastic and contain regulatory motifs similar to those of cellular genes. The activation of LTR retrotransposons results from interplay between the release of epigenetic silencing and the recruitment by LTRs of specific regulatory factors. Despite the role of LTR retrotransposons in driving plant genome diversification, convincing evidence for major mobilizations of LTR retrotransposons remains much rarer than observations of massive bursts of transcriptional upregulation. Current evidence suggests that LTR retrotransposon expression may be involved in host functional plasticity, acting as dispersed regulatory modules able to redirect stress stimuli to adjacent plant genes. This may be of crucial importance for plants that cannot escape stress, and have evolved complex and highly coordinated responses to external challenges. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity. PMID:25086340

  14. Utilization of a Response-Surface Technique in the Study of Plant Responses to Ozone and Sulfur Dioxide Mixtures 1

    PubMed Central

    Ormrod, Douglas P.; Tingey, David T.; Gumpertz, Marcia L.; Olszyk, David M.

    1984-01-01

    A second order rotatable design was used to obtain polynomial equations describing the effects of combinations of sulfur dioxide (SO2) and ozone (O3) on foliar injury and plant growth. The response surfaces derived from these equations were displayed as contour or isometric (3-dimensional) plots. The contour plots aided in the interpretation of the pollutant interactions and were judged easier to use than the isometric plots. Plants of `Grand Rapids' lettuce (Lactuca sativa L.), `Cherry Belle' radish (Raphanus sativus L.), and `Alsweet' pea (Pisum sativum L.) were grown in a controlled environment chamber and exposed to seven combinations of SO2 and O3. Injury was evaluated based on visible chlorosis and necrosis and growth was evaluated as leaf area and dry weight. Covariate measurements were used to increase precision. Radish and pea had greater injury, in general, that did lettuce; all three species were sensitive to O3, and pea was most sensitive and radish least sensitive to SO2. Leaf injury responses were relatively more affected by the pollutants than were plant growth responses in radish and pea but not in lettuce. In radish, hypocotyl growth was more sensitive to the pollutants than was leaf growth. PMID:16663598

  15. Stress interactions and mycorrhizal plant response: Understanding carbon allocation priorities

    SciTech Connect

    Andersen, C.P.; Rygiewicz, P.T.

    1991-01-01

    The paper presents a framework for studying responses of mycorrhizal roots to external stresses, including possible feedback effects, which are likely to occur. A conceptual model is presented to discuss how carbon may be involved in singular and multiple stress interactions of mycorrhizal seedlings. Recent literature linking carbon allocation and host/fungal response under natural and anthropogenic stresses is reviewed. Due to its integral role in metabolic processes, characterizing carbon and carbon allocation in controlled laboratory environments could be useful for understanding host/fungal responses to a variety of natural and anthropogenic stresses. Carbon allocation at the whole plant level reflects an integrated response which links photosynthesis to growth and maintenance processes. A root-mycocosm system is described which permits spatial separation of a portion of extramatrical hyphae growing in association with seedling roots. The results are presented in a fashion to illustrate the nature of information which can be obtained using this system. Current projects using the mycocosms include characterizing the dynamics of carbon allocation under ozone stress, and following the fate of organic pollutants. The authors believe that the system could be used to differentiate fungal and host mediated responses to a large number of other stresses, and to study a variety of physiological processes in mycorrhizal plants.

  16. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    SciTech Connect

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  17. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    DOE PAGESBeta

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involvedmore » in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.« less

  18. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability. PMID:25607953

  19. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model

    PubMed Central

    Sarlikioti, V.; de Visser, P. H. B.; Buck-Sorlin, G. H.; Marcelis, L. F. M.

    2011-01-01

    Background and Aims Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a range of different plant architectural characteristics was tested for two different seasons in order to find the optimal architecture with respect to light absorption and photosynthesis. Methods Simulations were performed with an FSPM of a greenhouse-grown tomato crop. Sensitivity analyses were carried out for leaf elevation angle, leaf phyllotaxis, leaflet angle, leaf shape, leaflet arrangement and internode length. From the results of this analysis two possible ideotypes were proposed. Four different vertical light distributions were also tested, while light absorption cumulated over the whole canopy was kept the same. Key Results Photosynthesis was augmented by 6 % in winter and reduced by 7 % in summer, when light absorption in the top part of the canopy was increased by 25 %, while not changing light absorption of the canopy as a whole. The measured plant structure was already optimal with respect to leaf elevation angle, leaflet angle and leaflet arrangement for both light absorption and photosynthesis while phyllotaxis had no effect. Increasing the length : width ratio of leaves by 1·5 or increasing internode length from 7 cm to 12 cm led to an increase of 6–10 % for light absorption and photosynthesis. Conclusions At high light intensities (summer) deeper penetration of light in the canopy improves crop photosynthesis, but not at low light intensities (winter). In particular, internode length and leaf shape affect the vertical distribution of light in the canopy. A new plant ideotype with more spacious canopy architecture due to long internodes and long and narrow leaves led to an increase in crop photosynthesis of up to 10 %. PMID:21865217

  20. Responses of hydraulics at the whole-plant level to simulated nitrogen deposition of different levels in Fraxinus mandshurica.

    PubMed

    Wang, Ai-Ying; Wang, Miao; Yang, Da; Song, Jia; Zhang, Wei-Wei; Han, Shi-Jie; Hao, Guang-You

    2016-08-01

    Nitrogen (N) deposition is expected to have great impact on forest ecosystems by affecting many aspects of plant-environmental interactions, one of which involves its influences on plant water relations through modifications of plant hydraulic architecture. However, there is a surprising lack of integrative study on tree hydraulic architecture responses to N deposition, especially at the whole-plant level. In the present study, we used a 5-year N addition experiment to simulate the effects of six different levels of N deposition (20-120 kg ha(-1) year(-1)) on growth and whole-plant hydraulic conductance of a dominant tree species (Fraxinus mandshurica Rupr.) from the typical temperate forest of NE China. The results showed that alleviation of N limitation by moderate concentrations of fertilization (20-80 kg ha(-1) year(-1)) promoted plant growth, but further N additions on top of the threshold level showed negative effects on plant growth. Growth responses of F. mandshurica seedlings to N addition of different concentrations were accompanied by corresponding changes in whole-plant hydraulic conductance; higher growth rate was accompanied by reduced whole-plant hydraulic conductance (Kplant) and higher leaf water-use efficiency. A detailed analysis on hydraulic conductance of different components of the whole-plant water transport pathway revealed that changes in root and leaf hydraulic conductance, rather than that of the stem, were responsible for Kplant responses to N fertilization. Both plant growth and hydraulic architecture responses to increasing levels of N addition were not linear, i.e., the correlation between measured parameters and N availability exhibited bell-shaped curves with peak values observed at medium levels of N fertilization. Changes in hydraulic architecture in response to fertilization found in the present study may represent an important underlying mechanism for the commonly observed changes in water-related tree performances

  1. FACTORS AFFECTING SENSITIVITY OF CHEMICAL AND ECOLOGICAL RESPONSES OF MARINE EMBAYMEMTS TO NITROGEN LOADING

    EPA Science Inventory

    This paper summarizes an ongoing examination of the primary factors that affect sensitivity of marine embayment responses to nitrogen loading. Included is a discussion of two methods for using these factors: classification of embayments into discrete sensitivity classes and norma...

  2. Detection of quantitative trait loci affecting response to crowding stress in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquaculture environmental stressors such as handling, overcrowding, sub-optimal water quality parameters and social interactions negatively impact growth, feed intake, feed efficiency, disease resistance, flesh quality and reproductive performance in rainbow trout. To identify QTL affecting response...

  3. Visualization of early stress responses in plant leaves

    NASA Astrophysics Data System (ADS)

    Chaerle, Laury; vandeVen, Martin J.; Valcke, Roland L.; Van Der Straeten, Dominique

    2002-03-01

    Plant leaves possess microscopic valves, called stomata, that enable control of transpirational water loss. In case of water shortage, stomata close, resulting in decreased transpirational cooling. The ensuing temperature increase is readily visualized by thermography. Salicylic acid, a central compound in the defense of plants against pathogens, also closes stomata in several species. In previous work, thermography permitted to monitor an increase in temperature after infection of resistant tobacco by tobacco mosaic virus, before visual symptoms appeared. Furthermore, cell death was visualized with high contrast in both tobacco and Arabidopsis. In addition to transpiration, photosynthetic assimilation is a key physiological parameter. If the amount of light absorbed by chlorophyll exceeds the capacity of the photosynthetic chain, the surplus is dissipated as light of longer wavelength. This phenomenon is known as chlorophyll fluorescence. If a plant leaf is affected by stress, photosynthesis is impaired resulting in a bigger share of non-utilized light energy emitted as fluorescence. The potential of an automated imaging setup combining thermal and fluorescence imaging was shown by monitoring spontaneous cell death in tobacco. This represents a first step to multispectral characterization of a wide range of emerging stresses, which likely affect one or both key physiological parameters.

  4. Dominant plant taxa predict plant productivity responses to CO2 enrichment across precipitation and soil gradients.

    PubMed

    Fay, Philip A; Newingham, Beth A; Polley, H Wayne; Morgan, Jack A; LeCain, Daniel R; Nowak, Robert S; Smith, Stanley D

    2015-01-01

    The Earth's atmosphere will continue to be enriched with carbon dioxide (CO2) over the coming century. Carbon dioxide enrichment often reduces leaf transpiration, which in water-limited ecosystems may increase soil water content, change species abundances and increase the productivity of plant communities. The effect of increased soil water on community productivity and community change may be greater in ecosystems with lower precipitation, or on coarser-textured soils, but responses are likely absent in deserts. We tested correlations among yearly increases in soil water content, community change and community plant productivity responses to CO2 enrichment in experiments in a mesic grassland with fine- to coarse-textured soils, a semi-arid grassland and a xeric shrubland. We found no correlation between CO2-caused changes in soil water content and changes in biomass of dominant plant taxa or total community aboveground biomass in either grassland type or on any soil in the mesic grassland (P > 0.60). Instead, increases in dominant taxa biomass explained up to 85 % of the increases in total community biomass under CO2 enrichment. The effect of community change on community productivity was stronger in the semi-arid grassland than in the mesic grassland, where community biomass change on one soil was not correlated with the change in either the soil water content or the dominant taxa. No sustained increases in soil water content or community productivity and no change in dominant plant taxa occurred in the xeric shrubland. Thus, community change was a crucial driver of community productivity responses to CO2 enrichment in the grasslands, but effects of soil water change on productivity were not evident in yearly responses to CO2 enrichment. Future research is necessary to isolate and clarify the mechanisms controlling the temporal and spatial variations in the linkages among soil water, community change and plant productivity responses to CO2 enrichment. PMID

  5. Different Factors Affecting Short Circuit Behavior of a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Samaan, Nader A.; Gevorgian, Vahan; Li, Jun; Pasupulati, Subbaiah

    2013-01-31

    A wind power plant consists of a large number of turbines interconnected by underground cable. A pad-mount transformer at each turbine steps up the voltage from generating voltage (690 V) to a medium voltage (34.5 kV). All turbines in the plant are connected to the substation transformer where the voltage is stepped up to the transmission level. An important aspect of wind power plant (WPP) impact studies is to evaluate the short-circuit (SC) current contribution of the plant into the transmission network under different fault conditions. This task can be challenging to protection engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short circuit behavior of a wind power plant for different types of faults. The impact of wind turbine types, the transformer configuration, and the reactive compensation capacitor will be investigated. The voltage response at different buses will be observed. Finally, the SC line currents will be presented along with its symmetrical components.

  6. Different Factors Affecting Short Circuit Behavior of a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Samaan, Nader A.; Gevorgian, Vahan; Li, Jun; Pasupulati, Subbaiah

    2010-12-21

    A wind power plant consists of a large number of turbines interconnected by underground cable. A pad-mount transformer at each turbine steps up the voltage from generating voltage (690 V) to a medium voltage (34.5 kV). All turbines in the plant are connected to the substation transformer where the voltage is stepped up to the transmission level. An important aspect of wind power plant (WPP) impact studies is to evaluate the short-circuit (SC) current contribution of the plant into the transmission network under different fault conditions. This task can be challenging to protection engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short circuit behavior of a wind power plant for different types of faults. The impact of wind turbine types, the transformer configuration, and the reactive compensation capacitor will be investigated. The voltage response at different buses will be observed. Finally, the SC line currents will be presented along with its symmetrical components.

  7. Do postfire mulching treatments affect plant community recovery in California coastal sage scrub lands?

    PubMed

    McCullough, Sarah A; Endress, Bryan A

    2012-01-01

    In recent years, the use of postfire mulch treatments to stabilize slopes and reduce soil erosion in shrubland ecosystems has increased; however, the potential effects on plant recovery have not been examined. To evaluate the effects of mulching treatments on postfire plant recovery in southern California coastal sage scrub, we conducted a field experiment with three experimental treatments, consisting of two hydromulch products and an erosion control blanket, plus a control treatment. The area burned in 2007, and treatments were applied to six plot blocks before the 2008 growing season. Treatment effects on plant community recovery were analyzed with a mixed effects ANOVA analysis using a univariate repeated measures approach. Absolute plant cover increased from 13 to 90% by the end of the second growing season, and the mean relative cover of exotic species was 32%. The two hydromulch treatments had no effect on any plant community recovery response variable measured. For the erosion control blanket treatment, the amount of bare ground cover at the end of the second growing season was significantly lower (P = 0.01), and greater shrub height was observed (P < 0.01). We conclude that postfire mulch treatments did not provide either a major benefit or negative impact to coastal sage scrub recovery on the study area. PMID:22042409

  8. Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases.

    PubMed

    Carter, Laura J; Williams, Mike; Böttcher, Christine; Kookana, Rai S

    2015-10-20

    The detection of a range of active pharmaceutical ingredients (APIs) in the soil environment has led to a number of publications demonstrating uptake by crops, however very few studies have explored the potential for impacts on plant development as a result of API uptake. This study investigated the effect of carbamazepine and verapamil (0.005-10 mg/kg) on a range of plant responses in zucchini (Cucurbita pepo). Uptake increased in a dose-dependent manner, with maximum leaf concentrations of 821.9 and 2.2 mg/kg for carbamazepine and verapamil, respectively. Increased carbamazepine uptake by zucchini resulted in a decrease in above (<60%) and below (<30%) ground biomass compared to the controls (p < 0.05). At soil concentrations >4 mg/kg the mature leaves suffered from burnt edges and white spots as well as a reduction in photosynthetic pigments but no such effects were seen for verapamil. For both APIs, further investigations revealed significant differences in the concentrations of selected plant hormones (auxins, cytokinins, abscisic acid and jasmonates), and in the nutrient composition of the leaves in comparison to the controls (p < 0.05). This is some of the first research to demonstrate that the exposure of plants to APIs is likely to cause impacts on plant development with unknown implications. PMID:26418514

  9. Herbivore responses to plants grown in enriched carbon dioxide atmospheres

    SciTech Connect

    Lincoln, D.E.

    1990-05-01

    Our initial study of sagebrush and grasshopper responses to elevated and historical carbon dioxide atmospheres is complete and has been accepted for publication. The study on Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide has completed and the manuscript has been submitted for publication. We have completed the study of plant growth under two nutrient and carbon dioxide regimes and grasshopper feeding responses. The study of a specialist feeding caterpillar, the cabbage butterfly, and a mustard hostplant has recently been completed. We were able to identify the principal allelochemicals of the mustard plants, butenyl and pentenyl isothiocyanates, by combined gas chromatography and mass spectrometry. Measurement of these chemicals has been a critical component of this study since these compounds contain nitrogen and sulphur and act as a feeding stimulant to the caterpillar. This insect responds to elevated carbon dioxide by consuming more leaves and we can now say that this is not due to a change in the feeding stimulants. Reduced leaf protein content is a critical factor for even specialist feeding insect herbivores under elevated carbon dioxide conditions. The study on Grasshopper Population Responses to Enriched Carbon Dioxide Concentration is currently in progress at the Duke University Phytotron. We have changed hostplant species in order to complement the investigations of carbon dioxide effects on tallgrass prairie. Specifically, we are using big bluestem, Andropogon geradii, as the host plant to feed to the grasshoppers. This experiment will be completed in July 1990.

  10. A Review of Auxin Response Factors (ARFs) in Plants

    PubMed Central

    Li, Si-Bei; Xie, Zong-Zhou; Hu, Chun-Gen; Zhang, Jin-Zhi

    2016-01-01

    Auxin is a key regulator of virtually every aspect of plant growth and development from embryogenesis to senescence. Previous studies have indicated that auxin regulates these processes by controlling gene expression via a family of functionally distinct DNA-binding auxin response factors (ARFs). ARFs are likely components that confer specificity to auxin response through selection of target genes as transcription factors. They bind to auxin response DNA elements (AuxRE) in the promoters of auxin-regulated genes and either activate or repress transcription of these genes depending on a specific domain in the middle of the protein. Genetic studies have implicated various ARFs in distinct developmental processes through loss-of-function mutant analysis. Recent advances have provided information on the regulation of ARF gene expression, the role of ARFs in growth and developmental processes, protein–protein interactions of ARFs and target genes regulated by ARFs in plants. In particular, protein interaction and structural studies of ARF proteins have yielded novel insights into the molecular basis of auxin-regulated transcription. These results provide the foundation for predicting the contributions of ARF genes to the biology of other plants. PMID:26870066

  11. A novel regulatory circuit underlying plant response to canopy shade

    PubMed Central

    Carabelli, Monica; Possenti, Marco; Sessa, Giovanna; Ciolfi, Andrea; Sassi, Massimiliano; Morelli, Giorgio

    2008-01-01

    A plant growing in the field has the unique ability to sense the presence of other plants growing near by and adjust its growth rate accordingly. This ability to detect neighbors, which is referred to as shade avoidance response, is mediated by members of the phytochrome family which detect light in the red (R) and far-red (FR) region of the spectrum. Work done by several laboratories has shown that low R/FR provides the signal for shade avoidance response during which the elongation of stem-like organs occurs at the expense of leaf development. However, the mechanism by which the low R/FR signal is transduced to attenuate leaf development has remained largely unknown. In the August issue of Genes and Development, we have shown that low R/FR rapidly and transiently arrests the growth of the leaf primordium. By exploiting mutant analysis in combination with genome wide expression profiling, we have identified a novel regulatory circuit underlying plant response to canopy shade. Together, the data demonstrate that the growth arrest induced by low R/FR depends on auxin-induced cytokinin breakdown in pre-procambial cells of developing primordia. In this addendum, we discuss open questions to be addressed in the future. PMID:19704735

  12. A novel regulatory circuit underlying plant response to canopy shade.

    PubMed

    Carabelli, Monica; Possenti, Marco; Sessa, Giovanna; Ciolfi, Andrea; Sassi, Massimiliano; Morelli, Giorgio; Ruberti, Ida

    2008-02-01

    A plant growing in the field has the unique ability to sense the presence of other plants growing near by and adjust its growth rate accordingly. This ability to detect neighbors, which is referred to as shade avoidance response, is mediated by members of the phytochrome family which detect light in the red (R) and far-red (FR) region of the spectrum. Work done by several laboratories has shown that low R/FR provides the signal for shade avoidance response during which the elongation of stem-like organs occurs at the expense of leaf development. However, the mechanism by which the low R/FR signal is transduced to attenuate leaf development has remained largely unknown. In the August issue of Genes and Development, we have shown that low R/FR rapidly and transiently arrests the growth of the leaf primordium. By exploiting mutant analysis in combination with genome wide expression profiling, we have identified a novel regulatory circuit underlying plant response to canopy shade. Together, the data demonstrate that the growth arrest induced by low R/FR depends on auxin-induced cytokinin breakdown in pre-procambial cells of developing primordia. In this addendum, we discuss open questions to be addressed in the future. PMID:19704735

  13. Physiological responses in potato plants under continuous irradiation

    NASA Technical Reports Server (NTRS)

    Cao, W.; Tibbitts, T. W.

    1991-01-01

    The physiological responses of four potato (Solanum tuberosum L.) cultivars to continuous irradiation were determined in a controlled environment. Under a constant 18C and a constant photoperiod of 470 micromoles s-1 m-2 of photosynthetic photon flux, 'Denali' and 'Haig' grew well and produced large plant and tuber dry weights when harvested 56 days after transplanting. 'Kennebec' and 'Superior' were severely stunted, producing only 10% of the plant dry matter produced by 'Denali' and 'Haig'. The differences in leaf chlorophyll concentration and stomatal conductance were not consistent between these two groups of cultivars. The leaf net CO2 assimilation rates in 'Kennebec' and 'Superior' were lower, and intercellular CO2 partial pressures were higher than in 'Denali' and 'Haig'. These results indicate that inhibition of net CO2 assimilation in 'Kennebec' and 'Superior' was not due to a limiting amount of chlorophyll or to CO2 in the leaf tissues. Concentrations of starch in leaflets of 'Kennebec' and 'Superior' plants were only 10% of those in 'Denali' and 'Haig' plants, although soluble sugar concentrations were similar in the four cultivars. Therefore, the lower net CO2 assimilation rates in stunted 'Kennebec' and 'Superior' plants were not associated with an excess carbohydrate accumulation in the leaves.

  14. Collaborative effort to model plant response to acidic rain

    SciTech Connect

    Jacobson, J.; Kuja, A.; Shriner, D.; Perrigan, S.; Irving, P.; Lee, J.; Troiano, J.; Cullinan, V.

    1988-06-01

    Radish plants were exposed three times per week to simulated acidic rain at pH values of 2.6 to 5.4 over the course of four weeks in trials performed at Argonne, Illinois; Ithaca and Upton, New York; Corvallis, Oregon; Oak Ridge, Tennessee; and Toronto, Canada. Uniform genotype, soil media and planting techniques, treatment procedures, biological measurements, and experimental design were employed. Growth of plants differed among trials as a result of variation in greenhouse environmental conditions according to location and facilities. Larger plants underwent greater absolute but lower relative reductions in biomass after exposure to the higher levels of acidity. A generalized Mitscherlich function was used to model the effects of acidity of simulated rain or dry mass of hypocotyls using data from three laboratories that performed duplicate trials. The remaining data, from three other laboratories that performed only one trial each, were used to test the model. When the laboratory by trial effect was removed, lack of fit to the Mitscherlich function was insignificant. Thus, a single mathematical model satisfactorily characterized the relationship between acidity and mean plant response.

  15. Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels.

    PubMed

    He, Lei; Yang, Haishui; Yu, Zhenxing; Tang, Jianjun; Xu, Ligen; Chen, Xin

    2014-10-01

    Arbuscular mycorrhizal fungi (AMF) are important components of soil microbial communities, and play important role in plant growth. However, the effects of AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) on host plant under various heavy metal levels are not clear. Here we conducted a meta-analysis to compare symbiotic relationship between AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) and host plant functional groups (herbs vs. trees, and non-legumes vs. legumes) at three heavy metal levels. In the meta-analysis, we calculate the effect size (ln(RR)) by taking the natural logarithm of the response ratio of inoculated to non-inoculated shoot biomass from each study. We found that the effect size of Glomeraceae increased, but the effect size of non-Glomeraceae decreased under high level of heavy metal compared to low level. According to the effect size, both Glomeraceae and non-Glomeraceae promoted host plant growth, but had different effects under various heavy metal levels. Glomeraceae provided more benefit to host plants than non-Glomeraceae did under heavy metal condition, while non-Glomeraceae provided more benefit to host plants than Glomeraceae did under no heavy metal. AMF phylogenetic groups also differed in promoting plant functional groups under various heavy metal levels. Interacting with Glomeraceae, herbs and legumes grew better than trees and non-legumes did under high heavy metal level, while trees and legumes grew better than herbs and non-legumes did under medium heavy metal level. Interacting with non-Glomeraceae, herbs and legumes grew better than trees and non-legumes did under no heavy metal. We suggested that the combination of legume with Glomeraceae could be a useful way in the remediation of heavy metal polluted environment. PMID:25288547

  16. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species.

    PubMed

    McAdam, Scott A M; Sussmilch, Frances C; Brodribb, Timothy J; Ross, John J

    2015-01-01

    Mutants deficient in the phytohormone abscisic acid (ABA) have been instrumental in determining not only the biosynthetic pathway for this hormone, but also its physiological role in land plants. The wilty mutant of Pisum sativum is one of the classical, well-studied ABA-deficient mutants; however, this mutant remains uncharacterized at a molecular level. Using a candidate gene approach, we show that the wilty mutation affects the xanthoxin dehydrogenase step in ABA biosynthesis. To date, this step has only been represented by mutants in the ABA2 gene of Arabidopsis thaliana. Functional ABA biosynthesis appears to be critical for normal stomatal responses to changes in humidity in angiosperms, with wilty mutant plants having no increase in foliar ABA levels in response to a doubling in vapour pressure deficit, and no closure of stomata. Phylogenetic analysis of the ABA2 gene family from diverse land plants indicates that an ABA-biosynthesis-specific short-chain dehydrogenase (ABA2) evolved in the earliest angiosperms. The relatively recent origin of specificity in this step has important implications for both the evolution of ABA biosynthesis and action in land plants. PMID:26216469

  17. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus

    PubMed Central

    Balzergue, Coline; Chabaud, Mireille; Barker, David G.; Bécard, Guillaume; Rochange, Soizic F.

    2013-01-01

    The arbuscular mycorrhizal symbiosis associates soil fungi with the roots of the majority of plants species and represents a major source of soil phosphorus acquisition. Mycorrhizal interactions begin with an exchange of molecular signals between the two partners. A root signaling pathway is recruited, for which the perception of fungal signals triggers oscillations of intracellular calcium concentration. High phosphate availability is known to inhibit the establishment and/or persistence of this symbiosis, thereby favoring the direct, non-symbiotic uptake of phosphorus by the root system. In this study, Medicago truncatula plants were used to investigate the effects of phosphate supply on the early stages of the interaction. When plants were supplied with high phosphate fungal attachment to the roots was drastically reduced. An experimental system was designed to individually study the effects of phosphate supply on the fungus, on the roots, and on root exudates. These experiments revealed that the most important effects of high phosphate supply were on the roots themselves, which became unable to host mycorrhizal fungi even when these had been appropriately stimulated. The ability of the roots to perceive their fungal partner was then investigated by monitoring nuclear calcium spiking in response to fungal signals. This response did not appear to be affected by high phosphate supply. In conclusion, high levels of phosphate predominantly impact the plant host, but apparently not in its ability to perceive the fungal partner. PMID:24194742

  18. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species

    PubMed Central

    McAdam, Scott A. M.; Sussmilch, Frances C.; Brodribb, Timothy J.; Ross, John J.

    2015-01-01

    Mutants deficient in the phytohormone abscisic acid (ABA) have been instrumental in determining not only the biosynthetic pathway for this hormone, but also its physiological role in land plants. The wilty mutant of Pisum sativum is one of the classical, well-studied ABA-deficient mutants; however, this mutant remains uncharacterized at a molecular level. Using a candidate gene approach, we show that the wilty mutation affects the xanthoxin dehydrogenase step in ABA biosynthesis. To date, this step has only been represented by mutants in the ABA2 gene of Arabidopsis thaliana. Functional ABA biosynthesis appears to be critical for normal stomatal responses to changes in humidity in angiosperms, with wilty mutant plants having no increase in foliar ABA levels in response to a doubling in vapour pressure deficit, and no closure of stomata. Phylogenetic analysis of the ABA2 gene family from diverse land plants indicates that an ABA-biosynthesis-specific short-chain dehydrogenase (ABA2) evolved in the earliest angiosperms. The relatively recent origin of specificity in this step has important implications for both the evolution of ABA biosynthesis and action in land plants. PMID:26216469

  19. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen.

    PubMed

    Cárcamo, Héctor A; Herle, Carolyn E; Lupwayi, Newton Z

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  20. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen

    PubMed Central

    Cárcamo, Héctor A.; Herle, Carolyn E.; Lupwayi, Newton Z.

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  1. Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants.

    PubMed

    García-Sánchez, Mercedes; Palma, José Manuel; Ocampo, Juan Antonio; García-Romera, Inmaculada; Aranda, Elisabet

    2014-03-15

    The behaviour of tomato plants inoculated with arbuscular mycorrhizal (AM) fungi grown in the presence of aqueous extracts from dry olive residue (ADOR) was studied in order to understand how this symbiotic relationship helps plants to cope with oxidative stress caused by ADOR. The influence of AM symbiosis on plant growth and other physiological parameters was also studied. Tomato plants were inoculated with the AM fungus Funneliformis mosseae and were grown in the presence of ADOR bioremediated and non-bioremediated by Coriolopsis floccosa and Penicillium chrysogenum-10. The antioxidant response as well as parameters of oxidative damage were examined in roots and leaves. The data showed a significant increase in the biomass of AM plant growth in the presence of ADOR, regardless of whether it was bioremediated. The establishment and development of the symbiosis were negatively affected after plants were exposed to ADOR. No differences were observed in the relative water content (RWC) or PS II efficiency between non-AM and AM plants. The increase in the enzymatic activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione-S-transferase (GST; EC 2.5.1.18) were simultaneous to the reduction of MDA levels and H2O2 content in AM root growth in the presence of ADOR. Similar H2O2 levels were observed among non-AM and AM plants, although only AM plants showed reduced lipid peroxidation content, probably due to the involvement of antioxidant enzymes. The results highlight how the application of both bioremediated ADOR and AM fungi can alleviate the oxidative stress conditions, improving the growth and development of tomato plants. PMID:24594394

  2. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    PubMed

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities. PMID:26481794

  3. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change.

    PubMed

    Tomiolo, Sara; Van der Putten, Wim H; Tielbörger, Katja

    2015-05-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatically very different sites with simultaneous manipulation of soil, plant population origin, and neighbor conditions to evaluate local adaptation and possible adaptive response of four Eastern Mediterranean annual plant species to climate change. The effect of site on plant performance was negligible, but soil origin had a strong effect on fecundity, most likely due to differential water retaining ability. Competition by neighbors strongly reduced fitness. We separated the effects of the abiotic and biotic soil properties on plant performance by repeating the field experiment in a greenhouse under homogenous environmental conditions and including a soil biota manipulation treatment. As in the field, plant performance differed among soil origins and neighbor treatments. Moreover, we found plant species-specific responses to soil biota that may be best explained by the differential sensitivity to negative and positive soil biota effects. Overall, under the conditions of our experiment with two contrasting sites, biotic interactions had a strong effect on plant fitness that interacted with and eventually overrode climate. Because climate and biotic interactions covary, reciprocal transplants and climate gradient studies should consider soil biotic interactions and abiotic conditions when evaluating climate change effects on plant performance. PMID:26236843

  4. 20 CFR 220.16 - Responsibility to notify the Board of events which affect disability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Responsibility to notify the Board of events which affect disability. 220.16 Section 220.16 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... events which affect disability. If the annuitant is entitled to a disability annuity because he or she...

  5. 20 CFR 220.16 - Responsibility to notify the Board of events which affect disability.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Responsibility to notify the Board of events which affect disability. 220.16 Section 220.16 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... events which affect disability. If the annuitant is entitled to a disability annuity because he or she...

  6. 20 CFR 220.16 - Responsibility to notify the Board of events which affect disability.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Responsibility to notify the Board of events which affect disability. 220.16 Section 220.16 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... events which affect disability. If the annuitant is entitled to a disability annuity because he or she...

  7. 20 CFR 220.16 - Responsibility to notify the Board of events which affect disability.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Responsibility to notify the Board of events which affect disability. 220.16 Section 220.16 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... events which affect disability. If the annuitant is entitled to a disability annuity because he or she...

  8. 20 CFR 220.16 - Responsibility to notify the Board of events which affect disability.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Responsibility to notify the Board of events which affect disability. 220.16 Section 220.16 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... events which affect disability. If the annuitant is entitled to a disability annuity because he or she...

  9. Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: unraveling metabolic responses.

    PubMed

    Scalabrin, Elisa; Radaelli, Marta; Rizzato, Giovanni; Bogani, Patrizia; Buiatti, Marcello; Gambaro, Andrea; Capodaglio, Gabriele

    2015-08-01

    Nicotiana langsdorffii plants, wild and transgenic for the Agrobacterium rhizogenes rol C gene and the rat glucocorticoid receptor (GR) gene, were exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations). An untargeted metabolomic analysis was carried out in order to investigate the metabolic effects of the inserted genes in response to the applied stresses and to obtain a comprehensive profiling of metabolites induced during abiotic stresses. High-performance liquid chromatography separation (HPLC) coupled to high-resolution mass spectrometry (HRMS) enabled the identification of more than 200 metabolites, and statistical analysis highlighted the most relevant compounds for each plant treatment. The plants exposed to heat stress showed a unique set of induced secondary metabolites, some of which were known while others were not previously reported for this kind of stress; significant changes were observed especially in lipid composition. The role of trichome, as a protection against heat stress, is here suggested by the induction of both acylsugars and glykoalkaloids. Water deficit and Cr(VI) stresses resulted mainly in enhanced antioxidant (HCAs, polyamine) levels and in the damage of lipids, probably as a consequence of reactive oxygen species (ROS) production. Moreover, the ability of rol C expression to prevent oxidative burst was confirmed. The results highlighted a clear influence of GR modification on plant stress response, especially to water deficiency-a phenomenon whose applications should be further investigated. This study provides new insights into the field of system biology and demonstrates the importance of metabolomics in the study of plant functioning. Graphical Abstract Untargeted metabolomic analysis was applied to wild type, GR and RolC modified Nicotiana Langsdorffii plants exposed to heat, water and Cr(VI) stresses. The key metabolites, highly affected by stress application, were identified

  10. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of plant defenses in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant defense responses have been studied through a limited number of models that may have constrained our view of plant-pathogen interactions. Discovery of new defense mechanisms should be favored by broadening the range of pathogens under study. With this aim, Arabidopsis defense response to the ‘...

  11. Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana

    PubMed Central

    2014-01-01

    Fungal volatile organic compounds (VOCs) play important ecophysiological roles in mediating inter-kingdom signaling with arthropods but less is known about their interactions with plants. In this study, Arabidopsis thaliana was used as a model in order to test the physiological effects of 23 common vapor-phase fungal VOCs that included alcohols, aldehydes, ketones, and other chemical classes. After exposure to a shared atmosphere with the 23 individual VOCs for 72 hrs, seeds were assayed for rate of germination and seedling formation; vegetative plants were assayed for fresh weight and chlorophyll concentration. All but five of the VOCs tested (1-decene, 2-n-heptylfuran, nonanal, geosmin and -limonene) had a significant effect in inhibiting either germination, seedling formation or both. Seedling formation was entirely inhibited by exposure to 1-octen-3-one, 2-ethylhexanal, 3-methylbutanal, and butanal. As assayed by a combination of fresh weight and chlorophyll concentration, 2-ethylhexanal had a negative impact on two-week-old vegetative plants. Three other compounds (1-octen-3-ol, 2-ethylhexanal, and 2-heptylfuran) decreased fresh weight alone. Most of the VOCs tested did not change the fresh weight or chlorophyll concentration of vegetative plants. In summary, when tested as single compounds, fungal VOCs affected A. thaliana in positive, negative or neutral ways. PMID:25045602

  12. Different Degrees of Plant Invasion Significantly Affect the Richness of the Soil Fungal Community

    PubMed Central

    Si, Chuncan; Liu, Xueyan; Wang, Congyan; Wang, Lei; Dai, Zhicong; Qi, Shanshan; Du, Daolin

    2013-01-01

    Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process. PMID:24392015

  13. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    PubMed

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production. PMID:17803646

  14. Auxin-mediated plant architectural changes in response to shade and high temperature.

    PubMed

    de Wit, Mieke; Lorrain, Séverine; Fankhauser, Christian

    2014-05-01

    The remarkable plasticity of their architecture allows plants to adjust growth to the environment and to overcome adverse conditions. Two examples of environmental stresses that drastically affect shoot development are imminent shade and high temperature. Plants in crowded environments and plants in elevated ambient temperature display very similar phenotypic adaptations of elongated hypocotyls in seedlings and elevated and elongated leaves at later developmental stages. The comparable growth responses to shade and high temperature are partly regulated through shared signaling pathways, of which the phytohormone auxin and the phytochrome interacting factors (PIFs) are important components. During both shade- and temperature-induced elongation growth auxin biosynthesis and signaling are upregulated in a PIF-dependent manner. In this review we will discuss recent progress in our understanding of how auxin mediates architectural adaptations to shade and high temperature. PMID:24011166

  15. Testing Plant Responses to Rarified Atmospheres for Inflatable Greenhouses

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2000-01-01

    Reduced atmospheric pressures will likely be used to minimize mass and engineering requirements for plant growth habitats used in extraterrestrial applications. A chamber with high vacuum capability was used to design and begin construction of a system for testing plant responses to reduced pressure atmospheres. Several preliminary tests were conducted to evaluate chamber suitability for plant tests and to determine performance of thermal and vacuum systems at ambient and reduced pressure atmospheres down to 0.1 atm. The first tests consisted of measurements of internal gas volume and leakage rate. The method for volume determination was quite sensitive and will be needed for plant gas exchange measurements and calculations. This information will also be used in conjunction with the leak rate. Measured leak rates on the order of 0.46 mm Hg/min at 76 mm Hg pressure are low enough to conduct sensitive carbon dioxide exchange rate measurements at reduced pressure given an adequate plant sample (0.5 to 1.0 sq m area). A test rack with lighting provided by three high-pressure sodium vapor lamps was built to accommodate both short-term and long-term plant responses. Initial short-term experiments with lettuce showed that a pressure of 77 mm Hg resulted in a 6.1-fold increase in the rate of water loss compared to water loss at ambient pressure. Plants were severely wilted after 30 minutes exposure to 77 mm Hg. Water loss was found to be inversely correlated with atmospheric pressure over the range of pressures from 0.2 to 1.0 atm; the rate of water loss at 0.2 atm was 4.3 times higher than water loss at ambient pressure. Older leaves showed moderate wilting during exposure to 156 mm Hg, but those exposed to 345 mm, Hg remained turgid. Results suggest a reduced atmospheric pressure limit of 0.2 to 0.3 atm for lettuce grown in a solid medium. Follow-up experiments with carbon dioxide control and control at high relative humidity (> 90 %) will be needed to further confirm

  16. Physiological responses of fenugreek seedlings and plants treated with cadmium.

    PubMed

    Zayneb, Chaâbene; Bassem, Khemakhem; Zeineb, Kamoun; Grubb, C Douglas; Noureddine, Drira; Hafedh, Mejdoub; Amine, Elleuch

    2015-07-01

    The bioaccumulation efficiency of cadmium (Cd) by fenugreek (Trigonella foenum-graecum) was examined using different concentrations of CdCl2. The germination rate was similar to control except at 10 mM Cd. However, early seedling growth was quite sensitive to the metal from the lowest Cd level. Accordingly, amylase activity was reduced substantially on treatment of seeds with 0.5, 1, and 10 mM Cd. Cadmium also affected various other plant growth parameters. Its accumulation was markedly lower in shoots as compared to roots, reducing root biomass by almost 50 %. Plants treated with 1 and 5 mM Cd presented chlorosis due to a significant reduction in chlorophyll b especially. Furthermore, at Cd concentrations greater than 0.1 mM, plants showed several signs of oxidative stress; an enhancement in root hydrogen peroxide (H2O2) level and in shoot malondialdehyde (MDA) content was observed. Conversely, antioxidant enzyme activities (superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)) increased in various plant parts. Likewise, total phenolic and flavonoid contents reached their highest values in the 0.5 mM Cd treatment, consistent with their roles in quenching low concentrations of reactive oxygen species (ROS). Consequently, maintaining oxidant and antioxidant balance may permit fenugreek to hyperaccumulate Cd and allow it to be employed in extremely Cd polluted soils for detoxification purposes. PMID:25752634

  17. Reproductive allocation in plants as affected by elevated carbon dioxide and other environmental changes: a synthesis using meta-analysis and graphical vector analysis.

    PubMed

    Wang, Xianzhong; Taub, Daniel R; Jablonski, Leanne M

    2015-04-01

    Reproduction is an important life history trait that strongly affects dynamics of plant populations. Although it has been well documented that elevated carbon dioxide (CO2) in the atmosphere greatly enhances biomass production in plants, the overall effect of elevated CO2 on reproductive allocation (RA), i.e., the proportion of biomass allocated to reproductive structures, is little understood. We combined meta-analysis with graphical vector analysis to examine the overall effect of elevated CO2 on RA and how other environmental factors, such as low nutrients, drought and elevated atmospheric ozone (O3), interacted with elevated CO2 in affecting RA in herbaceous plants. Averaged across all species of different functional groups and environmental conditions, elevated CO2 had little effect on RA (-0.9%). RA in plants of different reproductive strategies and functional groups, however, differed in response to elevated CO2. For example, RA in iteroparous wild species decreased by 8%, while RA in iteroparous crops increased significantly (+14%) at elevated CO2. RA was unaffected by CO2 in plants grown with no stress or in low-nutrient soils. RA decreased at elevated CO2 and elevated O3, but increased in response to elevated CO2 in drought-stressed plants, suggesting that elevated CO2 could ameliorate the adverse effect of drought on crop production to some extent. Our results demonstrate that elevated CO2 and other global environmental changes have the potential to greatly alter plant community composition through differential effects on RA of different plant species and thus affect the dynamics of natural and agricultural ecosystems in the future. PMID:25537120

  18. Conflicts during Response Selection Affect Response Programming: Reactions toward the Source of Stimulation

    ERIC Educational Resources Information Center

    Buetti, Simona; Kerzel, Dirk

    2009-01-01

    In the Simon effect, participants make a left or right keypress in response to a nonspatial attribute (e.g., color) that is presented on the left or right. Reaction times (RTs) increase when the response activated by the irrelevant stimulus location and the response retrieved by instruction are in conflict. The authors measured RTs and movement…

  19. A hyperparasite affects the population dynamics of a wild plant pathogen

    PubMed Central

    Tollenaere, C; Pernechele, B; Mäkinen, H S; Parratt, S R; Németh, M Z; Kovács, G M; Kiss, L; Tack, A J M; Laine, A-L

    2014-01-01

    Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of the Åland archipelago (southwest Finland). Regionally, the pathogen persists through a balance of extinctions and colonizations, yet factors affecting extinction rates remain poorly understood. Mycoparasites of the genus Ampelomyces appear as good candidates for testing the role of a hyperparasite, i.e. a parasite of other parasites, in the regulation of their fungal hosts' population dynamics. For this purpose, we first designed a quantitative PCR assay for detection of Ampelomyces spp. in field-collected samples. This newly developed molecular test was then applied to a large-scale sampling within the Åland archipelago, revealing that Ampelomyces is a widespread hyperparasite in this system, with high variability in prevalence among populations. We found that the hyperparasite was more common on leaves where multiple powdery mildew strains coexist, a pattern that may be attributed to differential exposure. Moreover, the prevalence of Ampelomyces at the plant level negatively affected the overwinter survival of its fungal host. We conclude that this hyperparasite may likely impact on its host population dynamics and argue for increased focus on the role of hyperparasites in disease dynamics. PMID:25204419

  20. A hyperparasite affects the population dynamics of a wild plant pathogen.

    PubMed

    Tollenaere, C; Pernechele, B; Mäkinen, H S; Parratt, S R; Németh, M Z; Kovács, G M; Kiss, L; Tack, A J M; Laine, A-L

    2014-12-01

    Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of the Åland archipelago (southwest Finland). Regionally, the pathogen persists through a balance of extinctions and colonizations, yet factors affecting extinction rates remain poorly understood. Mycoparasites of the genus Ampelomyces appear as good candidates for testing the role of a hyperparasite, i.e. a parasite of other parasites, in the regulation of their fungal hosts' population dynamics. For this purpose, we first designed a quantitative PCR assay for detection of Ampelomyces spp. in field-collected samples. This newly developed molecular test was then applied to a large-scale sampling within the Åland archipelago, revealing that Ampelomyces is a widespread hyperparasite in this system, with high variability in prevalence among populations. We found that the hyperparasite was more common on leaves where multiple powdery mildew strains coexist, a pattern that may be attributed to differential exposure. Moreover, the prevalence of Ampelomyces at the plant level negatively affected the overwinter survival of its fungal host. We conclude that this hyperparasite may likely impact on its host population dynamics and argue for increased focus on the role of hyperparasites in disease dynamics. PMID:25204419

  1. Ethanol Extract of Hedyotis diffusa Willd Affects Immune Responses in Normal Balb/c Mice In Vivo.

    PubMed

    Kuo, Yu-Jui; Lin, Jing-Pin; Hsiao, Yung-Ting; Chou, Guan-Ling; Tsai, Yu-Hsiang; Chiang, Su-Yin; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-01-01

    Numerous clinical anticancer drugs are obtained from natural plants and Hedyotis diffusa Willd (EEHDW) has been used as a major component in Traditional Chinese medicine formulas since a long time. Ethanol extracts of EEHDW have been shown to possess various biological activities including anticancer function in vitro. Our earlier studies have shown that EEHDW affects immune responses in WEHI-3-generated leukemia mice, but EEHDW has not been reported to affect immune responses in a normal mouse model. Herein, we investigated whether EEHDW could affect immune responses on normal murine cells in vivo. Normal BALB/c mice were orally treated with or without EEHDW at 0, 16, 32, and 64 mg/kg or 32 mg/kg by i.p. for 3 weeks, then were weighed, and blood, liver and spleen samples were collected for further experiments. Results indicated that EEHDW did not significantly affect body and liver weight but significantly increased the spleen weight by i.p. treatment when compared to control groups. Flow cytometric assays indicated that EEHDW promoted CD11b levels at 16, 32 and 64 mg/kg oral treatment, CD19 levels at 16, 32, 64 mg/kg oral treatment and i.p. treatment, and Mac-3 levels at 16, 32 and 64 mg/kg oral treatment, however, it did not significantly affect the levels of CD3. Oral treatment with 16 and 32 mg/kg of EEHDW significantly decreased macrophage phagocytosis from PBMC; 32 mg/kg of EEHDW by i.p. treatment significantly increased phagocytosis activity of macrophages obtain from the peritoneal cavity. EEHDW at 32 mg/kg by i.p. treatment led to an increase of NK cell activities compared to oil control groups. EEHDW at 32 mg/kg of EEHDW by i.p. treatment increased B- and T-cell proliferation. Based on these observations, EEHDW seems to have promoted immune responses in this murine model. PMID:26130790

  2. Spectral quality affects disease development of three pathogens on hydroponically grown plants

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the

  3. Plant species diversity affects soil-atmosphere fluxes of methane and nitrous oxide.

    PubMed

    Niklaus, Pascal A; Le Roux, Xavier; Poly, Franck; Buchmann, Nina; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Barnard, Romain L

    2016-07-01

    Plant diversity effects on ecosystem functioning can potentially interact with global climate by altering fluxes of the radiatively active trace gases nitrous oxide (N2O) and methane (CH4). We studied the effects of grassland species richness (1-16) in combination with application of fertilizer (nitrogen:phosphorus:potassium = 100:43.6:83 kg ha(-1) a(-1)) on N2O and CH4 fluxes in a long-term field experiment. Soil N2O emissions, measured over 2 years using static chambers, decreased with species richness unless fertilizer was added. N2O emissions increased with fertilization and the fraction of legumes in plant communities. Soil CH4 uptake, a process driven by methanotrophic bacteria, decreased with plant species numbers, irrespective of fertilization. Using structural equation models, we related trace gas fluxes to soil moisture, soil inorganic N concentrations, nitrifying and denitrifying enzyme activity, and the abundance of ammonia oxidizers, nitrite oxidizers, and denitrifiers (quantified by real-time PCR of gene fragments amplified from microbial DNA in soil). These analyses indicated that plant species richness increased soil moisture, which in turn increased N cycling-related activities. Enhanced N cycling increased N2O emission and soil CH4 uptake, with the latter possibly caused by removal of inhibitory ammonium by nitrification. The moisture-related indirect effects were surpassed by direct, moisture-independent effects opposite in direction. Microbial gene abundances responded positively to fertilizer but not to plant species richness. The response patterns we found were statistically robust and highlight the potential of plant biodiversity to interact with climatic change through mechanisms unrelated to carbon storage and associated carbon dioxide removal. PMID:27038993

  4. Children's Emotional and Helping Responses as a Function of Empathy and Affective Cues.

    ERIC Educational Resources Information Center

    Strayer, Janet; Chang, Anthony

    This study examined the theoretically related constructs of children's empathy, affective responsiveness, and altruistic helping. Subjects were 80 nine-year-olds. Empathy was assessed using interviews with children regarding their understanding of the emotion portrayed in, and their own emotional-cognitive responses to, a set of seven videotaped…

  5. Children Evoke Similar Affective and Instructional Responses from Their Teachers and Mothers

    ERIC Educational Resources Information Center

    Silinskas, Gintautas; Dietrich, Julia; Pakarinen, Eija; Kiuru, Noona; Aunola, Kaisa; Lerkkanen, Marja-Kristiina; Hirvonen, Riikka; Muotka, Joona; Nurmi, Jari-Erik

    2015-01-01

    In the present study, we examined the extent to which the responses of teachers and mothers toward a particular child are similar in respect to their instructional support and affect, and whether child characteristics predict these responses. The data of 373 Finnish child-teacher-mother triads (178 girls, 195 boys) were analysed. Teachers and…

  6. Affective-Motivational Brain Responses to Direct Gaze in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Kylliainen, Anneli; Wallace, Simon; Coutanche, Marc N.; Leppanen, Jukka M.; Cusack, James; Bailey, Anthony J.; Hietanen, Jari K.

    2012-01-01

    Background: It is unclear why children with autism spectrum disorders (ASD) tend to be inattentive to, or even avoid eye contact. The goal of this study was to investigate affective-motivational brain responses to direct gaze in children with ASD. To this end, we combined two measurements: skin conductance responses (SCR), a robust arousal…

  7. 20 CFR 220.175 - Responsibility to notify the Board of events which affect disability.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Responsibility to notify the Board of events which affect disability. 220.175 Section 220.175 Employees' Benefits RAILROAD RETIREMENT BOARD... Substantial Gainful Activity or Medical Improvement § 220.175 Responsibility to notify the Board of...

  8. 20 CFR 220.175 - Responsibility to notify the Board of events which affect disability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Responsibility to notify the Board of events which affect disability. 220.175 Section 220.175 Employees' Benefits RAILROAD RETIREMENT BOARD... Substantial Gainful Activity or Medical Improvement § 220.175 Responsibility to notify the Board of...

  9. 20 CFR 220.175 - Responsibility to notify the Board of events which affect disability.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Responsibility to notify the Board of events which affect disability. 220.175 Section 220.175 Employees' Benefits RAILROAD RETIREMENT BOARD... Substantial Gainful Activity or Medical Improvement § 220.175 Responsibility to notify the Board of...

  10. 20 CFR 220.175 - Responsibility to notify the Board of events which affect disability.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Responsibility to notify the Board of events which affect disability. 220.175 Section 220.175 Employees' Benefits RAILROAD RETIREMENT BOARD... Substantial Gainful Activity or Medical Improvement § 220.175 Responsibility to notify the Board of...

  11. 20 CFR 220.175 - Responsibility to notify the Board of events which affect disability.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Responsibility to notify the Board of events which affect disability. 220.175 Section 220.175 Employees' Benefits RAILROAD RETIREMENT BOARD... Substantial Gainful Activity or Medical Improvement § 220.175 Responsibility to notify the Board of...

  12. How Oppositionality, Inattention, and Hyperactivity Affect Response to Atomoxetine versus Methylphenidate: A Pooled Meta-Analysis

    ERIC Educational Resources Information Center

    van Wyk, Gregory W.; Hazell, Philip L.; Kohn, Michael R.; Granger, Renee E.; Walton, Richard J.

    2012-01-01

    Objective: To assess how threshold oppositional defiant disorder (ODD), inattention, and hyperactivity-impulsivity affect the response to atomoxetine versus methylphenidate. Method: Systematic review of randomized controlled trials (RCTs; greater than or equal to 6 weeks follow-up). The primary measure was core symptom response--greater than or…

  13. Modelling Plant and Soil Nitrogen Feedbacks Affecting Forest Carbon Gain at High CO2

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Franklin, O.; Pepper, D. A.

    2007-12-01

    Short-term, direct effects of elevated atmospheric CO2 concentrations on plant carbon gain are relatively well understood. There is considerable uncertainty, however, about longer-term effects, which are influenced by various plant and ecosystem feedbacks. A key feedback in terrestrial ecosystems occurs through changes in plant carbon (C) allocation patterns. For instance, if high CO2 were to increase C allocation to roots, then plants may experience positive feedback through improved plant nutrition. A second type of feedback, associated with decomposition of soil-organic matter, may reduce soil-nutrient availability at high CO2. This paper will consider mechanistic models of both feedbacks. Effects of high CO2 on plant C allocation will be investigated using a simple model of forest net primary production (NPP) that incorporates the primary mechanisms of plant carbon and nitrogen (N) balance. The model called MATE (Model Any Terrestrial Ecosystem) includes an equation for annual C balance that depends on light- saturated photosynthetic rate and therefore on [CO2], and an equation for N balance incorporating an expression for N uptake as a function of root mass. The C-N model is applied to a Free Air CO2 Exchange (FACE) experiment at Oak Ridge National Laboratory (ORNL) in Tennessee, USA, where closed-canopy, monoculture stands of the deciduous hardwood sweetgum ( Liquidambar styraciflua) have been growing at [CO2] of 375 and 550 ppm for ten years. Features of this experiment are that the annual NPP response to elevated CO2 has averaged approximately 25% over seven years, but that annual fine-root production has almost doubled on average, with especially large increases in later years of the experiment (Norby et al. 2006). The model provides a simple graphical approach for analysing effects of elevated CO2 and N supply on leaf/root/wood C allocation and productivity. It simulates increases in NPP and fine-root production at the ORNL FACE site that are consistent

  14. Let's not be indifferent about neutrality: Neutral ratings in the International Affective Picture System (IAPS) mask mixed affective responses.

    PubMed

    Schneider, Iris K; Veenstra, Lotte; van Harreveld, Frenk; Schwarz, Norbert; Koole, Sander L

    2016-06-01

    The International Affective Picture System (IAPS) is a picture set used by researchers to select pictures that have been prerated on valence. Researchers rely on the ratings in the IAPS to accurately reflect the degree to which the pictures elicit affective responses. Here we show that this may not always be a safe assumption. More specifically, the scale used to measure valence in the IAPS ranges from positive to negative, implying that positive and negative feelings are end-points of the same construct. This makes interpretation of midpoint, or neutral ratings, especially problematic because it is impossible to tell whether these ratings are the result of neutral, or of mixed feelings. In other words, neutral ratings may not be as neutral as researchers assume them to be. Investigating this, in this work we show that pictures that seem neutral according to the valence ratings in the IAPS indeed vary in levels of ambivalence they elicit. Furthermore, the experience of ambivalence in response to these pictures is predictive of the arousal that people report feeling when viewing these pictures. These findings are of particular importance because neutrality differs from ambivalence in its specific psychological consequences, and by relying on seemingly neutral valance ratings, researchers may unwillingly introduce these consequences into their research design, undermining their level of experimental control. (PsycINFO Database Record PMID:26950363

  15. Biomechanical responses of aquatic plants to aerial conditions

    PubMed Central

    Hamann, Elena; Puijalon, Sara

    2013-01-01

    Background and Aims Wetlands are impacted by changes in hydrological regimes that can lead to periods of low water levels. During these periods, aquatic plants experience a drastic change in the mechanical conditions that they encounter, from low gravitational and tensile hydrodynamic forces when exposed to flow under aquatic conditions, to high gravitational and bending forces under terrestrial conditions. The objective of this study was to test the capacity of aquatic plants to produce self-supporting growth forms when growing under aerial conditions by assessing their resistance to terrestrial mechanical conditions and the associated morpho-anatomical changes. Methods Plastic responses to aerial conditions were assessed by sampling Berula erecta, Hippuris vulgaris, Juncus articulatus, Lythrum salicaria, Mentha aquatica, Myosotis scorpioides, Nuphar lutea and Sparganium emersum under submerged and emergent conditions. The cross-sectional area and dry matter content (DMC) were measured in the plant organs that bear the mechanical forces, and their biomechanical properties in tension and bending were assessed. Key Results All of the species except for two had significantly higher stiffness in bending and thus an increased resistance to terrestrial mechanical conditions when growing under emergent conditions. This response was determined either by an increased allocation to strengthening tissues and thus a higher DMC, or by an increased cross-sectional area. These morpho-anatomical changes also resulted in increased strength and stiffness in tension. Conclusions The capacity of the studied species to colonize this fluctuating environment can be accounted for by a high degree of phenotypic plasticity in response to emersion. Further investigation is however needed to disentangle the finer mechanisms behind these responses (e.g. allometric relations, tissue make-up), their costs and adaptive value. PMID:24187030

  16. From facilitation to competition: temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands.

    PubMed

    Olsen, Siri L; Töpper, Joachim P; Skarpaas, Olav; Vandvik, Vigdis; Klanderud, Kari

    2016-05-01

    Biotic interactions are often ignored in assessments of climate change impacts. However, climate-related changes in species interactions, often mediated through increased dominance of certain species or functional groups, may have important implications for how species respond to climate warming and altered precipitation patterns. We examined how a dominant plant functional group affected the population dynamics of four co-occurring forb species by experimentally removing graminoids in seminatural grasslands. Specifically, we explored how the interaction between dominants and subordinates varied with climate by replicating the removal experiment across a climate grid consisting of 12 field sites spanning broad-scale temperature and precipitation gradients in southern Norway. Biotic interactions affected population growth rates of all study species, and the net outcome of interactions between dominants and subordinates switched from facilitation to competition with increasing temperature along the temperature gradient. The impacts of competitive interactions on subordinates in the warmer sites could primarily be attributed to reduced plant survival. Whereas the response to dominant removal varied with temperature, there was no overall effect of precipitation on the balance between competition and facilitation. Our findings suggest that global warming may increase the relative importance of competitive interactions in seminatural grasslands across a wide range of precipitation levels, thereby favouring highly competitive dominant species over subordinate species. As a result, seminatural grasslands may become increasingly dependent on disturbance (i.e. traditional management such as grazing and mowing) to maintain viable populations of subordinate species and thereby biodiversity under future climates. Our study highlights the importance of population-level studies replicated under different climatic conditions for understanding the underlying mechanisms of climate

  17. Reactive oxygen species in response of plants to gravity stress

    NASA Astrophysics Data System (ADS)

    Jadko, Sergiy

    2016-07-01

    Reactive oxygen species (ROS) as second messengers can induce stress response of plants. Thioredoxins (Trx) and peroxiredoxins (Prx) can function as sensors and transmitters of the ROS in stress signaling and antioxidant response. 12-14 days old tissue culture of Arabidopsis thaliana have been investigated. Hypergravity stress was induced by centrifugation at 10 and 20 g during 30 and 90 min and than intensity of spontaneous chemiluminescence (SChL/ROS content), Trx and Prx activities were determined. All experiments were repeated from 3 to 5 times and the obtained data were statistically treated. In the tissue culture under development of the stress there were an increase in intensity of SChL and Trx and Prx activities. Thus, under hypergravity stress in the plant occurred early increase in the ROS level and the ROS induced the increase in the Trx and Prx activities. Prx and Trx can also participate in the formation of stress respons as acceptors and transducers of the redox signals. Increase in the activity of these enzymes primarily aimed at increasing of the total antioxidant activity in the cells to prevent of the plant to development of oxidative degradation by ROS.

  18. Plant invasions differentially affected by diversity and dominant species in native- and exotic-dominated grasslands.

    PubMed

    Xu, Xia; Polley, H Wayne; Hofmockel, Kirsten; Daneshgar, Pedram P; Wilsey, Brian J

    2015-12-01

    Plant invasions are an increasingly serious global concern, especially as the climate changes. Here, we explored how plant invasions differed between native- and novel exotic-dominated grasslands with experimental addition of summer precipitation in Texas in 2009. Exotic species greened up earlier than natives by an average of 18 days. This was associated with a lower invasion rate early in the growing season compared to native communities. However, invasion rate did not differ significantly between native and exotic communities across all sampling times. The predictors of invasion rate differed between native and exotic communities, with invasion being negatively influenced by species richness in natives and by dominant species in exotics. Interestingly, plant invasions matched the bimodal pattern of precipitation in Temple, Texas, and did not respond to the pulse of precipitation during the summer. Our results suggest that we will need to take different approaches in understanding of invasion between native and exotic grasslands. Moreover, with anticipated increasing variability in precipitation under global climate change, plant invasions may be constrained in their response if the precipitation pulses fall outside the normal growing period of invaders. PMID:27069615

  19. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus.

    PubMed

    Li-Byarlay, Hongmei; Pittendrigh, Barry R; Murdock, Larry L

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant-insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789

  20. Fate of polycyclic aromatic hydrocarbons in plant-soil systems: Plant responses to a chemical stress in the root zone

    SciTech Connect

    Hoylman, A.M.; Walton, B.T.

    1994-01-01

    Under laboratory conditions selected to maximize root uptake, plant tissue distribution of PAH-derived {sup 14}C was largely limited to root tissue of Malilotus alba. These results suggest that plant uptake of PAHs from contaminated soil via roots, and translocation to aboveground plant tissues (stems and leaves), is a limited mechanism for transport into terrestrial food chains. However, these data also indicate that root surface sorption of PAHs may be important for plants grown in soils containing elevated concentration PAHs. Root surface sorption of PAHs may be an important route of exposure for plants in soils containing elevated concentrations of PAHS. Consequently, the root-soil interface may be the site of plant-microbial interactions in response to a chemical stress. In this study, evidence of a shift in carbon allocation to the root zone of plants exposed to phenanthrene and corresponding increases in soil respiration and heterotrophic plate counts provide evidence of a plant-microbial response to a chemical stress. The results of this study establish the importance of the root-soil interface for plants growing in PAH contaminated soil and indicate the existence of plant-microbial interactions in response to a chemical stress. These results may provide new avenues of inquiry for studies of plant toxicology, plant-microbial interactions in the rhizosphere, and environmental fates of soil contaminants. In addition, the utilization of plants to enhance the biodegradation of soil contaminants may require evaluation of plant physiological changes and plant shifts in resource allocation.

  1. Affective Compatibility between Stimuli and Response Goals: A Primer for a New Implicit Measure of Attitudes

    PubMed Central

    Eder, Andreas B.; Rothermund, Klaus; De Houwer, Jan

    2013-01-01

    We examined whether a voluntary response becomes associated with the (affective) meaning of intended response effects. Four experiments revealed that coupling a keypress with positive or negative consequences produces affective compatibility effects when the keypress has to be executed in response to positively or negatively evaluated stimulus categories. In Experiment 1, positive words were evaluated faster with a keypress that turned the words ON (versus OFF), whereas negative words were evaluated faster with a keypress that turned the words OFF (versus ON). Experiment 2 showed that this compatibility effect is reversed if an aversive tone is turned ON and OFF with keypresses. Experiment 3 revealed that keypresses acquire an affective meaning even when the association between the responses and their effects is variable and intentionally reconfigured before each trial. Experiment 4 used affective response effects to assess implicit in-group favoritism, showing that the measure is sensitive to the valence of categories and not to the valence of exemplars. Results support the hypothesis that behavioral reactions become associated with the affective meaning of the intended response goal, which has important implications for the understanding and construction of implicit attitude measures. PMID:24244450

  2. Prefrontal Cortex Haemodynamics and Affective Responses during Exercise: A Multi-Channel Near Infrared Spectroscopy Study

    PubMed Central

    Tempest, Gavin D.; Eston, Roger G.; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise. PMID:24788166

  3. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise. PMID:24788166

  4. Interrelated responses of tomato plants and the leaf miner Tuta absoluta to nitrogen supply.

    PubMed

    Larbat, R; Adamowicz, S; Robin, C; Han, P; Desneux, N; Le Bot, J

    2016-05-01

    Plant-insect interactions are strongly modified by environmental factors. This study evaluates the influence of nitrogen fertilisation on the tomato (Solanum lycopersicum L.) cv. Santa clara and the leafminer (Tuta absoluta (Meyrick), Lepidoptera: Gelechiidae). Greenhouse-grown tomato plants were fed hydroponically on a complete nutrient solution containing either a high nitrogen concentration (HN) sustaining maximum growth or a low nitrogen concentration (LN) limiting plant growth. Insect-free plants were compared with plants attacked by T. absoluta. Seven and 14 days after artificial oviposition leading to efficacious hatching and larvae development, we measured total carbon, nitrogen and soluble protein as well as defence compounds (phenolics, glycoalkaloids, polyphenol oxidase activity) in the HN versus LN plants. Only in the HN treatment did T. absoluta infestation slightly impair leaf growth and induce polyphenol oxidase (PPO) activity in the foliage. Neither the concentration of phenolic compounds and proteins nor the distribution of nitrogen within the plant was affected by T. absoluta infestation. In contrast, LN nutrition impaired T. absoluta-induced PPO activity. It decreased protein and total nitrogen concentration of plant organs and enhanced the accumulation of constitutive phenolics and tomatine. Moreover, LN nutrition impaired T. absoluta development by notably decreasing pupal weight and lengthening the development period from egg to adult. Adjusting the level of nitrogen nutrition may thus be a means of altering the life cycle of T. absoluta. This study provides a comprehensive dataset concerning interrelated responses of tomato plants and T. absoluta to nitrogen nutrition. PMID:26661406

  5. Startle response and prepulse inhibition modulation by positive- and negative-induced affect.

    PubMed

    De la Casa, Luis Gonzalo; Mena, Auxiliadora; Puentes, Andrea

    2014-02-01

    The startle response, a set of reflex behaviours intended to prepare the organism to face a potentially threatening stimulus, can be modulated by several factors as, for example, changes in affective state, or previous presentation of a weak stimulus (a phenomenon termed Pre-Pulse Inhibition [PPI]). In this paper we analyse whether the induction of positive or negative affective states in the participants modulates the startle response and the PPI phenomenon. The results revealed a decrease of the startle response and an increase of the PPI effect when registered while the participants were exposed to pleasant images (Experiment 1), and an increase of the startle response and of the PPI effect when they were exposed to a video-clip of unpleasant content (Experiment 2). These data are interpreted considering that changes in affective states correlate with changes in the startle reflex intensity, but changes in PPI might be the result of an attentional process. PMID:24188916

  6. Automatic contrast: evidence that automatic comparison with the social self affects evaluative responses.

    PubMed

    Ruys, Kirsten I; Spears, Russell; Gordijn, Ernestine H; de Vries, Nanne K

    2007-08-01

    The aim of the present research was to investigate whether unconsciously presented affective information may cause opposite evaluative responses depending on what social category the information originates from. We argue that automatic comparison processes between the self and the unconscious affective information produce this evaluative contrast effect. Consistent with research on automatic behaviour, we propose that when an intergroup context is activated, an automatic comparison to the social self may determine the automatic evaluative responses, at least for highly visible categories (e.g. sex, ethnicity). Contrary to previous research on evaluative priming, we predict automatic contrastive responses to affective information originating from an outgroup category such that the evaluative response to neutral targets is opposite to the valence of the suboptimal primes. Two studies using different intergroup contexts provide support for our hypotheses. PMID:17705936

  7. Gibberellins regulate the stem elongation rate without affecting the mature plant height of a quick development mutant of winter wheat (Triticum aestivum L.).

    PubMed

    Zhang, Ning; Xie, Yong-Dun; Guo, Hui-Jun; Zhao, Lin-Shu; Xiong, Hong-Chun; Gu, Jia-Yu; Li, Jun-Hui; Kong, Fu-Quan; Sui, Li; Zhao, Zi-Wei; Zhao, Shi-Rong; Liu, Lu-Xiang

    2016-10-01

    Gibberellin (GA) is essential for determining plant height. Alteration of GA content or GA signaling results in a dwarf or slender phenotype. Here, we characterized a novel wheat mutant, quick development (qd), in which GA regulates stem elongation but does not affect mature plant height. qd and wild-type plants did not exhibit phenotypic differences at the seedling stage. From jointing to heading stage, qd plants were taller than wild-type plants due to elongated cells. However, wild-type and qd plants were the same height at heading. Unlike wild-type plants, qd plants were sensitive to exogenous GA due to mutation of Rht-B1. With continuous GA stimulation, qd seedlings and adult plants were taller than wild-type. Thus, the GA content of qd plants might differ from that of wild-type during the growth process. Analysis of GA biosynthetic gene expression verified this hypothesis and showed that TaKAO, which is involved in catalyzing the early steps of GA biosynthesis, was differentially expressed in qd plants compared with wild-type. The bioactive GA associated gene TaGA20ox was downregulated in qd plants during the late growth stages. Measurements of endogenous GA content were consistent with the gene-expression analysis results. Consistent with the GA content variation, the first three basal internodes were longer and the last two internodes were shorter in qd than in wild-type plants. The qd mutant might be useful in dissecting the mechanism by which GA regulates stem-growing process, and it may be serve as a GA responsive semi-dwarf germplasm in breeding programs. PMID:27317908

  8. Mutations in HISTONE ACETYLTRANSFERASE1 affect sugar response and gene expression in Arabidopsis

    PubMed Central

    Heisel, Timothy J.; Li, Chun Yao; Grey, Katia M.; Gibson, Susan I.

    2013-01-01

    Nutrient response networks are likely to have been among the first response networks to evolve, as the ability to sense and respond to the levels of available nutrients is critical for all organisms. Although several forward genetic screens have been successful in identifying components of plant sugar-response networks, many components remain to be identified. Toward this end, a reverse genetic screen was conducted in Arabidopsis thaliana to identify additional components of sugar-response networks. This screen was based on the rationale that some of the genes involved in sugar-response networks are likely to be themselves sugar regulated at the steady-state mRNA level and to encode proteins with activities commonly associated with response networks. This rationale was validated by the identification of hac1 mutants that are defective in sugar response. HAC1 encodes a histone acetyltransferase. Histone acetyltransferases increase transcription of specific genes by acetylating histones associated with those genes. Mutations in HAC1 also cause reduced fertility, a moderate degree of resistance to paclobutrazol and altered transcript levels of specific genes. Previous research has shown that hac1 mutants exhibit delayed flowering. The sugar-response and fertility defects of hac1 mutants may be partially explained by decreased expression of AtPV42a and AtPV42b, which are putative components of plant SnRK1 complexes. SnRK1 complexes have been shown to function as central regulators of plant nutrient and energy status. Involvement of a histone acetyltransferase in sugar response provides a possible mechanism whereby nutritional status could exert long-term effects on plant development and metabolism. PMID:23882272

  9. Bacterial responses and interactions with plants during rhizoremediation

    PubMed Central

    Segura, Ana; Rodríguez‐Conde, Sara; Ramos, Cayo; Ramos, Juan L.

    2009-01-01

    Summary With the increase in quality of life standards and the awareness of environmental issues, the remediation of polluted sites has become a priority for society. Because of the high economic cost of physico‐chemical strategies for remediation, the use of biological tools for cleaning‐up contaminated sites is a very attractive option. Rhizoremediation, the use of rhizospheric microorganisms in the bioremediation of contaminants, is the biotechnological approach that we explore in this minireview. We focus our attention on bacterial interactions with the plant surface, responses towards root exudates, and how plants and microbes communicate. We analyse certain strategies that may improve rhizoremediation, including the utilization of endophytes, and finally we discuss several rhizoremediation strategies that have opened ways to improve biodegradation. PMID:21255277

  10. Plant Heat Adaptation: priming in response to heat stress

    PubMed Central

    Bäurle, Isabel

    2016-01-01

    Abiotic stress is a major threat to crop yield stability. Plants can be primed by heat stress, which enables them to subsequently survive temperatures that are lethal to a plant in the naïve state. This is a rapid response that has been known for many years and that is highly conserved across kingdoms. Interestingly, recent studies in Arabidopsis and rice show that this thermo-priming lasts for several days at normal growth temperatures and that it is an active process that is genetically separable from the priming itself. This is referred to as maintenance of acquired thermotolerance or heat stress memory. Such a memory conceivably has adaptive advantages under natural conditions, where heat stress often is chronic or recurring. In this review, I will focus on recent advances in the mechanistic understanding of heat stress memory. PMID:27134736

  11. Elementary Students' Responses to Questions about Plant Identification: Response Strategies in Children.

    ERIC Educational Resources Information Center

    Tull, Delena

    1994-01-01

    Nine sixth-grade students were asked to identify plants by their common names. In the event that students did not know the correct response, researchers observed a variety of avoidance strategies. The study demonstrated that students at the elementary level should be introduced to the concept of genus before more abstract levels of the botanical…

  12. Do Aging and Tactile Noise Stimulation Affect Responses to Support Surface Translations in Healthy Adults?

    PubMed Central

    Pourmoghaddam, Amir; Lee, Beom-Chan; Layne, Charles S.

    2016-01-01

    Appropriate neuromuscular responses to support surface perturbations are crucial to prevent falls, but aging-related anatomical and physiological changes affect the appropriateness and efficiency of such responses. Low-level noise application to sensory receptors has shown to be effective for postural improvement in a variety of different balance tasks, but it is unknown whether this intervention may have value for improvement of corrective postural responses. Ten healthy younger and ten healthy older adults were exposed to sudden backward translations of the support surface. Low-level noise (mechanical vibration) to the foot soles was added during random trials and temporal (response latency) and spatial characteristics (maximum center-of-pressure excursion and anterior-posterior path length) of postural responses were assessed. Mixed-model ANOVA was applied for analysis of postural response differences based on age and vibration condition. Age affected postural response characteristics, but older adults were well able to maintain balance when exposed to a postural perturbation. Low-level noise application did not affect any postural outcomes. Healthy aging affects some specific measures of postural stability, and in high-functioning older individuals, a low-level noise intervention may not be valuable. More research is needed to investigate if recurring fallers and neuropathy patients could benefit from the intervention in postural perturbation tasks. PMID:27195007

  13. Plant Flavonoids—Biosynthesis, Transport and Involvement in Stress Responses

    PubMed Central

    Petrussa, Elisa; Braidot, Enrico; Zancani, Marco; Peresson, Carlo; Bertolini, Alberto; Patui, Sonia; Vianello, Angelo

    2013-01-01

    This paper aims at analysing the synthesis of flavonoids, their import and export in plant cell compartments, as well as their involvement in the response to stress, with particular reference to grapevine (Vitis vinifera L.). A multidrug and toxic compound extrusion (MATE) as well as ABC transporters have been demonstrated in the tonoplast of grape berry, where they perform a flavonoid transport. The involvement of a glutathione S-transferase (GST) gene has also been inferred. Recently, a putative flavonoid carrier, similar to mammalian bilitranslocase (BTL), has been identified in both grape berry skin and pulp. In skin the pattern of BTL expression increases from véraison to harvest, while in the pulp its expression reaches the maximum at the early ripening stage. Moreover, the presence of BTL in vascular bundles suggests its participation in long distance transport of flavonoids. In addition, the presence of a vesicular trafficking in plants responsible for flavonoid transport is discussed. Finally, the involvement of flavonoids in the response to stress is described. PMID:23867610

  14. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  15. Warming experiments underpredict plant phenological responses to climate change

    USGS Publications Warehouse

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Allen, Jenica M.; Crimmins, Theresa M.; Betancourt, Julio L.; Travers, Steven E.; Pau, Stephanie; Regetz, James; Davies, T. Jonathan; Kraft, Nathan J.B.; Ault, Toby R.; Bolmgren, Kjell; Mazer, Susan J.; McCabe, Gregory J.; McGill, Brian J.; Parmesan, Camille; Salamin, Nicolas; Schwartz, Mark D.; Cleland, Elsa E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  16. Warming Experiments Underpredict Plant Phenological Responses to Climate Change

    NASA Technical Reports Server (NTRS)

    Wolkovich, E. M.; Cook, B. I.; Allen, J. M.; Crimmins, T. M.; Betancourt, J. L.; Travers, S. E.; Pau, S.; Regetz, J.; Davies, T. J.; Kraft, N. J. B.; Ault, T. R.; Bolmgren, K.; Mazer, S. J.; McCabe, G. J.; McGill, B. J.; Parmesan, C.; Salamin, N.; Schwartz, M. D.; Cleland, E. E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  17. Does Plant Biomass Manipulation in Static Chambers Affect Nitrous Oxide Emissions from Soils?

    PubMed

    Collier, Sarah M; Dean, Andrew P; Oates, Lawrence G; Ruark, Matthew D; Jackson, Randall D

    2016-03-01

    One of the most widespread approaches for measurement of greenhouse gas emissions from soils involves the use of static chambers. This method is relatively inexpensive, is easily replicated, and is ideally suited to plot-based experimental systems. Among its limitations is the loss of detection sensitivity with increasing chamber height, which creates challenges for deployment in systems including tall vegetation. It is not always possible to avoid inclusion of plants within chambers or to extend chamber height to fully accommodate plant growth. Thus, in many systems, such as perennial forages and biomass crops, plants growing within static chambers must either be trimmed or folded during lid closure. Currently, data on how different types of biomass manipulation affect measured results is limited. Here, we compare the effects of cutting vs. folding of biomass on nitrous oxide measurements in switchgrass ( L.) and alfalfa ( L.) systems. We report only limited evidence of treatment effects during discrete sampling events and little basis for concern that effects may intensify over time as biomass manipulation is repeatedly imposed. However, nonsignificant treatment effects that were consistently present amounted to significant overall trends in three out of the four systems studied. Such minor disparities in flux could amount to considerable quantities over time, suggesting that caution should be exercised when comparing cumulative emission values from studies using different biomass manipulation strategies. PMID:27065424

  18. The town Crepis and the country Crepis: How does fragmentation affect a plant-pollinator interaction?

    NASA Astrophysics Data System (ADS)

    Andrieu, Emilie; Dornier, Antoine; Rouifed, Soraya; Schatz, Bertrand; Cheptou, Pierre-Olivier

    2009-01-01

    In fragmented habitats, one cause of the decrease of plant diversity and abundance is the disruption of plant-animal interactions, and in particular plant-pollinator interactions. Since habitat fragmentation acts both on pollinator behaviour and plant reproduction, its consequences for the stability of such interactions are complex. An extreme case of habitat fragmentation occurs in urbanised areas where suitable habitat (in the present study small patches around ornamental trees) is embedded in a highly unsuitable environment (concrete matrix). Based on simple experiments, we ask whether pollinators can adapt their foraging behaviour in response to the amount of available resources (flowers) in the fragments and their isolation, as predicted by the optimal foraging theory. To do so we analysed the effect of fragmentation on the behaviour of pollinators visiting Crepis sancta (L.) Bornm. (Asteraceae), which forms large populations in the countryside and patchy populations in urban environments. More precisely we studied pollinator visitation rates, capitulum visit durations, capitulum search durations and capitulum size choice. Pollinators chose larger capitula in both types of populations and their foraging behaviour differed between the two population types in three ways: (1) pollinator visits were lower in urban fragmented populations, perhaps due to the lower accessibility of urban patches; (2) capitulum visit durations were longer in urban fragmented populations, a possible compensation of energy lost during flights among patches; and (3) capitulum search durations where longer in urban fragmented populations, which may represent an increase in capitulum prospecting effort. We discuss the possible impacts of such differences for plant population functioning in the two types of populations.

  19. Trichobaris weevils distinguish amongst toxic host plants by sensing volatiles that do not affect larval performance.

    PubMed

    Lee, Gisuk; Joo, Youngsung; Diezel, Celia; Lee, Eun Ju; Baldwin, Ian T; Kim, Sang-Gyu

    2016-07-01

    Herbivorous insects use plant metabolites to inform their host plant selection for oviposition. These host-selection behaviours are often consistent with the preference-performance hypothesis; females oviposit on hosts that maximize the performance of their offspring. However, the metabolites used for these oviposition choices and those responsible for differences in offspring performance remain unknown for ecologically relevant interactions. Here, we examined the host-selection behaviours of two sympatric weevils, the Datura (Trichobaris compacta) and tobacco (T. mucorea) weevils in field and glasshouse experiments with transgenic host plants specifically altered in different components of their secondary metabolism. Adult females of both species strongly preferred to feed on D. wrightii rather than on N. attenuata leaves, but T. mucorea preferred to oviposit on N. attenuata, while T. compacta oviposited only on D. wrightii. These oviposition behaviours increased offspring performance: T. compacta larvae only survived in D. wrightii stems and T. mucorea larvae survived better in N. attenuata than in D. wrightii stems. Choice assays with nicotine-free, JA-impaired, and sesquiterpene-over-produced isogenic N. attenuata plants revealed that although half of the T. compacta larvae survived in nicotine-free N. attenuata lines, nicotine did not influence the oviposition behaviours of both the nicotine-adapted and nicotine-sensitive species. JA-induced sesquiterpene volatiles are key compounds influencing T. mucorea females' oviposition choices, but these sesquiterpenes had no effect on larval performance. We conclude that adult females are able to choose the best host plant for their offspring and use chemicals different from those that influence larval performance to inform their oviposition decisions. PMID:27146082

  20. Effects of three fire-suppressant foams on the germination and physiological responses of plants.

    PubMed

    Song, Uhram; Mun, Saeromi; Waldman, Bruce; Lee, Eun Ju

    2014-10-01

    Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks. PMID:24943813

  1. Effects of Three Fire-Suppressant Foams on the Germination and Physiological Responses of Plants

    NASA Astrophysics Data System (ADS)

    Song, Uhram; Mun, Saeromi; Waldman, Bruce; Lee, Eun Ju

    2014-10-01

    Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks.

  2. Transcriptional Responses in the Hemiparasitic Plant Triphysaria versicolor to Host Plant Signals1[w

    PubMed Central

    Matvienko, Marta; Torres, Manuel J.; Yoder, John I.

    2001-01-01

    Parasitic plants in the Scrophulariaceae use chemicals released by host plant roots to signal developmental processes critical for heterotrophy. Haustoria, parasitic plant structures that attach to and invade host roots, develop on roots of the hemiparasitic plant Triphysaria versicolor within a few hours of exposure to either maize (Zea mays) root exudate or purified haustoria-inducing factors. We prepared a normalized, subtractive cDNA library enriched for transcripts differentially abundant in T. versicolor root tips treated with the allelopathic quinone 2,6-dimethoxybenzoquinone (DMBQ). Northern analyses estimated that about 10% of the cDNAs represent transcripts strongly up-regulated in roots exposed to DMBQ. Northern and reverse northern analyses demonstrated that most DMBQ-responsive messages were similarly up-regulated in T. versicolor roots exposed to maize root exudates. From the cDNA sequences we assembled a unigene set of 137 distinct transcripts and assigned functions by homology comparisons. Many of the proteins encoded by the transcripts are predicted to function in quinone detoxification, whereas others are more likely associated with haustorium development. The identification of genes transcriptionally regulated by haustorium-inducing factors provides a framework for dissecting genetic pathways recruited by parasitic plants during the transition to heterotrophic growth. PMID:11553755

  3. Seismic response for qualification of valves at nuclear plants

    SciTech Connect

    Bhargava, D.

    1996-12-01

    Power-operated valves constitute about a quarter to one-third of all safety-related components at a typical US nuclear plant. While extensive work has been done in the industry to quantify amplification factors for components such as electrical cabinets, little guidance is available to estimate amplification factors that can be applied to floor or piping anchor seismic response spectra to obtain valve responses. This paper establishes bounding amplification factors from which amplified response spectra and peak acceleration values can be obtained for the seismic qualification of valves. Parametric analyses of three representative nuclear piping systems consisting of different pipe sizes and support configurations are performed by the time-history method. Parameters such as the shape, frequency and energy content of the floor seismic spectra, peak shifting, size, weight and natural frequencies of the valves, support locations, and modal and spectral damping values are varied. Based on this study, amplified response spectra at the valve location for a variety of conditions are developed for each system. Amplification factors are then obtained by comparing spectra at the valve with the floor spectra. The peak seismic accelerations, which can be used in a valve`s static analysis, are automatically obtained form these results. They are, by definition, the zero period accelerations of the amplified response spectra at the valve.

  4. Titanium dioxide nanoparticles (100-1000 mg/l) can affect vitamin E response in Arabidopsis thaliana.

    PubMed

    Szymańska, Renata; Kołodziej, Karolina; Ślesak, Ireneusz; Zimak-Piekarczyk, Paulina; Orzechowska, Aleksandra; Gabruk, Michał; Żądło, Andrzej; Habina, Iwona; Knap, Wiesław; Burda, Květoslava; Kruk, Jerzy

    2016-06-01

    In the present study we analyze the effect of seed treatment by a range of nano-TiO2 concentrations on the growth of Arabidopsis thaliana plants, on the vitamin E content and the expression of its biosynthetic genes, as well as activity of antioxidant enzymes and lipid peroxidation. To conduct the mechanistic analysis of nano-TiO2 on plants growth and antioxidant status we applied nanoparticles concentrations that are much higher than those reported in the environment. We find that as the concentration of nano-TiO2 increases, the biomass, and chlorophyll content in 5-week-old Arabidopsis thaliana plants decrease in a concentration dependent manner. In opposite, higher nano-TiO2 concentration enhanced root growth. Our results indicate that a high concentration of nano-TiO2 induces symptoms of toxicity and elevates the antioxidant level. We also find that the expression levels of tocopherol biosynthetic genes were either down- or upregulated in response to nano-TiO2. Thermoluminescence analysis shows that higher nano-TiO2 concentrations cause lipid peroxidation. To the best of our knowledge, this is the first report concerning the effect of nano-TiO2 on vitamin E status in plants. We conclude that nano-TiO2 affects the antioxidant response in Arabidopsis thaliana plants. This could be an effect of a changes in vitamin E gene expression that is diminished under lower tested nano-TiO2 concentrations and elevated under 1000 μg/ml. PMID:27060280

  5. Affective Modulation of the Startle Response among Children at High and Low Risk for Anxiety Disorders

    PubMed Central

    Kujawa, Autumn; Glenn, Catherine R.; Hajcak, Greg; Klein, Daniel N.

    2016-01-01

    Background Identifying early markers of risk for anxiety disorders in children may aid in understanding underlying mechanisms and informing prevention efforts. Affective modulation of the startle response indexes sensitivity to pleasant and unpleasant environmental contexts and has been shown to relate to anxiety, yet the extent to which abnormalities in affect-modulated startle reflect vulnerability for anxiety disorders in children has yet to be examined. The current study assessed the effects of parental psychopathology on affective modulation of startle in offspring. Methods Nine-year-old children (N=144) with no history of anxiety or depressive disorders completed a passive picture viewing task in which eye blink startle responses were measured during the presentation of pleasant, neutral, and unpleasant images. Results Maternal anxiety was associated with distinct patterns of affective modulation of startle in offspring, such that children with maternal histories of anxiety showed potentiation of the startle response while viewing unpleasant images, but not attenuation during pleasant images, whereas children with no maternal history of anxiety exhibited attenuation of the startle response during pleasant images, but did not exhibit unpleasant potentiation—even when controlling for child symptoms of anxiety and depression. No effects of maternal depression or paternal psychopathology were observed. Conclusions These findings suggest that both enhanced startle responses in unpleasant conditions and failure to inhibit startle responses in pleasant conditions may reflect early-emerging vulnerabilities that contribute to the later development of anxiety disorders. PMID:25913397

  6. Getting a sense for signals: regulation of the plant iron deficiency response

    PubMed Central

    Hindt, Maria N.; Guerinot, Mary Lou

    2014-01-01

    Understanding the Fe deficiency response in plants is necessary for improving both plant health and the human diet, which relies on Fe from plant sources. In this review we focus on the regulation of the two major strategies for iron acquisition in plants, exemplified by the model plants Arabidopsis and rice. Critical to our knowledge of Fe homeostasis in plants is determining how Fe is sensed and how this signal is transmitted and integrated into a response. We will explore the evidence for an Fe sensor in plants and summarize the recent findings on hormones and signaling molecules which contribute to the Fe deficiency response. PMID:22483849

  7. Plant material as bioaccumulator of arsenic in soils affected by mining activities

    NASA Astrophysics Data System (ADS)

    Martínez-López, Salvadora; Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen

    2010-05-01

    fraction (oxidaizable medium extraction procedure). Arsenic concentration in leaves was positively correlated with the arsenic extracted by HCl, with the oxidizable-organic matter and sulfides fraction and with the arsenic extracted by Mehra-Jackson extraction. According to our results, As is accumulated in the leaves of the plants and is linked with iron oxides of these soils affected by mining activities.

  8. Food-cue affected motor response inhibition and self-reported dieting success: a pictorial affective shifting task

    PubMed Central

    Meule, Adrian; Lutz, Annika P. C.; Krawietz, Vera; Stützer, Judith; Vögele, Claus; Kübler, Andrea

    2014-01-01

    Behavioral inhibition is one of the basic facets of executive functioning and is closely related to self-regulation. Impulsive reactions, that is, low inhibitory control, have been associated with higher body mass index (BMI), binge eating, and other problem behaviors (e.g., substance abuse, pathological gambling, etc.). Nevertheless, studies which investigated the direct influence of food-cues on behavioral inhibition have been fairly inconsistent. In the current studies, we investigated food-cue affected behavioral inhibition in young women. For this purpose, we used a go/no-go task with pictorial food and neutral stimuli in which stimulus-response mapping is reversed after every other block (affective shifting task). In study 1, hungry participants showed faster reaction times to and omitted fewer food than neutral targets. Low dieting success and higher BMI were associated with behavioral disinhibition in food relative to neutral blocks. In study 2, both hungry and satiated individuals were investigated. Satiation did not influence overall task performance, but modulated associations of task performance with dieting success and self-reported impulsivity. When satiated, increased food craving during the task was associated with low dieting success, possibly indicating a preload-disinhibition effect following food intake. Food-cues elicited automatic action and approach tendencies regardless of dieting success, self-reported impulsivity, or current hunger levels. Yet, associations between dieting success, impulsivity, and behavioral food-cue responses were modulated by hunger and satiation. Future research investigating clinical samples and including other salient non-food stimuli as control category is warranted. PMID:24659978

  9. Influence of the Plant Defense Response to Escherichia coli O157:H7 Cell Surface Structures on Survival of That Enteric Pathogen on Plant Surfaces

    PubMed Central

    Seo, Suengwook

    2012-01-01

    Consumption of fresh and fresh-cut fruits and vegetables contaminated with Escherichia coli O157:H7 has resulted in hundreds of cases of illness and, in some instances, death. In this study, the influence of cell surface structures of E. coli O157:H7, such as flagella, curli fimbriae, lipopolysaccharides, or exopolysaccharides, on plant defense responses and on survival or colonization on the plant was investigated. The population of the E. coli O157:H7 ATCC 43895 wild-type strain was significantly lower on wild-type Arabidopsis plants than that of the 43895 flagellum-deficient mutant. The population of the E. coli O157:H7 43895 flagellum mutant was greater on both wild-type and npr1-1 mutant (nonexpressor of pathogenesis-related [PR] genes) plants and resulted in less PR gene induction, estimated based on a weak β-glucuronidase (GUS) signal, than did the 43895 wild-type strain. These results suggest that the flagella, among the other pathogen-associated molecular patterns (PAMPs), made a substantial contribution to the induction of plant defense response and contributed to the decreased numbers of the E. coli O157:H7 ATCC 43895 wild-type strain on the wild-type Arabidopsis plant. A curli-deficient E. coli O157:H7 86-24 strain survived better on wild-type Arabidopsis plants than the curli-producing wild-type 86-24 strain did. The curli-deficient E. coli O157:H7 86-24 strain exhibited a GUS signal at a level substantially lower than that of the curli-producing wild-type strain. Curli were recognized by plant defense systems, consequently affecting bacterial survival. The cell surface structures of E. coli O157:H7 have a significant impact on the induction of differential plant defense responses, thereby impacting persistence or survival of the pathogen on plants. PMID:22706044

  10. Affective responses to movie posters: differences between adolescents and young adults.

    PubMed

    Baumgartner, Emma; Laghi, Fiorenzo

    2012-01-01

    Although the link between cognition and affect in the advertising context has been demonstrated in several studies, no research to date has considered adolescents' affective responses to movie posters and their attitudes to negative and positive images. A 2 (between subjects) × 4 (within subjects) mixed-factorial experiment design comprising two groups of subjects (80 adolescents and 80 young adults) and four advertising stimuli (two highly positive images and two highly negative images) was used to test the differences in the subjects' attitudes to advertising, positive and negative affect, and viewing intentions. Although the adolescents, compared to the young adults, did not appear to have significantly stronger attitudes to emotional advertisements (ads), they showed a similar level of intensity of affective response when exposed to negative and positive images. PMID:22046997

  11. Young Children’s Affective Responses to Another’s Distress: Dynamic and Physiological Features

    PubMed Central

    Fink, Elian; Heathers, James A. J.; de Rosnay, Marc

    2015-01-01

    Two descriptive studies set out a new approach for exploring the dynamic features of children’s affective responses (sadness and interest-worry) to another’s distress. In two samples (Nstudy1 = 75; Nstudy2 = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy. PMID:25874952

  12. Automating Content Analysis of Open-Ended Responses: Wordscores and Affective Intonation

    PubMed Central

    Baek, Young Min; Cappella, Joseph N.; Bindman, Alyssa

    2014-01-01

    This study presents automated methods for predicting valence and quantifying valenced thoughts of a text. First, it examines whether Wordscores, developed by Laver, Benoit, and Garry (2003), can be adapted to reliably predict the valence of open-ended responses in a survey about bioethical issues in genetics research, and then tests a complementary and novel technique for coding the number of valenced thoughts in open-ended responses, termed Affective Intonation. Results show that Wordscores successfully predicts the valence of brief and grammatically imperfect open-ended responses, and Affective Intonation achieves comparable performance to human coders when estimating number of valenced thoughts. Both Wordscores and Affective Intonation have promise as reliable, effective, and efficient methods when researchers content-analyze large amounts of textual data systematically. PMID:25558294

  13. Young children's affective responses to another's distress: dynamic and physiological features.

    PubMed

    Fink, Elian; Heathers, James A J; de Rosnay, Marc

    2015-01-01

    Two descriptive studies set out a new approach for exploring the dynamic features of children's affective responses (sadness and interest-worry) to another's distress. In two samples (N(study1) = 75; N(study2) = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy. PMID:25874952

  14. Spatial heterogeneity in light supply affects intraspecific competition of a stoloniferous clonal plant.

    PubMed

    Wang, Pu; Lei, Jing-Pin; Li, Mai-He; Yu, Fei-Hai

    2012-01-01

    Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition) or nine ramets (with intraspecific competition) of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensity) and two heterogeneous ones differing in patch size (large and small patch treatments). The total light in the two heterogeneous treatments was the same as that in the homogeneous medium light treatment. Both decreasing light intensity and intraspecific competition significantly decreased the growth (biomass, number of ramets and total stolon length) of D. indica. As compared with the homogeneous medium light treatment, the large patch treatment significantly increased the growth of D. indica without intraspecific competition. However, the growth of D. indica with competition did not differ among the homogeneous medium light, the large and the small patch treatments. Consequently, light heterogeneity significantly increased intraspecific competition intensity, as measured by the decreased log response ratio. These results suggest that spatial heterogeneity in light supply can alter intraspecific interactions of clonal plants. PMID:22720041

  15. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus

    PubMed Central

    Li-Byarlay, Hongmei; Pittendrigh, Barry R.; Murdock, Larry L.

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant–insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789

  16. Spatial Heterogeneity in Light Supply Affects Intraspecific Competition of a Stoloniferous Clonal Plant

    PubMed Central

    Wang, Pu; Lei, Jing-Pin; Li, Mai-He; Yu, Fei-Hai

    2012-01-01

    Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition) or nine ramets (with intraspecific competition) of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensity) and two heterogeneous ones differing in patch size (large and small patch treatments). The total light in the two heterogeneous treatments was the same as that in the homogeneous medium light treatment. Both decreasing light intensity and intraspecific competition significantly decreased the growth (biomass, number of ramets and total stolon length) of D. indica. As compared with the homogeneous medium light treatment, the large patch treatment significantly increased the growth of D. indica without intraspecific competition. However, the growth of D. indica with competition did not differ among the homogeneous medium light, the large and the small patch treatments. Consequently, light heterogeneity significantly increased intraspecific competition intensity, as measured by the decreased log response ratio. These results suggest that spatial heterogeneity in light supply can alter intraspecific interactions of clonal plants. PMID:22720041

  17. Plant responses to seven Russian wheat aphid (Hemiptera: Aphididae) biotypes found in the United States.

    PubMed

    Randolph, Terri L; Peairs, Frank; Weiland, Aubrey; Rudolph, Jeffrey B; Puterka, Gary J

    2009-10-01

    The Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), is a serious wheat, Triticum aestivum L., and barley, Hordeum vulgare L., pest throughout the small grain-producing areas in the western United States. The virulency and classification of recently described Russian wheat aphid biotypes 1-7 (RWA1-7) were clarified using 24 plant differentials. These seven biotypes had been described previously using various methods and test environments; therefore, the purpose of this study was to test them all under uniform environmental conditions. RWA1 was the least virulent of the biotypes tested, with susceptible ratings observed in five plant differentials and intermediate ratings observed in four plant differentials. RWA4, RWA5, RWA6, and RWA7 had intermediate virulence. RWA4, RWA5, and RWA7 share similar responses, with susceptible responses in six plant differentials and intermediate responses in five plant differentials. Small differences within a few plant differentials separate RWA4, RWA5, and RWA7. RWA6 has susceptible responses with only four plant differentials, but 10 plant differentials had intermediate responses. RWA3 was highly virulent, with susceptible responses in 10 plant differentials and intermediate responses in five plant differentials. RWA2 was the most virulent strain tested with susceptible responses to 12 plant differentials and intermediate responses to five plant differentials. This study has demonstrated that RWA1-7 have different combinations of virulence to the plant differentials tested, thereby confirming previous Russian wheat aphid biotype designations. PMID:19886462

  18. Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae).

    PubMed

    Feng, Yi; Wratten, Steve; Sandhu, Harpinder; Keller, Michael

    2015-01-01

    The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats. PMID

  19. Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae)

    PubMed Central

    Feng, Yi; Wratten, Steve; Sandhu, Harpinder; Keller, Michael

    2015-01-01

    The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats. PMID

  20. Effects of foliage plants on human physiological and psychological responses at different temperatures

    NASA Astrophysics Data System (ADS)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  1. The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates.

    PubMed Central

    Estruch, J J; Chriqui, D; Grossmann, K; Schell, J; Spena, A

    1991-01-01

    The rolC gene of Agrobacterium rhizogenes, which drastically affects growth and development of transgenic plants, codes for a cytokinin-beta-glucosidase. Indeed, rolC protein expressed in Escherichia coli as a fusion protein hydrolyses cytokinin glucosides, thus liberating free cytokinins. Furthermore, beta-glucosidase activity present in E. coli extracts expressing the rolC protein was inhibited by affinity-purified antibodies specific for the rolC protein. Finally, rolC proteins expressed in transgenic plants were shown to be responsible for cytokinin-beta-glucosidase activity. Morphological and phytohormonal analysis, performed on transgenic plants that are somatic mosaics for the expression of the rolC gene, extend and confirm our interpretation that the developmental, physiological and morphological alterations caused by rolC expression in transgenic plants are primarily due to a modification of the cytokinin balance. These observations shed new light on the control of growth and differentiation in plants by growth factors. Images PMID:1915268

  2. Polyamines in plants: biosynthesis from arginine, and metabolic, physiological, and stress-response roles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biogenic amines in all organisms including plants affect a myriad of growth and developmental processes. Therefore, there is continued interest in understanding their (here polyamines) biosynthesis and functional roles in regulating plant metabolism, physiology and development. The role of polyamine...

  3. How does altered precipitation and annual grass invasion affect plant N uptake in a native semi-arid shrub community?

    NASA Astrophysics Data System (ADS)

    Mauritz, M.; Lipson, D.; Cleland, E. E.

    2012-12-01

    Climate change is expected to alter precipitation patterns, which will change the timing and amount of plant resources. Precipitation patterns determine water and nitrogen (N) availability, because water stimulates microbial N turnover and N transport. In order for plants to utilize water and N, they must coincide with the phenology and meet physiological requirements of the plant. As resource supply shifts, differences in species' ability to acquire resources will affect plant community composition. Semiarid ecosystems, such as shrublands in Southern California, are particularly sensitive to shifts in precipitation because they are severely water limited. This study takes advantage of the altered phenology and resource demands presented by invasive annual grasses in a native semiarid shrubland. The goal is to understand how altered precipitation patterns affect plant N uptake. Rainfall levels were manipulated to 50% and 150% of ambient levels. It is expected that higher rainfall levels promote annual grass invasion because grasses have higher water and N requirements and begin to grow earlier in the season than shrubs. A 15N tracer was added with the first rain event and plant samples were collected regularly to track the movement of N into the plants. Net soil N accumulation was determined using resin bags. Invasive grasses altered the timing and amount of N uptake but amount of rainfall had less effect on N distribution. 15N was detected sooner and at higher level in grasses than shrubs. 24hours after the first rain event 15N was detectable in grasses, 15N accumulated rapidly and peaked 2 months earlier than shrubs. Shrub 15N levels remained at pre-rain event levels for the first 2 months and began to increase at the beginning of spring, peak mid-spring and decline as the shrubs entered summer dormancy. One year later 15N levels in annual grass litter remained high, while 15N levels in shrubs returned to initial background levels as a result of resorption. 15N

  4. Emotion and hypervigilance: negative affect predicts increased P1 responses to non-negative pictorial stimuli.

    PubMed

    Schomberg, Jessica; Schöne, Benjamin; Gruber, Thomas; Quirin, Markus

    2016-06-01

    Previous research has demonstrated that negative affect influences attentional processes. Here, we investigate whether pre-experimental negative affect predicts a hypervigilant neural response as indicated by increased event-related potential amplitudes in response to neutral and positive visual stimuli. In our study, seventeen male participants filled out the German version of the positive and negative affect schedule (Watson et al. in J Pers Soc Psychol 54:1063-1070, 1988; Krohne et al. in Diagnostica 42:139-156, 1996) and subsequently watched positive (erotica, extreme sports, beautiful women) and neutral (daily activities) photographs while electroencephalogram was recorded. In line with our hypothesis, low state negative affect but not (reduced) positive affect predicted an increase in the first positive event-related potential amplitude P1 as a typical marker of increased selective attention. As this effect occurred in response to non-threatening picture conditions, negative affect may foster an individual's general hypervigilance, a state that has formerly been associated with psychopathology only. PMID:26749180

  5. Constitutive Expression of OsIAA9 Affects Starch Granules Accumulation and Root Gravitropic Response in Arabidopsis

    PubMed Central

    Luo, Sha; Li, Qianqian; Liu, Shanda; Pinas, Nicholaas M.; Tian, Hainan; Wang, Shucai

    2015-01-01

    Auxin/Indole-3-Acetic Acid (Aux/IAA) genes are early auxin response genes ecoding short-lived transcriptional repressors, which regulate auxin signaling in plants by interplay with Auxin Response Factors (ARFs). Most of the Aux/IAA proteins contain four different domains, namely Domain I, Domain II, Domain III, and Domain IV. So far all Aux/IAA mutants with auxin-related phenotypes identified in both Arabidopsis and rice (Oryza sativa) are dominant gain-of-function mutants with mutations in Domain II of the corresponding Aux/IAA proteins, suggest that Aux/IAA proteins in both Arabidopsis and rice are largely functional redundantly, and they may have conserved functions. We report here the functional characterization of a rice Aux/IAA gene, OsIAA9. RT-PCR results showed that expression of OsIAA9 was induced by exogenously applied auxin, suggesting that OsIAA9 is an auxin response gene. Bioinformatic analysis showed that OsIAA9 has a repressor motif in Domain I, a degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. By generating transgenic plants expressing GFP-OsIAA9 and examining florescence in the transgenic plants, we found that OsIAA9 is localized in the nucleus. When transfected into protoplasts isolated from rosette leaves of Arabidopsis, OsIAA9 repressed reporter gene expression, and the repression was partially released by exogenously IAA. These results suggest that OsIAA9 is a canonical Aux/IAA protein. Protoplast transfection assays showed that OsIAA9 interacted ARF5, but not ARF6, 7, 8 and 19. Transgenic Arabidopsis plants expressing OsIAA9 have increased number of lateral roots, and reduced gravitropic response. Further analysis showed that OsIAA9 transgenic Arabidopsis plants accumulated fewer granules in their root tips and the distribution of granules was also affected. Taken together, our study showed that OsIAA9 is a transcriptional repressor, and it regulates gravitropic

  6. CO/sub 2/ and plants: the response of plants to rising levels of atmospheric carbon dioxide

    SciTech Connect

    Lemon, E.R.

    1983-01-01

    This book presents information on the direct effects of increased atmospheric CO/sub 2/ on plants. The authors consider what we already know about plant responses to various CO/sub 2/ concentrations, then project what may happen at ambient levels up to 600 ppm. Formulation questions that must be answered if we are to quantify plant responses under changing conditions, they consider possible positive and negative effects of the steady increase of one of life's basic components.

  7. Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology.

    PubMed

    Kusari, Parijat; Kusari, Souvik; Spiteller, Michael; Kayser, Oliver

    2015-07-01

    Quorum sensing, the cell-to-cell communication system mediated by autoinducers, is responsible for regulation of virulence factors, infections, invasion, colonization, biofilm formation, and antibiotic resistance within bacterial populations. Concomitantly, quorum quenching is a process that involves attenuation of virulence factors by inhibiting or degrading quorum signaling autoinducers. Survival of endophytic microorganisms, commonly known as endophytes, in planta is a continuous mêlée with invading pathogens and pests. In order to survive in their microhabitats inside plants, endophytes have co-evolved to not only utilize an arsenal of biologically active defense compounds but also impede communication between invading pathogens. Such antivirulence strategies prevent pathogens from communicating with or recognizing each other and thus, colonizing plants. The quenching phenomena often involves microbial crosstalk within single or mixed population(s) vis-à-vis gene expression, and production/modulation of quenching enzymes coupled to various antagonistic and synergistic interactions. This concept is particularly interesting because it can be biotechnologically translated in the future to quorum inhibiting antivirulence therapies without triggering resistance in bacteria, which is currently a major problem worldwide that cannot be tackled only with antimicrobial therapies. In this mini-review, we highlight the quorum quenching capacity of endophytes with respect to attenuation of virulence factors and aiding in plant defense response. Further, benefits and potential challenges of using such systems in biotechnology are discussed. PMID:25971199

  8. Changes in Odor Background Affect the Locomotory Response to Pheromone in Moths

    PubMed Central

    Party, Virginie; Hanot, Christophe; Büsser, Daniela Schmidt; Rochat, Didier; Renou, Michel

    2013-01-01

    Many animals rely on chemical cues to recognize and locate a resource, and they must extract the relevant information from a complex and changing odor environment. For example, in moths, finding a mate is mediated by a sex pheromone, which is detected in a rich environment of volatile plant compounds. Here, we investigated the effects of a volatile plant background on the walking response of male Spodoptera littoralis to the female pheromone. Males were stimulated by combining pheromone with one of three plant compounds, and their walking paths were recorded with a locomotion compensator and analyzed. We found that the addition of certain volatile plant compounds disturbed the orientation toward the sex pheromone. The effect on locomotion was correlated with the capacity of the plant compound to antagonize pheromone detection by olfactory receptor neurons, suggesting a masking effect of the background over the pheromone signal. Moths were more sensitive to changes in background compared to a constant background, suggesting that a background odor also acts as a distracting stimulus. Our experiments show that the effects of odorant background on insect responses to chemical signals are complex and cannot be explained by a single mechanism. PMID:23301000

  9. Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape?

    PubMed

    Wäschke, Nicole; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2015-09-01

    Anthropogenic land use may shape vegetation composition and affect trophic interactions by altering concentrations of host plant metabolites. Here, we investigated the hypotheses that: (1) plant N and defensive secondary metabolite contents of the herb Plantago lanceolata are affected by land use intensity (LUI) and the surrounding vegetation composition (=plant species richness and P. lanceolata density), and that (2) changes in plant chemistry affect abundances of the herbivorous weevils Mecinus pascuorum and Mecinus labilis, as well as their larval parasitoid Mesopolobus incultus, in the field. We determined plant species richness, P. lanceolata density, and abundances of the herbivores and the parasitoid in 77 grassland plots differing in LUI index in three regions across Germany. We also measured the N and secondary metabolite [the iridoid glycosides (IGs) aucubin and catalpol] contents of P. lanceolata leaves. Mixed-model analysis revealed that: (1) concentrations of leaf IGs were positively correlated with plant species richness; leaf N content was positively correlated with the LUI index. Furthermore: (2) herbivore abundance was not related to IG concentrations, but correlated negatively with leaf N content. Parasitoid abundance correlated positively only with host abundance over the three regions. Structural equation models revealed a positive impact of IG concentrations on parasitoid abundance in one region. We conclude that changes in plant chemistry due to land use and/or vegetation composition may affect higher trophic levels and that the manifestation of these effects may depend on local biotic or abiotic features of the landscape. PMID:25986560

  10. Unpreferred plants affect patch choice and spatial distribution of European brown hares

    NASA Astrophysics Data System (ADS)

    Kuijper, D. P. J.; Bakker, J. P.

    2008-11-01

    Many herbivore species prefer to forage on patches of intermediate biomass. Plant quality and forage efficiency are predicted to decrease with increasing plant standing crop which explains the lower preference of the herbivore. However, often is ignored that on the long-term, plant species composition is predicted to change with increasing plant standing crop. The amount of low-quality, unpreferred food plants increases with increasing plant standing crop. In the present study the effects of unpreferred plants on patch choice and distribution of European brown hare in a salt-marsh system were studied. In one experiment, unpreferred plants were removed from plots. In the second experiment, plots were planted with different densities of an unpreferred artificial plant. Removal of unpreferred plants increased hare-grazing pressure more than fivefold compared to unmanipulated plots. Planting of unpreferred plants reduced hare-grazing pressure, with a significant reduction of grazing already occurring at low unpreferred plant density. Spatial distribution of hares within this salt-marsh system was related to spatial arrangement of unpreferred plants. Hare-grazing intensity decreased strongly with increasing abundance of unpreferred plants despite a high abundance of principal food plants. The results of this study indicate that plant species replacement is an important factor determining patch choice and spatial distribution of hares next to changing plant quality. Increasing abundance of unpreferred plant species can strengthen the decreasing patch quality with increasing standing crop and can decrease grazing intensity when preferred food plants are still abundantly present.

  11. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-06-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

  12. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-09-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  13. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of sp